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ABSTRACT

Forecasts and future beliefs play a critical role in the planning to hire harvest labor,

especially when fixing previously made decisions implies incurring high costs. In this ar-

ticle, we study the effect that a bad forecast/belief has on the wine-grape harvest planning

process. To achieve this, we induce errors in the prediction of yields and the estimation of

transition probabilities through the yield-stock states. Using a multistage stochastic pro-

gramming model, we analyze the impact that forecast-accuracy errors have on the profits

and efficiency of the harvesting process. We also study how flexibility, in the form of

second-stage decisions, affects the ability to fix the planning decisions and generate value.

First, we develop a multistage stochastic model that considers grape growth uncertainty,

given a belief in future events. The model decision variables are hiring, firing, and main-

taining harvest labor through designated periods and the harvested quantities in each pe-

riod and block. Once the model defines the plan for the coming season, the mistake in the

forecast appears, and the decision-maker can adjust future decisions and beliefs. Results

indicate that the effect of the errors in yield determination is not symmetrical; underes-

timations of the yields have a more significant negative effect on the objective function,

while overestimation does not. Flexibility to revise hiring decisions does not make a sig-

nificant difference if the yields are overestimated. Since they correspond to a significant

proportion of the income, lower levels of losses of the better-quality grapes account for

the largest portion of income loss. Last, grapes that have an early improvement of their

quality give the decision-maker an extra level of flexibility to adjust the harvesting plan.
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As this kind of grape reaches its optimal quality earlier and stays in that condition longer,

the planner can start the harvest earlier, if necessary.
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RESUMEN

Los pronósticos y las creencias futuras juegan un papel fundamental en la planifi-

cación de la contratación de mano de obra de cosecha, especialmente cuando la corrección

de decisiones tomadas anteriormente implican incurrir en altos costos. En este artı́culo

estudiamos el efecto que tiene un mal pronóstico en el proceso de planificación de la

cosecha. Para lograr esto, inducimos errores en la predicción de las productividades y en

la estimación de las probabilidades de transición entre los estados de productividad. Uti-

lizando un modelo de optimización estocástico de múltiples etapas, analizamos el impacto

que los errores en la precisión del pronóstico tienen sobre las ganancias y la eficiencia del

proceso de recolección. También estudiamos cómo la flexibilidad, en forma de decisiones

de segunda etapa, afecta la capacidad de fijar las decisiones de planificación y generar

valor. En un primer paso, desarrollamos un modelo estocástico de múltiples etapas que

considera la incertidumbre del crecimiento de la uva dada la creencia en eventos futuros.

Las variables de decisión del modelo son: contratación, despido y mantenimiento de la

mano de obra de cosecha a lo largo de los perı́odos, y también las cantidades cosechadas

en cada perı́odo y bloque. Una vez que el modelo define el plan para la época venidera se

revela el error en el pronóstico y el tomador de decisiones puede ajustar sus decisiones y

creencias futuras. Los resultados indican que el efecto de los errores en la determinación

del rendimiento no es simétrico; las subestimaciones de los rendimientos tienen un efecto

negativo más significativo en la función objetivo, mientras que la sobreestimación no. La

flexibilidad para ajustar las decisiones de contratación no supone una diferencia significa-

tiva si se sobrestiman los rendimientos. Un menor nivel de pérdidas de las uvas de mejor

calidad, al corresponder a una proporción significativa de los ingresos, explican la mayor

parte de la pérdida de ingresos. Y por último, las uvas que tienen una mejora temprana de

su calidad le dan al tomador de decisiones un nivel adicional de flexibilidad para ajustar el

plan de cosecha. Como este tipo de uva alcanza su calidad óptima antes y permanece en
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esa condición por más perı́odos, el planificador puede comenzar su vendimia si es nece-

sario.
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1. INTRODUCTION

1.1. Agriculture

Highly uncertain environments (HUEs), such as agriculture, forestry, mining, or any

natural-resource-based productive system, must deal with several biological, environmen-

tal, and market factors that are inherently uncertain and add variability into the productive

process. These uncertainties derive first from the fact that the environmental, climatic, and

soil conditions that prevail at production directly affect a natural-resource-based produc-

tion system. In these HUEs, the decision-maker must ponder all information and sources

of uncertainty (biological, environmental, and market) in the decision-making (DM) pro-

cess, before taking a course of action that will affect the economic future of the system.

Weather factors, such as rain and temperature, are also an important source of uncer-

tainty in agriculture productive systems. As Ahumada Villalobos, 2009 point out in their

review, what differentiates agricultural supply chains from other supply chains is the im-

portance of such factors as food quality and safety, as well as weather-related variability.

Moreover, weather conditions directly affect harvesting operations. Scarcity, concern for

the environmental effects of production, and the need for efficient production processes

are other common problems that HUEs share. These usually differ in the nature of the

resources and their handling, the options for time horizons, the planning and operational

processes, and the environmental impacts.
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1.2. Uncertainty

In the real world, many forms of uncertainty may affect production. According to

Ho, 1989, categorizing uncertainties can produce two groups: environmental uncertainty

and system uncertainty. Environmental uncertainty includes uncertainties beyond the pro-

duction process, such as demand uncertainty and supply uncertainty. System uncertainty

relates to uncertainty within the production process, such as operation yields and produc-

tion lead times. As both types of uncertainty degrade the performance of the wine supply

chain, researchers work to find ways to diminish their effects.

Bohle et al., 2010 address system uncertainty at the grape production stage, proposing

a mixed-integer linear programming (MILP) model that handles harvesting productivity

uncertainty by using the robust optimization approach of Bertsimas Sim, 2004. Varas

Valdés et al., 2016 address environmental uncertainty at the packaging stage by develop-

ing an MILP model that handles demand uncertainty through a rolling-horizon framework.

