
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

SUPERMASKS AND A GOOD

INITIALIZATION ARE ALL YOU NEED

FRANCISCO RENCORET DOMÍNGUEZ

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

ÁLVARO SOTO

Santiago de Chile, December 2020

c©MMXX, FRANCISCO RENCORET

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

SUPERMASKS AND A GOOD

INITIALIZATION ARE ALL YOU NEED

FRANCISCO RENCORET DOMÍNGUEZ

Members of the Committee:

ÁLVARO SOTO

HANS LÖBEL

PABLO ZEGERS

IGNACIO VARGAS

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, December 2020

c©MMXX, FRANCISCO RENCORET

Stamp

Gratefully to my parents and

friends

ACKNOWLEDGEMENTS

To my advisor Álvaro Soto, who guided me throughout this investigation with a clear

vision for finding value.

To Julio Hurtado, a key fellow that helped me on a daily basis during the ideation and

implementation of this work.

To my office mates from IALab PUC. Alain Raymond, Cristóbal Eyzaguirre, Felipe

del Rio, and Raimundo Manterola, who contributed to the realization of this thesis with

their regular feedback.

To my parents, who have always supported me to focus and fulfill my dreams.

To my girlfriend Elisa, for encouraging and supporting me every day.

To God, for the gifts, the blessings, and for guiding my life.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

ABSTRACT xi

RESUMEN xii

1. INTRODUCTION 1

1.1. Motivation . 1

1.2. Hypothesis . 3

2. RELATED WORK 5

2.1. Convolutional Neural Networks . 5

2.2. Weight Initialization . 6

2.3. The Lottery Ticket Hypothesis . 8

3. BACKGROUND THEORY 10

3.1. Xavier Initialization . 10

3.2. The edge-popup algorithm . 10

3.3. Entropy . 12

4. PROPOSED METHOD 14

4.1. Intuition . 14

4.2. Method . 14

4.2.1. Extracting patches from training data 16

4.2.2. Clustering patches and forming patterns 18

4.2.3. Initializing filter weights from patterns 20

4.2.4. Composing patterns for higher-level layers 20
v

4.3. Algorithm . 22

5. EXPERIMENTS, RESULTS AND ANALYSIS 23

5.1. Datasets . 23

5.2. Implementation and hyperparameters 24

5.3. Training the Supermask on CIFAR-10 26

5.4. Training the Supermask on CIFAR-100 28

5.5. Training the Supermask on TinyImagenet-200 31

5.6. Ablation studies . 33

5.6.1. Patch extraction and clustering . 33

5.6.2. Cluster selection . 35

5.7. Comparing with other initializations . 37

6. CONCLUSIONS 39

7. FUTURE WORK 41

REFERENCES 42

8. APPENDICES 47

8.1. Appendix 1: Results for CIFAR-10 . 47

8.2. Appendix 2: Results for CIFAR-100 . 49

8.3. Appendix 3: Analyzing PatchesInit for ResNet-18 on TinyImagenet-200 . 51

8.4. Appendix 4: Results for ablation studies 53

vi

LIST OF FIGURES

4.1 Learned features showing increasing compositionality of features through

different convolutional layers of a neural network (H. Lee et al., 2009). 15

4.2 Extracting patches from an example image from Imagenet (Deng et al., 2009).

(a) Shows bounding boxes generated by a selective search algorithm (Uijlings

et al., 2013), and (b) shows randomly sampled patches from these bounding

boxes. 17

5.1 Example of the classes in the CIFAR-10 dataset. Image retrieved from

(Krizhevsky & Hinton, 2009). 24

5.2 Training on CIFAR-10: Supermask test performance of Conv2, Conv4, and

Conv6 models achieved with 10-90% pruning rates. PatchesInit outperforms

Random for all pruning rates. Subplot (a) shows the performance of Conv2, (b)

Conv4, and (c) Conv6 models. 26

5.3 Training of Conv6 on CIFAR-10 with 50% pruning: PatchesInit converges

faster than Random and to higher performance value. Subplot (a) shows the

test accuracy and (b) the loss during training. 27

5.4 Training on CIFAR-100: Supermask Top5 test performance of Conv2,

Conv4, and Conv6 models achieved with 10-90% pruning rates. PatchesInit

outperforms Random for all pruning rates. Subplot (a) shows the performance

of Conv2, (b) Conv4, and (c) Conv6 models. 28

5.5 Training of Conv6 on CIFAR-100 with 50% pruning: PatchesInit converges

faster than Random and to higher performance value. Subplot (a) shows the

Top5 test accuracy and (b) the loss during training. 29
vii

5.6 Comparing different initialization methods on CIFAR-100. PatchesInit does

not outperform Kaiming initialization. Subplot (a) shows the performance of

Conv2, (b) Conv4, and (c) Conv6 models. 37

8.1 Training of Conv6 on CIFAR-10 with 30% and 70% pruning rates. Subplot (a)

shows the Top1 test accuracy during training for 30% pruning rate, and (b) for

70% pruning rate. 48

8.2 Training of Conv6 on CIFAR-100 with 30% and 70% pruning rates. Subplot

(a) shows the Top5 test accuracy during training for 30% pruning rate, and (b)

for 70% pruning rate. 50

viii

LIST OF TABLES

5.1 Architecture details of models Conv2, Conv4, Conv6, and ResNet-18 used in

(Frankle & Carbin, 2019; Zhou et al., 2019; Ramanujan et al., 2020). Each

model first performs convolutions (Conv Layers) followed by fully connected

layers (FC). For Conv Layers, each cell shows the number of filters and for

FC Layers, each cell shows the number of neurons. Pool denotes max pooling

operations and square brackets denote residual connections. 25

5.2 Test results achieved for PatchesInit on a ResNet-18 model trained on

TinyImagenet-200: Partial-PatchesInit outperforms the baseline for all pruning

rates. 31

5.3 Top5 accuracy and time cost in minutes achieved by varying the number of

patches P to extract and the number of clusters C, for Conv6 model trained on

CIFAR-100 with 50% of pruning. The best performance is achieved when P is

50,000 patches and C is 500 clusters. 34

5.4 Mean entropy of the selected clusters of each layer achieved by varying the

number of patches P to extract and the number of clusters C, for Conv6 model

trained on CIFAR-100 with 50% of pruning. 35

5.5 Accuracy achieved by varying layer D where the selection criteria of clusters

changes, for Conv6 model trained on CIFAR-100 with 50% of pruning. . . . 36

8.1 Top1 test accuracy results achieved for PatchesInit on a Conv2 model trained

on CIFAR-10. 47

8.2 Top1 test accuracy results achieved for PatchesInit on a Conv4 model trained

on CIFAR-10. 47

8.3 Top1 test accuracy results achieved for PatchesInit on a Conv6 model trained

on CIFAR-10. 47
ix

8.4 Top1 test accuracy results achieved for PatchesInit on a Conv2 model trained

on CIFAR-100. 49

8.5 Top5 test accuracy results achieved for PatchesInit on a Conv2 model trained

on CIFAR-100. 49

8.6 Top1 test accuracy results achieved for PatchesInit on a Conv4 model trained

on CIFAR-100. 49

8.7 Top5 test accuracy results achieved for PatchesInit on a Conv4 model trained

on CIFAR-100. 49

8.8 Top1 test accuracy results achieved for PatchesInit on a Conv6 model trained

on CIFAR-100. 50

8.9 Top5 test accuracy results achieved for PatchesInit on a Conv6 model trained

on CIFAR-100. 50

8.10 Top5 test accuracy and time cost in minutes achieved by varying the number of

patches P to extract and the number of clusters C, for Conv6 model trained on

CIFAR-100 with 30% of pruning. 53

8.11 Top5 test accuracy and time cost in minutes achieved by varying the number of

patches P to extract and the number of clusters C, for Conv6 model trained on

CIFAR-100 with 70% of pruning. 53

8.12 Top5 test accuracy achieved by varying layer D where the selection criteria of

clusters changes, for Conv6 model trained on CIFAR-100 with 30% of pruning. 54

8.13 Top5 test accuracy achieved by varying layer D where the selection criteria of

clusters changes, for Conv6 model trained on CIFAR-100 with 70% of pruning. 54

x

ABSTRACT

Deep Learning models have shown significant improvements in computer vision tasks,

although generally relying on optimizing highly parameterized networks. To overcome

this, the Lottery Ticket Hypothesis (Frankle & Carbin, 2019) states that a dense neuronal

network contains a subnetwork such that - when trained in isolation - it can match the

test accuracy of the original full network. Supermask training (Zhou et al., 2019) is an

efficient way of obtaining a Lottery Ticket, but unfortunately, it still faces performance

issues. Under Supermask training, the value of the initial weights is key because they are

never updated. We hypothesize that by adding prior knowledge from the data to the weight

initialization, Supermask training would find a subnetwork with better test performance

than random initialization.

In this thesis, we propose a novel method to initialize the weights of a model under Su-

permask training. We refer to the proposed method as PatchesInit. The method initializes

the weights with patterns found in the training data to approximate what they should learn

on a regular training scheme. To evaluate PatchesInit, we train several ConvNets, with

different Supermasks configurations over CIFAR-10, CIFAR-100, and TinyImagenet-200

datasets. Results show that PatchesInit is an effective weight initialization strategy, show-

ing significant improvements over random initialization. For shallow ConvNets, the pro-

posed method outperforms the baseline under different levels of weight pruning. On the

other hand, PatchesInit faces problems to initialize weights effectively for deeper net-

works, but we further propose a variant that does find subnetworks with better performance

than random initialization.

