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ABSTRACT

As urban population increases steadily, traffic congestion has become a major source

of discomfort and economic losses in urban environments. In this context, the concept

of intelligent transportation systems takes relevance as a way of optimizing traffic con-

trol with the use of technology. This work proposes a cyber-physical systems approach

to collaborative urban traffic control. Specifically, a three-layer architecture is proposed

to address the intersection management problem, with a physical layer formed by traffic

detectors and the traffic signal actuator, a cyber layer in charge of performing data pro-

cessing, communication with neighbors and traffic signal actuation, and a cloudlet layer

capable of implementing high level applications.

A first implementation in a pseudo-real environment, using a designed fuzzy-expert

controller and a novel timed-Preti-net based actuator, shows that the proposed system

is capable of handling the communication and processing loads, while improving traffic

performance with respect to classical solutions, outperforming timed, Webster and coor-

dinated scheduling methods in pilot-scale tests.

To validate the architecture in a real environment, the implementation of a real-time

traffic prediction application in the Las Vegas urban area is presented, which is built as a

cloudlet application with real-time data streaming from field sensors and deep-learning-

based traffic predictors. Implementation results show the feasibility of doing traffic pre-

diction in real time with the current technology and the usefulness of periodic retraining

to maintain prediction accuracy.

Finally, the thesis concludes by proposing a distributed control scheme based on rein-

forcement learning (RL) that exploits the data-driven nature of the problem, the coopera-

tion between intersections, and the modularity of the proposed architecture. Specifically,

a RL controller is synthesized, which manipulates traffic signals using information from

xii



neighboring intersections in the form of an embedding obtained from a traffic prediction

application. Simulation results using SUMO show that the proposed scheme outperforms

classical techniques in terms of waiting time and other key performance indices.

Keywords: Intelligent Transportation Systems, Cyber-physical Systems, Intersection man-

agement, Traffic prediction, Deep learning, Reinforcement learning, Timed-petri-net.
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RESUMEN

A medida que la población urbana aumenta, la congestión vehicular se ha convertido

en una fuente importante de molestias y pérdidas económicas en las zonas urbanas. En este

contexto, el concepto de Sistemas Inteligentes de Transporte toma relevancia como opción

para optimizar el control del tráfico con el uso de la tecnologı́a. Este trabajo propone

un enfoque de sistemas ciberfı́sicos para el control colaborativo del tráfico urbano. En

concreto, se propone una arquitectura de tres capas para abordar el problema de la gestión

de intersecciones, con una capa fı́sica que alberga los detectores de tráfico y los actuadores

de las señales de tráfico, una capa cibernética encargada de realizar el procesamiento de

datos, la comunicación con los vecinos y la manipulación de las señales de tráfico, y una

capa cloudlet capaz de implementar aplicaciones de alto nivel.

Una primera implementación en un entorno pseudo-real, utilizando un controlador

fuzzy-experto diseñado y un novedoso actuador basado en Petri-nets temporizadas, mues-

tran que el sistema propuesto es capaz de manejar las cargas de comunicación y proce-

samiento, a la vez que mejora el rendimiento del tráfico con respecto a las soluciones

clásicas de manejo de señales de tráfico, superando a los métodos de control temporizado,

Webster y coordinado en las pruebas a escala piloto.

Para validar la arquitectura en un entorno real, una aplicación de predicción de tráfico

en tiempo real en el área urbana de Las Vegas es presentada, construida como una apli-

cación cloudlet con flujo de datos en tiempo real desde sensores de la infraestructura y

predictores de tráfico basados en modelos de aprendizaje profundo. Los resultados de la

implementación muestran la viabilidad de hacer predicciones de tráfico en tiempo real con

la tecnologı́a actual y la utilidad del reentrenamiento periódico para mantener la precisión

de la predicción.

xiv



Finalmente, este trabajo propone un esquema de control distribuido basado en el apren-

dizaje reforzado (RL) que aprovecha la naturaleza del problema basada en datos, la coop-

eración entre intersecciones y la modularidad de la arquitectura propuesta. En concreto, se

sintetiza un controlador RL que manipula los semáforos utilizando la información de las

intersecciones vecinas en forma de un embebido obtenido de una aplicación de predicción

de tráfico. Los resultados de la simulación con SUMO muestran que el esquema prop-

uesto supera a las técnicas clásicas en términos de tiempo de espera y otros ı́ndices clave

de rendimiento.

Palabras Claves: Sistemas Inteligentes de Transporte, Sistemas ciberfı́sicos, Manejo de

intersecciones, Predicción de tráfico, Aprendizaje profundo, Aprendizaje por refuerzo,

Petri-nets temporizadas.
xv
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1. INTRODUCTION

1.1. Motivation

Urban population has experienced an exponential growth in recent years, a trend that

seems to remain firm in the upcoming decades. It is estimated that by the year 2050 the

world population will reach 9.8 billion inhabitants, two thirds of which will live in large

cities, representing an increase of 36% from today’s situation (United Nations, 2018). This

new reality will inevitably render mobility and transportation services offered in urban

areas inefficient and insufficient, incurring serious consequences for citizens.

In this scenario, vehicle congestion is one of the most serious problems, since it causes

extreme economic losses ($88 billion in the USA in 2019) (Reed, 2020) derived from

unnecessary expenditure of fuel, deterioration of vehicles and decrease in the productivity

of the city. In addition, it also affects the health of the inhabitants due to the generation

of air pollution, delays in emergency services, and nervous diseases (Cookson, 2018).

Although in 2020 there was a drastic decrease in vehicular traffic globally, caused mainly

by the worldwide lockdowns imposed due to the COVID-19 pandemic, recent data shows

that the previous upward trend in traffic congestion could quickly resume. Indeed, in

2021, traffic congestion in the U.S. costed drivers over $53 billion, a 41% increase from

the previous year (Pishue, 2021). Finding efficient ways to deal with traffic congestion is

imperative.

The most widespread solution to reduce urban congestion is the use of Urban Traffic

Control (UTC) systems for efficient intersection management, which represent the core

of modern Intelligent Transportation Systems (ITS) (X. Zhang & Riedel, 2017) due to its

high effectiveness, low cost and low space requirements compared to structural solutions

(Hamilton et al., 2013). A UTC system may implement a variety of control strategies on

traffic signals for intersection management, from the simplest fixed time plans, to more

complex and effective alternatives such as coordination at different intersections and real-

time actuation based on street detector data.
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Currently, the vast majority of UTC systems adjust the split (time that a light is in

green within a phase), offset and cycle time of traffic lights to optimize traffic, but differ in

the computational architecture and the strategies used to optimize these variables. SCOOT

(Robertson & Bretherton, 1991), for example, is the most common UTC system, which

is coordinated from a central computer that uses live traffic data to determine signalling

times. By comparison, SCATS (Sims & Dobinson, 1980) is a distributed approach that

applies different fixed time plans (created based on historical data) depending on the cur-

rent scenario. Most advanced UTC systems use hierarchical architectures to distribute the

work UTOPIA (Mauro & Taranto, 1990), RHODES (Mirchandani & Head, 2001), MO-

TION (Brilon & Wietholt, 2013), allowing the use of more complex strategies, as online

estimation and predictive models (Hamilton et al., 2013).

A common factor to all UTC systems is that a better understanding of road and city

conditions drastically improves performance. In this sense, on the one hand we have that

recent advances in sensor and communication technologies have contributed to the avail-

ability of massive traffic data, from which road and city conditions can be determined in

real time; it is not surprising that current trends in intersection management use more in-

formation together with intelligent control algorithms to define the system actions, look-

ing to automate processes and achieve real-time response to traffic conditions (Chen &

Englund, 2016) (UTMC Ltd, 2009). On the other hand, collaborative strategies appear

to be a promising approach for extracting information from the field, since the exchange

of data between system elements contributes to create a richer picture of the state of the

environment (Chen & Englund, 2016).

The Internet of Things (IoT) (Gubbi et al., 2013) plays an important role in this trend,

acting as a large-scale data provider platform (Zanella et al., 2014) that allows real-time

data gathering and communication to describe the performance of the different services in

a city. As a natural consequence, data-driven algorithms, especially those based on deep

neural networks (DNNs), have gain relevance in the traffic management context, allowing
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the use of the collected data to implement high-level applications, such as traffic predic-

tion or automatic controllers that act in real-time on traffic signals. In this scenario, cyber-

physical systems (CPSs) (Harrison et al., 2016), conceived as highly distributed connected

systems with the ability of actuating on their surrounding physical environment and the

capacity to perform highly demanded tasks, appear as the natural tool for implementing

smart services capable of autonomously and efficiently control parts of the urban environ-

ment. CPSs have shown great success in industry (Langarica et al., 2020; Núñez et al.,

2020), healthcare (Y. Zhang et al., 2017) and energy (Ye et al., 2015), which makes them

an appealing alternative for tackling the intersection management problem using real-time

data.

This work looks to set the basis for using a CPSs paradigm to create collaborative solu-

tions to the intersection management and control problem. Supported by the natural scal-

ability, modularity and horizontal integration of CPSs, our proposal enables implementing

a variety of services with local (within a neighborhood or even at a single intersection)

and global scope. Moreover, our proposed approach allows decision making at different

time-scales within the same system architecture. Furthermore, the flexible CPS architec-

ture promotes rapid prototyping and testing of data-driven services by taking advantage of

the standardized information models and the processing capabilities deployed at all levels:

field, network (fog) and cloud.

1.2. Hypotheses, Objectives and Contributions

The driving hypothesis of this work is that the CPSs paradigm is an appropriate tool

for tackling the intersection management and control problem, since it allows material-

izing a real-time data-driven decision making, from local to global scopes. A secondary

hypothesis, which motivates the search for a paradigm that enables real-time data-driven

decision making, is that decision making based on real-time traffic data, particularly a col-

laborative scheme, outperforms classical intersection management techniques in terms of

traffic congestion metrics, such as the average vehicle waiting time.
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Consequently, the main objective of this thesis is to propose a CPSs scheme for col-

laborative intersection management (CIM), and to validate it by deploying and evaluating

a series of concrete data-driven applications that have the potential of improving traffic

conditions in an urban scenario.

To achieve the main objective, the following specific objectives are in order:

(i) To design a CPS architecture for collaborative traffic intersection management

that fulfills the functional requirements for real-world implementations.

(ii) To validate the CPS architecture by implementing a realistic pilot instance for

functional and performance testing.

(iii) To design, implement in a real environment, and validate in terms of proper

performance metrics, a high-level broad-scope data-driven application that can

be deployed on the designed architecture.

(iv) To design, implement, and validate in terms of proper performance metrics, a

local-scope CIM data-driven application.

In the achievement of the aforementioned objectives, this thesis delivers the following

concrete contributions to the scientific community:

• A scalable, robust, secure and safe traffic-oriented three-layer CPS architecture

that allows using multiple data sources and implementing intelligent collabora-

tive real-time decision making in urban scenarios.

• A novel timed-Petri net-based traffic signal actuator that enhances existing Petri

net-based efforts to allow secure real-time actuation and event reaction, hence

enabling the use of data-driven decision making focused on modifying the be-

havior of traffic signals.

• A proof of concept of a real-time data-driven traffic prediction application im-

plemented using real detectors from Las Vegas I-15 Freeway and based on two

novel DNN prediction models with error recurrence.



5

• A novel distributed proximal policy optimization (PPO) RL controller for coop-

erative intersection traffic control, which works in tandem with a graph neural

network (GNN) traffic prediction model that encodes the information of inter-

sections and feed the PPO RL controller.

1.3. Organization

The rest of this thesis is organized as follows1: In Chapter 2 the proposed CPS ar-

chitecture for CIM is described in detail and the laboratory implementation of a concrete

instance is presented. Chapter 3 is focused on the design and real-world implementation

of an application for real-time traffic prediction on the Las Vegas I-15 Freeway. In Chapter

4 the distributed PPO RL-based control scheme for cooperative intersection traffic control

is introduced and evaluated. Finally, in Chapter 5 concluding remarks and directions for

future research are stated.

1This thesis follows the “3-paper format” of the Pontificia Universidad Católica de Chile, in which the thesis
is the compendium of three research articles developed by the student. Although redundant material between
chapters has been minimized, some redundancy is unavoidable since removing material affects the flow of
the articles in the compendium.
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2. PROPOSED SYSTEM ARCHITECTURE

This Chapter deals with the proposed CPS architecture for intersection management

and control2. Therefore, it contributes to the achievement of specific objectives (i) and (ii).

2.1. Context

Current research on UTC systems focuses on two core methods: intelligent-vehicle-

based and intelligent-traffic-signal-based.

Intelligent-vehicle-based methods implement control strategies for Automated Vehi-

cles (AVs) adopting vehicle-to-vehicle (V2V) or infrastructure-to-vehicle (I2V) commu-

nication technologies (Lin et al., 2013). In this context, a promising solution to obtain

fuel-efficient and safe driving are time slot allocation strategies, where AVs communicate

their route, position and velocity to an external agent that applies an algorithm to assign

a time slot to each vehicle for intersection crossing (Jin et al., 2012; Bichiou & Rakha,

2018). Alternatively, in safe trajectory prediction strategies, the external agent uses car in-

formation to predict safe and unsafe trajectories, and sends acceleration and deceleration

commands to the AVs to ensure safety and efficiency (Abdelhameed et al., 2014a, 2014b;

Buzachis et al., 2019).

On the other hand, intelligent-traffic-signal-based methods improve the management

of existing traffic signals, which makes their real implementation feasible in a shorter time

period. Most of these methods focus on designing better control strategies as: agent-

based approaches, with intersections modeled as agents following rules stored in their

knowledge base (Guerrero-Ibáñez et al., 2010), back-pressure control approaches, which

implement a distributed algorithm to compute control actions based on queue lengths and

can achieve probably maximum stability (Gregoire et al., 2015), and model predictive

2The material in this chapter is published in “Guzmán, J., & Núñez, F. (2021). A cyber-physical systems
approach to collaborative intersection management and control. IEEE Access, 9, 99617-99632.” (Guzmán
& Núñez, 2021).
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control approaches, which use street network simulations to predict future states of the

system and make traffic lights adjustments accordingly (Lin et al., 2013; Zhou et al., 2017).

A related area of research, important for UTC systems, focuses on real-time automated

control actions and reaction to unexpected events. In this area, Petri nets (PNs) have

arisen as a standard tool because of their capacity for synchronization and coordination of

distributed timed discrete processes, fast response, and safe and simple implementation.

In Qi et al. (2016, 2018), a Deterministic and Stochastic Petri net (DSPN) model of traffic

signals for accidents warning and management is proposed, introducing two new displays:

warning and emergency. The design was tested over a rectangular grid in a simulated

environment, where the model performs well in response to an incident under certain

conditions including timely termination of their use after clearance. In Huang et al. (2015),

a timed Petri net (TPN) model of a traffic signal that reacts by giving green light as soon

as possible to emergency vehicles (EV) is designed. Six types of EV arrival events were

defined for the system to attend to. List and Cetin (2004) introduced a modular TPN model

for traffic signal safe and real-time control. The model consists in two modules, one for

display transitions and other to control phase transitions. The main advantage is that it

allows transitioning between any phases and applying timed and actuated control strategies

to change the split of the phases, while ensuring safety by denying combinations of signals

that can cause collisions. Most of these solutions are very specific to the scenario they are

tested on, requiring major modifications to implement them over real intersections, which

are heterogeneous in terms of structure.

A promising strategy that takes advantage of new communication technologies is CIM,

where several system members, such as Vehicle On Board Units, intersections and other

transportation and city services, share information to make collaborative decisions (Chen

& Englund, 2016). In Hirankitti and Krohkaew (2007) a collaborative approach for in-

telligent traffic control is proposed, where each intersection is modeled as an agent that

communicates with its neighbors and controls its traffic signals following a set of rules

involving its own traffic condition, along with the downstream space availability of its
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neighbors. This solution outperforms fixed time and actuated controls. In Xu et al. (2019)

a cooperative method for traffic signal optimization and vehicle speed control is proposed,

where the intersection acquires the speed and position information from approaching ve-

hicles to calculate the optimal traffic signal times and plans the vehicles’ arrival times

with the aim of decreasing the total travel time of all vehicles. By sending the planned ar-

rival times to the vehicles, they can control locally their systems to arrive at the deadline.

This solution was shown to be more effective than actuated control and vehicle control

approaches with no intersection communication. However, most of the tests are simu-

lated over very controlled scenarios, without being exposed to real communication, data

transmission issues and real-time restrictions.