Cheng Tang, 2018 develop a robust optimization approach for handling demand uncer-

tainty in multistage production systems. Dolgui et al., 2018 analyze a type of uncertainty

called ”ripple effect.”
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1.3. Operation Planning in Agriculture

Operations planning is an important step in any activity; it aligns resources to achieve

the optimal economic value of production. This is particularly critical in agriculture oper-

ations, where uncertainty is always present. In fact, agricultural planners must deal with

a number of inherently uncertain factors, such as biological, environmental, and market

factors, which can generate significant variability and add complexity to the production

planning process. They must ponder these different sources of uncertainty and the scarce

available information in the production planning process, to make decisions that will de-

termine the economic future of their production.

Looking into production planning amid uncertainty in agricultural systems receives

increasing attention from researchers and practitioners in recent years (Borodin et al.,

2016). Such studies use different approaches, including stochastic optimization, chance

constraint, and robust or dynamic optimization. Moghaddam DePuy, 2011 use a sto-

chastic optimization model with chance-constrained optimization to determine the optimal

number of acres of hay a farm should harvest for its own horses’ consumption, as well as

how much hay to purchase and sell to maximize the farm’s total profit.

Borodin et al., 2014 present a stochastic optimization model for an annual harvest

scheduling problem with a farmers’ entire cereal crop production at optimum maturity, us-

ing the meteorological conditions as the deciding factor that affects the harvest scheduling
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and progress. Kennedy, 1988 has published a complete book, in which he looks at apply-

ing dynamic and stochastic dynamic programming to agriculture and natural resources.

Finally, a more recent work by Dowson et al., 2019 presents a stochastic optimization

model for a dairy farm.

Other applications in HUEs include those in the work of Kazemi Zanjani et al., 2010,

who look at a sawmill production planning problem with uncertainty in the quality of raw

materials and demand; Ahumada et al., 2012, who develop a two-stage stochastic program

to plan the production and distribution of fresh agricultural products amid uncertainty;

Lobos Vera, 2016, who determine the benefits of using a stochastic modeling approach

in a sawmill production environment; Veliz et al., 2015, who present a harvesting and

road-construction decisions problem in the forestry sector in the presence of uncertainty,

modeled as a multistage problem; and X. Chen et al., 2018 pursuing the problem of a

seed-producing company.

1.4. Scenario Generation

In many of these cases, we do not have complete information about the distribution

of future events, and we can only rely on historical data to infer such distributions. Deter-

mining how we use and process the historical information to generate the future scenarios

is relevant, and different approaches include forecasting methods, clustering methods, and

heuristics. Dowson et al., 2020 present a framework where a policy graph provides a

natural means for deconstructing the multistage stochastic program into a collection of

4



subproblems, with arcs that link them representing the flow of information through time.

This allows naturally accounting for the information update as the states of nature reveal

themselves. It also allows solving a partially observable problem with continuous state

and control variables, using a stochastic dual dynamic programming (SDDP) approach.

Another way of considering uncertainty is using a multistage stochastic model

(MSSP) (Birge & Louveaux, 2011; Pflug & Pichler, 2016) which involves making the

decision for each node of a tree of events by considering its history as well as possible

futures. The MSSP approach is more complex to obtain computationally, but it prescribes

a tree of decisions, according to the evolution of the uncertainty over time. Just a few very

recent examples of applications of stochastic optimization characterize agriculture. Dow-

son et al., 2019 formulate a stochastic optimization model of a dairy farm, Flores Villalo-

bos, 2020 develop a framework to plan planting and harvesting schedules, and Nadal-Roig

et al., 2020 develop a two-stage stochastic model for zone delineation and crop planning

under uncertainty. Ahumada et al., 2012 develop a two-stage stochastic model, in which

the first-stage decisions are planting constraints and costs associated with the planting

decisions, such as labor cost and availability.

Several techniques using a MSSP approach can benchmark generated value. K. Huang

Ahmed, 2009 propose a simple way of measuring the input of the decision process as the

difference between the values of the objective functions. They present the case for ca-

pacity planning, comparing the values that a multistage stochastic model with a two-stage

model produce. Escudero et al., 2007 propose comparing the expected result of using the

5



deterministic mode (EEV) solution; the wait-and-see solution value (WS) corresponding

to the expected value of using the optimal solution for each scenario; and, finally, the

here-and-now solution corresponding to the optimal solution value in the recursion prob-

lem (RP), or MSSO. Thus, we can determine the EVPI = WS – RP, denoting the expected

value of perfect information and comparing here-and-now and wait-and-see, and VSS =

RP EEV, denoting the value of the stochastic solution and comparing the here-and-now

and expected-values approaches.

Ahumada Villalobos, 2009 conclude that planning models in agriculture very often

fail to incorporate realistic stochastic issues in the agriculture. They go further and indicate

that perhaps the reason for this lack of more realistic scenarios is the added complexity

of finding solutions for the resulting models. Despite their expressive ability in modeling

various real-life problems, multistage stochastic models are notoriously difficult to solve

and, thus, not widely used in practice.

1.5. Forecast Errors

The literature includes studies of the impact that forecast errors have on the overall

quality of the plan and the value of the objective function, which analyze optimal learning

levels. He Powell, 2018 analyzes the value of information by maximizing an objective

function, represented by a nonlinear parametric belief model, while simultaneously learn-

ing the unknown parameters by guiding a sequential experimentation process, which is

expensive. Y. Huang et al., 2019 determines that an accurate evaluation of the expected

6



operational cost associated with an allocation decision can be very expensive. They pro-

pose a learning policy that adaptively selects the fleet allocation to learn the underlying

expected operational cost function by incorporating the value of information. Related to

production planning, Altendorfer et al., 2016 study the effect of long-term forecast error

on the optimal planned utilization factor for a production system facing stochastic demand.

The researcher can transmit forecast errors to the farmer by recommendations (Kolajo et

al., 1988). Thus, the choice of model and the assumptions incorporated in it may consti-

tute a source of errors. In a warehouse environment study, Sanders Graman, 2009 find

that forecast biases have a considerably greater impact on organizational cost than forecast

standard deviation.

