
 PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE 

ESCUELA DE INGENIERIA  

 

PROGRAM COMPREHENSION TECHNIQUES 

ANALYSIS ON NON-OBJECT ORIENTED 

SYSTEMS 

 DANIEL CÓRDOVA 

 Thesis submitted to the Office of Research and Graduate Studies in partial 

fulfillment of the requirements for the Degree of Master of Science in 

Engineering. 

 Advisor: 

YADRAN ETEROVIC 

 Santiago de Chile, Julio, 2011 

 2011, Daniel Córdova 



 

 
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE  

ESCUELA DE INGENIERIA 

 

 

PROGRAM COMPREHENSION TECHNIQUES 

ANALYSIS ON NON-OBJECT ORIENTED 

SYSTEMS 

 DANIEL CÓRDOVA 

 Members of the Committee : 

 
YADRAN ETEROVIC 

SERGIO URIBE 

STEREN CHABERT 

ANDRÉS GUESALAGA 

 

 Thesis submitted to the Office of Research and Graduate Studies in partial 

fulfillment of the requirements for the Degree of Master of Science in 

Engineering. 

 Santiago de Chile, July, 2011 



iii 

 

  

 

 

To my family, friends, and all my 

people. 



iv 

 

ACKNOWLEDGES 

 

I want to thank all the people that helped me in this work. First of all I want to 

thank Sergio Uribe for his active role in the development of my work as a domain 

expert. Also I want to thank Fernanda Campos and Esteban Cortázar for their 

contributions and previous work researching methods and techniques to help in the 

understanding of complex software. 

 

I thank my teacher Yadran Eterovic for his support and help along my entire 

Master scholarship, and the teachers Pablo Irarrázabal and Cristián Tejos for their 

help in the birth of my Master project. 

 

Finally I have to thank my family and friends, which have been the foundations of 

my achievements and goals. 

 

 

 



v 

 

TABLE OF CONTENTS 

Dedication ................................................................................................................... iii 

Acknowledges ............................................................................................................. iv 

List of Tables.............................................................................................................. vii 

List of Figures ........................................................................................................... viii 

Resumen …………………………………………………………………………….. ix 

Abstract ……………………………………………………………………………... x 

1. Introduction......................................................................................................... 1 

1.1 Motivation .................................................................................................. 1 

1.2 Object-Oriented versus non Object-Oriented ............................................. 3 

1.3 Hypothesis .................................................................................................. 9 

1.4 Objectives ................................................................................................... 9 

2. Related Work .................................................................................................... 11 

2.1 Brief history of Program Comprehension ................................................ 11 

2.2 Dynamic Analysis for Program Comprehension ..................................... 12 

2.3 Program Comprehension in the Software Development Industry ........... 13 

2.3.1 Static Analysis Tools ..................................................................... 13 

2.3.2 Dynamic Analysis Tools ................................................................ 15 

3. Methodology ..................................................................................................... 24 

3.1 Selection of the Study Case ...................................................................... 24 

3.2 Tools Tested ............................................................................................. 27 

3.2.1 HITS + fe-Tree .............................................................................. 28 

3.2.2 SORter ........................................................................................... 37 

4. Experiments and Results................................................................................... 44 

4.1 Experiment Design ................................................................................... 44 

4.2 Experiment’s Results ............................................................................... 47 



vi 

 

4.2.1 HITS + fe-Tree .............................................................................. 47 

4.2.2 SORter ........................................................................................... 48 

4.3 Data Analysis ........................................................................................... 49 

4.3.1 HITS + fe-Tree .............................................................................. 49 

4.3.2 SORter ........................................................................................... 55 

5. Conclusions ...................................................................................................... 59 

5.1 Results ...................................................................................................... 59 

5.2 Implications .............................................................................................. 60 

5.3 Future Work ............................................................................................. 62 

References .................................................................................................................. 64 

Appendix .................................................................................................................... 67 

A) SORter Manual......................................................................................... 67 



 

vii 

LIST OF TABLES 

Table 1: C implementation of the state machine example ........................................ 6 

Table 2: Java implementation of the state machine example ................................... 7 

Table 3: Example of the application of HITS algorithm ........................................ 31 

Table 4 - Thirty top ranked files and expert's 21 recommended files. ................... 51 

Table 5 - Times and Scores from Usability Test .................................................... 56 

 



 

viii 

LIST OF FIGURES 

 

Figure 1: AVID Screenshot .................................................................................... 16 

Figure 2: RetroVue Screenshot ............................................................................... 18 

Figure 3: Delta Debugging simplifying a HTML input ......................................... 19 

Figure 4: Prune Dependency Analysis ................................................................... 20 

Figure 5: Béron’s PC Tool Architecture ................................................................. 22 

Figure 6: Formulas to calculate Hubiness and Authority ....................................... 29 

Figure 7: Graph for HITS example ......................................................................... 30 

Figure 8: Function list VS fe-Tree .......................................................................... 34 

Figure 9: An example of the tool proposed by Campos ......................................... 36 

Figure 10: Alma
2
 Views ......................................................................................... 38 

Figure 11: Example of SORter input ...................................................................... 40 

Figure 12: SORter Views........................................................................................ 41 

Figure 13: SORter tree view for the example input ................................................ 42 

Figure 14: SORter temporal view for the input example ....................................... 43 

 



 

ix 

RESUMEN 

Es sabido que comprenden código ajeno es una de las tareas que más tiempo consumen a 

la hora de actualizar o mantener software. Varios estudios se han hecho en ésta área 

llamada Program Comprehension (PC), pero la mayoría han sido probados sobre 

pequeños sistemas Orientados a Objetos (OO). Este trabajo busca discutir el posible 

desempeño de algunas técnicas y herramientas de Program Comprehension en un 

sistema de tamaño industrial no OO (non-OO), y determinar qué cambios, de haberlos, 

son necesarios para usar técnicas de PC diseñadas para sistemas OO en otro tipo de 

sistemas.  

 

Nuestros resultados evidencian que el enfoque automático-visual basado en 

investigaciones previas mantuvo su desempeño al ser cambiado de un énfasis OO a uno 

non-OO, pero el traspaso del enfoque automático-genérico actuó de peor manera en 

ambientes non-OO que en ambientes OO. Esto muestra que las herramientas probadas 

en OO existentes probablemente fallarán al ser aplicadas en otros tipos de paradigmas, 

pero la investigación detrás de ellas puede ser exitosamente aplicada si no es 

fuertemente dependiente de alguna característica específica del paradigma. 

 

 

 

Palabras clave: Program Comprehension, non-object oriented, industrial-size software. 



 

x 

ABSTRACT 

 

It is known that to understand foreign code is one of the most time-consuming tasks 

when you have to update or maintain software. Several studies have been done in this 

area called Program Comprehension, but most of them are tested on small object 

oriented systems. This work aims to discuss the possible performance of some Program 

Comprehension techniques in an industrial-size non-OO system, and then determine 

what changes, if any, are needed to use PC techniques designed for OO systems on other 

kind of systems.  

 

Our findings evidence that the visual-generic approach based on previous research kept 

its performance when switched from an OO emphasis to a non-OO emphasis, but the 

port of an automated-generic tool acted in worst way in non-OO environments than in 

OO environments. This show that the existing tools tested on OO systems will probably 

fail when applied on non-OO systems, but the research behind them can be successfully 

applied if it’s not strongly dependent on a specific paradigm characteristic. 

 

 

Keywords: Program Comprehension, non-object oriented, industrial-size software.



1 

 

1. INTRODUCTION 

1.1 Motivation 

 

Whenever a programmer is asked to understand a code, he creates a mental model of the 

system facing the source code with his general programming knowledge. The goal of 

Program Comprehension (PC) techniques and tools is to help the development of such 

mental models (Storey, Wong, & Müller, 2000), either identifying interesting parts of 

the source, showing in a more friendly way the dynamic or static information of the 

program, etc. 

 

Following this line, there are many experiments and investigations that aim to make 

easier the understanding task. However, most of those works are focused on mid-size 

object oriented (OO) systems (Cornelissen, Zaidman, van Deursen, Moonen, & 

Koschke, 2009). This fact raises the question of whether these findings can be directly 

applied to real life software, i.e., an industrial-size system not necessarily written in an 

OO language.  

 

In the context of this work, we identified two approaches used when developing or 

researching OO PC tools. In one hand we have works meant to a specific target 

language, as we see in the code browser tool Juliet (infotectonica sa, 2006) meant only 

for Java, and in the other we have works that aren’t explicitly engaged to a specific 

language, but rather to OO environments broadly, as we see in the feature identification 

tool proposed in (Antoniol & Guéhéneuc, 2005). 

 

The first kind of works is obviously not suitable to be ported directly to other paradigms, 

because it depends directly of the language it was meant for. But something interesting 

happens with the second kind of works. In the context of this thesis, we found that most 

of these works, even when they’re not explicitly designed for an OO language, they still 



2 

 

use key assumptions that can only be met in this kind of environment. Looking again at 

Antoniol’s work for example, we can see that the first stage of his feature identification 

relies on typical OO structures like classes, interfaces, etc; because he creates a model of 

the target program composed by these entities. Then, if we want to port this approach to 

other environments where such structures don’t exist, we will necessary have to redesign 

at least the stage of program model creation, finding good replacements for these 

entities, and even if we do so nothing assure us that we will have a similar performance 

with our implementation. 

 

This tendency repeats among most of the works that we reviewed. For example, in the 

automated concept identification method proposed in (Carey & Gannod, 2007), they use 

several metrics to create a vector to represent each class in the target system, that will be 

used later to define proximity between classes, leading to define clusters of classes that 

will represent a concept. Besides the fact that they use classes to divide the software, 

because it’s not that hard to find a substitution of a class in other paradigms, the metrics 

themselves are based on OO concepts like the number of overridden methods in a class, 

the number of direct subclasses, etc. The problem when trying to port this work rises 

when you have to define new metrics to create the vectors of each class (artifact of 

code), because the original work succeeded with its metrics, and nothing assures that 

other metrics will have the same results.  

 

However, there are some works that aren’t necessary bounded to any specific OO 

assumption at all. That is the case of Cerberus (Aho, Antoniol, & Guéhéneuc, 2008) a 

tool for concern location that combines static analysis in the form of information 

retrieval (IR), dynamic analysis in the form of execution tracing, and an automated 

prune algorithm that feeds on the previous results to automatically extract features of a 

program. The IR phase consists on automatically extracting terms of all the static data 

(code, documentation, etc.) to create a starting set of possible concerns in the form of 

“terms”, like the name of a method or class, or entities present in the documentation like 



3 

 

features or requirements. Then, in the execution tracing phase, the activated elements of 

the code are rescued to create a set similar to the one created on the previous phase. 

Finally, the combination of the two prior phases is used as a seed to the pruning phase, 

where more elements are added and some other are removed depending with their 

relation to the elements already found. As we said in the beginning of this paragraph, 

this works doesn’t make any strong assumption related with OO concepts, but the study 

case used to validate their hypothesis is a system implemented in Java, which raises 

again the question if these kinds of novel approaches and findings can be successful on 

any other kind of environment. 

 

Also, there are some works based on non-OO languages, but they are the minority 

amongst the research field, as the survey done in (Cornelissen, Zaidman, van Deursen, et 

al., 2009) stated, and almost all the commercial tools meant for PC that were reviewed in 

the contest of this thesis were either code browsers like (GrammaTech, 2007) or project 

management suites like (Intland Software, 1999). 

 

The question if OO PC tools can be adapted to other paradigms is very important 

because, as we introduced previously in this same chapter, a big share of the PC research 

has been validated on OO systems, and most of the software used in the industry is non-

OO; instead it is legacy, web based or any other kind. So, if we really aim to introduce 

PC in the actual industry, we should take care of the validation of PC tools developed 

with an OO study case in mind in other kinds of software, so all the efforts made until 

now have not just an academic value. 

