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¿En qué reino, en qué siglo, bajo qué silenciosa 

conjunción de los astros, en qué secreto día 

que el mármol no ha salvado, surgió la valerosa 

y singular idea de inventar la alegría? 

 

Con otoños de oro la inventaron. El vino 

fluye rojo a lo largo de las generaciones 

como el río del tiempo y en el arduo camino 

nos prodiga su música, su fuego y sus leones. 

 

En la noche del júbilo o en la jornada adversa 

exalta la alegría o mitiga el espanto 

y el ditirambo nuevo que este día le canto 

 

otrora lo cantaron el árabe y el persa. 

Vino, enséñame el arte de ver mi propia historia 

como si ésta ya fuera ceniza en la memoria. 

 

 

Soneto del vino 

Jorge Luis Borges 
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PABLO MARTÍN CAÑÓN AMENGUAL 

ABSTRACT 

Oenococcus oeni is the main agent in Malolactic fermentation (MLF) in wines, 

responsible for the decarboxylation of L-malic into L-lactic acid. MLF is a key process 

in winemaking, reducing the acidity of wine and contributing with flavor complexity 

and microbiological stability, but is erratic and unpredictable. Despite its pivotal role, 

the whole process is not yet fully understood. Aiming to improve the comprehension 

of this bacterium and this process, we constructed and exhaustively curated the first 

genome-scale metabolic model (GSMM) of Oenococcus oeni PSU-1 strain (iSM454). 

Then, we	studied	its	growth	under	different	ethanol	conditions,	determining	the	

redistribution	 of	 intracellular	 metabolic	 fluxes,	 and ultimately, we generated a 

malolactic enzyme (MLE) homology model.  

In silico experiments revealed that nutritional requirements are predicted by the 

iSM454 GSMM with an accuracy of 93%. Then, the model was applied to determine 

the non-growth associated maintenance. Results showed that O. oeni cultured at 12% 

ethanol concentration spent thirtyfold more ATP to stay alive than in the absence of 

ethanol. Most of this ATP was employed for extruding protons outside the cell.  

In vitro experiments were performed in MaxOeno, a wine-like defined culture medium 

developed and optimized by us. The integration of experimental data with iSM454 
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model allowed to determine the redistribution of intracellular metabolic fluxes, under 

different ethanol conditions (0 to 12% v/v). Four growth phases were clearly identified 

during the batch cultivation of O. oeni PSU-1 strain, according to the consumption of 

malic and citric acids, sugars and amino acids uptake, and biosynthesis rates of 

metabolic products – biomass, erythritol, mannitol, and acetic acid, among others. We 

found that, under increasing ethanol conditions, O. oeni favors anabolic reactions 

related with cell maintenance, as the requirements of NAD(P)+ and ATP augment.  

Finally, a MLE homology model, together with quantum polarized ligand 

docking (QPLD), was used to describe the MLE binding pocket and pose of L-malic 

acid (MAL) and it deprotonates states MAL− and MAL2−. MAL2− has the lowest 

∆Gbinding, followed by MAL− and MAL, with values of −23.8, −19.6, and −14.6 kJ/mol, 

respectively, consistent with those obtained by isothermal titration calorimetry (ITC) 

assays. Furthermore, molecular dynamics and MM/GBSA results suggest that only 

MAL2− displays an extended open conformation at the binding pocket, satisfying the 

geometrical requirements for Mn2+ coordination, a critical component of MLE activity.  

We expect that the GSMM (iSM454) and MLE homology model described 

here, supply unique tools to understand and predict the successful completion of wine 

malolactic fermentation carried out by O. oeni, as well as the difficulties the process 

can eventually face in any particular physico-chemical condition. 
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PABLO MARTÍN CAÑÓN AMENGUAL 

RESUMEN 

Oenococcus oeni es el agente principal de la fermentación maloláctica en vinos, 

responsable de la descarboxilación del ácido L-málico a ácido L-láctico. Es un proceso 

clave en la vinificación, reduciendo la acidez y aportando complejidad aromática y 

estabilidad microbiológica, pero es errático e impredecible Pese a su rol crucial, el 

proceso no es aún entendido del todo. Para mejorar la comprensión de la bacteria y el 

proceso, se construyó y curó el primer modelo metabólico a escala genómica de O. 

oeni cepa PSU-1 (iSM454). Luego, se estudió su crecimiento bajo distintas condiciones 

de etanol, determinando la redistribución de los flujos metabólicos intracelulares, y, 

por último, se generó un modelo por homología de la enzima maloláctica. 

Los experimentos in silico revelaron que el modelo iSM454 predice los requerimientos 

nutricionales con una exactitud del 93%. Luego, éste se aplicó para determinar la 

energía de mantención no asociada a crecimiento. Los resultados mostraron que el O. 

oeni cultivado al 12% de concentración de etanol gastaba treinta veces más ATP para 

mantenerse vivo que en su ausencia. La mayor parte de este ATP era empleado en la 

extrusión de protones fuera de la célula. 

Los experimentos in vitro se llevaron a cabo en MaxOeno, un medio de cultivo definido 

y similar al vino, desarrollado y optimizado para el estudio. La integración de los datos 



	
	

xvi	

experimentales con el modelo permitió determinar la redistribución de los flujos 

metabólicos intracelulares bajo diferentes condiciones de etanol (0 a 12% v/v). Se 

identificaron claramente cuatro fases de crecimiento durante el cultivo por lote de la 

cepa PSU-1 del O. Oeni, según el consumo de los ácidos málico y cítrico, la absorción 

de azúcares y aminoácidos, y las tasas de biosíntesis de productos metabólicos – 

biomasa, eritritol, manitol y ácido acético, entre otros. Se halló que, bajo condiciones 

de etanol crecientes, el O. oeni favorece reacciones anabólicas relacionadas con el 

mantenimiento celular, mientras los requerimientos de NAD(P)+ y ATP aumentan. 

Finalmente, se usó un modelo por homología de la enzima maloláctica y la técnica de 

quantum polarized ligand docking para describir el sitio de unión y ubicación del ácido 

L-málico (MAL) y sus estados desprotonados MAL- y MAL2-. MAL2- tuvo el más bajo 

∆Gbinding, seguido por MAL- y MAL, con valores de −23.8, −19.6 y −14.6 kJ/mol, 

respectivamente, consistente con los valores obtenidos en los ensayos de titulación de 

calorimetría isotérmica (ITC). Los resultados de dinámica molecular y de MM/GBSA 

sugieren que sólo el MAL2- exhibe una conformación abierta extendida en el sitio de 

unión, que cumple los requerimientos geométricos para la coordinación con Mn2+, 

componente crítico de la actividad de la enzima maloláctica. 

Se espera que iSM454 y el modelo de homología para la enzima maloláctica descritos 

aquí, provean herramientas únicas para comprender y predecir la compleción de la 

fermentación maloláctica en el vino por O. Oeni, así como los inconvenientes que el 

proceso puede eventualmente afrontar en cualquier condición físico-química particular.  
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1. INTRODUCTION 

1.1 Motivation 

Chile is the sixth wine producer and the fourth wine exporter worldwide. The 

international market is dominated by three main exporters (Spain, Italy and France), 

which together account for over 50% of volume and 59% of value share (OIV, 2019). 

In this highly competitive scenario, Chile is year after year fighting with other 

producers for its positioning in the global market right after the three main producers.  

Both, quality and quantity of wine are critical for maintaining and hopefully 

increasing our participation in these changing and competitive markets, urging 

producers and researchers for continuous process improvement and optimization of 

wine organoleptic properties.  

Besides Alcoholic Fermentation (AF), mainly conducted by yeast, the 

production of some wines also involves Malolactic Fermentation (MLF), conducted by 

lactic acid bacteria. MLF is a key secondary fermentation for the production of most 

red wines and some white and sparkling wines. It is critical for developing certain 

organoleptic features, such as reduced acidity and flavor complexity; as well as for 

increasing microbiological stability (Henick-Kling et al., 1994; Zoecklein et al., 1999). 

Since red wine varieties account for 65% of Chilean wine production (SAG, 2018), 

optimal management of MLF is critical; furthermore, Chardonnay, the fourth wine 

grape variety cultivated in Chile (SAG, 2018), is also frequently subjected to MLF. 

Altogether, MLF is involved in the production of 3 in 4 wines of the country.   

This secondary fermentation involves the NAD+ and manganese-dependent 

decarboxylation of L-malate to L-lactate (Kunkee, 1974; Williams et al., 1984). 

Oenococcus oeni is the main LAB species involved in MLF. Consequently, the success 

of this secondary fermentation depends on the ability of O. oeni to grow under the 

hostile conditions prevailing in wine (Gockowiak & Henschke, 2003; Le Marrec et al., 

2007). Unfortunately, O. oeni is not always able to achieve this task under these harsh 

environments, often generating sluggish or even, stuck malolactic fermentations. For 

this reason, this process is considered one of the most difficult to manage in 
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winemaking, involving unpredictable timings and results. Often, MLF inconveniently 

delays the overall process of winemaking and therefore results in significant economic 

losses. Several studies have been carried out with the aim of understanding the 

metabolism of O. oeni under oenological culture conditions (Bourdineaud et al., 2003; 

Cafaro et al., 2014; Carreté et al., 2002; da Silveira et al., 2003; Grandvalet et al., 2005, 

2008; Olguín et al., 2009). However, MLF still remains mostly an unpredictable, 

capricious and precarious operation in the winemaking process. 

The present research seeks to contribute to the understanding of O. oeni 

metabolism under oenological conditions and its role in MLF. The first chapter of the 

thesis deals with the construction of the first Genome-Scale Metabolic Model (GSMM) 

for O. oeni strain PSU-1. The latter was exhaustively curated after comparing in silico 

experiments with experimental cultures, focusing on the production of metabolites with 

either organoleptic, microbiological, or oenological interest. In the second chapter, we 

focused on the metabolic response of the malolactic bacterium under increasing ethanol 

contents. Finally, the third chapter presents a completely different approach to 

understanding malolactic fermentation. Here, we explored the question of the reaction 

mechanism of the malolactic enzyme. Indeed, the reaction mechanism of the malolactic 

enzyme is not fully understood yet, and three different pathways for the 

decarboxylation of malic acid have been proposed, so far (Flesch, 1969; Korkes & 

Ochoa, 1948; Schümann et al., 2013). For this purpose, we first built a structural model 

of the malolactic enzyme (MLE), which was then employed for identifying the binding 

sites and estimating the binding free energies of potential substrates, via molecular 

docking. Measurements of the MLE affinity with potential substrates using a 

calorimetric essay was employed to validate in silico results. 

1.2 Hypothesis 

The construction of a genome-scale metabolic model of Oenococcus oeni (strain PSU-

1) and the three-dimensional modeling of the malolactic enzyme would allow a better 

comprehension of its metabolism and growth capabilities under different ethanol 

levels, giving a more precise understanding of malolactic fermentation in winemaking. 
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1.3 Objectives 

The main objective of this thesis is to contribute to a better comprehension, at the 

systemic level, of the metabolism of Oenococcus oeni under oenological conditions.  

For this purpose, the specific objectives of this work were the following: 

a) To construct and curate the first Genomic Scale Metabolic Model (GSMM) 

for O. oeni strain PSU-1, using the available genomic sequence.  

b) To develop a defined culture medium and characterize the kinetic parameters 

of O. oeni cultures grown under increasing ethanol content.  

c) To uncover the molecular reaction mechanism of the malolactic enzyme by 

structural modeling and thermodynamic essays.  

1.4 Approach 

We first developed several tools, either computational or experimental, that allow 

addressing, from a systemic perspective, the control of malolactic fermentation led by 

O. oeni in wines. Two different approaches were undertaken. The first one seeks to 

develop, curate and validate a genome-scale metabolic model (GSMM) for O. oeni 

strain PSU-1, including the description of its metabolic network and growth rate under 

increasing ethanol concentrations. The second aimed to generate a three-dimensional 

structural model of malolactic enzyme (MLE), for identifying which of the three 

reaction mechanisms proposed in the literature, fit better with the binding free energies 

of potential substrates estimated in silico. Calorimetric measurements of the MLE 

affinity with potential substrates were then employed to validate these in silico results. 
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1.5 General Introduction 

1.5.1 The winemaking process 

Wine is the product of a diverse microbiota, comprising several yeasts, bacteria and 

fungi, interplaying in a highly complex and nutrient rich ecological niche, the grape 

must (Piao et al., 2015). During its transformation, the latter continuously evolves to 

new physico-chemical conditions, consuming some nutrients, particularly nitrogenous 

compounds and sugars, and producing new ones, such as ethanol, fermentative aromas 

and glycerol, to name a few. These medium modifications differentially impact the 

microbial populations at different stages and generate both, promoting and stressful 

conditions, in a highly complex and delicate balance, easily perturbed and strongly 

determining the final quality of wine (Cappello et al., 2017; Chidi et al., 2018; Piao et 

al., 2015).  

During winemaking, the participating microorganisms can be either indigenous 

or introduced exogenously, i.e., starter cultures. They can impact the quality of the final 

product, either positively (lactic acid bacteria, like Oenococcus oeni and Lactobacillus 

plantarum) or negatively (Brettanomyces bruxelensis or Acetobacter aceti) (Bokulich 

et al., 2013; du Toit & Pretorius, 2000; Piao et al., 2015; Renouf et al., 2006). Besides 

the microorganisms inhabiting the grape berries, winery resident microbiota also acts 

as a potential reservoir for microbial transfer between fermentations, and seasonally 

fluctuating populations of bacteria and fungi have been detected and characterized in 

winery surfaces and machinery (Bokulich et al., 2013). 

 Two major types of fermentation can be distinguished during winemaking: 

alcoholic fermentation (AF) and malolactic fermentation (MLF). AF is the essential 

process by which grape must is transformed into wine. It is led by different yeasts and, 

to some extent, by bacteria, but mainly by the budding yeast Saccharomyces cerevisiae 

(Chidi et al., 2018). Besides ethanol, CO2  and glycerol, other secondary volatile 

metabolites, e.g. fusel alcohols, ethyl and acetate esters, carbonyls and volatile fatty 

acids are also synthesized, that contribute to the final organoleptic properties of wine 

(Cordente et al., 2012; da Mota et al., 2017; Suomalainen & Lehtonen, 1979; Swiegers 
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et al., 2005). Most fermentative aromas are formed during this step (Mateo et al., 2001; 

Sumby et al., 2010). 

 While all wines require AF, some of them also endure malolactic fermentation 

(MLF). This second fermentation improves organoleptic features of the final product, 

adding new flavors and aromas during the transformation of malic acid into lactic acid 

(Olguín et al., 2019; Pozo-Bayón et al., 2005; Sumby et al., 2010). The whole quality 

of wine is also improved by the consequent pH increase (Bartowsky, 2005; Bartowsky 

et al., 2015; Bauer & Dicks, 2004). Lactic acid bacteria (LAB) are responsible for this 

secondary process, the most important one being Oenococcus oeni (Chidi et al., 2018; 

da Mota et al., 2017; Mills et al., 2005; Olguín et al., 2019). 

 AF and MLF can occur either simultaneously or sequentially. However, MLF 

normally occurs after AF, as LAB are only present in limited numbers during AF (da 

Mota et al., 2017; Fleet, 1993). Even though the wine industry mostly prefer the 

sequential AF-MLF approach (Bartowsky et al., 2015), current research is contributing 

evidence in favor of simultaneous fermentations, using co-inoculation of yeasts and 

new strains of LAB able to cope AF conditions (Bleve et al., 2016; Howell, 2016; 

Izquierdo-Cañas et al., 2015; Tristezza et al., 2016; Zapparoli et al., 2006).  

 As pointed out above, either native microorganisms present in grape surfaces, 

leaves and winery machinery can carry out AF and MLF (Bokulich et al., 2013; Carre 

et al., 1983; Kunkee, 1974; Renouf et al., 2006); or commercial starters can be 

inoculated. Though native microorganisms are said to have the advantage of producing 

higher flavor complexity (Fleet, 1993; Olguín et al., 2019; Renouf et al., 2006), they 

are difficult to control for achieving the desired results in terms of quality, and involve 

less predictable timings and higher risk of spoilage than inoculated cultures (Bauer & 

Dicks, 2004; Howell, 2016). On the contrary, inoculation with a starter culture 

optimizes timings and reduces risks and delays, by favoring the proliferation of the 

desired strain. Furthermore, the latter could possess some desirable characteristics (da 

Mota et al., 2017; Howell, 2016; Zamora, 2009), such as tolerance to high initial sugar 

concentration (Mateo et al., 2001), or minimization of biogenic amines production 
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(Henríquez-Aedo et al., 2016; Howell, 2016; Martuscelli et al., 2018; Restuccia et al., 

2018; Toledo et al., 2018).  

Although helpful to control MLF onset and completion, wine inoculation with 

malolactic starters has not been always successful (da Mota et al., 2017; Iorizzo et al., 

2016; J. C. Nielsen & Richelieu, 1999).  Its interest remains limited due to its costs, 

rapid decrease in cell viability (Bauer & Dicks, 2004), and lesser geographical 

adaptation (Iorizzo et al., 2016).  

Since indigenous microorganisms are considered to enhance the complexity of 

wine through the production of a broader spectrum of sensory-active compounds than 

those produced from a pure inoculum (Bokulich et al., 2013; Garofalo et al., 2015; 

Olguín et al., 2019), the exclusive use of inoculated starters has been thought to 

impoverish diversity and homogenize wine styles, with potentially detrimental effects 

to local oenological patrimonies. Also, some evidence supports the use of 

autochthonous yeasts and bacteria for reducing the risks of spoilage by contamination 

with Brettanomyces bruxellensis (Berbegal et al., 2017). 

The impact of indigenous microflora on the wine characteristics and style has 

become a focus for research, reflecting the traditional concept of terroir, since the 

specificity of certain strains in different geographical estates persists year after year 

(Renouf et al., 2006). Different cellars had diverse strains of S. cerevisiae and O. oeni, 

and a very specific mix of microorganisms. Renouf et al. (2006) found qualitative and 

quantitative differences in bacteria and yeast populations across four estates in 

Bordeaux region, whereas Bokulich et al. (2013) described their spatial and 

chronological distribution in winery surfaces prior, during and after the harvest. In 

conclusion, combination of vineyard indigenous flora associated with oenological 

practices currently used may be determinant in specific terroir characteristics 

(Garofalo et al., 2015; Renouf et al., 2006). 

The development  of new starters using selected autochthonous strains is a new 

trend, promoted by the rise of more affordable and scalable genetic techniques (Alegría 

et al., 2004; Bravo-Ferrada et al., 2013; Garofalo et al., 2015; Sun et al., 2016). Directed 

evolution of more efficient strains also promotes these developments (Betteridge et al., 
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2015, 2018; Jiang et al., 2018; N. Li et al., 2015; Marengo et al., 2015), looking for 

higher expression of stress related genes or desired properties, such as psychrotrophy 

for example (Bordas et al., 2015; Olguín et al., 2019; Vigentini et al., 2016) The use of 

indigenous starter cultures, best adapted to a specific wine-producing area has been 

recommended to maintain the wine regional characteristics (Berbegal et al., 2017; 

Brizuela, Bravo-Ferrada, et al., 2018; du Toit et al., 2011; Garofalo et al., 2015). 

1.5.2 Organic Acids in Wine 

Organic acids and total acidity play a pivotal role in wine sensory perception, and 

directly influence the overall organoleptic character of wines (Chidi et al., 2018). 

Whereas too much acidity will make the wine to taste excessively sour and sharp, too 

little can result in flabbiness, flatness, and a less-defined flavor profile (Mato et al., 

2005). Organic acids concentrations in grape musts are primarily a function of grape 

maturity and variety (Conde et al., 2007); however, both alcoholic and malolactic 

fermentations change the concentration and content of wine acidity (Volschenk et al., 

2017; Yabaya et al., 2016). Malic, citric and tartaric acids are the primary acids in wine 

grapes, contributing the highest proportion of acidity to the final product, known as 

titratable acidity (Defilippi et al., 2009). During fermentation, yeasts and bacteria 

synthesize several other important organic acids, such as succinic, pyruvic, lactic and 

acetic acids, respectively associated with the fresh, tart, sour and metallic taste of wines 

(Chidi et al., 2018). 

Organic acids also contribute to wine stability (Kučerová & Široký, 2011; Tita 

et al., 2006) and preservation of desired organoleptic features  (Darias-Martı́n et al., 

2000). Acidity is also a primary driver in managing contamination risks (Akin et al., 

2008). Indeed, lower acidity generally supports microbial growth, including several 

unwanted or spoilage species (Bisson & Walker, 2015). 

L-malic acid is commonly found in many fruits, including green apples and 

grapes (Krueger, 2012). In grapes, L-malic acid declines with maturation, from up to           

25 g L-1 to 2.0-6.5 g L-1 (Ribéreau-Gayon et al., 2006), but significant higher amounts 

can be found in cooler climatic regions and in certain varieties, such as Barbera, 

Carignan and Sylvaner (Chidi et al., 2018). Since it can be rough on the palate, 
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winemakers usually prefer its transformation into lactic acid, whose concentrations 

normally average from 1 to 3 g L-1 in wines, increasing through MLF (Boulton et al., 

1996). 

1.5.3 Malolactic Fermentation (MLF): a biochemical approach 

MLF consists in the conversion of the dicarboxylic L-malic acid into the 

monocarboxylic L-lactic acid; in fact, it is this reaction - decarboxylation of malic acid 

- which is known as malolactic fermentation. As a consequence, pH increases between 

0.1 and 0.2 units, and titratable acidity decreases (Bartowsky et al., 2015; Bauer & 

Dicks, 2004; Kunkee, 1968, 1991; Versari et al., 1999). These two changes result in a 

softer wine, more agreeable and appealing in mouth (Chidi et al., 2018; J. C. Nielsen 

& Richelieu, 1999). During MLF, several aroma compounds are biosynthesized, the 

most relevant being diacetyl, with a buttery attribute, easily perceived in Chardonnay. 

Other MLF compounds affecting flavor are acetic acid and acetoin, produced by citrate 

degradation (Bartowsky & Henschke, 2004; Lonvaud-Funel, 1999);  diethyl succinate, 

related to buttery notes;  and ethyl lactate, contributing creamy ones (Tristezza et al., 

2016). 

Additionally, MLF increases microbial stability in wines, as it removes 

remaining carbon sources available for spoilage bacteria (Bartowsky, 2005; Bartowsky 

et al., 2015; Bauer & Dicks, 2004; da Mota et al., 2017; Kunkee, 1968). In addition, 

lactic and acetic acids synthesized during MLF, and in some extent, other metabolites 

such as diacetyl, have proven to have antimicrobial activity (De Vuyst & Vandamme, 

1994; Jay, 1982). 

In spite of its key relevance, MLF is not yet fully understood and remains 

difficult to predict and manage (da Mota et al., 2017; Guzzo et al., 2000; Versari et al., 

1999). Spontaneous MLF can be triggered as early as a few days after the completion 

of AF (Lonvaud-Funel, 1999), after bacterial population has reached about 106 CFU 

ml-1 (Versari et al., 1999); nonetheless, its triggering can be a real challenge and 

delayed even for months, increasing risks of spoilage and immobilizing the volume 

capacity of the winery (da Mota et al., 2017; Iorizzo et al., 2016). Its completion takes 

normally a few weeks after the harvest, but it remains an unpredictable process of 
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winemaking, often taking much longer than expected (da Mota et al., 2017; Iorizzo et 

al., 2016; Kunkee, 1991).  

Wine temperatures under 12 ºC, associated with pH below 3.2 and free SO2  

above 15 mg L-1, have been identified as inhibiting or lengthening MLF after the lysis 

of yeast cells (da Mota et al., 2017). High alcohol and residual sugar content also delay 

the process, as described in winter wines (da Mota et al., 2017); high alcohol 

concentration reduces bacterial growth, but not bacterial activity, the latter being 

impaired by free SO2 concentrations higher than 15 mg L-1 and pH < 3.5 (Lasik, 2013; 

Sun et al., 2016). Total SO2 concentration below 30 mg L-1, initial temperatures of 20 

°C to 25 °C, and the availability of nutrients in the sediment of yeast cells are also 

fundamental in the equation (da Mota et al., 2017; Lasik, 2013). Other compounds, 

such as acetaldehyde and medium-chain fatty acids released by yeasts, (Carreté et al., 

2002; Lasik, 2013), the presence of copper and the fungicide dichlofluanid  (Cabras et 

al., 1999; Carreté et al., 2002), high amounts of tannins, and pesticide residues (Cabras 

et al., 1999; Lasik, 2013; Wells & Osborne, 2012) may impair LAB growth and reduce 

its activity. 

Although highly desirable for most red wines, MLF could affect negatively 

some others. Grapes produced under warmer climates tend to be less acid and reducing 

its acidity could be detrimental for its microbiological stability (Bauer & Dicks, 2004; 

Versari et al., 1999). On the other hand, wines from cooler regions need MLF to 

decrease the excess of malic acid and its organoleptic effects (Bauer & Dicks, 2004; 

Chidi et al., 2018; Kunkee, 1991; S.-Q. Liu, 2002). 

Not only dealing with late or stuck MLF is a problem; its lengthening is also 

undesirable. When it happens, excessive reduction of acidity leads to discoloration 

(Bauer & Dicks, 2004; du Toit & Pretorius, 2000). It might also indirectly encourage 

microbial spoilage, resulting from more favorable growth conditions for species that 

are less acid tolerant than O. oeni (du Toit & Pretorius, 2000). Furthermore, a too early 

onset of MLF has been associated with sluggish and stuck alcoholic fermentations, as 

the acetic acid generated inhibits Saccharomyces spp (du Toit & Pretorius, 2000). 
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The simultaneous co-inoculation of resistant strains of lactic acid bacteria with 

yeast has been proposed as an alternative to reduce MLF duration (Bleve et al., 2016; 

Howell, 2016; Lerena et al., 2016; Suriano et al., 2015). Other researchers have 

explored LAB replacement of MLF. For example, Benito et al. (2015) proposed two 

yeasts species instead of LAB, namely Schizosaccharomyces pombe and Lachancea 

thermotolerans. S. cerevisiae and other yeast species have also been genetically 

engineered to conduct MLF themselves (Ansanay et al., 1996; Bony et al., 1997; 

Husnik et al., 2006, 2007; Volschenk et al., 1997), though only in experimental settings 

because in most countries, GMOs for wine production are strictly prohibited (Vaudano 

et al., 2016). 

1.5.4 Lactic Acid Bacteria and wine 

Lactic acid bacteria (LAB) are responsible for MLF in wine. They are a group of Gram-

positive, catalase negative, non-spore forming, facultative anaerobic bacteria (du Toit 

& Pretorius, 2000), functionally related by their general ability to produce lactic acid 

during homofermentative and/or heterofermentative metabolism (Duar et al., 2017; 

O’Sullivan et al., 2009). They have been isolated from sources as diverse as plants, 

animals and humans (Duar et al., 2017; Makarova et al., 2006; Makarova & Koonin, 

2007; O’Sullivan et al., 2009; Stefanovic et al., 2017).  

LAB can be classified into 7 phylogenetic clades: Lactococcus, Lactobacillus, 

Enterococcus, Pediococcus, Streptococcus, Leuconostoc and Oenococcus (O’Sullivan 

et al., 2009). This group of bacteria has been extensively exploited in food industry, 

playing crucial roles in the fermentation of dairy products, meat and vegetables, as well 

as in the production of wine, coffee, cocoa and sourdough, with some LAB having 

demonstrated probiotic functions (Ljungh & Wadström, 2006). 

Over 30 LAB species can be found in wine, although not all are of oenological 

interest or utility, some being even potentially harmful for the final quality of wine 

(Cappello et al., 2017). Its diversity has been linked with aroma and flavor richness in 

wine, with a wide spectrum of wine sensory outcomes due to specific enzymatic 

activities, transcending MLF (Cappello et al., 2017). These species belong mainly to 

five genera: Lactobacillus, Pediococcus, Leuconostoc, Oenococcus and Weissella. 
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Leuconostoc, Weisella and Oenococcus spp are obligate heterofermentative; 

conversely, Pediococcus spp are homofermentative, and Lactobacillus spp can be 

either homofermentative (Lactobacillus vini), facultative heterofermentative 

(Lactobacillus plantarum) or obligate heterofermentative (Lactobacillus brevis) 

(Bauer & Dicks, 2004; du Toit & Pretorius, 2000; König et al., 2009; S.-Q. Liu, 2002; 

Lonvaud-Funel, 1999; Mills et al., 2005).  

