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Abstract

A new formalism to calculate the in-medium chiral condensate is presented. At lower densities, this approach leads to a
linear condensate. If it is compatible with the famous model-independent result, the pion-nucleon sigma term could be six
times the average current mass of light quarks. The modification due to QCD-like interactions may, compared with the linear
extrapolation, slow the decreasing speed of the condensate with increasing densities.
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The investigation of chiral condensates in medium
has been an interesting topic in nuclear physics [1].
One of the most popularly used methods to calcu-
late the in-medium quark condensate is the Feynman-
Helmann theorem [2]. The main difficulty in this for-
malism is that one has to make assumptions on the
derivatives of model parameters with respect to the
quark current mass. To bypass this difficulty, we will
apply a similar idea as in the study of strange quark
matter [3-6] by defining an equivalent mass. A differ-
ential equation which determines the equivalent mass
will be derived in detail. At lower densities, the new
formalism leads to a linear condensate. Comparing
the corresponding expression with the famous model-
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independent result in nuclear matter, it is found that
the pion-nucleon sigma term could be six times the
average current mass of light quarks. At higher densi-
ties, the derived differential equation within a QCD-
like inter-quark interaction, which indicates that the
decreasing speed of the condensate with increasing
densities is usually slowed, compared with the linear
extrapolation, due to interactions.

Let us first write the QCD Hamiltonian density
schematically as

Hqcp = Hi+ Y miogiqi + Hi. (1)

1

where Hy is the kinetic term, m;q is the current mass
of quark flavor i, and Hj is the interacting part of the
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Hamiltonian. The summation } ; goes over all flavors
considered.

The basic idea of the mass-density-dependent model
of quark matter is that the system energy can be
expressed in the same form as a proper noninter-
acting system. The strong interaction between quarks
is included within the appropriate variation of quark
masses with density. In order not to confuse with other
mass concepts, let us refer to such a density-dependent
mass as an equivalent mass. Such an equivalent mass
can be separated into two parts, i.e.,

mi =m;o + mi, (2)

the first term is the quark current mass, the second
term is the interacting part which is the same for all
flavors. Therefore, if we use the equivalent masses m;,
the system Hamiltonian density should be replaced by
a Hamiltonian density of the form

Heqv = Hx + Zmiéi‘]i- (3)
i

Obviously, we must require that the two Hamiltonian

densities Heqv and Hqcp have the same expectation

value for any state |¥), i.e.,

(W |Heqv|¥) = (W|Hqep|¥). (4)

Applying this equality to the state |np) with baryon
number density np and to the vacuum state |0),
respectively, taking then the difference, one has

(Heqv)ng — (Heqv)o = (HQCD)ng — (HQCD)0- (5)

Here and in the following, we use (A}, = (nB|A|nB)
and (A)o = (0] A|0) for an arbitrary operator A.

Since we are considering a system with uniformly
distributed particles, or in other words, the density
np has nothing to do with the space coordinates, we
can write (¥|m(np)qq|¥) = m(np){(¥|gq|¥). This
equality is especially obvious if we consider it in
terms of quantum mechanics: |¥) is a wave function
with arguments np and coordinates, the expectation
value is nothing but an integration with respect to
the coordinates. Therefore, if np does not depend on
coordinates, the function m(np) is also a coordinate-
independent c-number, and can naturally be taken out
of the integration. However, if np is local, the case
becomes much more complicated and it will not be
considered here.

Now we can solve Eq. (5) for mj, and accordingly

obtain
€1

Z,’((éiQﬂng —{qiqi)o) '
where €1 = (Hi),z — (Hi)o is the interacting energy
density.

Therefore, considering the quarks as a free system,
i.e., without interactions, while keeping the system en-
ergy unchanged, quarks should acquire an equivalent
mass of the corresponding current mass plus the com-
mon interacting part shown in Eq. (6). Obviously the
equivalent mass is a function of both the quark current
mass and the density. At finite temperature, it depends
also on the temperature as well. Here we consider only
zero temperature. Due to quark confinement, we have
the following natural requirement:

(6)

m

lim my = ococ. (7)

ng—0

Because the Hamiltonian density Heqv has the same
form as that of a system of free particles with equiva-
lent masses m;, the energy density of quark matter can
be expressed as

kg
_ g 2,2
e_Zm/,/k2+mik dk
i 0
ke
=3np ZmiF(—), (8)

mj

where g = 3(colors) x 2(spins) = 6 is the degeneracy
factor, and

13
ke— (@nan) (9)
8

is the Fermi momentum of quarks. The function F (x)
is

F(x)= %[xx/xz + 1(2x2 +1) - arcsinh(x)]/x3.
(10)
For convenience, let us define another function f(x)
to be
f(x)=—x%d[xF(x)/x]/dx
=F((x)—xdF(x)/dx