 

1.2 Object-Oriented versus non Object-Oriented 

 

While it is true that the notation of the language (OO, procedural, declarative, etc.) does 

not necessarily defines the structure or quality of the final program, it does have an 



4 

 

incidence in the information we can retrieve from it. According to (Wiedenbeck S., 

1999) and previous work presented in (Green T.G.R., 1984), programming paradigms 

highlights certain information at the expense of other information. Even if you have a 

clear goal and design, the platform you choose to implement your software will give you 

the guidelines of your final solution. For example, it’s hard to create an efficient system 

with FORTRAN to solve a problem that requires a lot of communication between 

entities (hierarchy may not be enough to make a good design), but it’s easy to do the 

same task with any OO language because the message passing between objects can 

handle all the communication in a simple way. 

 

The authors of these works state that the OO notation highlights domain information and 

functionality due to its class notation, at the expenses of occluding data transformations 

due to its capacity to encapsulate the implementation details. On the other hand, 

procedural notation highlights operations and control flow due to its sequential 

representation (all the information necessary to perform an operation is together), in 

exchange of data flow and domain information due to the low level of abstraction that 

this notation allows. 

 

These findings lead us to think that, independently of the programmer’s skills and the 

design’s quality, it is highly probable that a system developed in a determined language 

will have structures that follow its own highlights; in fact, these structures may have 

been the cause of choosing that environment in the first place. For example, procedural 

languages are generally preferred when the programmer needs to implement a system 

highly efficient in calculations, which is exactly the kind of information this notation 

emphasizes. Meanwhile, OO languages are preferred when the system that will be 

implemented needs a complex message-passing support, which can be achieved with the 

encapsulation and other mechanisms the paradigm offers. 

 



5 

 

From all the above we can derive that PC tools meant to specific languages or paradigms 

will perform better if they rely on these “information highlights” to help in the 

understanding, because the extraction of meaningful information about the system will 

be easier. But this can also mean that when a tool that takes advantage of certain 

highlights is applied in a different paradigm, that probably will not highlight the same 

information, there is a high chance that the tool may drop its performance because the 

information it needed to make its deductions isn’t as easy to collect.  

 

As an example we will compare two programs that do exactly the same: implement a 

state machine driven by user input, one written in C and the other written in Java. These 

programs are based on the first example proposed in chapter 20 of (Meyer, 2004), where 

the author first states the problem to be solved, then proceeds to implement a solution in 

a structured pseudo-code, to finally implement another solution that improves the first 

one in a OO pseudo-code.  

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

int execute_state(int s, int* n) 

{ 

 int answer; //user input 

 int ok; //boolean 

  
 do 

 { 

  display(s); //shows information according with the state s 

  read(s, &answer); //reads the user input  

  ok = correct(s, answer); //validates that the answer is correct 

   

  if(!ok) 

  { 

   message(s, answer); //shows an error message 

  } 

 }while(!ok); 

  

 process(s, answer); //process the user input acording to the state s 

  

 *n = next_choice(answer); //next transition based in the user input 

} 

 

void main() 

{ 



6 

 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

 int state, next: 

  

 state = 0; //init state 

  

 do 

 { 

  execute_state(state, &next); 

   

  state = transition(state, next); //returns the next state 

 }while(state != -1); //final state 

} 

 

Table 1: C implementation of the state machine example 

This table shows the code in C for the structured pseudo language of the original 

example. 

 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

class State 

{ 

public: 

 int input, choice; 

  

 void execute() 

 { 

  boolean ok; 

   

  do 

  { 

   display(); 

   read(); 

   ok = correct(); 

    

   if(!ok) 

   { 

    message(); 

   } 

  }while(!ok); 

   

  process(); 

 } 

  

 abstract void display(); //shows information according with the state 

 abstract void read(); //reads the user input 

 abstract boolean correct(); //validates that the answer is correct  

 abstract void message(); //shows an error message 

 abstract void process(); //process the user input acording to the state 

} 

 

class ExampleState extends State 



7 

 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

{ 

 void read() 

 { 

  //read the user input 
 } 

  

 //similar for all the abstract methods 
} 

 
class Application 

{ 

public:  

 State associated_states[]; 

 int transitions[][]; //transition table 

  

 int initial_state_index = 0; //initial state 

  
 Application(int num_states, int num_transitions) 

 { 

  transitions = new 

int[num_states][num_transitions]; 

  associated_states = new State[num_states]; 

 } 

  

 void main() 

 { 

  State st; 

  int st_number = initial_state_index; 

   

  do 

  { 

   st = associated_state[st_number]; 

   st.execute(); 

    

   st_number = transition[st_number][st.choice]; 

  }while(st_number != -1); //final state 
 } 

} 

 

Table 2: Java implementation of the state machine example 

This table shows the code in Java for the OO pseudo language of the original example. 

 

Even when these two solutions do the same job and both are well enough designed, we 

can clearly see differences in the implementation due to the different tools that both 

languages offer. For example, we can see that the structured solution presents “high 

coupling”, this is, it contains in one function the logic to execute display in each state of 



8 

 

the system, plus the control flow statements needed to decide which is the actual state 

(the same for read, correct, message and process, that’s why all those functions needs 

‘s’ as an input), but the OO example managed to distribute the responsibility amongst 

different classes, leaving the resolution of the actual state to the polymorphism; for 

example the method read is called in line 13, but its actual implementation can be in line 

34 in a different class, not directly in line 26 in the same class State. 

 

One particularity that arises due to the structured solution’s design is that the variable ‘s’ 

is transmitted through all the system, from the main loop of the application (line 31) to 

the different functions that are called in each state (lines 8 to 18) and finally inside those 

functions to decide which behavior must be executed, breaking the purpose of the 

function decomposition. This is not the case in the OO example, where the state of the 

system is needed only in the main loop (lines 63 and 64) because it’s the language itself 

that is in charge of judging which behavior will be used thanks to polymorphism.  

 

If we, for example, could test on these two examples a PC tool that claims that the most 

frequent called entities of a system (let it be classes or functions) are worth reviewing 

when doing a maintenance task, we could get absolutely different answers from 

analyzing the structured solution and the OO solution. If we pick an execution trace 

from the structured system, the PC tool will say that the most important functions in the 

structured case are display, read, correct, message and process regardless the sequence 

of states executed, because the calls in lines 8 through 18 will always be made, despite 

the state the system is. 

 

On the other hand, if we could take an execution trace from the OO solution, the tool 

will say that the class State and only the classes that implements the methods display, 

read, correct, message and process that were effectively called after the polymorphism 

was resolved (for example the class ExampleState) are indeed the most important 

classes, leaving behind the classes representing the states that were less passed through. 



9 

 

 

Nevertheless, PC tools don’t depend only in the target language; there is also the 

research that leads to the development of the tool and the algorithm that supports it. 

Since these elements are not directly influenced by the language itself, it may be 

accurate to affirm that they can be ported to any paradigm, though the implementation of 

a tool in this new environment shall be started from scratch. 

 

1.3 Hypothesis 

 

Our hypothesis is that PC tools developed for OO systems can’t be directly applied to 

non-OO systems due to the paradigm change. However, the research and assumptions 

that supports those tools can be used to create new tools that are less dependent on the 

paradigm of the target language. We have to emphasize that we are not saying that is 

impossible to use PC tools validated in OO systems under other kinds of environments, 

but rather that the implementation can’t be direct and that the change in the study case’s 

structure may cause that the results originally met in the OO system can’t be repeated in 

this new environment. 

 

In order to prove this two-part hypothesis, first we will adapt an existing tool that aims 

to help in the understanding of an OO system to be used in our non-OO study case, and 

then we will develop a new tool based on previous research related to the understanding 

of OO systems. 

 

1.4 Objectives 

 

The main objective of this thesis is to design and make a field study of PC tools in a 

non-OO environment, comparing their contribution to the understanding and their 

usability with the performance the tools had in its original OO environment. 



10 

 

The specific objectives are: 

 

 Adapt a PC tool meant for OO systems, to be tested on the study case. The 

adaptation will consist in recreate the tool, preserving its main algorithm and 

assumptions, but changing any direct dependency with OO it could have (like the 

analysis of specific keywords or code lines) with its counterpart in the new environment. 

If this counterpart is not direct, it will be defined by the researchers. 

 

 Develop a new PC tool based on research made for OO systems, to be tested on 

the study case. This new tool will be created from the scratch, using assumptions or 

algorithms already defined in OO based works and addressing directly the new 

environment and the information it naturally highlights. With this we aim to skip any 

noise that the original paradigm could add to our solution (like dependency on certain 

structures or code artifacts) to develop a tool fully independent of the original language. 

 

 With the help of an expert in the study case, evaluate the utility of the developed 

tools, in terms of usability and helpfulness. 

 

 Discuss the overall results of the evaluations, aiming to determine if the port 

from OO to non-OO systems maintained the performance of the tools 

 

The rest of the thesis continues as follows: in chapter 2 we will describe the related work 

done in PC, chapter 3 will describe the methodology to prove the hypothesis and the 

tools developed, chapter 4 will describe the experiments and its results and chapter 5 

will discuss the conclusions about the results, the implications these results have and the 

future venues of work in the area. 



11 

 

2. RELATED WORK 

 

In this chapter we are going to review what has been done in Program Comprehension 

(PC) in the last years, both in research and industry. Also we are going to state the main 

differences between static and dynamic analsys. 

2.1 Brief history of Program Comprehension 

 

Programmers always had to understand code. The first formal study about this topic can 

be attributed to the work of (Brooke R., 1975), where he proposes a model of the 

cognitive process involved in the code generation behavior of a typical FORTRAN 

programmer. In this early work he already identifies three phases of the programming 

process: the understanding, the planning and the coding; and also states that before the 

programmer can actually start to work on the problem, he has to build representations of 

the problem’s elements and properties, such as initial state, goal, etc.; what composes the 

“understanding” phase of the problem, not the code.  

 

Since then, there has been a lot of research about this “understanding” phase, which has 

led to several approaches, theories and conclusions about how programmers understand 

code. This research can be divided in two main areas: static analysis, which focuses on 

what kind of information we can get from the source code, documentation, etc.; and 

dynamic analysis, that focuses in the information we can gather from the application in 

runtime, like message passing, calls stack, etc. 

 



12 

 

2.2 Dynamic Analysis for Program Comprehension 

 

As we just stated, dynamic analysis consist on gathering and analyzing information of 

software generated while it’s running. This information can be the program’s calls stack, 

the values a variable takes during the execution, the code artifacts (variables, methods, 

etc.) invoked to perform the task, and generally speaking, any information you can get 

during a debugging process, i.e., the information that the computer handles at machine 

level. Dynamic analysis has the potential to provide an accurate picture of a system 

because it exposes the system’s actual behavior, but it only can provide partial 

information of the system, since it depends on the scenario executed for the analysis. In 

the last years, dynamic analysis has gotten a lot of attention, covering a big share of all 

the research on PC.  

 

A good survey of the “state of the art” can be found in the work of (Cornelissen, 

Zaidman, van Deursen, et al., 2009), a work that categorizes the last ten years of 

research in PC, giving an insight of the actual tendencies, possible venues for future 

work and some discussion about why the research has turned the way it is actually. One 

of the most relevant observations that this survey does is that most of the articles 

reviewed focus their research on object-oriented systems. The authors believe that this 

may be due to the ease of instrumentation, which is a technique that allows extracting 

information from runtime through the insertion of “inspector functions” in the code that 

will collect the desired information if the program passes through them, suitability of 

certain visualizations like UML, or simply the fact that researchers are interested in OO. 