Among the many species found in wine, the most oenological relevant for MLF 

are Oenococcus oeni and Lactobacillus plantarum, recently renamed as 

Lactiplantibacillus	plantarum (Zheng et al., 2020) They can synthesize antimicrobial 

peptides which might help prevent the production of undesired compounds, by 

inhibiting other indigenous LAB microflora (du Toit & Pretorius, 2000). Currently, O. 

oeni is the main species used in MLF as LAB starter (Brizuela, Bravo-Ferrada, et al., 

2018; Brizuela, Tymczyszyn, et al., 2018; Garofalo et al., 2015; Jiang et al., 2018; Sun 

et al., 2016). However, some Lb. plantarum strains can also survive the harsh 

conditions of wine (Alegría et al., 2004; Bravo-Ferrada et al., 2013; Howell, 2016; 

Iorizzo et al., 2016; Izquierdo-Cañas et al., 2015; Lee et al., 2012; Lerm et al., 2011) 

and possess many other favorable characteristics, such as faster growth rates, lower 

nutritional requirements and higher ability to consume malic acid than O. oeni (Bravo-

Ferrada et al., 2016; Brizuela, Bravo-Ferrada, et al., 2018; Brizuela, Tymczyszyn, et 

al., 2018). Lb. plantarum has shown to be a good choice for pre-AF or co-inoculation 

with yeasts to grape must (Brizuela, Bravo-Ferrada, et al., 2018; Brizuela, 

Tymczyszyn, et al., 2018; Howell, 2016; Lerena et al., 2016). Lb. plantarum strains 

have a more diverse enzymatic profile than O. oeni, and therefore could significantly 

modify the wine aroma profile (du Toit et al., 2011; Lerm et al., 2011; Matthews et al., 

2006; Mtshali et al., 2010); in addition to malolactic enzyme, it displays other relevant 

enzymes influencing wine flavor, like glycosidases, b-glucosidases, esterases, phenolic 

acid decarboxylases, and citrate lyases (Brizuela, Tymczyszyn, et al., 2018; Grimaldi 

et al., 2005a, 2005b; S.-Q. Liu, 2002; Matthews et al., 2004). When employed as a 

starter, Lb. plantarum increases the concentration of key aroma compounds, such as 
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esters and terpenes, providing a richer flavor profile to the resulting wine (Howell, 

2016).  

Besides Lb. plantarum, other Lactobacilli species have been studied as starters 

with overall positive results, such as Lb. mali, Lb. paracasei and Lb. satsumensis 

(Lucio et al., 2017). Finally, some authors have also proposed blend cultures of native 

Lb. plantarum and O. oeni strains, a promising strategy that could support longer 

microbial survival, therefore increasing the overall consumption of L-malic acid, and 

enhance the aroma complexity of the final wine (Brizuela, Bravo-Ferrada, et al., 2018; 

Brizuela, Tymczyszyn, et al., 2018).  

1.5.5 O. oeni and its metabolic features relevant for winemaking 

Oenococcus oeni is an acidophilic, microaerophilic bacterium, member of the 

Leuconostocaceae family of LAB, indigenous to wine and similar environments 

(Iorizzo et al., 2016). This species dominates the scene in wines with low pH, i.e. 3.0-

3.5 (Bartowsky, 2005; Maicas et al., 2002; Mills et al., 2005); in fact, O. oeni is the 

bacterium that mainly drive MLF and more successfully proliferates as it runs, whilst 

other competing population progressively diminish (Versari et al., 1999). Conversely, 

Lactococcus and Pediococcus spp are more related with defects in wine (Bartowsky, 

2005; Bauer & Dicks, 2004; Zapparoli et al., 2009) and have a lesser contribution to 

MLF (Bartowsky, 2005; Bartowsky & Borneman, 2011). Altogether with other 

bacteria, they threat the final quality of wine, especially when MLF is slowed down or 

stuck (Davis et al., 1986). 

Garvie (1967a) was the first to propose a separate species for wine-related LAB, 

classified as belonging to the Leuconostoc genus, named Leuconostoc oenos. Its high 

tolerance to acid conditions and a peculiar growth enhancement in media containing 

tomato juice led to its differentiation as a new species (Garvie, 1967a, 1967b). Dicks 

et al. (1995) proposed a new genus, Oenococcus, for reclassification of Leuconostoc 

oenos almost three decades later, when a study based on 16S r-DNA and 23S r-DNA 

showed genetic deep differences with Leuconostoc mesenteroides. Originally thought 

to be a genus composed by a sole member, Oenococcus oeni, three new species have 

been discovered since its definition: O. kitaharae (Endo & Okada, 2006), O. 
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alcoholitolerans (Badotti et al., 2014), and O. sicerae (Cousin et al., 2019; Verce et al., 

2020) the last one recently identified in french cyder and water kefir. For a graphical, 

brief description of its history, see Figure 1-1. 

  

Figure 1-1: Evolution of O. oeni genetics. Timeline of the history of genetic research 

on O. oeni from the first description of the species by Gravies in 1967 to sequencing of 

the genome by Mills et al. (2005), and the last major advances thanks to the application 

of anti-sense technology to modulate gene expression (Darsonval, Msadek, et al., 

2016). 

 

Oenococcus phylogenetic relationships with other genera have been reported (Figure 

taken from Grandvalet, 2017). Also, its genetic diversity has been studied inside 

geographic-specific or broader populations (Björkroth & Holzapfel, 2006; Chelo et al., 

2007) and pan-genome analyses have been carried out comparing strains (Bridier et al., 

2010; Campbell-Sills et al., 2015; de las Rivas et al., 2004; Delaherche et al., 2006; 

Guerrini et al., 2003; Lechiancole et al., 2006; H. Li et al., 2006; Marques et al., 2011; 

Renouf et al., 2009; Sato et al., 2001). These advances provide a promising basis for 

new developments in genetic engineering and biotechnology, with  genetically 

engineered strains already being designed (Ilabaca et al., 2014; Romero et al., 2018; 

Toledo et al., 2018); however, extensive discussion should take place before their 

introduction for industrial utilization, since currently international regulation forbids 
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the use of genetically modified organisms in commercial wine production. For the time 

being, the research on its genetic variability and diversity, and the characterization of 

indigenous population is being used in the selection of new strains with specific desired 

features via directed evolution (Darsonval, Alexandre, et al., 2016; Grandvalet, 2017). 

Although not the only bacterium performing MLF in wine, O. oeni is preferred 

for oenological use because of its unique properties: high acid-tolerance (Betteridge et 

al., 2015, 2018; Jiang et al., 2018; N. Li et al., 2015; Marengo et al., 2015), resistance 

to high ethanol (>10% v/v) and SO2 concentrations (<50 ppm) (Bauer & Dicks, 2004; 

Chu-Ky et al., 2005; Liu, 2002; Versari et al., 1999), low production of acetic acid 

(Bartowsky et al., 2015; Bauer & Dicks, 2004), and scant occurrence of the ropy 

phenotype (Ribéreau-Gayon et al., 2006). Furthermore, it develops unique flavor 

compounds via enzymatic activity (Ribéreau-Gayon et al., 2006; Torriani et al., 2011), 

adding to the wine buttery and nutty notes; it is able to produce smoother tannins, as 

well as (Liu, 2002). 

The capacity for synthesizing lactic and acetic acids represents an important 

competitive advantage for O. oeni and other LAB, since these weak acids have 

antimicrobial activity (Salema et al., 1996). Their undissociated form can move freely 

across the cell membrane and cause acidification by releasing a proton into the cell 

cytoplasm during acids dissociation due to the difference between the pH of the growth 

medium and the cytoplasmic one, the latter being generally higher than the former (De 

Vuyst & Vandamme, 1994). This acidification results in a disruption of cytoplasmic 

anion pool, damaging the integrity of purine bases, and therefore denaturizing essential 

enzymes of cell metabolism and survival (Cotter & Hill, 2003). 

Besides malic acid, O. oeni also ferments the remaining sugars present in the 

wine through the phosphoketolase pathway, also known as heterolactic fermentation 

(HLF) (Wu et al., 2014). This metabolic pathway generates ATP and NAD(P)H by 

catabolizing sugars into  carbon dioxide, ethanol, acetic acid or acetaldehyde, and lactic 

acid as by-products (Bartowsky, 2005; Maicas et al., 2002). 

Numerous studies have demonstrated that O. oeni can reach higher specific 

growth rates in a medium including alternative electron acceptors such as fructose 
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(Bartowsky, 2005; Grimaldi et al., 2005b) or pyruvate (Maicas et al., 1999). These 

compounds are employed to oxidize NAD(P)H, allowing to metabolize acetyl-P into 

acetate instead of ethanol, with consequential higher yield of ATP (Maicas et al., 2002). 

Fructose can be either metabolized through HLF or transformed into mannitol (Gänzle, 

2015) or erythritol (Gänzle, 2015). Pyruvate can be reduced into lactate (Maicas et al., 

2002; Wagner et al., 2005). NAD(P)+ is regenerated in both processes.  

1.5.5. Oenococcus oeni PSU-1 strain  

The Oenococcus oeni PSU-1 strain was initially isolated from a spontaneous malolactic 

fermented wine in Pennsylvania in 1972 (Bordas et al., 2015). Very similar to the 

previously described strain ML-34 from California (Beelman et al., 1977), the main 

advantage of PSU-1 over the latter was its ability to start MLF faster in red wines 

(Ingraham et al., 1960). Because of this property, it was once a common starter culture, 

though replaced today by more recently selected and efficient strains (Beelman et al., 

1977).   

As early as the late 1990s, PSU-1 strain was intensively studied and mapped 

(Guzzon et al., 2009; Semon et al., 2001; Torriani et al., 2011; Ugliano & Moio, 2005). 

Its complete genome sequence was released for public access during the first decade 

of the 21th century (Zé-Zé et al., 1998, 2000, 2008), being the first O. oeni strain to be 

sequenced. PSU-1 strain has a single circular chromosome of 1.780.517 nucleotides, 

and a GC content of 38% (Mills et al., 2005). Consistently with its classification as an 

obligate heterofermentative lactic acid bacterium, the PSU-1 genome encodes all the 

enzymes for the phosphoketolase pathway (Mills et al., 2005). 

This genomic annotation opened the gate for the study of its metabolic 

pathways and O. oeni phylogenetic tree. Borneman et al. (2012) analyzed O. oeni pan 

genome, using PSU-1 strain as reference, and found relevant differences between 

strains. Each strain was predicted to contain 1800 ± 52 ORFs and 104 ± 25 potential 

pseudogenes, in average. The O. oeni pan genome comprises 2846 ORFs, while the 

core genome contains 1165 (Borneman et al., 2012). 

To date, there are sequences of more than 250 different strains of O. oeni, 

grouped into 4 phylogenetic groups (Lorentzen & Lucas, 2019). 
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1.5.6 Malolactic Enzyme  

O. oeni metabolizes L-malic acid via the malolactic enzyme (MLE) (Borneman et al., 

2012). MLE is not privative of O. oeni, as it has been shown by its purification from 

several LAB species (Bartowsky & Borneman, 2011; Kunkee, 1991).  

The gene encoding MLE (mleA) has been cloned, sequenced and mapped on 

the O. oeni chromosome, as well as the genes encoding the related malate permease 

(mleP) and a proposed regulatory protein (mleR) (Caspritz & Radlert, 1983; Lonvaud-

Funel & Strasser de Saad, 1982; Naouri et al., 1990; Spettoli et al., 1984). O. oeni  

strains differ in their ability to metabolize malic acid efficiently (Labarre, Diviès, et al., 

1996; Labarre, Guzzo, et al., 1996; Mills et al., 2005; Zé-Zé et al., 2008). 

It has been suggested that MLE is less sensitive to ethanol content than the 

mechanisms regulating cell growth, associating  MLF arrest with growth inhibition 

rather than the inhibition of enzymatic activity (Bartowsky, 2017). Wang et al. (2014) 

undertook the production, purification and characterization of malolactic enzyme from 

Oenococcus oeni strain SD-2a. The purified enzyme had a nominal molecular mass of 

59 kDa and a theoretical pI of 4.76. It exhibited maximum enzyme activity at 35°C and 

pH 6.0, retaining over 50% of its initial activity in the presence of 14% (v/v) ethanol 

(2014). Mn+2 was proven to be the most effective divalent cation to promote enzyme 

activity. Under 30°C and pH 6.0, the Km and Vmax parameters of MLE on L-malic acid 

were 12.5 × 10−3 M and 43.86 μmol min-1 mg-1, respectively (Wang et al., 2014).  

The reaction mechanism involved in MLF remains speculative. Three possible 

pathways for decarboxylation have been proposed (Wang et al., 2014):  

1) Korkes and Ochoa (Schümann et al., 2013) hypothesized a pathway through a 

malic enzyme, followed by L-lactate dehydrogenase, transforming first malate 

to pyruvate, and then to lactate. 

2) Flesch (1948) proposed a three-step reaction mediated by a L-malate 

dehydrogenase, oxaloacetate decarboxylase and then a L-lactate 

dehydrogenase.  

3) Finally, the third mechanism was proposed by Caspritz and Radley (1969): a 

direct conversion of L-malate into L-lactate, through a reaction carried out in 
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the  presence of NAD+ and Mn+2, but without reduction of NAD+ neither 

detection of free reaction intermediates (1983). 

Similarly, little is known about the three-dimensional structure of the protein. 

Molecular docking has not been conducted yet for establishing its exact 

physicochemical mechanism. Several authors  have proposed  that MLE was  a homo-

dimeric enzyme, composed of two identical subunits of 60 kDa (Bartowsky & 

Borneman, 2011; Groisillier & Lonvaud-Funel, 1999; Schümann et al., 2013).  

1.5.7 Genomic Scale Metabolic Reconstructions (GENRE) and Models (GSMM) 

Metabolic networks at the genome scale or genome-scale metabolic 

reconstructions (GENRE) are collections of biochemical reactions of a target organism 

and their associated genes describing its metabolism (Ahmad et al., 2017). They are 

built using genome annotation, databases, omics studies, and primary literature (Thiele 

& Palsson, 2010). This input information is integrated in a structured, mathematical 

representation that can be translated into computational models, called genome-scale 

metabolic models (GSMM). GSMM allow the phenotype of an organism to be studied 

in silico, performing computational quantitative queries to answer questions about the 

capabilities of its metabolism and its most probable phenotypic states. All this 

information is integrated using various algorithms to simulate the status of the cell as 

a whole (Park et al., 2009).  

Several methods have been developed for GSMM since its beginnings in the 

late ‘90s of the last century (Bartowsky & Borneman, 2011). Their scope has also been 

expanded, addressing an increasingly broader spectrum of basic and practical 

applications in metabolic engineering, model-directed discovery, interpretations of 

phenotypic manifestations, analysis of network properties, and studies of evolutionary 

processes (Feist & Palsson, 2008).  A meticulous protocol of 96 steps to construct high 

quality GENREs has been established by Thiele and Palsson (2009), leading to more 

accurate predictions of the metabolism of the studied organism. 

These genome-scale models have led to novel insights and guidance of further 

experiments. For example, they have allowed to identify antimicrobial and anti-cancer 

drug targets (Feist & Palsson, 2008; McCloskey et al., 2013), to discover mechanisms 
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underlying other diseases (Angione, 2018; Folger et al., 2011; Frezza et al., 2011; Ho 

Sui et al., 2012; Kim et al., 2014; Lewis & Abdel-Haleem, 2013; Nilsson & Nielsen, 

2017; Shen et al., 2010; Yizhak et al., 2015), to understand the impact of medicines 

and the microbiota interspecies interactions in intestinal flora (Cook & Nielsen, 2017; 

Dunphy & Papin, 2018; Geng & Nielsen, 2017; Lewis et al., 2010; Mardinoglu et al., 

2014), and to design improved strains of microorganisms (Magnúsdóttir et al., 2017; 

Magnúsdóttir & Thiele, 2018; Rosario et al., 2018; van der Ark et al., 2017), among 

many other applications (Cardoso et al., 2018). The clinical use of GSMM is a new 

trend in medical treatments and pharmacological developments, opening new exciting 

opportunities in medicine (Bordbar et al., 2014; Gudmundsson et al., 2017; W. J. Kim 

et al., 2017; Xu et al., 2018). 

Some highly refined genome-scale metabolic models (GSMM) of well-known 

bacteria, such as Escherichia coli, has also been used in the study of interspecies 

interactions (Feist & Palsson, 2008; Oberhardt et al., 2009) and microbial consortia 

(McCloskey et al., 2013). The current developments and efforts in bioinformatics are 

enabling researchers and bioengineers with a solid comprehension of genotype-

phenotype mechanistic links for diverse cells metabolism (Hanly et al., 2012), 

including eukaryote and cells in multicellular organisms.  

Metabolic models can be roughly divided into two types, structural and kinetic. 

Whereas structural models define systems in terms of reaction stoichiometry and 

direction, kinetic models explicit rate equations for each reaction (Agren et al., 2014; 

J. Nielsen, 2017; Raškevičius et al., 2018). Due to practical reasons, studies including 

large number of reactions (>≈50–100) tend to be structural; that is the case of GSMM 

(Ahmad et al., 2017). 

GSMMs require substantial theoretical validation before being applied to the 

desired scenarios to be queried (Lewis et al., 2012). Curation and experimental 

validation are essential for the refinement of the initial, automatically-driven draft 

model, generally obtained using public databases. The modeler’s task can be simplified 

by automation of error detection and model validation processes (Poolman et al., 2006), 
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but the throughout and meticulous curation by hand remains an unavoidable, although 

significantly time consuming, key step (Gevorgyan et al., 2008; Poolman et al., 2006). 

Initially, only highly characterized microorganisms, such as Escherichia coli 

and Saccharomyces cerevisiae, were reconstructed in silico. Nowadays, these models  

are widely used in a larger range of organisms, including Lactococcus lactis (Opdam 

et al., 2017), the first LAB to be reconstructed at the genome scale.. It was followed by 

Lactobacillus plantarum (Flahaut et al., 2013; Oliveira et al., 2005; Verouden et al., 

2009), Streptococcus thermophilus (Teusink et al., 2006) and, more recently, 

Enterococcus faecalis (Pastink et al., 2009), Lactobacillus casei (Veith et al., 2015), 

Streptococcus pyogenes (Xu et al., 2015), Lactobacillus rhamnosus (Levering et al., 

2016) and Leuconostoc mesenteroides (Magnúsdóttir et al., 2017). 

Constraint-based reconstruction and analysis (COBRA) is  the most widely 

used framework  for GSMM analysis (Koduru et al., 2017). First COBRA models at 

the genome scale were implemented very shortly after the first whole-genome 

sequences were released (Lewis et al., 2012; Stefanovic et al., 2017).  Thus,  the first 

GSMM was reconstructed for Haemophilus influenza just four years after its genome 

sequence (Fleischmann et al., 1995).  

The COBRA approach is based on three fundamental concepts (Magnúsdóttir et 

al., 2017), which corresponding steps are illustrated  in Figure 1-2:  

1. The imposition of physicochemical constraints that limit computable 

phenotypes (Figure 1-2 a-d). The reaction occurrence is limited by three primary 

constraints: substrate and enzyme availability, mass and charge conservation, and 

thermodynamics. Substrates must be present in cell environment or produced from 

other reactions, and enzymes must be available. Mass conservation further limits 

the possible reaction products and their stoichiometry, and thermodynamics 

constrains reaction directionality. This information is obtained from biochemical 

and genetic studies about the specific organism or it can be inferred from related 

ones, and then catalogued in metabolic reconstruction knowledge databases (Lewis 

et al., 2012). The metabolic reconstruction is then converted into an in silico model 

by mathematically describing the reactions and adding network inputs and outputs 
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(Feist et al., 2009; Thiele & Palsson, 2010) (Figure 1-2 a-b). A matrix representing 

the stoichiometric coefficients of each reaction mathematically describes the 

physicochemical constraints. Known upper and lower bounds on each reaction flux 

are imposed as additional constraints. Mathematically, these constraints define a 

multi-dimensional ‘solution space’ of allowable reaction flux distributions, and the 

actual expressed flux state resides in this solution space. Additional constraints can 

further reduce the solution space to focus in on the actual flux state of the network 

(Figure 1-2 c). These additional constraints may include enzyme capacity, spatial 

localization, metabolite sequestration, and multiple levels of gene, transcript and 

protein regulation (Figure 1-2 d). 

2. The identification and mathematical description of evolutionary selective 

pressures, via defining an objective function (Figure 1-2 e). The objective 

function is an important part of the COBRA framework. In non-biological chemical 

networks, the material flow through pathways can be predicted in a cause and effect 

manner, using mathematical models that describe the associated physical laws. This 

description is time invariant, as reproducing the physical conditions will always 

drive flux through the same pathways. By contrast, causation in biology is time 

variant. Diverse chemical reactions may occur inside a cell, and many pathways 

can link a starting molecule to a given product. However, regulatory mechanisms 

have evolved to select when and where pathways will be used in an organism under 

given conditions. If the cellular objectives that drive evolution are understood or 

can be inferred, optimal flux states of biochemical reaction networks can be 

predicted. In the COBRA framework these cellular objectives are described 

mathematically and used to compute phenotypic states. Many cellular objectives 

can be defined in the context of metabolism; for instance, a biomass function can 

be defined as a proxy for growth, containing all the necessary precursors for 

synthesizing the cell components (Lewis et al., 2012). 

3. A genome-scale perspective of cell metabolism that accounts for all metabolic 

gene products in a cell (Figure 1-2 f). Genome annotations provide the genetic 

basis for the reconstruction of metabolic network of the target organism, defining 
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the relationships between genes, enzymes and the reactions that they catalyze 

(Figure 1-2 f). When this database is converted into a GSMM, the mathematical 

representation provides constraints, and the objective function represents the 

optimal biological functions that the organism strives to achieve. Together, they 

allow to simulate phenotypes. The genome-scale view of metabolism in these 

models has two primary implications. First, the models account for all known 

metabolic genes in a cell and their functions. When used in the analysis of genome-

scale data sets, they provide novel insight because they account for real chemical 

connections between components. Second, as metabolic genes are associated with 

the biochemical functions of their gene products, simulations of metabolite flow 

through the network can provide mechanistic predictions of how each gene product 

affects the metabolic network function. Cell phenotypes can be computed, and data 

can be interpreted with GSMMs, providing mechanistic insight into how the cell 

genotype may contribute to the cell phenotype. 

COBRA methods have evolved and diversified over the past two decades, with more 

than 100 different methods currently available. Many of them have been implemented 

in software packages, allowing to a more-or-less automated processing of data.  

Finally, a range of cellular functions have been predicted with this framework, 

including cell capacity to grow in various substrates, the effect of gene knockouts on 

product synthesis, antibiotic design, and organismal and enzyme evolution (Edwards 

& Palsson, 1999). 
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Figure 1-2: Fundamentals of the genome-scale metabolic genotype–phenotype 

relationship. The constraint-based reconstruction and analysis (COBRA) approach is 

based on three primary fundamental concepts: network constraints (parts a–d), 

objective functions (part e) and the association of reactions with the genome (part f) 

(Lewis et al., 2012). 
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2. CHAPTER I: GENOME-SCALE RECONSTRUCTION OF THE 

METABOLIC NETWORK IN OENOCOCCUS OENI TO ASSESS WINE 

MALOLACTIC FERMENTATION. 

2.1 Introduction 

Malolactic fermentation (MLF) is a key step in the production of most red wines, as well 

as some white and sparkling wines. This process is primarily responsible for lowering the 

acidity of wine, and also generates other benefits, such as improving aroma and flavor 

complexity; as well as increasing the biological stability of the resulting wines 

(Bartowsky et al., 2002; Davis et al., 1985; Henschke, 1993). This secondary 

fermentation, mainly carried out by lactic acid bacteria (LAB), involves the NAD+ and 

manganese-dependent decarboxylation of L-malate to L-lactate and CO2 (Kunkee, 1974; 

Williams et al., 1984). Failures in the onset and completion of malolactic fermentation 

are commonplace worldwide, which inconveniently delays the overall process of 

winemaking and therefore results in significant economic losses. 

Oenococcus oeni is the main species involved in MLF due to its ability to grow 

in harsh environments, such as wine. This bacteria species is characterized by its high 

ethanol content (>13% v/v), low pH (< 3.5), limited nutrient availability and high sulphite 

concentration (<50 ppm) ( Bartowsky, 2005; Bauer & Dicks, 2004; Zapparoli et al, 2009). 

Consequently, the success of this secondary fermentation depends on the ability of O. 

oeni to cope with these hostile conditions ( Gockowiak & Henschke, 2003; Le Marrec et 

al, 2007) . Several studies have been conducted to understand the metabolism of O. oeni 

under oenological culture conditions. Despite these efforts, MLF remains an 

unpredictable, capricious and precarious operation of the winemaking process. Indeed, 

its onset and completion can take weeks or even months (Bartowsky et al., 2015).  

Genome sequencing has paved the way to a deeper understanding of this 

microorganism.  Mills et al. (2005) reported that the circular chromosome of O. oeni 

strain PSU-1 contained 1,780,517 nucleotides, with a guanine–cytosine (GC) content of 

38%. Borneman et al. (2012) found important genomic differences among several O. oeni 

strains through a comparative analysis of the O. oeni pan genome, employing O. oeni 

PSU-1 strain as a reference. More recently, Campbell et al. (2015) reviewed the 
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population structure of many O. oeni strains using comparative genomics, and confirmed 

that the distribution of 50 strains can be divided into two major groups, according to their 

ecological niche: wine or cider. Transcriptomic and proteomic analyses of O. oeni strains 

cultivated under wine-simulated conditions showed that the environment strongly affects 

O. oeni stress-responses at both levels (Costantini et al., 2015; Olguín et al., 2015). 

Despite the bioinformatic tools employed for these studies, a full systemic understanding 

of the metabolic capabilities and behavior of this malolactic bacterium under extreme 

environments would strongly benefit from the reconstruction of a genome–scale 

metabolic model able to integrate the current knowledge of this LAB.   

Genome annotation, databases and primary literature (Feist et al., 2009), along 

with specific collection of biochemical reactions and associated genes that describe the 

cell metabolism of a specific organism, can be employed for the reconstruction of the 

metabolic network at the genome scale (Thiele & Palsson 2010) . A genome-scale 

metabolic model (GSMM) is a mathematically structured format of different types of 

biological knowledge that is used to perform computational and quantitative queries to 

answer questions about the capabilities of an organism and its likely phenotypic states. 

GSMMs have primarily focused on six applications: (1) metabolic engineering, (2) 

model-driven discovery, (3) prediction of cellular phenotypes, (4) analysis of biological 

network properties, (5) studies of evolutionary processes, and (6) models of interspecies 

interactions (McCloskey et al., 2013). Initially, these models only considered well -

characterized organisms; nevertheless, the interest in the generation of metabolic models 

of less characterized and complex biological systems has progressively increased, 

including the GSMMs of several lactic acid bacteria, such as Lactococcus lactis (Flahaut 

et al., 2013; Oddone et al., 2009; Oliveira et al., 2005; Verouden et al., 2009), 

Lactobacillus plantarum (Teusink et al., 2006) and Streptococcus thermophilus (Pastink 

et al., 2009). 

In this work, we constructed the first genome-scale metabolic model of an O. oeni 

strain (named iSM454 model) to provide a tool for simulating the metabolism, nutritional 

requirements, and specific growth rate of this microorganism under the harsh conditions 

of winemaking. Here we report the general features of the model, as well as its prediction 
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performance. The resulting metabolic model was employed to assess the metabolic 

capabilities, limitations and potential of this LAB to successfully accomplish malolactic 

fermentation in wine. 

2.2 Materials and Methods 

2.2.1 Construction of the GSMM 

The model was constructed following the protocol described by Thiele & Palsson 

(2010) (Figure 2-1). As a starting point, we generated a draft reconstruction with 

Pathway Tools™ version 16.5 (Karp et al., 2002) from the genomic sequence of O. 

oeni PSU-1. The model was then manually curated consulting scientific literature and 

the online databases KEGG™ 2 (Kyoto Encyclopedia of Genes and Genomes, 

Kanehisa, 2000), MetaCyc™ 3(Caspi et al., 2014) and TransportDB™ 4(Membrane 

Transport Database, Ren et al, 2007).  Comparison with other genome annotations such 

as RAST5, as well as with previous models MG1363 (Flahaut et al., 2013) and WCFS1 

(Teusink et al., 2006) from Lactococcus lactis and Lactobacillus plantarum 

respectively, was conducted in order to find missing reactions (Table 2-1). The 

presence of the enzyme(s) responsible for carrying out these reactions in the genome 

were subsequently checked using the online available version of Basic Local 

Alignment Tools6 (BLAST™, Madden 2002). 

For proper network visualization, the model was then manually exported into 

Omix™ version 1.8 (Droste et al., 2011). Then, it was exported to MATLAB™ version 

2013b, as an SBML file, and curated using Cobra Toolbox version 2.0. FBA, FVA, 

single gene deletion and single reaction deletion were performed to explore the 

metabolic capabilities of the network. 