Keywords: Deep Learning, Convolutional Neural Networks, Lottery Tickets, Weight

Pruning, Supermasks, Weight Initialization.
xi

RESUMEN

Los modelos de aprendizaje profundo han mostrado significativas mejoras en las tareas

de visión por computador, aunque generalmente optimizando redes neuronales altamente

parametrizadas. Para mejorar esto, la hipótesis de Lottery Ticket (Frankle & Carbin, 2019)

establece que una red neuronal densa contiene una subred de modo que, cuando se entrena

de forma aislada, puede igualar el rendimiento de la red completa original. El entre-

namiento de Supermask (Zhou et al., 2019) es una forma eficiente de obtener un Lottery

Ticket, pero desafortunadamente, aún enfrenta problemas de rendimiento. En el entre-

namiento de Supermask, el valor de los pesos iniciales es clave ya que nunca se actualizan.

Nuestra hipótesis es que, al agregar conocimiento previo de los datos a la inicialización de

los pesos, el entrenamiento de Supermask encontrarı́a una subred con mejor rendimiento

en los datos de prueba que la inicialización aleatoria.

En esta tesis, proponemos un método novedoso para inicializar los pesos de un modelo

bajo el entrenamiento de Supermask. Nos referimos al método propuesto como Patch-

esInit. El método inicializa los pesos con patrones encontrados en los datos de entre-

namiento, aproximándose ası́ a lo que deberı́an aprender en un esquema de entrenamiento

regular. Para evaluar PatchesInit, entrenamos varias ConvNets, con diferentes configura-

ciones de Supermask, sobre los conjuntos de datos CIFAR-10, CIFAR-100 y TinyImagenet-

200. Los resultados muestran que PatchesInit es una estrategia de inicialización eficaz,

mejorando significativamente el rendimiento de la inicialización aleatoria. Para ConvNets

de poca profundidad, el método propuesto supera a la inicialización aleatoria bajo difer-

entes niveles de weight pruning. Por otro lado, PatchesInit enfrenta problemas para ini-

cializar los pesos de manera efectiva para redes más profundas, por lo que proponemos una

variante que sı́ encuentra subredes con mejor rendimiento que la inicialización aleatoria.

Palabras Claves: Aprendizaje profundo, Redes Convolucionales, Lottery Tickets, Weight

Pruning, Supermask, Inicialización de pesos.
xii

1. INTRODUCTION

1.1. Motivation

Machine Learning is the study of algorithms that progressively learn through experi-

ence. The algorithms learn mathematical models from a set of data points to make predic-

tions without being explicitly programmed to do so.

According to the learning experience, there are several types of Machine Learning

approaches (Haldorai & Ramu, 2019). Among them, supervised, unsupervised, and re-

inforcement learning are some of the most popular. Supervised learning assumes data

points to have explicit labels or outputs, learning a mapping function from input to output.

Conversely, unsupervised learning does not rely on the labels, forcing the model to find

relevant structures from the data. Lastly, reinforcement learning is based on a model that

interacts with a dynamic environment and takes actions trying to achieve a particular goal.

Each action produces a reward within a specific environment state that the model utilizes

as feedback and tries to maximize. Throughout this thesis, we focus on supervised learn-

ing, particularly on the task of image classification, where the model is trained to classify

an image from a fixed set of categories.

Traditionally, Machine Learning techniques were limited in the ability to process data

in their raw form. For decades, implementing these algorithms required careful engi-

neering and domain expertise to extract suitable representations or features from the raw

data (frequently called feature-engineering). From these features, the algorithm could de-

tect patterns and make predictions (LeCun et al., 2015). For example, in the context of

computer vision, Machine Learning algorithms required feature extractors such as SIFT

(Lowe, 1999), LBP (Ojala et al., 1996), or HOG (Dalal & Triggs, 2005).

Trying to remove this bottleneck, representation learning techniques come into play

with the objective of building models that could create their internal representations from

raw input data (Bengio et al., 2013; Zhong et al., 2016). Deep Learning methods were

1

then developed, as the concept of having multiple levels of representation or sequential

learning modules. Each module transforms its representation into a representation at a

higher, slightly more abstract level. Complex functions can then be modeled by stacking

sufficient modules.

Deep Learning algorithms are parametrized by a set of weights, where learning is en-

coded. The standard paradigm for training deep learning models is as follows: the weights

of the model are randomly initialized, and then the model processes and predicts iteratively

over a set of raw training data. An objective function determines the error rate of each pre-

diction, which is used to update the weights of the model by the so-called backpropagation

algorithm (Rumelhart et al., 1988). When a termination criterion is achieved (e.g., a tar-

get error or convergence point), the training is stopped, and the model is used to predict

unseen test data.

In the past few years, Deep Learning models have shown significant improvements

in computer vision tasks, but relying on optimizing highly parameterized networks. To

overcome this, The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) states that a dense

neuronal network contains a subnetwork (a winning ticket) such that - when trained in

isolation - it can match the test accuracy of the original full network. In other words, by

identifying a winning ticket, we can reduce the model size and make faster predictions

without negatively impacting performance. Finding a winning ticket is an open research

area and still a computationally expensive procedure because the network needs to be

trained to completion several times.

Zhou et al. (2019) introduce Supermask training as a novel and efficient way to iden-

tify a winning ticket. The model weights are initialized, frozen, and never trained. Instead,

they optimize a binary mask to select a subnetwork that contains those weights that won

the lottery. The Supermask procedure finds effective subnetworks reducing the computa-

tional cost, but still fall short in performance from the original Lottery Ticket procedure.

2

Under Supermask procedure, the value of the initial weights is key because they are

never updated; the model needs to create a useful internal representation by merely de-

ciding to select or discard each weight. Even though Supermask training finds effective

subnetworks within initial random weights, we hypothesize that by adding prior knowl-

edge from the data to the weight initialization, Supermask training would find a more

suitable subnetwork.

This thesis proposes a novel method to initialize the weights of a model under Super-

mask training. We refer to this method as PatchesInit. The intuition behind PatchesInit is

to initialize weights with an approximation of what they should learn during regular train-

ing, providing a better starting point (closer to where it should end). In image classifica-

tion, Convolutional Neural Networks learn internal representations of images by learning

to detect patterns. PatchesInit tries to mimic this by obtaining adequate patterns from the

training data and using them to initialize filter weights, providing prior knowledge that

should increase performance on unseen test data.

The Lottery Ticket Hypothesis and the Supermasks seek to make Machine Learning

models more efficient, finding subnetworks that predict faster and reduce hardware re-

quirements. This thesis pursues this mission, trying to find even more accurate models by

changing the weight initialization.

1.2. Hypothesis

This thesis hypothesizes that initializing the weights of a model with patterns found

in the training data will increase the generalization test performance of the subnetworks

detected under Supermask training.

Regarding the proposed hypothesis, this thesis covers three specific objectives:

(i) Develop PatchesInit: a weight initialization method from patterns present in

training data.

3

(ii) Evaluate the performance of PatchesInit on different model configurations and

compare it with other initialization methods.

(iii) Analyze the effect of using PatchesInit under Supermask training.

The organization of this document is as follows. Section 2 covers related work, div-

ing into details of Convolutional Neural Networks, weight initialization methods, and the

Lottery Ticket Hypothesis. Section 3 explains background theory and relevant methods

we use throughout this thesis. Section 4 focuses on the first objective by covering the

PatchesInit method, explaining from the intuition to the specific details. Section 5 focuses

on the second and third objectives, diving into the experiments where we evaluate and an-

alyze the impact of PatchesInit. Section 6 recaps the main contributions and lessons learnt

from this thesis. Finally Section 7 states future research avenues.

4

2. RELATED WORK

2.1. Convolutional Neural Networks

Convolutional Neural Networks (ConvNets) are a specific type of feed-forward net-

work designed to process data in the form of multidimensional arrays or tensors; as an

example, a color image composed of three 2D arrays containing color pixel intensities.

The nature of image data presents two distinctive characteristics. First, local groups of

values are usually highly correlated, forming distinctive patterns. Second, local statistics

of images and other signals are invariant to location. If a pattern appears in one part of the

image, it could appear anywhere.

ConvNets have four key concepts that take advantage of the nature of this type of data:

local-connections, shared weights, pooling, and multiple layers (LeCun et al., 2015). Units

in a convolutional layer are organized in feature maps, where each unit is connected with

their corresponding local group of units from the previous layer by a group of shared

weights called filters. Filters specialize in finding one specific pattern from a group of

locally-connected units from the previous feature map (or input data).

After feature maps are obtained, pooling layers enable semantically similar features

to merge, enabling the model to recognize patterns even after small shifts and distortions.

Pooling often takes the maximum value of a local patch of units in a feature map, combin-

ing them into one value - reducing the dimensionality of the feature maps.

On the other hand, stacking multiple convolutional and pooling layers exploits the

property of compositionality in images, where high-level features are obtained through a

composition of low-level features. The first layers of a ConvNet identify low-level features

such as lines or edges. As the hierarchy advances, low-level features combine into high-

level features such as objects or faces (Krizhevsky et al., 2012; LeCun et al., 2015; H. Lee

et al., 2009). After the object representations are formed in the last layers, classifiers use

those features to predict and separate among classes.

