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Sudden changes in the variability of natural populations can result in increased likelihood of extinction or in greater 
frequency and intensity of pest outbreaks. These changes could be associated with changes in some relevant population 
parameters such as the equilibrium density or the maximum population growth rate. However, changes in these parameters 
have very different consequences. An increase in equilibrium density results in a higher variance in population fluctua-
tions according to the relationship between mean and variance described by Taylor’s power law, but does not modify the 
stability properties of the system. On the other hand, changes in the maximum growth rate induce changes in the dynamic 
regimes and stability properties of the population. In this study, using statistical and mathematical methods borrowed from 
econometrics and engineering, we identify structural changes to the variance in the population dynamics of the sycamore 
aphid Drepanosiphum platanoidis and the green spruce aphid Elatobium abietinum in the UK. Some localities showed 
strong changes in their population parameters, such that their dynamic regime changed completely. These changes in the 
population dynamic regimes increase the expected frequency of outbreaks, which has enormous economic and ecological 
consequences. Through this study we show the application of methods that could be helpful to pest and wildlife manag-
ers in the task of evaluating changes in the risk of outbreaks or extinction of animal populations under changing global 
environmental scenarios. 

Despite the wide body of evidence on the ecological effects 
of global change around the world (Stenseth et al. 2002, 
Walther et al. 2002), there is a high level of uncertainty about 
the potential responses of insect species to these changes. 
Insect populations have shown a variety of responses to these 
changes in terms of, for example, phenology, abundance and 
latitudinal and altitudinal ranges (Harrington and Stork 1995, 
Cannon 1998, Walther et al. 2002). However, another pos-
sible response of insect species to global change is a change 
in the temporal variability of population abundance fluctua-
tions (May 1974, May et al. 1974, Hassell 1975, Hassell et 
al. 1976, Royama 1992). Sudden changes in the variability of  
natural populations can increase the likelihood of extinc-
tion (Ginzburg et al. 1982, Royama 1992, Schreiber 2001) 
or increase the frequency and/or intensity of pest outbreaks 
(Berryman and Millstein 1989, Berryman 1991, Turchin 
1991, Cavalieri and Kocak 1994, Desharnais et al. 2001). 
Thus the question of how close the population is to a change 
in its dynamic behaviour is of interest to conservation biolo-
gists and pest managers. For example, aphids are among the 
most harmful insects to forestry and agriculture, and potential 
changes in their population dynamics related to global change 
have important consequences in pest management activities.

Population dynamics theory states that two hypotheses 
could explain a change in variability due to a change in the 
dynamics of a population. The first hypothesis explains the 
change in variability as a consequence of a change in the 
equilibrium (mean) density, in agreement with Taylor’s 
power law relationship between mean and variance (Tay-
lor 1961, Taylor et al. 1978, 1980). This law predicts that 
variance grows exponentially as a consequence of an incre-
ment in the long-term average population density. There-
fore, if the limiting resource for a particular species increases, 
then it turns more abundant in an area, and it is expected 
that its variability also turns higher. The exact biological 
mechanism behind this law is still unknown, but behavior 
and demography have been proposed as potential explana-
tion to this phenomenon (Soberon and Loevinsohn 1987). 
Under the second hypothesis, the change in variability is a 
result of a change in the maximum per capita population 
growth rate, inducing a switch towards more unstable popu-
lation dynamics (May 1974, May et al. 1974, Hassell 1975,  
Hassell et al. 1976, Royama 1992). May (1974) showed how 
an increase in the maximum per capita growth rate leads to 
higher variances in the logistic model and, if the change is 
big enough, could even modify the dynamic behaviour of 
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the system from complete stability to damped oscillations, 
2-point cycles and chaos. The increase in the maximum per 
capita growth rate is related to changes in the intrinsic birth 
(increase) or death (decrease) rates of the population. For 
example, it may occur if the individuals inside a population 
began to lay on average more eggs or to be more resistant to 
some mortality factor (or if that factor disappears). These 
hypotheses relate changes in variance to different population 
parameters. While the first is related to equilibrium den-
sity, the second is related to the per capita growth rate, and 
both may be tested by using population time series analysis 
(Royama 1992, Berryman 1999).