2.2. A Hierarchical Distributed CPS Architecture to CIM

To design an intelligent intersection management system, a hierarchical distributed

CPS approach is taken. To this end, each intersection is modeled as a two layer cyber-

physical object (CPO), with a physical layer that includes the physical environment and

its instrumentation, and a cyber layer, which is divided in three modules that cover: i)

congestion model, ii) traffic signals model, and iii) communication with other CPOs and

intelligent control. Each CPO instance communicates with neighboring CPOs to obtain

information of the congestion of their associated intersections. In this way, each CPO can

calculate the split of its local traffic signals collaboratively, by using its own congestion

and that of its neighboring intersections. Finally, each CPO from a neighborhood commu-

nicates its state to a layer of superior intelligence, called the “cloudlet” layer. The cloudlet

is a high-performance computational layer, which allows the execution of more complex

operations with the collected data. The cloudlet has cloud capabilities, but is located near

the neighborhood where control actions are being applied. Unlike the cloud, access to the

cloudlet is achieved via a permanent communication link to ensure low latency, and thus

achieve a real-time response. This layer provides a consolidation point for applications to
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Figure 2.1. Cyber-physical system concept of the proposed intersection
management system. Physical Layer: intersection detectors and actua-
tors; Modular Cyber Layer: Data Transformation Module, Traffic Signal
Control Module and Supervisor Module; Cloudlet Layer: high level appli-
cations

optimize the parameters of the control strategy, communicates with other city neighbor-

hoods and services, predicts events, presents a global perspective of the network state, and

presents statistical information to governmental entities, among others.

The proposed CPS architecture is illustrated in Fig. 2.1, and detailed in the following

subsections.

2.2.1. Physical Layer: Detectors and Actuators

The physical layer of an intersection is composed by all types of detectors that may

be present for data collection, like inductive-loops, cameras, lidar, radar, GPS (Shirazi

& Morris, 2017), or Roadside Units (RSUs) that receive status information from vehicles’

On-Board Units (OBUs). It also contains traffic signals that are used as actuators to control

traffic at the intersection. There is no restriction on the types of detectors that can be used,

but this decision impacts the quality of information that can be extracted, and the design

of part of the cyber layer.
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Figure 2.2. Intersection base model.

As a premise for the physical layer in this architecture, intersections must be fully

instrumented, so they can obtain traffic data in real-time and manipulate traffic signal

displays when required. Intersections can work sub-optimally if any of their neighbors is

not instrumented.

2.2.2. Cyber Layer: Cyber Intersection Model

To develop the cyber layer, the intersection model presented in List and Cetin (2004)

(Fig. 2.2) is considered, in which the concepts of movements, phases and cycles are

presented. A movement mi is a flow of cars in a specific direction, and a phase hj is a set

of movements that flow simultaneously, within the time interval that this phase is active.

As it can be seen in Fig. 2.2, there are eight possible movements (i ∈ {0, 1, . . . , 7}),

where the even: m0,m2,m4 and m6 are left turns, and the odd: m1,m3,m5 and m7 are

through-right combinations. For safety and efficiency, the model defines eight phases

(j ∈ {0, 1, . . . , 7}) as pairs of movements that flow without interrupting each other. Only
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these combinations are allowed. Finally, a cycle lk is a defined sequence of phases that is

implemented in the traffic light in a cyclic manner.

The cyber layer is composed by three modules that communicate and interact to man-

age the intersection efficiently.

2.2.2.1. Data Transformation Module (DTM)

One of the advantages offered by the proposed architecture is the processing capac-

ity located near the process, following the fog computing paradigm in CPSs (Tang et

al., 2017), which allows processing the detector’s data without compromising real-time

performance. To this end, a model that concisely represents the congestion state of the in-

tersection, by synthesizing the relevant information from the collected data, was defined.

This model operates in the DTM, and computes a real number ci ∈ [0, 100] that represents

the congestion state at each of the movements of the intersection. The congestion state can

be calculated by applying any type of algorithm that transforms the data collected by the

physical layer detectors into the congestion state values. This algorithm is applied when

requested by another cyber layer module.

One of the clear advantages of this strategy is that it makes the system detector agnos-

tic, since it is a matter of designing and implementing a congestion model corresponding to

the data type, thus dealing with the well-known heterogeneity problem in CPSs (Marwedel

& Engel, 2016). It also allows the system to easily integrate new sources of information, as

new detectors or new paradigms like Vehicle to Infrastructure communication (V2I) with

information received from Vehicles On-Board Units (OBU) or from Automated Vehicles

(AV) directly. In addition, the system can be improved by using different algorithms for

congestion modeling, without changing the rest of the system.
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2.2.2.2. Traffic Signal Control Module (TSCM)

The TSCM is modeled as a TPN in charge of managing the ON/OFF commands of

the traffic signals, performing the cyclic phase change, modifying the signal cycle when

an event occurs, and communicating the traffic signals state.

To understand this module, TPNs must be formally introduced. PNs are a graphical

and mathematical modeling tool beneficial for describing information processing systems

that are concurrent, asynchronous, distributed, parallel, non-deterministic, and/or stochas-

tic (Murata, 1989). PN graphs are composed of four elements: places, that usually rep-

resent states or processes of the system; transitions, that represent events; tokens, that

represent objects or a pointer to a current active process; and directed arcs, which indicate

the flow direction of tokens throughout the net. Places connect to transitions through input

arcs and transitions connect to places through output arcs. Tokens are located in places.

In their basic form, PNs are not capable of handling dynamic systems where time is a

fundamental variable. TPNs address this issue. In a TPN, two time values are defined for

each transition, αs and βs, where αs, also known as the static earliest firing time (static

EFT), is the minimum time the transition must wait after it is enabled and before it is

fired, and βs, called the static latest firing time (static LFT), which is the maximum time

the transition can wait before firing if it is still enabled. An unweighted TPN is a 6-tuple:

N = (P, T, I, O,M0, SI), (2.1)

where P = {p1, p2, ..., pm} is a finite set of places, T = {t1, t2, ..., tn} is a finite set of

transitions, with P∪T ̸= ∅ and P∩T = ∅, I : T×P → {0, 1} is an input function defining

directed arcs from places to transitions, O : T ×P → {0, 1} is an output function defining

directed arcs from transitions to places, M0 : P → N is the initial marking function (here

N is the set of nonnegative integers), and SI : T → Q+ × (Q+ ∪∞) is the static interval

(here Q+ is the set of positive rationals).
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An arc directed from place pj to transition ti defines pj as an input place of ti, implying

I(ti, pj) = 1, while an arc directed from transition ti to place pj defines pj as an output

place of ti, implying O(ti, pj) = 1. The execution of a PN is controlled by the distribution

of tokens. A marking M in a PN is an assignment of tokens to places, which changes

during execution. A transition ti ∈ T is said to be enabled by marking M at time τ if

∀p ∈ P , M(p) ≥ I(ti, p).

A general form for a state S of a TPN can be defined as pair S = (M,N), where M

is a marking; and N is a set with entries of inequalities, each entry of which describes the

upper bound and lower bound of the firing time of an enabled transition. The number of

entries of N is given in the number of the transitions enabled by marking M . Furthermore,

as N has one entry for each transition enabled by a given marking, the number of the

entries of N will vary with the behavior of the PN according to the number of transitions

enabled by the current marking. In other words, in different states N may have different

numbers of entries.

For each transition ti there is a SI(ti) = (αs
i , β

s
i ) that determines the interval where

ti is firable. Assume that transition ti becomes enabled at time τ in state S = (M,N).

Accordingly, transition ti is firable from state S = (M,N) at time τ +θ if and only if both

of the following conditions hold:

(i) ti is enabled by marking M at time τ .

(ii) the relative firing time θ, relative to the absolute enabling time τ , is not smaller

than the EFT of transition ti and not greater than the smallest of the LFTs of all

the transitions enabled by marking M .

Finally, firing t at M yields a new marking

M ′(P ) = M(P )− I(t, p) +O(t, p), ∀p ∈ P. (2.2)
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These rules allow designing dynamical systems that change their states and actuate on the

environment over time, following the “safe direction” defined by the model structure. For

more information on TPNs the reader is referred to Wang (1998).

When analyzing the intersection management problem, a TPN is an ideal tool to model

traffic signals due to: i) it can synchronize and coordinate distributed timed discrete pro-

cesses; ii) its fast response, easy implementation and graphic representation; iii) the many

tools to simulate the models and guarantee the absence of deadlocks; iv) it can be coded in

low level languages like C/C++ (Comlan et al., 2017) and deployed in a micro-controller.

This increases reliability since those devices cannot be reconfigured by an outsider at-

tacker; and v) it is able to ensure a safe and proper operation of the intersection by not

allowing conflicting movements to have green light simultaneously (Huang et al., 2015),

hence ensuring that external manipulations cannot generate an unsafe state.

2.2.2.3. Supervisor

The supervisor is an intelligent module responsible for: i) communicating with neigh-

boring intersections, ii) communicating with the cloudlet node, and iii) interacting with

the DTM and the TSCM for the collaborative intelligent management of split times.

A highlight of the proposed strategy is the collaborative management of the inter-

section by using information from neighbors, which are intersections that share at least

one road, to determine the local action. To this end, the supervisor communicates with

the DTM module to collect the congestion information of the intersection and creates a

congestion state vector. Then, the supervisor sends its state to its neighbors and gathers

congestion state from all neighboring intersections. To be protocol and communication

interface agnostic, information is added to the data model and the configuration of the

intersection in order to allow each intersection to recognize the relative direction of each

neighbor, as follows.

Data Model {

i d : i n t e r s e c t i o n ID
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t y p e : T r a f f i c F l o w O b s e r v e d

d a t e O b s e r v e d : d a t e o f t h e o b s e r v a t i o n

m o v c o n g e s t i o n : c o n g e s t i o n s t a t e v e c t o r

}

Whenever a message of neighbor state change arrives, the supervisor checks if the

movements affected form part of those registered as input or output roads in its configura-

tion and stores the data if the answer is affirmative. This stored information, together with

its local congestion state, is used in the split calculation process.

When a new phase is activated, the supervisor communicates the calculated split to the

TSCM, which configures the corresponding transition in the TPN.

Finally, the supervisor receives all the traffic signals state changes from the TSCM and

delivers the corresponding information to the DTM and the upper layer.

2.2.3. Cloudlet Layer: System Global Intelligence

As mentioned before, to increase the functionalities of the system and to incorporate

a global perspective, the cloudlet layer, which collects and digests all the congestion in-

formation of a neighborhood, is defined. This approach also makes the system consistent

with newer UTC paradigms, where services interact at a high level to achieve efficient

management of the city’s resources (Hamilton et al., 2013).

This node is in charge of: i) the statistical analysis of the information produced by

lower nodes, ii) communicating the state of the global system and events to other services

of the city to support collaborative decisions, iii) the optimization of parameters used by

control strategies operating at the lower layers, and iv) communicating information from

other services, such as weather and emergencies, among others, to the nodes at the lower

layers, for consideration in control decisions.
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2.2.4. Advantages of the architecture

The advantages of the proposed architecture are:

(i) Intersection modeling as a modular CPO, which allows the continuous improve-

ment of the system and the adoption of new paradigms by updating modules

one-by-one. Also, each module has its own contribution: i) abstracting detector

data in a congestion variable makes the rest of the system detector agnostic; ii)

modeling of traffic signals using a TPN, ensures real time response, reliability,

security and safety; iii) supervision of other modules and collaborative calcula-

tion of splits.

(ii) A Distributed design which makes the system: i) scalable since each CPO is

modeled separately and its design depends only on its physical intersection mor-

phology; ii) robust since each CPO is capable of managing its intersection lo-

cally, possibly sub-optimally, in case a neighbor is down; and iii) secure since

communication can be implemented over a private local network over which

rigorous security measures can be placed.

(iii) A cloudlet that provides a global view for intersection management, and allows

implementing high-level applications without compromising real-time response.

2.3. A CPS-based UTC Instance

Based on the proposed architecture, a UTC system is designed with focus on the first

two layers. A companion chapter will address cloudlet-level applications. Fuzzy logic is

used to model congestion and to calculate the splits.

2.3.1. Physical layer

For this design, we assume that the instrumentation consists of cameras pointing in

the direction of the entrance channels of each intersection. This assumption is reasonable

given the massive number of cameras installed in urban areas, and the vast amount of
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information that can be extracted from them using image processing (Shirazi & Morris,

2017). Hence, the area for information collection is bounded by the range of the camera.

The following information is assumed as available in real time.

• number of vehicles: Total number of vehicles in the sensed area.

• occupancy: Percentage of measurement area occupied by vehicles.

• mean speed: Mean speed of vehicles in the sensed area.

It should be noted that cameras are not the only instrument capable of delivering this type

of information. Other detectors can also deliver the same set of measurements. The system

is detector agnostic, hence, the only requirement is the type of information assumed as

available for designing the system.

2.3.2. Cyber Layer

2.3.2.1. DTM

For this particular instance, a fuzzy-expert strategy is proposed for the congestion mod-

eling algorithm defined by the architecture. This is due to the ability of these algorithms

to model inherently discrete processes and reduce their stochastic and non-deterministic

complexities based on expert knowledge. Three measured variables are fuzzified: num-

ber of vehicles, occupancy and mean speed; taking into account the information given in

Table 2.1. In this case “max vehicle” was defined as “length of the detector area/average

car length” and “max speed” was defined as the max speed of the road. For fuzzification,

three fuzzy sets are assigned to each input variable and five fuzzy sets to the congestion

output ∈ [0, 100], all with triangular membership functions. Fig. 2.3 illustrates the fuzzy

representation of the occupancy and the defuzzification of congestion.

As with any fuzzy-expert system, inference is done based on IF/THEN rules. The

knowledge base was designed based on the idea that the three input variables can be sep-

arated in two sets. The first set represents the state of the movement just before the split

time begins, while the second set, which is measured while the movement is in green,
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Table 2.1. Characteristics of measured variables

Variable Universe Measure Unit
number of vehicles 0 - max vehicle vehicles
occupancy 0- 100 percentage
mean speed 0 - max speed m/s

Occupancy

(a)

Congestion

(b)

Figure 2.3. a. Fuzzy representation of occupancy; b. Defuzzification of
congestion for a given intersection.

relates to how quickly the current state changes. Consequently, the variables number of

vehicles and occupancy belong to the first set, and the mean speed belong to the second.

The underlying principle is that congestion is a consequence of the relationship between

these two groups in the following way:

• If too many vehicles or too much space occupied, then high congestion.

• If too much speed when movement in green, then low congestion.

The opposite holds when the variables go the other way around. Based on this principle,

an example rule is:

Algorithm 1 Congestion Model Example Rule
1: if ((number of vehicles IS high) OR (occupancy IS high)) AND (mean speed IS low)
2: then congestion IS higher
3: end if
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After a figure of the fuzzy representation of the congestion variable is obtained, the

crisp value of the congestion state is obtained by applying a centroid defuzzification

method over the figure.

Finally, the DTM calculates the congestion for a pair of movements at the supervisor’s

request, and then communicates the result to it. The full congestion state of the inter-

section, constructed by the supervisor, is an eight-dimensional vector, where the ith entry

represents congestion value of the movement mi. In case the intersection does not define

a given movement, a value of “-1” congestion is assigned, and will be interpreted differ-

ently by the neighbors depending if the movement corresponds to an input (value change

to zero) or to an output (value changed to the max congestion value). Fig. 2.4 illustrates

an example of the state of an intersection. Note that m4 and m2 have a motorcycle and a

bicycle respectively, but the congestion computed is zero. This is because the occupancy

of each of these vehicles is really small, so the output of the congestion model is practi-

cally zero for these roads. Nevertheless, these vehicles will still have the opportunity to

cross when their movement is activated, even if only for the minimum green time (“tmin”

in Fig 2.5).

2.3.2.2. TSCM

There are many ways to model an intersection using TPNs depending on aspects such

as the controlled variables or extra functionalities. In this work, we take the intersection

model presented in List and Cetin (2004) as the base for our developments. This model has

been proven to be deadlock free and has properties that facilitate building functionalities

on top of it, as: i) its modularity, which allows increasing functionalities by merely adding

extra modules; ii) its versatility, allowing to control light changes in a timed and acted way

and to configure different sequences of phases inside the cycle of the intersection; and iii)

its safety, since it defines phases as pairs of movements that can flow without interrupting

each other, then, the TPN only admits safe movement combinations. The TPN is formed
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Figure 2.4. Example of the congestion state vector of an intersection that
does not have the movement m1.
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by two module groups: indication display modules (IDMs) and phase-transition modules

(PTMs).

An IDM takes care of the logic of the green, yellow and red lights of a given movement

mi. Hence, there must be one IDM, illustrated in Fig. 2.5, per movement. In a nutshell, a

movement begins in the go green (GG) place; the first transition activates the green light

adding a token in place display green (DG), and begins a timed process to reach the rest

green (RG) place, which depends on the EFT and LFT of transitions min and Act. Then,

the duration of the green light of the movement is controlled by the EFT (tG) parameter of

transition Act. When the token reaches RG, the PTM removes the token from this place

and puts it in place go red (GR), which begins a timed process to display the red light

(token in place rest red (RR)).