 



13 

 

2.3 Program Comprehension in the Software Development Industry 

 

It is clear now that PC is a widely researched field, and thus, a lot of algorithms and 

tools have been developed through the years, but how much of this effort is really being 

used in the software development industry? There are actually several PC and Software 

Maintenance tools available, both for OO and non-OO languages, but most of these tools 

are code reviewers/browsers, which represent a very basic implementation of static 

analysis. There are several kinds of tools related with Software Maintenance, but that 

aren’t PC tools as such. One example is the project management software, which 

consists on a suite of tools to create, manage and maintain a complete project. Another 

example of this is the performance analysis tools, which aids the programmer to test the 

performance of the application, i.e. the time spent on resolving the task, memory used, 

etc. Nevertheless, there is a good amount of PC tools, both commercial and academic, 

that are available for being used in a software development process. 

 

2.3.1 Static Analysis Tools 

 

As we stated in the previous paragraph, the most common tool in static analysis is the 

code browser, a tool that allows navigating the source code of a project in an easier way 

that the common text editor. The objective of these tools is to reduce the time a 

programmer must spend reading code, documentation or any other plain text related to 

the system he wants to understand.  

 

A good example of this kind of tool is Juliet (infotectonica sa, 2006), a code browser for 

Java projects that allows you to navigate the code as if it was hypertext, that is, shows 

you information related to the code when you hover the mouse over or when you drag 

and drop a code snippet in a special windows, etc.; also, it can give you cross-



14 

 

information of several code objects while you are browsing it (which functions modify 

certain variable, which classes use certain functions, etc.).  

 

Another kind of tool that belongs to the static analysis is the metrics generator tool
1
, 

which calculates different metrics of the target system using text analysis techniques like 

text mining, parsing, etc. The objective of these tools is to give to the programmer a set 

of values he can use to compare and analyze different code objects in a more 

quantitative way than basing his analysis only in the code. An example of these tools is 

Understand (Scientific Toolworks Inc., 2010), a tool that integrates metrics generation 

with several features, allowing you to generate reports with statistical information about 

your code, which makes it easier to measure and evaluate. 

 

There is a third kind of static analysis tool that is used inside the industry, the Program 

Slicing tools. Program Slicing is a technique introduced in 1981 by (Weiser M., 1981) 

which consist in select a variable/statement to be analyzed, and then iteratively cut code 

from the program that does not affect this variable/statement until nothing else can be 

cut without affecting its original value. The resulting new program is called a slice, a 

program a lot smaller than the original that affects the target value/statement in exactly 

the same way that the full program, since it has only the code strictly related to that 

value/statement. The objective of these tools is to reduce the amount of code that a 

programmer has to read in order to understand certain feature to a minimum, easing the 

understanding process. Unravel (The Unravel Project, 1999) represents a good example 

of these approach to static analysis. This tool was meant to help to identify common 

code amongst several executions of a program. 

 

                                                 

1
 There are some dynamic analysis tools that also calculate metrics of the trace, but most of the 

metrics generation was found to be in static analysis tools. 



15 

 

2.3.2 Dynamic Analysis Tools 

 

As we stated in 2.2, dynamic analysis consist in analyzing the information a program 

generates when it runs. Even if most of the tools available for PC are not dynamic 

analysis based tools, there are still a good number of tools in the market. The most 

common kind is the Trace Visualization tool, which shows the information related to an 

execution trace, i.e. the call tree, in a graphical way, likely easier to understand. The 

objective of these tools is both to somehow compress the huge amount of information a 

trace can generate, taking advantage of the ability of humans to interpret a lot of 

information from pictures, and to give an insight of how a particular execution of the 

program looks, making easier to a newcomer programmer to understand the big picture 

of the system at hand. A good example of trace visualization is AVID (University of 

British Columbia, 2003), a tool that animates the execution trace of a Java program in a 

way similar to an UML diagram, counting the messages going in and out from each 

entity at each step. The special feature of this tool is that the entities shown on the 

diagram can be user-defined, this is, the user may define any subset of the system as an 

entity, let it be an entire package, a subset of a library, etc. 

 



16 

 

 

 

Figure 1: AVID Screenshot 

 

Figure 1 shows a screenshot of AVID visualizing part of the execution of the Eclipse 

integrated development environment. Boxes represent components, such as the JDK, a 

collection of core Eclipse components (RestOfCore), the functionality associated with 

refreshing a local directory (RefreshLocal), and remaining Eclipse (The Eclipse 

Foundation, 2001) components (RestOfEclipse). These components are defined by the 

user by describing a name for the component and by describing what packages, classes, 

methods, etc. in the execution contribute to each component. Black arrows represent the 

messages that have been sent between components. Colored arrows show the currently 

executing threads. The number of object allocations and deallocations to the point in the 

animation are shown in each component. 

 



17 

 

This tool could be of great help in our case because it will allow the expert to make use 

of his experience in order to define macro-entities that explain better the behavior of the 

system, so any analysis based on these entities will be clearer and easier to understand. 

However, the main issue that we find when trying to use this tool in our case is the fact 

that it works as a plug-in for the IDE Eclipse (The Eclipse Foundation, 2001), so it’s 

restricted to the languages that tool supports. However, the idea itself of a visualization 

tool that lets you define the entities you want to see interact may be adapted successfully 

to any paradigm, as long as it has a recognizable entities structure with message passing 

between them. An exception to this condition can be the functional languages. 

 

Also, there is another kind of tool that uses dynamic analysis that is present in the 

industry, the Debugging Tool. Debugging is a classic way to understand software 

behavior, in which the reviewer analyzes the state of each variable at each statement of 

the program, searching for the point in which the bug was generated. Actually, there are 

a few new approaches to this method. One that is worth mentioning is the method used 

in the tool RetroVue (VisiComp Inc., 2004) that is simply an offline debugger, which 

first stores the information of the execution, to be analyzed later. This allows the feature 

of going backwards in a debug process, which is normally impossible in any debugger. 

Since our study case doesn’t have a debugger included, this tool will be of great help, 

especially with its rewind feature.  

 



18 

 

 

 

Figure 2: RetroVue Screenshot 

 

Although a debugger doesn’t depends on the paradigm of the language it’s been applied, 

RetroVue can’t be used in our case first because it’s meant for Java and second because, 

as we will detail later, our study case is a very complex embedded system, and thus we 

don’t have access to the call stack at a processor level, and is impossible to 

instrumentalize the entire code to know the complete state of the system (variables, calls, 

etc.) at any moment. 

 

Also in the line of debugging there is another method that innovates in this field, the 

Automatic Debugging. This method consists on automatically find the cause of a bug 

using automated testing. The creator of this method is Andreas Zeller (Zeller, 2000), and 

his tool Delta Debugger (Lehrstuhl für Softwaretechnik - Universität des Saarlandes, 

2010) is well known in Software Engineering. 

 



19 

 

The tool developed by Zeller takes the system code, the user input and an automated test 

able to prove if the target bug has happened or not in certain execution, and then it 

automatically modifies either the source code, removing code or adding code from a 

working release, or the user interactions; until the input can’t be modified any more, this 

is, it has become an irreducible statement or any further modification to the input will 

not reproduce the bug.  

 

 

Figure 3: Delta Debugging simplifying a HTML input 

 

Figure 3 shows how the algorithm reduces a HTML input to the smallest possible input 

that reproduces the bug, in this case a SELECT tag, starting with a SELECT with several 

parameters but we don’t know a priori which of those participate in the bug, so the 

algorithm automatically removes parts of the input until the bug happens, then that part 

stays removed and the algorithm continues until nothing else can be removed. 

 

As with the previous tool, the addition of a debugger could be of great help to our study 

case, since it hasn’t anything similar to a debugger, and the automation of the process 

makes it an even better choice due to the big size of the target system. The problem we 

found when trying to use this tool is that adding any new feature to the study case is very 

hard (in fact this work is part of a project that aims to ease the research and 

programming of new features in the study case), so adding the necessary framework to 

have automated testing is out of the scope of this work. 

 



20 

 

Finally, there is also a set of tools that combine both static and dynamic analysis, 

composing more complete tools that aim to unify all the issues related with PC. From 

these tools there are two good examples. The first one is Cerberus (Aho et al., 2008), a 

tool intended for Java programs that uses both information retrieval (static) and elements 

activation (dynamic) to find concerns as input for a prune method that adds more 

elements to the concerns previously added. In the first stage, Cerberus automatically 

extracts a starter set of possible concerns from the source code (method or variable 

names, comments, etc.) and requirement documents, creating a thesaurus of terms. Then 

it makes a trace analysis to detect the software elements activated while executed the 

desired concern, which is combined with the previous thesaurus to create a starter set of 

program artifacts (classes, methods, etc.) that are likely to perform the desired concern. 

Finally, a prune algorithm is applied over this starting set, adding or removing program 

elements according to their relation with the starting set, like heritage, references, 

containment, etc. 

 

 

 

Figure 4: Prune Dependency Analysis 



21 

 

 

In Figure 4 we see an example of the rules applied when augmenting the starter 

concerns set. We start with bar and foo as the initial elements (a), then we add the main 

method because it directly references bar and foo (b), then we add the B class because it 

contains the starting methods (c), and finally we add the A class because it inherits from 

B (d). 

 

The advantage this tool presents is the ability of automatically finding concerns, which 

abstracts us of implementation details, allowing a newcomer to locate the artifacts that 

implements the concerns he wants to review. Nevertheless, this tool can’t be applied in 

our study case because we don’t have complete access to the documentation, thus the 

information retrieval phase will create an incomplete thesaurus, and the later phases will 

not be as effective as in the original work. 

 

The second one is proposed in (Béron, Henriques, Pereira, & Uzal, 2007) for aid in the 

understanding of C programs. This tools objective is to help the programmer to navigate 

the system in the abstraction level he wishes, through several views based on static 

analysis (assembly and source code views), dynamic analysis (function and modules 

views), and a fifth behavioral view that aims to relate the functions of the system’s code 

with concepts in the system’s design. 

 



22 

 

 

 

Figure 5: Béron’s PC Tool Architecture 

 

As we see in figure 4, this PC tool takes the target system as an input and then, using 

static and dynamic analysis, it creates an information repository from where the several 

views will feed. The static analysis recovers the information needed to create the first 

two levels (assembly and source code), and the dynamic analysis is used to recover the 

information of the other 3 levels, which are in order a function list for the functions, a 

function call graph to see the references between functions, a module communication 

graph to see the relations between system modules. The system output acts as the sixth 

view. 

 

This tool could represent a great help when trying to understand our study case mainly 

because, and as will be detailed later on, it can be considered to be implemented with a 

Domain Specific Languages (DSL, it’s a programming language that contains 

information of the problem domain in its syntax), thus the capability to relate the 



23 

 

elements in the code with elements in the problem’s domain can be very useful. Also the 

fact that it’s meant to C programs brings it closer to our problem.  

 

The main issues that prevent us for using this tool in our research are in one hand the 

fact that we don’t have access to the call stack to retrieve the assembly code, and on the 

other hand the level of instrumentation we can achieve. As we will detail later, our study 

case is a modification of C in which the extra code comes in the form of commentaries 

that are pre-compilated and then added to the rest of the C code. This structure makes 

impossible to determine the points inside of this extra code that we need to 

instrumentalize in order to retrieve the runtime information related with variables that 

this tool requires. In our study we made instrumentation in order to retrieve some 

dynamic information, but the level of instrumentation we needed was much simpler that 

the one required in (Béron et al., 2007) 

 

From all the tools reviewed in the context of this work, dynamic analysis based tools 

were the minority and tools meant to be used on object-oriented systems were the 

majority, which is in touch with the results of (Cornelissen, Zaidman, van Deursen, et 

al., 2009). Of the few tools designed for non-OO systems, most of them were code 

browsers, and the only dynamic-based one was a debugger, so we may think that despite 

the big amount of research in PC, the deployment of these products into the industry is 

neglected, thus is necessary to evaluate if it is possible to adapt these tools to be used in 

non-OO environments or it is necessary to develop new tools for this purpose. 



24 

 

3. METHODOLOGY 

 

In this chapter we are going to define the methodology that we will use to prove the 

hypothesis, we will describe the study case and the tools we will develop. 

 

In order to achieve the objectives stated in section 1.4, we propose the following stages: 

 

 Selection of the study case. 