	
2 http://www.genome.jp/kegg/ 

3 https://metacyc.org/ 

4 http://www.membranetransport.org/transportDB2/index.html 

5 http://blog.theseed.org/servers/ 

6 https://blast.ncbi.nlm.nih.gov/Blast.cgi 
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Figure 2-1: Genome-scale reconstruction of the metabolic network in Oenococcus oeni 

PSU-1, and model validation. 
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Table 2-1: Comparison between GSMM of Oenococcus oeni PSU-1, Lactobacillus 
plantarum WCFS1 and Lactococcus lactis IL1403. The table shows common reactions 

between models, unique reactions, and total reactions in the model of O. oeni. Figures 

in parentheses indicate uncommon reactions in the model respect to Lb. plantarum or 

Lc. lactis models.  
Common reactions with Unique reactions Total reactions 

 
Lb. plantarum Lc. lactis both models in O. oeni in O. oeni 

Amino acids metabolism 39 (21) 40 (20) 32 13 60 
ATP maintenance 1 (0) 1 (0) 1 0 1 
Beta-oxidation 0 (8) 3 (5) 0 5 8 
Biomass assembly 0 (1) 0 (1) 0 1 1 
Carbohydrates metabolism 49 (26) 43 (32) 34 17 75 
Citrate degradation 5 (2) 7 (0) 5 0 7 
Exchange reactions 66 (44) 55 (55) 44 33 110 
EPS biosynthesis 5 (5) 4 (6) 4 5 10 
Fatty acid biosynthesis 40 (23) 4 (59) 2 21 63 
Glycolipids metabolism 10 (9) 13 (6) 9 5 19 
Glutathione redox reactions 1 (3) 1 (3) 1 3 4 
Inorganic metabolism 5 (7) 2 (10) 1 6 12 
Macromolecules assembly 2 (4) 4 (2) 2 2 6 
Malolactic fermentation 1 (0) 1 (0) 1 0 1 
Menaquinol metabolism 2 (3) 1 (4) 1 3 5 
Nucleotides metabolism 53 (19) 53 (19) 47 13 72 
Peptidoglycan biosynthesis 9 (4) 10 (3) 7 1 13 
Terpenes biosynthesis 9 (6) 11 (4) 9 4 15 
Thioredoxin redox reactions 0 (1) 0 (1) 0 1 1 
Transport 30 (101) 24 (107) 15 92 131 
Ubiquinol metabolism 0 (3) 0 (3) 0 3 3 
Vitamins metabolism 27 (16) 20 (23) 15 11 43 
TOTAL 354 (306) 297 (363) 230 239 660 

 

2.2.2 Mathematical formulation 

Flux balance analysis (FBA) is a widely used approach for studying biochemical 

networks. Among its many uses, FBA has been applied for predicting gene essentiality, 

quantifying the cellular growth under cultivation conditions and identifying by-product 

secretion (Park et al., 2009). This approach allows us to calculate the flow of 

metabolites through the network (Orth et al., 2010). Specifically, FBA quantifies the 

flux distribution by linear programming (LP) on the basis of stoichiometry of metabolic 

reactions and mass balances around metabolites under the pseudo-steady state, or 

stationary assumption (Park et al., 2009).  

We employed FBA to calculate the optimal distribution of metabolic fluxes of 

an under -determined system of stoichiometric equations (Orth et al., 2010). Following 

formal procedures, the GSMM iSM454 was represented by a stoichiometric matrix S, 
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in which the row i represents the ith reaction and the column j the jth metabolite of the 

network. Under a pseudo-steady state assumption, the concentration of metabolites was 

considered to be constant, which is stated by the equation S × v = 0, where v is the 

vector of reaction fluxes. To determine the flux distribution, biomass formation was 

defined as the objective function and optimized through LP (Equation 1). Gurobi 6.5 

7(Gurobi Optimization Inc., 2016) was chosen as the optimization solver. 

(1) %&'	$ 

)*"+,#	#-	) × / = 0 

/! ≤ /" ≤ /# ∀ 4 = 1…7 

Where $  is the specific growth rate [1/h], /"  is the flux through reaction 4 , 

	/! 	and /# are the lower and upper bounds for that reaction, and n is the number of 

reactions of the reconstruction. 

2.2.3 Network evaluation 

2.2.3.1 Determination of nutritional requirements 

We ran in silico single omission experiments to determine the nutritional requirements 

of the O. oeni PSU-1 strain. For this purpose, we defined the restrictions required to 

simulate the nutrients included in the minimum culture medium described by Terrade 

et al. (2009); i.e. we allowed carrying flux only for exchange reactions corresponding 

to those nutrients that were present in the medium. Otherwise, lower and upper bounds 

of exchange reactions representing substrate uptake were set to zero (Supplementary 

material S1-1). Then, each nutrient was removed, one by one, and an optimization run 

was carried out each time. Nutrients that inhibited growth when removed were 

considered to be essential. We considered that growth was inhibited when the specific 

growth rate of the auxotrophic mutant was less than 20% that of the wild type. Results 

were classified as true positives (non-essential nutrients both in silico and in vivo), true 

negatives (essential nutrients both in silico and in vivo), false positives (essential 

	
7 http://www.gurobi.com/company/news/highlights-of-gurobi-optimizer-6.5 
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nutrients in vivo but not in silico) and false negatives (essential nutrients in silico but 

not in vivo). 

From these predictions, we calculated critical statistical parameters that define 

model performance, i.e. sensitivity, specificity, precision, negative predictive value, 

accuracy, and the F-score, as follows:  

(2)  ),784#4/4#9 = :; (:; + >?)⁄  

(3)  )B,C4D4C4#9 = :? (:? + >;)⁄  

(3)  ;E,C484-7	(;;F) = :; (:; + >;)⁄  

(4)  ?,G&#4/,	BE,H4C#,H	/&!*,	(?;F) = :?/(:? + >?) 

(5)  JCC*E&C9 = (:; + :?)/(:; + :? + >; + >?) 

(6)  > − 8C-E, = 2(BE,C484-7 × 8,784#4/4#9)/(BE,C484-7 + 8,784#4/4#9) 

2.2.3.2 Prediction of ATP-maintenance 

Following standard procedures, we added an equation (equation 7) to represent non-

growth associated maintenance (NGAM).  

(7) J:; + M$N → JP; + ;" + M% 

The values of NGAM were determined from the model for each experimental 

condition. For this purpose, we first fixed the consumption and production rates of 

different metabolites and then we progressively increased the NGAM from 0 to 5 mmol 

gDW-1 h-1. At each iteration, the growth rate was maximized and the error between the 

experimental and predicted growth rate was calculated. The value that minimized the 

error between the experimental and predicted growth rate was chosen as the ATP 

required for maintenance of cellular processes.   

The experimental rates included in the model were specific consumption rates of 

glucose, fructose, citrate, L-malate, L-cysteine, L-serine, L-threonine; it also included 

specific production rates of D-mannitol, L-lactate, D-lactate, acetate, erythritol and 

ethanol (Contreras et al, in preparation). They were calculated from experimental data 

of three batch cultures containing 0% and 12% ethanol, respectively, run in duplicate 

(see below).  

 



30	
	

	
	

2.2.3.3 Experimental determination of specific growth rates and 

consumption/production rates 

An O. oeni PSU-1 preculture was prepared from a frozen stock by inoculating 100-ml 

Erlenmeyer flasks containing 75 ml MRS (Man, Rogosa and Sharpe) medium (De Man 

et al., 1960), supplemented with 0.5 g L-1 of cysteine. Before inoculation, the cells were 

subjected to ethanol adaptation. For this purpose, we serially passaged every culture, 

starting from 1% ethanol (v/v) to reach 0 or 12% ethanol concentration (v/v) in each 

culture. 

The adapted cells were inoculated in 50 mL flasks containing 35 mL of a 

chemically defined, wine-like, culture medium to achieve an initial optical density at 

600 nm (OD600) of approximately 0.2. We employed the modified culture medium 

described by Terrade et al., (2009), at an initial pH adjusted to 4.8. 

The flasks were incubated at 25 °C, without stirring. OD600 was periodically 

measured to calculate the specific growth rate. At the same time, the content from each 

flask was centrifuged, the supernatant was collected, and an aliquot was injected in a 

Lachrom L-700 HPLC system (Hitachi, Japan) equipped with a Diode Array and a 

Refractive Index detector (Merck Hitachi, Japan). Organic acids, alcohols and sugars 

were separated using an Aminex HPX-87H ion exchange carbohydrate-organic acid 

column (Bio-Rad, USA) and quantified, as described previously (Varela et al., 2003). 

2.2.3.4 Amino acids essentiality assay 

An O. oeni PSU-1 preculture was prepared from a frozen stock as described above. 

The cells (not pre-adapted in ethanol) were inoculated in 50 mL flasks containing 35 

mL of the same chemically defined, wine-like, culture medium, but lacking the amino 

acids evaluated for essentiality (glutamate, glutamine, asparagine, and threonine), one 

amino acid per flask, in duplicate. The flasks were incubated at 25°C for 13 days, 

without stirring, and OD600 was periodically measured to calculate the specific growth 

rate. 
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2.2.3.5 Sensitivity analysis 

For each optimization using experimental data, non-zero reduced costs were extracted 

from the solver solution and employed for quantifying the impact of changing a 

capacity constraint on the objective flux. Scaled reduced costs were calculated as 

follows: 

(8) Q" = R" × S" $⁄  

Where wi represents the reduced cost, qi the flux through exchange reaction i, 

and μ the specific growth rate. Wi, the scaled reduced cost of the exchange reaction i, 

represents the fractional change in biomass obtained by a fractional variation in 

compound i. Reactions that showed both, a non-zero reduced cost and a non-zero scaled 

reduced cost, were further analyzed. 

2.2.3.6 Flux Variability Analysis 

Flux variability analysis (FVA) was carried out by minimizing and maximizing the flux 

through each reaction, under either unconstrained or constrained conditions. Span 

range was sorted by magnitude and plotted. 

Reactions unable to carry flux were considered blocked. For each of these, the 

cause of the obstruction was investigated by finding dead-end metabolites; these were 

determined searching for those metabolites that were only consumed or produced in 

the stoichiometric matrix. Additionally, we determined dead-ends by adding a demand 

(maximizing the flux) or a sink (minimizing the flux) reaction for each metabolite. 

Metabolites were considered dead-ends if the model was unable to produce, nor 

consume them. 

2.2.3.7 Random Sampling 

We conducted a random sampling analysis using optGpSampler (Megchelenbrink et 

al., 2014), an efficient algorithm based on the Monte Carlo procedure hit and run 

(Smith, 1984). For each experimental condition, we set the algorithm parameters in 

order to sample 100.000 points using 500 steps between each point.  

We applied the algorithm to explore the solutions at an optimal specific growth 

rate for each experimental condition. For this purpose, the model was restricted with 
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the calculated optimal growth rate and the corresponding experimental 

consumption/production rates. Then, we applied the algorithm for determining the 

100,000 flux distributions that accomplished these restrictions. For every condition, we 

found the 50 reactions that showed the greatest flux variations among the distributions. 

We classified these reactions according to pathways and then we sorted pathway 

frequency. 

We also applied this algorithm to explore the solutions near the optimal specific 

growth rate, by following the same procedure described above. For this purpose, the 

lower bound for specific growth rate was fixed at 90% of the optimal, and the upper 

bound, at the optimal specific growth rate.  

2.3 Results 

2.3.1 General features of the GSMM of Oenococcus oeni PSU-1 strain 

The iSM454 model (Supplementary material S2-2) consists of 660 reactions, 536 

metabolites and 454 genes. 24% of the 1864 genes described in the genome annotation 

(Makarova et al., 2006) were included in the model. 68% of the reactions are associated 

at least to one gene. The model includes 132 transport reactions, 110 exchange 

reactions, 3 extracellular reactions (dextran synthesis, heteropolysaccharide synthesis 

and cellulose degradation) and 411 intracellular reactions. It contains 148 blocked 

reactions, i.e. reactions that do not carry flux, including 107 that contain dead-ends 

(Table 2-2). 

Connectivity corresponds to the number of reactions where a metabolite 

participates. As shown in Table 2-3, the iSM454 model presents a similar connectivity, 

in relation to key metabolites, with WCFS1 (Lb. plantarum), IL1403 (Lc. Lactis) and 

Yeast 7 (S. cerevisiae) models (Aung et al., 2013; Oliveira et al., 2005; Teusink et al., 

2006). The connectivity analysis (Supplementary material S2-3) indicates that 240 out 

of the 536 metabolites included in the iSM454 model participate in two metabolic 

reactions: 100 in three reactions, and only 40 in more than seven reactions. 100 dead -

end metabolites were also found. 
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Table 2-2: Main features of genome scale metabolic model of O. oeni PSU-1. 

Total Genes 1864 
 Included genes 454 

Total Pathways 91 
Total Reactions 660 (448) a 
 Intracellular 413 (340) a 

 Extracellular 3 (2) a 

 Transport 133 (106) a 

 Exchange 111 

 Spontaneous 8 

 Assembly 7 

 Non-genes associated b 101 

 Blocked 148 

  With dead-ends 107 

  Without dead-ends c 41 

Total Metabolites 536 
 Intracellular 434 

 Extracellular 102 
a In brackets, number of reactions associated to genes 
b Exchange reactions are not considered 
c Without dead-ends, but associated to reactions with dead-ends 

	

Table 2-3: Comparison of key metabolites connectivity between SM454 model (O. 
oeni), WCFS1 (Lb. plantarum), IL1403 (Lc. lactis) and Yeast 7(S. cerevisiae) models.   

 Connectivity 
 O. oeni Lb. plantarum Lc. lactis S. cerevisiae 

 iSM454 WCFS1 IL1403 Yeast 7 
NADPH 32 34 37 58 

NADP+ 33 35 39 58 

NADH 39 57 36 36 

PPi 43 63 50 69 

NAD+ 43 62 40 42 

Pi 96 93 101 155 

ADP 111 113 113 121 

ATP 128 148 130 158 

H2O 162 165 141 269 

H+ 230 382 110 433 
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2.3.2 Metabolic Refinement of the iSM454 model 

The metabolism of carbohydrates, amino acids, and fatty acids, as well as 

macromolecular assembly, transport, and ATP production, were thoroughly checked at 

this stage, as described below. 

Carbohydrates metabolism. O. oeni is a heterofermentative bacterium. It consumes 

hexoses through the 6-phospho-gluconate pathway and produces carbon dioxide, D-

lactate, acetate and/or ethanol.  The main metabolized hexoses are glucose and 

fructose. The latter can also be transformed into mannitol or erythritol to fulfill the 

demand for NAD+ required in the heterolactic fermentative pathway. Even though the 

genes related to mannitol and erythritol biosynthetic pathways were not found in the 

PSU-1 genome, these pathways were included in the model to account for reported 

experimental data (Beelman et al. 1977, Contreras et al, in preparation). The membrane 

transporters of these and other carbohydrates - arabinose, ribose, melibiose, mannose, 

fucose, xylose and galactose - were found using PathoLogic (Dale et al., 2010), which 

is provided by Pathway Tools, and included in iSM454.  

Meanwhile, as O. oeni synthesizes exopolysaccharides (EPS) (Ciezack et al., 

2010; Dimopoulou et al., 2012, 2014), we included 7 reactions responsible for EPS 

biosynthesis, associated with 22 genes annotated in the genome.  

Finally, we also curated the pathways related to peptidoglycan biosynthesis. The draft 

reconstruction contained three alternative pathways to synthesize peptidoglycan 

(pathways I, III or V). We only left pathway I in the model because it was the most 

complete, i.e., 9 out of the 10 reactions of this pathway were associated with genes.  

Amino acids metabolism. The iSM454 model contains the whole biosynthetic pathways 

for 6 amino acids (alanine, aspartate, glutamine, lysine, proline and glycine), as arisen 

from gene annotation (Mills et al., 2005). The biosynthetic pathways of the remaining 

14 amino acids are incomplete however (arginine, asparagine, cysteine, glutamate, 

histidine, isoleucine, leucine, methionine, phenylalanine, serine, threonine, tryptophan, 

tyrosine, and valine), in accordance with genomic analysis (Mills et al., 2005). 

Fatty acids metabolism. O. oeni does not store triglycerides as an energy reserve. 

Instead, fatty acids are mainly utilized for the construction of the cytoplasmic 
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membrane. The lipid fraction of O. oeni is mainly composed by saturated fatty acids 

(laurate, myristate, palmitate, stearate), unsaturated fatty acids (palmitoleate, oleate, 

cis-vaccenate) and cyclopropane fatty acids (lactobacillate and dihydrosterculate) 

(Garbay et al., 1995; Guerrini et al., 2002; Lonvaud-Funel & Desens, 1990; Tracey & 

Britz, 1989b). Biosynthesis of saturated fatty acids was automatically included into the 

model by Pathway Tools. Meanwhile, the biosynthesis of unsaturated and 

cyclopropane fatty acids were manually added to the model with their respective gene 

associations.  

The synthetic routes for cardiolipin, 3-D-glucosyl-1,2-diacylglycerol, L-1-

phosphatidyl-glycerol, and lysophosphatidylglycerol, starting from dihydroxyacetone 

phosphate, were also included.  

In relation to β-oxidation of fatty acids, Pathway Tools assigned two genes, 

OEOE_1366 and OEOE_1263, to the same acyl-CoA synthetase (EC number 6.2.1.3) 

associated with a generic acyl fatty acid. We therefore manually included these genes 

and reactions for the canonical catabolism of the above-mentioned saturated fatty acids. 

Assembly of macromolecules. A modified version of the reported biomass equation of 

L. lactis (Oliveira et al., 2005) was included in iSM454,  according to some unique 

features reported in the literature for O. oeni. For example, deoxyribonucleotide 

content was taken from the genomic analysis for O. oeni PSU-1 (Makarova et al., 

2006). Fatty acid composition was determined as the average of each individual 

molecule (Garbay et al., 1995; Guerrini et al., 2002; Lonvaud-Funel & Desens, 1990; 

Tracey & Britz, 1989b). Amino acids, ribonucleotides and lipids composition 

correspond to L. lactis biomass composition (Oliveira et al., 2005). Similarly, 

macromolecular elements (proteins, lipids, DNA and RNA) were included (Oliveira et 

al., 2005). Finally, the lipoteichoic acid (LTA) synthetic pathway present in the L. lactis 

genome was eliminated because the genes for its synthesis were absent in the O. oeni´s  

genome and its presence has not been described in this microorganism (Ribéreau-

Gayon et al., 2006). 

Energy. Malate metabolism was added to the model, considering the transformation of 

malic acid to lactic acid by the malolactic enzyme (malate decarboxylase), codified by 
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the OEOE_1564 gene. In this reaction, a cytosolic proton is consumed, and lactic acid 

diffuses outside of the cell (Figure 2-2) (Konings et al, 1997; Salema et al, 1996). The 

net result of this process is a decrease in the concentration of intracellular protons, 

contributing to the formation of an electrochemical gradient. Additionally, the citrate 

lyase complex was lumped into one reaction, directly allowing the conversion of citrate 

to oxaloacetate. A stoichiometric equation to account for the diffusion of citrate inside 

O. oeni was also added. The model also contains a functional ATP synthase system. 

 

Figure 2-2: Electrochemical gradient formation in Oenococcus oeni towards the 

malolactic fermentation. 

2.3.3 Model Validation 

With the aim of determining the functionality of the model, we contrasted the results 

predicted by iSM454 with experimental data. 

2.3.3.1 Determination of in vivo amino acids requirements 

Model outputs of the essentiality of some amino acids differed from literature data 

(Fourcassie et al., 1992; Garvie, 1967b; Mills et al., 2005; Terrade & Mira de Orduña, 

2009; Tracey & Britz, 1989a). Therefore, we addressed these differences by 

experimentally evaluating their role on cell growth (Figure 2-3). 



37	
	

	
	

 

Figure 2-3: Amino acids essentiality analysis of O. oeni PSU-1. The amino acids 

studied are those with controversy with literature. Bacterial growth was compared with 

the complete medium (and the medium lacking asparagine (- Asn), glutamate (- Glu), 

glutamine (- Gln) and threonine (- Thr). 

 

For example, Mills et al, (2005) reported that the genes related to the threonine 

biosynthetic pathway were all present in PSU-1. However, we identified a pseudogene 

within this pathway and experimentally demonstrated its essentiality for O. oeni PSU-

1. On the contrary, even though several genes of the asparagine biosynthetic pathway 

were not found in the genomic sequence, our experimental results confirmed that O. 

oeni PSU-1 could synthesize this amino acid (Figure 2-3); and the whole pathway was 

included in the reconstructed model.  In the case of glutamine, both our experimental 

results and model reconstruction confirmed that this amino acid is not essential, at least 

for this strain. Finally, O. oeni PSU-1 showed auxotrophy for glutamate, in agreement 

with previous results (Fourcassie et al., 1992; Garvie, 1967b; Mills et al., 2005; Terrade 

& Mira de Orduña, 2009; Tracey & Britz, 1989a). 

2.3.3.2 Determination of in silico nutritional requirements 

First, we carried out an in silico single omission experiment to compare the nutritional 

requirements predicted by the model with the experimental data obtained after growth 

of O. oeni in the culture medium of Terrade et al. (2009) (Table 2-4). Additionally, a 
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confusion matrix was constructed to measure the performance of our predictions 

(Figure 2-4). This approach has been used before to assess the GSMM quality of S. 

cerevisiae iIN800 (Nookaew et al., 2008) and iLL672 (Kuepfer et al., 2005), as well as 

for L. plantarum (Teusink et al., 2006) and Y. lypolitica (Loira et al., 2012)). 

The in-silico analysis of nutritional requirements showed that at least one 

carbon source is required for growth. Thus, one out of the 9 following carbon sources 

could be employed to sustain growth: glucose, fructose, ribose, galactose, arabinose, 

cellobiose, trehalose, melibiose or gluconate. Additionally, the model predicted that 14 

amino acids are essential for growth (arginine, cysteine, histidine, isoleucine, 

methionine, phenylalanine, tryptophan, tyrosine, valine, leucine, threonine, serine, 

glutamate, and asparagine), and that the 6 remaining ones (alanine, aspartic acid, 

glutamine, glycine, lysine, and proline) were not.  

Table 2-4: Experimental validation of the iSM454 metabolic model. We compared 61 

in vivo experiments with in silico simulations under different media conditions. From 

the 61 experiments, we obtained 30 true positives (TP), 27 true negatives (TN), 1 false 

positive (FP) and 3 false negative (FN). + growth is achieved by O. oeni when the 

nutrient is removed, i.e., the nutrient is not essential; - growth is not achieved by O. 
oeni when the nutrient is removed, i.e., the nutrient is essential. 

 
Nutrient In 

vivo 
In 
silico 

Resu
lt 

Referenc
es 

  Nutrient In 
vivo 

In 
silico 

Resu
lt 

Referenc
es 

Carbon sources 
    

Amino acids 
    

D-Glucose + + TP 1 
 

L-Alanine + + TP 2 
Fructose + + TP 1 

 
L-Arginine - - TN 2,3,4,5 

D-Ribose + + TP 1,2 
 

L-Asparagine - - TN 2 
Threhalose + + TP 1 

 
L-Aspartic acid + + TP 2,3,4,5 

Cellobiose + + TP 1 
 

L-Cysteine - - TN 2,3,4,5 
D-
Deoxyribose 

- - TN 1 
 

L-Glutamic acid - + FP 2,3,4,5 

D-Xylose - - TN 1 
 

L-Glutamine + + TP 2 
L-Arabinose - + FP 1 

 
L-Glycine + + TP 2,3,4,5 

L-Rhamnose - - TN 1 
 

L-Histidine - - TN 2,3,4,5 
D-Mannose - - TN 1 

 
L-Isoleucine - - TN 2,3,4,5 

Esculin + - FN 1 
 

L-Leucine - - TN 2,3,4,5 
Salicin + - FN 1 

 
L-Lysine + + TP 2,3,4,5 

Glycerol - - TN 1 
 

L-Methionine - - TN 2,3,4,5 
D-Mannitol - - TN 1 

 
L-Phenylalanine - - TN 2,3,4,5 

L-Sorbitol - - TN 1 
 

L-Proline + + TP 2,3,4,5 
L-Malic acid - - TN 1 

 
L-Serine + - FN 2,3,4,5 

Citric acid - - TN 1 
 

L-Threonine - - TN 2,3,4,5 
Fumaric acid - - TN 1 

 
L-Tryptophan - - TN 2,3,4,5 

Nucleotides 
     

L-Tyrosine - - TN 2,3,4,5 
Adenine + + TP 2 

 
L-Valine - - TN 2,3,4,5 

Guanine + + TP 2 
 

Vitamins 
    

Xanthine + + TP 2 
 

4-Aminobenzoic 
acid 

+ + TP 2 

Cytosine + + TP 2 
 

Biotin + + TP 2 
Thymine + + TP 2 

 
Choline + + TP 2 
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Uracil + + TP 2 
 

Cyanocobalamin + + TP 2 
Minerals 

     
Folic acid + + TP 2 

MnSO4 · 4 
H2O 

- - TN 2 
 

Nicotinic acid - - TN 2 

MgSO4 · 7 
H2O 

+ + TP 2 
 

D-Pantothenate - - TN 2 

K2HPO4 - - TN 2 
 

Pyridoxine + + TP 2 
CaCl2 + + TP 2 

 
Riboflavin + + TP 2 

CuSO4 · 5 
H2O 

+ + TP 2 
 

Thiamine + + TP 2 

FeSO4 · 7 
H2O 

+ + TP 2 
      

ZnSO4 · 7 
H2O 

+ + TP 2             

References: 1 (Beelman et al., 1977), 2 (Terrade & Mira de Orduña, 2009), 3 (Garvie, 1967b),  
4 (Fourcassie et al., 1992), 5 (Remize et al., 2006). 

  

 

 

 

Figure 2-4: Confusion matrix used to measure the performance of predictions in the 

determination of in silico nutritional requirements. The statistical parameters that 

define model performance are: sensibility of 97%, specificity of 90%, precision 91% 

negative predictive value of 96%, accuracy of 93% and F-score of 94%. 

 

Single nucleotide omission experiments of iSM454 showed that these 

metabolites were not essential for O. oeni. On the other hand, nicotinic acid and 

pantothenate were predicted to be essential nutrients. Moreover, several vitamins, such 

as biotin, folic acid, pyridoxine, riboflavin, and thiamin were not essential.   

The model was able to identify that O. oeni was able to grow in 97% of those 

cases (sensitivity); whereas it identified 90% of the cases where the O. oeni did not 

grow (specificity).   Furthermore, 91% of the experiments in which O. oeni were 
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predicted to grow, O. oeni actually grew (precision). Additionally, 96% of the 

experiments in which O. oeni was not predicted to grow, O. oeni actually did not grow 

(NPV). The accuracy of the model was 93%, i.e., the proportion of correct results to 

total predictions. By comparison, the GS model of L. plantarum presents an accuracy 

of 86% (Teusink et al., 2005); and the iIN800 model of S. cerevisiae, 89% (Nookaew 

et al., 2008). Finally, the F-score, a measure of the accuracy that can be interpreted as 

a weighted average of the sensitivity and the precision, was 94%, indicating that overall 

the model has a very good performance. 

We obtained one false positive related to prediction of growth in the absence of 

L-glutamate, because of the presence of transamination reactions in the network, which 

artificially allowed the production of this amino acid. On the other hand, we obtained 

three false negatives related to growth in the absence of L-serine, and growth with 

esculin and salicin as sole carbon sources. 

2.3.5 Applications 

The reconstructed GSMM can be employed to study metabolic fluxes, as well as to 

identify gene or nutrient essentiality in silico. In the following, we exemplify some 

potential uses of the iSM454 model. 

2.3.5.1. Prediction of Non-Growth Associated Maintenance (NGAM) 

In order to predict the NGAM values for each experimental data set, we optimized the 

growth rate considering a range of possible NGAM values. The value of NGAM that 

allowed the minimal error at each specific growth rate prediction was selected, reaching 

an average error in the biomass formation of 0.14% in the two conditions analyzed. 

These NGAM values accounted for 0.07 and 2.3 mmol of ATP gDW-1 h-1 at 0 and 12% 

ethanol, respectively. Thus, when exposed to 12% ethanol, O. oeni PSU-1 spends 30 

times more ATP to maintain the cellular machinery than in the absence of ethanol.  
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2.3.5.2. Impact of ethanol concentration on the redistribution of intracellular 

fluxes 

Flux Balance Analysis (FBA) of experimental data showed that a significant 

redistribution of intracellular fluxes occurs in the cell when O. oeni is grown in the 

absence of ethanol or under 12% ethanol content. To compare these two conditions, 

fluxes were standardized by growth rate. The glucose uptake rate is similar for 0% and 

12% ethanol (Figure 2-5). On the contrary, significant changes occur in the 

consumption rates of fructose, malate, and citrate. The uptake rate of these compounds 

increases 102%, 169% and 127%, respectively, when the bacterium is cultivated with 

12%v/v ethanol. The net result is an increase in the fluxes through the heterolactic 

pathway. Consequently, a higher production rate of D-lactate (279%), L-lactate 

(144%), acetate (150%), mannitol (39%) and erythritol (7%), was achieved.  

Despite the fructose uptake rate more than double in cultures with 12% ethanol, 

the mannitol production rate only increased by 39%. Indeed, in the absence of ethanol, 

T&'((")*! +,#-)*./0  was 0.82; meanwhile, at 12% ethanol, this yield decreased to 0.56. 