The PTMs, on the other hand, are responsible for the transition of the tokens from the

RG places to the GR places to initiate a phase transition process. The core of this module

is a transition-place-transition set defined as t1xy, Cxy and t2xy (see Fig. 2.6). There is

a PTM per each phase and transition-place-transition set for each possible transition to

another phase, giving a total of 56 sets (seven for each PTM) for the intersection shown

in Fig. 2.2. Fig. 2.6 shows the PTM of phase h0, which involves movements m0 and

m4. There are two different type of arcs connections to the sets, depending on whether the

phase change involves the change of a single movement or the change of the two of them.

In a nutshell, transition t1xy extracts the token from place RG of movements belonging

to the active phase hx to begin the timed process of changing movements to Red. Cxy

indicates that the process of changing phase hx → hy is taking place. Finally, t2xy ends

the phase transition process by adding a token in place GG of the movements belonging

to the new active phase hy. A detailed description of this model can be found in List and

Cetin (2004).

Note that, as the model only allows the activation of movements in safe pairs (see

Fig. 2.2), to control intersections that have vehicle flow in only one movement, this move-

ment must be associated with a non-existent partner in the PN, referred to as “phantom
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movement”. This phantom movement activates in the PN in pair with the mentioned in-

tersection movement, but is not taken into account for the congestion and split calculation

and intersection management.

In this work, we propose to enhance the model in List and Cetin (2004) to allow

automatic changes between phases of a cycle. To do so, we propose the addition of a TPN

module called “Automatic Cycle Running Module” (ACRM). With this module, the entire

TSCM can be implemented in a single device or programming thread, hence increasing

robustness and real-time response by not relying on a high-level device for phase changes.

Note that this module selects the next active phase according to the module structure.

Hence, the decision of which sequence of phases belongs to a cycle has to be taken before

system start-up, and be implemented on the design of the “ACRM”.

Given a current phase hx that is ending, a next phase hy ready to start, and a future

phase hz that follows hy, the ACRM selects hz according to the currently active cycle,

only when transition hx → hy begins (i.e., when transition t1xy fires). Fig. 2.7.a shows

the four main elements that make up this module. Given a set of different cycles K, the

first element of the ACRM module is a set of places, where each place Lk represents an

individual cycle lk (k ∈ K). A Lk place must have a token to activate the transition

between phases associated to the cycle lk. The second is the set of places representing the

eight phases admitted by the TPN model, where a place Hj (j ∈ {0, 1, . . . , 7}) contains

one token when hj has been selected as the next active phase within the cycle, i.e., the

phase hy of the next t1xy transition that will fire. The third element are the transitions

tLkxyz that perform the token flow process between places Hj, where Lk represents the

cycle lk they are associated to, and x, y, z represent the phases index. This transition must

have a small-time (st) (e.g., 1 s) associated, for synchronization with the IDM and PTM

processes. The last element is a place called phase transition condition (PTC) where a

token is placed when any transition t1xy of the PTMs is triggered; its only function is to

prevent the next phase selection process from being executed more than once during the

current phase changing process.
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Figure 2.7. ACRM structure and example of transition h0 → h1 → h2.

Figure 2.8. Cycle Transition Module structure.
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To illustrate the working principle of the ACRM, consider a cycle l0 with the following

phase transitions: h0 → h1 → h2 → h3 → h4 → h5 → h6 → h7 → h0. There exists

a transition tL0xyz for every allowed phase change, for example, tL0012, tL0123, tL0234,

and so on. Regarding connections with other modules: i) the PTC place is connected by

an output arc to all the t1xy transitions to indicate the beginning of the transition process

between phases hx and hy; ii) the Hy places are connected by an input arc to t1xy transi-

tions to establish the firing condition for transitioning to phase hy; iii) finally, the essence

is in the connections of transition tLkxyz:

• Bidirectional connection to place Lk, establishing the firing condition within

cycle lk, without extracting the token from this place so as not to alter the current

cycle.

• Bidirectional connection to place Cxy at the PTM module, establishing the acti-

vation condition of being in the transition process hx → hy, without extracting

the token from this place in order not to alter the PTM process.

• Input arc to the PTC place, establishing the activation condition that the phase

transition process has been initiated, i.e., t1xy was triggered, and preventing the

next phase selection from being executed more than once.

• Output arc to Hz, to assign the new phase hz as next according to the cycle that

is active.

As an example, consider a phase transition from h0 → h1 → h2 in cycle l0 (see Fig.

2.7). When conditions for switching from phase h0 to phase h1 are met, the PTM module

takes action activating the t101 transition that i) extracts a token from places H1, RG4 and

RR5, and ii) deposits a token in places C01, GR4 and PTC (at this moment, the internal

transition to the red light of the IDM of movement m4 starts). This event enables transition

tL1012, which fires just after the “st” time has elapsed. When tL1012 triggers, the token is

extracted from place PTC, so that conditions for activating tL1012 are no longer fulfilled,

and a token is deposited in place H2, which is connected to transition t112. With this
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last step, the phase-place token condition is reached to carry out the next phase change

programmed in the cycle.

The ACRM allows programming multiple cycles, involving different phases, which

can be activated upon the occurrence of an event. This scheme allows us to react to a

set of catastrophic events or extreme traffic conditions with a cycle change. To this end,

an extra module, called “Cycle Transition Module” (CTM), in charge of selecting a new

cycle when a event occurs is introduced. Fig. 2.8 shows this module.

The CTM is composed by three elements: i) an event cycle n transition tELk that is

triggered by an external module (the supervisor in this case) when an event requiring a

cycle change, to lk, occurs; ii) a change cycle n place CLk that establishes the change

condition from a present cycle to cycle lk; and iii) a set of change to cycle n from cycle m

transitions tCLkm that perform the token flow from Lm to Lk.

To allow the CTM to work in synchronization with the ACRM, we have to add more

tL0xyz transition sets that allow the corresponding phase transition from the previous cycle

to the new one. Let us illustrate the construction of these sets with an example. Consider

two different cycles L0 and L1, where L0 have the phases transitions described earlier in

2.3.2.2, There must be tL0xyz transitions that allow to leave the sequence established by

the L1 and start L0 from its first phase. For example, if L1 has the sequence h1 → h5, the

part of the module associated to L0 has a tL0150 transition that will set the conditions to

start L0 from the beginning (first phase h0), i.e., it will add a token to H0 when phase h1

is transitioning to h5. Note that the sequence h1 → h5 will occur anyways because we are

selecting the hz phase h0 that comes after this transition, but we consider this phase delay

is not restrictive for most events needing a cycle transition, as an accident or a change

based on the hour of the day.

The dynamics of this module are straightforward since it only seeks to transition the

token from one cycle type place to another. Suppose the system is currently running

L0. Activating the tEL1 transition generates a token in the CL1 place, which makes the
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transition tCL10 to fire immediately. This action causes a token flow from L0 to L1,

which ends the cycle change. Note that, from the ACRM (see Fig. 2.7), places of type Lk

are connected to the phase selection transitions tLkxyz that only belong to phases of this

cycle, then the network will be reconfigured at the following phase change to follow the

new cycle.

With these two new modules the TPN can be programmed in a micro-controller with

high security and robustness standards to control the intersection automatically, safely and

in real time, with the ability to receive external commands to modify the splits and also

the cycles, upon the occurrence of an event.

2.3.2.3. Supervisor

As explained in Section 2.3.2.2, each movement has an IDM that manages the rotation

of its traffic signals. Recall that, when a movement is active, a token flows through the left

branch of the module illustrated in Fig. 2.5. Also, recall that after the min transition fires,

the token is housed in place EG, waiting for the Act transition to enable and fire at tG or

when the maximum green time tGMax expires. The extended split time tG ∈ [0, ta] is the

manipulated variable the supervisor uses as control action.

Under this premise, it is proposed to implement two intelligent control strategies, de-

noted P (proportional) and PI (proportional + integral), using congestion information from

neighbors and the local congestion, to calculate the next value of the trigger time associ-

ated with transition Act, here represented as the split extension. Both strategies calculate

a delta (positive or negative) value that, in the P strategy, is used to perform a direct calcu-

lation of the split extension and, in the PI strategy, is added to the current split extension

value, analogous to a PI controller. This process is performed by the supervisor when a

PTM phase change process is communicated by the TSCM. At this moment, the supervi-

sor requests the congestion state of the movements involved to the DTM and calculates the

delta split, and consequently the final split, when the results arrives. The supervisor then
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Table 2.2. Channels affecting movements for a nominal intersection.

Active Movement Input Movements Output Movements
0 [2, 3, 5] East [3, 6] South
1 [1, 6, 7] West [1, 4] East / [3, 6] South
2 [4, 5, 7] South [0, 5] West
3 [0, 1, 3] North [3, 6] South / [0, 5] West
4 [1, 6, 7] West [2, 7] North
5 [2, 3, 5] East [0, 5] West / [2, 7] North
6 [0, 1, 3] North [1, 4] East
7 [4, 5, 7] South [2, 7] North / [1, 4] East

sends the split values to the TSCM when the corresponding movements are set to green.

Algorithm 2 summarizes the steps to implement the control action.

Algorithm 2 Control process
1: if DETECTOR CHANGE then
2: if detector.move.display == GREEN then
3: save detector data(move(detector.move), detector.data, “all”)
4: else
5: save detector data(move(detector.move), detector.data, “group 1”)
6: end if
7: end if
8: if NEIGHBOR STATE CHANGE then
9: save neighbor state(neighbor.state)

10: end if
11: if PHASE TRANSITION then
12: for moves IN next phase do
13: move.congestion = congestion measure(move.detectors)
14: move.split = split measure(move.congestion, neighbors)
15: end for
16: end if

To calculate the delta split of every movement, a fuzzy expert system approach is

taken. As mentioned, this delta is used to set the trigger time of transition Act of the

IDM to manage the extended split time. Under this scheme, the relative split time of a

movement is the time it takes to reach the necessary condition to change its green display

status, i.e., the time a token takes to flow from place GG to place RG.

In this case, the fuzzy variables are the current congestion state of the movement, the

average of the congestion states of the neighbors’ movements that represent an entry flow,
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Table 2.3. Variables used in the control process.

Variable Universe Measure Unit
my congestion 0 - 80 Congestion State
in congestion 0 - 80 Congestion State
out congestion 0 - 80 Congestion State
Delta Split P -11 - 11 sec
Delta Split PI -2 - 2 sec

and the average of the congestion states of the neighbors’ movements that represent an

obstacle for the outgoing cars. The supervisor uses the information in Table 2.2 to recog-

nize which channels of the neighboring intersections affect a movement, either as an input

flow or as an obstacle to the output flow. Table 2.3 shows the universe of discourse and

the units of every variable involved. Five fuzzy sets with triangular membership functions

were used for both input variables and delta split.

IF/THEN rules were constructed using the intersection of the three input variables

considering as design principle that i) the higher my congestion is, the higher d split

should be; ii) the higher in congestion is, the higher d split should be; and iii) the higher

out congestion is, the lower d split should be. Applying this principle, a total of 125 rules

were synthesized, which define the knowledge base for the fuzzy expert system.

The delta split of a movement, after defuzzification, is a float number that will modify

the extension split time of a movement every cycle. In case the intersection does not have

information of the input flows or output obstacles from its neighbors, a value of 40 will

be assigned to this congestion variable. Moreover, if the value of a congestion variable

is “-1”, representing the absence of the correspond movement in the neighbor topology, a

value of zero will be assigned if its an input flow and a value of 80 will be assigned if its

an output.

The relative split time of a movement for every cycle will be: i) P strategy: the trigger

time of the min transition, plus a central split value, plus the delta split P calculated when

the phase transition that activates this movement starts; PI strategy: the trigger time of

the min transition, plus the previous trigger time of the ACT transition, plus the delta split
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PI calculated when the phase transition that activates this movement starts. In the tests

conducted in this chapter, a maximum split time of 26 seconds was established, since

it is sufficient to clear an intersection under normal to heavy traffic conditions. A three

seconds yellow time and a two seconds all red time were defined based on state of the art

works. The trigger time of the min transition was defined as four seconds, so adding the

yellow and all red times to the phase time, we are left with 9 seconds minimum time for

pedestrian crossing. Finally, the central split value was defined as half of the split range

length ∈ [4, 26], equal to 11 seconds.

As a final thought, note that the modularity of the supervisor, together with the fact

of being detector, protocol and communication interface agnostic, makes it possible to

change or improve this module with the implementation of other strategies, as RL for the

split control, or by adding new applications, as emergency vehicle priority actions, without

significantly modifying the rest of the system.

2.3.3. Cloudlet Layer

In this work, no particular application was designed for the cloudlet Layer. However,

a node is implemented on which applications can be deployed in the future. In the imple-

mented system, all intersection CPOs communicate their congestion state to the cloudlet

node periodically, where the information is consolidated in a database to provide a global

view of the current and historical state of the neighborhood.

2.4. Implementation Example

To test the functionality and effectiveness of the strategy, a series of experiments were

conducted in a pseudo-real environment, seeking to resemble as much as possible the

conditions of the cyber and cloudlet layers to a real application, so switching to a real

environment should be transparent.
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2.4.1. Experimental setup

Each layer was implemented and tested in the laboratory. The main objective of the

experiments is to test the performance of the system in an intersection control application

for a neighborhood, emulating conditions as close to reality as possible. To do so, different

traffic networks scenarios are simulated in a high-performance computer representing the

physical layer; each CPO is implemented in a micro-computer connected to the simulation

over a standard wireless interface, from which they receive information from detectors

and apply control actions over the simulated traffic signals. The CPOs also connect to

each other over the same private network to communicate their congestion state. Finally,

a first release of the cloudlet was implemented in a second high-performance computer

connected to the CPOs over the Internet. A detailed description layer by layer is given

below.

2.4.1.1. Physical Layer

It was decided to simulate the physical layer due to the complexity that exists in imple-

menting the solution in real transportation infrastructure. To this end, a popular simulator

called Simulation of Urban Mobility (SUMO) was used. SUMO is an open-source, micro-

scopic, multi-modal traffic simulator, that allows simulating how a given traffic demand,

which consists of a set of vehicles, moves through a given road network (Krajzewicz et al.,

2012). SUMO has several tools to design traffic networks in a simple way, download real

street maps to perform tests on them, generate flows of different vehicle types, implement

road detectors and traffic signals to receive traffic information and perform control actions

based on this information, generate accidents, among others. One of SUMO’s main tools

used in tests with control actions is the Traffic Control Interface (TRACI). This tool is a

Python package that allows accessing simulation information and applying control actions

to its elements (e.g., traffic signals).
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(a) (b)

Figure 2.9. a. Ideal scenario: nine intersections fully instrumented; b. Real
scenario: section of the city of San Diego with 11 fully instrumented inter-
sections and five not controlled intersections.

Two networks were designed: i) an “ideal network” of nine intersections of equal

morphology, with the possibility of managing all the movements established in this chap-

ter (see Fig. 2.9a). Each lane has a max speed of 13.89 m/sec (50 km/hour) and a length

of 80 meters with a lane area detector covering a 62.5% of it (50 meters) that gathers the

three variables needed to calculate the congestion model. In this scenario, each node has at

least two instrumented neighbors with which it can exchange information; and ii) a realis-

tic scenario extracted from the “OpenStreetMap” database (OpenStreetMap contributors,

2017), which represents a section of the street map of the city of San Diego, California.

This scenario has 16 intersections, of which 11 are controlled (see Fig. 2.9b) and the other

five have no traffic signals. The max speed of all lanes is 13.89 m/sec (50 km/hour). It

also has some particular characteristics such as intersections with different morphologies,

lanes with different length, intersections that are not instrumented and intersections with

a single neighbor to share information with. These characteristics make it a complicated

scenario, hence ideal to test the performance of the strategy in unfavorable conditions.
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Table 2.4. Vehicles inserted during the simulation length of half an hour
for each vehicular flow setup

Free Low Moderate High

Ideal 707 804 880 1047
San Diego 587 947 1145 1292

For both scenarios, four different setups were tested: free, low, moderate and high

congestion. All setups are configured to insert vehicles in the simulation with predefined

routes for half an hour (see table 2.4); however, this time can be extended if due to traffic

reasons the simulation cannot place a vehicle at the beginning of its route at the established

time. In this case, the simulation will wait for the route to clear before placing the vehicle.

Both setups include five types of vehicles: cars, motorcycles, bicycles, trucks and buses.

Each type of vehicle has its own configuration regarding size and maximum speed. For

detailed information the reader is referred to Guzmán (2019).