 Selection and adaptation of the first PC tool to be tested. 

 Research and development of the second PC tool to be tested. 

 Evaluation of the tools supported by the domain expert. 

 Discussion. 

 

In this chapter we are going to discuss the first three points 

3.1 Selection of the Study Case 

 

The system chosen for this study consists of the software that runs inside the Magnetic 

Resonance Imaging (MRI) scanner Phillips Intera. This system called Gyroscan-NT 

Pulse Programming is made in an ad-hoc language called GOAL-C (12th Course of the 

International Zurich Magnetic Resonance Education Center, 2001), which is a 

modification of C that claims to be OO, but fails at implementing essential features of an 

OO language, like polymorphism, instantiation of objects, inheritance, etc. The complete 

project consists of more than 3.259 files, 4.865 functions and 475.167 LOC. 

 

The main goal of this language is to program Magnetic Resonance Measurements 

(MRm), which represent the exams taken with the scanner. These measurements are 

made of small magnetic resonance sequences or prepulses that are already pre-

programmed in the machine, so the programmer has to code a set of instructions to run 



25 

 

these prepulses a given amount of times in a given order. To achieve this, programmers 

must understand several kLOC just to get an insight of how the system works, and then 

another set of kLOC to know how to program the MRm they wish. 

 

The system’s main code is composed of 4 main folders, where each one of them 

contains hundreds or sometimes thousands of source files, both headers and body files. 

The file’s names are a nomenclature that contains, in the first 2 characters, the folder to 

which the files belongs and, in the rest of the name, information of the type of prepulse 

or sequence phase this file is part of. A single file can have several roles, for example, a 

file can be part of the first validation phase of a diffusion exam, or the main component 

in the cardiac imaging tests, and so on. This makes hard to find sets of files that 

implements a concern, because each file can have either a very specific or a very generic 

role in the system, provoking a concern to be too scattered amongst the files or files that 

participates in several concerns. 

 

The integration between C code and GOAL-C code also represents an issue when trying 

to understand this system. Not all the system is written in GOAL-C, but it has some code 

snippets usually at the beginning of some files, both header files and body files. This 

code aggregates consist mainly in definitions of global variables, or “objects” according 

to this system’s design, and full definitions of some functions that involve these 

“objects” (full body definitions, not just the header of the function). These aggregates 

define features in a way closer to the problem domain rather than the program domain, 

and thus are very important to understand the complete system.  

 

The problem arises when trying to automatically analyze these parts of the code. For 

example, we can’t instrumentalize them because inserting any normal C code instruction 

there will make the GOAL-C → C precompiling process fail, and the GOAL-C 

attachment hasn’t any statement related with printing custom information, so we can’t 

know if the program flow passes by there or the state of any variable inside that code, 



26 

 

we can only know when the program uses the “objects” declared there by 

instrumentalizing the ANSI-C parts of the system. 

 

The only way to interact with this system when you want to develop is through a virtual 

machine that runs Windows XP Embedded. This virtual machine doesn’t let you install 

any kind of software, so we can’t use any PC tool we desire, but we can use the 

developing tool that comes with the machine, Visual Studio. The compiling process is 

made through a script written in Pearl that first parses the GOAL-C code and then 

compiles the ANSI-C code. This makes the compiling process a “black box” to the 

programmer, thus making impossible to interact with this task or modify it in any way. 

 

The attempts to use existing PC tools have failed (Campos, Cortazar, Eterovic, Tejos, & 

Irarrazaval, 2009), mostly because these tools need either installation or access to the 

compiling process, both impossible tasks in this environment. This fact encourages the 

use of PC approaches or algorithms over PC tools, so that was our focus in this work. 

 

Summarizing, the size and complexity of this program makes it a good study case to test 

the performance of PC tools. However, it has the drawback that it’s difficult to modify 

the environment in which it runs. Due to the characteristics of the system, we can’t use 

any commercial or installable PC tool because we can’t install new software, debuggers 

or tools that need to run side-by-side with the execution because we don’t have access to 

the compilation process or the execution itself, tools that need detailed metrics about the 

system because we can’t instrumentalize all the code and specific IDE plug-ins because 

we can only use the Visual Studio Version that is already installed, without any plug-in. 

On the other hand, we can still use PC tools that doesn’t need very detailed 

instrumentalization like trace-analysis tools because we can still instrumentalize the C 

code, static analysis techniques like pattern detection because we have access to all the 

source code, metrics analysis tools since we have access to some static and dynamic 

information, visualization tools since we have a lot of semantic information of the 



27 

 

system embedded in the code itself and code slicing techniques because we can modify 

the system removing code and execute it to test the output. 

 

3.2 Tools Tested 

 

As we said in the end of section 2.3.2, dynamic analysis tools are not very common in 

the software industry, but on the other hand, dynamic analysis tools are pretty common 

in the research. The little penetration that dynamic analysis tools have in the industry 

may be due to the difficulty of perform a dynamic analysis in such large systems. For 

example, tools based on scenario analysis may find problems in industrial-size software 

because it’s hard to create enough traces to cover the different use cases possible; trace 

visualization tools may be unusable due to the size of the traces in this case unless the 

tool allows some kind of summarizing of traces; etc. 

 

On the other hand, the huge interest in dynamic tools in the research field makes that 

these tools are far more studied and tested than static tools, thus the works about 

dynamic analysis should be more reliable. 

 

These two observations led us to think that if the problems derived from the size of the 

software can be addressed, the use of dynamic tools in industrial software could be very 

fruitful. The static tools actually present in the industry are too generic, thus the help 

they can give to the understanding is limited. Besides, the ability of dynamic tools to 

gather information about use cases could prove to be very useful, because it could help 

the programmers to address maintenance issues involved with the bugs reported by the 

users, improving the impression of the client towards the product.  

 

These particular observations led us to try our hypothesis using dynamic analysis tools, 

since they seem to have a potential to help in industrial software that has not been 



28 

 

exploited yet. If dynamic analysis tools were viable in real-size software, the need of 

porting the research on this field to the industry would arise. 

 

3.2.1 HITS + fe-Tree 

 

One of common approaches used to help the understanding of code, as stated in 

(Cornelissen, Zaidman, van Deursen, et al., 2009), is feature analysis (Antoniol & 

Guéhéneuc, 2005). This technique aims to identify subsets of code that are relevant for a 

certain functionality, which is done typically analyzing execution traces. The goal of this 

identification is to give the reviewer good starting points to start reading code, because if 

he knows where are implemented the functionalities he needs to understand, he will take 

less time reviewing the system because he can skip the useless code. 

 

In order to prove how features analysis works in a non-OO system we tested the HITS 

algorithm proposed in (Zaidman, Calders, Demeyer, & Paredaens, 2005), a technique 

originally designed to rank Internet sites. This algorithm works under the typical 

assumption of features analysis tools, which states that a good starting point to review 

the code will help to get an insight of the system behavior, making easier the 

understanding task. 

 

HITS counts the incoming and outgoing calls for each one of the code artifacts, and uses 

these values to define two variables: one represents the quality of the entity as an 

authority (depending on its incoming calls), and other represents the quality of the entity 

as a hub (depending on its outgoing calls). 

 

The authors assume that a high value of the relation outgoing/incoming calls in an entity 

means that the class’s main function is to delegate responsibilities, thus is coordinating 

the flow of the execution. On the other hand, a low value of outgoing/incoming calls 



29 

 

suggests that the artifact is being used by other artifacts as a utility (for example printf or 

System.in), and thus is not very important to understand the main system’s behavior. 

 

 

 
 

 

Figure 6: Formulas to calculate Hubiness and Authority 

These formulas show that the hubiness depends on the sum of the authorities of the 

node’s children, and the authority depends on the sum of the hubiness of the node’s 

parents. 

 

 

The hubiness (1) depends on the sum of the authorities of the child nodes, and the 

authority (2) depends on the sum of the hubiness of the father nodes. These values are 

iteratively updated and normalized until there is convergence. In the next figure, 2 and 3 

will be good authorities, and 4 and 5 will be good hubs. The authority of 2 will be bigger 

than 3, because they share 4 and 5 as fathers, but 1 is a better hub than 2 because it has 

more children. 

 

 



30 

 

 

Figure 7: Graph for HITS example 

In this graph we see a possible call stack of a program, where the function 1 calls the 

functions 2 and 4, function 2 calls function 3, and so on. 

 

In Table 1 we see an example of an application of the HITS algorithm on the graph from 

Figure 6. In a run of the HITS algorithm the hubiness (H) and authority (A) of all the 

nodes start with value 1, then the formulas (1) and (2) are applied over all the nodes, so 

after the first iteration the hubiness for all the nodes becomes the count of its children, 

and the authority the count of its parents. Applying (1) and (2) over these new values 

will create a clear difference between the nodes with highest H and the rest, the same 

with the nodes with highest A. in the iteration 3 we can see this difference widens up 

even more, showing clearly that the nodes 4 and 5 have the highest H, and that nodes 2 

and 3 have the highest A.  

 

If we interpret these results from the author’s view, the nodes 4 and 5 have a 

coordinating role in this system, because they are in charge of the main part of all the 

references, and this makes them good starting point to review the system and understand 

its flow. In the same line, we can see that the nodes 2 and 3 are the entities that perform 

most of the work in the system, since they focus the majority of the calls, making them 

not a good starting point for a newcomer programmer to review because they are likely 

to have too much implementation details that distract from the system design. 



31 

 

 

The output of HITS is a ranking of classes according to their hubiness, in which those in 

the highest positions have better references to authority classes and thus, are a better 

starting point to review code. In this example, the ranking generated by the algorithm 

according to the hubiness of these nodes will be nodes 4 and 5 sharing the first place, 

then node 1 as third place, node 2 as fourth and node 3 as fifth. 

 

Node A0 H0 A1 H1 A2 H2 A3 H3 

1 1 1 0 2 0 4 0 8 

2 1 1 3 1 6 3 16 5 

3 1 1 3 0 5 0 15 0 

4 1 1 1 2 2 6 4 11 

5 1 1 0 2 0 6 0 11 

 

Table 3: Example of the application of HITS algorithm 

This table shows the different values of hubiness (Hi) and authority (Ai) that the nodes if 

figure 7 will get in each iteration of HITS 

 

 

HITS was not necessarily intended to be used only in OO systems, since it has very 

weak language-related assumptions, i.e. it only assumes a system divided in classes, so 

the porting to other environments should be just as hard as finding an equivalent 

division. The problem arises with the validation of the results in new environments. 

Specifically, OO languages highlights domain information thanks to their classes 

notation (Wiedenbeck S., 1999), so it highly possible that the information collected by 

HITS is related with the domain structure of the system. This implies that the equivalent 

we may find in other environments could remark something different, and then if the 

quality of the recommendation made by HITS in the original case is related to the role 

the entity had in the problem domain, changing the paradigm will drop the performance 



32 

 

of the tool because the replacing entity selected may not have nothing to do with the 

problem domain. 

 

In our study case, the language doesn’t achieve any of the characteristics an OO 

language should have (Booch G., 1986), so we can’t say that the new entity selected will 

highlight domain information like the classes in OO. For this reason we believe that the 

success of HITS in this new environment will depend on the quality of the target 

system’s design and our ability to choose an entity able to describe the flow of the 

execution in the highest abstraction level possible. 

 

Since HITS was designed to work on systems divided in classes, we had to choose a new 

way to separate the software. Together with a domain expert, we decided to try two 

different ways: dividing the software in functions and dividing it in source files. We 

believe both partitions can work because our study case is designed such that every 

function/file has a specific main responsibility (just like a classes system). With this, the 

output of our modification will be a ranking of functions/files which will work the same 

way as the class ranking of HITS. 

 

Our alternative finally consisted on using the functions of the study case as the entities 

of the original algorithm, and the incoming/outgoing calls between two functions as the 

references between the entities that the algorithm needs. This way, we can calculate the 

hubiness/authority for each function the same way HITS does it in a class-based system, 

and the output of the algorithm will be a ranking of functions. 