Long time series records of aphid species in the UK repre-
sent an opportunity to evaluate these hypotheses on the tem-
poral variability of populations. In the last decade changes in 
the abundance of two species, the sycamore aphid Drepano-
siphum platanoidis and the green spruce aphid Elatobium 
abietinum suggest a change in the pattern of variability in 
some localities. Previous studies showed that the population 
dynamics of green spruce aphids are partly the result of intra-
population processes which cause a first-order and non-linear 
feedback structure in these aphid populations, which means 
that the abundance at time t mainly depends of abundance 
t1 (Saldaña et al. 2007, Lima et al. 2008). However, these 
studies did not analyse the changes in variability in the last 
10 years. In fact, predictions for years 1991 to 2005 obtained 
using models fitted to data from 1969 to 1990 show a poor 
match with real data in the localities where the variability in 
abundance has changed (Lima et al. 2008).

The consequences of an increment in population variabil-
ity described previously make indispensable the incorpora-
tion and development of analytical tools for the detection 
and understanding of these changes. In this study, we intro-
duce statistical and mathematical methods borrowed from 
econometrics and engineering, to show how the temporal 
variability of several aphid populations has experienced 
sudden changes over the last two decades. Although the 
development of these tools seems complicated, their imple-
mentation and use is simpler than other techniques available 
in the specialized literature (Yao 1988, McCulloch and Tsay 
1993, Hawkins et al. 2003, Fearnhead 2006). Moreover, the 
interpretation of the results is directly related to population 
dynamics theory. We believe that these tools could be help-
ful for pest and wildlife managers in the task of assessing 
quantitative changes in the risk of outbreaks or extinctions 
of animal populations under global change scenarios.

Material and methods

Data

Records of aphids were taken from the 12.2 m suction trap 
(Macaulay et al. 1988) data of the Rothamsted Insect Survey 
(Taylor 1986, Harrington and Woiwod 2007). We used time 
series of the total number of aphids captured per year of two 
species: Drepanosiphum platanoidis and Elatobium abietinum. 
For D. platanoidis we used 11 localities in the UK (Broom’s 
Barn, Hereford, Newcastle, Preston, Rothamsted, Starcross, 
Ayr, Dundee, Writtle, Wye and East Craigs) and, except 
for Writtle, the same localities were used for E. abietinum. 

Time series cover 1966 to 2006, with years within this range 
depending on the locality. The shortest time series covers  
29 years (Fig. 1). The trap network only records alate (winged) 
adult aphids. All active stages of D. platanoidis are alate when 
adult except for the sexual females (oviparae), and the species 
tends to show two major periods of flight activity in the UK, 
one in spring and one in autumn. The species has a quiescent 
stage in summer. Elatobium abietinum has a single period 
of alata production, with flight activity largely confined to 
late spring and early summer. For this species, suction trap 
records have been shown to be a good reflection of popula-
tions on trees (Day et al. 2010). 

Detection of changes of variance

The algorithm developed by Inclán and Tiao (1994) was 
used to detect changes of variance. This algorithm uses the 
cumulative sums of squares (Dk) of a time series to identify 
retrospectively a change of variance. The central idea of this 
algorithm is that Dk (centred and normalized) has a Brown-
ian bridge as an asymptotic null model. This means that, if 
the variance is constant through the time series (from 0 to t), 
then Dk at time 0 is equal to Dk at time t (Dk(0)  Dk(t)), 
and the limits to the variability of any time s Dk(s), with 
s  t, is given by the conditional probability distribution 
of a Wiener process with the condition Dk(0)  Dk(t). 
This structure makes that the maximum values of Dk are 
expected in the middle of the time series but are minimal at 
the extremes. If the expected limits are exceeded, the vari-
ance is not constant through the time series. In our case, 
when the realized value of Dk exceeds the 95% confidence 
interval for the expected maximum of the null model then 
this point is considered a true change of variance (boundar-
ies in Supplementary material Appendix A3). However, to 
use this algorithm with ecological time series it is necessary 
to keep in mind some considerations. First, it is necessary 
to remove trends and autocorrelation from the time series. 
To remove trends, we replaced the original abundance data 
with the residual of the linear regression between the year 
and the abundance data plus the mean of abundances. To 
remove autocorrelation we used the residuals of an autore-
gressive model, AR(1), fitted to the detrended abundance 
data. Finally, due to ecological time series being too short to 
use the asymptotic confidence intervals of the null model, 
the observed Dk values were multiplied by T/2, where T 
is the length of the time series, for comparison with the 
asymptotic boundaries (Inclan and Tiao 1994). We provide 
an R code for the calculation of Dk statistics in Supplemen-
tary material Appendix A4.