All the scenarios were run on a high end computer with a Intel(R) Core(TM) i7-7700

Quad-core (8M Cache, up to 4.20 GHz) processor and 32GB DDR4 RAM.

2.4.1.2. Cyber Layer

Each CPO is composed by three different Python scripts, one per each module, in line

with the modular architecture proposed earlier. These modules interact with each other

and with the simulation to manage the traffic.

Five split management strategies were tested: the two intelligent strategies previously

explained, an optimal control strategy based on the Webster method (Zhihui et al., 2018),

a coordinated strategy based on traffic signal offset calculation to create green waves, and

a baseline timed strategy where all the splits are equal to the average of the minimum and

maximum limits of the intelligent strategies (15 seconds). The intelligent strategies were

implemented using the Scikit-Fuzzy (Warner & Sexauer, 2019) python library, while the

others use tools provided by the SUMO software.
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Table 2.5. Technical Specifications of devices used at the cyber layer

RPi 3B RPi 3B+ BBG BBBW
Processor Broadcom

BCM2837 64bit
CPU, Quad Core
1.2GHz

Broadcom
BCM2837B0,
Cortex-A53
(ARMv8) 64-bit
SoC @ 1.4GHz

AM335x 1GHz
ARM® Cortex-A8

Octavo Systems
OSD3358 1GHz
ARM® Cortex-A8

RAM 1GB LPDDR2
SDRAM

1GB LPDDR2
SDRAM

512MB DDR3 RAM 512MB DDR3 RAM

Interfaces 2.4GHz 802.11b/g/n 2.4GHz and
5GHz IEEE
802.11.b/g/n/ac

2.4 GHz 802.11b/g/n 2.4 GHz 802.11b/g/n

Storage 32GB SanDisk Ultra
micro-SD CLass-10

32GB SanDisk Ultra
micro-SD CLass-10

4GB 8-bit eMMC
on-board flash stor-
age

4GB 8-bit eMMC
on-board flash stor-
age

Each CPO was implemented in a micro-computer with moderate processing capabil-

ities that can connect to two or more interfaces at the same time. Four different models

of devices were used, running the same application, to verify that the strategy does not

depend on the hardware. These devices are, Raspberry Pi 3B (RPi 3B), Raspberry Pi 3B+

(RPi 3B+), BeagleBone Green (BBG) and BeagleBone Black Wireless (BBBW). Table

2.5 shows the technical specifications of the devices. For the ideal scenario we use two

RPis 3B, three RPis 3B+, one BBG and three BBBWs, and in the real setup a total of two

RPis 3B, three RPis 3B+, two BBGs and four BBBWs.

The TSCM TPN was implemented using the PNs python library SNAKES (Pommereau,

2015), which provides all the required tools to design many types of PNs and run them in

real time.

There is a configuration file shared by the three modules that contains all the parame-

ters necessary to configure the CPO to an specific intersection morphology, and it has to

be set for every intersection before its implementation. This file includes the intersection

ID, the movements it manages, the number of lanes of each movement, the phases for

each configured cycle, the neighbors relative position and IDs, the detectors and traffic

signals IDs, among others. For detailed information and source code the reader is referred

to Guzmán (2019)
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2.4.1.3. Communications

The CPO modules interact internally using an open-source universal messaging library

called ZeroMQ. A publish-subscribe messaging pattern was used due to its performance

distributing time-sensitive information efficiently, to its versatility, and to its widespread

use in applications related to cooperating objects. (Rodrı́guez et al., 2016)

Communications between the simulation and the cyber intersections take place over a

WiFi network using the MQTT protocol. All detectors of an intersection are grouped into

a single topic by the simulation and the nodes subscribe to the topic of their own detectors.

The detector is then identified by the message ID. Every time a value changes in a detector,

the simulation publishes a json with the current detector state to the corresponding topic

using a data model based on the Fiware-Datamodels for transportation data, as follows.

Fiware −Datamodel {

i d : D e t e c t o r ID

t y p e : T r a f f i c F l o w O b s e r v e d

l a n e I d : Lane o f t h e d e t e c t o r

l o c a t i o n : L o c a t i o n o f t h e d e t e c t o r i n f o r m a t

GeoPrope r ty . geo : j s o n

d a t e O b s e r v e d : Date o f o b s e r v a t i o n

occupancy : Occupancy of t h e d e t e c t o r a r e a

meanSpeed : Mean speed of v e h i c l e s i n t h e d e t e c t o r

veh ic leNumber : Number o f v e h i c l e s i n t h e d e t e c t o r

l a n e D i r e c t i o n : D i r e c t i o n o f t h e l a n e }

To communicate the cyber layer and the cloudlet layer, a similar strategy was used

thanks to a DeviceHive plugin (see next paragraph for more information regarding De-

viceHive usage) that handles the authentication of the nodes and stores their information

using MQTT messages. Each CPO subscribes to the DeviceHive node with a token gener-

ated by the platform. Then, each CPO publishes a json with its state through MQTT using



35

the same ID with which it was registered and the DeviceHive platform is responsible for

storing the info of each node in a database for later use.

The communication with the simulation and between the intersections runs over a

private WiFi network managed by a high end router (Tp-Link Archer c5400x) to ensure

a fast information flow and a good QoS. CPOs connect to the Internet through a different

private WiFi network managed by a Linksys WRT1900ACS router, to communicate with

the cloudlet layer located in a different subnet.

2.4.1.4. Cloudlet Layer

The cloudlet is implemented in DeviceHive, an open source IoT platform whose main

features are:

(i) allows managing large networks,

(ii) provides authentication with JWT (Jason Web Tokens),

(iii) communication is done using web sockets, with the use of an API REST, by

MQTT through an API MQTT,

(iv) has a database for storing metadata,

(v) has a connector for an external Cassandra database,

(vi) provides an API in different programming languages for integration of micro-

services.

The Cassandra connector is used to store the data flowing from the intersections. Cas-

sandra is a highly scalable and flexible database, which can be easily accessed by several

open source applications for big data analysis and machine learning applications. In this

way, the basis for implementing the higher level functionalities described in Section 2.2.3

are achieved.

The cloudlet was deployed on a high-performance computer with the following speci-

fications: Intel(R) Core(TM) i7-7700 Quad-core (8M Cache, 4.20 GHz) processor, 32GB
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Figure 2.10. Experimental setup implemented to evaluate the proposed in-
tersection management strategy based on a CPS approach.

DDR4 RAM and NVIDIA QUADRO P400 2GB DDR5 graphics. Fig. 2.10 illustrates the

experimental setup built for this study.

2.4.2. Experimental Results

To evaluate performance of the intersection management system, the following indi-

cators were used.

• Speed: Average vehicle speed in m/s

• Trip Duration: Average vehicle trip duration in seconds

• Wait Time: Average time a vehicle has a speed of less than 0.1 m/s

• Time Loss: Average time lost due to driving below the ideal speed (slowdowns

due to intersections, etc.)

• Depart Delay: Average delay time for vehicle insertion into the simulation

Fig. 2.11 presents the results obtained for the five evaluated control strategies over

the four “Ideal network” congestion scenarios. In this network, with the configuration
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(Higher is bertter) (Lower is bertter) (Lower is bertter) (Lower is bertter)

Figure 2.11. Average of the experimental results of the five control strate-
gies tested in the four “Ideal Network” congestion scenarios.

(Higher is bertter) (Lower is bertter) (Lower is bertter) (Lower is bertter)

Figure 2.12. Average of the experimental results of the five control strate-
gies tested in the four “San Diego Network” congestion scenarios.

shown in Fig. 2.9a, it can be seen that the proportional intelligent controller outperforms

the rest of the strategies for all the indicators in all the setups. The PI approach have a

good behavior in the first three scenarios, but in the last one, it gets beaten by the Webster

method in the first three indicators. This is because both intelligent strategies deteriorate

exponentially against the introduced vehicle flow. However, this exponential deterioration

has a slow rate and all the other strategies get the roads saturated before the intelligent

approaches, so there is a long gap of vehicular flow where the proposed solutions are

significantly superior than the others, particularly the proportional strategy.

It has to be highlighted that the collaborative proportional strategy performs 93% bet-

ter than the others in the “depart delay” indicator, which implies a more efficient use of the

network and fewer time for the simulation to end. This can be also observed in Fig. 2.13,
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Simulation Time (s)

Figure 2.13. Vehicles Mean Trip Duration Time as a function of the simu-
lation time (lower is better) in the “Ideal Network” high congested scenario

Simulation Time (s)

Figure 2.14. Vehicles Mean Trip Duration Time as a function of the sim-
ulation time (lower is better) in the “San Diego Network” high congested
scenario

where the mean of the trip duration time of all the introduced vehicles is plotted as a func-

tion of the simulation time for the five controlled strategies in the high congested scenario.

It can be seen that all the curves start at the same point, but they separate as the simulation

progresses. Naturally, methods that achieve shorter mean trip duration times end the sim-

ulation much sooner than the others, which results in curves having different lengths in

Fig. 2.13; this is particularly notorious for the collaborative proportional method, which

ends more than twenty two minutes (25% time less) before the next strategy.

A similar behavior is observed in the results of the “San Diego Network” tests shown

in Fig. 2.12. First of all, the collaborative strategies still outperform the others in all the

congestion setups. However, in this case both strategies present a more linear behavior
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for the test indicators against the vehicular flow, with a lower slope than the other meth-

ods, which validates its possible use in many congestion setups over real world scenarios.

Second, it is interesting to notice that the coordinated strategy has the worst performance

of all the tested strategies in almost all the scenarios. This can be attributed in part to

the fact that there are five intersections without traffic lights, which makes it really hard

to perform a coordinated wave of vehicles. That, added to the fact that there may be no

significant vehicle flow in some specific directions to generate substantial green waves,

makes this approach inefficient in many urban scenarios. Finally, in Fig. 2.14, both col-

laborative controllers have a slower increasing behavior compared with the rest and end

twenty (collab p) and eighteen minutes (collab pi) before the next controller.

It has to be noted that the proportional strategy achieves much better results than the

PI. This may indicate that real time data and timely actuation is more important than

actions taken with previous data, at least for collaborative control. For this reason, the

proportional approach was used for extra tests.

To evaluate the robustness of the solution, a test over the collaborative proportional

method was made, where some of the CPOs where disabled and replaced with a regular

timed controller, with the split equal to the mean between the min and max split times (15

seconds). This test represents an scenario were the “supervisor” of some of the intersec-

tions stop working, loosing the communication with these nodes and keeping the traffic

signal running with a fixed cycle using only the more robust timed petri net based TSCM.

For the ideal network, nodes two (North-East) and six (South-West) where disabled (22%

of the nodes), and for the San Diego Network, nodes two (West), four (Center) and ten

(South-East) were disabled (27% of the nodes). Table 2.6 shows the performance compar-

ison between this strategy and the strategy with all the nodes operating. It is also compared

with the Webster method that achieves the best performance between the regular strate-

gies. In all the cases, it is observed that the collaborative strategy with disabled nodes has

a slightly worse performance than the complete solution, but it still outperforms the Web-

ster method. As expected, the difference between the partial solution and the complete one
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Table 2.6. Experimental results of the webster method, the collaborative
proportional (col p) strategy and the collaborative proportional with dis-
abled nodes (col p nd) strategy for both Ideal and San Diego networks un-
der decongested and congested traffic patterns.

Speed ↑ Waiting time ↓ Time Loss ↓ Trip Duration ↓

Ideal Network

Low
webster 1.86 650.06 706.72 763.26
col p nd 2.88 114.21 147.21 194.93
col p 3.04 100.34 131.81 179.23

High
webster 1.34 950.17 1017.7 1081.86
col p nd 1.92 638.59 683.16 744.42
col p 2.12 454.73 494.65 552.79

San Diego Network

Low
webster 4.27 100.08 139.86 191.98
col p nd 5.13 39.45 66.41 118.67
col p 5.38 33.14 59.59 111.87

High
webster 2.82 349.82 408.78 464.77
col p nd 2.9 285.21 337.2 392.15
col p 3.6 138.75 184.47 237.72

gets larger as the vehicle flow grows (worst indicator is the wait time with 28% difference

in the Ideal Network and 51% in the San Diego Network), yet it still is better than the

Webster in all the evaluated setups. This test validates a robust performance when at least

70% of the system is working, which is closer to a real scenario where some intersections

may not be instrumented or there may be problems with the CPOs.

2.5. Discussion

In this chapter a three layer CPS approach to CIM is proposed, with a modular cy-

ber layer that facilitates the design of systems using this architecture and provides the

required functionalities for its implementation in a real world scenario, such as: i) a DTM

that receive the traffic data from the physical layer to model a “congestion” variable rep-

resenting the state of the intersection, making the rest of the system detector agnostic; ii)

a Timed Petri Net based TSCM that acts as a robust and safe traffic signal cyber actuator,

and allows implementing external strategies for CIM and event reaction; and iii) a Super-

visor module in charge of implementing intelligent control strategies and communication

with neighboring intersections and high level applications. To validate the architecture,
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from a functional perspective, an instance was designed and implemented, using Expert-

Fuzzy strategies for congestion modeling and split calculation. Evaluation in two scenar-

ios shows that the proposed approach can efficiently handle CIM, outperforming timed,

webster and coordinated strategies.

Despite the promising results, several limitations exist, which are discussed in the

following.

• In section 2.4.2 it was mentioned that the collaborative strategy with disabled

nodes can still outperform the Webster method, when at least 70% of the inter-

sections are controlled with the proposed P strategy. In a real implementation,

there may be situations where the number of intersections that can be controlled

is less than this percentage, either due to the lack of instrumentation or equip-

ment failures. For this reason, it is recommended to carry out sensitivity studies

regarding the disconnection of nodes in different scenarios, in order to find the

limit where it is no longer convenient to use the proposed solution.

• A point that was not developed in detail in this research was the different data

and information sources that can be used as input for the control strategy. In

this work, it was decided to use the traffic variables of speed, occupancy and

flow, which can be measured with conventional traffic detectors. However, there

are many other interesting options to take into consideration, such as: predictive

traffic information, information from cars with data transmission units, informa-

tion from autonomous vehicles, pedestrian traffic information, among others. As

mentioned in section 2.2.2.1, one of the advantages offered by the implementa-

tion of the DTM module is that an intersection state variable is generated from

the physical layer data, which makes the rest of the system agnostic to the types

of data and detectors used. Therefore, the most straightforward method for in-

corporating new data sources is to design a model for generating the intersection

state variable using this data as input, without making significant changes to the

rest of the solution.
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• Pedestrians flow is a particular case of data that is interesting to discuss on its

own, because in some occasions pedestrian flow at an intersection can be more

abundant and significant than vehicular flow. Although, as mentioned in 2.3.2.3,

the design of the TSCM module establishes a 9 second “active” time per phase

pi so that pedestrians associated with the other phases can transit, it would be

interesting to take the pedestrian flow data as one of the input variables to define

the split of the traffic signals. As mentioned in the previous point, the most direct

option would be to incorporate this data as input to the DTM model. Another

interesting option is to increase the dimensions of the state variable output by the

DTM, to generate a vector related to the vehicular flow and another related to

the pedestrian flow associated to each phase. This increase in dimensions would

generate a richer input for the CIM controller, but it would create a constraint

that all intersections must be properly instrumented to detect pedestrian flow, so

that this new state vector can be generated and shared with neighbors to take

control actions.

• One difficulty for implementation of this autonomous systems in real environ-

ments is the fact that drivers are used to a standard cycle duration and to a dis-

tribution of phases being more or less constant over time. For this reason, it

would be interesting to discuss some ways to facilitate user acceptance. As an

initial solution, it is proposed to implement signs that allow the user to identify

the autonomous feature of the traffic light (e.g. a sign on the traffic light that

says “Intelligent Traffic Light” or “Autonomous Traffic Light”). In this way it

will be more difficult for the user to confuse the behavior of the traffic light with

a malfunction. On the other hand, with respect to the system’s ability to react

to events, it would be a good option to implement screens that allow users to be

informed of the occurrence of such events (e.g., road status screen), so that users

are aware of the current situation and can take appropriate action.

In closing, it is important to state that a natural steps for extending the work presented

in this chapter include the design and implementation of a high-level application to test the
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capabilities of the cloudlet layer of the proposed architecture, and to improve the CIM con-

trol strategy by designing and implementing a more sophisticated data-driven controller,

that uses, for example, learning-based algorithms to define the splits. These two directions

will be developed in the next two chapters of this thesis.
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3. REAL-TIME TRAFFIC PREDICTION IN LAS VEGAS I-15 FREEWAY

This Chapter details the development of traffic prediction application that makes use

of the architectural paradigm introduced in the previous chapter. Therefore, it contributes

to the achievement of specific objective (iii). A highlight is the implementation over a real

environment in the city of Las Vegas3.

