Published Online: 25 October 2018

Accepted: September 2018

X-ray backlighter requirements for refraction-based electron density diagnostics through

Talbot-Lau deflectometry

Review of Scientific Instruments **89**, 10G127 (2018); <u>https://doi.org/10.1063/1.5039342</u>

<u>M. P. Valdivia^{1,a)}, F. Veloso², D. Stutman¹, C. Stoeckl³, C. Mileham³, I. A. Begishev³, W. Theobald³, M. Vescovi², W. Useche², S. P. Regan³, B. Albertazzi⁴, D. G. Rigon⁴, P. Mabey⁴, T. Michel⁴, S. A. Pikuz⁵, M. Koenig⁴, and D. A. Casner⁶</u>

ABSTRACT

Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, Kshell emission was produced by irradiating copper targets ($500 \times 500 \times$ 12.5 μ m³ foils, 20 μ m diameter wire, and >10 μ m diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 μ m copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single $(2 \times 40 \ \mu m)$ and double (4 \times 25 μ m) copper x-pinches were driven at ~1 kA/ns. Moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.