The model and regime switch thresholds

A non-linear version of the Ricker model of population 
dynamics (Ricker 1958) was used as a baseline to examine 
the fluctuation patterns of both aphids. This model, based on 
a difference equation, has been used successfully in the mod-
elling of aphid species, even with E. abietinum (Saldaña et al. 
2007, Lima et al. 2008, Estay et al. 2009), and it has been 
extensively studied, which facilitate our analytical approach. 
Despite this, any population dynamics model may be used 
to achieve our objective following the next reasoning.
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where Ntd is the abundance at time t – d; R is the realized 
per capita growth rate R  ln(Nt/Nt1); Rm is the maximum 
per capita growth rate estimated for the species; K is the 
equilibrium density and Q is a nonlinearity factor (Berry-
man 1999).
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was analysed in detail by May (1974). The dynamic behav-
iour of the linear version in the equilibrium depends on 
one parameter, Rm. May (1974) demonstrated that when 
0  Rm  1 the system approaches the equilibrium (K) 
monotonically; if 1  Rm  2, then the system approaches 

the equilibrium with damped oscillations; if 2  Rm  2.526 
the system has a 2-point cycle, and so on (see the threshold 
values in May 1974).

In the non-linear version, the dynamic behaviour in the 
equilibrium depends on two parameters, Rm and Q.
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R
N

N
R

N
K

  ln 1
1

1t

t
m

t
Q

-

-
æ

è
çççç

ö

ø
÷÷÷÷

æ
è
ççç

ö
ø
÷÷÷

æ

è
çççç

ö

ø
÷÷÷÷

 (3)

evaluated in the equilibrium, depends on the function 
Q  Rm (slope). Then, in order to obtain the functions in the 
Q – Rm parameter space that describes the thresholds where 
the dynamic behaviour changes, we followed the procedure 
of May (1974) and Hassell (1975).

The function Q  Rm is assumed to be equal to 
every threshold value of the linear version of the model, 
Q  Rm  a, where a is the threshold of the linear case  
(1, 2, 2.526,..., etc). Then, the functions describing the 
limits of areas of monotonic damping, damped oscillations 
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Figure 1. Map of the 11 localities in the UK and the time series of aphid abundances. Left column: D. platanoidis. Right column: E. abi-
etinum. The localities are 1) East Craigs, 2) Dundee, 3) Ayr, 4) Newcastle, 5) Preston, 6) Hereford, 7) Broom’s Barn, 8) Rothamsted,  
9) Starcross, 10) Wye, 11) Writtle. Arrows mark the approximated moment where the change of variance occurred. Due to scale effects in 
the images, the changes of variance are better visualized in the supplementary information.
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an increase in the variance of the time series due to a change 
in the stability of the system (parameters Rm and/or Q), and 
not to due to an increase in K. In the case of a change of 
variance associated with parameter K, MDT should not be 
significantly reduced after the change, because K does not 
alter the dynamic regime and hence MDT would not show 
important changes. Details of how MDT is obtained are  
in the supplementary information, Supplementary material 
Appendix A1.

To evaluate the MDT, first all the series that showed a 
change of variance according to the algorithm of Inclán and 
Tiao (1994) were divided at the point where the algorithm 
detected the break. If there were enough points each side of 
the break (at least eight points in each segment), the data in 
each segment were used to estimate the parameter values for 
a non-linear Ricker model (Eq. 3). Given the strong con-
cave form of the data, we estimated the Rm parameter using 
cubic splines and bootstrapped the procedure to avoid con-
vergence problems. Once parameter values were estimated 
for each segment, we calculated the MDT for each of them. 
As stated before, we expect that those changes in variance 
associated to changes in the stability properties of the system 
will show a significant change in MDT as a result of changes 
in parameters Rm and/or Q. On the contrary, those changes 
in variance that are not associated to changes in the stability 
of the system will show no significant changes in MDT, as 
a result of changes in parameter K. Thus, the identification 
of change points in variance, together with the estimation 
of changes in MDT allow the discrimination of potential 
causes of shifts in population variability. All analyses were 
performed in R environment. To calculate MDT, a user-
friendly spreadsheet application is available from the corre-
sponding author for interested readers.