= %[x\/xz +1 —ln(x+\/)c2 + 1)]/x3. (11)
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On the other hand, the total energy density can also be
expressed as

kg
8 / 2 72
_3”B2szF(

The first term is the energy density without interac-
tions, the second term is the interacting part.
Combining Egs. (12) and (8) gives

o Slr() ()} oo

From Hellmann-Feynman theorem [2], one has

)+a (12)

a a
(Wl HWIW) = —(WIH M), (14)

where |¥) is a normalized eigenvector of the Hamilto-
nian H (A) which depends on a parameter A. The sym-
bol 8/9x has been used here to indicate keeping other
independent variables (e.g., the bayron number density
ng of the system) fixed when taking the derivative.

On application, in Eq. (14), of the substitutes A —
m;o and H(A) — [d3x Hqcp, one gets (¥| [ d3x x
Giqi|®) = 0 (W| [ d3xHocp|¥) for each flavor .
Now applymg this equality, respectively, to the state
|nB) (quark matter with baryon number density ng)
and the vacuum |0), and taking then the difference, one
obtains

de
am;o’

where € = (Hqcp)ng — (Hqcp)o is the total energy
density. It has been expressed in Eq. (8) with the
equivalent masses. Now let us substitute Eq. (8) into
Eq. (15), carry out the corresponding derivative, and
get

(qigidng — (qigi)o = (15)

(qiging — (qiqi)0

(B A

Summing over both sides, we have

> [{@igiins —

i

_anBZf( )it v 17)

(@igi)o]

with V.= 3", 9/0m;o. Please note, V is a differential
operator in mass space, rather than in coordinate space
as it is in its normal definition.

Eq. (6) can be rewritten as

Z[(éiqz‘)ng -

Comparing this equation with Eq. (17) gives
er/(BnB)

mi Z,‘ S ke/m;)

On application of Eq. (13), this equation leads to

Y ilmi F(ke/m;) — mioF (ke/m;0)]
mi ), f(ke/m;)

which is a first order differential equation satisfied by

the interacting equivalent mass. Such a mass really

exists, and we can prove that it can be expressed in

terms of the interacting energy density ¢ formly as

€1/(3nB)
K v
Z f (mfo) q
In fact, applying the operator V at both sides of
Eq. (13) gives

\Y k k
s =2 (o) = (o)
+Zf(k—f_>vm1. (22)

Substituting Eq. (19) into this equation, solving then
for m, we immediately get Eq. (21).
In the flavor symmetric case, i.e., m,0 = mgo =
-~ =mg, we have my, = mg = --- =m, {Ququ) =
(Gaqa) = --- = {qq), and V = 3/dm¢. Accordingly,
Eqgs. (20), (18) and (13) become, respectively,

(Gigi)o] = ;—II (18)

Vmp = (19)

—1 (20)

Vom] =

(21)

my _ mF(kg/m) —moF(kg/mo) (23)
amo m f (kg/m) '
(qCI)nB 1 €]
99ins _ 4 a. 24
Gao T Ne@qhom @)
_ (ke _ ke _ o«
mF = (m) moF(mO) = 3Neg’ (25)

where Ns is the number of flavors.
Because the function F(x) has the property
lim, 9 F(x) =1, Eq. (25) becomes at lower densities

(26)

m=m .
0+ 3Nsnp
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This means m; = e;/(3Ngnp), i.e., e;/m; = 3Ngmnp.
Substituting this ratio into Eq. (24), we get

(qq)0 n*
with

sl mif?
n =§(QQ)O—WO~ (28)

In obtaining the last equality of Eq. (28), we have used
the Gell-Mann-Oakes-Renner relation —2mo(gq)o =
m?2 2 [7], where m, ~ 140 MeV is the pion mass and
fz ~93.2 MeV is the pion decay constant.