5

ConvNets have been applied to image classification tasks (LeCun et al., 1989; C.-

Y. Lee et al., 2015). Rather shallow ConvNets are generally used for small scale datasets.

Deeper architectures, such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zis-

serman, 2014), and ResNet (He et al., 2016), are used for large scale datasets. Additional

complex components have been included, such as Batch Normalization (Ioffe & Szegedy,

2015) and Residual Connections (He et al., 2016), to effectively train these deep architec-

tures. We use ConvNets from two to six layers for small scale datasets and a ResNet for a

large scale dataset.

2.2. Weight Initialization

Neural Networks require an initialization scheme to set the initial weight values before

training, which are key for an effective training optimization. An effective initialization of

the weights must maximize the stability of the gradient descent algorithm while providing

a good starting point, both explained in the following section.

Stability for the gradient descent algorithm is a non-trivial matter that may be impacted

by several factors. Throughout this thesis, we focus on the impact that the initial weights

have on stability. If the initial weights are not set properly, the algorithm can easily be

affected by vanishing or exploding gradients (Pascanu et al., 2013) producing sub-optimal

models or even numerical instability.

Under the backpropagation scope, each weight receives an update proportional to the

partial derivative of the error w.r.t that weight (Rumelhart et al., 1988). Due to the com-

pounded nature of the chain rule, the partial derivative may sometimes vanish or explode,

especially in deeper architectures. If the gradient is too small (particularly smaller than

1), it will decrease exponentially with the sequence of layers, and shallower layers will

not update as they should. The opposite happens if the gradient is too big, it will increase

6

exponentially, and shallower layers would take huge steps breaking stability in the opti-

mization landscape (Bengio et al., 1994). Initial weights must then be small enough to

avoid exploding, but big enough to avoid vanishing.

To solve the problems mentioned recently, Glorot and Bengio (2010) introduce the

Normalized or Xavier initialization, which maintains the variance of the activation and

gradients at a constant value. The weights of each layer are sampled from a ’normalized’

distribution, considering the configuration of the previous and next layers; generating val-

ues that should neither explode nor vanish for a standardized input. Further investigations

(He et al., 2015) propose the Kaiming initialization, a variant of Xavier initialization that

samples weights from a different normalized distribution, being more robust to deep ar-

chitectures with ReLU activations. We use Xavier initialization intuition throughout this

thesis (Section 4.2.3) because it provides a more stable training behavior on the rather

shallow models we use. Xavier initialization, which we call Random, acts as a baseline

for our experiments.

Regarding the concept that ideally, initialization schemes should provide a good start-

ing point, advances have been made through pre-training. Pre-training moves the initial

weights towards more suitable values (better starting point), which are then used as the

initial weights for training the original task. Unsupervised pre-training methods enable

weights to adopt knowledge of unlabeled data (Erhan et al., 2010; Frankle et al., 2020).

Supervised pre-training methods, such as fine-tuning, provide significant performance ad-

vances reusing training from similar tasks than the original. Under the context of Meta-

Learning, MAML (Finn et al., 2017) learns representations that learn new tasks quickly,

by pre-training the weights to adapt and learn new tasks simultaneously.

The proposed method does not compare with the methods just mentioned because

they require an initial pre-training stage optimizing a set of initial weights. Instead, we

approximate that knowledge by initializing the weights with patterns found in the training

data, avoiding the optimization process and its associated costs.

7

2.3. The Lottery Ticket Hypothesis

Frankle and Carbin (2019) propose the Lottery Ticket Hypothesis: a dense, randomly-

initialized neural network contains a subnetwork (a winning ticket) that is initialized such

that — when trained in isolation — it can match the test accuracy of the original net-

work after training for at most the same number of iterations. They show it is possible

to find much smaller subnetworks than the original network (even up to 1%), which has

impressive reductions in prediction time during inference and storage size of the resulting

weights. Also, recent advances preliminarily show that winning tickets have transferable

generalization capabilities to other domains (Morcos et al., 2019; Desai et al., 2019).

Unfortunately, finding a winning ticket relies on iterative magnitude pruning, a costly

procedure that requires training the network to completion several times. Some research

works try to solve this problem. You et al. (2019) state that winning tickets can be identi-

fied at an early training stage, while others try to find these with auxiliary tasks (Savarese

et al., 2019), self-supervision tasks (Caron et al., 2020), or obtaining stochastic masks with

targeted dropout (Gomez et al., 2019).

Follow up work by Zhou et al. (2019) demonstrates that winning tickets achieve better

than random performance with their initial random untrained weights. Motivated by this

result, they propose Supermask training, a novel way of identifying a winning ticket. The

weights of the model are frozen at their initial value, and a stochastic binary mask - with

trainable parameters - is trained to select a subnetwork that contains a winning ticket.

Supermasks find winning tickets by only training the mask once, a much more efficient

method than iterative magnitude pruning.

Ramanujan et al. (2020) further extend this notion into the edge-popup algorithm: a

deterministic Supermask training method that finds subnetworks with competitive perfor-

mance compared to the original models (training the weights). The edge-popup algorithm

finds subnetworks that are not as small as an original Lottery Ticket, but still take advan-

tage reducing prediction time during inference and storage size.

8

We use this Supermask algorithm for this thesis, where we propose a novel weight

initialization so that the algorithm optimizes a mask to select a winning ticket from a more

suited set of initial weights. We hypothesize that by adding prior knowledge from the data

to the weight initialization, Supermask training would find a subnetwork with better test

performance than random initialization.

9

3. BACKGROUND THEORY

This section provides useful information about relevant methods used in this thesis.

3.1. Xavier Initialization

As mentioned in Section 2.2, the weight initialization scheme of neural networks is

a relevant aspect that profoundly affects the convergence of the training procedure. To

avoid vanishing or exploding gradients, Glorot and Bengio (2010) propose a method that

maintains the variances of the activations and the backpropagated gradients at a constant

value as one moves up or down through the network.

They introduce the Normalized or Xavier initialization, where they sample weights in

each layer from ’normalized’ distribution:

Wn ∼ N [0,

√
2√

nn−1 + nn+1

], (3.1)

where Wn are the weights of layer n; nn−1 and nn+1 corresponds to the size (number

of neurons) of the previous and next layer, respectively.

We use this normalization factor throughout Section 4.2.3 for re-scaling purposes.

3.2. The edge-popup algorithm

The edge-popup algorithm (Ramanujan et al., 2020) is a deterministic optimization

method for finding effective subnetworks within randomly weighted neural networks. The

main intuition relies on optimizing a binary mask that learns which weights should be

selected as part of the winning ticket and those to be turned off.

For each weight w in the neural network, we include another learnable parameter s

which we call popup score. The subnetwork is then chosen by selecting the weights w

corresponding to the top-k% highest scores s in each layer. The parameter k is calculated

10

as k = 1 − prune percentage, where prune percentage is a hyperparameter for the

model.

A fully connected neural network consists of layers 1, ..., L where layer l has nl nodes

V (l) = {v(l)1 , ..., v
(l)
nl }. For any node v, we let Iv denote the input and Zv denote the output,

where Zv = σ(Iv) for some non-linear activation function σ. We write Iv as a weighted

sum of all neurons in the preceding layer:

Iv =
∑

u∈V (l−1)

wuvZu, (3.2)

where wuv are the network parameters from layer l. Under Supermask training, the

activation Iv can be rewritten as:

Iv =
∑

u∈V (l−1)

wuvZuh(suv), (3.3)

where h(suv) = 1 if suv is among the top-k% highest scores of layer l and h(suv) = 0

otherwise.

The extension to Convolutional Neural Networks is direct. Instead of having neurons,

we now have filters. wuv, suv, Iv, and Zv are now two dimensional and w(k1,k2)
uv , s(k1,k2)uv ,

I
(w,h)
v , and Z(w,h)

v are scalars, where w ∈ {1, ...W} and h ∈ {1, ...H} represents the width

and height of the activation map from the node v, respectively. k is the kernel size. I(w,h)
v

can be written as:

I(w,h)
v =

∑
u∈V (l−1)

k∑
k1=1

k∑
k2=1

w(k1,k2)
uv Z(w+k1,h+k2)

u h(s(k1,k2)uv), (3.4)

where h(s(k1,k2)uv) = 1 if s(k1,k2)uv is among the top-k% highest scores of layer l and

h(s
(k1,k2)
uv) = 0 otherwise.

11

Instead of optimizing the weights w, the Supermask freezes them at their initial value

and optimizes the scores s. Considering that the function h is not differentiable, one could

backpropagate through the hard threshold function by multiplying the gradient of each

weight by the result of function h, as Zhou et al. (2019) suggest in their paper.

This method would suffer from the cold start problem, where if a score suv is initially

low, wuv would not be considered in the forward pass and the score suv would not be

updated neither have the chance to popup.

To solve this, the Supermask optimizes with a straight-through gradient estimator

(Bengio et al., 2013). Regardless of the forward pass, the gradient is backpropagated

as if function h were the identity matrix (i.e., as if h had produced 1 on all weights).

Overcoming the cold start, if Zu is aligned with the negative gradient (regardless of

not being considered in the forward pass), then score suv will be updated accordingly. If

this alignment happens consistently, then the score will continue to increase, and the edge

will re-enter the chosen subnetwork (i.e., popup).

The edge-popup algorithm is deterministic, making it suitable for posterior analysis.

On the other hand, it provides an extra cost of O(L ∗ S) per batch, where L is the number

of layers in the network, and S is the cost associated with sorting and selecting the top-k%

scores.

We use this Supermask method throughout this thesis, trying to make improvements

on the matrix W with the initial weights.