Thus, fructose in cultures with ethanol is preferentially transformed to fructose-6-

phosphate - and then to glucose-6-phosphate – compared to those without ethanol, 

which subsequently leads to a higher production of D-lactate and acetate. In fact, 

considering total carbon source as the sum of glucose, fructose, citrate and L-malate, 

resulting  T12!'-)')/ )*)'!	40  and T'-/)')/ )*)'!	40  were 0.044 and 0.35 in the absence of 

ethanol; and 0.086 and 0.46 at 12% ethanol, respectively. 

The flux through the malolactic reaction was also much faster in ethanol-

containing cultures. The uptake rate of L-malate increased 169%, and the concomitant 

production rate of L-lactate, 144%. It is worthy to note that in both cases, not all the L-

malate was transformed to L-lactate. A minor fraction is transformed to oxaloacetate 

through the malate dehydrogenase. Interestingly, T52!'-)')/ 52&'!')/0  slightly 

decreased from 0.79 to 0.71, suggesting that for cells grown at 12% ethanol, a higher 

part of L-malate is destined to oxaloacetate.  
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Ethanol content significantly impacts the production rate of diacetyl, which 

increases from 0 to 4.23 mmol gDW-1 h-1. Regarding erythritol, even though its 

production remains almost the same in both conditions 

T/,6)7,")*!
8!#-*./%+,#-)*./0 decreased from 0.36 to 0.25, suggesting that a higher extent 

of fructose and glucose is transformed into other metabolites than erythritol.  

As expected from the higher carbon flow through the heterolactic pathway in 

ethanol-containing cultures, the corresponding ATP specific production rate was three-

fold faster than in the absence of ethanol, passing from 0.74 to 1.98 mmol gDW-1 h-1 

for 0 and 12% ethanol, respectively. These were calculated by adding the fluxes of 

acetate kinase (EC 2.7.2.1), pyruvate kinase (EC 2.7.1.40) and phosphoglycerate kinase 

(EC 2.7.2.3); and subtracting the fluxes through hexokinase (EC 2.7.1.1/E.C 2.7.1.2) 

and fructokinase (EC 2.7.1.4). On the other hand, by using the usual method for ATP 

determination through heterolactic fermentation, which consists of adding the total D-

lactate and acetate produced, the resulting ATP production rates were 1.38 and 2.12 

mmol gDW-1 h-1, for 0% and 12% ethanol-containing cultures, respectively.  

Total ATP production increases as the concentration of ethanol in the medium 

increases (Figure 2-6). The model includes ATP generation by both, heterolactic 

fermentation and ATP synthase. At high ethanol content, the percentage of ATP 

produced via ATP synthase slightly decreases, from 48% to 45%; while the ATP 

formed through the heterolactic fermentation increases, correspondingly.  
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Figure 2-5: Metabolic flux redistribution of the central carbon metabolic pathways of 

O. oeni PSU-1 upon cultivation in a culture medium with 0% (red), and 12% (blue) 

ethanol concentration. The number "2" in the reaction pyruvate to 2-acetolactate means 

that two moles of pyruvate generate one mole of 2-acetolactate. 
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Figure 2-6: Production of ATP at different ethanol concentrations. The figure illustrates 

the total ATP produced during simulation of experimental data at pH 4.8 and at 

different ethanol concentrations. Numbers indicate the ATP production either by 

heterolactic fermentation (dark bars) or ATP Synthase (light bars).  

 

2.3.5.3 Sensitivity Analysis 

We assessed the impact of exchange reactions on the growth of O. oeni, by conducting 

a sensitivity analysis (Table 2-5) through estimation of the reduced costs, as well as of 

the scaled reduced costs, associated with these constrained fluxes. This methodology 

has been used before to assess the impact of metabolic reactions on ATP formation in 

the lactic acid bacterium Lactobacillus plantarum (Teusink et al., 2006). Reduced costs 

allow quantifying how much the objective flux could be improved by changing a 

capacity constraint. Scaled reduced costs represent the reduced cost normalized by the 

current biomass flux and the flux associated with the constraint. They allow computing 

the relative effect of a change in a parameter to the whole system. 

The increase of sugar uptake rate - fructose or glucose - had a positive effect on 

the specific growth rate (scaled reduced costs of 2.59 and 1.67, respectively) as well as 

the transport of acids -malate or citrate uptake- (scaled reduced costs of 0.86 and 0.03, 

respectively), and the export of acetate, L- and D-lactate (0.47, 0.34, 0.09 respectively). 

The specific uptake rate of cysteine, serine and threonine also showed a positive effect 

on the specific growth rate (scaled reduced costs of 0.05, 0.01 and 0.06, respectively). 
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On the contrary, the production rate of D-mannitol and D-erythritol had a negative 

effect on the specific growth rate, which showed scaled reduced cost of -2.67 and -

1.48, respectively.  

2.3.5.4. Exploring the solution space.  

To evaluate the robustness of our results, we employed random sampling and Flux 

Variability Analysis (FVA) to identify and explore the different phenotypes achieved 

at optimal specific growth rate.  

Table 2-5: Sensitivity Analysis of the model using experimental data at pH 4.8. 

Reactions analyzed correspond to exchange reactions of the model. Reduced cost 

quantifies how much the objective flux (specific growth rate) improves by changing a 

capacity constraint, and scaled reduced cost is the reduced cost normalized by the 

current biomass flux and the flux associated to the constraint. Positive value indicates 

an improvement in the specific growth rate, and negative value indicates a decrease. 

Reaction Direction Reduced cost Scaled reduced cost 
β-D-fructose [ex]  consumed 0,023 ± 0,007 2,585 ± 0,824 

α-D-glucose [ex]  consumed 0,031 ± 0,007 1,670 ± 0,433 

D-mannitol [ex] produced -0,035 ± 0,008 -2,671 ± 0,817 

Citrate [ex]  consumed 0,005 ± 0,008 0,033 ± 0,066 

(R)-lactate [ex] produced 0,003 ± 0,005 0,089 ± 0,154 

(S)-lactate [ex] produced 0,003 ± 0,005 0,338 ± 0,586 

(S)-malate [ex]  consumed 0,009 ± 0,005 0,860 ± 0,502 

L-Cys [ex]  consumed 0,012 ± 0,003 0,054 ± 0,013 

L-Ser [ex]  consumed 0,005 ± 0,005 0,011 ± 0,012 

L-Thr [ex]  consumed 0,022 ± 0,002 0,057 ± 0,009 

Ethanol [ex] produced -0,005 ± 0,009 -0,005 ± 0,009 

Acetate [ex] produced 0,003 ± 0,002 0,468 ± 0,482 

D-erythritol [ex] produced -0,032 ± 0,010 -1,488 ± 0,412 

 

FVA revealed some important differences between unconstrained and 

constrained networks (Figure 2-7). 485 and 419 reactions were able to carry flux in the 

unconstrained and constrained network, respectively. The larger differences were 

found for reactions with a narrow flux range (less than 1 mmol gDW-1 h-1, i.e., a 

negative value for the logarithm of the flux range in Figure 2-7). We found only 30 

reactions with a flux range of less than 1 mmol gDW-1 h-1 in the unconstrained network; 

meanwhile, this value increased to 370 in the constrained network. Moreover, 99% of 
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the reactions in the constrained network showed a flux range lower than 3 mmol gDW-

1 h-1, suggesting that the constraints applied (uptake and production rates) strongly 

delimit the solution space. Thus, applying these constraints, the phenotype is well 

defined. 

Additionally, random sampling in the constrained network revealed that the 

solution space was tight and alternative pathways were limited. Except in the case of 

reactions of isomer interconversions which could result in a futile cycle, none of the 

reaction rates analyzed changed more than 1.1 mmol gDW-1 h-1. 

 

Figure 2-7: Flux Variability Analysis for unconstrained and constrained networks.  The 

figure illustrates the flux range in mmol gDW-1 h-1 for every non-blocked reaction of 

the unconstrained (blue) and constrained (orange) network expressed as base 10 

logarithm. Flux range of the constrained network was calculated as the average flux 

ranges of networks applying constraints for 0 and 12% of ethanol content.  

 

Interestingly, when constrained by experimental rates, FVA shows that O. oeni 

requires oxygen to achieve growth at all ethanol levels. Moreover, the oxygen 

consumption rates needed for growth increase as the concentration of ethanol increases, 

ranging from 0.8-1.2 and 4.1- 4.2 mmol gDW-1 h-1 for 0% and 12% ethanol, 

respectively.  



47	
	

	
	

2.3.5.5 In silico reaction deletion analysis 

The essential reactions of O. oeni were predicted by in silico simulations of reaction 

knockouts – inhibiting the activity of the enzyme(s) carrying away the respective 

reaction. This was conducted by further constraining the model, i.e., fixing the flux of 

the corresponding reaction to zero. 

132 essential reactions were found by reaction deletion analysis, which 

represent 20% of the 660 total reactions of the model; of these, 28% correspond to fatty 

acid biosynthesis, and 14% to unsaturated fatty acid biosynthesis. The other main 

essential pathways include the biosynthesis of peptidoglycan (10%), glycerolipids 

(8%) and amino acid biosynthesis (8%) (Figure 2-8). 

 

Figure 2-8: Pathway distribution of 133 out of 164 essential reactions determined by 

Reaction Deletion on an in-silico simulation. Reactions were classified as essential if 

growth was affected by at least 80%. Reactions corresponding to non-classified 

reactions, exchange reactions or pathways that have only one reaction as essential were 

not considered.   
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2.4 Discussion 

In this work, we reconstructed, curated and validated the first genome-scale metabolic 

model of O. oeni PSU-1. The resulting iSM454 comprises 660 reactions, 536 

metabolites and 454 genes, and is able to predict growth under different culture 

conditions with 93% accuracy. An accurate prediction depends largely on the 

refinement process. The draft reconstruction was thoroughly curated pathway by 

pathway, evaluating the stoichiometry, direction, and reversibility of each reaction. 

After an exhaustive literature search, several pathways were modified in the draft 

reconstruction, while others were completed, removed, or added to the iSM454 model. 

Several metabolisms (fatty acids, exopolysaccharides, amino acids and energetic) were 

thoroughly curated in the model.  

Regarding biosynthesis of unsaturated and cyclopropane fatty acids, we 

included the reactions for the biosynthesis of palmitoleate (C16:1 Δ9), cis-vaccenic 

acid (C18:1 Δ11), lactobacillic acid (C19:0 cyΔ11) and dihydrosterculic acid (C19:0 

cyΔ9). Moreover, we discovered that the reactions for generating cyclopropane bounds 

were associated with OEOE_1176, a gene related to a generic reaction of cyclization 

of unsaturated fatty acids. We identified dihydrosterculic acid, which derives from 

oleic acid under stress conditions (Guerrini et al., 2002; Lonvaud-Funel & Desens, 

1990; Tracey & Britz, 1989b), as an essential nutrient in the model. Therefore, an 

equation for the transport of oleic acid was included.  

EPS biosynthesis has been related to the survival of O. oeni under stress 

conditions, such as those prevailing in wine during malolactic fermentation (MLF). 

Moreover, these polysaccharides have been implicated in ropiness, a wine spoilage 

process (Dimopoulou et al., 2012). Therefore, we included in the model the detailed 

biosynthesis of EPS based on the pathways described by Dimopoulou et al. (2012, 

2014), which consist of two main products: heteropolysaccharide (glucosyl-

rhamnosyl-galactoside) and homopolysaccharide (dextran). 

Moreover, the iSM454 model was able to correctly predict most essential amino 

acids, in agreement with the analysis of amino acids pathways reported by Mills et al. 

(2005). The model predicts that 14 amino acids are essential and that O. oeni is only 
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able to synthesize 6 amino acids, which is supported by previous evidence (Fourcassie 

et al., 1992; Garvie, 1967b; Remize et al., 2006; Terrade & Mira de Orduña, 2009). 

Mills et al. (2005) found that the biosynthesis pathway of cysteine was complete, which 

agrees with our reconstruction. However, cysteine has been experimentally found as 

an essential amino acid in most cases (Fourcassie et al., 1992; Garvie, 1967b; Remize 

et al., 2006; Terrade & Mira de Orduña, 2009). Hence, although its biosynthesis 

pathway is complete, missing pathways for sulfur assimilation could explain its 

essentiality for O. oeni cells. 

Another important feature of the model is the representation of different proton 

extrusion/energy generation pathways employed by O. oeni, particularly the 

transformation of malic into lactic acid, using the malolactic enzyme (malate 

decarboxylase). Likewise, a lactic acid transporter that allows this compound to cross 

the cytoplasmic membrane was added. Citrate metabolism, another important system 

of energy generation in O. oeni, was also included. Both processes allow proton 

extrusion, which relates to ATP synthase, allowing more ATP to be synthesized. These 

three added metabolic processes were critical for accurate model performance, 

especially for the prediction of specific growth rates. Thus, simulations strongly 

suggest that proton transport is the most important process for the survival of O. oeni 

under these harsh cultural conditions. 

We found that accurate proton balancing, and cofactor utilization was 

fundamental for the successful prediction of O. oeni phenotype by iSM455 model. For 

this purpose, we ensure that the only reactions for extrusion of protons were those 

related to heterolactic fermentation (efflux of lactate and carbon dioxide); in those 

cases, the network properly described the proton motive force needed to generate 

energy from the ATP synthase located in the cell membrane. Additionally, a careful 

revision of the metabolism was performed to account for proper cofactor utilization. 

This feature was recently reported as a critical step in improving phenotypic predictions 

by genome-scale metabolic models (Pereira et al., 2016). Therefore, we manually 

curated all reactions by forcing the use of NADPH/NADP+ in anabolic reactions, e.g., 

fatty acid biosynthesis, and NADH/NAD+ for catabolic reactions. 
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The total ATP production rate calculated by the model was 26% less, on 

average, than the ATP production rate estimated using the approach of other authors 

(Salou et al, 1994; Zhang et al, 2005, 2006). This difference could result  from several 

reasons: i) pyruvate, the precursor of D-lactate, can be produced either from 

oxaloacetate, malate or even from some amino acids, such as cysteine, serine, or 

threonine or consumed for the synthesis of diacetyl and ethanol;  ii)  acetate can be 

directly produced from citrate or acetaldehyde, not yielding any ATP; and iii) 

production of erythritol requires that some carbon leaves the heterolactic pathway to 

generate its precursor, erythrose 4 phosphate; therefore, the ATP consumed by the 

hexokinase could not be regenerated downstream. Mink et al., (2015) showed that 

diacetyl production could be induced by exogenous pyruvate; the authors concluded 

that any substrate increasing intracellular pyruvate could induce the synthesis of 

diacetyl, as observed in a manner consistent with our results. 

In general, microorganisms colonizing extreme ecological niches need higher 

energetic requirements for cell maintenance, which is not reflected in biomass 

formation (Russell & Cook, 1995). Therefore, a relevant applied use of iSM454 was 

the determination of m-ATP, which represents non-growth associated maintenance 

(NGAM) requirements. Using our experimental data, the model was able to predict m-

ATP of 0.07 and 2.3 mmol gDW-1 h-1 for O. oeni PSU-1 grown under 0% and 12% v/v 

ethanol, respectively. These m-ATP values allowed predicting biomass with an average 

error of 0.14%. Despite the remarkable importance of m-ATP for visualization of cell 

behavior under stress conditions, there is scarce information in the literature about this 

parameter for O. oeni. Zhang and Lovitt (2006) determined an NGAM of 0.6 mmol 

ATP g DW-1 h-1 for O. oeni 11648 strain, when growing in continuous culture at pH 

4.5 with glucose and fructose as carbon sources and in the absence of ethanol. We 

determined that the stress produced by 12% ethanol in the medium required a 30-fold 

increment in the m-ATP needed, compared to the cultivation without ethanol. 

Interestingly, growth associated maintenance (GAM) was on average 0.25 mmol ATP 

gDW-1, pointing out that under ethanol stress (12%v/v), O. oeni spends in total almost 
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nine times more energy in cell maintenance than under non-stress conditions, i.e., 

absence of ethanol in the medium.  

To the best of our knowledge, this is the first report determining the ATP 

required for maintaining cells of O. oeni growing in a medium with ethanol. It is worthy 

to note that model predictions were performed using experimental data obtained in a 

wine-simulated environment, where this microorganism commonly develops. As a 

consequence, the model can effectively be used to predict internal fluxes in cases where 

there is scarce growth. This is relevant for winemakers because many strains are able 

to perform MLF in spite of achieving scarce growth in wine. The model is particularly 

useful in this case because it predicts MLF, whereas other mathematical models of O. 

oeni cannot (Brandam et al., 2016; Fahimi et al., 2014). Furthermore, the model is able 

to predict internal metabolic fluxes, determining the production of mannitol, erythritol, 

acetate, diacetyl, acetoin, among other compounds that could have significant 

organoleptic impacts on the resulting wine. 

As expected for the effect of variations in the constrained fluxes, the sensitivity 

analysis showed positive reduced costs associated with the uptake rate of D-glucose, 

D-fructose, and D-malic acid, as well as an increase in the production of DL-lactate 

and acetate. It is expected that a higher rate for these reactions leads to a higher specific 

growth rate because more ATP can be obtained directly through heterolactic – from D-

glucose and D-fructose – and indirectly through malolactic fermentation – from D-

malic acid. Interestingly, the uptake of D-fructose has higher scaled reduced cost, 

meaning that it has the greatest effect on growth rate, probably because of the 

importance of the regeneration of redox factors. Zhang et al. (2005) reported that the 

specific growth rate of O. oeni NCIMB 11648 increased when the ratio among glucose 

and fructose concentrations in the medium was reduced from 0.5 to 0.3, supporting our 

results related to the impact on the specific growth rate of increasing fructose uptake 

rate. On the other hand, an increase in the uptake rate of citric acid and some amino 

acids such as L-cysteine, L-serine and L-threonine also leads to a higher growth rate, 

in accordance with the essentiality of these amino acids. All these metabolites have 
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been identified as important contributors to energy metabolism in lactic acid bacteria 

(Teusink et al., 2006), which support  their role in the specific growth rate. 

Sensitivity analyses demonstrated that an increase in the production of D-mannitol or 

D-erythritol has a negative effect on growth rate. At first sight, this could be 

counterintuitive. Nevertheless, O. oeni needs reduced redox cofactors for anabolic 

processes and biomass formation, which are regenerated during the biosynthesis of 

mannitol and/or erythritol. 

The iSM454 model allowed finding a direct relationship between several 

metabolic fluxes and ethanol content in the medium. Fructose and amino acid 

consumption rates increased concomitantly with ethanol content. Moreover, erythritol, 

D-lactate and acetate production rates also increased in ethanol-containing cultures. As 

expected, the metabolic fluxes related with malic acid consumption and L-lactic 

production rates increased with ethanol. These compounds are critical for regeneration 

of redox cofactors such as NADH/NAD+, which restore the redox balance inside the 

cell. Our results therefore confirm previous studies that point to redox balancing as a 

survival strategy for O. oeni (Maicas et al., 1999; Salou et al., 1994; D. S. Zhang & 

Lovitt, 2005).  

Moreover, a redistribution of intracellular fluxes occurred when ethanol content 

increased in the culture medium. FVA revealed that O. oeni requires oxygen to grow 

at all ethanol levels. Furthermore, oxygen requirements increase concomitantly with 

ethanol concentration. Although the calculated oxygen specific consumption rates were 

low, they had a similar value  (6.25 mmol gDW-1 h-1) to those determined by Aceituno 

et al. (2012) for the wine yeast strain Saccharomyces cerevisiae EC1118, grown in 

nitrogen–limited continuous cultures, sparged with 1.2 µM of oxygen. These results 

confirm the microaerophilic behavior of O. oeni. Oxygen is mainly used for pyruvate 

oxidation by pyruvate oxidase (E.C.1.2.3.3), threonine degradation by 

aminoacetone:oxygen oxidoreductase (E.C. 1.4.3.21) and spontaneous diacetyl 

formation by acetoin oxidation.  

The overall good performance of the metabolic model evidences the correct 

distribution of metabolic fluxes, with or without 12% ethanol content and pH 4.8. 
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However, it is worthy to mention that the information about O. oeni is still scarce; the 

physiological as well as proteomic and transcriptomic responses of the bacterium 

grown under different environmental perturbations are necessary to further improve the 

model. These might include determination of biomass composition, exhaustive 

electronic and proton balancing of stoichiometric equations and integration of 

transcriptomic and proteomic data. On the other hand, dynamic flux balance analysis 

(dFBA) has emerged as a promising strategy to study batch cultures of several strains 

(Hanly et al., 2012; Sainz et al., 2003; Sánchez et al., 2014). Indeed, this methodology 

has been already applied to understand the behavior of industrial Saccharomyces 

cerevisiae strains in wine-like medium (Vargas et al., 2011). Therefore, a dFBA for O. 

oeni could be useful to simulate the kinetics of growth and industrial MLF extension. 

Finally, a future challenge is the development of a more extended platform, based on 

the iSM454 model, allowing the simulation and prediction of the biological interactions 

occurring within the wine microbiome. For example, E. coli’s GSMM has been 

successfully employed as a platform to model metabolite exchange between different 

organism under different environmental conditions(Jain & Srivastava, 2009; Klitgord 

& Segre, 2010; Wintermute & Silver, 2010).The consortium metabolic models could 

also be applied to winemaking to simulate and understand the interactions between O. 

oeni and other microorganisms that share this ecological niche, as S. cerevisiae and 

other LAB, like Lb. plantarum, Lb. kunkeii, Pediococcus pentosaceus; and even 

undesirable and detrimental wine microorganisms, like Brettanomyces spp. or 

Acetobacter aceti, responsible for acetic acid production spoilage. Consortium 

metabolic models might predict how each organism develops in a shared, not isolated, 

scenario (Tzamali et al., 2011). The iSM454 model would be a valuable tool to be 

employed for further modeling O. oeni in coexistence with other species. 
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3. CHAPTER II: MAPPING THE PHYSIOLOGICAL RESPONSE OF 

OENOCOCCUS OENI TO ETHANOL STRESS USING AN EXTENDED 

GENOME-SCALE METABOLIC MODEL. 

 

3.1 Introduction 

The winemaking of red wines, and of some white wines, involves two fermentation 

processes: alcoholic fermentation conducted by yeast, and malolactic fermentation 

(MLF) performed by lactic acid bacteria (LAB). MLF allows wine deacidification and 

improves flavor complexity and microbiological stability (Henick-Kling et al., 1994; 

Zoecklein et al., 1999). This process consists of the decarboxylation of L-malate into 

L-lactate, a reaction that decreases wine acidity. Oenococcus oeni is the main bacterial 

species that carries out the MLF, due to its ability to grow under the harsh conditions 

present in wine, such as high ethanol content (>13% v/v), low pH (< 3.2), and high 

sulphite concentration (< 50 ppm) (Bartowsky, 2005; Bauer & Dicks, 2004; H. Li et 

al., 2006; Zapparoli et al., 2009; G. Zhang, 2013). However, O. oeni is not always able 

to achieve this task under these hostile conditions, often generating sluggish or stuck 

MLFs. For this reason, this process is considered one of the most difficult to manage 

during winemaking. Several studies have been carried out with the aim of 

understanding the metabolism of O. oeni under winemaking conditions; however, MLF 

still remains mostly unpredictable (Bourdineaud et al., 2003; Cafaro et al., 2014; 

Carreté et al., 2002; da Silveira et al., 2003; Grandvalet et al., 2005; Olguín et al., 2009). 

Survival of microorganisms under stress conditions requires the maintenance 

of the main functions of the cell membrane, which is essential to control ion 

permeability and to regulate solute exchange between the cell and the external medium.  

In wine, ethanol is considered the main stressor, because it can injure cell membrane 

integrity and impact cell viability.   

Most studies on O. oeni survival in wine have focused on the deleterious effect 

of ethanol on the integrity of cell membrane and changes in the cell wall composition. 

Chu-Ky et al. (2005) reported that increasing ethanol content in the culture medium – 

from 10 to 14% v/v- increased membrane fluidity, resulting in significant loss of cell 
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viability, even after 30 min of cultivation. Da Silveira et al. (2004) noticed an increase 

in the level of proteins involved in cell wall biosynthesis. Dols-Lafargue et al. (2008) 

showed that O. oeni strains able to express a functional gtf gene - involved in 

exopolysaccharide synthesis - were more resistant to ethanol and other stressors. Other 

authors determined that cells grown in the presence of 8% v/v ethanol modified the 

membrane fatty acid profile, resulting in an increment of membrane cyclopropane fatty 

acids (CFAs) (Grandvalet et al., 2008; Teixeira et al., 2002). The biosynthesis of CFAs 

from unsaturated fatty acids is catalyzed by a CFA synthase, encoded by the cfa gene. 

The correlation between cfa induction and ethanol resistance has been demonstrated in 

O. oeni cells (Grandvalet et al., 2008). 

Nevertheless, the central metabolism of O. oeni under winemaking conditions 

is still scarcely understood. Indeed, several related studies did not include ethanol in 

the culture medium (Fourcassie et al., 1992; Maicas et al., 1999, 2002; Salou et al., 

1994). Others, although including ethanol, have employed complex culture media, with 

the aim of satisfying increasingly demanding nutritional requirements of this bacterium 

with increasing ethanol content (Arena & Manca De Nadra, 2005; Bravo-Ferrada et al., 

2016; Capucho & San Romao, 1994; Olguín, 2010; Olguín et al., 2009; Tracey & van 

Rooyen, 1988).   

Complex media contain plant and/or animal water-soluble extracts and sugars 

which result in solutions rich in minerals and organic nutrients, but where the exact 

composition is unknown. On the contrary, defined culture media are composed of well-

known chemical compounds in previously determined concentrations. The latter are, 

therefore, best suited than the former to fully assess the metabolic responses of a 

microorganism under different perturbation conditions.    

To the best of our knowledge, an optimized, defined culture medium is not 

available yet to allow a quantitative characterization of the growth and metabolism of 

O. oeni under wine-like culture conditions. The only defined medium currently 

available for O. oeni has been reported by Terrade and Mira de Orduña (2009). This is 

a non-selective, chemically defined medium for O. oeni, as well as for other LAB, that 

provides strong growth comparable to standard laboratory media used for LAB like the 
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MRS medium (De Man et al., 1960). However, Terrade´s medium does not include 

enological components, like malate, citrate, fructose or ethanol, among others.  

Since the genome sequence of O. oeni PSU-1 was released by Mills et al. 

(2005), several -omic studies have significantly contributed to the understanding of the 

metabolic changes that occur in this microorganism during the malolactic fermentation 

(Bartowsky, 2017; Bordas et al., 2015; Costantini et al., 2015; Margalef-Català et al., 

2016; Olguín, 2010; Olguín et al., 2009, 2015; Sternes et al., 2017). Bridier et al. (2010) 

constructed a phylogenetic tree comparing the sequences of the seven housekeeping 

genes presents in 258 O. oeni strains. Then, two major phylogenetic groups were 

observed. Moreover, a third putative group was proposed comprising one strain, which 

was isolated from cider. Likewise, Campbell et al. (2015) revised the population 

structure of 50 O. oeni strains, using comparative genomics and confirmed that it can 

be divided in two major groups, according to their ecological niche, wine or cider. In 

congruence with Bridier’s work, a third group was proposed. Sternes and Borneman 

(2016) compared consensus pan-genome assemblies of the invariant (core) and 

variable (flexible) regions of 191 O. oeni strains. Genetic variation in amino acid 

biosynthesis and sugar transport and utilization was found to be common between 

strains. Moreover, other studies showed that O. oeni strains differed mainly in 

carbohydrate metabolism (Cibrario et al., 2016) and exopolysaccharide synthesis 

(Dimopoulou et al., 2014). 

Besides, several studies have grouped O. oeni strains according to their capacity 

to perform the MLF or flavors production. Bon et al. (2009) observed the presence of 

eight stress-responsive genes in O. oeni strains that performed MLF more efficiently. 

El Khoury et al. (2017) reported the isolation, genotyping, and geographic distribution 

analysis of 514 O. oeni strains. Their phylogenetic relationships were evaluated using 

a method based on single nucleotide polymorphism (SNP) analysis. The results show 

that strains are not genetically adapted to regions but to specific types of wines. More 

recently, Sternes et al. (2017) found thirteen genes differentially expressed in the strains 

analyzed, which were associated with the production of diacetyl, a commercially 

valuable aroma compound. Finally, Campbell-Sills et al. (2017), studying the genomics 
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and metabolomics of 14 O. oeni strains isolated from Burgundy, identified two 

different O. oeni lineages associated to either red or white wines in this French region. 

Transcriptomic and proteomic analyses of O. oeni strains cultivated in wine-simulated 

cultures showed that the environment strongly affects O. oeni stress responses at this 

level. Costantini et al. (2015) found that under mild ethanol stress culture conditions, 

(8% v/v), genes codifying for chaperones with refolding activity were over-expressed; 

and at higher alcohol concentration (12%v/v), genes that codify for chaperones with 

proteolytic activity were induced. Olguín et al. (2015) performed transcriptomic and 

proteomic analyses which revealed that main genes affected by ethanol (12% v/v) were 

related with metabolite transport, as well as cell wall and membrane biogenesis; 

furthermore, they observed relocation of cytosolic proteins in the membrane, as a 

protective mechanism. More recently, Margalef-Catalá et al. (2016) also performed 

transcriptomic and proteomic analyses, showing that the amino acid metabolism and 

transport were altered and that several peptidases were up-regulated both at gene and 

protein levels. Moreover, the authors observed that genes related with malate and 

citrate uptake were up-regulated, while genes related with fructose consumption were 

down-regulated. 