Results

The algorithm of Inclán and Tiao (1994) detected that 60% 
of 21 analysed time series showed changes of variance; 6 of 10 
populations of Elatobium abietinum and 7 of 11 populations 
of Drepanosiphum platanoidis. In the case of E. abietinum 
the localities of Broom’s Barn, Hereford, Rothamsted, Ayr 
and East Craigs showed an increase and Dundee a decrease 
in variance (Table 1, Fig. 1). In the case of D. platanoidis, 

and 2-point cycles in the Q – Rm parameter space are: Rm   
1/Q, Rm  2/Q and Rm  2.526/Q, respectively (Fig. 2). 
Therefore, all functions describing thresholds have the gen-
eral form Rm  a/Q.

Using the records of the two aphid species from the 
Rothamsted Insect Survey we estimated Rm, K and Q for 
each location. The models were fitted by non-linear least 
squares using the nls library in the R program (R Develop-
ment Core Team 2008).

Minimum distance between observed parameter 
values and thresholds

Once the change of variance is detected, two possible sce-
narios arise: whether the change in variance involves or not a 
change in the stability properties of the system. The answer 
could be found in a careful examination of the change in 
population parameters. Because, at least theoretically, Rm, 
K and Q show a tradeoff in their expected values (Johst  
et al. 2008, Pastor 2008), a unique measure of change in the 
parameter values in relation to the threshold is needed. We 
use the minimum distance to threshold (MDT) as a measure 
of change in the stability of the system and, therefore, in the 
variance of the series. The central idea is that, if the change 
of variance is due to a change in dynamic properties of the 
system, then the minimum distance between the combina-
tion of the estimated parameters Rm and Q to some of the 
thresholds in the parameter space (Fig. 2) should be lower 
after than before the change of variance. For example, if we 
plot the values of Rm and Q obtained from the fitting of a 
Ricker’s model in the graph of Fig. 2, and the point is some-
where below the first threshold curve, then the endogenous 
variance in the long-term is zero and the observed variance 
corresponds to environmental noise. If the combination of 
parameters is above the first curve but below the second 
curve, then the endogenous variance in the long term is 
higher as the distance to the second threshold curve dimin-
ishes, and so on. Therefore, a decrease in the MDT implies 

Figure 2. Q – Rm parameter space and thresholds for the Ricker 
model. The first three regimes are shown. Each curve represents a 
threshold with the form a/Q.

Table 1. Locations and years where a change of variance was 
detected according to the algorithm of Inclán and Tiao (1994). NA 
means no change was detected.

E. abietinum D. platanoidis

Location Year Location Year

Broom’s Barn 1988 Broom’s Barn 1996
Hereford 1995 Hereford 1997
Newcastle NA Newcastle 1997
Preston NA Preston NA
Rothamsted 1989 Rothamsted 1996
Starcross NA Starcross NA
Ayr 2003 Ayr 2003
Dundee 1982 Dundee 1980
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Broom’s Barn, Hereford, Newcastle, Rothamsted, Ayr and 
Wye showed an increase and, again, Dundee a decrease 
in variance (Table 1, Fig. 1). The year when each change 
occurred in each locality is shown in Table 1.

Just four populations of E. abietinum and five of D. pla-
tanoidis had enough points to calculate MDT according to 
the criteria explained in the methods section (at least eight 
points in each time series segment). In E. abietinum we used 
Broom’s Barn, Hereford, Rothamsted and Dundee; the same 
localities plus Newscastle were used with D. platanoidis. The 
estimation of population parameters is shown in Table 2. 
For E. abietinum only Broom’s Barn underwent a decrease 
in the MDT (threshold 2/Q, Fig. 3, Table 2). The decrease 
in MDT at Broom’s Barn is mainly due to an increase in Rm 
after 1988, whereas at Rothamsted and Hereford the change 
in variance is due to an increase in K and Q without a sig-
nificant change in MDT (Fig. 3, Table 2). In the case of 
the reduction of variance at Dundee in 1982, this seems to 
be located just between 1982 and 1993, after this year the 
population reassumed the pattern of fluctuations previous 
to 1982.