3.3. Entropy

In the context of Information Theory (Cover & Thomas, 1991), entropy is a measure

of disorder. Claude Shannon introduces entropy as a quantity associated to any random

variable, which measures its average level of information or uncertainty (Shannon, 1948).

12

Entropy is frequently used in Machine Learning, especially in Decision Trees and

Random Forests in the context of Information Gain (Breiman, 2001). Similar to Random

Forests, we use the following formula to calculate the entropy of a set S of discrete data

points:

E(S) =
N∑
i=1

−pi log2 pi, (3.5)

where S contains elements from N different classes; and pi is the probability of a

class i. We use entropy in Section 4.2.2 to measure the level of disorder of a set of discrete

labels.

13

4. PROPOSED METHOD

In this thesis, we propose PatchesInit, a novel method to initialize the weights of a

Convolutional Neural Network under Supermask training. This section presents the pro-

posed method, where Section 4.1 covers the intuition; Section 4.2 details the procedure;

and Section 4.3 shows an outline of the algorithm.

4.1. Intuition

For image classification tasks, the Supermask procedure finds subnetworks that predict

faster and reduce hardware requirements but still fall short in performance compared with

the full networks (Frankle & Carbin, 2019; Zhou et al., 2019; Ramanujan et al., 2020).

We focus on reducing the performance gap of these subnetworks by changing the initial

set of weights of the neural network.

The Supermask procedure optimizes a binary mask to select a subnetwork within the

randomly-initialized untrained weights of a network. Even though Supermasks find effec-

tive subnetworks using random initial weights, we believe that by adding prior knowledge

from the data to the weight initialization, Supermask training would find subnetworks with

better performance on unseen test data. In this thesis, we propose a method to initialize

the weights of a ConvNet with prior knowledge from the data.

4.2. Method

ConvNets learn internal representations of images by learning to detect patterns (fea-

tures), where each filter specializes in detecting one specific pattern. Low-level layers

learn to identify low-level features, which are then composed, enabling high-level layers

to identify high-level features (Krizhevsky et al., 2012; LeCun et al., 2015; H. Lee et al.,

2009). For example, in image classification, a ConvNet may learn to detect edges from

raw pixels in the first layer, then use the edges to detect simple shapes in the second layer,

14

and then use these shapes to detect higher-level features, such as facial shapes in higher

layers. Figure 4.1 shows an example of this.

Figure 4.1. Learned features showing increasing compositionality of fea-
tures through different convolutional layers of a neural network (H. Lee et
al., 2009).

ConvNets begin with initial random filter weights, which logically do not detect pat-

terns. Instead, PatchesInit initializes the filter weights with common patterns we find in

the training data, enabling the network to detect common patterns early during training.

PatchesInit initializes the filter weights of each layer sequentially, where we use the

same procedure but only changing the compositionality level of the patterns we find. We

extract patterns from the raw pixels to initialize the filter weights of the first layer. On

the other hand, we compose the low-level patterns into higher-level patterns to initialize

the filter weights of the higher-level layers accordingly. We divide our method into three

steps, which are then repeated sequentially to initialize the weights of each layer.

First, PatchesInit extracts a set of candidate patches from the training images (Section

4.2.1). Patches are image segments that we use to form common patterns. We want to

15

form patterns that help recognize objects, so we use an objectness algorithm and sample

patches from possible object locations in the image.

Second, PatchesInit clusters the candidate patches to separate and identify common

groups, from where we then form patterns (Section 4.2.2). We group all the available

patches into a fixed number of clusters and then select a subset of adequate ones depending

on the initializing layer. For low-level layers, we select clusters that produce patterns that

are common to all classes, whereas for high-level layers, we select the ones that produce

patterns that help to discriminate among the classes.

Third, PatchesInit transforms patterns into filter weights (Section 4.2.3). We normalize

and scale each pattern to form the weights of one filter. This step finalizes one iteration of

the PatchesInit procedure, initializing the filter weights of one layer.

We explain the details behind these recently mentioned steps and the compositionality

strategy we use in the following subsections.

4.2.1. Extracting patches from training data

As a first step, PatchesInit obtains candidate patches from the input data, which we

then cluster and form patterns. A patch is a segment of the image or a group of locally-

connected units from the input data received. In both cases, we represent patches as an

array of values.

To initialize the weights of the first layer, we extract patches from the input images

by first running an objectness algorithm, as shown in lines 3-4 from Algorithm 1. We use

selective search (Uijlings et al., 2013), which combines the strength of both an exhaus-

tive search and segmentation, generating bounding boxes that represent possible object

locations. We then sample patches from these bounding boxes (line 8 from Algorithm

1). Figure 4.2 shows an example, where we generate bounding boxes and sample patches

from them.

16

(a) Bounding boxes (b) Sampled patches

Figure 4.2. Extracting patches from an example image from Imagenet
(Deng et al., 2009). (a) Shows bounding boxes generated by a selective
search algorithm (Uijlings et al., 2013), and (b) shows randomly sampled
patches from these bounding boxes.

To initialize the weights of the rest of the layers, instead of extracting patches from

the input images, we use the previous layers (whose weights we already initialized in

line 17 from Algorithm 1) to compose and generate higher-level patterns, from where

we then extract patches (lines 5-6 from Algorithm 1). We give in-depth details of this

compositionality procedure in Section 4.2.4.

We sample the same number of patches P for each layer in the network (line 8 from

Algorithm 1). We require P as a hyperparameter, which we further discuss and experiment

in Section 5.6.1. We extract patches of the same size as the filters in each layer, avoiding

an upsample or downsample that may alter the patch information.

17

4.2.2. Clustering patches and forming patterns

As a second step, PatchesInit clusters all the candidate patches to separate and identify

common groups, which we then use to form common patterns. In particular, the proposed

method groups all the available patches into a fixed number of clusters, selects a subset of

adequate ones, and then forms patterns. We then use each pattern to initialize one filter

weights.

Before clustering patches, we need to make sure they have an appropiate dimension-

ality for comparison. Data with very high dimensionality can suffer from the curse of

dimensionality (Bellman, 1966), where the volume of the space increases so fast that the

available data becomes sparse; therefore, clustering data becomes a very difficult task

(Steinbach et al., 2004).

We use Principal Component Analysis PCA (Pearson, 1901) to reduce the dimension-

ality of the patches (line 10 from Algorithm 1). The main idea of PCA is to reduce the

dimensionality of a dataset by transforming the variables into a new set of orthogonal vari-

ables (eigenvectors of a covariance matrix). The algorithm then chooses those variables

that maximize the variance of the projected data. Following the intuition from VB and

David (2015), we only select the first few projected variables to reduce the dimensionality

of each patch.

Now that patches have a suitable dimensionality, PatchesInit executes a KMeans algo-

rithm (Jin & Han, 2010) through the candidate patches to produce C clusters (line 11 from

Algorithm 1). KMeans receives the number of clusters C as a hyperparameter and itera-

tively distributes the data between C groups minimizing the sum of the euclidean distance

of all the data points to their corresponding group centroid. KMeans then yields each clus-

ter with their corresponding patches and centroid. The hyperparameter C is thoroughly

experimented in Section 5.6.1.

After forming the clusters, we need to select a subset of adequate ones depending on

the initializing layer. As a reminder, we use one pattern to initialize one filter, and we

18

form one pattern from one cluster, so we select as many clusters as filters in each layer. As

mentioned in Section 3.3, we use entropy to understand how common or discriminative

clusters are for the classes present in the dataset. We calculate the entropy of the labels of

the patches each cluster contains, where each patch has the same label as the image where

it came from (line 12 from Algorithm 1). We use the following equation:

E(c) =
N∑
i=1

−pi log2 pi, (4.1)

where c is a cluster that contains patches from N different classes (set of discrete data

points); and pi is the probability of class i. If a cluster has maximum entropy, it contains

patches from all classes; therefore, it forms a common pattern and vice versa.

Low-level layers select clusters with high entropy because they need patterns shared

by all classes to create general representations of the data. On the other hand, high-level

layers select clusters with low entropy (i.e., groups that contain patches from only a few

classes or even one) because they need discriminative power to separate data from different

classes. We refer to the exact layer where the selection criteria changes as layer D, which

we require as a hyperparameter. Choosing the layer D is a non-trivial decision and is

further discussed in Section 5.6.2.

After selecting the adequate clusters (line 13 from Algorithm 1), we form each pattern

as the patch closest to its centroid (line 14 from Algorithm 1). Even though we compare

distances in the reduced space, we use patches in their original space to form the patterns.

We experimented with forming the patterns in three different ways but got worse results:

using the centroid itself, using the average of the five nearest patches to the centroid, or

optimizing weights to maximize the dot product with the patches of the corresponding

cluster.

19

4.2.3. Initializing filter weights from patterns

As a final step, PatchesInit procedure normalizes and scales patterns into suitable

weights. The values of the weights are fundamental for a stable training, as mentioned

in Section 2.2.

Following the intuition from Glorot and Bengio (2010), we normalize and scale each

pattern with the normalization factor used by the Xavier initialization (line 16 from Algo-

rithm 1). After the scaling is done, each pattern is used as the weights of one filter (line 17

from Algorithm 1):

filter weights =
(pattern− µ)

σ
×

√
2√

nl−1 + nl+1

, (4.2)

where µ and σ are the mean and standard deviation of the pattern, respectively; and

nl−1, nl+1 the number of neurons in the previous and next layer of the network, respec-

tively.