 

Besides this partition, we divided the software using the source files as the entities, and 

the final hubiness/authority value of each file was calculated as the sum of those values 

for each function inside that file. The motive to do this is to extract all the information 

possible from the instrumentation. 

 



33 

 

Our implementation of HITS uses as an input a file created through instrumentation of 

the target code that lists all the entry and exit points of all the functions involved in 

certain execution. The file contains information about the name of the function, in which 

source file it is contained and if it is an incoming call or an outgoing call. Then we 

extract this information and create a tree to represent the execution flow, where each 

node represents a function and function B is child of function A if A calls B. To prevent 

cycles due to a single function being called for different other functions we create a new 

node in the tree that represents the new appearance of the function in the trace.  

 

When this tree is completed we traverse it counting all the incoming/outgoing calls for 

each function, so we have the values of the first iteration of the HITS algorithm (amount 

of children/fathers for each entity). With these values we iterate over all the functions 

updating their hubiness and authority according to the formulas in figure 5 and then 

normalizing these values by the highest found in the last iteration until there is 

convergence or a certain number of iterations are met.  

 

Once the calculations of the hubiness are done, for each source file we look at which 

functions are defined inside that file and then we use the sum of the hubiness of these 

functions as the hubiness of this file. With these values we proceed to create a 

spreadsheet that contains an ordered list of functions and their respective values of 

hubiness, authority, incoming calls, outgoing calls and Coupling Between Objects 

(CBO) that measures the references a class holds to other classes (incoming references 

per outgoing references) (Chidamber & Kemerer, 2002). We will compare the 

performance between these different measures for the values obtained from the files and 

the functions. 

 

Since HITS uses information about the execution trace to work and generates a ranking 

of functions, we developed a more complete tool based on prior research related with 

these two facts. In (Campos et al., 2009) two tools to understand the Gyroscan code 



34 

 

were proposed, a static analyzer and a dynamic analyzer. The dynamic analyzer 

implemented a tree visualization similar to the fe-Tree proposed in (Béron et al., 2007), 

which uses code instrumentation to isolate the entry and exit points of each function 

executed in a particular scenario. We used this tool to retrieve and show the information 

related to the execution of the program. 

 

 

Figure 8: Function list VS fe-Tree 

On the left we can see a common call stack, and on the right we see the same call stack 

ordered according to which function called which other function. 

 

As we see in Figure 8, representing a function stack call as a fe-Tree (right) is much 

clearer both in visualization and dependency than a simple list (left). For the analysis 

that was done by the algorithm and the end user is more useful to know the direct 

dependency between functions instead of the whole call stack. For this reason we use 

this model both in the final visualization of the tool and in the internal model used to 

analyze the trace. 

 



35 

 

On the other hand, (Antoniol & Guéhéneuc, 2005) proposes the idea of micro-

architecture, or simplified versions of the system’s entities, designed to show the 

programmer only the pieces or “slices” of the execution trace relevant for certain feature. 

We used the ranking of functions generated by HITS in order to determine which 

functions should be showed and which should be pruned from the fe-Tree. 

 

Our final tool uses in a first stage the trace information collected with code 

instrumentation to create and show the fe-Tree that represents the information and define 

the initial values of input/output calls of each function, needed for the HITS algorithm. 

After running HITS on these initial values, the resulting ranking is reported in 

spreadsheets to be analyzed for the programmer afterward, and also is used to assess 

which functions should be pruned from the visualization or not. Finally, the initial fe-

Tree visualization of the complete trace is pruned to show only the upper ranked 

functions, but preserving their dependency relations, i.e. if function A is pruned, all the 

children of A pass to be children of A’s father. With this, we get a new fe-Tree that is 

easier to analyze, both because it’s smaller than the original and because shows only the 

most relevant functions for the executed feature. 

 



36 

 

 

 

Figure 9: An example of the tool proposed by Campos 

On the left we see the complete fe-Tree of the selected execution trace, and on the right 

we see the resumed trace after pruning the less important functions. 

 

In figure 9 we see two stages of the tool proposed by (Campos et al., 2009). In the left 

side of the blue bar we see the main screen of the tool after loading an input file with 

193368 lines, i.e. an execution trace that involved 96684 function calls. In the right side 

we see the tool after applying the HITS algorithm over the trace. The ranking created by 

HITS is used then to select only the 80% most relevant and show it to the user, that as 

we can see consist of only of 23 function calls. This means that the functions involved in 

these 23 calls are in charge of the main flow of tis execution. 

 

 

 

 



37 

 

3.2.2 SORter 

 

Another common approach to PC is software visualization, which consists in the process 

of modeling software systems for comprehension of relevant features of the system 

(Price, Baecker, & Small, 1993).  

 

To analyze the performance of visualization tools, we evaluated in a first stage of this 

work the possibility of using Alma
2
 (Alma Two) (Oliveira N., 2010), a visualization tool 

meant for DSL, which works under the assumption that since in a DSL the problem and 

program domain are very close to each other, it’s vital for understanding that both 

domains can be mapped to the source code and visualized in sync. To achieve this, the 

tool displays an animation based on the semantic information contained in the language, 

along with the source code and the grammar’s derivation tree, in order to help the 

reviewer to relate the program and problem domain.  

 

The advantage of using this tool is the independence of the target language as long as it 

meets the basic requirements of a DSL. In figure 8 we can see a screenshot of Alma
2
. 

We can get a lot of useful information about the system through the “debugger” on the 

left side (a variable watcher and a line-to-line code viewer), and the problem it is trying 

to answer through the animation and the call stack on the right side. 

 

 



38 

 

 

 

Figure 10: Alma
2
 Views 

 

Although this tool’s main feature was its capacity to be used in any system despite the 

language, this same generality made the tool somehow “stiff”; for example, the 

animations could be just still images being moved around the window, the grammar’s 

derivation tree could be only zoomed in/out, etc. For this reason, we took the decision to 

develop our own visualization tool inspired in the philosophy behind Alma
2
 and based 

on two visualization approaches widely researched. 

 

The tool we developed is not an animation suite as Alma
2
, instead it is a visualizer more 

like Alma
2
’s derivation tree, but it preserves the feature of independency from the target 

language. Also it addresses the same problem that Alma
2
, it helps the programmer to 

relate the problem and program domain, showing him the interactions between objects 

that model the real-life problem. 

 

In detail, SORter is a dynamic-based visualization tool designed to help understanding 

the Gyroscan code or any other system meant to program sequences of actions (for 



39 

 

example the programming of a production line). The objective of this tool is to help the 

reviewer to understand the execution flow of the actions involved at a problem level, 

showing the information related to a particular execution using language and concepts 

from the problem domain. To achieve this, SORter displays the sequences of actions in a 

hierarchical view, helpful to understand dependency between actions, and also in a 

temporal view, helpful to understand the relations between the durations and the starting 

times of those actions. The big difference between SORter and any process modeling 

tool is that the latter does not take necessarily into account the starting/ending time or 

duration of each process.  

 

The tool’s input is a hierarchical outline, i.e. a text representation of a nested or 

hierarchical structure, in which the “nodes” represent the name of the action executed 

and the “leaves” represent the available information about the action named in those 

leaves’ parent. The idea behind the tree representation is to provide different levels of 

abstraction, i.e. the root represents the whole process, later nodes represent more 

detailed definitions of the actions involved, and the nodes in the second-last level 

represent the actions themselves. 

 



40 

 

 

 

Figure 11: Example of SORter input 

Figure 11 shows a fragment of the hierarchical outline that the Gyroscan produces after 

a scan is performed. 

 

After the input was read, SORter displays the hierarchical outline in a typical tree 

visualization, similar to the hierarchical graphs of Understand (Scientific Toolworks 

Inc., 2010), but with visual captions as suggested in (Shilling, Stasko, Graphics, & 

Center, 1992). In our implementation the colors of the nodes symbolize the different 

kinds of nodes that are present in the sequence, which can be user defined. When you 

right-click a node, a small window with the information of that node pops out.  

 



41 

 

 

 

Figure 12: SORter Views 

The gray window in the corner shows the timeline view of the tool, and in the 

background we can see the main tree view of the tool. 

 

Also SORter has a temporal view of the different levels of the tree, the children of a 

particular node and all the leaves of the tree, ordered by their starting time and where the 

size of the rectangles gives a reference of the duration of each action. This view is a 

modified version of the temporal view proposed in (Bohnet, Voigt, & Doellner, 2008). 

The original view showed in the x-axis the time of the execution and in the y-axis the 

functions being active in that moment of time. In our representation, the x-axis also 

shows the time of the execution, but instead of having a y-axis showing the hierarchical 

levels in our case, we choose to show a determined set of nodes at a time to make the 

visualization clearer. 

 



42 

 

 

 

Figure 13: SORter tree view for the example input 

This figure is the tree representation of the hierarchical outline of Figure 11. 

 

If we take the figure 8 as an input example, we can see that the information showed 

there has a SOR kernel object as a root, then a SOR cycle object as a child, and this 

cycle has a SOR tnt object and a SOR bbi object as children. Since these 4 objects are 

from SOR type, they will all have nodes with the same color. Also if we look at the leafs 

we can see that the SOR tnt comes first with a duration of 0 seconds, and then SOR bbi 

with a duration of 525 seconds, so in the temporal view SOR tnt will have a very little 

space in the diagram and SOR bbi will use most of the room. 

 

 

 

 

 



43 

 

 

 

Figure 14: SORter temporal view for the input example 

This figure shows a representation in scale of the time span the SOR bbi and SOR tnt 

have inside the SOR cycle prepulse in Figure 11. 

 

The information that SORter uses comes directly from a log file generated by the MRI 

scanner when an exam is taken. This data is also used by an add-on of the system called 

Sequence Development Mode, which shows the information in plain text, unlike SORter 

that shows it in a graphical way. We will use this add-on as a reference when evaluating 

the performance of SORter. 

 

 

 

 



44 

 

4. EXPERIMENTS AND RESULTS 

 

In this chapter we are going to explain the experimental design to test our two tools, and 

then we will describe and analyze the results of each one of them. 

 

4.1 Experiment Design 

 

In section 1.3 we defined the hypothesis of our work, which states that PC tools 

developed for OO systems can’t be directly applied to non-OO systems due to the 

paradigm change, but the research and assumptions that support those tools can be used 

to create new tools that are less dependent on the paradigm of the target language. In 

order to prove our hypothesis we had our tools evaluated by an expert sequence 

programmer, who happens to be also an actual end user of the Gyroscan system. The 

objective of the evaluations was to validate the usability and helpfulness of the tool, and 

then to compare these results with those that the tools obtained in their respective 

original researches. 

 

The first task is the evaluation of an adaptation of the HITS algorithm proposed in 

(Zaidman et al., 2005), the HITS + fe-Tree tool. For this we will use a similar evaluation 

to the one performed in original work, which consisted in a comparison between the 

most important entities’ ranking generated by HITS and a most important entities’ 

ranking according to the documentation of the study case.  

 

As we stated in section 3.2.1, the algorithm’s ranking is created by ordering the entities 

by their hubiness, but we also looked at a few different static measures in order to 

compare HITS accuracy with these different measure’s accuracy. On the other hand, and 

since the documentation of Gyroscan is too broad to help to create the desired entities 

ranking, an expert’s ranking was created by ordering the entities by a score that the 



45 

 

expert himself assigned to each entity: from 0, meaning the entity doesn’t need to be 

read to understand this particular execution, to 4, meaning the entity is highly important 

to understand the execution of the system. By comparing both rankings we can measure 

the accuracy the algorithm had in this new environment, and thus we can tell if the 

paradigm shift had any effect on the performance of the tool. 