Otherwise, over the last 16 years, more than 80 genome-scale metabolic models 

(GSMM) have been reconstructed, which has been of substantial help in the study and 

applications of corresponding biological systems. Initially, GSMM have considered 

only highly characterized organisms, such as Escherichia coli and Saccharomyces 

cerevisiae; since then, its use has been expanded to other, less characterized species, as 

well as to complex biological systems. Nowadays, genome- scale models are widely 

used for studying the metabolism of numerous organisms, including LAB such as 

Lactococcus lactis (Flahaut et al., 2013; Oliveira et al., 2005; Verouden et al., 2009), 

Lactobacillus plantarum (Teusink et al., 2006), Streptococcus thermophilus (Pastink 

et al., 2009) and, more recently, Enterococcus faecalis (Veith et al., 2015) and 

Streptococcus pyogenes (Levering et al., 2016). These models have been employed for 

analyzing growth, auxotrophies and flavor formation; they have also assisted in the 

process of selection and development of strains with enhanced industrial utility. In a 
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previous work carried out by our group, we developed the first genome-scale metabolic 

model for an O. oeni strain (Mendoza et al., 2017). We reported the general features 

of the model, as well as its predictive capabilities. The genome sequence of O. oeni 

PSU-1 strain was employed for this purpose.  

In this work, we first designed a defined culture medium simulating wine 

conditions, able to support O. oeni’s growth at different levels of ethanol; then, we 

characterized the evolution of different nutrients and metabolic products during the 

fermentation. Finally, taking advantage of the recently constructed genome-scale 

metabolic model (GSM) of O. oeni PSU-1 strain (named iSM454) (Mendoza et al., 

2017), we predicted the metabolic behavior and the nutritional requirements of O. oeni 

at different growth phases, under increasing ethanol concentrations. The results clearly 

indicate that differential nutritional requirements of the PSU-1 strain are required when 

ethanol concentration increases. As a whole, this work contributes to a better 

understanding of O. oeni metabolism under oenological conditions, as well as to the 

identification of essential nutrients required for survival of this bacterium in the 

different stages of growth.  

3.2 Materials and Methods 

3.2.1 Microorganisms and media  

Oenococcus oeni (Dicks et al., 1995; Garvie, 1967a) (PSU-1, ATCC®, BAA-331™) 

was obtained from the American Type Culture Collection (ATCC) (Virginia, USA). 

Cryogenically preserved (-80°C) strains were cultured and maintained on MRS plates 

(Man, Rogosa and Sharpe) (De Man et al., 1960) and stored at 4°C.  

An O. oeni PSU-1 preculture was prepared from a frozen stock by inoculating 100 ml 

Erlenmeyer flasks containing 75 ml MRS medium supplemented with 0.5 g L-1 of 

cysteine. Before inoculation, the cells were subjected to ethanol adaptation. For this 

purpose, we serially passaged every culture, starting from 1% ethanol v/v to reach 0, 

3, 6, 9 or 12% v/v ethanol concentration in each culture. O. oeni’s cells were inoculated 

in each culture medium to achieve an initial optical density at 600 nm (OD600) of 
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approximately 0.1. When the cultures reached OD600 = 0.2, they were transferred to 

other cultures containing higher ethanol content.  

3.2.2 Design of a chemically defined culture medium  

The developed chemically defined culture medium, named MaxOeno, was designed 

with the aim of simulating the wine environment, allowing O. oeni to grow in the 

presence of ethanol. However, the concentration of carbon and nitrogen used in 

MaxOeno was higher than that found in wine, because these concentrations allowed 

the growth of O. oeni avoiding its arrest or slowing. The vitamins and minerals were 

those of Terrade & Mira de Orduña (2009), but their concentration was increased 

threefold. Using literature data, we verified that these concentrations were not 

inhibitory for the bacterium growth (Mesas et al., 2004). 

Carbon and energy sources were those normally found in wine, i.e., glucose, 

fructose, malate and citrate. Glucose and fructose are the main residual sugars present 

in wine. Both were added in equal concentrations (12.5 g L-1) with the aim of studying 

their metabolic fate in O. oeni. Meanwhile, malate and citrate, the main organic acids 

in wine, were included at a concentration of 5 and 1 g L-1, respectively. We verified 

from the literature that these concentrations were not inhibitory for the bacterium, and 

that they also allow bacterial cells to grow in the presence of ethanol (Augagneur et al., 

2007; Maicas et al., 2000; Mesas et al., 2004; Olguín, 2010; Saguir & Manca de Nadra, 

1996; Salou et al., 1991).  

The amino acids content was calculated using their yields in biomass. For this 

purpose, we employed the yields reported for Lactobacillus plantarum and 

Lactococcus lactis (Novak et al 1997; Teusink et al, 2006), because we did not find 

any reported data for amino acid yields in O. oeni.  

3.2.2.1 Composition of the MaxOeno culture medium  

The MaxOeno culture medium contained, in g L-1:   citrate 1, malate 5, calcium chloride 

(dihydrate) 0.4, magnesium sulfate 1.3, fructose 12.5, glucose 12.5, dipotassium 

phosphate 2.0. Tween 80 was also added at 1ml L-1, as well as a nitrogenous bases 
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solution, 100 mL/L-1; a mineral salts solution, 5 ml L-1; and a vitamins solution, 1 ml 

L-1.  

The vitamin solution contained the following, in g L-1: thiamine, 1; biotin, 1; 

nicotinic acid, 2; pyridoxine hydrochloride, 2; C-D-pantothenate, 2; folic acid, 1; 

choline chloride, 2; riboflavin, 1; 4-aminobenzoic acid, 0.1; cyanocobalamine, 0.1; and 

xanthine, 5. The nitrogenous bases solution contained: adenine sulphate, 0.5; uracil, 

0.5; cytosine, 0.5; thymine, 0.5; and guanine, 0.5. Mineral salts solution contained: 

MgSO4*7H2O, 60; FeSO4*7H2O, 12; CuSO4*5H2O, 0.015; and ZnSO4*7H2O, 0.135. 

The vitamin solution was sterilized by membrane filtration (pore size < 0.22 µm, 

Millipore, USA). 

Besides, the culture medium was supplemented with 1,060 mg L-1 of 

assimilable nitrogen prepared with the following amino acids, in g L-1: L-arginine 0.4, 

L-serine 0.24, L-threonine 0.27, L-glutamic acid 0.33, L-aspartic acid 0.3, L-lysine 

0.33, L-asparagine 0.3, L-leucine 0.30, L-glutamine 0.50, L-alanine 0.2, cysteine 0.54, 

glycine 0.27, histidine 0.53, isoleucine 0.30, methionine 0.34, phenylalanine 0.37, 

proline 0.67, tryptophan 0.46, tyrosine 0.41, and valine 0.27.  

Before sterilization, the pH of the medium was adjusted to 4.8 using KOH. 

3.2.3 O. oeni cultivation in different ethanol conditions  

Ethanol-adapted cells were inoculated in 50 mL flasks containing 35 mL of MaxOeno 

culture medium to achieve an initial optical density at 600 nm (OD600) of 

approximately 0.2. The flasks were of glass, airtight and with a sampling port. The 

cultures were incubated at 25°C, without stirring. Samples were collected aseptically 

through the flask sampling port, and bacterial growth was estimated by OD600, the 

optical density of the culture measured at 600nm. At the same time, the content from 

each flask was centrifuged; the supernatant was collected and frozen at -20°C, for future 

chemical analyses. 

The biomass was determined as dry weight of cells through a calibration curve 

of OD600 versus dry weight (g L-1). The latter was previously carried out as described 

in Li and Mira de Orduña (2010) to obtain equation 1, where both parameters are 

related.  
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X (g DCW L-1) = 0.8105 * (OD600) + 0.0104    (1) 

3.2.4 Chemical analyses  

L-lactate, D-lactate and amino acids were quantified by UHPLC/MS using a Dionex 

unit model Ultimate-3000 (Dionex Corp., Sunnyvale, CA, United States) coupled to a 

mass spectrometer Exactive™ plus (Thermo Fisher Scientific, San Jose, CA, United 

States). The UHPLC system was controlled using the Xcalibur™ 2.13 software 

(Thermo Fisher Scientific, San Jose, CA, United States). The methods utilized for 

compound identification and quantification are detailed below: 

3.2.4.1 L- and D- lactate 

Fifty microliter of sample were dried and then derivatized by adding 50 µl of (+)-O,O´-

diacetyl-L-tartaric anhydride solution (≥97%) (DATAN) (Sigma-Aldrich, United 

States) [100 mg ml-1, where DATAN was dissolved in dichloromethane:acetic acid (4 

: 1, by volume)]. The samples were incubated for 40 min at 75°C, under agitation. 

Subsequently, the samples were dried and reconstituted in 200 µl of a solution of 

acetonitrile and water (1:2). L-lactate and D-lactate (≥98%) (Sigma-Aldrich, United 

States) were used as external standards. A 10 µl derivatized sample was injected in the 

equipment and separated using a UPLC BEH C18 (100 × 2.1 mm, 1.7 μm, Waters) 

analytical column at a flow of 0.5 ml min-1 and oven temperature of 31°C. Solvents 

used for separation were ammonium formate (1.5 mM, pH was adjusted at pH 3.6 using 

formic acid) as solvent A, and acetonitrile as solvent B. 

 

3.2.4.2 Amino acids 

A 10 µL sample was directly injected in the equipment and separated using a 

LiChrospher® 100 RP-18 (5µm) (Merck) analytical column with a flow of 0.35 ml 

min-1 and oven temperature of 30°C. Solvents used for separation were formic acid 

(0.1% v/v) as solvent A, and methanol as solvent B. 

3.2.4.3 Cysteine:  
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A 50 µl sample was derivatized using 100 µl 5,5´-dithiobis(2-nitrobenzoic acid) 

(Ellman’s reagent) (Sigma-Aldrich, United States). The reagent solution for 

derivatization was prepared using 4 mg Ellman’s reagent dissolved in 10 ml buffer 

phosphate 0.01 M (pH 7.0). All samples were derivatized at the time of being taken. 

The chromatographic conditions were the same of those employed for amino acids 

analysis.  

Sugars (glucose, fructose), organic acids (malate, acetate, citrate, total (L + D) 

lactate, and alcohols (ethanol, mannitol and erythritol) were separated and quantified 

in a Lachrom L-700 HPLC system (Merck Hitachi, Japan) equipped with Diode Array 

and Refractive Index detectors (Hitachi, Japan). An Aminex HPX-87H ion exchange 

column (Bio-Rad, United States) was used, as described previously (Varela et al., 

2003). For sugars, malate, citrate, acetate and ethanol, the mobile phase used was 

sulphuric acid 5 mM with a flow of 0.450 ml min-1 and oven at 35°C. For mannitol and 

erythritol, the mobile phase was milliQ™ water with a flow rate of 0.450 ml min-1 at a 

constant temperature of 75°C. External standards were used to quantify the required 

compounds in all cases. 

3.2.5 Genome –scale metabolic model 

Genome-scale metabolic models can be used to find flux distributions under the 

assumption of steady state. In steady state, the concentration of intracellular 

metabolites remains constant and all the mass produced must be consumed in order to 

fulfill the mass balances. No accumulation of intracellular metabolites is allowed. 

GSMMs can also be used to model the exponential phase (Figure 3-1, step 1) where a 

pseudo steady state is accomplished. Thus, we modeled each of the three differentiated 

growth phases observed during growth of O. oeni PSU-1 (Figure 3-1, step 2). However, 

experimental results suggested that intracellular accumulation of some metabolites 

occurred during growth, and thus the assumption of no accumulation could not be 

applied in this case (Figure 3-1, step 3).  

In the most widely used approach, Flux Balance Analysis, a matrix S, which 

summarizes the biochemical reactions occurring in a metabolic network, is used. In this 

matrix, the stoichiometric coefficients are used to describe each reaction. The 
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assumption of steady state indicates that mass balances must be accomplished, which 

is equal to state S*v = 0, where v is a vector of reaction fluxes. As we observed 

experimental accumulation of metabolites, we decided to include that accumulation in 

the form of sink and demand reactions. In particular, accumulation reactions were 

added in the form of sink reactions for phases II and III, and demand reactions for 

phases I and II (Figure 3-1, step 5). To determine the variation range of these 

accumulation reactions, an extended model was built, able to simulate simultaneously 

the three growth phases, in which the assumption of S*v = 0 was still valid (Figure 3-

1, step 4). This extended model was employed to calculate the maximum and minimum 

flux that these accumulation reactions were able to carry under the restrictions fixed by 

the experimental results. Then, these constraints were included in the iSM454 model 

and used for further analysis.  

The GSMM of Oenococcus oeni PSU-1 recently developed by our group was 

employed in this work (Mendoza et al., 2017). GSMM allows to model the exponential 

phase of growth curves (Figure 3-1, step 1); thus, this approach was used here for 

modeling each of the four differentiated growth phases (three growth phases + 

stationary phase) observed during growth of O. oeni PSU-1 (Figure 3-1, step 2). 

However, experimental results suggested that intracellular accumulation of some 

metabolites occurred during growth, and thus the assumption of no accumulation, as 

well as the restriction S*v = 0, could not be applied in this case (Figure 3-1, step 3), 

unless the accumulation was represented in the model. Therefore, to include the latter 

in the S matrix, accumulation reactions were added in the form of sink reactions for 

phases II and III, and demand reactions for phases I and II (Figure 3-1, step 5). To 

determine the variation range of these reactions, an extended model was built, able to 

simulate simultaneously the three growth phases, in which the assumption of S*v = 0 

was still valid (Figure 3-1, step 4). This extended model was employed to calculate the 

maximum and minimum flux that these accumulation reactions were able to carry 

carried out in the independent model described in 5), with the span determined in 6) 

for the accumulation reactions. 
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Figure 3-1: Framework for the incorporation of the experimental data. 1) General 

approach used to model exponential phase in GSMMs. 2) Our experimental results 

showed four phases: three growth phases and a fourth phase, corresponding to 

stationary phase. Growth phases couldn’t be modelled individually as there was 

accumulation, as observed in the experimental results. 3) These accumulation 

compounds were: malate and mannitol, and the amino acids valine, phenylalanine, 

cysteine and threonine. Accumulation was observed between phases I to II, and II to 

III, and not from III to IV. 4) The extended model was constructed, which was able to 

simulate simultaneously the three phases identified for each ethanol level, and the 

accumulation observed experimentally. This matrix includes the following 

components: a matrix “Z” that contains three “S” matrix, one per phase, and 2 ‘’a” 

vectors (1x6), where “a” represents the accumulation reactions that allows interaction 

between phases; thus, matrix sigma has a size (3nxd), where d=3m+2*6. The extended 

model also includes vector “u” (1xd) of internal fluxes, limited by vector “l” and “p” 

(1xd), and a vector “k” of weights (1x3n). 5) To simplify the analysis, the extended 

matrix can be divided into three independent problems, one corresponding to each 

phase, and thus each one includes an S matrix, and a set of accumulation reactions as 

input of the system (accumulation in the previous phase) and/or output of the system 

(accumulation in the consecutive phase). 6) The span of these accumulation reactions 

was determined with flux variability analysis in the extended model, with the 

experimental data fixed in the model. 7) Estimations and further calculations were 
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carried out in the independent model described in 5), with the span determined in 6) 

for the accumulation reactions. 

 

3.2.5.1 Construction of the Extended Model  

An extended model was generated to allow simultaneous simulation of the three phases 

observed for each ethanol level (Figure 3-1, step 4). This model was used to determine 

the maximum and minimum fluxes required through the accumulation reactions so that 

each independent phase simulation was able to fulfill the S*v = 0 assumption. This 

extended model possesses a stoichiometric matrix Z, which contains three “S” sub 

matrices (Figure 3-1, step 4), each associated to a specific growth phase. These “S” sub 

matrices were taken from iSM454 and represent three independent problems solved 

simultaneously in the extended model. Then, to allow interaction between these three 

problems and thus lose independency, accumulation reactions were added, which allow 

flux to pass from phasen to phasen + 1. These were selected based on experimental 

results, and corresponded to the following compounds: mannitol, malate, cysteine, 

threonine, phenylalanine, and valine. These reactions had the following structure:  

 

mannitol_cytosol1 → mannitol_cytosol2 

 

where mannitol_cytosol1 represents cytosolic mannitol in growth phase I, and 

mannitol_cytosol2 represents corresponding cytosolic mannitol in growth phase II.  

3.2.5.2 Determination of the Constraints for the Accumulation Reactions  

To determine the maximum and minimum values that the accumulation reactions were 

able to carry under the restriction of the experimental constraints, the following fluxes 

(mmol gDCW−1 h−1) were set in the extended model, according to the corresponding 

phase, with experimental values: the substrates glucose, fructose, citrate, malate, 

cysteine, threonine, valine, phenylalanine and serine; and the products mannitol, 

erythritol, L-lactate, D-lactate and acetate (Figure 3-1, step 4). To minimize 

experimental error, linear regressions were determined for each of the metabolites at 

each growth phase and used to predict the phase’s final value. Initial values were taken 
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from the initial concentration of the experiment for phase I, and from the final values 

of the former phase for phases II and III.  

Then, flux variability analysis (FVA) was carried out to determine the 

maximum and the minimum flux that each accumulation reaction was able to carry 

under these constrained conditions.  

3.2.5.3 Generation of the Three S’ Matrixes  

When the ranges of the accumulation reactions were determined, the extended model 

was divided into three S’ matrix, each one representing one of the growth phases. These 

were used to carry out all the further analysis. Each of these matrixes include the S 

matrix from iSM454, and also a set of the accumulation reactions as sink reactions for 

phases II and III, and demand reactions for phases I and II (Figure 3-1, step 5), to 

represent the mass difference observed experimentally as an input or/and output of the 

system. From now on in the text, every time the iSM454 model is mentioned, it will 

refer to the model in which the S’ matrixes are included.  

3.2.5.4 Flux Balance Analysis (FBA)  

Flux balance analysis was carried out in the iSM454 model (with the S’ matrixes) to 

analyze each of the different growth phases at each ethanol level. In order to do so, the 

following fluxes (mmol gDCW−1 h−1) were set with experimental values: the substrates 

glucose, fructose, citrate, malate, cysteine, threonine, valine, phenylalanine and serine; 

and the products mannitol, erythritol, L-lactate, D-lactate and acetate. The 

accumulation reactions were constrained with the ranges determined with the extended 

model. Also, experimental biomass and NGAM estimated in this work were fixed.  

 

 

3.2.5.5 Prediction of Non-growth Associated Maintenance (NGAM) 

Non-growth associated maintenance was estimated by setting the specific production 

and consumption rates of the experimentally measured compounds, as described above 

for FBA. Thereby, flux through the NGAM reaction was progressively increased from 
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0 to 4 mmol gDCW−1 h−1. In each cycle, biomass production rate was maximized, and 

the prediction error was assessed. The NGAM flux that allowed the lowest biomass 

prediction error was selected.  

3.2.5.6 Sensitivity Analysis for NGAM  

Sensitivity of estimated NGAM was assessed for each of the specific 

consumption/production rates set in the model. For this purpose, each rate was varied 

independently by increasing and decreasing its value in 1%, and then NGAM was 

recalculated each time.  

3.2.5.7 Determination of Energetic and Redox Requirements  

The flux distribution obtained through FBA was used to quantify ATP, and 

NAD(P)+/NAD(P)H utilization. In O. oeni, ATP is produced through the F0F1-ATPase 

and/or through three reactions of the phosphoketolase pathway that involve the 

following enzymes: acetate kinase, pyruvate kinase and 3-phosphoglycerate kinase. To 

quantify the NAD(P)+/NAD(P)H utilization, the reactions that produce NADH and 

NADPH were analyzed, that correspond to reactions that involve the following 

enzymes: malate dehydrogenase, glyceraldehyde-3P dehydrogenase, threonine 

dehydrogenase, NADH quinone reductase, NAD(P)+ transhydrogenase and the 

pathway for methylglyoxal degradation for NADH formation; and Glucose-6P 

dehydrogenase, phosphogluconate dehydrogenase and GMP reductase for NADPH 

formation. This knowledge was considered for the determination of the maximum 

intracellular fluxes for NAD(P)+ /NAD(P)H and ATP synthesis at different growth 

phases.  

3.2.5.8 Flux Variability Analysis  

Flux variability analysis was carried out by maximizing and minimizing the flux under 

the same constrained conditions used for FBA. This technique was applied to each of 

the accumulation reactions present in the extended model, and in iSM454 to analyze 

changes of production of ATP, NADH, NADPH; and separately, in F0F1-ATPase. To 

assess variation of ATP, NADH and NADPH, the sum of the reactions described above 

was subjected to FVA for each cofactor.  
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3.2.5.9 Elementary Flux Mode Analysis (EFMA) 

As our culture medium mimics the wine composition, it contains different carbon 

sources and thus it is difficult to elucidate which substrate is being used to synthesize 

a particular product. Therefore, we used EFMA to find which metabolic products can 

be generated from each substrate, separately. EFMA was carried out with 

CellNetAnalyzer version 2017.4 (Klamt et al., 2007; Klamt & von Kamp, 2011; von 

Kamp et al., 2017). In order to do so, a reduced version of the iSM454 model was 

constructed. This model contained the central carbon metabolism of O. oeni PSU-1, 

that includes: phosphoketolase pathway, fructose reduction, citrate degradation and 

MLF. It also included energetic reactions such as F0F1-ATPase, NGAM, and the 

pathways for amino acid degradation present in O. oeni PSU-1, which correspond to 

serine, threonine and cysteine. A complete list of the reactions included is shown as 

Supplementary material S3-1. 

3.2.5.10 Random Sampling Analysis  

To determine the flexibility of the metabolic network under ethanolic conditions, a 

Random Sampling Analysis was conducted. In this analysis, the solution space is 

uniformly sampled, and flux distributions can be explored to assess the flexibility of 

different pathways. In contrast to EFMA, random sampling can be conducted in the 

range of minutes to hours for large metabolic network resulting in a valuable tool to 

explore the solution space without requiring the use of a reduced model.  

Flux distributions were calculated using optGpSampler (Megchelenbrink et al., 

2014). For each condition, the network was first constrained using uptake and 

production rates as well as sink reactions associated with metabolites accumulation. 

Then, 100.000 flux distributions were calculated for each constrained metabolic 

network using standard parameters (number of parallel threads = 4, number of steps 

between samples = 500, solver = gurobi 7.52). The flexibility of the network in each 

condition was assessed through the comparison of flux variations for 40 reactions 

belonging to phosphoketolase pathway. Standard deviations among the previously 

calculated 100.000 flux distributions were computed for each of the 40 reactions. 

Higher standard deviations were considered as indicators of higher network flexibility.  
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3.3 Results 

3.3.1 Cell growth of O. oeni PSU-1 strain in defined wine-like culture medium.  

The ability of O. oeni to grow in the defined, wine-like culture medium designed here, 

named MaxOeno, was followed by biomass concentration (measured as optical 

density, OD600nm) and specific growth rates. Additionally, we compared the 

performance achieved in this medium with the defined medium previously described 

by Terrade & Mira de Orduña (2009). The growth in both media was evaluated either 

with (12% v/v of ethanol) and without ethanol; and at pH 3.5, in both cases. O. oeni 

PSU1 cultivated in MaxOeno´s grew more (OD600nm = 0.75 vs OD600nm = 0.25) and 

faster (µ= 0.012 h-1 vs. µ= 0.004 h-1) than Terrade´s. Therefore, the MaxOeno culture 

medium was employed for all further experiments of this work.  

3.3.2 Growth of O. oeni PSU-1 strain cultivated in the presence of increasing 

ethanol concentrations.  

O. oeni PSU-1 was grown in MaxOeno culture medium with increasing ethanol 

concentrations (0, 3, 6, 9 or 12% v/v ethanol), at pH 4.8. Cell growth kinetics featured 

four clearly identifiable growth phases for all culture conditions, i.e., phases I, II, III 

and stationary, ranging from 0 to 48 hours, 48 to 104 hours, 104 to 168 hours and 168 

to 264 hours cultivation, respectively. These phases were characterized by different 

substrate consumption, e.g., during phase I, over 90% of malate and citrate were 

consumed; phase II presented a higher consumption rate of fructose and glucose, if 

compared to phase III; and phase III presented a slower specific growth rate, due to a 

strong decrease in sugar consumption rates (Supplementary material S3-2). It is worth 

mentioning that during growth, a lag phase was not observed in all cases (Figure 3-2). 

Besides, all cultures reached maximum biomass titers after 164 hours (6.8 days) 

cultivation; thereafter, growth arrested.  

A clear, linear relationship (r2 = 0.98) between ethanol concentration and cell 

growth was found, when considering each phase. Moreover, cultures with higher 

ethanol content showed slower specific growth rate and lower biomass production 
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compared to cultures without ethanol (Table 3-1). The maximum biomass production 

and specific growth rate were observed during phase I. 

Stationary phase was not considered in further metabolic studies because neither 

growth, nor consumption or production of compounds was observed. 

 

 

 

Figure 3-2: Effect of ethanol concentration on the growth of O. oeni PSU-1 strain 

cultivated in MaxOeno, a defined wine-like culture medium. Each growth phase is 

delimited by discontinued vertical lines. Phases I, II III and IV last between 0 to 48 

hours, 48 to 104 hours and 104 to168 hours and 168 to 264 hours of cultivation, 

respectively.  
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Table 3-1: Maximum biomass production (gDCW/L-1) and maximum specific growth 

rates (h-1) of O. oeni PSU-1 cultivated in MaxOeno defined medium with increasing 

concentrations of ethanol. 

Ethanol 
content       
(% v/v) 

Maximum biomass production 

(¥) 
(gDWC L-1) 

Maximum specific  
growth rate (¥)  

(h-1) 

0 0.8541 0.0211 

3 0.762 0.0182 

6 0.5853 0.0163 

9 0.4524 0.0144 

12 0.4474 0.0135 

(¥) All assays were carried out in triplicate and its coefficients of variation (CV) were <20%. 
Shared superscript numbers in the same column indicate no significant difference between 
ethanol conditions (Mood test, p< 0.05).  

 

3.3.3 Metabolism of sugars and organic acids by O. oeni PSU-1 strain. 

Oenococcus oeni employs three metabolic pathways to obtain energy: phosphoketolase 

pathway (heterolactic fermentation), MLF and citrate degradation. The end-products 

of these catabolic pathways are D-lactate, L-lactate, acetate, ethanol, mannitol, 

erythritol and CO2. To assess the metabolic response of O. oeni to ethanol 

concentration, we followed the consumption and production of the major metabolites 

of these pathways. 

3.3.3.1 Glucose and fructose consumption.   

As expected, the higher the ethanol concentration in the medium, the lower the sugar 

consumption. However, whatever the ethanol concentration was, the largest amounts 

of sugars were consumed during phase I.  In this phase, total sugar consumption was 

similar for all culture conditions (Supplementary material S3-2), although specific 

consumption rates for fructose were twofold faster than for glucose, independently of 

ethanol concentration present in culture medium (Figure 3-3 A, B).   

During phase II, both glucose and fructose consumption increased when ethanol 

content in culture medium was lower (Supplementary material S3-2). Furthermore, 

during this phase, O. oeni PSU1 consumed glucose faster than fructose. Specific 
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consumption rate of fructose was reduced by 50% compared to the previous phase, 

although specific glucose consumption rate decreased less, regardless of culture 

conditions (Figure 3-3 A, B).  

Finally, in phase III, specific consumption rate of glucose was generally faster 

than fructose. Specific glucose consumption rates in cultures without and with 3% and 

6% v/v ethanol were similar than phase II; but decreased significantly in cultures with 

9% and 12% v/v ethanol (Figure 3-3 A and B). Besides, specific fructose consumption 

rates in cultures without and with 3% v/v ethanol decreased around 90 and 60%, 

respectively. Similar rates than in phase II were found for cultures with 6, 9 and 12% 

ethanol.  

3.3.3.2 Mannitol and erythritol production.  

These polyols are mainly produced through fructose catabolism - although they could 

also be synthesized from glucose. Again, the fastest production of mannitol and 

erythritol was achieved during phase I. The production of both metabolites increased 

concomitantly with ethanol content (Figure 3-3 C, D). Total mannitol concentration - 

the most abundant metabolite produced - was higher than erythritol concentration. In 

the absence of ethanol, specific production rates for mannitol and erythritol were 1.25 

mmol gDCW-1 h-1 and 0.95 mmol gDCW-1 h-1, respectively. Production rates of both 

polyols raised concomitantly with ethanol increment, during phase I (Figure 3-3 C, D).  