3.1. Context

Within an ITS, traffic prediction plays a key role for traffic management, since it allows

adjusting routes and systematically allocating resources (Ma et al., 2017). However, traffic

prediction is a rather complex task due to the difficulties in modeling traffic patterns in

urban areas and the numerous unmodeled disturbances that take place during the day.

Recently, thanks to the exponential increase in the number of detectors implemented in the

transportation infrastructure, addressing the traffic prediction problem using data-driven

techniques has emerged as a viable option. Data-driven techniques allow modeling urban

traffic in an accurate way, and thus enable obtaining accurate short-term predictions useful

for planning (Li et al., 2018; Lana et al., 2018).

Among the new data-driven techniques used for traffic prediction, deep learning (DL)

models have obtained the best results, thanks to their ability to find complex non-linear

relationships between data points, which are very difficult to extract with simpler models

(Yin et al., 2021). Specifically, models that work with spatio-temporal data, such as Con-

volutional Neural Networks (CNN) and Graph Convolutional Neural Networks (GCNN),

excel when predicting traffic (Ma et al., 2017).

Concretely, in Wang et al. (2016), a novel architecture called “Error-feedback Recur-

rent Convolutional Neural Network” (eRCNN) is presented, which uses information of

3The material in this chapter is published in “Guzmán, J., Morris, B., & Núñez, F. (2022). A cyber-physical
system for data-driven real-time traffic prediction in Las Vegas I-15 freeway. IEEE Intelligent Transportation
Systems Magazine. doi: 10.1109/MITS.2022.3211996” (Guzmán, Morris, & Núñez, 2022).
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the prediction error from previous time steps to improve subsequent predictions, via the

error-feedback recurrence method. The proposed eRCNN uses as input a spatio-temporal

matrix of vehicle speed measurements and errors from previous predictions to predict the

vehicle speed (used as traffic level indicator) at a given detector at a given time. Two

datasets were created in Wang et al. (2016) using vehicle speed measurements, sampled

with a 5 minutes sampling period, from detectors in two Beijing roads: the 2nd ring road

and the 3rd ring road. Data was collected during 25 weekdays in November 2013, yielding

approximately 7,200 samples. The first dataset considers measurements from 88 road seg-

ments, while the second includes measurements from 122 road segments. A comparative

analysis conducted in Wang et al. (2016) showed that the eRCNN outperforms ARIMA,

Support Vector Regression (SVR) and CNN models in predicting vehicle speed.

In Mena-Oreja and Gozalvez (2020), a comparative study was performed between sev-

eral state-of-the-art DNN models for traffic prediction based on spatio-temporal images.

The evaluated architectures were setup to receive as input spatio-temporal measurements

of flow, occupancy and vehicle speed, and included models using previous prediction er-

rors via the error-feedback recurrence method, the eRCNN proposed in Wang et al. (2016)

among them. The datasets used for training and evaluation consisted in two years of data,

2015 and 2016, from three different segments of the I5 freeway in California: I5-N-3 (27

detectors), I5-S-3 (25 detectors), and I5-S-4 (31 detectors). Data was collected with a 5

minutes sampling period, yielding a total of 209,998 samples for each dataset. Results

presented in Mena-Oreja and Gozalvez (2020) show that models using the error-feedback

recurrence method outperformed their competitors, particularly in congested conditions,

the eRCNN being the best performer of the study.

In Li et al. (2018), a novel GCNN architecture called “Diffusion Convolutional Re-

current Neural Network (DCRNN)” is presented. The DCRNN captures spatial depen-

dency using bidirectional random walks on the graph, and temporal dependency using an

encoder-decoder structure with scheduled sampling. Two datasets were used for training

and evaluation. The METR-LA dataset consists in vehicle speed data of 207 detectors
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in Los Angeles County, taken every 5 minutes from March 1, 2012 to June 30, 2012.

Similarly, the PEMS-BAY dataset consists in vehicle speed data of 325 detectors in the

California Bay Area, taken every 5 minutes from January 1, 2017 to May 31, 2017. Com-

parative results presented in Li et al. (2018) show that the DCRNN outperforms ARIMA,

SVR, and Recurrent Neural Networks with fully connected Long short-term memory (FC-

LSTM) models in predicting vehicle speed for prediction horizons ranging from 15 to 60

minutes.

In Wu et al. (2019), a GCNN model called Graph WaveNet (GWNet) is presented,

which was designed based on the Wavenet model for raw audio generation. The GWNet

uses stacked blocks of dilated 1D convolutions and GCNNs to capture the hidden temporal

and spatial dependency in the data. For training and testing, the METR-LA and PEMS-

BAY datasets from Li et al. (2018) were used. Results show that the GWNet outperforms

the DCRNN proposed in Li et al. (2018) for different prediction horizons ranging from 15

to 60 minutes.

Finally, in Yin et al. (2021), a comparative study of state-of-the-art data-driven models,

including a new variety of GCNN models, is presented. For training and testing, the

METR-LA and PEMS-BAY datasets were used. Results show that the GWNet model

outperforms its competitors in predicting vehicle speed for prediction horizons of 15, 30,

and 60 minutes.

Despite the good results of DL models documented in the literature, an important issue

is that most studies have been conducted in controlled scenarios, with validated datasets

that have undergone preprocessing and cleaning stages. A concrete implementation capa-

ble of predicting traffic in real time, dealing with phenomena such as missing data, data

corruption, sensor failures, imperfections in communication networks, and sudden traffic

pattern changes is currently not available in the technical literature.
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Figure 3.1. Schematic of the Real Time Traffic Forecasting Platform Ar-
chitecture. The green boxes represent the platform service, the orange box
represents the external data source and the grey diamond represents the
broker for the internal communication.

3.2. CPS Architecture

The architecture used follows the general paradigm introduced in the previous chapter

consisting in three layers: i) a physical or field layer, where data is generated; ii) a connec-

tivity layer; and iii) a cyber layer, where data is interpreted, processed and visualized. Fig.

3.1 presents an overview schematic of the CPS; each layer is discussed in the following.

3.2.1. Physical layer: FAST

The FAST platform from the Regional Transportation Commission of Southern Nevada

(RTC) is a traffic monitoring and control system that manages and integrates a series of

detectors deployed in the city of Las Vegas. FAST exposes, via standardized communica-

tion interfaces, the data from a variety of traffic detectors, mostly radar and video cameras,

deployed along four of the main freeways in Las Vegas: I-15, US-95, I-215, and CC-215.
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Detectors in FAST generate measurements of most of the classical variables used

in data-driven traffic prediction, namely, vehicle volume, occupancy, and vehicle speed.

Hence, all of the state-of-the-art prediction models can be implemented using data from

FAST.

In this work, we focus on data-driven traffic prediction using spatio-temporal images

created from traffic data, which is the state-of-the-art method for traffic prediction as men-

tioned in Section 3.1. A spatio-temporal image is a representation of the data where each

variable represents a channel of an image, the value of the variable of interest is repre-

sented as a pixel intensity and the 2D position of the pixel is interpreted as the spatial

(position of the detector generating the sample with respect to the other detectors in the

system) and temporal (with respect to the time span represented in the image) information

of the sample.

Using spatio-temporal images is beneficial for exploiting spatial and temporal relation-

ships in the data; yet, a limitation is that the models can only work in (practically) linear

segments of highways, since their implementation for intersecting roads is not efficient.

For this reason, in this work we focus on a single segment of the I-15 freeway, one of the

most important and busiest roads in Las Vegas.

3.2.2. Connectivity layer: SOAP

To interact with FAST, the Simple Object Access Protocol (SOAP) is used. SOAP is

a request-response protocol that provides the Messaging Protocol layer by defining com-

mands for a client to access the services exposed by a second node. SOAP uses XML

Information Set for its message format and relies on application layer protocols for trans-

port. FAST exposes measurements from detectors through SOAP at a sampling rate of one

minute.
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To have more control over the communication management, it is proposed to imple-

ment a local service that will be in charge of data handling and processing. This service

will be explained in detail in the next subsection.

3.2.3. Cyber layer: Connector, visualization, and predictor instances

The cyber layer implements a series of services for handling and processing the data.

This facilitates the design of applications based on this architecture, since each service can

be designed independently from each other, as long as the data structure of the commu-

nication is consistent. Consequently, the cyber layer can be broken down into three main

parts, which are described in the following.

3.2.3.1. Connector

The connector is the service in charge of managing the data ingestion from the FAST

platform. The connector serves as a gateway bridging the SOAP interface to an MQTT-

capable interface that exposes the data to be consumed by the other services in the cyber

layer in the form of a json file. MQTT is a publish-subscribe protocol with low overhead

that reduces the communication load inside the cyber layer, compared to SOAP that typi-

cally uses HTTP for transport. In addition to serving as a protocol translator, the connec-

tor performs simple data-transformation actions to prepare the data for further processing.

Specifically, the connector:

• Aggregates the data coming from the different lanes of the freeway, generating

only one value for each variable per detector.

• Discards the information coming from detectors that are not used by services in

the cyber layer, i.e., generates a subset of detectors to be used for prediction.

• Translates the “Speed” variable from miles per hour to kilometers per hour (this

is necessary since the historical dataset used for training uses kilometers).
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• Re-samples the raw data coming at one sample per minute to generate a data

stream sampled at one measurement every 15 minutes. This is desirable since

historical data is consolidated in FAST with a 15 minutes sampling period, and

also because traffic analysis from FAST is done on a 15 minutes basis. It should

be noted, nonetheless, that the connector can re-sample the data using an arbi-

trary sampling period.

• Generates a new “Flow” variable (number of cars per hour) from measurements

of “Volume” (number of cars per 15 minutes).

• Repairs the data stream, filtering outliers and masking missing data points, using

a data imputation algorithm to provide the predictors with a healthy dataset (the

data imputation algorithm will be described in detail in the next section).

This service provides a direct way to connect to field traffic data, adding preprocessing

capabilities in the edge and offering authentication methods for data accessing, which

makes the solution more accessible, functional and secure.

3.2.3.2. Visual Interface

The visual interface is a web page where a map of the Las Vegas I-15 Freeway and its

detectors are displayed. The user can interact with each of the detectors to access real time

data and traffic predictions calculated by each of the predictors hosted in the cyber layer.

The visual interface is depicted in the upper right hand side of Fig. 3.1.

The visual interface is composed by two sub services that run in parallel and com-

municate with each other by accessing and modifying a group of shared geojson files

that contain the data and geolocation of each detector. The first sub service is the “geo-

json manager”, which is in charge of: i) the communication with the Connector service

through MQTT messages; and ii) the integration of the data from the FAST platform and

the predictors in the geojson files. The second sub service is the “Web Map Interface”,
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which is in charge of serving the visual interface that delivers to the user the information

stored in the geojson files.

3.2.3.3. Predictor Instance

The predictor instance is the core service of the traffic prediction application. There is

one predictor instance for each prediction model that is implemented in the system. Each

predictor instance is connected to the data streams using MQTT and, after calculating the

predictions based on the data, it publishes the predictions via MQTT to be consumed by

the visual interface service, which will handle the information and display it on the map.

This provides scalability to the solution, since the number of predictor instances that can

be hosted in the system is not limited by the architecture, on the contrary, the modular

scheme allows implementing a variety of prediction models in parallel to, for example,

conduct comparative analyses.

3.3. Datasets

The performance of data-driven prediction models depends heavily on the quality of

the datasets used for training, validation and testing. Therefore, in this work we create

new datasets, with similar characteristics to those used in state-of-the-art works on traf-

fic prediction but with emphasis on real-world implementation issues, such as seasonal

traffic changes, infrastructure modifications and unexpected events. These datasets also

constitute a contribution to this research area.

Three datasets were generated using historical data from 2018 and 2019 obtained from

the FAST platform. The main characteristics of the datasets are as follows:

• Each dataset has a different purpose: one for training, one for validation and one

for testing.
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Table 3.1. Description of traffic variables used in the study.

Variable Range Unit
Flow 0 - 3975 vehicles/hour
Occupancy 0 - 66.5 percentage vehicles/lane
Speed 0 - 85 miles/hour

• The datasets consider two years of I-15 NorthBound highway traffic data, gath-

ered during 2018 and 2019. With this amount of data, seasonal changes can be

discerned.

• Measurements are of vehicle flow, road occupancy and average vehicle speed.

Table 3.1 describes the variables used to generate the datasets.

• A sampling period of 15 minutes is inherit from FAST historical database.

To generate the datasets, an initial study of the raw data was conducted to evaluate the

richness and correctness of the data. Four main problems were detected, which needed to

be addressed.

(i) Invalid measurements.

(ii) Data losses.

(iii) Unevenly sampled data.

(iv) Missing data.

Regarding invalid measurements, about 16% of the data was flagged as invalid or failed

by the FAST platform itself (indicative of faulty sensors). Consequently, this data chunk

was removed, greatly reducing the amount of available data.

As for data losses, Figure 3.2 shows the available data for each detector in the segment

of the I-15 freeway under analysis. It can be seen that some detectors present a extremely

high data loss rate, which makes it impossible to use a data imputation technique to repair

the time series. Consequently, sensors with less than 50% of the expected data were

removed from the study. After the removal, 38 detectors were available, as shown in

Figure 3.3. However, there is a large spacial gap between detector 40 and detector 46,
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Figure 3.2. Collected data per detector in a two years time frame.

Figure 3.3. Collected data per detector after the removal of detectors with
less than 50% of the expected data. The green region contains the final 28
detectors used to generate the datasets, while the red region contains the 10
healthy detectors that were eliminated due to the large spatial gap.
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which is geographically located just at the intersection between the I-15 and the US95

highways, an undesirable place to have a blind spot. For this reason, the 10 rightmost

detectors in Figure 3.3 were eliminated from the study, finally leaving 28 healthy detectors

for generating the datasets.

Regarding unevenly sampled data, due to communication imperfections and data com-

pression algorithms executed by FAST, the sampling period was not constant at 15 min-

utes. Only about 40% of the data had an elapsed time of 15 minutes between consecutive

samples. Although more than 80% of the samples were taken with a sampling period

between 14-17 minutes, even a minor jitter in the sampling period produces loss of peri-

odicity in the dataset, which is detrimental for training of data-driven prediction models.

To deal with this issue, resampling of the database to a constant sampling period was con-

ducted using an algorithm based on nearest neighbor data and linear interpolation. Briefly,

the initial time of the dataset was defined and an allowable temporal error was set. The

raw dataset was then walked through from the initial time in 15 minutes steps and the

resampled dataset was populated based on the following rules:

(i) Nearest neighbor data if the sample is within the allowable temporal error.

(ii) Linear interpolation if the first condition is not met and both the sample before

and after are available.

(iii) NAN value if none of the previous conditions are met.

Finally, to address missing data, a data imputation strategy was developed using the

mice-forest library to implement a random forest algorithm, which uses the correlation

between the data to fill the missing samples. The strategy used is an iterative algorithm

that creates a random forest model for each of the variables that converges to the closest

true value at each iteration. The resulting imputation model can be used in real time for

imputation of new data. For more details of the algorithm please refer to the library source

code Wilson (2020).
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Table 3.2. Dataset description

Dataset Size (samples) Collection Dates
Train2018 35,040 01/01/2018 - 12/31/2018
Val2019 17,520 01/01/2019 - 06/31/2019
Test2019 17,520 07/01/2019 - 12/31/2019
Retrain2021 4,504 04/16/2021 - 06/02/2021

After solving the aforementioned issues, two years of validated data from 28 detectors

was available. The three datasets were generated as follows, the first 50% of the data (one

year) was used to create the Train2018 training dataset, the next 25% to create the Val2019

validation dataset and the final 25% to create the Test2019 testing dataset.

Given that two major disruptive events took place since 2019: i) project NEON (largest

public works project in Nevada history) that completely reconfigured the I-15 and US95

highway connection; and ii) the COVID outbreak that significantly changed traffic pat-

terns; it was expected that directly applying online the predictors trained with Train2018

would not give good results. Hence, data was gathered during 2021 to create the Re-

train2021 dataset, which will be used to incrementally retrain the predictors before test-

ing them online on the developed CPS. This dataset consists of 48 days of traffic data

with the same measured variables and the same sampling period as before, namely, flow,

occupancy, and speed with a sample period of 15 minutes. Table 3.2 shows the main

characteristics of the datasets, which are publicly available in Guzmán (2020).

In addition to the datasets, another major output of the initial data analysis process is

the imputation model. The final imputation model is used in real-time by the Connector

service at the cyber layer for on the fly data repairing. Specifically, the process executed

by the connector considers a first gathering stage to resample the data from one sample per

minute to one sample every 15 minutes (as mentioned in the previous section), and then a

data repairing stage using the imputation model. The flow of the process executed by the

connector service is detailed in Figure 3.4.
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Figure 3.4. Connector service real-time data process diagram.