 

In order to generate the different rankings, all the accessible code was instrumentalized 

with output sentences to know when the control flow entered or exited a determined 

function or file. With this we got the input that HITS needs, a list with all the function 

calls, that allows us to create the fe-tree and let us count the incoming and outgoing 

references that we will use later to calculate the different measures. All of these 

measures can be calculated directly with the incoming and/or outgoing references except 

the hubiness and authority that, as we saw in 3.2.1, need to iteratively update the values 

until there is convergence. As in (Zaidman et al., 2005), we used a threshold of 0,5 to 

determine the algorithm has converged. 

 

The second task is the evaluation of SORter, our visualization tool. For this, we will 

make a controlled experiment similar to the one done in (Cornelissen, Zaidman, Van 

Rompaey, & van Deursen, 2009). In our experiment, two groups of engineering students 

will answer a questionnaire, where their understanding of the structure of a resonance 

sequence was tested: one group will have the help of SORter, and the other the help of 

Sequence Development Mode (SeqDev). Before the tests were performed, all of the 

students had a brief training in the use of their respective tool. With this experiment we 

want to see if there are any differences, either in correctness or speed of the answers, 

between the users of SORter and the users of SeqDev. 

 

The study group is composed by six electric engineering students. They were part of a 

sequence programming course, where they learnt the basics of programming the MRI 

scanner, which assures a balanced level of programming skills in all of them. We are 



46 

 

aware that 6 samples are not enough to be statistically significant, but these results can 

give us an insight of how different kinds of tools can have a different impact on the user 

performance. 

 

The tests were held individually to prevent the interaction between participants. There 

will not be time limit to reduce the pressure, but the times of each task were measured. 

To have an accurate measure of the time, once a task is completed, it will be impossible 

to re-take it later on. All the questions are of open answer, and all have a score that 

ranges from 0 to 4 depending on the completeness, where 0 is the lowest score and 4 is 

the highest. 

 

The test was composed of an introduction where the motivation and the evaluation were 

explained, 3 questions that evaluated different abilities and a last question to gather the 

impressions of the tool used. All of the questions were based on sequences examples 

chosen by the domain expert according to each task. 

 

The first task was to show a general understanding of the basic structure of a sequence 

by the explanation of the parts of an example. The second task was a comparison 

between two examples, meant to test the detailed understanding of the parts of a 

prepulse. The third task consisted in identifying inconsistencies between the parameters 

used in a prepulse and the output of the system, meant for testing the ability to find 

errors in an execution. The fourth question was simply to recover the impressions of the 

user, to let us to determine if the tool he used was of real help. 

 

Regarding the evaluation of the tests, the domain expert scored each question according 

to the scale mentioned in earlier in this same chapter. The impressions collected in the 

fourth question helped to get a more deep insight of the real pros and cons of the tools. 

 



47 

 

4.2 Experiment’s Results 

 

The main result of this thesis is a field study of the portability of PC tools and 

approaches from OO environments to non-OO environments. This study analyzes the 

performance of the tools/approaches in the new environment and compares it with the 

performance in the original environment. This aims to shorten the gap between the 

research and the industry of PC, showing the relevance of researching for the industry 

necessities and not only for the academic value. 

 

Another product of this work is the development of two PC tools that will help the 

research and development of new resonance sequences in the Biomedical Imaging 

Center (CIB) of the Pontificia Universidad Catolica de Chile. 

 

4.2.1 HITS + fe-Tree 

 

The HITS algorithm was applied to the execution of a typical heart scan, which passed 

by 6220 functions spread in 202 source files. We used as termination criteria for the 

algorithm the convergence of the values after being normalized, with a threshold of 0,5. 

As in (Zaidman et al., 2005), we looked also at some other measures in order to validate 

the superiority of dynamic measures over the others. Besides hubiness and authority, for 

each function and file we determined their incoming calls amount (fan-in), outgoing 

calls amount (fan-out), and coupling between objects (CBO) (Chidamber & Kemerer, 

2002). All these measures represent good examples of static and dynamic measures. 

 

In a first stage, the expert determined that a ranking of functions will be of little or no 

help to a sequence programmer, due to the big amount of functions called and the fact 

that in this system several functions can be called and not realize any real job (just ask a 

condition that if is not meet, the function exits immediately). This led us to work only 



48 

 

with the files ranking that, according to the expert, could be very useful to an amateur 

sequence programmer, since the files involved in a typical maintenance task are very 

few. 

 

The files ranking the expert created had less than 30 values different from zero, i.e. less 

than 30 files that are worth reading on a comprehension task. Although this shows the 

system is well enough designed, this fact prevents us from using a classifier to find a 

combination of measures (CBO, hubiness, etc.) that could explain the expert’s ranking 

(no classifier can be trained with less than 30 values). With this in mind, we will make 

the analysis focusing on validate if the hubiness matches the expert’s ranking better than 

all the other measures, as in (Zaidman et al., 2005). 

 

4.2.2 SORter 

 

The usability test ran on SORter was designed so the subjects had to use similar skills to 

those needed in a typical MRI programming task, as in the experiment done in 

(Cornelissen, Zaidman, Van Rompaey, et al., 2009), but due to that we had very few 

study subjects available, the amount of samples was smaller. The test consisted in a 

questionnaire with 4 questions. The first one aimed to measure the general MRI 

understanding of the participants, the second one intended to measure their real 

knowledge about the meaning of the different prepulses involved in a typical exam, the 

third question stressed their abilities to find semantic errors in the output and the fourth 

question was intended to collect their impressions of the tool they used. 

 

Six students took the test, 3 with the help of SORter and 3 with the help of SeqDev, all 

of them in the same computer to discard any noise in the time measured due to computer 

performance issues. The time of each task was taken with a chronometer and a brief 

description of the test was given by the examiner before starting. As we stated in 4.1, the 



49 

 

scoring of each answer depended from the completeness of it, specifically of the 

student’s ability to recognize and describe the function of each prepulse present in the 

sequence. 

4.3 Data Analysis 

4.3.1 HITS + fe-Tree 

 

From the 202 files reviewed both by the algorithm and the expert, just 21 proven to be 

worth reading by the later, so in order to evaluate HITS’ accuracy we compared these 21 

files with the 30 higher-ranked files by each one of the measures.  



50 

 

 

 

 

 

 

 

 

 

 

 

Fan-in Fan-out Authority 

mmiffe__mxg.c(1) mmiffe__mxg.c(1) mmiffe__mxg.c(1) 

mmirnav__mxg.c(3) mpidef__g.c(2) mmirfe__mxg.c(17) 

mmirfe__mxg.c(17) mpimn__g.c mpidef_comb__g.c(6) 

mmipda__mxg.c mmipr__mxg.c mpigeo__g.c 

mpiffe_sq__g.c(4) mmirnav__mxg.c(3) mpicsc__g.c 

mmicard__mxg.c(8) mpicoil__g.c mpiffe__g.c(5) 

mpigeo__g.c mpiffe_sq__g.c(4) mpicard__g.c(12) 

mpidef_comb__g.c(6) mpipr__g.c mpiacq__g.c(11) 

mmitrack__mxg.c mpigeo__g.c mpgcoil__g.c 

mpiffe__g.c(5) mmppo__mxg.c mmirnav__mxg.c(3) 

mpicsc__g.c mpaldm__g.c mpirfe__g.c 

mpicard__g.c(12) mpima0__g.c mpidyn__g.c 

mmipr__mxg.c mpiffe__g.c(5) mpidiff__g.c 

mpiacq__g.c(11) mpgcoil__g.c mpspydec_val__g.c 

mpidef__g.c(2) mpirc__g.c mpiproc__g.c 

mpicoil__g.c mptspk__g.c mpicoil__g.c 

mpirfe__g.c mpirest__g.c(15) mpa_legacy__g.c 

mpgcoil__g.c mpirnav__g.c(10) mpitfe__g.c(7) 

mpidiff__g.c mmimadec__mxg.c mpirnav__g.c(10) 

mpidyn__g.c mmpf0__mxg.c mpscoil__g.c 

mpspydec_val__g.c mpidef_comb__g.c(6) mpitfepp__g.c 

mpiproc__g.c mpiusegeom__g.c mpaldm__g.c 

mpirest__g.c(15) mpiacq__g.c(11) mpitag__g.c 

mmg__mxg.c mpa_legacy__g.c mpiresp__g.c 

mpirnav__g.c(10) mmpas__mxg.c mpirest__g.c(15) 

mpg2dp__g.c mpimp__g.c mpispir__g.c(13) 

mpitfe__g.c(7) mpghw__g.c mpipc__g.c 

mpiusegeom__g.c mpidef_vol__g.c(16) mpilolo__g.c 

mpispir__g.c(13) mpicard__g.c(12) mpscrc__g.c 

mpipr__g.c mpispir__g.c(13) mpa__g.c 



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 - Thirty top ranked files and expert's 21 recommended files. 

Here we see the different rankings that the different measures produced compared 

against the expert’s opinion. 

 

In the previous table are listed the highest ranked files by the different measures along 

with the expert’s 21 recommended files. The colors of the cells are just a visual help that 

supports the numbers between parentheses, which represent the position of the file in the 

Hubiness CBO Expert's score 

mmiffe__mxg.c(1) mmiffe__mxg.c(1) mmiffe__mxg.c 

mpgcoil__g.c mpidef__g.c(2) mpidef__g.c 

mpicoil__g.c mpimn__g.c mmirnav__mxg.c 

mptspk__g.c mmipr__mxg.c mpiffe_sq__g.c 

mpidef__g.c(2) mmirnav__mxg.c(3) mpiffe__g.c 

mpaldm__g.c mpicoil__g.c mpidef_comb__g.c 

mpa_legacy__g.c mpiffe_sq__g.c(4) mpitfe__g.c 

mpatable__g.c mpipr__g.c mmicard__mxg.c 

mpidef_comb__g.c(6) mpigeo__g.c mpidef_enc__g.c 

mpiffe_sq__g.c(4) mmppo__mxg.c mpirnav__g.c 

mpa__g.c mpima0__g.c mpiacq__g.c 

mpitfe__g.c(7) mpgcoil__g.c mpicard__g.c 

mpitag__g.c mpiffe__g.c(5) mpispir__g.c 

mpiacq__g.c(11) mpaldm__g.c mpit2prep__g.c 

mpiproc__g.c mpirc__g.c mpirest__g.c 

mpidiff__g.c mptspk__g.c mpidef_vol__g.c 

mpidyn__g.c mpirest__g.c(15) mmirfe__mxg.c 

mpiffe__g.c(5) mpirnav__g.c(10) mpidef_lord__g.c 

mpirc__g.c mmimadec__mxg.c mpi2dssp__g.c 

mmipr__mxg.c mmpf0__mxg.c mmiia__mxg.c 

mmirnav__mxg.c(3) mpidef_comb__g.c(6) mmirest__mxg.c 

mpimn__g.c mpiusegeom__g.c  

mpirnav__g.c(10) mpiacq__g.c(11)  

mpima0__g.c mpimp__g.c  

mpaexec__g.c mmpas__mxg.c  

mpimp__g.c mpghw__g.c  

mpicard__g.c(12) mpicard__g.c(12)  

mpiresp__g.c mpidef_vol__g.c(16)  

mpimtc__g.c mpispir__g.c(13)  

mpicsc__g.c mpidef_grad__g.c  



52 

 

expert’s list. These colors are meant to aid finding the expert list’s files in the other 

rankings, where greener colors are for the highest ranked and redder are for the lowest 

ranked. 

 

The 5 measures ranked as first priority one of the two most important files according to 

the expert, but none of them were able to find all the 21 files. CBO missed 9 files, 

hubiness missed 11, authority missed 10, fan-out missed 9 and fan-in missed 7. There 

were 6 files that weren’t found by any measure, corresponding to the ninth, fourteenth 

and the last 4 in the expert’s ranking, with a priority of 3 to the ninth, 2 to the fourteenth 

and 1 to the rest according to the 0 to 4 scale used to rank the files. 