It should be noted that we have said nothing
about the form of the interacting energy density in
deriving Eq. (27). The only requirement we used is the
quark confinement which ensures that the equivalent
mass becomes extremely large at lower densities. At
this meaning, Eq. (27) is a direct consequence of
quark confinement and thus independent of models.
Recalling that there is another model-dependent result
in nuclear matter, i.e.,

~ 2 2
99)p _ 1 _ P ity pr= MaFr 29)
{(qq)0 p* ON

which was first proposed by Drukarev et al. [8], and
later re-justified by many authors [9-11], we get, from
the requirement n* = p*, a very interesting relation

oN = bmy, (30)

i.e., the pion-nucleon sigma term oy is six times the
average current quark mass mg. If one takes on =
45 MeV [12-14] and mg = (my0 + ma0)/2 = (5 +
10)/2 = 7.5 MeV [15], Eq. (30) is naturally satisfied.

In principle, one can also calculate the chiral
condensate at higher densities from Egs. (23)-(25) if
one knows some information on the interacting energy
density €1 from a realistic quark model. The obvious
advantage of this formalism is that one does not
need to make further assumptions on the current mass
derivatives of model parameters. In the following, we
consider a simple model, as an example.

Denoting the average distance between quarks by 7,
the interaction between quarks by v(mg,np), and
assuming each quark can only interact strongly with
another Ny nearest quarks at any moment, because
of the saturation property of strong interactions, the

interacting energy density ¢ to density by

€= %NonBV(mo,f). (31)

This is obtained as follows. Suppose the total parti-
cle numberis N. The interacting energy due to particle
i is Nov(mo, np), accordingly the total interacting en-
ergy is %Z:\l:l Nov(mg,ng) = %NNov(mo, ng) (the
extra factor 1/2 is for the correction of double count-
ing). Dividing this by the volume, we then have the
interacting energy density in Eq. (31) where the aver-
age inter-quark distance 7 is linked to density through

Fe s (32)
ny

The average volume occupied by one particle is
1/(3np). If this volume is considered as a spherical
ball of diameter 7, one finds & = (2/7)1/3. If, however,
this volume is considered as a cubic box of side 7, one
has & = 1/31/3. In the former case, one divides the
system into sub balls and place a particle at the center
of each one. In the latter case, the system is divided
into sub cubic boxes. Obviously there are unoccupied
spaces between balls in the former case, so we take the
latter value, i.e., & = 1/31/3.

Eq. (31) may not be an absolutely exact expression
for the interacting energy density. Some other com-
ponents, for example, the possible three-body interac-
tions have not been included. However, they should be
of higher orders in density, and will not be considered
here. To compensate for these ignorances, to some ex-
tent, one may regard the Ny as a free parameter. How-
ever, we will take Ny = 2 due to the fact that the quark
has a trend to interact strongly with other two quarks
to form a baryon. It is found that the concrete value
does not influence the density behavior of the chiral
condensate significantly.

Substituting Eq. (31) into Eqs. (24) and (25), we
have, respectively,

(f]_‘I)nB —1— &n_Bl, (33)
(Gq)o 2Nr n* my
mF<E> _ mOF(£> = &V(mo, nB). (34)
m mo 2N¢

Keeping in mind the function property lim,_, » F(x)
— 3x/4, we have

lim v(mg,7) =0, (35)
nB— 00
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which is consistent with asymptotic freedom. Note
that we have said nothing about the form of the
interaction v(mg, np).

Because Eq. (23) is a first order differential equa-
tion, we need an initial condition at mo = m to get a
definite solution. Let us suppose it to be

m(mﬁ,nB) =m(np). (36)

Usually, we will have

V(mo, nB)|mg:m3 =Vv(r), (37)

where v(7) is the inter-quark interaction for the special
value m§ of the quark current mass m.

Eq. (23) is difficult to solve analytically. However,
this can be done at lower densities. Let us rewrite
Eq. (21) as

v(mo, 1)

mp = —.
2Nf ¢ ki aV (mg,r)
No f(mo) + am(

(38)

At lower densities, the Fermi momentum k¢ is small,
so the function F(x) approaches to 1. Accordingly,
Eq. (34) leads to

No _
m=mg+ Z—va(mo’ 7) (39)

which means mp = %%V(mo, np). Replacing the left-
hand side of Eq. (38) with this expression, we get

Ny ov ke
—_— — =1 4
2Nf¢ Omy +f<m0> (40)

Integrating this equation under the initial condition
given in Eq. (37), we have

V(mo, r)
mo
—v() + / @[1 _ f(ﬁ)]dmo. (41)
Ny mo
mg

Then the interacting part of the equivalent mass is

mi1(mo, nB)

m
_ Mo (K
ey (S

my

It is interesting to note that Eq. (42) can, because
of the dominant linear confining interaction, lead to a

quark mass scaling of the form my oc 1/ n]13/ 3 which is
consistent with the result in Ref. [3] (PRC61:015201).