This step finalizes one iteration of the PatchesInit procedure, initializing the filter

weights of one layer. The procedure then runs sequentially for the rest of the layers of

the network (line 1 from Algorithm 1), where we compose patterns to generate accord-

ingly higher-level patterns.

4.2.4. Composing patterns for higher-level layers

PatchesInit seeks to initialize each layer with patterns of their corresponding compo-

sitionality level. To achieve this, we use the previous layers (whose weights we already

initialized) to compose and generate higher-level patterns during each iteration of the se-

quential process.

20

As mentioned in Section 4.2.1, we extract patches from the raw pixels to initialize

the weights of the first layer. To initialize the weights of the rest of the layers, we par-

tially forward pass the images through the model until the previous layer (whose weights

we already initialized in line 17 from Algorithm 1) and generate activation maps. These

activation maps represent the training images on a higher compositionality level based

on the patterns found by the previous iterations of PatchesInit. We then sample patches

from these activation maps, extracting patches with an accordingly-higher compositional-

ity level for each layer. We do not run an objectness algorithm for these cases; instead, we

sample patches from the entire activation maps.

Algorithm 1 shows the compositionality strategy we use. In lines 3-4, where l is 1, we

execute an objectness algorithm overX to generate bounding boxes. Conversely, we show

the procedure for the rest of the layers l in lines 5-6, where we execute a partial forward

pass of the images X through the model f , generating the activation maps for layer l − 1.

We then sample patches from these bounding boxes or activation maps, as shown in line

8.

After the proposed method runs sequentially for all the layers in the network, the

PatchesInit procedure ends, and the model is ready for Supermask training.

21

4.3. Algorithm

Algorithm 1 PatchesInit

Input: {X, Y } dataset
Input: f model with L layers
Input: Hyperparameters: P number of patches, C number of clusters, D layer where

cluster selection criteria changes
1: for layer l = 1, 2, . . . L do
2: # Step 1 : Extracting patches from training data
3: if l == 1 then
4: Execute an objectness algorithm to generate bounding boxes from X
5: else
6: Generate activation maps of layer l − 1 by forward passing X through f
7: end if
8: Sample P candidate patches from line 4 or 6
9: # Step 2 : Clustering patches and forming patterns

10: Reduce dimensionality of candidate patches
11: Cluster candidate patches into C clusters
12: Calculate the entropy of each cluster using the labels Y of their patches
13: Select adequate clusters depending on layer D
14: Form the pattern for each selected cluster
15: # Step 3 : Initializing filter weights from patterns
16: Normalize and scale each pattern
17: Assign each pattern to one filter weights in layer l from model f
18: end for
Output: Initialized weights of model f

22

5. EXPERIMENTS

This section covers the details of the experiments and analysis of PatchesInit. Section

5.1 and Section 5.2 cover the datasets and implementation details, respectively. Section

5.3, Section 5.4, and Section 5.5 dive into experiments and evaluation metrics. Section

5.6 performs ablation studies over relevant design and implementation issues behind our

proposed method. Finally, Section 5.7 compares PatchesInit against other frequently used

initialization methods.

5.1. Datasets

We test PatchesInit under the task of image classification. In particular, we test on

three datasets: CIFAR-10, CIFAR-100, and TinyImagenet-200.

Krizhevsky and Hinton (2009) collected and published these frequently used datasets

CIFAR-10 and CIFAR-100. Both datasets consist of 60,000 32x32 color images divided

into 50,000 for training and 10,000 for test. CIFAR-10 and CIFAR-100 present 10 and

100 equally divided classes, respectively. Figure 5.1 shows all the classes in CIFAR-10

with several example images from each class.

TinyImagenet-200 1 is a modified subset of the original Imagenet dataset (Deng et

al., 2009). It was created by Fei-Fei Li, Andrej Karpathy, and Justin Johnson as part of

their CS231N course at Stanford university 2. The dataset consists of 110,000 64x64 color

images divided into 100,000 for training and 10,000 for test. The dataset presents 200

balanced classes.

1Extracted from: https://tiny-imagenet.herokuapp.com/
2http://cs231n.stanford.edu/

23

Figure 5.1. Example of the classes in the CIFAR-10 dataset. Image re-
trieved from (Krizhevsky & Hinton, 2009).

5.2. Implementation and hyperparameters

In our experiments, we use similar models to (Frankle & Carbin, 2019; Zhou et al.,

2019; Ramanujan et al., 2020). We refer to the models as Conv2, Conv4, Conv6, and

ResNet-18. Table 5.1 shows the details behind each of these models.

We optimize the models with a cross-entropy loss and Stochastic Gradient Descent.

We train all models for 100 epochs and report the Top1 test accuracy of the last epoch.

We use cosine learning rate decay. For CIFAR-10 and CIFAR-100, we train the mod-

els with learning rate 0.1, weight decay 1e-4, momentum 0.9, and batch size 128. For

TinyImagenet-200, we train the models with learning rate 0.256, weight decay 1e-5, mo-

mentum 0.875, and batch size 256.

24

Table 5.1. Architecture details of models Conv2, Conv4, Conv6, and
ResNet-18 used in (Frankle & Carbin, 2019; Zhou et al., 2019; Ramanujan
et al., 2020). Each model first performs convolutions (Conv Layers) fol-
lowed by fully connected layers (FC). For Conv Layers, each cell shows
the number of filters and for FC Layers, each cell shows the number of
neurons. Pool denotes max pooling operations and square brackets denote
residual connections.

Model Conv2 Conv4 Conv6 ResNet-18

64, pool

2x[64, 64]

64, 64, pool 2x[128, 128]

Conv 64, 64, pool 128, 128, pool 2x[256, 256]

Layers 64, 64, pool 128, 128, pool 256, 256, pool 2x[512, 512]

FC Layers 256, 256, 10 256, 256, 10 256, 256, 10 avg-pool, 200

We compare the performance of PatchesInit against the performance of models whose

weights we initialize with Xavier initialization. We call these Random and they act as

baselines. We use the same training parameters for these.

Diving into the edge-popup algorithm parameters, we use the same as in (Ramanujan

et al., 2020). We use prune percentage of {10, 30, 50, 70, 90} for a comprehensive

analysis of the method.

The details of PatchesInit are the following. We implement a selective search using

OpenCV (Bradski, 2000) and filter out bounding boxes covering more than 50% of the

image. We randomly sample 50 patches from each input data point without replacement.

We implement PCA with sklearn (Pedregosa et al., 2011) and reduce the dimensionality of

the patches to 27; following the intuition from VB and David (2015). We also implement

KMeans with the MiniBatchKMeans method from sklearn, using batch size 256 and 10

maximum iterations. We filter out clusters that contain less than five patches.

25

For CIFAR-10 and CIFAR-100, the number of patches P we extract is 50,000, and the

number of clustersC is 500. For TinyImagenet-200, the number of patches P we extract is

100,000, and the number of clusters C is 1,000. Layer D, where we change the selection

criteria of clusters, is always the last layer of the network. These three hyperparameters

are experimented in Section 5.6.1 and Section 5.6.2.

5.3. Training the Supermask on CIFAR-10

We first evaluate the performance of PatchesInit on CIFAR-10. To get a broader sense

of performance, we train Conv2, Conv4, and Conv6 models with all the pruning rates

mentioned in Section 5.2. We show the exact results in Tables 8.1 - 8.3 from Appendix 1.

Figure 5.2. Training on CIFAR-10: Supermask test performance of Conv2,
Conv4, and Conv6 models achieved with 10-90% pruning rates. Patch-
esInit outperforms Random for all pruning rates. Subplot (a) shows the
performance of Conv2, (b) Conv4, and (c) Conv6 models.

As illustrated by Figure 5.2, PatchesInit outperforms the baseline for all models and

pruning rates. For Conv2, PatchesInit increases performance for all the pruning rates, with

3% and 6% accuracy improvements for 50% and 70% pruning rates, respectively. Results

26

for Conv4 and Conv6 are slightly different. In those cases where Supermask training

seems to find effective subnetworks (30-70% pruning rates), initializing the weights with

PatchesInit produces subnetworks with a 2-4% accuracy increase for Conv4 and 1-6%

accuracy increase for Conv6. In other cases, initializing the weights with PatchesInit has a

remarkable effect over Supermask training. For Conv6, we find subnetworks that achieve

up to 48% and 11% accuracy improvements for 10% and 90% pruning rates, respectively.

Additionally, Figure 5.3 further shows that PatchesInit does provide a better starting

point by showing a clear difference in performance during the early epochs of training,

followed by a faster convergence. On the very first epoch, PatchesInit beats Random by

more than 28% in accuracy and presents a steeper accuracy curve, inducing a faster conver-

gence rate. Also, by analyzing the error curves, we deduce that PatchesInit initialization

produces a stable training scheme, where the loss starts at a reasonable point and tends to

drop. Figure 8.1 from Appendix 1 shows a similar trend while training Conv6 for different

pruning percentages.

Figure 5.3. Training of Conv6 on CIFAR-10 with 50% pruning: Patch-
esInit converges faster than Random and to higher performance value. Sub-
plot (a) shows the test accuracy and (b) the loss during training.

27

5.4. Training the Supermask on CIFAR-100

In this section, we experiment and evaluate the performance of PatchesInit on CIFAR-

100. Similar to Section 5.3, we train Conv2, Conv4, and Conv6 models with all the prun-

ing rates mentioned in Section 5.2. In this case, we analyze the Top5 accuracy for a more

representative performance measure and report the Top1 results in Appendix 2. Addition-

ally, we run each experiment with three different seeds, where each line represents the

mean result, and the shaded area represents the standard deviation we obtain (Figure 5.4).