In phase II, production rates of both polyols dropped by half of the previous phase in 

the absence of ethanol in the culture medium. Once again, mannitol production 

increased with ethanol content, except for cultures with 6% ethanol (Figure 3-3 D). On 

the contrary, erythritol production sharply decreased in this phase for cultures 

containing 9 and 12%v/v ethanol (Figure 3-3 C).  
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Figure 3-3: Specific consumption of glucose (A), and fructose (B) and concomitant 

specific production of the related products, erythritol (C) and mannitol (D)  during 

cultivation of O. oeni PSU-1 under increasing ethanol contents. Statistical analysis only 

was performed in phase I and shared letters indicate no significant difference (Mood 

test, p< 0.05). 

 

 

3.3.3.3 L-malate and citrate metabolism.   

L-malate and citrate are the main organic acids in wine that support the growth of O. 

oeni under nutritional stress conditions. Lactate is synthesized by O. oeni as L- or D- 

enantiomers, according to its origin. L-lactate is produced in one step from L-malate 

through malolactic fermentation; and D-lactate towards the phosphoketolase pathway.  

L-malate and citrate were metabolized during phase I (Figure 3-4 A, B), their 

consumption being triggered at the very beginning of the cultivation. Total acid 

consumption, expressed in concentration units (g/L-1), suggests that all cultures 

behaved similarly, both acids being completely consumed at the end of phase I, i.e., 

after 48 h cultivation (Supplementary material S3-3). In relation to specific 
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consumption rates, L-malate was consumed faster when ethanol concentration was 

higher in culture medium; however, citrate was not differentially consumed. 

Surprisingly, malate consumption was larger than L-lactate production; and the 

specific consumption rate of the former was circa 30 % faster than the latter, for all 

culture conditions (Figures 3-4 A, D). This suggests that one of these compounds is 

either accumulating intracellularly or being transformed into another metabolite 

(Figure 3-4 A, D).  

Otherwise, the specific production rate of D-lactate (0.15 to 0.20 mmol gDCW-

1 h-1) was more than tenfold slower than the corresponding one for L-lactate (1.5 to 3.0 

mmol gDCW-1 h-1), at least during phase I. Also, during this phase D-lactate production 

is lower at 9 and 12% ethanol content. Contrary to L-lactate, D-lactate is still 

significantly synthesized in later phases, although at variable rates (Figure 3-4 D, E).  

Acetate was the second most abundant metabolite produced, reaching a 

maximum of 50 mmol gDCW-1 in cultures without ethanol. O. oeni produces acetate 

from citrate and from sugars through the phosphoketolase pathway. During phase I, 

citrate uptake and acetate synthesis rates were higher than other phases (Figure 3-4 B, 

C), suggesting that acetate was formed using all citrate consumed. However, acetate 

synthesis was faster than citrate uptake, which indicates that another pathway as 

phosphoketolase pathways was used additionally for its production. In later phases, 

however, acetate was mainly produced through phosphoketolase pathway, using other 

compounds, such as glucose.  
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Figure 3-4: Specific consumption of L-malate (A) and citrate (B) and specific 

production of acetate (C) L-lactate (D) and D- lactate (E) during growth of O. oeni 
PSU-1, under increasing ethanol contents.  Statistical analysis only was performed in 

phase I and shared letters indicate no significant difference (Mood test, p< 0.05). 

 

3.3.4 Metabolism of Amino acids 

All the amino acids were metabolized during the cultivation of O. oeni in MaxOeno 

culture medium at increasing concentrations of ethanol; however, none was totally 

consumed (Table 3-2). Histidine, cysteine, lysine and aspartic acid were the most 

consumed amino acids. The highest specific consumption rates were determined for 

histidine and proline (Figures 3-5 D, F) and their rates increased concomitantly with 

increasing ethanol contents in culture medium.  
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Table 3-2: Amino acid requirements by O. oeni PSU-1 cultured in medium with 

different ethanol content.  

  Consumed amino acids [%] ¥ 
 Amino acid Ethanol (% v/v) 
  0% 3% 6% 9% 12% 

 Histidine 72.1a 68.8b 82.9b 79.3c 67.8d 
>50% Lysine 77.6a 69.8a 74.7a 66.5a 64.9a 

 Cysteine 67.9a 64.3a 68.2a 64.4a 64.4a 
 Aspartic acid 65.0a 68.8a 62.1b 46.5c 24.7d 
 Arginine 39.3a 39.3a 40.1a 36.4a 31.5b 
 Methionine 32.7a 37.9a 37.0a 39.4a 36.8a 
 Proline  36.3a 34.7ab 34.5ab 32.8ac 29.5c 

30-50% Alanine 31.7a 30.0b 30.2b 28.3c 25.5d 
 Glutamic acid 41.3a 37.5a 36.4a 32.0b 25.5c 
 Serine  46.6a 43.3ab 44.6ac 41.7ad 39.2d 
 Glutamine 18.1a 21.4ab 22.4b 23.3bc 25.9c 
 Valine 28.5a 27.2a 26.4a 23.7c 18.3d 
 Tyrosine  13.4a 15.3b 17.4b 18.9b 16.4c 

<30% Leucine 6.8a 5.8a 13.5b 24.3c 19.5d 
 Isoleucine 27.8a 21.0b 19.3b 16.9bc 14.3c 
 Phenylalanine 24.8a 25.2a 25.0a 22.4b 18.7b 
 Threonine 23.9a 20.9ab 17.0a 20.7b 19.3b 
 Tryptophan 23.5a 23.2a 24.0a 23.4a 20.4a 

 ¥ All assays were performed in triplicate and all coefficients of variation (CVs) were <10%. 
Shared superscript letters (a, b, c) in the same row indicate no significant difference (Mood 
test, p< 0.05). Consumption of amino acids highlighted in light gray are independent consumed 
of ethanol content present in the culture medium. Consumption of amino acids highlighted in 
dark gray are dependent consumed of ethanol content present in the culture medium.  

Amino acids were mostly consumed (almost 90%), during phase I, with the exception 

of cysteine, which was consumed during both, phases I and II (Figure 3-5 and 

Supplementary material S3-4). Interestingly, specific consumption rate of cysteine was 

the only one that was higher for phase II than for phase I, even increasing with ethanol 

content (Figure 3-5A). 

Threonine was consumed faster in cultures with 9 and 12% ethanol; and serine 

was consumed faster in cultures with 6% ethanol (Figures 3-5 C, E).  

 

 



77	
	

	
	

.  



78	
	

	
	

Figure 3-5: Specific consumption rates of amino acids during cultivation of O. oeni 
PSU-1 under increasing ethanol contents. A) Cysteine. B) Aspartic acid. C) Threonine. 

D) Histidine. E) Serine. F) Proline. G) Lysine. H) Alanine. Statistical analysis was only 

performed for phase I and shared letters indicate no significant difference (Mood test, 

p< 0.05) 
 

Besides, histidine and lysine consumption increased with ethanol. It is noteworthy that 

histidine was the most consumed amino acid in the cultures with 12% ethanol, reaching 

18 mmol gDCW-1.   

Cysteine, lysine, methionine and tryptophan were up taken at similar amounts, 

whatever the ethanol concentration (Table 3-2). However, their specific consumption 

rates increased with ethanol content (Figure 3-5 A, G and Supplementary material S3-

4). Alanine and aspartic acid were also consumed faster in cultures with higher ethanol 

content (Figures 3-5 B, H).  

Finally, the consumption of aspartic acid, arginine, glutamic acid and isoleucine 

decreased as ethanol content was incremented in the culture medium.  

3.3.5 Analysis of intracellular fluxes 

3.3.5.1 Non-Growth Associated Maintenance (NGAM).  

Flux balance analysis was carried out in iSM454 model to predict NGAM for each 

experimental data set. Thereby, a range of possible NGAM values was tested and 

biomass formation rate was predicted. The NGAM value that allowed the minimal 

biomass prediction error was selected for each data set. Biomass was predicted 

correctly, with an average biomass prediction error of 0.05%.  

Estimated NGAM values significantly increased in all phases, although 

differently, depending on the ethanol content of the culture medium. In phase I, NGAM 

increased threefold in cultures with 3 and 6% ethanol; and 10- and 17-fold in cultures 

with 9 and 12% ethanol. In phase II, it sequentially increased from 6 to 11-fold in 

cultures from 3 to 12% ethanol, respectively. In phase III, a maximum NGAM increase 

of sevenfold was achieved for cultures with 12% ethanol content.  Whatever the case, 

at any ethanol level, NGAM was the lowest for phase I and the largest for phase III 

(Figure 3-6A).  
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Figure 3-6: NGAM and in silico determined specific production rates of key 

metabolites of O. oeni. A) NGAM, B) NAD(P)+/NAD(P)H, C) ATP produced by F0F1-

ATPase, D) ATP produced by phosphoketolase pathway, E) Total ATP, (i.e.) ATP 

produced by both ATPase and phosphoketolase pathways. 
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3.3.5.2 NGAM Sensitivity analysis.  

Sensitivity of NGAM values towards the experimental data was evaluated by varying 

each constrained flux independently in 1% of its value, and then repeating NGAM 

prediction. NGAM prediction variation was assessed by calculating the relative 

prediction error (in %), and the highest prediction error was taken as representative of 

the NGAM’s sensitivity of the corresponding data set (Supplementary material S3-5). 

Phase I was the most sensitive phase at every ethanol level, reaching the highest 

NGAM prediction variation in the absence of ethanol (130%). The largest variations 

were obtained when fructose and mannitol fluxes were varied. 

3.3.5.3 Energetic requirements.  

The model predicted that ATP requirements increase with ethanol content at each 

phase. Higher ATP requirement is predicted during phase I, whatever the ethanol 

content.  

ATP is synthesized either by F0F1-ATPase or phosphoketolase pathway. In 

phase I, the maximum specific production rate of ATP (rATP) produced by F0F1-

ATPase was higher than ATP produced through the phosphoketolase pathway. In 

cultures with 0 to 12% ethanol, fluxes through F0F1-ATPase increased from 2.9 to 4.8 

mmol gDCW−1 h−1, respectively; and fluxes through the phosphoketolase pathway 

decreased from 2.1 to 1.3 mmol gDCW-1 h-1, for the same cultures (Figures 3-6 C, D).  

In phase II, rATP occurring through F0F1-ATPase decreased by 50% in all cultures. On 

the contrary, rATP through the phosphoketolase pathway increased in all cultures with 

ethanol content. Finally, during phase III, rATP by F0F1-ATPase continues to decrease 

– by another 50% compared to phase II; and rATP through phosphoketolase pathway 

also decreased in cultures containing less than 6 % v/v of ethanol content but remained 

constant in cultures with higher ethanol contents (Figure 3-6 C, D).  

Interestingly, during phase I, the ATP flux through F0F1-ATPase increased from 

58% to almost 80% of total ATP flux in cultures without ethanol and cultures with 

ethanol content, respectively. Besides, during phases II and III there was a preference 
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for synthesis by the phosphoketolase pathway; on average, 56% of ATP was produced 

from this pathway (Figure 3-6 C-E).  

3.3.5.4 Cofactor Requirements  

We determined the impact of ethanol on the cofactor usage by analyzing the NAD(P)H 

flux during growth (Figure 3-6 B). The reactions that produce NAD(P)H involve the 

following enzymes: malate dehydrogenase, glyceraldehyde-3P dehydrogenase, 

threonine dehydrogenase, NADH quinone reductase, NAD(P)+ transhydrogenase and 

the pathway of methylglyoxal degradation for NADH formation; and glucose-6P 

dehydrogenase, phosphogluconate dehydrogenase and GMP reductase for NADPH 

formation. A clear trend of the use of cofactors in relation to the presence of ethanol in 

the culture medium could not be found (Figure 3-6 B). 

3.3.5.5 Elementary Flux Mode Analysis  

As the MaxOeno medium contains several substrates, an EFMA was carried out to 

determine possible substrate-product relationships between the substrates present in the 

medium and the possible products, including but not limited to products measured 

experimentally (Table 3-3). Results showed that serine, threonine and cysteine can be 

used for diacetyl formation, as well as citrate, which can also be a precursor for acetate 

production. L-malate can be directed into either D- or L-lactate, and therefore it is the 

only substrate that can be used for L-lactate synthesis. Both glucose and fructose are 

able to generate all products but L-lactate. 

3.3.5.6 Random Sampling  

100.000 flux distributions were computed using optGpSampler for each ethanol level 

and each phase. In each of the 15 conditions, the network was constrained using uptake 

and production rates as well as sink reactions for simulating accumulations. We used 

these flux distributions to study the flexibility of the network in each condition.  

Means and standard deviations were calculated for 40 reactions related to 

phosphoketolase pathway. Overall, standard deviations were higher in phase I and 

smaller in phase III for all ethanol levels. Thus, the metabolic network is more flexible 

in phase I than in phase III. This is expected from a biological perspective as at the 
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beginning of the fermentation there are more nutrients in the extracellular space – and 

with a higher concentration – than in later phases. Therefore, a higher number of 

reactions are expected to be available in order to catabolize these sugars. In contrast, at 

the end of the fermentation, citrate and malic acid are already depleted and other 

nutrients are almost exhausted resulting in a tighter metabolic network.  

Table 3-3: Determination of possible substrate-product relationships by EFMA. 

 
D-mannitol D-lactate L-lactate Diacetyl Ethanol Acetate Erythritol 

D-fructose 36 15 0 15 33 64 33 

D-glucose 157 67 0 61 126 233 145 

Citrate 0 0 0 2 0 2 0 

L-malate 0 2 2 0 0 0 0 

L-cysteine 0 0 0 3 0 0 0 

L-serine  0 0 0 3 0 0 0 

L-threonine 0 0 0 3 0 0 0 

EFMA was carried out in a reduced version of the iSM454 model. Position i,j indicates the 
quantity of pathways that included consumption of only substrate i (other substrates in zero), 
and generation of the production j 
 

3.3.5.7 Metabolic flux distribution.  

Distribution of carbon intracellular fluxes was analyzed for all the growth phases, 

considering the major central metabolic pathways, which includes phosphoketolase 

pathway, fructose reduction, citrate degradation and MLF. FBA showed that a 

significant redistribution of intracellular fluxes occurred in O. oeni in response to 

ethanol content (Figure 3-7, 3-8 and 3-9). Fluxes were normalized over specific growth 

rates.  

The model showed that fructose, the sugar that was most consumed, was mainly 

used – around 70% of the total – for mannitol biosynthesis during phase I; however, in 

later phases, fructose was redirected to glucose-6P synthesis, and then into the 

phosphoketolase pathway (Figure 3-7, 3-8 and 3-9).  
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Erythritol biosynthesis arises from ribulose-5P and glyceraldehyde-3P in almost all 

cases (Figure 3-7, 3-8 and 3-9). It was highest during phase I, and increased with 

ethanol content, from 42 to 84 mmol gDCW−1 in cultures without and with 12% 

ethanol, respectively.  

	
	

Figure 3-7: Metabolic flux redistribution of the central carbon metabolic pathways of 

O. oeni PSU-1 upon cultivation in a culture medium without and with 3, 6, 9 and 12% 

(yellow boxes, from top to bottom) ethanol concentration, during growth phase I. 

Polygons with colors orange, blue and green indicates consumption (or production) of 

ATP, NADH and NADPH, respectively. 
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Figure 3-8: Metabolic flux redistribution of the central carbon metabolic pathways of 

O. oeni PSU-1 upon cultivation in a culture medium without and with 3, 6, 9 and 12% 

(yellow boxes, from top to bottom) ethanol concentration, during growth phase II. 

Polygons with colors orange, blue and green indicates consumption (or production) of 

ATP, NADH and NADPH, respectively. 
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Figure 3-9: Metabolic flux redistribution of the central carbon metabolic pathways of 

O. oeni PSU-1 upon cultivation in a culture medium without and with 3, 6, 9 and 12% 

(yellow boxes, from top to bottom) ethanol concentration, during growth phase III. 

Polygons with colors orange, blue and green indicates consumption (or production) of 

ATP, NADH and NADPH, respectively. 
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The model also predicted diacetyl synthesis. This specific production rates incremented 

with ethanol content and thus were highest at 12% ethanol in all phases. This compound 

is produced from pyruvate.  

Interestingly, pyruvate production increased in phase II, and even more in phase 

III by the following routes: amino acid degradation, citrate degradation, and L-malate 

conversion into oxaloacetate (Figure 3-7, 3-8 and 3-9). All of these fluxes also 

incremented as ethanol increased in the culture medium. 

3.4 Discussion 

In this work, we determined the effect of ethanol on nutritional and energetic 

requirements of O. oeni to ensure its growth. For this end, we cultivated O. oeni PSU-

1 strain in a wine- like, defined culture medium spiked with 0, 3, 6, 9, or 12% v/v 

ethanol. Moreover, we took advantage of our recently constructed genome-scale 

metabolic model (Mendoza et al., 2017) that allowed assessing the redistribution of the 

intracellular metabolic fluxes and the energetic factors at increasing ethanol 

concentrations.  

As expected, cell growth was closely related (r2 = 0.98) to ethanol content. 

Specific growth rate and maximal biomass content decreased progressively as ethanol 

concentration in the medium increased. Moreover, both decreased during the time 

course of the batch cultivation. In general, specific growth rates and biomass 

production were larger during phase I, which was coincident with the highest metabolic 

activity of O. oeni observed during this phase, for any culture condition.  

Changes in ethanol level strongly impacted O. oeni’s requirements of NGAM, 

NAD(P)+ /NAD(P)H cofactors and energy, reflected in higher production of ATP by 

F0F1-ATPase.  

Energetic demand for NGAM dramatically increased in O. oeni cells cultured 

under alcoholic stressful conditions. Indeed, cultures containing 9 and 12% ethanol 

required 10 and 17 times more NGAM during phase I, respectively, than cultures 

without ethanol. The latter indicates that the ATP produced was principally used to 

cope with cell maintenance resulting from this stress. This agrees with our previous 

work, where the genome scale metabolic model (GSMM) indicated that NGAM was 
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30-fold higher	in cultures with 12% ethanol than in cultures without ethanol (Mendoza 

et al., 2017). Notably, the model predicted that the cells cultivated with 6% ethanol 

would require a lower NGAM than those grown at 3% ethanol. This agrees with Cavin 

et al. (1998) that reported that low concentrations of ethanol activate bacterial growth, 

i.e., ethanol improves exchanges between the cell and the external medium. In addition, 

significant cellular changes normally occur when at least 8% ethanol is present in the 

medium, coinciding with changes in membrane lipid composition (da Silveira et al., 

2003; Grandvalet et al., 2008; Teixeira et al., 2002). F0F1-ATPase is the favorite route 

employed for the synthesis of ATP during phase I. Indeed, even in the absence of 

ethanol in the culture, 58% of the total ATP is generated by this route. Moreover, to 

overcome the strong ATP demand for NGAM at higher ethanol concentrations, the 

model predicts that this pathway produces almost 80% of the required ATP. As F0F1-

ATPase produces ATP at the expense of proton translocation to the inside of the cell, 

this indicates a higher requirement for proton extrusion. In this regard, the malolactic 

reaction is usually considered the major pathway for proton extrusion and ATP 

production in LAB (Tourdot-Maréchal et al., 1999; van de Guchte et al., 2002). In this 

process, one mole of malic acid is consumed and generates equivalent amounts of L-

lactate and CO2; and, because of pKa differences between the substrate and the 

products, a proton is consumed (Augagneur et al., 2007; Wil N. Konings, 2002; Marty-

Teysset et al., 1996). This positive effect is augmented by L-lactate transport, a 

symporter that extrudes protons (Salema et al., 1996). We found that malic acid was 

almost totally depleted during phase I in each condition, in concordance with the higher 

F0F1-ATPase flux predicted by the model. Moreover, in this phase, specific 

consumption rates of malic acid were the fastest in cultures with 9 and 12% ethanol, as 

well as specific production rates of L-lactate. The key role of malic acid for proton 

extrusion is confirmed by the model, as it predicts that 74–95% of the protons 

translocated by F0F1-ATPase are extruded by MLF and L-lactate transport in all the 

experimental conditions; and that the flux through this reaction increases 

concomitantly with the ethanol content in the medium, to overcome higher energetic 
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requirements. This confirms that malolactic reaction is the main pathway for ATP 

synthesis in the presence of high ethanol content. 	

For reductive power regeneration, ethanol formation is the main pathway for 

reoxidation of NAD(P)+ in O. oeni, although at high metabolic rates this process 

becomes limiting (Richter et al., 2003); therefore, other external electron acceptors are 

used for NAD(P)+ reoxidation (Maicas et al., 2002; Richter et al., 2003; Versari et al., 

1999). Several studies have reported that one of the main limitations in NAD(P)+ 

regeneration through the ethanol  biosynthetic pathway is the deficiency of D-

pantothenate in the culture medium, an essential precursor for HSCoA in O. oeni  

(Richter et al., 2001; Terrade & Mira de Orduña, 2009). The latter is the cofactor of 

acetaldehyde dehydrogenase (Garvie, 1967a). Nevertheless, the MaxOeno culture 

medium employed in this work contains enough D-panthotenate to allow optimal 

growth of O. oeni and ethanol pathway activation. Another cause could be the limited 

availability of HSCoA due to its preferential use for fatty acid production, to overcome 

the damage of cell membrane that could result from ethanol.  

When ethanol production pathway is non-functional, a lack of reduced cofactors 

occurs. Our results show that O. oeni PSU-1 uses fructose, glucose, and citrate as 

electron acceptors for cofactors reduction. In particular, the specific production rates 

of mannitol and erythritol incremented as ethanol concentration increased during phase 

I. However, fructose, which is the main precursor of mannitol and erythritol, showed 

similar specific consumption rates during phase I, whatever the culture conditions; and 

glucose, that can also be used in erythritol formation, displayed slower consumption 

rates at higher ethanol concentrations. This indicates that there is a preferential 

consumption of carbon sources toward mannitol and erythritol formation at higher 

ethanol concentrations rather than biomass formation, as a result of higher cofactor 

requirements. Indeed, the model predicts that cofactor regeneration due to mannitol 

and erythritol formation countervail for almost 50% of the cofactors used for sugar 

catabolism in conditions without ethanol, and for 51–57% of this usage in ethanol-

containing cultures.  
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Citric acid consumption is also related with cofactor regeneration. Consumption 

of this chemical compound is used for pyruvate formation, which is then used for either 

production of D-lactate or diacetyl. D-lactate is used for NAD(P)+ regeneration, while 

diacetyl is related with consumption of intracellular protons and thus increase of 

internal, as well as external pH, as diacetyl is less acidic than citric acid (Saguir & 

Manca de Nadra, 1996; Versari et al., 1999). Citric acid was mainly consumed during 

phase I at similar specific consumption rates, whatever the ethanol content. During this 

phase, D-lactate formation showed a different behavior: the highest flux toward D-

lactate synthesis – which arises from both, citrate degradation and phosphoketolase 

pathway – was observed when ethanol was absent in the medium, where 72% of the 

consumed citrate was directed toward the synthesis of lactate, instead of the 38 and 

58% observed at 9 and 12% v/v ethanol, respectively. On the contrary, the model 

predicted higher diacetyl production fluxes when ethanol was higher in the medium. 

As citric acid consumption was similar in all conditions, this indicates that, at high 

ethanol concentrations, citric acid consumption was not sufficient to supply all the 

pyruvate required for diacetyl synthesis. Indeed, in the absence of ethanol, 44% of the 

citrate consumed was used for diacetyl formation; however, at 9 and 12% ethanol, there 

were 3.2 and 2.9 moles of diacetyl produced per mole of consumed citrate. This clearly 

indicates that pyruvate was redirected to the formation of this compound. For this end, 

the required pyruvate is produced from L-malate, as at increasing ethanol conditions 

the flux through malic enzyme, which uses L- malic acid for oxaloacetate synthesis, 

increases. Thus, a 3.7-fold higher synthesis of oxaloacetate was achieved through this 

route in cultures containing 12% ethanol, as compared to those without ethanol.  

Thus, citric acid was mainly used for internal ionic balance through diacetyl 

production under ethanolic conditions; and not for NAD(P)+ cofactor regeneration. In 

LAB, diacetyl formation requires intracellular protons, resulting in an increase in the 

internal pH. In addition, its extrusion increases external pH because it is less acidic 

than citric acid. In general, D-lactate production is privileged with regards to diacetyl, 

probably to allow the cells to obtain NAD+; however, when lactate dehydrogenase 

(LDH) function is reduced, pyruvate accumulates, and diacetyl is produced (García-
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Quintáns et al., 1998; Tsakalidou & Papadimitriou, 2011). Thus, high ethanol content 

could limit the function of LDH, allowing diacetyl production, as demonstrated here. 

Another possible cause is that higher diacetyl formation results from the larger 

energetic requirements caused by higher NGAM requirements. As F0F1-ATPase 

generates ATP by translocating protons to the inside of the cell, higher ethanol 

concentrations imply a higher necessity to extrude these protons by alternative 

pathways. In fact, at the highest ethanol concentrations, diacetyl generation consumes 

20 and 25%, respectively, of the protons introduced into the cell by F0F1-ATPase; 

opposite to only 5% for cells grown in the absence of ethanol. This shows that the 

increment of diacetyl formation and the resulting proton consumption in this reaction 

allows to increment the proton gradient. This gradient can then be used to produce, 

through F0F1-ATPase, the energetic requirements needed to overcome the challenging 

environment of this elevated ethanol concentration in the medium. From a biological 

perspective, proton consumption can also be used to compensate for the proton influx 

caused by the higher permeability of the plasmatic membrane at high ethanol 

concentrations.  

Other authors have cultured O. oeni PSU-1 in the presence of 12% of ethanol, 

showing that genes related with malate and citrate consumption were up-regulated 

while genes related with fructose consumption were down-regulated, which was 

associated to mechanisms of ethanol resistance (Margalef-Català et al., 2016). We 

observed that malate and citrate were almost totally consumed during the first 48 h of 

culture (phase I), suggesting that both substrates were critical for O. oeni survival; 

although we did not find a clear relation between ethanol content and citrate 

consumption, we did observe an increment in fluxes related with citrate consumption. 

Moreover, we found that fructose and glucose were consumed faster during phase I, 

without any inhibition.  

Additionally, the specific consumption rate of cysteine, one of the most 

consumed amino acids, increased with ethanol content in the medium. Genomic studies 

of O. oeni PSU-1 reported that this strain is unable to synthesize cysteine, because 

sulfur cannot be transported inside of the cell (Garvie, 1967a; Mills et al., 2005). 
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Cysteine can be used as a source for pyruvate formation, together with serine and 

threonine. The model predicted a 2.7-fold increase in pyruvate formation from these 

amino acids at 12% ethanol than in cultures without ethanol. Additionally, cysteine can 

be used in reactions of CoA synthesis, where this amino acid is added to D-4-P-

phantothenate generating R-4-P-phantothenosyl-L-cysteine, and O. oeni does have the 

genes to this synthesize (Mills et al., 2005). CoA functions as an acyl group carrier and 

carbonyl activating group in numerous reactions central to cellular metabolism and 

provides the 40-phosphopantetheine prosthetic group incorporated by carrier proteins 

that play key roles in fatty acid and non-ribosomal peptides biosynthesis (Spry et al., 

2008).  

3.5 Conclusion 

We found that under ethanol stress conditions, O. oeni favors anabolic reactions related 

with cell reconstruction pathways and/or production of stress protectors; consequently, 

the requirements of NAD(P)+, NGAM and ATP increase with ethanol content, 

unrelated with biomass increment.  

Finally, in this work we were able to integrate in the model specific 

consumption/production rates and specific growth rates for each of the determined 

growth phases, and thus, the model was able to represent the different phenotypes of 

O. oeni in each of the growth phases. To the best of our knowledge, this is the first 

report where experimental data from the entire exponential curve has been integrated 

to the model (Mendoza et al., 2017). Even if GSMM and FBA are usually applied to 

data obtained from steady state experiments, these strategies have been previously used 

to model data from batch growth, based on the assumption of a pseudo-steady state of 

the cellular metabolism (Pastink et al., 2009; Pereira et al., 2016; Teusink et al., 2005). 

The approach developed in this work allowed to characterize the physiological changes 

that occur in the metabolism of O. oeni PSU-1 during its growth in a culture medium 

containing various carbon sources, as the wine-like medium MaxOeno. The results 

highlight the flexibility of the metabolism of this bacterium, which could not have been 

carried out with a canonic approach (Mendoza et al., 2017); for example, we previously 

reported that at high ethanol concentrations, production of ATP was preferentially 
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carried out through the phosphoketolase pathway. In the present study, where dynamic 

changes were assessed, a similar result was found for phases II and III; however, the 

opposite was observed for phase I, a result that was previously lost due to the canonical 

analysis; the latter stresses the critical role of organic acids for ATP synthesis and, thus, 

for survival and adaptation in a medium with high ethanol concentrations. Furthermore, 

we were able to identify and include in our simulations the internal accumulation of 

compounds such as mannitol, which had an impact in the pathways used on each phase 

for cofactor regeneration.  