Using historical data for the generation of future scenarios is not new in the agri-

cultural sector. C.-C. Chen et al., 2004 study how climate change influences on the dis-

tribution of future crop yields, specifically analyzing the effect that the variance has on

production. Murynin et al., 2013 uses image sequences over 10 years to build and com-

pare four yield-prediction models, developed through gradual addition of complexity. The

initial model is based on linear regression using vegetation indices; the final model is

non-linear.

As noted, to reduce the effect that variability has on production planning, managers

seek information and forecasting methods that can reduce the uncertainty of future events.

However, these models can generate errors that must be handled as the state of nature

7



reveals itself. Thus, another way to handle uncertainty is through the possibility or flexi-

bility of reassigning after the uncertainty reveals itself, creating a performance advantage

(Avanzini et al., 2021).

1.6. Flexibility

Flexibility relates to the ability to reallocate or redistribute resources most effectively,

after any uncertainty has appeared (X. Chen et al., 2018). Its nature links to uncertainty

management because it makes possible adjusting resources, depending on the state of the

system. However, resources are not the only way of implementing flexibility; the deci-

sion process could also offer flexibility, i.e., the number of stages or instants of decision-

making, or anticipating or postponing decisions (Mandelbaum & Buzacott, 1990). Flex-

ibility is not only a desirable characteristic; it is quickly becoming a requirement for the

survival of production-oriented companies (Shi & Daniels, 2003; Patel, 2011; Arafa & El-

Maraghy, 2012; Patel et al., 2012; Barad, 2013; Chryssolouris et al., 2013). It has appeared

in various disciplines as a strategy for managing different types of uncertainty Esmaeilikia

et al., 2016. The many definitions of flexibility vary from one discipline or context to

another. In the case of manufacturing, flexibility refers to the ability of a manufacturing

system to react by shifting between various states of the system with little penalty in time,

cost, and performance (Swafford et al., 2006).

In multistage stochastic optimization models, the sources of flexibility and its value

has not received much attention, especially in the agricultural context. Soto-Silva et al.,
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2016 indicates that flexible decision support and models play an important role in helping

managers through the entire food supply chain, which is in continuous change because

of various uncertainties. Borodin et al., 2016 goes further, indicating that to overcome

the new challenges facing the agricultural sector, crop production supply chains should

be very reactive and flexible, with a high yield at low cost. Lobos Vera, 2016 study the

benefits of using a stochastic modeling approach versus a rolling horizon for the case of a

sawmill operation.

Measuring flexibility is not simple; many authors focus their attention on measuring

the effect that each or several dimensions of flexibility have on the organization’s perfor-

mance, such as volume, variety, process, and material handling. A body of research relates

to the empirical measurement of flexibility, which includes research on developing an in-

strument for measuring and analyzing flexibility (Gupta & Somers, 1996; Koste et al.,

2004).

Even so, there is still not enough significant research on quantitative or analytical

measures of flexibility, especially in the agricultural sector. One important point in ana-

lyzing the convenience of models is the value that they report to the decision-maker. K.

Huang Ahmed, 2009 propose a very simple way of comparing decision processes, namely,

the difference between the values of the objective functions. They present the case for a

capacity-planning problem, comparing the values that a multistage stochastic optimization

model with a two-stage model produce. Buzacott Mandelbaum, 2008 indicates that if we

want to measure the value of added versatility in the system, we can do it by determining

9



the expected value with and without the possibility of altering decisions, then take the

difference to determine the value of the added flexibility.

1.7. Quality

Quality plays an important role in the agricultural supply chain. Since the product is

biological in nature, the prevailing environmental conditions (e.g., rain, drought, excessive

temperature) affect its quality, and it also evolves from the moment of harvesting (Van Der

Vorst et al., 2009). The literature continuously tries effort to model and capture the quality

degradation of agricultural products. Rong et al., 2011 model the quality degradation

of products by time and temperature as they pass through the supply chain in different

facilities and transportation modes. Ahumada et al., 2012 model the harvesting, packing,

and distribution of crops with the objective of maximizing revenues. The model accounts

for labor availability, price dynamics, and the variable effects in product quality of the

weather and plant biology through different functions and approximations.

1.8. Wine Production Planning

The Chilean wine industry has developed greatly in the last few decades. It currently

exports over 1,500 million US dollars annually and plays an important role in the Chilean

economy (Mora, 2019). Although the Chilean wine industry only contributes about 0.5%

of the Chilean gross domestic product, it represents about 5.7% of the total non-copper

exports. It has a significant role in positioning Chile as a brand around the world (Egan
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& Bell, 2002). In fact, in the last decades, Chilean wineries have turned from local-

consumption-focused companies to export-focused companies, entering more extensive

and competitive markets (Overton & Murray, 2011). Thus, local wineries must improve

their efficiency and productivity along the whole wine supply chain to remain competitive

in the global market. Between 1997 and 2013, the annual output of Chilean wines in-

creased from 4.3 to 12.8 million hectoliters, and the market share of Chilean wine shows

continuing growth (Figure 1.1).

FIGURE 1.1. Chilean wine annual exports in USD and million liters. Source:
Observatorio Español del Mercado del Vino, 2021

Supporting wine production operations in an increasingly global market has grown

ever more challenging. Forecasts tend not to be accurate enough, and wineries must be

able to quickly react to changes. Many studies have explored how to make wine supply

chains lean and otherwise improve operations through operations research models (Moc-

cia, 2013). In the case of wine-grape production planning, Ferrer et al., 2008 present

a mixed-integer linear programming (MILP) model to support harvest scheduling, labor
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allocation, and routing decisions. They incorporate a loss function to represent quality re-

ductions due to premature or delaying harvests. At the wine-manufacturing stage, Cakici

et al., 2006 present a MILP model that analyses the cellar tank piping network at E. J.

Gallo Winery, to minimize wine damage while optimizing the resources used.

A more recent work by Avanzini et al., 2021 presents a MSSOM model to plan the

harvest operations of wine grapes where uncertainty in weather conditions can affect the

quality of grapes. They consider decisions on labor allocation and harvesting schedules,

bearing in mind the uncertainty of future rain. They model weather uncertainty following a

Markov Chain approach, in which rain affects the quality of grapes and labor productivity.