We show all the exact results in Tables 8.4 - 8.9 from Appendix 2.

Figure 5.4. Training on CIFAR-100: Supermask Top5 test performance of
Conv2, Conv4, and Conv6 models achieved with 10-90% pruning rates.
PatchesInit outperforms Random for all pruning rates. Subplot (a) shows
the performance of Conv2, (b) Conv4, and (c) Conv6 models.

Figure 5.4 shows a similar trend with even better results than those we obtain for

CIFAR-10, especially for 30-70% pruning rates where Supermask training does find ef-

fective subnetworks. For Conv2, PatchesInit outperforms the baseline for all pruning rates.

We see 6-7% accuracy improvements for 30-70% pruning rates. The same goes for Conv4

28

and Conv6, where we now see a remarkable performance difference. For Conv4, Patch-

esInit increases accuracy from 7-9% for 30-70% pruning rates, but now shows inferior

improvements for those cases where Supermask training does not seem to find effective

subnetworks; only improving by 11% and 22% for 10% and 90% pruning rates, respec-

tively. For a fair comparison, Table 8.6 shows a 7% and 12% Top1 accuracy increase for

10% and 90% pruning rates, respectively; which is inferior to the 11% and 22% Top1

accuracy increase presented in Table 8.2.

Results for Conv6 are similar to Conv4. For 30-70% pruning rates, Figure 5.4.c shows

that PatchesInit outperforms the baseline, improving accuracy between 2-11%. Different

from CIFAR-10, in this case, PatchesInit could not find an effective subnetwork for Conv6

and 10% pruning. Also, For 90% pruning, our method achieved better performance than

Random (improved by 3%), but with a smaller accuracy improvement than on CIFAR-10

(11% increase in accuracy).

Figure 5.5. Training of Conv6 on CIFAR-100 with 50% pruning: Patch-
esInit converges faster than Random and to higher performance value. Sub-
plot (a) shows the Top5 test accuracy and (b) the loss during training.

In Figure 5.5, we show training curves for Conv6 with 50% pruning rate, from where

we can see that PatchesInit again provides a better starting point than random initialization.

29

Our method surpasses the baseline for 24% in accuracy in the first epoch and presents a

faster convergence. Analyzing Figure 5.5.b, we can also note that initializing the weights

with PatchesInit does provide a stable training scheme. Figure 8.2 from Appendix 2 shows

a similar trend while training Conv6 for different pruning percentages.

We conclude that initializing the weights of shallow ConvNets with PatchesInit in-

creases the performance of the subnetworks we find under Supermask training. Addition-

ally, we can also conclude that PatchesInit generates weights that provide a better starting

point than random initialization and produce a stable training scheme.

30

5.5. Training the Supermask on TinyImagenet-200

In this section, we experiment and evaluate the performance of PatchesInit on TinyImagenet-

200. We train a ResNet-18 model for 10-70% pruning rates, excluding 90%, because the

Supermask does not seem to find effective subnetworks for those cases.

Table 5.2. Test results achieved for PatchesInit on a ResNet-18 model
trained on TinyImagenet-200: Partial-PatchesInit outperforms the baseline
for all pruning rates.

Init method 10% pruning 30% pruning 50% pruning 70% pruning

Random 50.0 54.1 52.7 51.1

PatchesInit 47.6 53.0 52.5 48.9

Partial-PatchesInit 50.5 55.1 54.0 51.9

On TinyImagenet-200, we observe different trends to CIFAR-10 and CIFAR-100. Re-

sults from Table 5.2 show that PatchesInit did not improve the performance of the base-

line, decreasing performance from 0.2-2.4% in accuracy for 50% and 10% pruning rates,

respectively.

The main reason for this decay lies in the fact that the method cannot initialize the

weights effectively under high compositionality levels. We investigate other possible

causes in Appendix 3 that help us conclude this.

We create a modified version of PatchesInit that only initializes the first block of

layers of a ResNet-18 model, leaving the rest of the network with their initial random

weights. We refer to this method as Partial-PatchesInit. We train Partial-PatchesInit on

TinyImagenet-200, where we initialize the rest of the network with the same random val-

ues as the baseline for a fair comparison.

Table 5.2 shows that Partial-PatchesInit does improve the performance of the baseline

for all pruning rates. We see accuracy increases varying from 0.5-1.3% for 10% and 50%

pruning rates, respectively; demonstrating that by only initializing the first quarter of the

31

layers with PatchesInit, Supermask training finds subnetworks with better performance

than random initialization.

32

5.6. Ablation studies

In this section, we perform ablation studies over relevant design and implementation

issues behind our proposed method. We perform all experiments with a Conv6 model with

30%, 50%, and 70% pruning rates on CIFAR-100 using the hyperparameters mentioned

in Section 5.2. We report the Top5 accuracy and the time cost is in minutes. We use the

same random seed for all experiments.

5.6.1. Patch extraction and clustering

First, we experiment over the number of patches P to extract, and the number of

clusters C. We analyze the effect both variables have when initializing the weights of

a model with PatchesInit, comparing the accuracy obtained and the computational cost

associated.

KMeans has a complexity of O(x ∗ y ∗ z), where x is the number of data points, y

the number of clusters, and z the dimensionality of each data point. As mentioned in

Section 4.2.1, we extract patches of the same size as the filters in each layer, so we do

not experiment over z. On the other hand, we expect a linear increase in computational

complexity when increasing x or y, which would be P or C in our case.

We implement five different P and C configurations, varying from 50,000-1,000,000

patches and 500-10,000 clusters, respectively. Additionally, we include a variant, which

we refer to as SimpleInit, where C is exactly the number of filters in each layer (64, 64,

128, 128, 256, 256 clusters for Conv6), skipping the selection step. SimpleInit selects the

minimum number of clusters, therefore we consider it as a floor.

Table 5.3 displays results for 50% pruning. We find subnetworks with the best per-

formance when P is 50,000 and C is 500, outperforming SimpleInit by 1.6% in terms

of accuracy. Nevertheless, for P and C values less than 200,000 and 2,000, respectively,

PatchesInit finds subnetwork with competitive results. When P and C are greater than

33

Table 5.3. Top5 accuracy and time cost in minutes achieved by varying the
number of patches P to extract and the number of clusters C, for Conv6
model trained on CIFAR-100 with 50% of pruning. The best performance
is achieved when P is 50,000 patches and C is 500 clusters.

Number patches P Number clusters C Accuracy % Time Cost (minutes)

10k SimpleInit 74.7 2.0

50k 500 76.3 11.5

100k 1,000 75.5 23.4

200k 2,000 74.4 41.6

500k 5,000 73.7 147.1

1M 10,000 71.8 308.9

those values, we notice a considerable decrease reaching 4.5% in terms of accuracy. In

Appendix 4, we show the results for 30% and 70% pruning, similar to those just men-

tioned.

Table 5.3 shows that computational complexity does increase linearly with P and C.

PatchesInit takes around 12 minutes to initialize the weights when P is 50,000 and C

is 500, which we consider as an affordable cost considering our hardware restrictions.

However, SimpleInit finds subnetworks with competitive performance at the expense of a

low computational cost. This variant could be interesting for other research environments

with lower computational resources.

Additionally, we study the average entropy of the selected clusters in each layer (Ta-

ble 5.4). As a reference, the minimum and maximum entropy for CIFAR-100 is 0 and

6.64, respectively. All configurations of P and C, except SimpleInit, effectively select

high-entropy clusters for low-level layers and low-entropy clusters for high-level layers,

following the intuition from Section 4.2.2. As mentioned in Section 5.2, we chose layer

D as the last layer of the model (layer 6 in this case), which is reflected in the decrease

of the average entropy of the selected clusters between layers 5 and 6. On the other hand,

SimpleInit struggles to select clusters with high entropy for low-level layers.

34

Table 5.4. Mean entropy of the selected clusters of each layer achieved by
varying the number of patches P to extract and the number of clusters C,
for Conv6 model trained on CIFAR-100 with 50% of pruning.

Number clusters C Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

SimpleInit 4.75 5.02 4.41 4.40 3.78 3.62

500 5.75 5.85 5.57 5.63 5.44 4.19

1,000 5.87 5.95 5.75 5.78 5.59 4.09

2,000 6.08 6.03 5.94 6.18 6.03 4.02

5,000 6.07 6.05 6.11 6.19 6.11 3.54

10,000 6.18 6.24 6.09 6.18 6.00 2.55

5.6.2. Cluster selection

The second relevant design and implementation issue relies on the layer D, where the

selection criteria for clusters changes. As mentioned in Section 4.2.2, low-level layers

should be initialized with patterns representing all classes, while deeper layers should be

initialized with discriminant patterns. The question is, where do we set the change? Ac-

curacy is the only evaluation criterion this time (no extra computational cost associated).

To test this hyperparameter, we experiment with six configurations varying layer D.

3C-3D is a Conv6 model where we initialize the first three layers selecting common clus-

ters (3C) and the last three layers selecting discriminant clusters (3D). In this case, we set

the change on layer 4 (4th layer being initialized with discriminant clusters), so D would

be 4. 6C-0D initializes all layers with common clusters (D does not apply) and acts as a

floor for this experiment. On the other hand, 0C-6D initializes all layers with discriminant

clusters (D is 0) and acts as a ceiling.