 

The expert claimed that the first ranked file by all the measures is a “must read” if you 

are trying to understand the heart scan we used to generate the data, so we can expect 

that the 5 measures are giving useful information. Of the missing files from the experts 

list, 4 are the last files from the list and the other 2 are rather near the half of the list, so 

we can say that the different measures prioritized the higher ranked files. 

 

Speaking in terms of false positives and false negatives, the hubiness was actually the 

worst measure, with 52% false negatives and 66% false positives. The best measure was 

the fan-in amount with 33% false negatives and 53% false positives, followed by the 

CBO with 42% false negatives and 60% false positives. In (Zaidman et al., 2005), the 

hubiness had 10% false negatives and 40% false positives, against 50% false negatives 

and 60% false positives of the CBO. 

 

One of the issues involved in the difference in accuracy of the hubiness between this 

work and (Zaidman et al., 2005) may be the subjectivity of the expert’s opinion against 

the objectivity of the documentation used in the original work of HITS. We must 

remember that for this work we hadn’t the help of neither one of the developers of the 



53 

 

system nor the official documentation, but we had the help of an expert researcher 

instead. His opinion may differ from the opinion of the original designers. 

 

Another issue involved may be the definition of “importance” used by the expert. He 

was told that the algorithm will try to find the most useful-to-read files, and he was 

asked to do the same. The difference may reside in that the algorithm assumes a file is 

worth reading if it is in charge of controlling the flow of the execution, but the expert 

may think that the files worth reading aren’t from that kind. 

 

As in (Zaidman et al., 2005), the low percentage of false positive may be because those 

files included in the ranking by the algorithm and not present on the expert’s list may 

still be important to read to someone different that the expert. A similar explanation can 

be argued for the false negatives. If we think that we are validating our results against a 

probably subjective opinion, then the fact that the files not present on the algorithm’s list 

may not be so important to read to all the programmers is a possibility. 

 

Considering all the above, we can say that the hubiness was affected by the paradigm 

shift, and thus had a poorer performance on this new environment. The CBO had a 

similar performance in both environments, and the fan-in, a very simple dynamic 

measure, had a good performance in this non-OO environment.  

 

Independently of the possible subjectivity issues, the hubiness had a poorer performance 

compared to the CBO and the fan-in as we can see. This may be due to the particular 

design of the validations involved in a scanner task. In a typical execution, the system 

will call several functions where, if a condition is not meet, the function will exit 

immediately. This alternative to the more intuitive implementation, where the condition 

must be checked before calling the function to save time and resources, may be adding 

noise to the measures, especially to hubiness. Taking into account that the hubiness 

depends both on the fan-in and the fan-out, we can see that some noise may be generated 



54 

 

by this design decision, that is adding incoming calls to several functions that aren’t 

making any real job at all and outgoing calls that are landing on useless functions, 

making the hubiness of some functions and authority of some others higher than it 

should. 

 

The CBO had a better performance although it also depends on the fan-in and fan-out. 

This may be due to that the dependence on these measures is weaker on the CBO than in 

the hubiness, because the hubiness “transfers” the importance of a function to those 

related to it, spreading any possible noise, but the CBO just uses the fan-in and fan-out 

“locally”, thus the noise is somehow controlled. Something similar may happen when 

we look just at the fan-in. Even if some functions are called without being “worthy” 

enough, the functions that are important will be also called, so the ranking we create will 

have both important and not-so-important functions. 

 

The distribution of the files found by each of the measures is very interesting. In general 

terms, the 5 measures placed the files of the expert’s list in a very similar order to that 

ranking, being fan-out and CBO the most accurate measures with 25% of expert’s files 

scrambled each one, followed by hubiness with a 30%. (a file is scrambled when it is 

placed higher than a file with a greater expert’s score). This shows that CBO, fan-out 

and hubiness are somehow “in touch” with the expert’s ranking, i.e. these 3 measures 

prioritize the expert’s files in a very similar way. Since these 3 measures are based on 

incoming and/or outgoing calls, we can say this heuristic is pretty good if we want to 

order the relevance of some software artifacts, independently of the paradigm involved. 

 

Summarizing, we can say that the hubiness behaved worse than in the original research 

with a difference of 40% in false negatives and 20% in false positives, and also had the 

poorest performance among all the measures used. 



55 

 

4.3.2 SORter 

 

The time the students spent doing the test ranged between 27:54 minutes to 54:58 

minutes, with a mean of 39:54 minutes, the lowest time was from a student using 

SORter and the highest from a student using SeqDev, and the average time of the entire 

test was 38:06 for SORter users and 41:42 for SeqDev users. This difference of almost 4 

minutes represents approximately 1/3 of the time spent in each question, which means 

that SORter users were 10% faster than SeqDev users to solve the test.  

 

Speaking about the scores, the results varied from 7 points to 10 points, with a mean of 

8,58. The average score from SORter users was 8,83 points and 8,33 for SeqDev users. 

It is clear that this difference is not significant enough, but this happened for reasons that 

we will explain later on. 

 

Although the difference in time and score may seem too narrow, the presence of SORter 

had an impact on the performance of the students, helping them to answer the tasks 

faster and better (in average) than with the help of the other tool. This tells us that our 

hypothesis may be in the right path, which states that a PC research with good results in 

an OO context, in this case visualization of execution traces similar to (Scientific 

Toolworks Inc., 2010) or (University of British Columbia, 2003), can be used as the 

guidelines to develop a non-OO PC tool that will show also good results in a new 

environment. 

 

 

 

 

 

 



56 

 

Tool  Time    Score   

Used Task 1 Task 2 Task 3 Total Task 1 Task 2 Task 3 Total 

 12:40 18:18 15:44 46:42 2 4 1 7 

SORter 17:27 06:50 03:37 27:54 2 4 4 10 

 14:33 12:52 12:16 39:41 2 4 3.5 9.5 

 09:05 15:57 11:06 36:08 2 2 3.5 7.5 

SeqDev 10:38 15:42 07:41 34:01 2 2 3.5 7.5 

 20:52 16:25 17:41 54:58 3 4 3 10 

 

Table 5 - Times and Scores from Usability Test 

This table shows the times and the scores the different students got in the usability test 

performed for SORter. 

 

In Table 5, each row represents a student, the green numbers represent the best measure 

(time or score), the yellow the second best and the red the worst measure. Even when 

SeqDev users had several of the second to last times, the fastest SORter user had a great 

difference with the rest of the participants, which led to a lower average time. We also 

can see that two of the lowest times are from the same student, as well as two of the 

highest times. During the test, the SORter user with the lowest times manifested that the 

information he needed to solve the tasks was already in the SORter main view, thus he 

didn’t needed any exploration of the parameters involved in the execution. On the other 

hand, the SeqDev student with the highest times commented that he had problems 

analyzing all the nodes involved in the execution in order to find what he was looking 

for.  

 

When the domain expert evaluated the test, he noticed that the first SORter user did not 

understand completely the tasks he was asked for, which could explain his poor 

performance both in time and score. Despite this, we can see that the other SORter users 

had a superior performance, both in time and score, than the SeqDev users. 

 

An interesting outcome can be seen in the second task, which involved comparison 

between executions: the fastest, second to fastest and slowest time were from SORter 



57 

 

users. Also, we can see that all the SORter users got perfect score and the SeqDev users 

had a poorer performance, unlike the other two tasks where the scores were more even. 

The two fastest users opened two instances of the tool, while the slowest one didn’t. This 

shows that being able to have both executions’ information at the same time greatly 

improves the performance when making execution comparisons, action that is 

impossible to do with SeqDev. The good score performance of SORter users can be due 

to the easiness of analyzing the entire sequence, which helps you to not miss any detail, 

thus making the analysis more accurate, unlike SeqDev, which only lets you browse the 

information by parts, making the analysis of the entire execution more tedious.  

 

Despite the fact that SeqDev users were 1 minute faster in average than SORter users in 

the first task, all of the participants got a rather low score on this question. This may be 

because it was the first task they had to answer, so all of them had problems 

understanding what we were asking them and problems using the tool, regardless they 

all received an introduction to the use of the tool in a previous session. This reaffirms the 

fact that the user of any tool must have a complete understanding of how to use it in 

order to exploit its features and actually improve his performance. 

 

The third question, that was about finding the errors in a sequence, had a good 

performance for all the students, everyone over 3 points, except for the first SORter user 

who got just 1 point. This also is explained by the observation of the expert, who stated 

that this student had problems understanding the tasks. The techniques the other students 

used to answer this task varied between the tools. SORter users based their answers 

more on the structural incongruences of the sequence, and the SeqDev users based their 

answers in the parameters set in the sequence simulator program and not in information 

presented in SeqDev itself. As a result, both parties had a good performance, but SORter 

users where 1:30 minutes faster in average than SeqDev users in this question. This 

shows that having access to the complete structure of the execution at the same time 

helps when you are trying to find semantic errors in an execution, because it lets you to 



58 

 

analyze the “big picture”, finding wrong patterns in the call tree easier than analyzing 

the execution by segments. 

 

Although both tools had exactly the same information, SORter users could browse it 

faster, allowing them to either answer faster or to spend their time preparing a better 

answer and not searching for information. This help lead to SORter users with better 

times or higher scores, depending on the personal abilities of the participants. 

  

 

 

 



59 

 

5. CONCLUSIONS 

 

In this final chapter we will review the results of the experiments, we will analyze their 

implications and finally we are going to discuss some venues to future work. 

 

5.1 Results 

 

As we detailed in section 4.3.1, all the measures we used to rank files in the HITS 

algorithm ranked as first priority one of the two most important files according to the 

expert, but none of them were able to find all the 21 files. CBO missed 9 files, hubiness 

missed 11, authority missed 10, fan-out missed 9 and fan-in missed 7. There were 6 files 

that weren’t found by any measure, corresponding to the ninth, fourteenth and the last 4 

in the expert’s ranking, with a priority of 3 to the ninth, 2 to the fourteenth and 1 to the 

rest according to the 0 to 4 scale used to rank the files. 

 

Reminding the results of SORter reviewed in section 4.3.2, the time the students spent 

doing the test ranged between 27:54 minutes to 54:58 minutes, with a mean of 39:54 

minutes, the lowest time was from a student using SORter and the highest from a student 

using SeqDev, and the average time of the entire test was 38:06 for SORter users and 

41:42 for SeqDev users. This difference of almost 4 minutes represents approximately 

1/3 of the time spent in each question, which means that SORter users were 10% faster 

than SeqDev users to solve the test.  

 

Speaking about the scores, the results varied from 7 points from a SORter user to 10 

points from a SORter user and a SeqDev user, with a mean of 8,58. The average score 

from SORter users was 8,83 points and 8,33 for SeqDev users. 

 



60 

 

5.2 Implications 

 

After analyzing the results of the experiments we can say that a tool designed to help in 

the understanding of OO systems is likely to have a poorer performance when it’s tested 

in another environment, thus it can’t be directly applied on non-OO systems. This can be 

explained because the key information used by the tool was highlighted in the original 

language but not in the new environment’s notation (as happened in our case with the 

classes structure and the hubiness analysis), so the quality of the recommendations made 

by the tool in the new environment will drop compared with its original study, because 

the information the tool needed was harder to get. 

 

However, we must admit that this is not a rule, there may be cases when porting a tool 

will not drop its performance but, as previous research and our findings suggests, in 

most of the cases when the origin and final language remarks different kinds of 

information, the port of a tool will not succeed completely. 

 

Despite the above, we can affirm that the research behind PC tools meant for OO 

systems can be successfully used as a basis to develop PC tools that can get good results 

in any environment. When a tool doesn’t implies any specific characteristic of the target 

language, and instead it focuses in showing platform-independent information of the 

system in a way easy to analyze by the programmer, we can evade the notation highlight 

problem because we are not analyzing the code itself, but the semantic of it. If a 

researcher wants to port an approach from one paradigm to another, he must focus in 

adapting the objective of the tool rather than the mechanism to get there, because this 

mechanism is what can depend on the highlighted characteristics of the language. This 

conclusion is supported by the results we got with the call stack wrapped with the 

domain knowledge in SORter, or the results with the patterns architecture proposed in 

(Cruz, Henriques, & Pereira, 2007). 