3.4. Traffic Prediction

For traffic prediction purposes, four different data-driven prediction models were im-

plemented: an eRCNN with linear output, an eRCNN with iterative output, a novel error

recurrent encoder decoder (eRED) architecture, and the GWNet (GCNN). Following the

common practice in the literature (Wang et al., 2016), vehicle speed is used as the in-

dicator of traffic level; hence, models were trained to predict vehicle speed for different

time horizons for each of the detectors. A set of N = 28 detectors is considered and a

prediction horizon of W = 4 time steps is used, yielding a prediction horizon of 60 min-

utes, considering a sampling period of 15 minutes. Thus, the output of each model is a

spatio-temporal image Io ∈ RN×W with a single channel, which is the predicted vehicle

speed.

The prediction models differ in the structures taken as inputs. The eRED and both

types of eRCNN use as input a spatio-temporal image Ie ∈ RC×N×T , where the C chan-

nels correspond to each of the variables received from the detectors in the FAST platform:

Flow, Occupancy and Speed, the second coordinate represents each of the N = 28 detec-

tors and the third coordinate contains T = 24 samples representing 6 hours of previous
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Figure 3.5. Top: Input/output spatio-temporal images of the error recur-
rent models; Bottom: Input/output spatio-temporal images of the GWNet
model

data per detector. On the other hand, the GWNet model uses as input a spatio-temporal

image Ig ∈ R2×N×T , where one channel is the speed and the other is an index repre-

senting the timestamp of the corresponding speed measurement. The rationale is that the

models can predict one hour into the future by using the information contained in the last

6 hours of data. A sample of the input and output images can be seen in Fig. 3.5.

The architecture of each of the prediction models is detailed in the following.

3.4.1. eRCNN

The eRCNN models implemented in this work are based on the original eRCNN pro-

posed in Mena-Oreja and Gozalvez (2020). Error recurrence models seek to obtain feed-

back from recent prediction errors to improve the performance of future predictions. To

this end, an error function is defined, whose value is calculated each time a new prediction

is made, and then an error vector V e including the last M values of the error function is

used as a recurrent input to the network.
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The architecture of the eRCNN model from Mena-Oreja and Gozalvez (2020) is formed

by a 2D CNN that receives the spatio-temporal image Ie as input and produces an inter-

mediate output yconv that is passed through a fully connected layer FCc to generate a

hidden state vector hC . The hidden vector is then concatenated with a feedback hidden

state vector hE , which is obtained from passing the error vector V e ∈ RNM through a

fully connected layer FCe. Finally, the resulting hidden vector is passed through a fully

connected layer FCo which outputs the predicted image Io, i.e.,

Io = FCo(concat(FCc(yconv), FCe(V e)). (3.1)

The eRCNN was originally designed to predict the speed at a single detector at a given

time instant, i.e., Io ∈ R. In order to output a spatio-temporal image, modifications had

to be made. To this end, we propose two models based on the original eRCNN. Both

models preserve the convolutional part of the original model, but implement error recur-

rence differently. The first proposal is called eRCNN with iterative output (eRCNNIter).

It generates an initial output vector Ioj ∈ RN , with j ∈ [1,W ], which is then iterated to

generate the additional W − 1 columns of the prediction image. To do so, Io1 is obtained

in the original way, then V e1 = V e is updated by dropping the oldest element and ap-

pending a copy of the last element. Next, the updated error vector is passed through the

FCe layer to obtain hE , while the initial output Io1 is passed through a new auxiliary fully

connected layer FCh producing a vector hC
′, of the same size of hC . By doing this, two

auxiliary hidden state vectors hE and hC
′ are created, which are concatenated and passed

through the last layer FCo to produce the next prediction Io2.

Io1 = FCo(concat(FCc(yconv), FCe(V e1)) (3.2)

V ej+1 = concat(V ej[1 : M ], V ej[M ]) (3.3)

Ioj+1 = FCo(concat(FCh(Ioj), FCe(V ej+1)) (3.4)
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Figure 3.6. Schematic of the eRCNNIter, i.e., eRCNN with iterative out-
put. The blue section represents the part of the model that iterates W-1
times to generate the final output.

This process is repeated W − 1 times to complete the W prediction window elements,

and concatenated to generate the final output image. Fig. 3.6 shows a schematic of the

eRCNNIter model.

The second proposal is called eRCNN with linear output (eRCNNLin). This is a

slightly simpler model since it maintains the same structure of the original eRCNN, with

the difference that the last layer FCo generates a vector Io ∈ RNW representing the con-

catenation of predictions over the prediction horizon. Obtaining a spatio-temporal image

from Io is straightforward by resizing. Fig. 3.7 shows a schematic of the eRCNNLin

model.

3.4.2. eRED

As second effort, the error recurrence technique is used on a type of encoder-decoder

network that has shown good performance in predicting time-series data from industrial

applications (Langarica et al., 2020).

Briefly, in its original formulation this model uses a 1D CNN as an encoder, which

extracts spatial information from the input variables by generating an encoded vector that
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Figure 3.7. Schematic of the eRCNN with linear output which generates
all predictions in one step.

is later used as the initial hidden state for a recurrent decoder. The network uses as input

a data matrix Xr(n) ∈ RN×Tr formed by sequences of length Tr from N variables. The

decoder is a GRU-based network with LR layers and Ql neurons at layer l, that generates

a final hidden state hLR
R that is passed through a linear layer to obtain the final output. For

more information of the original model refer to (Langarica et al., 2020).

In this work, modifications were made to include error recurrence to produce the eRED

model. To this end, the encoder was replaced by the 2D CNN used in eRCNN models,

which allows extraction of both spatial and temporal information from the input, to gener-

ate the initial hidden state hD0 of the recurrent decoder.

hD0 = FCc(yconv) (3.5)

Unlike the original model, in this case the decoder receives as input the error vector V e

(created with the last M errors values) to generate the output. Hence, after M iterations,

hLR
r (M) ∈ RQLR is available, and the final output Io is obtained by passing this vector

through a linear layer. Fig. 3.8 shows a schematic of the eRED model.
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Figure 3.8. Schematic of the error recurrent encoder-decoder eRED model.

3.4.3. GWNet (GCNN)

The last model is the GWNet, which is a GCNN as presented in (Wu et al., 2019).

GWNet has shown excellent performance in traffic prediction, outperforming other state-

of-the-art DNN models (Yin et al., 2021).

Since GWNet works on graphs, it is necessary to formulate our traffic prediction prob-

lem in this context. Graphs are a type of data structure composed of nodes and edges,

in which nodes represent objects that have information and edges connect nodes that are

related. The advantage of working with graphs is that the information of the relationship

between nodes is explicitly used for prediction. Mathematically, a graph G is represented

as G = (V,E), where V is the node set and E is the edge set. Each node v ∈ V and each

edge e ∈ E have features xv and xe that change dynamically over time, so at each time

step t the graph G has a feature matrix X(t) (Wu et al., 2019).

The general principle of a GNN is to learn neighborhood embeddings by aggregating

information from a node neighborhood via edges using neural networks (Liu & Zhou,

2020). In other words, given a graph G and a sequence of s historical feature matrices,

the problem is to learn a parametric function f capable of forecasting the graph features

T steps into the future.
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Figure 3.9. Schematic of the GWNet model that explicitly models spatial
relationships between detectors with a graph.

GCNN are a subgroup of GNNs that aim to generalize convolutions to the graph do-

main. These models are the dominant type of GNN and were used for designing the

GWNet. For detailed information about the operation of GNNs the reader is referred to

Liu and Zhou (2020).

The GWNet is a model consisting of several layers, referred to in Wu et al. (2019)

as spatio-temporal layers. Each layer consists of a GCNN, which extracts the spatial in-

formation from the data, and a gated temporal convolution layer (Gated TCN), which is

formed by two parallel temporal convolution layers (TCN-a and TCN-b), which extract

temporal information from the data. In this way, the model is able capture different tem-

poral levels. Finally, the output of each layer is added and passed through a group of linear

layers to obtain the final prediction. Fig. 3.9 shows the architecture of the GWNet model.

3.5. Experimental Evaluation

To illustrate the potential of the proposed system, an instance was implemented at the

Transportation Research Center (TRC) of the University of Nevada, Las Vegas.
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Table 3.3. Experimental setup tools and libraries

Tool Description Use Case URL
Supervisor A client/server system that

allows users to monitor and
control a number of pro-
cesses

Services startup, error man-
agement and log generation

http://supervisord
.org/

Zeep A fast and modern Python
SOAP client

SOAP communication at the
Connector service

https://docs
.python-zeep.org/
en/master/

Mosquitto-
Server

An open source message
broker that implements the
MQTT protocol

Run the MQTT Broker for
the internal communication
with secured authentication

https://mosquitto
.org/

Paho
MQTT

A Python MQTT client li-
brary

Run the MQTT client in the
services

https://www
.eclipse.org/paho/

Pytorch An optimized Python tensor
library for deep learning us-
ing GPUs and CPUs

Implementation of predic-
tion models

https://pytorch
.org/

Geopandas An open source Python
library that extends the
datatypes used by pandas to
allow spatial operations on
geometric types

Construction and formatting
of the MQTT messages and
handling of the “.geojson”
files

https://geopandas
.org/

Flask A lightweight WSGI web
application framework

Implementation of the web
interface

https://
palletsprojects
.com/p/flask/

Maptiler A mapping software plat-
form that allows using
global mapping information

Access to I-15 freeway map
information

https://www
.maptiler.com/

3.5.1. Experimental setup

All the services of the CPS were implemented on a server with an Intel Xeon E5-2420

v2 @ 2.20GHz CPU and 32 GB of RAM, running Ubuntu server 16.04.7 as operating

system. Each service runs as an individual python script, except for the visual interface,

which requires a separate script for each of its sub-services (two scripts in total). Python

3.9.1 was used for the implementation. The tools and libraries used to implement the CPS

are detailed in Table 3.3.

It should be noted that, although for this instance everything was installed on the same

machine, there is no need to do so. Each service can be deployed in different machines, as

long as communication with the MQTT Broker is guaranteed.

http://supervisord.org/
http://supervisord.org/
https://docs.python-zeep.org/en/master/
https://docs.python-zeep.org/en/master/
https://docs.python-zeep.org/en/master/
https://mosquitto.org/
https://mosquitto.org/
https://www.eclipse.org/paho/
https://www.eclipse.org/paho/
https://pytorch.org/
https://pytorch.org/
https://geopandas.org/
https://geopandas.org/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://www.maptiler.com/
https://www.maptiler.com/
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Table 3.4. Prediction results. Dataset Test2019

Model MSE MAE
eRCNN Iterative 31.61 3.43
eRCNN Linear 19.74 2.47
eRED 24.92 2.89
GWNet 23.79 2.17

For training the predictors, the Adam optimizer with a learning rate of 0.0001 was

used considering the mean square error (MSE) as loss function. All the models were ini-

tially trained for ten epochs using Train2018 for predicting vehicle speed over a prediction

horizon of 60 minutes, i.e., considering four time steps into the future. Val2019 was used

for validation.

3.5.2. Test2019 results and analysis

To evaluate the performance of the system in predicting vehicle speed, the follow-

ing strategy was put at work. First, predictors were tested offline using Test2019. Good

performance is expected since it is assumed that Train2018, Val2019, and Test2019 were

obtained under similar traffic patterns.

Results in terms of MSE and Mean Absolute Error (MAE) in mph are presented in

Table 3.4. It can be seen that, as expected, all the models obtain good results, with an

MAE around 5% of the mean value of the predicted variable, vehicle speed. Among the

different predictors, the eRCNN with linear output obtained the best performance for the

MSE metric, while the GWNet obtained the best performance for the MAE metric. It is

worth noting that the eRED model, which is the smallest network, is able to obtain results

in the same order of magnitude as the other more complex models.

3.5.3. Online results and analysis

For online testing, the predictors trained with Train2018 were put online in the CPS

as predictor instances. As mentioned in Section 3.3, it is expected that directly applying
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the models trained with Train2018 would not give good results. Therefore, four sets of

retrained models were generated using the Retrain2021 dataset: i) a set that starts with

the predictors trained with Train2018 and considers retraining using the first 25% of the

data in Retrain2021; ii) a set that starts with the models obtained in i) and is incrementally

retrained using the second 25% of the data in Retrain2021; iii) a set that starts with the

models obtained in ii) and is retrained using the third 25% of the data in Retrain2021;

and iv) a set that starts with the models obtained in iii) and is retrained with the final 25%

of the data in Retrain2021. After this process, a total of 20 predictors are available for

online evaluation. It should be noted that dividing the Retrain2021 dataset into four parts

is arbitrary and that conducting a sensitivity analysis to find the appropriate amount of

data for retraining is recommended.

The CPS was put in operation using the 20 predictor instances detailed above for 75

days, from June 3, 2021 to August 17, 2021. This demonstrates the scalability and re-

liability of the system for making online predictions in real time. Prediction results are

presented in Table 3.5. It can be seen that, as expected, models without retraining perform

significantly worse with respect to the results presented in Table 3.4. Nonetheless, retrain-

ing helps in recovering the performance for all models. It is particularly interesting to note

that there is an important performance improvement after retraining with only 25% of the

retraining dataset. This suggests that the predictors can quickly incorporate data with new

traffic patterns and recover a good performance. Another important factor to consider is

that most predictors keep improving as retraining progresses, implying that conducting

periodic incremental retraining is beneficial in a real online implementation.

In terms of performance differences among the predictors, it can be seen that the eRED

model, the worst without retraining, greatly improves its performance with retraining,

while the eRCNN with iterative output seems to get stuck, which suggests that the eRCNN

with iterative output lacks flexibility to adapt to changing traffic patterns hence requiring

a large dataset to deliver accurate predictions. The GWNet is undoubtedly superior to the

rest in all regards, quickly reaching a performance comparable to the original numbers
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Table 3.5. Online prediction results with varying amounts of retraining.

Model No Retrain Retrain 25% Retrain 50% Retrain 45% Retrain 100%
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

eRCNN Iterative 100.8 7.47 61.94 5.54 56.72 5.00 59.62 5.12 65.57 5.09
eRCNN Linear 58.22 5.45 39.77 4.01 37.17 3.78 34.80 3.59 34.03 3.53
eRED 133.12 8.62 54.13 4.92 49.96 4.61 47.40 4.35 46.79 4.21
GWNet 44.74 4.2 27.77 2.75 28.17 2.71 27.30 2.71 26.43 2.62

Table 3.6. Online prediction results in terms of the MAE.

Model No Retrain Retrain 100%
15 min 30 min 45 min 60 min 15 min 30 min 45 min 60 min

eRCNN Iterative 7.76 6.86 7.15 8.11 5.39 4.37 4.98 5.62
eRCNN Linear 4.93 5.07 5.66 6.13 3.31 3.43 3.61 3.77
eRED 8.69 8.59 8.58 8.63 4.08 4.15 4.25 4.39
GWNet 3.40 4.07 4.52 4.84 2.23 2.58 2.76 2.90

presented in Table 3.4. This is consistent with results presented in the literature and re-

inforces the idea that using a graph-based formulation for traffic prediction is the ideal

approach.

A more detailed performance comparison is given in Table 3.6, where performance of

the models without retraining and the models retrained with all Retrain2021 are compared

for each of the four prediction steps. It can be seen that, without retraining, the eRCNN

with iterative output and the eRED models do not follow the expected trend of decreasing

performance as the prediction horizon increases but instead are more consistently poor.

This behavior is fixed for the eRED model with retraining. Although the eRCNN with

iterative output improves its performance with retraining, it still maintains the erratic be-

havior. On the other hand, the eRCNN with linear output and the GWNet models show

a consistent trend in both cases, with and without retraining, suggesting that these are the

most reliable models and hence should be the natural candidates for online traffic predic-

tion, with GWNet model being superior in terms of performance in most cases. Additional

analysis of the results can be found in Guzmán (2020).
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3.6. Discussion

In this work a CPS for real time data-driven traffic prediction is designed and imple-

mented in the I-15 freeway, Las Vegas urban area. This work is a follow-up to the research

presented in chapter 2, and illustrates the type of high-level applications that can be im-

plemented in the cloudlet layer of the proposed architecture for CIM. The system is based

on the previously introduced architecture with a physical layer where data is generated, a

connectivity layer, a cyber layer where data is processed and is made available in batches

every 15 minutes, and a cloud layer where predictions are made and displayed with a

visualization tool. A series of deep neural networks were trained as predictors and imple-

mented on the system. Results obtained show the feasibility of performing real time traffic

prediction with the available technology deployed on the transportation infrastructure of

the Las Vegas urban area and the proposed architecture.

Despite the promising results, Several limitations exist, which will be discussed in the

following.