The results for D. platanoidis (Fig. 4) have a more consis-
tent pattern than for E. abietinum. In the five populations 
analysed a change in the MDT is responsible for the change 
of variance, and two of these populations showed a regime 
switch (threshold 2/Q, Fig. 4, Table 2). Broom’s Barn and 
Rothamsted showed an abrupt decrease of MDT mainly due 
to an increase in Rm after 1996, which changed the regime of 
monotonic damping to damped oscillations, and in the case 
of Rothamsted almost to a 2-points cycle regime (Fig. 4).  
Hereford also showed an abrupt reduction of MDT due to 
an increase in Rm, but without a regime switch in 1997, but 
Newcastle had a change of variance due to an increase in K 
(Fig. 4, Table 2). Dundee underwent a decrease in Rm which 
reduced the amplitude of the oscillations after 1980 (increase 
of MDT, Table 2).

Interestingly, we did not detect a change in the time series 
for Writtle, mainly due to an outbreak in 1986. However, if 
we remove this point, the change of variance is clear, result-
ing in a reduction of MDT and the population parameters 
change in the same way as for Broom’s Barn, Hereford and 
Rothamsted, with an abrupt increase of Rm after 1994 (Fig. 4, 
Table 2). Details of detected changes of variance as well as for 
calculated MDT for each species and locality may be found 
in the supplementary information, Supplementary material 
Appendix A2.

Discussion

Our analyses reveal that changes of temporal variability seem 
to be a common phenomenon in aphid populations in the 
last 20 years. At least 60% of the analysed populations in 
each species showed this kind of change, especially in the 
1990s.

Observed changes in population dynamics of Elatobium 
abietinum and Drepanosiphum platanoidis are commensu-
rate with theoretical predictions of change in variance. The 
changes of variance in E. abietinum corresponded to an 
increment in the equilibrium density (K) without a change 
in the maximum reproductive rate (Rm), with the exception Ta
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increase in their endogenous variance. These reductions in 
MDT were strong enough to change the dynamic regime 
from monotonic damping to damped oscillations at Broom’s 
Barn, Rothamsted and Writtle (Fig. 4, Table 2). These regime 
switches may have important ecological and economic con-
sequences. The increase in variance results from much higher 
densities during the peaks of the fluctuations rather than 
from lower densities during troughs. In this scenario, years 
with high abundances of these aphids will be more frequent, 
and the pressure exerted on the host trees could have serious 
consequences for the forest ecosystems (Carson and Root 
2000, Volney and Fleming 2000, Hunter 2001).

Considering the simultaneity of the changes detected 
in this study, we can speculate that a potential candidate 
to induce these changes is an environmental force operat-
ing at a large geographic scale. Despite the identification 
of this force being beyond the scope of this study, we can 
speculate a little about its nature and characteristics. First, 
observed changes of variance are abrupt in all time-series, 
which suggests a non-linear reaction of the system to the 
change and, second, this environmental force should have 
known effects on the parameters Rm, Q and/or K. Among 
all environmental forces, weather is the iconic example 
that satisfies these characteristics. The influence that vari-
ables such as temperature and relative humidity have on 
population parameters is historically known (Holdaway 
1932, Frazier et al. 2006), and it is valid to suppose that 

of Broom’s Barn. According to this result, the more probable 
reason for these changes is an increment in the availability of 
a limiting resource for the population which means that the 
aphid is more abundant now than in the past decades. This 
kind of effect does not have consequences for the dynamic 
behaviour of the system because, despite the increment in 
variance as Taylor’s power law predicts, the parameter K 
theoretically does not have influence on the stability of the 
population process (May 1974, May et al. 1974). This situ-
ation is corroborated by the minimal changes in MDT at 
Hereford, Rothamsted and Dundee (Table 2) which imply 
no important dynamical changes in the system. However, at 
Broom’s Barn this species showed an important reduction in 
MDT mainly due to the strong increase in Rm (from 2.01 to 
3.13), which means that in this locality the endogenous vari-
ability of the system increased in recent years.

In D. platanoidis the observed changes of variance are 
mainly associated with changes in Rm, with the associated 
changes in dynamic regime. This suggests that either the 
current environmental conditions are more favourable for 
reproduction or some important mortality factor reduced  
its intensity. As seen in Table 2, most populations of D.  
platanoidis showed an increment in Rm after the change of 
variance. With the exception of Newcastle, which showed no 
change in MDT but an increase in the parameter K, all local-
ities with enough points to test it showed a strong decrease 
in MDT, due mostly to an increase in Rm, which implies an 
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Figure 3. MDT statistics for E. abietinum. Arrows begin in the parameter combination previous to the change of variance and end in the 
parameter combination after the change of variance. See Table 2 for specific values.
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properties of the population system. For example, changes 
in MDT in these aphids could be related to changes in 
average environmental conditions (temperature, humidity, 
CO2, host availability, etc) or to changes in the frequency 
of extreme events. To determine a relationship (linear or 
nonlinear) between the change in any environmental vari-
able and changes in MDT would suggest that environmen-
tal change drives changes in population stability.