Climatic factors deteriorate grape quality over time and if they are not harvested during

the optimal ripeness period. Finally, they also consider the effect on labor flexibility as the

differences in ability between workers, which impact how they will cope with the effects

of rain.

Ferrer et al., 2008 show how planning decisions can affect grape quality. For example,

in the case of harvesting, the grapes can have an optimal harvest date, and any deviation

from that date implies a reduction in the quality or value. Bohle et al., 2010 uses a robust

optimization approach to the wine-grape harvest scheduling optimization problem, subject

to several uncertainties. Other great contributions in wine-grape planning are the works

by Jones et al., 2005; Van Leeuwen Darriet, 2016; Lorenzo et al., 2013, which study the

impacts of weather factors and climate change in viticulture: intensity and length of the
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grape, and wine quality. Finally, the work by Varas et al., 2018 looks at the problem of a

wine-export-focused company facing its bottling planning problem of demand uncertainty.

1.9. Lack of Research in Wine-Grape Production Planning

As mentioned, Ferrer et al., 2008 present a grape-harvesting optimization model that

accounts for the quality degradation if the grapes are not harvested on their optimal date.

However, they do not account for variability in the grape growth nor stock uncertainty. A

more recent work by Arnaout Maatouk, 2010 presents a multifarm, multiperiod model

that considers demand, maturation, harvest, and yield risk, and solves an expected value

problem. They find that considering the uncertainties performs better than not doing so.

However, in this case the authors do not account for the possibility of the planner revising

its decisions as the state of nature reveals itself.

In addition to this, no one has analyzed the relation between the quality of the scenario

generation and the flexibility of the system, and how that relation affects the value of using

an MSSO approach. Powell, 2019 points out in his research challenges that almost no

attention goes to analyzing the quality of a stochastic look-ahead model. Going further,

he indicates the need for more research, to understand the impact of the different types of

errors that the approximations introduce.
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1.10. This Work’s Contributions

We consider the planning of harvesting operations for grapes destined for wine pro-

duction, where uncertainty results from different rates of grape yields and their transition

probabilities, affecting the future grape stocks and revenue. In this setting, the decision-

maker must decide the number of workers to hire, their allocation and harvesting schedule,

to account for an uncertain future grape stock. We consider here a quantitative analysis

of forecast accuracy’s impacts on the economic value of production planning, depending

also on the grape’s quality behavior and the level of flexibility to fix decisions, based on a

multistage stochastic optimization model.

Our model also considers the improvement and deterioration of grape quality over

time; if it is not harvested in the optimal ripeness period, the grape losses economic value

(Ferrer et al., 2008). We present a multistage stochastic optimization model that accounts

for the variability in the grape yields over time, future stock beliefs, the grape quality

behavior, and the decision-maker’s level of flexibility to adjust the plan decision after

uncertainty reveals itself. We extend the previous model by Ferrer et al., 2008 adding

uncertainty into it by considering two main sources: variability in the possible grape’s

yields and allocating to them transition probabilities between periods but setting the grapes

qualities values known over time.

The contribution of this work is threefold: first, to model the effect that errors in the

planners’ beliefs have on the quality of the harvesting plan; second, to identify conditions
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under which these mistakes strongly impact the plan; and, finally, how resource flexibility

affects it. To achieve this contribution, we compare the results of different schedules

depending on the accuracy of the future belief and the level of flexibility to fix decisions

after uncertainty appears, using our MSSP model, and determine a quantitative value for

flexibility and accuracy’s impact on the economic value of production planning. Thus,

this research makes additional contributions. First, we present an MSSP approach for the

case of grape harvesting, where the grape’s possible yields and transition probabilities

between them are the uncertainty. Second, we compare the value of the MSSP approach

with perfect information, with the differing values according to the belief accuracy and the

level of flexibility to fix decisions.

These comparisons occur separately, for two types of grape quality behavior over

time: having grapes with different ripening rates until optimal quality and having grape

blocks with different maximum reachable quality. We also determine how much the flex-

ibility to update information and fix decisions in the harvest planning generates value.

Also, we will analyze how the quality characteristics of the grape affects the production

value under these scenarios.

1.11. Objectives and Main Hypothesis of this Thesis

The main objective of this work is to develop a multistage stochastic model, for the

problem of hiring labor for the wine grape harvest, that considers uncertainty in the grape
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yields, their variability between periods, and grape quality improvement and deteriora-

tion. Then, we use the model to analyze the impacts on the harvest planning value and

production utilities of grape yields and transition probabilities beliefs that differ from re-

ality, for different levels of flexibility to adjust decisions. Finally, from the analysis of the

results, we obtain conclusions that add value such as identifying what type of errors are

the most expensive and where they are generated, and the type of grapes with which it it

is advisable to work. Among the specific objectives are: 1) To develop a consistent and

representative multistage stochastic model of the reality of grape harvest planning that en-

compasses uncertainty in grape growth; 2) To implement a method to compare the effects

of the decisions the model makes, according to the estimated values, with those based on

the real values.

The main hypothesis of this work is that through the development of a multistage

stochastic model that considers uncertainty in the grape growth rate and its variability

over the time horizon, it is possible to determine the effects of belief errors on the wine

grape harvesting planning value.

1.12. Thesis Outline

The document is organized as follows. In Section 2.2, we present a literature review

on how uncertainty has been incorporated in production planning and how quality has been

explored. In Section 2.3, we present the original optimization model, then its modifications

to add uncertainty and the two grape’s quality behaviors considered in the analysis. Then,
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in Section 2.4, we explain how this work determines the belief errors. In Section 2.5, we

present the analysis methodology to obtain our main results. Finally, Section 2.6 shows

the main results, for discussion and conclusion in Section 2.7.
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2. ANALYZING THE IMPACT OF BELIEFS ERRORS IN THE PLANNING OF

WINE GRAPE HARVESTING OPERATIONS USING A MULTI-STAGE STO-

CHASTIC MODEL APPROACH

2.1. Introduction

Operations planning is an important step in any activity; it aligns resources to achieve

the optimal economic value of production. This is particularly critical in agriculture oper-

ations, where uncertainty is always present. In fact, agricultural planners must deal with

several uncertain factors, such as biological and environmental, which can generate sig-

nificant variability and add complexity to the production planning process.