• One of the limitations of this study was the number of detectors used. As men-

tioned in 3.3, problems of invalid measurements and data losses were encoun-

tered when analyzing the data from the I-15 freeway, so the number of detectors

studied had to be reduced from 60 to 28 detectors. Part of the data loss is due to a

structural change project that was taking place on the highway during the period

studied. For this reason, it is proposed to perform a new data collection from the

date of completion of the project, in order to reduce the amount of invalid data.

In addition, data from other segments covered by the FAST platform could be

evaluated, and thus define different segments that meet the amount of valid data

needed to train the prediction models.

• A second limitation of the system is that the data is presented with a sampling

period of 15 minutes. This limitation is associated to the fact that the data from

the Bugatti Fast platform is stored using this sampling period, so historical data



68

with a higher temporal resolution is not available. However, as of mid-2020,

the Transportation Research Lab of the University of Nevada, Las Vegas gained

access to data from the FAST detectors at a one-minute resolution. It is therefore

proposed to use this new source of information to create a dataset with a one-

minute sampling period that will allow us to train and implement models that

make predictions every minute.

• As mentioned in 3.2.1, this study was limited to traffic predictions on linear

road segments, since spatio-temporal prediction models used in this work have

that constraint. However, there is another group of models, specifically from

the Graph Neural Networks family, which are capable of using structural and

temporal information from networks with more complex morphologies, such as

urban areas with intersections and traffic lights. For this reason it is proposed

to use the CPS designed in this study together with different GNN models to

implement a traffic prediction application in a urban area with intersections.

Closing the chapter, it is worth noting that traffic predictions helps in taking preventive

measures to avoid congestion. For this reason, it is a natural idea to use traffic predictions

as input data for CIM strategies. Therefore, it looks appealing to use the information

encoded by the prediction models in combination with reinforcement learning algorithms

to generate a CIM strategy. This idea will be pursued in chapter 4.
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4. REINFORCEMENT LEARNING-BASED DISTRIBUTED CONTROL

SCHEME FOR INTERSECTION TRAFFIC CONTROL
This Chapter deals with the development of a RL based control scheme that is suit-

able for being implemented over the conceptual CPS architecture proposed in Chapter 2

and integrates with a version of the traffic predictor detailed in Chapter 34. Therefore, it

contributes to the achievement of specific objective (iv).

4.1. Context

As mentioned in Chapter 1, the implementation of Urban Traffic Control (UTC) sys-

tems for efficient intersection management has been the standard solution to mitigate con-

gestion. Due to the extensive deployment of traffic detectors and the recent advances in

computational equipment to efficiently process data, the current research trend in the area

focuses on the use of data-driven algorithms to implement different high-level applications

that help in improving traffic conditions (Chen & Englund, 2016). In this setting, two of

the most studied applications are: traffic prediction (Guzmán, Morris, & Núñez, 2022),

which was elaborated in detail in Chapter 3; and automatic controllers that act in real-time

on traffic signals, which allows immediate actions to be taken according to the current

traffic conditions.

Due to the data-driven nature of the problem and the stochastic complexity, Neural

Networks (NNs) have emerged as a natural tool to implement some of these applications,

thanks to their ability to find complex relationships within the process (Yin et al., 2021).

Specifically, Reinforcement Learning (RL) NNs models are a promising choice for the de-

sign of controllers, given their ability to learn optimal action policies from the interaction

with the environment. Hence it is not surprising that an extensive number of works based

on RL exist.

4The material in this chapter has been submitted for publication to the journal “Guzmán, J., Pizarro, G., &
Núñez, F. (2022). A reinforcement learning-based distributed control scheme for cooperative intersection
traffic control. Journal of Intelligent Transportation Systems”(Guzmán, Pizarro, & Núñez, 2022).
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In Shashi et al. (2021), a long short-term memory (LSTM) based Q-network to decide

the action of a traffic light in an intersection is designed. Q-networks are neural networks

based on Q learning, a model free reinforcement learning algorithm to learn the value of an

action in a particular state. In Shashi et al. (2021), the saturation of the roads, calculated

using the Webster method, serves as the representation of the state of the intersections

(i.e., the input of the RL network). The control action amounts to choosing the next green

phase, relying on the Webster method to calculate the split of the phase. This is done

to achieve a stable learning of the RL agent. This approach outperforms the traditional

Q-table, a lookup table used to calculate the maximum expected future rewards for action

at each state, and then select the max reward action, in terms of cumulative rewards and

average waiting time.

In a different approach, Huo et al. (2020) seeks to improve performance by implement-

ing a cooperative solution to decide control actions. To this end, the state of an intersection

is defined as a spatial matrix where each element represents a section of the routes enter-

ing and leaving an intersection, and its value indicates whether or not cars are present at

that position. Then, all the matrices are grouped into a tensor that, in conjunction with

a matrix indicating which phase of each intersection is green, represents the input to a

CNN actor-critic. In this case, the output of the network is the probability of switching

to the next phase in a predefined cycle, and the control action is defined based on this

probability. To stabilize the training, two approaches are taken: on the one hand, the im-

itation learning technique is used to pre-train the model, making it to imitate an expert

controller that seeks to increase the rate of output cars from the intersection vs. input cars;

and, on the other, the Proximal Policy Optimization (PPO) algorithm is used to reduce

the impact of policy collapse (divergence of the policy) caused by the multi-dimensional

output. This model was tested on a nine intersection SUMO environment against a pair

of fixed time models and a pair of Q-learning models, using queue size and waiting time

as performance indices. The cooperative control model obtained the best results, followed

closely by the fixed-time models implemented. Interestingly, Q-learning models presented

the worst performance. This work shows that cooperative control helps in improving the
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performance of RL controllers but, since in this particular formulation information from

all intersections in the system is necessary to make a decision, scalability problems may

arise when implementing it in real time.

Considering the observation that CNNs cannot effectively extract the dynamic features

of the traffic, like cars directions, Zeng (2021) proposes a decentralized solution based on

a GNNs multi-agent advantage actor-critic method, called GraphLight, to act on traffic

signals. Since communication between agents is involved when using a GNN as actor-

critic, this approach implies a coordinated action making from the agents. Specifically,

the state of an agent at time t is a vector containing the current traffic values measured by

the detectors of its controlled intersection, combined with the state of neighboring agents

multiplied by a spatial discount factor. The control action in this case is the selection of

the next green phase that will be active for a fixed period of time d. Testing was done on

a 25 intersection SUMO scenario. Results show that the proposed method outperforms

state-of-the-art methods in terms of multiple metrics.

Inspired by the success of existing RL-based traffic controllers and by the good results

of GNNs for traffic prediction presented in Chapter 3, and following the trend of using

more relevant information to understand the state of the road (Chen & Englund, 2016), in

this chapter we propose a RL-based distributed control scheme for cooperative intersection

control, which works in tandem with a GNN traffic prediction model that encodes the

information of intersections and feed the controller. The controller determines the state of

the intersection by combining current data from traffic detectors at the intersection with

past and future traffic information, from the ego and neighboring intersections, encoded

by the GNN traffic prediction model. To illustrate the benefits of the proposed approach,

an extensive simulation study is performed, which includes a comparison with classical

approaches for intersection management and control.
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4.2. Proposed Control Scheme

The proposed control scheme considers that each intersection Ii is associated to an

agent ai that is able to communicate with a set of neighboring agents Ni. The commu-

nication between agents enables cooperation, since access to the state information of the

neighborhood Vi = ai ∪Ni will be available to predict the traffic at intersection Ii, as well

as to take the control actions. Each intersection is required to be fully instrumented to

allow real time traffic data acquisition and control.

For traffic prediction, it is proposed to split the prediction model into a GNN encoder

and a linear decoder, so that it would be possible to distribute the encoder part among

the agents and the decoder part can be implemented in a cloud layer, in the spirit of the

general architecture presented in Guzmán and Núñez (2021). In the proposed scheme,

each agent communicates the embedding of the prediction encoder to its neighbors and to

the cloud layer; hence, the cloud receives the encoded data from all agents to make the

final prediction. By doing so, each agent uses its own traffic data combined with its own

and neighboring prediction embedding as inputs to its RL controller.

To take advantage of the predictor structure, a GNN is used for the RL controller and

each agent receives the embedding of the controllers of agents in Ni to calculate the con-

trol action. Under this setup, control actions are calculated from neighbors’ information

without the need of querying the cloud. Fig. 4.1 shows a general schematic of the archi-

tecture.

4.2.1. Intersection Model

For controller design, the intersection model presented in List and Cetin (2004) (Fig.

4.2) is considered. In this model, the concepts of movements, phases and cycles are used.

A movement mj is a flow of cars in a specific direction, and a phase pk ∈ P is a set of

movements that flow simultaneously, within the time interval that this phase is active. As it

can be seen in Fig. 4.2, there are eight possible movements (j ∈ {0, 1, . . . , 7}), where the
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Figure 4.1. General architecture of the proposed RL-based distributed con-
trol scheme.
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Figure 4.2. Intersection model.

even: m0,m2,m4 and m6 are left turns, and the odd: m1,m3,m5 and m7 are through-right

combinations. For safety and efficiency, the model defines eight phases (k ∈ {0, 1, . . . , 7})

as pairs of movements that flow without interrupting each other. Only these combinations

are allowed. Finally, a cycle C is a defined sequence of phases that is implemented in the

traffic light in a cyclic manner.
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Table 4.1. Characteristics of measured variables

Variable Universe Measure Unit
vehicles density 0 - 1 None
vehicles queue 0 - 1 None
occupancy 0 - 100 percentage
mean speed 0 - max speed m/s

4.2.2. Instrumentation at the Intersection

It is assumed that each intersection is properly instrumented. Specifically, each inter-

section is equipped with detectors capable of collecting different traffic variables over a

specific area of the incoming roads in real time. The detectors can be, for example, cam-

eras pointing in the direction of the incoming roads that can extract the traffic information

using image processing. This way, the sensed area is bounded by the range of the camera.

The traffic variables that are assumed available in real time are:

• Vehicle density: Total number of vehicles in the sensed area divided by the

approximate number of vehicles that can fit in this area.

• Vehicle queue: Total number of halted vehicles in the sensed area divided by the

approximate number of vehicles that can fit in this area.

• Occupancy: Percentage of sensed area occupied by vehicles.

• Mean speed: Mean speed of vehicles in the sensed area.

Table 4.1 describes each of these variables, where max speed = 13.69 m/s. It should be

noted that these measured variables are indeed typically available in instrumented traffic

infrastructure (Guzmán & Núñez, 2021; Guzmán, Morris, & Núñez, 2022).

4.2.3. Control Action

The controller is a local object of the intersection Ii that configures the activation

times tpk of the phases pk ∈ Pi of the fixed traffic light cycle Ci. For simplicity and to

add robustness to detector failures that prevent the collection of data from an area, a fixed

cycle length Tci must be predefined by a theoretical or practical method. Then, starting
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from Tci, for all the intersections, the controller calculates the optimal green time tGpk

(also called split) for each phase pk when the cycle starts. The transition times between

phases are defined based on values used in the state of the art as three seconds for the

yellow time, two seconds for the all red time and five seconds for the minimum split time.

4.3. Traffic Prediction Model

A key feature of the proposed distributed control scheme is the use of future traffic

information in the representation of the state of each intersection. To this end, we use the

embedding produced by a GNN traffic prediction model. Unlike CNNs, GNNs are usually

less complex, have information of the traffic flow direction (reference), and are usually

easier to distribute, since each node only needs to have access to its local information and

that of a subset of neighboring nodes, hence promoting scalability.

It is necessary to first introduce how graphs and GNNs work to have a better under-

standing of the proposed strategy. Graphs are a type of data structure composed of nodes

and edges, in which nodes represent modules that have information and edges connect

nodes that are related. The advantage of working with graphs is that the information of the

relationship between nodes is explicitly used. Mathematically, a graph G is represented as

a tuple G = (V,E), where V is the node set and E is the edge set. Each node v ∈ V con-

nects to its neighbors with an edge e ∈ E, and both have features, xv and xe, that change

dynamically over time. Consequently, at each time step t the graph G has a feature matrix

X(t) (Liu & Zhou, 2020). The general principle of the GNN is to learn a neighborhood

embedding hv by aggregating information from the node neighborhood N(v) through a

process of “neural message passing”, in which vector messages are exchanged between

nodes and updated using NNs (Hamilton, 2020). This process can be expressed as:

oN(v) = aggregate(hu
k,∀u ∈ N(v)) (4.1)

hv
k+1 = update(hv

k, oN(v)), (4.2)
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Table 4.2. Movements from neighbors affecting the movements of a nom-
inal intersection.

Active Movement Input Movements Output Movements
0 [2, 3, 5] East [3, 6] South
1 [1, 6, 7] West [1, 4] East / [3, 6] South
2 [4, 5, 7] South [0, 5] West
3 [0, 1, 3] North [3, 6] South / [0, 5] West
4 [1, 6, 7] West [2, 7] North
5 [2, 3, 5] East [0, 5] West / [2, 7] North
6 [0, 1, 3] North [1, 4] East
7 [4, 5, 7] South [2, 7] North / [1, 4] East

where “update” and “aggregate” are arbitrary differentiable functions that can be repre-

sented by NNs, and oN(v) is the aggregated message from neighborhood N(v). Hence, the

inference of a GNN is an iterative process, where at each iteration k the aggregate func-

tion takes the set of embeddings from the neighboring nodes N(v) to create a message

oN(v) based on the aggregated neighborhood information. Then, in the same iteration, the

update function combines the message oN(v) with the previous embedding hv
k to generate

the new embedding hv
k+1. At k = 0, the initial embedding hv

0 = xv, i.e., the features of

the node v. A common practice is to represent each iteration with a NN layer with its own

parameters, so that it is only necessary to stake layers until the desired number of itera-

tions is achieved. Note that, at each iteration, the embedding hv will include information

from more distant neighbors, adding one “hop” per layer, making it a natural option to

implement cooperative strategies.

To implement the GNN model, a graph is defined to model the traffic network, where

each detector linked to a movement “mi” represents a node of the graph. The edges

are given by the connections with neighboring movements based on the direction of car

flow. Table 4.2 shows the input and output connection with the neighboring intersection

movements.

In this work, we consider a two layer GNN as traffic prediction model, which is de-

picted in Fig. 4.3. Using this particular structure is motivated by the results documented
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Figure 4.3. Architecture of the GNN network used for traffic prediction
and generating the embedding used as input of the RL controller.

in Guzmán, Morris, and Núñez (2022). To create the message oN(v), the aggregate func-

tion is the element-wise multiplication between neighbors nodes features and connecting

edges features, the latter represented by GNN parameters. The update function consists of

passing the previous embedding through a feed-forward (FF) network, and then concate-

nating the result with the aggregated message oN(v). The embedding hv generated after

the second layer is used as part of the input of the RL controller. Finally, two linear layers

are implemented to generate the traffic prediction.

4.4. Reinforcement Learning Controller

The proposed controller is a neural agent in actor-critic architecture based on PPO

(Schulman et al., 2017). The fundamentals are exposed in the following.

4.4.1. PPO Algorithm

PPO is an on-policy RL algorithm that optimizes a surrogate objective and maxi-

mizes the expected advantage. It is developed from the Trust Region Policy Optimiza-

tion (TRPO) algorithm (Schulman et al., 2015), where the objective is to find the biggest

possible improvement step without stepping so far that accidentally causes a performance

collapse. When this is guaranteed, it is possible to perform multiple iterations over the loss
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using the same trajectories, without leading to destructively large policy updates. TRPO

determines the biggest step sizes using a second-order method, while PPO uses first-order

methods that rely on approximations to keep the new policies close to the old ones. There

are two variations of PPO, in this work we use PPO-Clip.

To give the context of PPO, the vanilla Policy Gradient (PG) and TRPO are introduced.

The PG method works by optimizing the following loss,

LPG(θ) = Ê[log πθ(at|st)Ât], (4.3)

where πθ is a stochastic policy parametrized by θ, πθ(at|st) is the probability of taking the

action at given the state st and Ât is an estimator of the advantage function at timestep t.

The expectation Ê[. . .] is taken as the empirical average over a finite batch of samples.

Let rt(θ) denote the probability ratio rt(θ) =
πθ(at|st)

πθold
(at|st) , so r(θold) = 1 and θold are the

policy parameters before the update. TRPO maximizes the surrogate objective

LCPI(θ) = Ê
[

πθ(at|st)
πθold(at|st)

Ât

]
, (4.4)

subject to a constraint in the size of the policy updates based on the KL divergence and

guarantees monotonic improvement (Schulman et al., 2015).