Several perspectives derived from this study can be foreseen. For example, a 

similar approach can be employed to tackle the metabolic response to acidic conditions 

in this bacterium, which, together with alcohol and SO2 stresses, are the most relevant 

conditions that affect the growth of O. oeni. For instance, Liu et al. (2017) recently 

showed, using RNA-seq, that in O. oeni SD-2a strain grown at pH of 4.8 and pH 3.0, 

several genes related with the metabolism of amino acids, carbohydrates, membrane 

transport and energy metabolism were differentially expressed. Therefore, the resulting 

quantitative transcriptomics can be incorporated into the iSM454 metabolic model as 

restrictions and, together with experimental data, could allow to simulate the 

redistribution of metabolic fluxes resulting from this environmental perturbation.  

Moreover, important efforts have been made to identify the genetic characteristics of 

different communities of O. oeni from different geographical regions, which is 

particularly relevant to understand the relationship between the wines of a certain 

geographical location and what has been termed as the “terroir” (e.g., Capozzi et al., 

2014). The characterization of these genomes is particularly relevant to determine 

different aspects of safety, tolerance to the harmful wine conditions and its contribution 

of the sensory quality of the wine. Thus, an approach like the one proposed in this 

paper, considering the genomic differences at the strain-specific level, would allow 

modeling the metabolic behavior of strains that are of interest for wines within a 

geographical location and to understand the physiological conditions in which a 

metabolic shift occurs. For example, the metabolic model used here is based on the 

PSU-1 strain, which does not produce biogenic amines, since the biosynthetic pathways 
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of these compounds have not been found in the genome of O. oeni PSU-1. However, it 

is known that most O. oeni strains produce these deleterious compounds (López et al., 

2009; Lucas et al., 2008). Therefore, the inclusion of the related biosynthetic pathway 

in the O. oeni’s GSMM to simulate their biosynthesis under different cultural and 

environmental conditions, to understand and minimize their production will be 

particularly promising.  

Finally, and in accordance with the above, determination of new ecotypes will 

permit to define new nutritional formulations that might be relevant for the wine 

industry, such as tolerance to alcohol, or resistance to SO2 and pH, as well as efficient 

consumption of malic acid. For example, a recent study carried out in 16 wineries from 

different Chilean valleys showed that autochthonous strains present a unique number 

of genes with respect to commercial strains. Moreover, some of these strains do not 

contain some genes related to off-flavors, such as phenolic decarboxylase (Romero et 

al., 2018). Thus, physiological studies complemented with the GSMM of several 

indigenous O. oeni strains might unravel new organoleptic patterns, as well as 

environmental responses, which complement the current knowledge regarding the 

differences at genomic level and, eventually, discover new starter cultures.  
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4. CHAPTER III: L-MALATE (-2) PROTONATION STATE IS REQUIRED 

FOR EFFICIENT DECARBOXYLATION TO L-LACTATE BY THE 

MALOLACTIC ENZYME OF OENOCOCCUS OENI 

 

4.1 Introduction 

Most red wines, as well as some white and sparkling wines, are produced by two 

sequential fermentations: first, yeast alcoholic fermentation (AF) transforms grape 

must into wine; then, a secondary fermentation, called malolactic fermentation (MLF), 

is carried out by lactic acid bacteria (LAB). Contrary to AF, a mandatory process of 

winemaking, MLF is optional and depends on the desired wine style. MLF reduces the 

acidity of wine and improves flavor complexity and microbiological stability. MLF 

involves the NAD+- and manganese-dependent decarboxylation of L-malate to L-lactate 

and CO2 (Kunkee, 1974; Williams et al., 1984). Due to its monocarboxylic nature, 

lactic acid imparts a more elegant and round taste to the wine, as opposed to the 

astringent taste of the dicarboxylic, malic acid (Henick-Kling et al., 1994; S.-Q. Liu, 

2002; Zoecklein et al., 1999). Oenococcus oeni is the main lactic acid bacterium 

involved in MLF, thanks to its ability to grow under the harsh conditions of wine, such 

as high ethanol content (>13% v/v), low pH (<3.5), and high sulphite concentration 

(>50 ppm) (Bartowsky, 2005; Bauer & Dicks, 2004; H. Li et al., 2006; Zapparoli et al., 

2009; G. Zhang, 2013). MLF is considered one of the most difficult processes to 

manage during winemaking, because it is often delayed or simply not fully achieved. 

Among the issues of malolactic fermentation (Grandvalet et al., 2005, 2008; Olguín et 

al., 2009), the mechanism involved in the enzymatic reaction is perhaps the most 

unpredictable to ensure efficient and reproducible malate decarboxylation. Three 

decarboxylation pathways have been proposed so far, as shown in Figure 4-1 

(Schümann et al., 2013). The first one considers that a malic enzyme (ME), followed 

by a L-lactate dehydrogenase, transforms malate to pyruvate, and then to lactate 

(Korkes & Ochoa, 1948). A second mechanism postulates a three-step reaction, 

mediated by a L-malate dehydrogenase (MDH), an oxaloacetate decarboxylase and a 

L-lactate dehydrogenase, respectively (Flesch, 1969). Finally, the third mechanism 
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consists in the direct conversion of L-malate into L-lactate (Caspritz & Radlert, 1983), 

through a reaction carried out in the presence of NAD+ and Mn2+, and where neither 

reduction of NAD+ nor detection of free reaction intermediates occurs (Groisillier & 

Lonvaud-Funel, 1999; Schümann et al., 2013). This mechanism is conducted by a 

protein different from a previously described malic enzyme, the “malolactic enzyme” 

(MLE) (Ochoa et al., 1948). 

 

 

Figure 4-1: Possible decarboxylation pathways for the enzymatic conversion of L-

malic acid to L-lactic acid. MDH, malate dehydrogenase; ME, malic enzyme; MLE, 

malolactic enzyme; OADC, oxaloacetate decarboxylase; LDH, lactate dehydrogenase. 

Adapted from Schümann et al. (2013).  

The malolactic enzyme has been purified from several LAB, e.g., Lactobacillus 

spp., Lactococcus lactis, and O. oeni (Bartowsky, 2005; Caspritz & Radlert, 1983; 

Lonvaud-Funel & Strasser de Saad, 1982; Spettoli et al., 1984). In all cases, the 

molecular mass of the MLE subunits range from 60 to 70 kDa, and the active form of 

the protein has been described either as a dimer or a tetramer of identical subunits 

(Ansanay et al., 1993; Battermann & Radler, 1991; Labarre, Guzzo, et al., 1996; Wang 

et al., 2014), although all subunits have an independent active site. Interestingly, MLE 

active sites have binding sites with different structural arrangements of the amino acids 

Asp, Lys, Ser, and Tyr that, altogether, satisfy the coordination of divalent cation and 
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cofactor positioning (Korkes & Ochoa, 1948). It is noteworthy that all described MLEs 

catalyze the same reaction. 

Among LAB, O. oeni is the best adapted to the harsh conditions of wine. It is 

capable of carrying out spontaneous fermentation even at pH 3.2, a condition that could 

be found in some wines (Zapparoli et al., 2009). The objective of this study was to 

provide new insights on the reaction mechanism of the malolactic enzyme (MLE) of 

O. oeni, responsible for the transformation of L-malate into L-lactate in wine. To this 

end, we first expressed the MLE gene of O. oeni in Escherichia coli BL21. After 

purification of the protein, we measured the affinity of MLE for malic acid under 

several pH conditions by isothermal titration calorimetry. Then, we generated a MLE 

homology model, based on sequence similarity networking and phylogenetic analysis, 

in order to describe the MLE-malic acid molecular interaction at an atomic level, using 

molecular dynamics simulations. Finally, we explored the effect of pH on L-malate 

binding free energies and identified possible residues involved into malic acid binding 

by means of quantum polarized ligand docking and MM/GBSA calculations. To the 

best of our knowledge, this is the first study that explores the three-dimensional 

structure of the malolactic enzyme and its interaction with malic acid at the binding 

site, the first step of the reaction. 

 

4.2 Materials and Methods 

4.2.1 Analysis of Sequences and Construction of Phylogenetic Tree 

The amino acid sequence of malolactic enzyme (MLE) from Oenococcus Oeni was 

retrieved from NCBI (accession number WP_002823502.1). Homologous amino acid 

sequences were found using the online available version of Basic Local Alignment 

Tools (BLAST™) (McGinnis & Madden, 2004). Twenty five sequences (accession 

number EEV40786.1, AMG48999.1, BAQ56789.1, AOO75947.1, BAP84672.1, 

ALJ31288.1, ANZ58780.1, ALO02977.1, CCC78515.1, ALG26877.1, CAI54742.1, 

AOO73522.1, ARE28303.1, KLK96319.1, API72025.1, ANZ71056.1, AMV69835.1, 

ABJ68638.1, AQP43157.1, ABV10389.1, CCF03237.1, CBY99983.1, AEH55110.1, 
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AEF25979.1, and ARC49389.1) of lactic acid bacteria were selected based on the e-

value, the query coverage and its sequence identity with MLE, and were aligned using 

CLUSTAL OMEGA program (EMBL) (Sievers et al., 2011). The phylogenetic tree 

was built up using Interactive Tree Of Life (Letunic & Bork, 2006). 

To perform the Sequence similarity Network, the MLE sequence from O. oeni 

(Uniprot ID: Q48796) was aligned to the closest sequences (>70% id) using all-by-all 

BLAST within InterProScan database performed by the web service EFI-Enzyme 

Similarity Tool (Gerlt et al., 2015; Zallot et al., 2019). Each sequence was labeled by 

its primary biological function and structural data availability as provided by 

UNIPROT. Even though all the function entries were cured manually, the lack of 

consistency of UNIPROT terminology could lead to ambiguous descriptions. Finally, 

309,755 sequences were admitted to the SSN building. 

4.2.2 Protein Modeling 

4.2.2.1. Template Selection 

The amino acid sequences of the malolactic enzyme from O. oeni strain DSM 20255 

were retrieved from the NCBI (accession number ACX50963). The template was 

selected based on the e-value of the BLAST search, query coverage, and its sequence 

identity with MLE. Based on these criteria, malic enzyme from pigeon liver (PDB entry 

1GQ2) was selected as a template to model MLE. 

4.2.2.2 Modeling of Malolactic Enzyme 

A comparative model for the malolactic enzyme was constructed using Prime from 

Schrödinger Suite 2019 using the PDB 1GQ2 and 6AGS as a template. Both enzyme 

cofactors, NAD+ and Mn+2, were incorporated into the resulting models keeping the 

atomic coordinates from reference structure 1GQ2. The resulting model of the 

malolactic enzyme, including NAD+ cofactor and Mn+2 ion, was inserted in a water 

box and further neutralized with counter ions. Then MLE/NAD+/Mn+2 complex was 

subjected to cycles of energy minimize as described elsewhere and equilibration for 

200 nanoseconds under NPT conditions. 
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4.2.2.3 Ligand Preparation 

L-malic acid three-dimensional structure was obtained from the PubChem database 

(Pubmed CID 222656) and prepared in Maestro (Schrödinger, LLC, New York, NY, 

USA) using the OPLS_2005 force field with default setting of the LigPrep package 

from Schrödinger. All molecules were visualized and pKa values were calculated using 

Epik at desire pH (Shelley et al., 2007). 

4.2.2.4 Quantum Polarized Ligand Docking (QPLD) 

L-malic acid and its other protonation states were docked with improved docking 

program of quantum polarized ligand docking (QPLD) of the Schrödinger Suite 2019 

(Cho et al., 2005). The best poses obtained by flexible ligand docking using Glide 

(Friesner et al., 2004). Then QM calculations were done using Jaguar to calculate the 

partial charges were replaced on the ligand in the field of receptor for each ligand 

complex (Bochevarov et al., 2013). Single point electrostatic calculations were carried 

out with the 6-31G*/LACVP* base set and B3LYP density functional theory, using the 

“Ultrafine” SCF accuracy level (iacc = 1, iac-scf = 2) for the QM region. Finally, ligand 

was redocked with updated atomic charges with the help of Glide XP and QPLD of the 

Schrödinger Suite 2019. 

4.2.2.5 Molecular Dynamics Simulation (MD) 

MD simulations of malolactic enzyme and ligand complexes were carried out using 

Desmond and OPLS 2005 force field (Banks et al., 2005). The protein ligand 

complexes were solvated with TIP3 water molecules. Sodium counter ions were added 

to balance the system net charge. The systems were submitted to the default Desmond 

protocol, which contains a series of restrained minimizations and MD simulations. The 

minimized system was relaxed under NPT ensemble for 50 ns equilibration simulation 

period, and 150 ns production simulations were carried out. Long range electrostatic 

interactions were computed by particle-mesh Ewald method and van der Waals (VDW) 

cut-off was set to 9 Å. 
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4.2.3	Cloning	and	Expression	of	Recombinant	Malolactic	Enzyme	

4.2.3.1 Microorganisms, Plasmids, and Media 

Oenococcus oeni (Dicks et al., 1995; Garvie, 1967a) (PSU-1, ATCC® BAA-331™) 

was obtained from the American Type Culture Collection (ATCC) (Virginia, USA). 

Cryogenically preserved (−80 °C) strains were cultured and maintained on MRS plates 

(Man, Rogosa and Sharpe) (De Man et al., 1960) and stored at 4 °C. 

Escherichia coli BL21 strain and plasmid pET28a were obtained from Novagen 

(Buenos Aires, Argentina). Transformants were grown at 37 °C in LB medium, with 

the addition of 50 µg/mL kanamycin. Agar plates were made of LB media, including 

15 g/l agar. 

4.2.3.2 Construction of the MLE Expression Vector 

The malolactic enzyme gene was PCR amplified using genomic DNA from O. oeni 

strain PSU-1, extracted using the Wizard Genomic DNA purification kit (Promega). 

The 26 nt primers used for this amplification: 5’-

GATATACCATGGGCAGCAGCATGACAGATCCAGTAAGTATTTTAAATGA-3 

(forward) and 5´-CAGTGGTGGTGGTGGTGGTGGTATTTCGGCTCCCACC-3 

(reverse), were designed based on the sequence of OEOE_RS07545 gene (1626 bp, 

NCBI). The linearized vector pET28a (5369 pb) was PCR amplified using the 

following 26 nt oligonucleotides: FWD 5´-

ATACTTACTGGATCTGTCATGCTGCTGCCCATGG-3´; and 5´-

TGAGGTGGGAGCCGAAATACCACCACCACCACCAC-3. Both pairs of primers 

were designed using SnapGene® software (Chicago, IL, USA), to be employed for 

Gibson Assembly. 

All PCRs to amplify DNA fragments suitable for Gibson assembly were carried 

out in 35 PCR cycles, using Phusion High-Fidelity DNA polymerase (Thermo 

Scientific, Waltham, MA, USA), following the manufacturer’s instructions. Gibson 

assembly was performed as previously described (Gibson et al., 2009) with pairs of 

primers for each fragment to be assembled containing segments of about ∼40 bp 

homologous to the adjacent fragment to be linked. All PCR products were treated with 
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the DpnI enzyme to eliminate original vector residues and purified by gel extraction 

using the Qiaquick Gel Extraction kit from Qiagen, according to the manufacturer’s 

instructions. The purified genes fragments and vectors were mixed based on their molar 

ratios in a final volume of 5 µL, containing 100 ng of total DNA. This DNA mix was 

added to 15 µL of 1.33X master mix (5X isothermal mix buffer, T5 exonuclease 1 

U/µL, Phusion DNA polymerase 2 U/µL, Taq DNA ligase 40 U/µL and Milli-Q 

purified water), and the reaction mixture was incubated at 50 °C for 1 h. Finally, 10 µL 

reaction mix were used directly to transform chemically competent E. coli BL21 (DE3). 

The vector construct, designated pET28a-MLE, was verified by sequencing (Macrogen 

Inc., Seoul, Korea). The resulting map is shown in In Supplementary Material S2-2). 

4.2.3.3 Expression and Purification of Recombinant Malolactic Enzyme of O. oeni. 

E. coli BL21 (DE3) cells transformed with the pET28-MLE plasmid were grown at 37 

°C and 140 rpm in 1 L shake flasks, containing 250 mL LB medium with 50 µL 

kanamycin. After 12 h incubation, MLE induction was performed by adding isopropyl 

β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.5 mM. The cultures 

were incubated for another 12 h at 16 °C and 100 rpm. The resulting biomass was 

recovered from the fermentation broth by centrifugation (4000x g, 10 min, 4 °C) and 

the supernatant was discarded. Approximately 9 g of biomass were recovered from 1 

L of fermentation broth. Subsequent cell disintegration was carried out in lysis buffer 

(Tris 20 mM pH 6.0, with 500 mM NaCl, 30 mM imidazole, and protease inhibitor 

cocktail complete™), at a concentration of 1 g of biomass in 10 mL of lysis buffer. The 

mix was distributed in 1.5 mL Eppendorf tubes with 250 μL of glass beads (Sigma-

Aldrich®), and cell disruption was performed by agitation, three consecutive cycles of 

30 s. 

The crude extract was loaded onto immobilized metal affinity chromatography 

columns (HisTrap HP, 5 mL, Amersham Biosciences), operated with a peristaltic pump 

(with a flux 5 mL·m−1), and pre-equilibrated with binding buffer (HEPES 100 mM, 

KCl 100 mM, imidazol 20 mM, pH 6.0). The column was washed with 30 mL of 

binding buffer. The protein was eluted with 30 mL of stripping buffer (HEPES 100 

mM, KCl 100 mM, imidazol 500 mM, pH 6.0), collecting fractions of 10 mL. The 
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active fractions were pooled, desalted, and lyophilized. For experimental purposes, the 

protein was resuspended in HEPES buffer (100 mM HEPES, 0.5 mM NAD+, and 0.1 

mM Mn2+, pH 6.0). 

4.2.4 Calorimetric Characterization 

Enthalpy changes associated with MLE-substrate interactions were measured using a 

Nano ITC instrument (TA Instruments Ltd., Crawley, West Sussex, U.K.), at 25 °C. 

An amount of 170 μL of MLE solution (30 μM, HEPES buffer at desired pH) were 

placed in the sample cell of the calorimeter and buffered substrate solution (100 μM, 

HEPES buffer at desired pH) was loaded into the injection syringe. The substrates were 

titrated into the sample cell as a sequence of 20 injections of 2.5 μL aliquots. The time 

delay (to allow equilibration) between successive injections was 3 min. The contents 

of the sample cell were stirred throughout the experiment at 200 rpm to ensure thorough 

mixing. Raw data were obtained as a plot of heat (μJ) against injection number and 

featured a series of peaks for each injection. These raw data peaks were transformed 

using the instrument software Nano Analyze (version 3.11.0, TA Instruments, New 

Castle, DE, USA) to obtain a plot of observed enthalpy change per mole of injectant 

against molar ratio and were corrected by subtracting the mixing enthalpies of the 

substrate solutions into protein-free solution. 

4.3 Results 

4.3.1. Calorimetric Determination of Malic acid Binding Energies to Malolactic 

Enzyme 

Malolactic fermentation in wine is usually carried out at a pH range between 3.2 and 

3.5, allowing a small rise in pH as the malic acid is converted to lactic acid. Figure 4-

2 illustrates the 2D-structure of L-malic acid (MAL) and its L-malate (−1) and (−2) 

protonation forms (MAL− and MAL2−, respectively). Isothermal calorimetry 

thermodynamic (ITC) data for malic acid interaction with MLE shows dissociation 

constant (Kd, Table 4-1) values in the micromolar range (Figure 4-3). MAL2− has a 
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lower DG value than MAL1−, suggesting this form as the most probable protonation 

state for malic acid at the binding site of MLE. 

 

Figure 4-2: Chemical structure of L-malic acid and its protonation states. 

 

Table 4-1: Binding energies (∆G) of L-malate with malolactic enzyme using isothermal 

titration calorimetry. 

Ligand Kd (M) n ∆G (kJ/mol) ∆H (kJ/mol) T∆S (kJ/mol) 

MAL− 3.19 × 10−6 2.7 −31.3 −30.0  1.3  

MAL2− 1.29 × 10−6 1.5 −33.7 −14.5 19.2  

Binding energies was calculated using an independent site interaction model. HEPES 

buffer (100 mM) was used to control pH and malic acid protonation form. Kd is 

dissociation constant, n correspond to non-integer stoichiometric values, Kd is the 

dissociation constant and DG is calculated as enthalpy (DH) minus TDS. 
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Figure 4-3: Binding isotherm curves of experimental calorimetric titrations of 0.3 mM 

L-malate (−2) (A) and (−1) (B) protonation states. Reaction was carried out by adding 

30 mM malolactic enzyme to the reaction medium. 

2.2. Sequence Similarity Networks of Malolactic Enzyme Family 

To apprehend the impact of pH on O. oeni MLE activity, we performed an in-silico 

analysis by comparing its sequence with other MLF-related proteins, including malic 

enzyme and malate dehydrogenase. For this purpose, we generated a sequence 

similarity network (SSN), where nodes correspond to homologous proteins to MLE, 
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i.e., those containing at least 70% of sequence identity; and where connections allow 

to rapidly compute and visualize groups of proteins based on all-against-all sequence 

comparisons (Figure 4-4). The group that contains O. oeni MLE and its closest 

homologues from NCBI’s non-redundant (nr) protein database are referenced as malate 

dehydrogenases, malic enzymes, and malolactic enzymes. Interestingly, most 

sequences of this group corresponding to malolactic enzymes and malic enzymes, 

therefore crystal structures of malic enzymes are the most adequate structural templates 

to model MLE as there is no structural data available for malolactic enzymes. 

 

Figure 4-4: Sequence Similarity Network (SSN) of potential homologs to MLE of O. 
oeni with at least 70% identity of sequences. The nodes represent proteins and edges 

indicate similarity in amino acid sequence. Clustering by sequence identity is done with 

CD-HIT program. At values of sequence identity >70%, the nodes should contain 

sequences that share the same function; however, at lower values of sequence identity, 

the nodes may be functionally heterogeneous. 
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2.3. Phylogenetics of Malolactic Enzyme Family 

Identification of a set of orthologs is a prerequisite for a robust genetic analysis of the 

evolution of a group of organisms (Koonin, 2005). We carried out multiple sequence 

alignment using CLUSTAL OMEGA to study the evolutionary relationships between 

different lactic bacteria in relation to the malolactic enzyme (Sievers et al., 2011). Most 

of the sequences homologous to the malolactic enzyme of O. oeni, correspond to 

proteins whose function has been assigned as malic enzymes by automatic annotation. 

However, some sequences have been experimentally reported as enzymes with 

malolactic activity. The latter were labelled with the abbreviation “MLE” below the 

name of the species, in the phylogenetic tree (Figure 4-5). 

As illustrated in Figure 4-5, O. oeni is part of a monophyletic group, together 

with Streptococcus spp, Lactococcus spp, and Enterococcus spp. However, the 

evolution of the malic enzyme would be basal in O. oeni with respect to the rest of this 

clade. It is noteworthy that, within the clade representing the Streptococcus branch, the 

group of Lactococcus and Enterococcus are represented as sister groups of recent 

evolution. On the other hand, the branches of Lactobacillus, Pediococcus, and 

Leuconostoc constitute a paraphyletic group of basal character with respect to 

Oenococcus and Streptococcus-Lactococcus-Enterococcus; and they have a previous 

evolutionary origin. 
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Figure 4-5: Phylogenetic tree of Lactobacillales constructed on the basis of multiple 

alignments of homologous sequences to O. oeni MLE, determined by Blastp. The 

multiple alignments and neighbor-joining tree were built using CLUSTAL OMEGA, 

and the visualization of the tree was done in iTOL. 

2.4. Structural Modeling of the Malolactic Enzyme 

The active site of the chain A of the malic enzyme from pigeon liver (PDB entry 

1GQ2), the first malic enzyme described (Ochoa et al., 1947, 1948), was selected after 

SSN analysis as the best structural template for comparative modeling of MLE. The 

sequence alignment of both structures showed a sequence identity of 35.9% and a 

coverage of 98% against MLE (Figure 4-6). 

 

Figure 4-6: Sequence alignment of malolactic enzyme from O. oeni, malic enzyme 

from pigeon liver (PDB entry 1GQ2) and malic enzyme from E. coli (PDB entry 

6AGS). 

The crystal structure of the A chain contains an oxalate ion in the binding site 

and requires Mn2+ and NADP+ as cofactors. Nevertheless, supported by the highly 

conserved structure of the active site in both proteins, we confirmed that the putative 

active binding site could correctly locate malate, after replacing the former cofactors 

with NAD+ and Mn2+, and oxalate with malate, using SiteMap of Maestro suite (data 

not shown). It is worthy to mention that we also employed the malic enzyme from E. 
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coli (PDB entry 6AGS) (Figure 4-7) for these purposes; though only as secondary 

scaffold, because no experimental data is available for this protein crystal. 

 

Figure 4-7: Homology model of O. oeni MLE. (A) Protein structure after 200 ns MD 

simulation. (B) MAL pose inside predicted MLE binding site. 
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Figure 4-7A shows the MLE homology model we obtained from the 

abovementioned templates and sequence alignments. This monomeric model was 

submitted to 200 ns simulation, reaching structural stability after 50 ns, by the structural 

rearrangement of the carboxyl-term (in Supplementary materials S4-1). Conversely, 

the pose of NAD+ and Mn2+ reached stability after 20 ns, displaying an RMSD at or 

below 2 Å throughout simulation. Furthermore, putative MAL binding-site residues, 

based on previous reports, namely TYR85, ASP86, LYS156, ASP251, and ASP250 

within MLE displayed movement of less than 2 Å (Figure 4-7 B). Then, MAL was 

oriented through molecular docking simulations (Figure 4-7 B). 

2.5. Molecular Docking of Substrates of Malolactic Enzyme 

Additionally, we evaluated the participation of the divalent cation on MLE mechanism 

by quantum polarized ligand docking (QPLD). Figure 4-8 illustrates the pose adopted 

by MAL inside the binding site of MLE. Malic acid interacts with MLE through 

coordination bonds with Mn2+, one LYS protonated residue, and several ASP residues 

interacting through hydrogen bonds. MAL-MLE interacting residues on this pose 

correspond with equivalent residues proposed for divalent-cation-dependent MAL 

decarboxylation. 

 

 

 

Figure 4-8: (A) L-Malic Acid and (B) L-Malate −1 and (C) L-Malate −2 pose into the 

MLE binding site predicted by the QLPD method. 
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We also calculated the most probable protonation state of MAL using the Epik 

module of the Schrödinger Suite. Results confirmed that MAL2− is the most probable 

protonation state and thus interacting residues could be oriented differently to MAL- 

and MAL. 

Quantum polarized ligand docking (QPLD) was then employed to explore 

MAL2− pose and binding energy (∆Gbinding). Results showed that all malic acid 

protonation forms lie in the same binding cavity, sharing the same set of binding amino 

acid residues (Figure 4-8). The latter interact mainly by hydrogen bonding and 

hydrophobic interactions (in Supplementary material S4-2). MAL2− has the lowest 

∆Gbinding, followed by MAL− and MAL, with values of −23.8, −19.6, and −14.6 kJ/mol, 

respectively (Table 4-2). Interestingly, MAL2− displayed an extended conformation, 

when compared with the other protonation states. This open conformation better 

satisfies the geometrical requirements of Mn2+ coordination geometry and the 

mechanism described for malic enzymes (Soffritti et al., 2006). 

Geometrical stability of MAL inside the binding site was assessed after 200 ns 

molecular dynamics simulations of the MLE/MAL/NAD+/Mn2+ system. Of note, MAL 

does not remain on the site and exits the pocket at 25 ns. On the contrary, MAL− and 

MAL2− remain into the binding pocket throughout the whole simulation. Moreover, the 

average binding energy of the molecular interactions through the MM/GBSA rescoring 

method was calculated as it is relatively more accurate compared to single-structure 

theoretical determinations. MM-GBSA binding energies for MAL− and MAL2− showed 

binding affinity differences consistent with values from the ITC and QLPD 

experiments (Tables 4-1 and 4-2, respectively). Furthermore, energy decomposition of 

MAL− and MAL2− interactions within the MLE binding pocket allowed to identify that 

binding is mainly driven by the negative charge interactions of the MAL carboxyl 

group with the positive charge of the side chain-N of LYS156, (Figure 4-7); whereas 

MAL1− interacts with ASP86 and ASN396 mainly by H-bonding; and MAL2− with 

TYR85, ASP86, ASP228, ASN396, and ASN440 mainly through water bridges. 
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Table	4-2:	MAL−	and	MAL2−	interactions	with	malic	enzyme	through	200	ns	

simulations.	

MAL− MAL2− 

QPLD ∆G binding −19.6 kJ/mol QPLD ∆Gbinding −23.8 kJ/mol 

MM/GBSA ∆G binding −154.8 kJ/mol MM/GBSA ∆G binding −175.7 kJ/mol 

  

 
 

  

First row depicts MAL− and MAL2− representative conformations. Second row 

describes the conformation of the torsion throughout the course of the simulation. The 

beginning of the simulation is in the center of the radial plot and the time evolution is 

plotted radially outwards. Third row describes the kind of interactions both of MAL1− 

and MAL2− with amino acids of binding pocket, stacked bar charts are normalized over 

the course of the trajectory. Green represents H-bond, purple hydrophobic contacts, 
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magenta ionic contacts and blue water bridges. Only the last 150 ns were used for 

calculations. 