To reduce the effect that variability has on the production planning, managers seek

information and forecasting methods that aim to reduce the uncertainty of future events.

However, these models generate errors that must be handled as the state of nature ap-

pears. Another way to handle uncertainty is the possibility or flexibility to reassign after

the uncertainty reveals itself, creating a performance advantage (Avanzini et al., 2021).

Flexibility relates to the ability to reallocate or redistribute resources most effectively, af-

ter any uncertainty has materialized (X. Chen et al., 2018). However, resources are not the

only way of implementing flexibility; the decision process also could offer flexibility, i.e.

the number of stages or instants of decision-making or by anticipating or postponing de-

cisions (Mandelbaum & Buzacott, 1990). Flexibility is not only a desirable characteristic;

it is quickly becoming a requirement for survival of production-oriented companies (Shi
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& Daniels, 2003; Patel, 2011; Arafa & ElMaraghy, 2012; Patel et al., 2012; Barad, 2013;

Chryssolouris et al., 2013)

Ferrer et al., 2008 and Arnaout Maatouk, 2010 present a grape-harvesting optimiza-

tion model that accounts for the quality degradation if the grapes are not harvested on their

optimal date. They do not account for variability in the grape growth nor stock uncertainty.

More recently, Avanzini et al., 2021 present a multifarm, multiperiod model that considers

demand, maturation, harvest, and yield risk, and solves an expected value problem. They

find that considering the uncertainties produces more value than not doing it. However,

in this case, the authors did not account for the possibility of the planner revising its de-

cisions as the state of nature reveals itself. Another way of considering the uncertainty is

using a multistage stochastic model (MSSP) (Birge & Louveaux, 2011; Pflug & Pichler,

2016) where the decision for each node of a tree of events considers its history as well as

its possible futures. The MSSP approach is more complex to obtain computationally, but it

prescribes a tree of decisions according to the evolution of the uncertainty over time. The

work by Ahumada et al., 2012 develops a two-stage stochastic model, in which the deci-

sions in the first stage are planting constraints and the costs associated with the planting

decisions, such as labor cost and availability.

In this research, we consider the planning of harvesting operations for grapes des-

tined for wine production, where uncertainty accompanies different grape yields and their

transition probabilities, affecting the future grape stock and revenue. In this setting, the

decision-maker must decide the number of workers to hire, their allocation and harvesting
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schedule, accounting for an uncertain future grape stock. We study the effect that forecast

accuracy or decision-maker beliefs have on the economic value of production planning,

depending on the grape’s quality behavior and the level of flexibility to fix decisions in

place, using a multistage stochastic optimization model. We model the uncertainty by

considering two main sources: different possible grape yields and the allocation of tran-

sition probabilities between them over certain periods. The model will also consider the

grapes’ quality over time, so if it is not harvested in the optimal ripeness period, the grape

loses economic value (Ferrer et al., 2008). We present a multistage stochastic optimiza-

tion model that accounts for the variability in the grape yields over time, future stock

beliefs, the grape quality behavior, and the decision-maker’s level of flexibility to adjust

the decision plan after uncertainty reveals itself.

The contribution of this work is threefold: first, to model the effect that errors in the

planners’ beliefs have on the quality of the harvesting plan; second, to identify conditions

under which these mistakes strongly impact the plan; third, how resource flexibility af-

fects it. We compare the results of different schedules depending on the accuracy of the

future belief and the level of flexibility to fix decisions after uncertainty appears, using

our MSSP model, and determine a quantitative value for flexibility and accuracy and their

impact on the economic value of production planning. Finally, we analyze how the quality

characteristics of the grape affects the production value under these scenarios.

The document proceeds as follows. In Section 2, we present a literature review on

the incorporation of uncertainty in production planning and exploration of the quality.
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In Section 3, we present the original optimization model, then its modifications to add

uncertainty and the two grape’s quality behaviors the analysis considers. Then, in Section

4, we explain how this work determines the belief errors. In Section 5, we present the

analytical methodology for obtaining our main results. Finally, Section 6 shows the main

results, discussed and concluded in Section 7.

2.2. Literature Review

Production planning involving uncertainty in agricultural systems is getting increasing

attention from researchers and practitioners (Borodin et al., 2016). Previous studies use

different approaches, including stochastic optimization, chance constraint, robust or dy-

namic optimization. Bohle et al., 2010 uses a robust optimization approach to the schedul-

ing optimization problem, subject to uncertainties that accompany wine-grape harvesting.

Moghaddam DePuy, 2011 uses a stochastic optimization model with chance constrained

optimization to determine the optimal number of acres of hay a farm should harvest for

their own horses’ consumption, as well as how much hay to purchase and sell to maximize

the total profit of the farm. Borodin et al., 2014 presents a stochastic optimization model

for the annual harvest scheduling problem of the farmers’ entire cereal crop production at

optimum maturity, using the meteorological conditions as the deciding factor that affects

the harvest scheduling and progress. Kennedy, 1988 looks at the applications of dynamic

and stochastic dynamic programming to agriculture and natural resources. Finally, a more

21



recent work by Dowson et al., 2019 presents a stochastic optimization model for a dairy

farm. However the agricultural sector still does not offer many applications of MSSOM.