Table 5.5 provides the results of these experiments. As we can see, 5C-1D presents the

highest results (D is 6), where we initialize the first five layers selecting common clusters

and only the last layer with discriminant clusters. Table 8.12 and Table 8.13 (Appendix 4)

show similar results for different pruning rates.

35

Table 5.5. Accuracy achieved by varying layerD where the selection crite-
ria of clusters changes, for Conv6 model trained on CIFAR-100 with 50%
of pruning.

Selection configuration D Accuracy %

6C-0D - 74.8

5C-1D 6 76.3

4C-2D 5 75.3

3C-3D 4 75.2

2C-4D 3 74.5

1C-5D 2 73.8

0C-6D 1 70.9

We notice that initializing at least some high-level layers with discriminant clusters

increases the performance of the subnetworks we find. 6C-0D finds subnetworks with

competitive performance, but they are outperformed by 5C-1D, 4C-2D, and 3C-3D. Ad-

ditionally, we see that performance decreases when we initialize more than two or three

layers with discriminant clusters, suggesting that the model needs to have at least more

than half of the layers initialized with common clusters.

Another interesting insight relies on the necessity of initializing at least one low-level

layer with common clusters. Table 5.5 shows a remarkable 3% decrease in accuracy for

0C-6D compared with 1C-5D, suggesting that initializing at least the first layer with com-

mon clusters is substantial.

36

5.7. Comparing with other initializations

The last experiment of this investigation compares PatchesInit with respect to other

frequently used initialization methods. This verifies if PatchesInit presents the state of the

art performance for Supermask training. We test on CIFAR-100 and run each experiment

with three different seeds, reporting the mean Top5 accuracy and standard deviation.

We compare PatchesInit with respect to four other initialization methods. Xavier Nor-

mal N (0, σ) (previous baseline), Xavier Uniform U(−σ, σ), Kaiming Normal N (0, σ)

(He et al., 2015) and Kaiming Uniform U(−σ, σ). The parameter σ represents the nor-

malization factor used in Xavier and Kaiming initialization methods.

Figure 5.6. Comparing different initialization methods on CIFAR-100.
PatchesInit does not outperform Kaiming initialization. Subplot (a) shows
the performance of Conv2, (b) Conv4, and (c) Conv6 models.

Results are shown in Figure 5.6. First, we can notice that PatchesInit does not out-

perform Kaiming initialization, and therefore is not the state of the art for Supermask

training. Even though they present better results, Kaiming initialization presents unstable

results that may vary up to 4% in terms of accuracy for different seeds. Our preliminary

37

results had shown similar results, which was the main reason for deciding to use Xavier

instead of Kaiming for our method. Future work plans to use Kaiming intuition for our

method and solving their stability problem under Supermask training.

Another interesting insight is that for both, Xavier and Kaiming, Normal distributions

outperformed Uniform distributions. Additionally, PatchesInit beat Xavier Uniform for

all pruning rates and model configurations.

38

6. CONCLUSIONS

This thesis hypothesizes that initializing weights with patterns found in the training

data, will increase the generalization test performance of the subnetworks detected under

Supermask training. We propose a novel weight initialization method for ConvNets under

Supermask training, which we refer to as PatchesInit.

This hypothesis is fulfilled by initializing the weights of the model with PatchesInit.

Section 5.3 and Section 5.4 show that for rather shallow ConvNets, initializing the weights

of the model with PatchesInit increases the performance of the subnetworks we find. For

CIFAR-10, we see increases in Top1 accuracy varying from 3-6% for Conv2, 2-22% for

Conv4, and 1-48% for Conv6. For CIFAR-100, we see increases in Top5 accuracy varying

from 4-8% for Conv2, 7-22% for Conv4, and 2-11% for Conv6. Additionally, we can

also conclude that PatchesInit generates weights that provide a better starting point than

random initialization and produce a stable training scheme.

In Section 5.5, we can notice that, in the case of a ResNet-18 model, PatchesInit does

not outperform the baseline. We conclude that PatchesInit cannot initialize the weights

effectively under high levels of compositionality. However, we further propose a modified

version of the method, which we refer to as Partial-PatchesInit, that effectively outper-

forms the baseline by 0.5-1.3% in Top1 accuracy under different pruning rates.

The ablation studies from Section 5.6 allow us to find the best configuration of hy-

perparameters required by PatchesInit. We demonstrate that our method performs best

when extracting 50,000 patches from the input data, generating 500 clusters, and only ini-

tializing the last layer selecting discriminant clusters. We find subnetworks with the best

performance with this configuration, and additionally, initialize the layers with our desired

combination of common and discriminant clusters.

From our last experiment, shown in Section 5.7, we can conclude that PatchesInit is

not state of the art for Supermask training. However, we can conclude that for rather

39

shallow ConvNets, PatchesInit outperforms both Xavier Normal and Xavier Uniform ini-

tializations.

The Lottery Ticket Hypothesis and the Supermask seek to make models more efficient,

finding subnetworks that predict faster and reduce hardware requirements. This thesis

aims to pursue this mission and propose a method to find subnetworks with even better

performance. We find subnetworks that use 70%, 50%, or even 30% of the full model

weights reaching better performance than Xavier initialization.

40

7. FUTURE WORK

Even though this investigation showed advances in this area, there is still a long road

ahead.

The first line of future work would be to make PatchesInit more robust under high

levels of compositionality. In this way, PatchesInit could then initialize all layers of a

ResNet-18 model and find subnetworks with even better performance. Additionally, it

would then be interesting to apply PatchesInit to even deeper models such as ResNet-50

and ResNet-101, or other deep architectures such as VGG or AlexNet.

Another line of future work is to include the Kaiming initialization intuition in our

method, to improve even further the results of PatchesInit and hopefully obtain stable

results.

One last line of future work lies in verifying whether initializing the weights of a

model with PatchesInit effectively improves the performance of the subnetworks found

using other Supermasks methods. In particular, it would be relevant to try the Supermask

procedure from Zhou et al. (2019).

41

REFERENCES

Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34–37.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and

new perspectives. IEEE transactions on Pattern Analysis and Machine Intelligence, 35(8),

1798-1828.

Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients

through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5, 157-66.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Caron, M., Morcos, A., Bojanowski, P., Mairal, J., & Joulin, A. (2020). Pruning convolu-

tional neural networks with self-supervision. arXiv preprint arXiv:2001.03554.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley-

Interscience.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 1,

pp. 886–893).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-

scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern

Recognition (pp. 248–255).

42

Desai, S., Zhan, H., & Aly, A. (2019). Evaluating lottery tickets under distributional

shifts. arXiv preprint arXiv:1910.12708.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio, S. (2010).

Why does unsupervised pre-training help deep learning? Journal of Machine Learning

Research, 11(19), 625-660.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adapta-

tion of deep networks. In Proceedings of the 34th International Conference on Machine

Learning (Vol. 70, p. 1126–1135).

Frankle, J., & Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable

neural networks. In International Conference on Learning Representations.

Frankle, J., Schwab, D. J., & Morcos, A. S. (2020). The early phase of neural network

training. arXiv preprint arXiv:2002.10365.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics (Vol. 9, pp. 249–256).

Gomez, A. N., Zhang, I., Kamalakara, S. R., Madaan, D., Swersky, K., Gal, Y., & Hin-

ton, G. E. (2019). Learning sparse networks using targeted dropout. arXiv preprint

arXiv:1905.13678.

Haldorai, A., & Ramu, A. (2019). Supervised, unsupervised and reinforcement learning -

a detailed perspective. Journal of Advanced Research in Dynamical and Control Systems,

11, 429-433.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (pp. 1026–1034).

43

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.

IEEE Conference on Computer Vision and Pattern Recognition.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jin, X., & Han, J. (2010). K-means clustering. In Encyclopedia of Machine Learning (pp.

563–564).

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny

images.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems

(pp. 1097–1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel,

L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1(4), 541–551.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015). Deeply-supervised nets. In

Artificial Intelligence and Statistics (pp. 562–570).

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief net-

works for scalable unsupervised learning of hierarchical representations. In Proceedings

of the 26th annual International Conference on Machine Learning (p. 609–616).

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings

of the seventh IEEE International Conference on Computer Vision (Vol. 2, pp. 1150–

1157).

44

Morcos, A., Yu, H., Paganini, M., & Tian, Y. (2019). One ticket to win them all: gener-

alizing lottery ticket initializations across datasets and optimizers. In Advances in Neural

Information Processing Systems (pp. 4932–4942).

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture mea-

sures with classification based on featured distributions. Pattern recognition, 29(1), 51–

59.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent

neural networks. In International Conference on Machine Learning (pp. 1310–1318).

Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11),

559–572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duch-

esnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12, 2825–2830.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., & Rastegari, M. (2020).

What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (pp. 11893–11902).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by

back-propagating errors. In Neurocomputing: foundations of research (p. 696–699).

Savarese, P., Silva, H., & Maire, M. (2019). Winning the lottery with continuous sparsifi-

cation. arXiv preprint arXiv:1912.04427.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical

Journal, 27(3), 379-423.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale

45

image recognition. arXiv preprint arXiv:1409.1556.

Steinbach, M., Ertöz, L., & Kumar, V. (2004). The challenges of clustering high dimen-

sional data. In New directions in Statistical Physics (pp. 273–309).

Uijlings, J. R., Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for

object recognition. International Journal of Computer Vision, 104(2), 154–171.