4.4 Discussion 

In silico analysis, MLE homology model together with QPLD and ITC experiments 

were carried out in the present study to determine the protonation state of L-malate 

required for its efficient decarboxylation to L-lactate by the malolactic enzyme of 

Oenococcus oeni. 

The phylogenetic analysis showed that the evolution of the O. oeni malolactic 

enzyme is halfway between malic-malolactic enzymes of the genera Lactobacillus-

Pediococcus-Leuconostoc and Streptococcus-Lactococcus-Enterococcus. The 

grouping of lactic acid bacteria in two clusters was in line with Makarova and Koonin 

(2007), which employed the sequence of ribosomal proteins and RNA polymerase 

subunits for their phylogenetic analysis. Our results indicated that O. oeni MLE is part 

of a monophyletic group, together with the branch Streptococcus-Lactococcus-

Enterococcus, whereas O. Oeni MLE constitutes a paraphyletic group of the 

Lactobacillus-Pediococcus branch. These results point that the genera Streptococcus, 

Lactococcus, Enterococcus, and Oenococcus descended from a common evolutionary 

ancestor, whose malolactic enzyme could share similar structural characteristics. 

Malolactic fermentation usually occurs at pH levels between the range of 3.2 

and 3.5, allowing for a rise in pH as the malic acid is converted to lactic acid. At this 

pH, the MAL− protonated L-malic acid form prevails (Figure 4-2). On the other hand, 

several LAB, including O. oeni have an intracellular pH ≈ 5.0 (Hutkins & Nannen, 

1993; Salema et al., 1994), a condition where MAL2− is the predominant protonated 

form. Several studies have reported that the malolactic fermentation reaction occurs in 

the Oenococcus oeni intracellular space, where pH is between 5.8 and 6.1; while in the 

extracellular medium, i.e., the wine conditions, the pH is within a range of 3 to 4 

(Augagneur et al., 2007; Salema et al., 1996). Additionally, Schümann et al. (2013) 

reported that O. oeni MLE has an optimum activity at pH 6.0 and 45 °C. Accordingly, 

we evaluated the effect of pH on L-malic acid interaction with the MLE active site. To 

this end, we measured the enthalpy of reaction of O. oeni MLE with both cofactors, 
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titrated with MAL at pH 4.5 and 5.3, using ITC. Our results showed a higher binding 

affinity for MAL2− than for MAL−, in agreement with Schümann et al. (2013). Under 

the O. oeni intracellular conditions, the presence of some residues, in the binding 

pocket or in its vicinity, could accept the proton from the MAL− form, predominant in 

solution, to lead the most stable MAL2−, such as Asp86 and Glu227 (see Figure 4-8 A). 

Although ITC experiments showed that pH significantly influences malic acid binding 

to O. oeni MLE, this method did not allow to extract structural information of the 

binding sites or enzymatic mechanisms, at atomic level. However, non-integer 

stoichiometric values indicated the formation or aggregation of dimers of higher 

quaternary structures, which was also observed by Dynamic Light Scattering 

measurements (data not shown). These results agree with the work of Schümann et al. 

(2012), where MLE of O. oeni was presented as a dimeric macromolecule, with each 

subunit having a functional binding site. 

To give further structural insights and to understand the calorimetric results, we 

relied on the use of molecular docking and molecular dynamics methods. To this end, 

O. oeni MLE homology model was carried out, because the three-dimensional structure 

was not available. It is worth noting that SSN and phylogenetic analysis showed a close 

relation between malolactic and malic enzymes (Figure 4-4), although only four crystal 

structures are available as possible structural templates. Among these structures, malic 

enzyme from pigeon liver (PDB entry 1GQ2) and E. coli Malic enzyme (PDB entry 

6AGS) were used as model templates, using the alignment shown in Figure 4-6. Both 

structures were identified as the closest related sequences according to the SSN; 

nevertheless, experimental data regarding 6AGS crystal is scarce, and was only used 

when no structural data from 1GQ2 were available. It is worth noting that NAD+, Mn2+ 

were incorporated as model constraints, using the pose of cofactors found on the 1GQ2 

crystal. The MLE model was submitted to 200 ns molecular dynamics simulations to 

further explore its dynamic and stability and to identify relevant residues for malic acid 

binding. The trajectory analysis showed that, overall, residues near cofactors have slow 

mobility and form cavities that are suitable to bind L-malic acid. 
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Interestingly, SSN and phylogenetic analysis suggest a closed relation between 

malate dehydrogenases, malic enzymes, and malolactic enzymes; however, their 

binding sites are not completely conserved and thus, substrate pose, and binding 

residues could be oriented differently. To correctly orientate malic acid and to calculate 

theoretical binding energies considering Mn2+, we opted for the quantum polarized 

ligand docking (QPLD) method as it allows to properly calculate binding energies of 

metal-containing systems as it considers metal coordination, electronic polarization 

effect, among other missed terms in molecular-mechanics force fields. As can be seen 

in Table 4-2, QPLD results shown that MAL− and MAL2− have docking scores 

(∆Gbinding) that correlate with ITC measurement results. Although both MAL 

protonation states bind into the same cavity and share a set of amino acids, MAL2− 

adopts an extended conformation, supported by hydrogen bonding and coordination 

geometry with Mn2+ (Figure 4-7). Further, we explore the binding site dynamics of the 

MAL, MAL−, and MAL2− containing systems through molecular dynamics simulation. 

Of note, MAL2− kept its orientation, as determined by the QLPD method, after 200 ns 

of molecular dynamics simulation, while MAL− and MAL have more mobility inside 

the binding site. Furthermore, molecular dynamics provides a conformational ensemble 

that allows to calculate the average binding energy of the molecular interactions 

through the MM/GBSA rescoring method that is more accurate compared to single-

structure theoretical determinations as it includes solvent effects. According to 

MM/GBSA results and ITC experiments, MAL2− have the lowest binding energy 

(∆Gbinding) and the major energetic contribution is the stabilization of the two carboxylic 

group charges that interacts with Mn2+. Regarding ITC correlation with our molecular 

dynamics results, it should be noted that docking and MMGBSA calculations represent 

one of the steps of the reaction coordinates, that is pre-transition states without consider 

the diffusion pathways into the binding sites and omitting desolvation and other effects 

that directly impact the entropy variations observed by ITC measurements. This MAL2− 

pose is in accordance with the mechanism described by Schümann et al. (2013), where 

Mn2+ act as an activator of the enzymatic catalysis and coordinate chemical reaction, 

while NAD+ act as oxidizing agent for oxidation of L-malate. 
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4.5 Conclusion 

In this work, we constructed a comparative model for MLE using the 3D structures of 

the malic enzyme from pigeon liver (PDB entry 1GQ2) and malic enzyme from E. coli 

(PDB entry 6AGS). Malic acid interactions within MLE binding pocket are mainly 

driven by hydrogen bonding and coordination with Mn2+, both dependent on the 

protonation state of the substrate. Our experimental and theoretical studies 

demonstrated that MAL2− stabilizes the pose that fulfills the geometrical requirements 

to favor the malic acid decarboxylation catalyzed by MLE. Further theoretical and 

experimental studies are currently underway to provide more detailed information 

about the contribution of each residue on the MLE proposed mechanism. 
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5. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Both the results and knowledge obtained from this thesis allow to better understand the 

metabolism of Oenococcus oeni during the Malolactic Fermentation (MLF). They 

contribute to unveil the unpredictable, even capricious, development this crucial 

fermentative process usually has had in wineries. Then, maybe this lactic bacterium 

could be less a nightmare, still the queen of cellars, paraphrasing Grandvalet (2017). 

First and foremost, we built the first Genome-Scale Metabolic Model (GSMM) 

for O. oeni, using the genome of PSU-1 strain, the only one completely sequenced 

when this research was started. This model, iSM454, was carefully curated in its 

biochemistry, reaching high standards of accuracy in predicting bacterial growth. Key 

metabolic pathways were included in the curation process, such as the synthesis of 

exopolysaccharides, participating in the response of the bacterium to stress conditions, 

as those that it finds in wine. We also focused on the synthesis of cyclopropane fatty 

acids, and on the pathways of aminoacids synthesis; it allowed us to determine which 

ones were essential for O. oeni survival. 

On the energetic side, the model enabled us to define different proton 

extrusion/energy generation pathways employed by O. oeni, like the transformation of 

malic into lactic acid using the malolactic enzyme (MLE), the transportation of lactic 

acid through the plasmatic membrane, and the metabolism of citrate, all of them ATP-

synthase related mechanisms, allowing more ATP to be synthesized. The m-ATP was 

also calculated, a key parameter for understanding the heightened energetic 

requirements cells need to colonize extreme ecological niches. Therefore, our work is 

the first reporting the ATP required for the maintenance of O. oeni growing in ethanol 

rich media, making the model a relevant tool for winemakers and researchers in that 

field. In such conditions, the model is able to predict the production of mannitol, 

erythritol, acetate, diacetyl, and acetoin, among other compounds that could have 

significant organoleptic impact on wine. 

Nevertheless, iSM454 does not incorporate information about O. oeni’s 

transcriptomic and proteomic responses under different environmental conditions. 
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Indeed, it does embed limitations and diminish accuracy. Also, iSM454 uses a flux 

balance analysis based on the election of a single metabolic state in time; a dynamic 

flux balance analysis (dFBA) could be a more useful strategy to simulate the growth 

kinetics under industrial conditions. Finally, being a model built for a single isolated 

microorganism, it does not allow to represent the interactions that actually happen in 

the complex wine microbiome. A more extended platform development emerges as a 

necessity for the next steps in understanding the metabolic exchanges between different 

microorganisms.  

Secondly, we developed a wine-like, defined culture medium (MaxOeno), and 

we characterized the kinetic parameters of O. oeni growing under increasing ethanol 

conditions. We found that under this stress conditions, O. oeni favors anabolic reactions 

allowing to reconstruct itself and to produce stress protecting factors. The requirements 

of NAD(P)+, NGAM and ATP also augment, without any relation to biomass increase. 

The model allowed the integration of specific consumption/production rates during the 

different growth phases of O. oeni, reflecting the phenotypic changes it undergoes 

along them, for example, the change in the principal pathways to produce ATP under 

raising ethanol conditions. The simulations led us to detect the accumulation of 

compounds like mannitol, related to cofactors regeneration. On this matter, future 

research could address the effect of other stress factors as the medium acidity and SO2 

content in wine, both strongly conditioning the growth of O. oeni. These variables in 

the medium were not addressed in this work. Altogether, these approaches could help 

to define new nutritional formulations for reinforcing O. oeni tolerance to ethanol, pH 

or SO2, fostering a more efficient consumption of malic acid. 

Thirdly, we addressed the undetermined mechanism of MLF reaction. A 

comparative model of MLE was built using 3D structures of malic enzymes from 

pigeon liver and E. coli. The main interactions between malic acid and the enzyme 

binding pocket were found to correspond mainly to hydrogen bonds and coordination 

with Mn2+. For these interactions, we proved that the protonation state MAL2- was 

fundamental to stabilize the conformation that satisfies the geometric requirements, 

allowing the decarboxylating activity that catalyzes the MLE. This is consistent with 
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the pH conditions of O. oeni’s intracellular space (5.8 to 6.1), where malate 

decarboxylation takes place. The contribution of each residue of the binding pocket to 

the MLE reaction mechanism itself was not determined however, and it remains to be 

studied.  

Future applications of this work include characterizing different strains of O. 

oeni from different geographical areas, which could be particularly interesting for 

understanding the relations between wine and its “terroir”, finding possible answers to 

relevant aspects of wine production as safety, tolerance to harmful conditions, and 

organoleptic variability. In this way, the characterization of native and commercial 

strains, could provide enologists advanced tools for prediction, control of the final 

product, and differentiation. In the same vein, characterizing strains in regard to their 

production of some desired or undesired metabolites, e.g., biogenic amines, could be 

highly valuable for the industry. Our model revealed that PSU-1 strain does not have 

the ability to produce biogenic amines, but it is known that other O. oeni strains does. 
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7. SUPPLEMENTARY MATERIALS 

S 2-1 Final restriction of iSM454 model. 

Table 7-1: Final restriction of iSM424 model. 

Reaction ID Lower bound Upper Bound 
_R__lipoate_ex_ 0 0 

biotin_ex_ 0 1000 

folate_ex_ 0 0 

panthothenate_ex_ 0 1000 

thiamin_ex_ 0 1000 

nicotinamida_RNP_ex_ 0 1000 

riboflavin_ex_ 0 1000 

b_D_fructose_ex_ 0 0 

b_D_ribopyranose_ex_ 0 1000 

b_D_ribofuranose_ex_ 0 0 

D_mannose_ex_ 0 0 

D_xylose_ex_ 0 0 

cellobiose_ex_ 0 0 

a_D_glucose_ex_ 0 0 

b_D_galactose_ex_ 0 0 

a_D_galactose_ex_ 0 0 

melibiose_ex_ 0 0 

D_mannitol_ex_ 0 1000 

citrate_ex_ 0 0 

_R__lactate_ex_ 0 1000 

_S__lactate_ex_ 0 1000 

_S__malate_ex_ 0 0 

butanediol_ex_ 0 1000 

adenine_ex_ 0 1000 

guanine_ex_ 0 1000 

cytosine_ex_ 0 1000 

uracil_ex_ 0 1000 

xanthine_ex_ 0 1000 

L_ascorbate_ex_ 0 0 

D_gluconate_ex_ 0 0 

diacetyl_ex_ 0 1000 

trehalose_ex_ 0 0 

b_D_glucose_ex_ 0 0 

L_Arg_ex_ 0 1000 
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L_Asn_ex_ 0 1000 

L_Ala_ex_ 0 1000 

L_Asp_ex_ 0 1000 

L_Cys_ex_ 0 1000 

L_Glu_ex_ 0 1000 

L_Gln_ex_ 0 1000 

Gly_ex_ 0 1000 

L_His_ex_ 0 1000 

L_Ile_ex_ 0 1000 

L_Leu_ex_ 0 1000 

L_Lys_ex_ 0 1000 

L_Met_ex_ 0 1000 

L_Phe_ex_ 0 1000 

L_Pro_ex_ 0 1000 

L_Ser_ex_ 0 1000 

L_Thr_ex_ 0 1000 

L_Tyr_ex_ 0 1000 

L_Trp_ex_ 0 1000 

L_Val_ex_ 0 1000 

pyridoxine_ex_ 0 1000 

pyridoxal_ex_ 0 0 

pyridoxamine_ex_ 0 0 

SO4_ex_ 0 1000 

P_ex_ 0 1000 

oleate_ex_ 0 1000 

ethanol_ex_ 0 1000 

water_ex_ -1000 1000 

oxygen_ex_ 0 1000 

CO2__ex_ 0 1000 

ammonium_ex_ 0 0 

acetate_ex_ 0 1000 

oligopeptide_ex_ 0 0 

glycerol_ex_ 0 0 

galactitol_ex_ 0 0 

L_arabinose_ex_ 0 0 

thymine_ex_ 0 1000 

Mn_ex_ 0 1000 

erythritol_ex_ 0 1000 

H+_ex 0 0 

pyruvate_ex_ 0 0 
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succinate_ex_ 0 1000 

lactate(R or D)_ex_ 0 1000 

3,5-dimethoxytoluene_ex_ 0 1000 

fucose_ex_ 0 0 

cyanate_ex_ 0 0 

4-aminobutanoate_ex_ 0 0 

Cd2+_ex_ 0 0 

K+_ex_ 0 0 

Cl_ex_ 0 0 

Mg2+_ex_ 0 0 

Fe2+_ex_ 0 0 

N-acetyl galactosamine_ex_ 0 0 

Na+_ex_ 0 0 

Ni2+_ex_ 0 0 

NO3_ex_ 0 0 

Co2+_ex_ 0 0 

Zn2+_ex_ 0 0 

spermidine_ex_ 0 1000 

[FeS] cluster_ex_ 0 0 

Cu2+_ex_ 0 0 

(cellulose)n_ex_ 0 0 

taurine_ex_ 0 0 

sucrose_ex_ 0 0 

HCO3_ex_ 0 0 

dextran (glucose)n_ex_ 0 1000 

putrescine_ex_ 0 1000 

(cellulose)n-1_ex_ 0 1000 

heteropolysaccharide_ex_ 0 0 

H2S_exchange 0 1000 
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S 2-2 Genome-Scale Metabolic Model of Oenococcus oeni 

Figure 7-1: Genome-Scale Metabolic Model of O. oeni strain PSU-1. The metabolic map was developed using Omix 1.8 (Droste et 
al., 2011).  
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S 2-3 Connectivity of the iSM454 model 
 

 

Figure 7-2: Connectivity of the iSM454 model. This figure shows in the x-axis the 536 
metabolites of the model; ranked according to the numbre of connections they have (y-
axis). Connections refers to the number of reactions in wich a metabolite participes. 
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S 3-1 Reactions contained in the reduced version of the iSM454 model. 

Table 7-2: Reactions contained in the reduced version of the iSM454 model. 

 '_2PGADEHYDRAT_RXN'  'erythritol_ex_'  
'PHOSACETYLTRANS_RXN'  'CO2__ex_'  
'ACETATEKIN_RXN'  'oxygen_ex_'  
'PEPDEPHOS_RXN'  'LCYSDESULF_RXN'  
'GLUCOKIN_RXN'  'CYSTATHIONINE_BETA_LYASE_RXN'  
'PHOSGLYPHOS_RXN'  'METHYL_GLYOXAL_DEHYDROG_RXN'  
'PGLUCISOM_RXN'  'growth_rate'  
'GAPOXNPHOSPHN_RXN'  'TRANS_ERITHRITOL_RXN'  
'_3PGAREARR_RXN'  'TRANS_RXNK9E_520'  
'GLU6PDEHYDROG_RXN'  'TRANS_RXNK9E_529'  
'PHOSPHOKETOLASE_RXN'  'TRANS_RXNK9E_539'  
'RXN66_3'  'TRANS_RXNK9E_540'  
'ALCOHOL_DEHYDROG_RXN'  'TRANS_RXNK9E_542'  
'DLACTDEHYDROGNADRXN'  'TRANS_RXNK9E_541'  
'ACETALD_DEHYDROG_RXN'  'TRANS_RXNK9E_463'  
'_6PGLUCONOLACT_RXN'  'TRANS_RXNK9E_524'  
'ALDOSE_1_EPIMERASE_RXN'  'TRANSRXNK9E525'  
'RXN_9952'  'TRANS_RXNK9E_434'  
'ACETOLACTSYN_RXN'  'TRANS_RXNK9E_354'  
'ACETOLACTATE_DECARBOXYLASE_RXN'  'TRANS_RXNK9E_535'  
'RXN_11036'  'TRANS_RXNK9E_531'  
'RR_BUTANEDIOL_DEHYDROGENASE_RXN'  'TRANS_RXNK9E_533'  
'RXN_6081'  'TRANS_RXNK9E_530'  
'CITLY_RXN'  'TRANS_RXNK9E_431'  
'OXALODECARB_RXN'  'L_Cys_ex_'  
'Mannitol_RXN'  'TRANS_RXNK9E_474'  
'ERITHRITIOL_RXN'  'TRANS_RXNK9E_492'  
'PHOSPHOKETOLASE2_RXN'  'L_Ser_ex_'  
'_1_2_3_3_RXN'  'TRANS_RXNK9E_481'  
'MALATE_DEH_RXN'  'TRANS_RXNK9E_500'  
'FUMHYDR_RXN'  'L_Thr_ex_'  
'PYRUVDEH_RXN'  'TRANS_RXNK9E_482'  
'RXNK9E_163'  'TRANS_RXNK9E_490'  
'TRANSALDOL-RXN'  'H2S_transport'  
'PRPPSYN_RXN'  'H2S_exchange'  
'RIBULP3EPIM_RXN'  'water_ex_'  
'_1TRANSKETO_RXN'  'TRANS_RXNK9E_519'  
'RIB5PISOM_RXN'  'ammonium_ex_'  
'b_D_fructose_ex_'  'TRANS_RXNK9E_415'  
'a_D_glucose_ex_'  'ATPSYN_RXN'  
'D_mannitol_ex_'  'RXNK9E_225'  
'citrate_ex_'  'CYSTATHIONINE_BETA_SYNTHASE_RXN'  
'_R__lactate_ex_'  'AMACETOXID_RXN'  
'_S__lactate_ex_'  'THREOSPON_RXN'  
'_S__malate_ex_'  'THREODEHYD_RXN'  
'butanediol_ex_'  'b_D_glucose_ex_'  
'diacetyl_ex_'  'TRANS_RXNK9E_536'  
'ethanol_ex_'  'TRANS_RXNK9E_534'  
'ammonium_ex_'  'H__ex'  
'acetate_ex_'   
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S 3-2 Consume of fructose and glucose, and production of mannitol and 
erythritol. 

 

Figure 7-3: Time course of fructose consumption and metabolites production by O. 
oeni PSU-1, cultured at different ethanol concentrations. (A) Fructose consumption. 
(B) Glucose consumption. (C) Mannitol production. (D) Erythritol production and (E) 
D-lactate production. 
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S 3-3 Consume of L-malate and citrate, and production of L-lactate and acetate 
 

 

Figure 7-4: Time course of some of substrates and metabolites produced mainly by O. 
oeni PSU-1, cultured at different ethanol concentrations. (A) L-malate consumption. 
(B) L-lactate production. (C) Citrate consumption and (D) acetate production.	
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S 3-4 Specific amino acids consumption rate 

 

Figure 7-5: Specific amino acids consumption rate by O. oeni PSU-1, during cultivation 
under increasing ethanol contents. (A) Glutamic acid. (B) Glutamine. (C) Valine. (D) 
Methionine. (E) Arginine. (F) Tyrosine. (G) Tryptophan. (H) Leucine. (I) Isoleucine 
and (J) Phenylalanine. Statistical analysis only was performed in phase I and shared 
letters indicate no significant difference (Mood test, p < 0.05).
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S 3-5 Sensitivity analisis of NGAM estimation 
      _S__malate_ex_ lactate(R_or_D)_ex_ citrate_ex_ acetate_ex_ a_D_glucose_ex_ b_D_fructose_ex_ D_mannitol_ex_ 
Ethanol 0% phase 1 1% 0,115 0,097 0,09 0,108 0,132 0,153 0,015 
   -1% 0,079 0,098 0,104 0,086 0,062 0,041 0,179 
  phase 2 1% 0,157 0,158 0,157 0,162 0,167 0,162 0,143 
   -1% 0,157 0,157 0,157 0,152 0,148 0,152 0,172 
  phase 3 1% 0,328 0,328 0,328 0,329 0,338 0,329 0,325 
    -1% 0,328 0,329 0,328 0,328 0,318 0,328 0,331 
Ethanol 3% phase 1 1% 0,329 0,307 0,301 0,319 0,341 0,364 0,21 
   -1% 0,286 0,308 0,314 0,296 0,274 0,251 0,406 
  phase 2 1% 0,961 0,963 0,961 0,971 0,977 0,974 0,936 
   -1% 0,961 0,96 0,961 0,951 0,945 0,948 0,986 
  phase 3 1% 0,983 0,985 0,983 0,985 0,996 0,987 0,983 
    -1% 0,983 0,982 0,983 0,982 0,97 0,98 0,983 
Ethanol 6% phase 1 1% 0,269 0,245 0,238 0,254 0,284 0,29 0,159 
   -1% 0,221 0,245 0,253 0,236 0,206 0,2 0,331 
  phase 2 1% 0,579 0,58 0,579 0,583 0,584 0,588 0,568 
   -1% 0,579 0,578 0,579 0,575 0,574 0,57 0,59 
  phase 3 1% 0,705 0,705 0,705 0,707 0,711 0,707 0,693 
   -1% 0,705 0,704 0,705 0,702 0,698 0,702 0,716 
Ethanol 9% phase 1 1% 0,963 0,936 0,931 0,946 0,973 1,003 0,825 
   -1% 0,91 0,937 0,942 0,927 0,9 0,87 1,048 
  phase 2 1% 1,333 1,334 1,333 1,336 1,335 1,341 1,329 
   -1% 1,333 1,332 1,333 1,329 1,331 1,324 1,337 
  phase 3 1% 1,888 1,888 1,888 1,892 1,894 1,892 1,869 
    -1% 1,888 1,887 1,888 1,883 1,881 1,883 1,907 
Ethanol 12% phase 1 1% 1,683 1,655 1,647 1,665 1,691 1,714 1,562 
   -1% 1,628 1,656 1,664 1,646 1,62 1,596 1,749 
  phase 2 1% 1,271 1,271 1,271 1,279 1,27 1,26 1,271 
   -1% 1,271 1,271 1,271 1,263 1,272 1,282 1,271 
  phase 3 1% 1,292 1,292 1,292 1,318 infeasible  infeasible 1,32 
    -1% 1,292 1,292 1,292 infeasible 1,316 1,336 infeasible 
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Table 7-3: Sensitivity analysis of NGAM estimation with respect to the fixed specific consumption/production rates of compounds 
during growth of O.oeni PSU-1 at different ethanol concentrations in maxOeno medium. 
	
	
*(continuation) 
      L_Cys_ex_ L_Ser_ex_ L_Thr_ex_ L_Phe_ex_ L_Val_ex_ ethanol_ex_ _S__lactate_ex_ min max 
Ethanol 0% phase 1 1% 0,097 0,097 0,097 0,063 0,063 0,09 0,094 0,015 0,153 
   -1% 0,097 0,097 0,097 0,063 0,063 0,105 0,1 0,041 0,179 
  phase 2 1% 0,157 0,157 0,157 0,157 0,182 0,157 0,158 0,143 0,182 
   -1% 0,157 0,157 0,157 0,157 0,182 0,157 0,157 0,148 0,182 
  phase 3 1% 0,328 0,328 0,328 0,271 0,328 0,325 0,328 0,271 0,338 
    -1% 0,328 0,328 0,328 0,271 0,328 0,332 0,328 0,271 0,337 
Ethanol 3% phase 1 1% 0,308 0,308 0,308 0,301 0,301   0,304 0,21 0,364 
   -1% 0,308 0,308 0,307 0,301 0,301  0,311 0,251 0,406 
  phase 2 1% 0,961 0,961 0,961 1,044 1,044   0,961 0,936 1,044 
   -1% 0,961 0,961 0,961 1,044 1,044  0,961 0,945 1,044 
  phase 3 1% 0,983 0,983 0,983 1,297 1,297   0,983 0,968 1,297 
    -1% 0,983 0,983 0,983 1,297 1,297   0,983 0,97 1,297 
Ethanol 6% phase 1 1% 0,245 0,245 0,245 0,51 0,51   0,241 0,159 0,51 
   -1% 0,245 0,245 0,245 0,51 0,51  0,249 0,2 0,51 
  phase 2 1% 0,579 0,579 0,579 1,253 1,253   0,579 0,568 1,253 
   -1% 0,579 0,579 0,579 1,253 1,253  0,579 0,57 1,253 
  phase 3 1% 0,705 0,705 0,705 1,322 1,322   0,705 0,693 1,322 
   -1% 0,705 0,704 0,705 1,322 1,322   0,705 0,698 1,322 
Ethanol 9% phase 1 1% 0,937 0,937 0,937 1,052 1,052   0,932 0,825 1,052 
   -1% 0,936 0,936 0,936 1,052 1,052  0,94 0,87 1,052 
  phase 2 1% 1,333 1,333 1,333 2,222 2,222   1,334 1,327 2,222 
   -1% 1,332 1,333 1,333 2,222 2,222  1,332 1,324 2,222 
  phase 3 1% 1,888 1,888 1,888 2,782 2,782   1,889 1,869 2,782 
    -1% 1,888 1,888 1,888 2,782 2,782   1,886 1,881 2,782 
Ethanol 12% phase 1 1% 1,656 1,656 1,656 1,741 1,741   1,651 1,562 1,741 
   -1% 1,655 1,655 1,655 1,741 1,741  1,66 1,596 1,749 
  phase 2 1% 1,271 1,271 1,271 2,492 2,492   1,272 1,26 2,492 
   -1% 1,271 1,271 1,271 2,492 2,492  1,27 1,263 2,492 
  phase 3 1% 1,292 1,292 1,292 3,114 3,114   1,292 1,292 3,114 
    -1% 1,292 1,292 1,292 3,114 3,114   1,292 1,29 3,114 
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S 4-1 Structural stability of the model after 50 ns 
 

 

Figure 7-6: The monomeric model of MLE was submitted to 200 ns simulation, 
reaching structural stability after 50 ns, by the structural rearrangement of the carboxyl-
term. (A) RMSD values show the conformational stability of MLE; (B) Conformational 
changes of MLE with the corresponding RMSF values. 
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S 4-2 Interactions and contacts of MLE with MAL−  and MAL2−  

 

Figure 7-7: Interactions and contacts of MLE with MAL− (A) and MAL2− (B). The 
total number of interactions is depicted on the upper panels, while bottom panels show 
residues that interact with the ligand in each trajectory frame.  
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S 4-3 pET28a-MLE expression vector 
 

 

Figure 7-8: Map of pET28a-MLE expression vector. The purple solid arrow indicates 
the site of MLE gene of O. oeni strain DSM 20255 (OE malolactic). 