In wine production planning, a more recent work by Avanzini et al., 2021 presents a

MSSOM model to plan the harvest operations of wine grapes where uncertainty in weather

conditions can affect their quality. They consider decisions on labor allocation and har-

vesting schedules, bearing in mind the uncertainty of future rain. Modeling weather un-

certainty follows a Markov Chain approach, in which rain affects the quality of grapes and

labor productivity. Climatic factors deteriorate grape quality over if they are not harvested

in the optimal ripeness period. Finally, they also consider the effect on labor flexibil-

ity—i.e., differences in ability between workers—which impact how they will cope with

the effects of rain. Ahumada Villalobos, 2009 conclude that planning models in agri-

culture very often fail to incorporate realistic stochastic issues in agriculture. They also

indicate that perhaps the reason for this lack of more realistic scenarios is the added com-

plexity of finding solutions for the resulting models. Despite their expressive ability in

modeling various real-life problems, multistage stochastic modeling is somewhat imprac-

tical and rarely used, due to the well-known difficulty of solving them. Only a few very

recent examples illustrate applications of stochastic optimization in agriculture. Dowson

et al., 2019 formulate a stochastic optimization model of a dairy farm, Flores Villalobos,

2020 develop a framework to plan planting and harvesting, and Avanzini et al., 2021 plan

wine-grape harvesting.
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An important aspect of building a multistage stochastic model is developing an ap-

proximate representation of the underlying uncertainty. A common representation can

take the form of a scenario tree (Heitsch & Römisch, 2009). The process of obtain-

ing such reduced scenarios may vary, but generally it uses variance reduction techniques

(Higle, 1998; Shapiro, 2003). Löhndorf, 2016 summarizes the state of the art of scenario

generation of multivariate random variables for sample average approximation in quasi-

Monte Carlo methods, based on probability metrics, and moment matching. Still, these

techniques build on the premise that we know the underlying distribution of the events, so

the objective is to define a reduced representation to make the problem tractable.

In many cases, we do not have complete information about the distribution of future

events and can only rely on historical data to infer it. In these cases, determining how we

use and process the historical information to generate the future scenarios is relevant. Dif-

ferent approaches exist, including forecasting methods, clustering methods, and heuristics.

Dowson et al., 2020 present a framework where a policy graph provides a natural means

for subdividing the multistage stochastic program into a set of subproblems, with arcs

linking them to represent the flow of information through time. This enables naturally ac-

counting for updating information as the states of nature reveal themselves. It also enables

solving a partially observable problem with continuous state and control variables, using

a stochastic dual dynamic programming (SDDP) approach.
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Using historical data for the generation of future scenarios is not new in the agricul-

tural sector. C.-C. Chen et al., 2004 study the influence of climate change on the dis-

tribution of future crop yields. Specifically, they analyze the effect of the variance on

production. Murynin et al., 2013 use image sequences over 10 years to build and com-

pare four yield-prediction models developed by gradual addition of complexity. The initial

model is based on linear regression using vegetation indices; the final model is non-linear.

The literature includes studies of the impact that forecast errors have on the overall

quality of the plan and value of the objective function, through analyses of the optimal

learning levels. He Powell, 2018 analyze the value of information by maximizing an ob-

jective function that a nonlinear parametric belief model represents, while simultaneously

learning the unknown parameters by guiding an (expensive) sequential experimentation

process. Similarly, Y. Huang et al., 2019 determine that an accurate evaluation of the ex-

pected operational cost of an allocation decision can be very expensive. They propose a

learning policy that adaptively selects the fleet allocation, to learn the underlying expected

operational cost function by incorporating the value of information. Regarding produc-

tion planning, Altendorfer et al., 2016 study the effect of long-term-forecast errors on the

optimal planned utilization factor, for a production system facing stochastic demand. The

researcher can transmit forecast errors to the farmer through recommendations (Kolajo

et al., 1988). Thus, the choice of model and the assumptions it includes may constitute a

source of errors. In a warehouse environment study, Sanders Graman, 2009 find that fore-

cast biases impact organizational cost considerably more than forecast standard deviation.
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Several techniques can benchmark the value that using an MSSO approach generates.

K. Huang Ahmed, 2009 propose a simple way of measuring the input of the decision

process, namely, obtaining the difference between the values of the objective functions.

Their work presents the case for capacity planning, comparing the values a multistage

stochastic model produces with those from a two-stage model. Escudero et al., 2007

propose comparing the expected result of using the solution of the deterministic mode

(EEV); the wait-and-see solution value (WS) that corresponds to the expected value of

using the optimal solution for each scenario; and the here-and-now solution corresponding

to the optimal solution value to the recursion problem (RP) or MSSO. These results enable

determining the EVPI = WS – RP, denoting the expected value of perfect information and

comparing here-and-now and wait-and-see; and VSS = RP – EEV, denoting the value of

the stochastic solution and comparing the here-and-now and expected-values approaches.

None of these techniques analyze the relation between the quality of scenario gen-

eration and the flexibility of the system, and how that relation affects the value of using

an MSSO approach. Powell, 2019 points out that hardly any attention goes to analyzing

the quality of a stochastic look-ahead model and indicates a need for more research, to

understand the impact of different types of errors that the approximations introduce.

2.3. Problem Formulation

In this section, we present first a stylized version of the Ferrer et al., 2008 deter-

ministic model. Second, we discuss how we add uncertainty to the model, in the form
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of grape-yield variability and its behavior over time. Then, we present the reformulated

model as a multistage stochastic model that considers uncertainty. Finally we present the

analytical method, to estimate the forecast accuracy’s impact on the economic value of

harvest planning.

2.3.1. Deterministic Grape-Harvesting Problem

We propose a wine-grape harvesting model based on the work by Ferrer et al., 2008.

There, the authors present a deterministic optimization model that minimizes the labor and

machine cost as well as the quality degradation of the grapes. They introduce a quality

loss function that generates extra costs when harvesting deviates from the ideal date. The

model determines the amount of labor and number of machines, their assignment to each

lot and day, and the kilograms of grape to be harvested and sent to the cellar.

For our model, we assume that a farmer owns J blocks that contain wine grapes, with

an initial stock sj,0, expressed in kilograms. The goal of the farmer or farm manager

is to maximize the final profit of the wine grapes. To do that, the farmer faces a decision

window of T periods, and in each period, he/she must decide regarding the amount of work

entered and dismissed, xt and yt, respectively, and the quantity of labor to allocate zj,t,

implying a capacity of harvesting in that period and in that block. The net labor available

in period t is denoted bymt, and β is the productivity of the resource (kilograms/period).