Substituting the above results for v and m into
Eq. (33), we will get the same equality shown in
Eq. (27).

In general, an explicit analytical solution for the
condensate is not available, and we have to perform
numerical calculations. For a given inter-quark inter-
action v(7), we can first solve Eq. (34) to obtain the
initial condition in Eq. (36) for the equivalent mass,
then solve the differential Eq. (23), and finally calcu-
late the quark condensate through Eq. (33).

There are various expressions for v(7) in liter-
ature, e.g., the Cornell potential [16], the Richard-
son potential [17], the so-called QCD potentials [18,
19], and purely phenomenological potentials [20,21],
etc. The common feature is that they are all flavor-
independent. This independence is supported in a
model-independent way by applying the inverse scat-
tering approach to extract a potential from the mea-
sured spectra [22]. Let us take a QCD-like interaction
of the form
4 o (1)
3 7
The linear term o7 is the long-range confining part.
It is consistent with modern lattice simulations [23]
and string investigations [24]. The second term is to
incorporate perturbative effect. To second order in
perturbation theory, one has [18,19]

s = Ax [1_ﬁlnk(f)+ by } (44)

V() =0 (F) — (43)

bor() | B2 AG) AP
where [25]
A(F) = In[(F Ams) "2 + b] (45)

with by = (11N; — 2Np)/3, b1 = [34N2 — Nx(13N2 —
3)/N¢1/3, and b3 = (31 N; — 10N5) / (9bg) for SU(N¢)
and Nr flavors.

Besides these constants, there are three parameters,
i.e., o, Ams, and b. The QCD scale parameter is
usually taken to be Az = 300 MeV. The value for
the string tension o from potential models varies in
the range 0.18-0.22 GeV? [26], and we here take
o = 0.2 GeV2. As for the parameter b, we take three
values, i.e., 10, 20 and 30, in the reasonable range [25].
Because these parameters are determined from heavy
quark experimental data, the initial value m is taken
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Fig. 1. Density dependence of the quark condensate in quark matter.
The straight line is the linear extrapolation of Eq. (27). The other
three lines are for my = 7.5 MeV, but for different b values, as
indicated in the legend.

to be 1500 MeV which is compatible with the mass
of heavy quarks. The numerical results are plotted in
Figs. 1 and 2.

Fig. 1 shows the density behavior of the chiral con-
densate in quark matter. The straight line is the linear
extrapolation of Eq. (27). It does not depend on the
form of the inter-quark interaction v(), and so, at this
meaning, ‘model-independent’. The other three lines
are for mo = 7.5 MeV, but for different » values, as
indicated in the legend. At lower densities, the chiral
condensate decreases linearly with increasing densi-
ties. When the density becomes higher, the decreasing
speed is slowed. For a higger value of b, the conden-
sate finally approaches to zero while for smaller val-
ues, it will saturate.

Fig. 2 shows the current mass dependence of the
chiral condensate in quark matter. In general, the con-
densate drops if the current mass become large. This
effect is especially obvious at higher densities. At
lower densities, the condensate changes little with in-
creasing current mass. This is understandable: because
we have in fact assumed that the vacuum condensate or

0,8

0 50 100 150 200
m, (MeV)

Fig. 2. Current mass dependence of the quark condensate in quark
matter.

the quantity »* in Eq. (27) is constant, the lower den-
sity condensate is nearly only a function of the density.

It should be noted that if the Fermi momentum in
the first equality of Egs. (8) and (12) is expressed, in-
stead of Eq. (9), as kr = [(18/g)7%np/Ns]'/3 because
3np/Nr is the flavor-averaged number density, the
main Egs. (23) and (24) are still valid while the flavor
number Nr in Eq. (25) and accordingly in Egs. (26),
(34) and (38)-(42), will disappear. However, the gross
feathers of the chiral condensate do not change signif-
icantly.

In summary, a new formalism to calculate the in-
medium chiral condensate has been presented. The
great advantage of this approach is that one does not
need to make further assumptions on the current mass
derivatives of model parameters. Lower density con-
densate from this method is liner and independent of
the concrete form of inter-quark interactions. If this
linear result is compared with the previous model in-
dependent result, the pion-nucleon sigma term could
be 6 times the average current mass of light quarks.
The decreasing speed of the condensate with increas-
ing densities may be slowed by the QCD-like interac-
tions.
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