The methodological tools used in this study could be 
applied retrospectively to understand causes of past changes. 
Calculating MDT at several intervals or windows time in a 
population time-series allows us to track trends in popula-
tion parameters in a similar way as Bierman et al. (2006) and 
Saitoh et al. (2006) did with time-series of several populations 
of rodents with multi-annual cycles. MDT may be a useful 
tool to track parameter changes and a good indicator of future 
changes in the dynamics based on its observed current trend 
assuming all else being the same. Despite the fact that this 
kind of analysis is not prospective sensu stricto (Caswell 2000) 
and requires long-term data, it may provide some valuable 
insights about future trends in the dynamics of populations 
with relatively short ecological time-series (10–15 years).

The Inclán and Tiao algorithm is not the only technique 
available to detect changes of variance in time series. Other 
techniques based on different principles are available in the 

under the current changing climate non-linear effects 
on the patterns of population fluctuations may emerge  
(Martinat 1987, Wellings and Dixon 1987, Porter et al. 
1991, Cammell and Knight 1992, Huey and Berrigan 
2001, Harrington et al. 2007). For example, the North 
Atlantic Oscillation has exhibited a positive trend in the 
last decades (Gillet et al. 2003) which could modify several 
ecological processes in UK or northern Europe (Ottersen 
et al. 2001) including changes in the pattern of precipi-
tation of temperature that have a known effect on the 
survival of aphid species. In other examples, Powell and 
Perry (1976), Bale et al. (1988) and Lima et al. (2008) 
showed how extreme cold events increase the mortality of 
different aphid species in the field, and in this way modify 
parameter Rm. A fall in the intensity, frequency or oppor-
tunity of these extreme cold events could have induced the 
changes observed in our study. On the other hand, Estay  
et al. (2009) showed how precipitation intensity modifies 
the equilibrium density (K) of the aphid Tuberculatus annu-
latus in the UK. These examples highlight the consequences 
that the current climate change could have not only on 
averages population sizes, but also on their variability. In 
the context of our methodological proposal, the estima-
tion of MDT and its change in time could be useful to 
relate changes in environmental conditions to the stability 
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Figure 4. MDT statistics for D. platanoidis. Arrows begin in the parameter combination previous to the change of variance and they end in 
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specialized literature. These include among others, con-
trol charts (Hawkins et al. 2003), Bayesian posterior odds  
(Fearnhead 2006) and penalized likelihood methods (Yao 
1988). All these are examples of techniques that allow  
the detection of changes of variance in long time-series. 
In ecological context, these techniques have been used in 
oceanographic data (Killick et al. 2010). However, it must 
be noted that the data set used by Killick et al. (2010) is 
one order of magnitude greater than the longest time series 
available for aphid populations, which are among the best 
studied population time series available to ecologists. This 
highlights the fact that most of these alternative techniques 
require long time series. Also, it is necessary to evaluate 
how these techniques may be applied to autocorrelated data 
such as abundance data, and whether the autocorrelation 
structure of these time series affects the detection of vari-
ance changes. Addressing both the constraints of time series 
length and potential biases of autocorrelated time series are 
research questions that must be dealt with in order to allow 
a broader application of these techniques to ecological popu-
lation time series. Hence, an important degree of work is 
required to ensure correct implementation and application 
of these methods to systems with scarce data.

The population phenomena analysed in this study have 
economic implications. The expected higher number of 
aphids means an increase in the frequency of outbreaks in 
these localities or at least a higher number of times in which 
the economic injury level will be exceeded. Through this 
study we were able to test theoretical predictions about the 
expected dynamic changes in population systems using long-
term data. Furthermore, we showed how theoretical insights 
from different branches of population ecology explain the 
abrupt changes that aphid populations underwent in the 
last decades, which is the base for the future development 
of management guidelines, one of the major goals of applied 
ecology.
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