The superscript CPI refers to conservative policy iteration. Nonetheless, it uses

second-order methods that are inefficient. Therefore, PPO modifies the objective by re-

moving the constraint of TRPO and adding a penalization that prevents the policy from

moving rt(θ) away from 1. Consequently, PPO optimizes the surrogate objective (Schulman

et al., 2017)

LCLIP (θ) = Ê[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât], (4.5)

where ϵ is a hyperparameter used to keep the policy updates close to the old one. The

motivation for this objective is as follows. The first term inside the min operator is the

surrogate objective from TRPO, LCPI . The second term clip(rt(θ), 1− ϵ, 1+ ϵ)Ât is used
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to remove incentives for moving rt outside of the interval [1−ϵ, 1+ϵ], which is equivalent

to making small changes to the new policy πθ with respect to the old policy πθ. Finally,

the minimum of the clipped and the unclipped objective is a lower bound on the unclipped

objective.

As many other RL algorithms, PPO computes a variance-reduce advantage-function

estimator making use of a learned state-value function Vϕ(s) to compute the generalized

advantage estimation (GAE). The main idea behind GAE is generating a bias-variance

trade-off, which is based on the fact that trajectories close to the present generally have

lower variance while variance increases considerably in future trajectories. A general way

to present the advantages is through n-step returns given by

Ân
t =

t+n∑
t′=t

γt′−tr(st′ , at′) + γnVϕ(st+n)− Vϕ(st), (4.6)

where γ < 1 is the discount factor, and the bigger n used, the higher the variance, while

the lower n, the more bias. GAE generalize this advantage estimation by constructing all

possible estimators and averaging them, namely,

ÂGAE
t =

∞∑
n=1

wnÂ
n
t , (4.7)

where Ân
t are weighted using an exponential falloff with wn ∝ λn−1 and λ < 1. When

(4.7) is expanded, it is simplified into (4.8). In practice, GAE is computed by running

the policy for T timesteps, and using the collected samples for an update. This is used to

update an estimator that does not look beyond timestep T . Note that PPO’s loss (4.5) is

defined for any advantage estimation, but in practice uses

ÂGAE
t =

T∑
t′=t

(γλ)t
′−tδt′ (4.8)

δt = r(st, at) + γVϕ(st+1)− Vϕ(st). (4.9)
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The PPO algorithm that uses a fixed-length trajectory is shown in Algorithm 3. Each

iteration, there are N actors collecting T timesteps of data each. Then, (4.5) is constructed

on these NT timesteps of data and optimized using Adam (Kingma & Ba, 2014).

Algorithm 3 PPO Algorithm.
for iteration = 1,2, . . . do

for actor = 1,2, . . ., N do
Run policy πold in environment for T
timesteps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize LCLIP wrt θ and LV F wrt ϕ for K
epochs. LV F = (Vθ(st)− V targ

t )2.
θold ← θ

end for

4.4.2. Actor-Critic Models

In the proposed control scheme, the actor and the critic share structure with each other.

Particularly, the actor πθ and critic Vϕ share a common feature extractor based on the

traffic prediction model GNN. And then, each one projects the embedding vector using a

two layer FF network to their respective outputs. The GNN feature extractor embed the

observation of each node (given in Table 4.1) and from their neighbors into a hidden vector

hL
v , where L is the number of GNN layers. After hL

v is available at each node, each node

computes the actions and the estimated expected reward given by πθ and Vϕ, respectively.

It is worth noting that irrespective of the node, all use the same parameters θ and ϕ to

compute the learned functions.

The actor outputs a vector av,t ∈ Rp, where p is the maximum number of phases

available on every intersection. av,t is a probability vector, i.e., a real-valued vector with

non-negative entries that sum 1, containing the proportion that each phase is green during

the next traffic light cycle (if the intersection v does not have some phases, the entries of

the action vector associated to the non-existing phases are masked). Meanwhile, the critic

Vϕ outputs a scalar containing the estimated expected reward for each node.
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Figure 4.4. Scenario implemented in SUMO.

4.5. Implementation and Experimentation

4.5.1. Test Bed Implementation

A scenario was designed for model testing in SUMO (Krajzewicz et al., 2012). This

scenario consists of a grid of nine intersections, where each intersection has eight in-

coming traffic lines and eight outgoing traffic lines. Each input line represents one of

the movements of the model described in Section 4.2, and has a traffic detector that cov-

ers an area equal to 50% of the road, i.e., partial observation of the road. In addition,

each intersection has a traffic light with a fixed cycle Ci with the following sequence:

p0 → p3 → p4 → p7; the split time of each phase can be configured by the controller. Fig.

4.4 shows the scenario implemented in SUMO.

The input data for the traffic prediction model is the last 12 samples of the variable

“mean speed” that, with a sample rate of 5min/sample, represent the mean speed during

the past hour. The output are the next four samples, which represent the mean speed of

the next 20 min. The embedding hv for each node v is a vector of size 256. For training,

365 simulations, of roughly one day length each, were performed on the traffic network
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scenario. Each simulation was performed with a different traffic level, using a fixed-time

controller for traffic light management and employing a normal distribution to choose the

traffic level. Area detectors were used with a sample rate of 5 min to generate a dataset

of the “mean speed” that represents one year of operation. Finally, the first 70% of the

dataset was used for training, the next 10% for validation, and the last 20% for testing.

The RL controller was implemented using the Gym environment. Gym is a standard

API for RL that implements a classic “agent-environment loop”, where the agent makes

an observation of the state of the environment, and then takes an action seeking to max-

imize a configured reward function. In our implementation, an agent is in charge of an

intersection. The observation for an agent is an array O ∈ Rm×s, with m equal to the

number of input lines (movements) and s the length of the state vector of each line. The

state vector is composed by the four traffic variables introduced in Section 4.2, the embed-

ding hv delivered by the prediction model, and the present split value of the movement.

The action av,t is as introduced in Section 4.4.2, and an observation followed by an action

is taken each time a traffic light cycle starts. Several reward functions were evaluated, but

the one that gives the best results is the “vehicles difference”, defined as

rw = vl − vi, (4.10)

where vl is the number of vehicles that left the line during green light and vi is the initial

number of vehicles in the line before the green light.

Five traffic scenarios Si were created for training and testing the models. It was es-

tablished that the models should be trained leaving a fixed traffic scenario, because traffic

variations made the training unstable and an efficient controller was not reached.

To evaluate the proposed controller, two tests were conducted. First, a sensitivity test

of the cycle length, were the RL controller was trained over the scenario S1 (1540 vehicles

per hour) using different cycle lengths, so we can find the cycle length that gives the best

performance over a fixed traffic scenario. And second, a performance test that seeks to

evaluate the controller’s capability to adapt to scenarios different from the one learned
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during training. In this test, five RL models were trained (one for each scenario) using the

best cycle found in the first test, and then were tested against two classical controllers over

all the designed traffic scenarios. RL models were named “RL Veh Diff Si”, where “i” is

the number of the scenario they were trained on.

All models were trained over 1000 epochs, using 28 trajectories for training and 14

trajectories for validation per epoch, where each trajectory consists of one hour of con-

troller submission in the training scenario. Finally, the best-performing models over all

epochs were stored for testing. In both tests, cars were introduced during the first hour

of simulation, and the simulation finishes either when there are no cars left (all cars have

reach their destiny), or after 7200 seconds in case the controller is not able to clear the

cars.

4.5.2. Experimental results

For both tests, as performance indices, we propose:

• Waiting time: time in which the cars had a speed lower than 1 m/s.

• Time Loss: Average time lost due to driving below the ideal speed (slowdowns

due to intersections, etc.)

For testing the sensitivity to the cycle length, the controllers were trained and tested

using five different cycle lengths, Tci ∈ [40, 50, 60, 70, 80]seconds. Results are presented

in Fig. 4.5. For Tci = 40seconds a efficient controller was never reached, so this re-

sult was not plotted. It can be seen that both performance indices find a minimum in

Tci = 60seconds =⇒ “best performance cycle length”, and then it starts to deterio-

rate linearly both as this number increases and decreases. For this reason, this cycle length

was used to train all the models of the next test.

For the performance test, motivated by the results in Huo et al. (2020), which proposes

a similar objective of cooperative intersection control with RL models, we compare the

performance of our controllers with a fixed-time strategy, since this strategy was the closest
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Figure 4.5. Cycle sensitivity test of the “RL Veh Left” controller evaluated
in the traffic scenario S1 = 1540 vehicles per hour. The lower, the better

competitor in Huo et al. (2020). This controller has a fixed cycle time, equal in length to

the RL controller, but divided equally among the phases. To increase the meaningfulness

of the test, it was decided to also compare against the Webster method, which is an optimal

control strategy widely used in the real world. A Webster controller was designed for each

traffic scenario Si, and to be fair over the test conditions, it was decided to constrain the

cycle length of the Webster controllers to 60 seconds, so only the phases split length was

configured.

As mentioned before, models were tested over five different traffic scenarios. Each

scenario has a different traffic density, but maintains the same traffic distribution. This

was done to improve the stability of the training process. For evaluation purposes, each

controller was run ten times on the same scenario, and the results reported in Table 4.3

correspond to the average. It can be observed that the RL Veh Diff Si controllers obtained

the best performance in terms of both performance indices in the specific scenario they

were trained on. It can also be seen that each controller performs close to the Webster

controller in the traffic scenarios. This demonstrates the capability of the RL controller to

handle similar traffic density scenarios to those in which it was trained.
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Table 4.3. Results of the evaluated controllers for different traffic scenar-
ios.

Model Vehicles per Hour
1320 (S0) 1540 (S1) 1769 (S2) 1980 (S3) 2200 (S4)

Waiting Time
Fixed Time 74.53 82.39 - - -
Webster 61.74 63.00 66.33 67.92 75.07
RL Veh Diff S0 56.73 64.55 72.40 81.88 106.66
RL Veh Left S1 61.01 57.53 67.21 71.75 79.76
RL Veh Left S2 62.10 62.98 63.11 71.93 81.78
RL Veh Left S3 60.40 60.60 65.68 65.93 74.77
RL Veh Left S4 63.18 63.94 68.43 69.11 72.90

Time Loss
Fixed Time 95.91 105.73 - - -
Webster 81.76 83.48 87.86 90.33 98.83
RL Veh Diff S0 76.26 85.59 94.86 106.54 133.97
RL Veh Left S1 81.01 77.74 88.93 95.10 104.65
RL Veh Left S2 82.14 83.73 84.38 95.32 106.93
RL Veh Left S3 80.11 80.92 87.31 88.50 98.78
RL Veh Left S4 83.54 84.83 90.42 92.15 96.83
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Figure 4.6. Comparison of Waiting Time and Time Loss indices between
the RL Veh Diff S3 controller and the Webster controller. The lower, the
better

When the controllers face a scenario different from the one they were trained on, it can

be seen that the performance of the RL controllers starts to deteriorate compared to the

Webster controllers. However, this behavior is slow and less significant when they move

to lower congested scenarios, so it is possible to find a specific train scenario that makes
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our controller perform better that Webster in a wide traffic density spectrum. This is the

case of the “RL Veh Left S3”, which performs better than Webster in all the test scenarios.

Fig. 4.6 shows the described behaviour.

4.6. Discussion

A novel RL-based distributed control scheme to address the intersection traffic control

problem is proposed. The key ingredient is the use of an embedding from a GNN traffic

prediction model to represent part of the intersection state, giving the solution a perspective

of the future traffic level in the neighborhood. This system can be deployed using the

CPS architecture for CIM proposed in Chapter 2, by distributing the RL model and the

traffic predictor encoder among the CPOs and implementing the predictor decoder in the

cloudlet layer. Simulation results obtained in SUMO show that the proposed controller

outperforms the fixed-time and webster standard models in the traffic scenario they were

trained. Results also show that models trained in high traffic conditions have also good

performance when traffic conditions are close or better to those faced during training.

Despite the promising results, Several limitations exist, which will be discussed in the

following.

• An important aspect of this work is that both the training and testing were per-

formed maintaining a constant input traffic distribution as mentioned in 4.5.2.

This means that, although several scenarios with different traffic densities were

evaluated, the spatial distribution with which cars entered the network was al-

most always the same. This was done to increase the stability of the training

process, but is a clear limitation for the implementation in a real environment.

It is therefore proposed to perform a more complex training process, where sce-

narios with different traffic densities and distributions are gradually explored.

• A second limitation of the research is that the training and testing of the models

was performed in an ideal scenario consisting of a grid of fully instrumented
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intersections of equal morphologies. This is an ideal scenario very difficult to

find in the real world. It is therefore proposed to perform simulation tests using

scenarios that are closer to reality, with intersections with different morpholo-

gies and not instrumented. It should be taken into consideration that this could

bring instability problems in the training process, due to the incorporation of

uncertainty in the case of non-instrumented intersections.
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5. CONCLUSIONS AND FUTURE WORK

5.1. Concluding Remarks

In this thesis a CPS approach to CIM is proposed, which aims at providing a gen-

eral architecture that fulfills the functional requirements to address urban traffic control

problems. The proposed system considers three layers, namely, i) a physical layer that

assumes instrumented intersections and a flexible traffic signal system capable of receiv-

ing commands from a cyber entity; ii) a modular cyber layer where local computing el-

ements abstracts the intersection using timed Petri nets for traffic signal control, a data

transformation module for congestion modeling and a supervisor for split calculation and

communication with the neighbors and superior nodes; and iii) a cloudlet layer for the

implementation of high level applications, such as a traffic predictor.

As a first testing pilot, an instance of the proposed architecture was implemented us-

ing fuzzy strategies for the congestion modeling and split calculation. Evaluation of the

instance in both an ideal scenario, with fully instrumented and identical intersections, and

a real scenario, covering a portion of the city of San Diego, validates: i) the functionality

of the proposed architecture, since it is capable of handling the generated data and the

associated communication and processing load; and ii) its performance, since it increases

the efficiency of the traffic by properly controlling the split values at each intersection,

outperforming timed, Webster and coordinated control methods.

As a proof of concept of high level applications that can be deployed in the cloudlet

layer, a high-level broad-scope data-driven application was designed and implemented,

focusing on real time data-driven traffic prediction on the I-15 freeway in Las Vegas urban

area. The system is based on the previously introduced architecture with a field layer

where data is generated, a connectivity layer, and a cyber layer where data is processed and

is made available through a visualization tool. A series of DNNs were trained as predictors

and implemented on the system. Online evaluation showed that the GWNet outperforms

other models in predicting vehicle speed over a prediction horizon of 60 minutes. Results
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obtained show the feasibility of performing real time traffic prediction using the proposed

architecture with the available technology deployed on the transportation infrastructure of

the Las Vegas urban area.

Finally, to improve the management of the intersection traffic control on the cyber

layer of the proposed architecture, a local-scope CIM data-driven application based on a

novel RL-based distributed control scheme was designed. The key ingredient of this model

is the use of an embedding from a GNN traffic prediction model to represent part of the

intersection state, giving the solution a perspective of the future neighborhood traffic level.

Simulation results obtained in SUMO show that the proposed controller outperforms the

fixed-time and Webster standard methods in the scenarios they are trained on. It was also

found that it is possible to outperform these standard methods over a wide traffic density

spectrum if the RL model is trained in a proper scenario.

5.2. Directions for Future Research

The results in this thesis indicate that a CPSs approach to CIM is not only feasible,

but also advantageous. In order to unleash the full potential of the methodology, several

concrete actions can be listed as future work, namely,

• Implementing of a full-scale system in a laboratory environment, following a

hardware-in-the-loop scheme, distributing the RL controller and the predictor

model encoder among the nodes of the cyber layer of the architecture.

• Increasing the complexity of the GNN models used for both traffic prediction

and the RL controller. This can be done by increasing the size and the number of

hidden layers, or by using a model that allows extracting space-time information

from the network, such as, for example, a distributed GWnet-based model.

• Designing and implementing a control strategy that considers the pedestrian flow

into the traffic signal management, by designing a DTM that uses this data to

generate the intersection state variable.
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• Implementing an encryption system on communication messages between nodes

and between system layers, to meet the security requirements necessary for its

implementation in a real environment over public Internet connections.

• Conducting scalability tests of the architecture by increasing the number of

CPOs to a number comparable to the number of intersections in a city. This

will allow detecting and solving communication and real-time response prob-

lems that may exist at a larger scale.

• Implementing the timed-petri-net actuator in C language on a microcontroller to

validate its performance and to verify the feasibility of its implementation in a

real environment.

• Deploying a real intersection traffic control pilot in a controlled environment.

• Implementing a recommendation system at the cloudlet layer in charge of hy-

perparameter optimization, such as the cycle length of the traffic signals.

• Designing an automatic retraining procedure for all data-driven models, to in-

crease the adaptability of the solution to long term changes on the traffic net-

work, e.g., structural changes.

• Deriving theoretical results regarding the stability and optimality of the proposed

collaborative strategy.
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