VB, S., & David, J. (2015). Significance of dimensionality reduction in image processing.

Signal Image Processing : An International Journal, 6, 27-42.

You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X., . . . Lin, Y. (2019). Drawing

early-bird tickets: Towards more efficient training of deep networks. arXiv preprint

arXiv:1909.11957.

Zhong, G., Wang, L.-N., Ling, X., & Dong, J. (2016). An overview on data representation

learning: From traditional feature learning to recent deep learning. The journal of Finance

and Data Science, 2(4), 265 - 278.

Zhou, H., Lan, J., Liu, R., & Yosinski, J. (2019). Deconstructing lottery tickets: Zeros,

signs, and the supermask. In Advances in Neural Information Processing Systems (pp.

3597–3607).

46

8. APPENDICES

8.1. Appendix 1: Results for CIFAR-10

Table 8.1. Top1 test accuracy results achieved for PatchesInit on a Conv2
model trained on CIFAR-10.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 48.1 64.4 67.3 61.2 37.7

PatchesInit 52.4 68.3 70.7 67.4 43.1

Table 8.2. Top1 test accuracy results achieved for PatchesInit on a Conv4
model trained on CIFAR-10.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 50.6 72.7 77.0 71.0 30.0

PatchesInit 62.0 76.9 78.9 74.1 52.3

Table 8.3. Top1 test accuracy results achieved for PatchesInit on a Conv6
model trained on CIFAR-10.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 12.3 74.7 79.6 74.8 28.6

PatchesInit 60.1 80.9 81.0 76.1 40.0

47

Figure 8.1. Training of Conv6 on CIFAR-10 with 30% and 70% pruning
rates. Subplot (a) shows the Top1 test accuracy during training for 30%
pruning rate, and (b) for 70% pruning rate.

48

8.2. Appendix 2: Results for CIFAR-100

Table 8.4. Top1 test accuracy results achieved for PatchesInit on a Conv2
model trained on CIFAR-100.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 15.3 ±0.7 25.5 ±0.5 28.3 ±0.5 23.8 ±0.4 6.3 ±0.6

PatchesInit 17.9 ±0.6 30.1 ±0.5 33.5 ±0.4 28.7 ±0.6 11.5 ±0.5

Table 8.5. Top5 test accuracy results achieved for PatchesInit on a Conv2
model trained on CIFAR-100.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 37.8 ±0.4 53.0 ±0.4 56.4 ±0.5 50.2 ±0.4 20.3 ±0.5

PatchesInit 42.2 ±0.7 59.0 ±0.6 63.3 ±0.4 57.4 ±0.6 28.6 ±0.5

Table 8.6. Top1 test accuracy results achieved for PatchesInit on a Conv4
model trained on CIFAR-100.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 16.3 ±0.3 31.0 ±0.4 36.7 ±0.4 30.1 ±0.5 4.9 ±0.5

PatchesInit 23.2 ±0.7 40.0 ±0.6 42.6 ±0.6 37.3 ±0.7 16.6 ±0.6

Table 8.7. Top5 test accuracy results achieved for PatchesInit on a Conv4
model trained on CIFAR-100.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 39.5 ±0.3 60.2 ±0.5 65.7 ±0.4 59.4 ±0.4 18.1 ±0.6

PatchesInit 50.1 ±0.6 69.4 ±0.6 72.5 ±0.5 66.9 ±0.5 39.8 ±0.4

49

Table 8.8. Top1 test accuracy results achieved for PatchesInit on a Conv6
model trained on CIFAR-100.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 1 ±0.5 34.4 ±0.6 40.9 ±0.5 37.7 ±0.6 5.4 ±0.7

PatchesInit 1.4 ±0.6 46.3 ±0.5 47.7 ±0.6 38.9 ±0.4 8.2 ±0.6

Table 8.9. Top5 test accuracy results achieved for PatchesInit on a Conv6
model trained on CIFAR-100.

Init method 10% pruning 30% pruning 50% pruning 70% pruning 90% pruning

Random 5.7 ±0.5 64.0 ±0.6 70.4 ±0.6 66.5 ±0.5 19.7 ±0.6

PatchesInit 5.9 ±0.5 74.8 ±0.7 76.3 ±0.6 68.3 ±0.4 23.5 ±0.8

Figure 8.2. Training of Conv6 on CIFAR-100 with 30% and 70% pruning
rates. Subplot (a) shows the Top5 test accuracy during training for 30%
pruning rate, and (b) for 70% pruning rate.

50

8.3. Appendix 3: Analyzing PatchesInit for ResNet-18 on TinyImagenet-200

Table 5.2 shows that PatchesInit does not outperform the baseline for ResNet-18 on

TinyImagenet-200. We analyze three different possible problems and conclude that the

main problem relies on initializing the weights under deep compositionality levels.

First, we thought that there was a problem while reducing the dimensionality of the

patches in the deeper layers. In the case of ResNet-18, patches in the last block have

size 4,608, so we experimented reducing the dimensionality to 64 instead of 27. The

subnetworks we found did not improve the performance of our original method.

Second, we thought there was a problem with the number of patches P to extract and

the number of clusters C for the deeper layers. Considering that deeper layers have more

filters than shallower layers, we tested increasing P to 200,000 and C to 2,000 clusters for

the deeper layers. This experiment produced worse results than our original method.

Third, we thought only initializing the last layer of the network with discriminant

clusters was not enough. We experimented with initializing the last block of layers with

discriminant clusters but obtained similar results. We also tried initializing all layers with

common clusters, but again achieved similar results.

We then conclude that the main reason for this decay lies in that the patterns we ex-

tract from the more in-depth activation maps are not useful for initializing weights. Our

method fails to compose patches for deep layers. To prove that this was the problem, we

experimented using PatchesInit to initialize only some network layers, leaving the rest

with random values. We refer to this variant as Partial-PatchesInit.

We experimented initializing the weights with Partial-PatchesInit only up to the first,

second, and third block of layers (up to the fourth would be equivalent to PatchesInit). We

concluded that Partial-PatchesInit produces effective weights when initializing up to the

second block (9 convolutional layers) but then decreased in performance when initializing

51

up to the third block. The best configuration found was by initializing only the first block

of layers, whose results we report in Table 5.2.

52

8.4. Appendix 4: Results for ablation studies

Table 8.10. Top5 test accuracy and time cost in minutes achieved by vary-
ing the number of patches P to extract and the number of clusters C, for
Conv6 model trained on CIFAR-100 with 30% of pruning.

Number patches P Number clusters C Accuracy % Time Cost (minutes)

10k SimpleInit 74.2 2.0

50k 500 74.8 9.4

100k 1,000 74.4 35.7

200k 2,000 74.5 84.1

500k 5,000 73.8 226.4

1M 10,000 73.1 335.1

Table 8.11. Top5 test accuracy and time cost in minutes achieved by vary-
ing the number of patches P to extract and the number of clusters C, for
Conv6 model trained on CIFAR-100 with 70% of pruning.

Number patches P Number clusters C Accuracy % Time Cost (minutes)

10k SimpleInit 65.7 2.0

50k 500 68.3 12.2

100k 1,000 67.1 23.9

200k 2,000 65.7 44.7

500k 5,000 65.5 104.7

1M 10,000 64.9 219.6

53

Table 8.12. Top5 test accuracy achieved by varying layer D where the se-
lection criteria of clusters changes, for Conv6 model trained on CIFAR-100
with 30% of pruning.

Selection configuration D Accuracy %

6C-0D - 73.4

5C-1D 6 74.8

4C-2D 5 74.3

3C-3D 4 74.0

2C-4D 3 73.1

1C-5D 2 72.0

0C-6D 1 70.2

Table 8.13. Top5 test accuracy achieved by varying layer D where the se-
lection criteria of clusters changes, for Conv6 model trained on CIFAR-100
with 70% of pruning.

Selection configuration D Accuracy %

6C-0D - 66.5

5C-1D 6 68.3

4C-2D 5 67.5

3C-3D 4 66.7

2C-4D 3 65.0

1C-5D 2 63.9

0C-6D 1 60.0

54

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Motivation
	1.2. Hypothesis

	2. RELATED WORK
	2.1. Convolutional Neural Networks
	2.2. Weight Initialization
	2.3. The Lottery Ticket Hypothesis

	3. BACKGROUND THEORY
	3.1. Xavier Initialization
	3.2. The edge-popup algorithm
	3.3. Entropy

	4. PROPOSED METHOD
	4.1. Intuition
	4.2. Method
	4.2.1. Extracting patches from training data
	4.2.2. Clustering patches and forming patterns
	4.2.3. Initializing filter weights from patterns
	4.2.4. Composing patterns for higher-level layers

	4.3. Algorithm

	5. EXPERIMENTS, RESULTS AND ANALYSIS
	5.1. Datasets
	5.2. Implementation and hyperparameters
	5.3. Training the Supermask on CIFAR-10
	5.4. Training the Supermask on CIFAR-100
	5.5. Training the Supermask on TinyImagenet-200
	5.6. Ablation studies
	5.6.1. Patch extraction and clustering
	5.6.2. Cluster selection

	5.7. Comparing with other initializations

	6. CONCLUSIONS
	7. FUTURE WORK
	REFERENCES
	8. APPENDICES
	8.1. Appendix 1: Results for CIFAR-10
	8.2. Appendix 2: Results for CIFAR-100
	8.3. Appendix 3: Analyzing PatchesInit for ResNet-18 on TinyImagenet-200
	8.4. Appendix 4: Results for ablation studies