Grapes harvested go to a winery during the same period, where K is the single-period

reception capacity of the winery.
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The costs mainly relate to the labor force and include costs of hiring Ce, termina-

tion Cf , and keeping labor between periods Ck. Additionally, the harvesting cost Ch

($/kilograms) is a productivity payment.

Selling the harvested grapes at a market price, which we denote by bj for the grapes

of block j, generates income. However, the final quality of grapes, which depends on the

specific harvest time, affects the actual price. We represent this by a quality factor, qj,t,

equal to 1 when t is the optimal period for harvesting (which depends on grape ripeness)

and decreases when t differs from that optimal period. This is a similar representation to

the one that Ferrer et al., 2008 use; later, we explain the specifics of this coefficient. Thus,

the total net income at any time is
∑

j∈J bjqj,thj,t, where hj,t is the harvested amount from

block j in period t.

The basic deterministic model is the following:
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min
J∑
j=1

{
T∑
t=1

{(Ch − bjqj,t)hj,t + Cext + Cfyt + Ckmt}
}

s.t.

mt = mt−1 + xt − yt t = 1, ..., T (d1)

J∑
j=1

zj,t ≤ mt t = 1, ..., T (d2)

J∑
j=1

hj,t ≤ βmt t = 1, ..., T (d3)

hj,t = βzj,t t = 1, ..., T (d4)

J∑
j=1

hj,t ≤ K t = 1, ..., T (d5)

hj,t ≤ Sj,0 −
t−1∑
l=1

hj,l t = 1, ..., T, j = 1, ..., J (d6)

hj,t ≥ 0 t = 1, ..., T, j = 1, ..., J (d7)

xt, yt,mt, zt ≥ 0,∈ Z+ t = 1, ..., T (d8)

The objective function computes net income (with negative sign to be solved as a

minimization problem). Expression (d1) is the manpower balance, while relation (d2)

limits the number of allocated resources. Relation (d3) bounds the total harvest in terms

of labor capability, and relation (d4) indicates that every assigned worker produces in

accordance with his/her productivity level. Relation (d5) bounds the total harvest in terms

of single-period reception capacity, as we assume that all grapes harvested in a given

period must be processed during the period. On the other hand, relation (d6) establishes
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that the remaining volume available in the block bounds the harvest. Finally, relations (d7)

and (d8) establish the nature of the variables.

2.3.2. Uncertainty Sources

2.3.2.1. Grape Yields

The grape yield depends directly on weather, pests, and land conditions during the

productive period, and these conditions account for the main sources of uncertainty that

add complexity to the harvest planning process. To account for these uncertainties, we

model the effect of the aforementioned factors on the grape yield within a single period.

In this light, for each possible stage ω, we model the pre-harvest grape stock or yield,

given by Sωj,t for a certain block j in a certain period t. If the harvest performed each period

is given by hωj,t−1, we use a factor αωt that can take values in three different scenarios of 1.1,

1.5, or 2 and account for the uncertainty, given by the level of increase in the remaining

grape stock. Then, the remaining available grape for harvest is given by:

Sωj,t = αωt (Sωj,t−1 − hωj,t−1)

2.3.2.2. Transition Probabilities

Transition probabilities account for the variability of weather conditions over the time

horizon and represent the errors in the forecast. These probabilities directly relate to the

possible grape-yield changes in each time period, and they finally determine the occur-

rence of a given growth ratio in the available grape stock.
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Previously, we considered three possible grape-yield growth scenarios (1.1, 1.5, or

2). Each scenario has his own associated transition probability, which gives a total of

nine possible states and probabilities (Table 2.1). This modeling allows us to generate

a scenario tree, in which each node corresponds to a possible future stage of a certain

scenario (path) to consider for the harvest decisions planning. Accordingly, the resulting

solution corresponds to not only a harvest plan but also a decision policy that allows the

decision-maker to adjust the previous decision plan after uncertainty is revealed, when

flexibility allows.

TABLE 2.1. Matrix of transition probabilities.

αi α1 α2 α3

α1 p11 p12 p13

α2 p21 p22 p23

α3 p31 p32 p33

Based on the table above, we estimate the probability pωt of a specific stage ω in

a certain period t, by calculating the pitatory of the transition probabilities that shape

the path from the initial node to the respective one. In Graph 2.1, we can observe the

corresponding representation.
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FIGURE 2.1. Grape yield scenario tree

The occurrence probability pωt of a certain stage ω (node) is calculated as the pitatory

of the transition probabilities associated with its path from the initial stage. Defining S as

the set of arcs {ij} that describe the path to node n, we have:

pωt =
∏
{ij}∈S

pij

2.3.3. Grape quality parameters

We have divided grape quality into two aspects. The first is the maximum reachable

quality that acknowledges the existence of different grape types (premium, reserve, and

varietal). The second quality aspect relates to the rate at which the grapes ripen or attain

maximum quality level. Higher quality grapes tend to have faster ripening rates than those

of lower quality.
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Ferrer et al., 2008 were the first to propose a maximum reachable quality level. For

our case, we model this as a weight to the grape price, whose value varies between zero

and one. The closer to one it is, the better is the grape quality. We use three different types

of grapes—premium, reserve, and varietal—which can reach a maximum price or quality

of 100%, 60%, or 30%, respectively. Graph 2.2 shows a representation of these three types

of grapes.
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FIGURE 2.2. Grape quality behavior: Different maximum reachable qualities by block
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FIGURE 2.3. Grape quality behavior: Different ripening rates by block

To account for the different ripening rates of quality, we considered grape blocks

whose qualities all start from zero and finish at one. Hence, there is no difference in

the maximum reachable quality. The ripening rates directly affect the moment in which

maximum quality is achieved. In the case of a high ripening rate, the maximum quality is

achieved in the 3rd period; one with a low ripening rate starts its ripening in the 2nd period

and achieves full quality at the 6th period. The medium type has a lineal ripening rate.