 



61 

 

While it’s true that Program Comprehension tools may benefit from the characteristics 

of a particular language or paradigm, they should not be fully dependent on the chosen 

environment because, as we just exposed, this can lead to the development of tools that 

just can show the researcher’s theory in the original environment but that aren’t scalable, 

let alone usable as an end-user product.  

 

Another conclusion that can be drawn thanks to the experiments results is that PC tools 

can’t be too generic, because they will help little or nothing to the comprehension task. 

This is due to the lack of information, both as input to the involved algorithms and as 

output to the user. If the tool is too generic, we will be missing the opportunity to use 

any information contained in the language itself or in the problem’s domain as input; 

also we will not know what kind of information is relevant to the code reviewer as an 

output, besides some generic assumptions made based on metrics from the code or the 

execution trace. 

 

From the results obtained with HITS we can say that any approach based on metrics 

doesn’t only depends on the target paradigm or language, but also depends on the quality 

of the software’s design. Even when the performance of our port was rather 

encouraging, the ranking generated was not as accurate as the results of (Zaidman et al., 

2005). This was in part due to the change of paradigm, that meant a change in the 

general structure of the system and the method calls, but also the design of the system 

had a great impact. The responsibilities in our study case are scattered amongst several 

files, which enhances unnecessarily the function calls count, adding noise to the metrics 

used by HITS. 

 

From the usability test ran on SORter we can say that a graphic visualizer will always be 

an improvement to any understanding task in general, because it allows the reviewer to 

browse large amounts of information faster and easier than, for example, plain text like 

documentation or source code.  



62 

 

 

Another important conclusion is that a previous training is necessary to use any PC tool, 

because we will only see an improvement in the performance of the programmers, let it 

be in time or accuracy, when they are familiarized and feel comfortable with the tool at 

hand. 

 

5.3 Future Work  

 

The field study done in the context of this work shows that there is a necessity of 

moving the research efforts towards other paradigms besides OO. Following this idea, a 

new venue to research could be a study to determine in a first stage the most popular 

programming language in the industry and/or the most common language already 

present in the industry, for example languages of legacy software. With this information, 

the next step is to either discuss the portability of common PC approaches to these 

languages or to define frameworks that allow the design of tools regardless the language 

involved. A good example of the latter is the patterns framework proposed for the tool 

Alma (Cruz et al., 2007), which defines seven statements or “patterns” that any 

programming language should have and designs a tool based only on that, which makes 

it independent of the target language. 

 

Regarding the tools developed in the context of this work, they can be improved both in 

interface and model representation, given that they were designed as concept proofs and 

not complete products. The different features of HITS + fe-Tree can be integrated in a 

better way, since as it is now it still looks like a mash-up of tools and not a single tool. 

On the other hand, an API can be developed for SORter in order to allow programmers 

to easily use this tool in their problem’s domain. 

 



63 

 

Regarding the experimental design, our hypothesis can be target of further validation 

using different study cases, in which more documentation, support and programmers are 

available. With these conditions, the experiment can be conducted with larger groups, so 

the results could be statistically relevant. 

 



64 

 

REFERENCES 

 

12th Course of the International Zurich Magnetic Resonance Education Center. (2001, 

February 12). Gyroscan-NT Pulse Programming. 

Aho, Antoniol, & Guéhéneuc. (2008). CERBERUS: Tracing Requirements to Source 

Code Using Information Retrieval, Dynamic Analysis, and Program Analysis. Presented 

at the The 16th IEEE International Conference on Program Comprehension. 

Antoniol, G., & Guéhéneuc, Y. G. (2005). Feature identification: a novel approach and a 

case study. 2005. ICSM’05. Proceedings of the 21st IEEE International Conference on 

Software Maintenance (págs. 357–366). 

Béron, M., Henriques, P., Pereira, M. J., & Uzal, R. (2007). Static and dynamic 

strategies to understand C programs by code annotation. 

Bohnet, J., Voigt, S., & Doellner, J. (2008). Locating and Understanding Features of 

Complex Software Systems by Synchronizing Time-, Collaboration- and Code-Focused 

Views on Execution Traces. 2008 The 16th IEEE International Conference on Program 

Comprehension (page 268-271). Presented at the 2008 16th IEEE International 

Conference on Program Comprehension, Amsterdam, The Netherlands. 

doi:10.1109/ICPC.2008.21 

Booch G. (1986). Object Oriented Development. IEEE TRANSACTIONS ON 

SOFTWARE ENGINEERING. 

Brooke R. (1975). A model of human cognitive behavior in writing code for computer 

programs. Proceedings of the 4th international joint conference on Artificial intelligence 

(Vol. 1, págs. 878-884). Presented at the International Joint Conference On Artificial 

Intelligence, Morgan Kaufmann Publishers Inc. 

Campos, Cortazar, Eterovic, Tejos, & Irarrazaval. (2009). Visualization Tools for 

Understanding a Complex Code from a Real Application. 



65 

 

Carey, M. M., & Gannod, G. C. (2007). Recovering Concepts from Source Code with 

Automated Concept Identification. 15th IEEE International Conference on Program 

Comprehension, 2007. ICPC’07 (págs. 27–36). 

Chidamber, S. R., & Kemerer, C. F. (2002). A metrics suite for object oriented design. 

Software Engineering, IEEE Transactions on, 20(6), 476–493. 

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., & Koschke, R. (2009). A 

systematic survey of program comprehension through dynamic analysis. IEEE 

Transactions on Software Engineering (TSE). 

Cornelissen, B., Zaidman, A., Van Rompaey, B., & van Deursen, A. (2009). Trace 

visualization for program comprehension: A controlled experiment. Proceedings of the 

17th International Conference on Program Comprehension (págs. 100–109). 

Cruz, D., Henriques, P., & Pereira, M. J. (2007). Constructing program animations using 

a pattern-based approach. 

GrammaTech. (2007). CodeSurfer. August 11, 2010, 

http://www.grammatech.com/products/codesurfer/overview.html 

Green T.G.R., G. D. J. (1984). Comprehension and recall of miniature programs. 

International Journal of Man-Machine Studies, 21(1), 31-48. 

Intland Software. (1999). CodeBeamer. August 11, 2010, 

http://www.intland.com/products/cb/overview.html 

Lehrstuhl für Softwaretechnik - Universität des Saarlandes. (2010). Delta Debugging. 

Lehrstuhl für Softwaretechnik - Universität des Saarlandes. August 12, 2010, 

http://www.st.cs.uni-saarland.de/dd/ 

Meyer. (2004). Object Oriented Software Construction (2o ed.). Prentice Hall. 

Oliveira N. (2010). Improving Program Comprehension Tools for Domain Specific 

Languages. Braga, Portugal: University of Minho, Informatics Department. 

Price, B. A., Baecker, R., & Small, I. S. (1993). A principled taxonomy of software 

visualization. Journal of Visual Languages and Computing, 4(3), 211–266. 



66 

 

infotectonica sa. (2006). Juliet: Instant Code Comprehension for Java Programmers. 

infotectonica - Intelligence Augmentation For Java Programmers. Recuperado Agosto 

13, 2010, a partir de http://infotectonica.com/juliet/ 

Scientific Toolworks Inc. (2010). Understand - Source Code Analysis & Metrics. 

SciTools - Maintain your Software. Recuperado Agosto 11, 2010, a partir de 

http://www.scitools.com/index.php 

Shilling, J. J., Stasko, J. T., Graphics, V., & Center, U. (1992). Using animation to 

design, document and trace object-oriented systems. Georgia Institue of Technology, 

Technical Report GIT-GVU-92, 12. 

Storey, Wong, & Müller. (2000). How do program understanding tools affect how 

programmers understand programs? Science of Computer Programming, 36. 

The Eclipse Foundation. (2001). Eclipse. January 20, 2011,  http://www.eclipse.org/ 

The Unravel Project. (1999). The Unravel Program Slicing Tool. The Unravel Project. 

August 12, 2010, http://www.itl.nist.gov/div897/sqg/unravel/unravel.html 

University of British Columbia, O., Inc. (2003). AVID - Component-based Visualization 

of the Execution of a Java System. Canadian Consortium for Software Engineering 

Research (CSER). August 13, 2010, http://people.cs.ubc.ca/~murphy/AVID/ 

VisiComp Inc. (2004). RetroVue - The Total Recall Debugger. VisiComp, Inc. August 

12, 2010, http://www.visicomp.com/index.html 

Weiser M. (1981). Program Slicing. Proceedings of the 5th international conference on 

Software engineering (págs. 439-449). Presented at the International Conference on 

Software Engineering, San Diego, California, USA: IEEE Press. 

Wiedenbeck S. (1999). Novice comprehension of small programs written in the 

procedural and object-oriented styles. Academic Press. 

Zaidman, A., Calders, T., Demeyer, S., & Paredaens, J. (2005). Applying webmining 

techniques to execution traces to support the program comprehension process. Ninth 

European Conference on Software Maintenance and Reengineering, 2005. CSMR 2005. 

(págs. 134–142). 

Zeller, A. (2000). From Automated Testing to Automated Debugging. Uni Passau, Feb. 



67 

 

APPENDIX 

A) SORter Manual 

 

SORter is a visualization tool 

designed to understand 

systems that implements 

sequence of actions. The input 

of the tool is a text file that 

represents the different actions 

the system does to achieve its 

goal. The input file can either 

be written by the user himself 

or you can use I/O instructions 

in the key sections of the code 

to create the text file. 

 

To analyze an execution open the input file through the tool’s menu (File→Open) 

or using the 

hotkey Ctrl+O. 

A new window 

will pop up 

where you can 

select the input 

file. 

 

Once the file is 

open two 

views will be 



68 

 

displayed, a hierarchical view that will allow the user to see the general outline of 

the execution and a timeline that will help him to understand in detail each action. 

 

 

 

 

 

 



69 

 

In the hierarchical view the user can right-click on any node to see a pop-up with 

detailed information of that action (duration, start and end time, etc). 

 

 

 

That action will also update the timeline, showing in scale the duration and 

start/end time of all the children of that node, i.e. all the actions that derive of the 

first one. If you left-click on the name of an action in the timeline the values of it 

start time and duration will appear in the lower left corner. 

 

 



70 

 

The timeline also can be updated by the upper menu (Views option), when the user 

can see two different groups of actions: 

- All the SQ labeled sequences (custom for the GyroScan System) 

- All the actions of a determined deepness level in the hierarchy tree. 


	Acknowledges
	Table of Contents
	List of Tables
	List of Figures
	Resumen
	Abstract
	1. Introduction
	1.1 Motivation
	1.2 Object-Oriented versus non Object-Oriented
	1.3 Hypothesis
	1.4 Objectives

	2. Related Work
	2.1 Brief history of Program Comprehension
	2.2  Dynamic Analysis for Program Comprehension
	2.3  Program Comprehension in the Software Development Industry
	2.3.1 Static Analysis Tools
	2.3.2 Dynamic Analysis Tools


	3. Methodology
	3.1 Selection of the Study Case
	2
	3
	4
	5
	6
	7
	1.1
	1.2
	1.3
	1.4
	1.5
	1.6
	3.2 Tools Tested
	3.2.1 HITS + fe-Tree
	3.2.2 SORter

	1.
	2.
	3.
	3.1

	4. Experiments and Results
	4.1 Experiment Design
	4.2 Experiment’s Results
	4.2.1 HITS + fe-Tree
	4.2.2 SORter
	1
	2
	3
	1.2

	4.3 Data Analysis
	4.3.1 HITS + fe-Tree
	4.3.2 SORter


	5. Conclusions
	5.1 Results
	5.2 Implications
	5.3 Future Work

	References
	Appendix
	A) SORter Manual