Graph 2.3 shows a representation of these rates.

2.3.4. Multi-Stage Stochastic Optimization Model

We now present a multistage stochastic model that accounts for uncertainty, using the

previously presented grape yield and transition probabilities.

• Sets
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– T : set of periods in the time horizon.

– J : set of grape blocks of the vineyard.

– Ω: set of future possible stages.

• Parameters

– bj: price of the grape in lot j ∈ J ($/kilograms).

– Ce,t: cost of hiring in period t ∈ T ($/worker).

– Cf : cost to lay-off a worker ($/worker).

– Ck: cost of keeping idle labor between periods ($/worker per period).

– Ch: harvest cost ($/kilograms).

– Sj,0: initial grape stock in block j (kilograms). j ∈ J

– qj,t: grape quality of block j ∈ J , in the period t ∈ T .

– qmaxj : maximum reachable grape quality of block j ∈ J .

– K: maximum available reception capacity by the winery (kilograms/pe-

riod).

– β: worker maximum harvest productivity (kilograms/period).

– αωt : grape yield before harvest, at time t ∈ T in stage ω ∈ Ω (positive real

number).

– pωt : probability of occurrence of the stage ω ∈ Ω at time t ∈ T . (positive

real number ∈ {0, 1}).

• Variables

– xωt : number of workers hired at time t ∈ T in stage ω ∈ Ω (workers).
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– yωt : number of workers laid off at time t ∈ T in stage ω ∈ Ω (workers).

– mω
t : available manpower or labor force at time t ∈ T in stage ω ∈ Ω

(workers).

– hωj,t: harvested grape quantity at j ∈ J block in period t ∈ T in stage ω ∈ Ω

(kilograms/period).

– Sωj,t: available grape stock in block j ∈ J at period t ∈ T in stage ω ∈ Ω.

(kilograms).

• Objective Function and constraints
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min

Ω∑
ω=1

{
T∑
t=1

pωt

(
Ce,tx

ω
t + Cfy

ω
t + Ckm

ω
t +

J∑
j=1

(Ch − bjqj,t)hωj,t
)

+
J∑
j=1

pωT

(
bjq

max
j (Sωj,T − hωj,T )

)}
s.t.

mω
t = mω

t−1 + xωt − yωt ∀t ∈ T,∀ω ∈ Ω (d1)

mω
t = mτ

t , x
ω
t = xτt , y

ω
t = yτt ∀t ∈ T,∀ω, τ : Ωω

[t] = Ωτ
[t] (d2)

yωT = mω
T ∀ω ∈ Ω (d3)

J∑
j=1

hωj,t ≤ βmω
t ∀t ∈ T,∀ω ∈ Ω (d4)

hωj,t ≤ Sωj,t ∀j ∈ J,∀t ∈ T,∀ω ∈ Ω (d5)

J∑
j=1

hωj,t ≤ K ∀t ∈ T,∀ω ∈ Ω (d6)

Sωj,t = αωt (Sωj,t−1 − hωj,t−1) ∀j ∈ J,∀t ∈ T,∀ω ∈ Ω (d7)

hωj,t ≥ 0 ∀j ∈ J,∀t ∈ T (d8)

xωt , y
ω
t ,m

ω
t ≥ 0,∈ Z+ ∀t ∈ T,∀ω ∈ Ω (d9)

The objective function computes the expected net income amid uncertainty. The in-

come is minimized because costs are set as positive and income as negative. The net

income is given first by the fixed labor costs, given by the hiring, lay-off and idle; second,

the harvest cost minus the quality-adjusted price of the grape times the amount of grapes

harvested and, finally, the non-harvested grape left in the vineyard. Expression (d1) is the

manpower balance for each possible stage ω, while (d2) corresponds to nonanticipativity
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constraints. Expession (d3) guarantees firing the remaining harvest labor at the end of the

planning. Expression (d4) bounds the total harvest in terms of labor capability and rela-

tion, while expression (d5) establishes that the harvest is bounded by the volume available

in the block. Relation (d6) bounds the total harvest in terms of single-period reception ca-

pacity, as we assume that all grapes harvested in a given period must be processed during

the period. Expression (d7) updates the grape stock of the block from the previous period

stock and harvested amount values and the yield of the respective stage. Finally, relations

(d8) and (d9) establish the nature of the variables.

This allows to build not only a decision-making plan but a harvest decision policy

that indicates the best decisions, subject to the actual stage conditions and possible future

stages.

2.4. Defining belief errors

The main focus of this research is to study the effect of errors in decision-maker beliefs

on the decisions and the value of the plan. Specifically, we study the effect of errors in

grape-yield forecasts and the transition probabilities beliefs.

To achieve this, we suppose that the decision-maker must make decisions having

available just partial information, presented in such forms as historical data, tendencies,

forecasts, and sensorization. All of this information then figures in determining the yield

forecast. As the decision-maker does not have perfect information, the believed values
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that he uses to make the harvest plan differ from the real values. We represent this type of

error as believed grape-yield values, distinct from the real ones.

In the case of transition probabilities, the same phenomenon occurs when the

decision-maker does not have perfect information. The believed probabilities of the sce-

narios can differ from the real ones. The decision-maker represents these errors using a

transition probability matrix that shows differences from the one defined as the real tran-

sition probabilities matrix.

These two types of errors are finally represented as an over- or under-estimation of the

real available quantities of grapes. We suppose that the decision-maker does not update or

recalculate its beliefs as new information is available, since we focus on determining the

effect of errors in beliefs and not on an optimal decision-maker learning process. Once

the state of nature reveals itself, and considering the level of flexibility, the decision-maker

must adjust its original plan to account for these errors.

2.5. Benchmarking Methodology

To determine and quantify the consequence that differences or errors in the beliefs

have for the value of using an MSSP approach, we study the effect that they have on the

production decisions, performance, and economic value. We also analyze the impact that

grape quality, grape-ripening rate, and the level of flexibility have on the aforementioned

indicators.
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To achieve this, we divide the analysis into four separate analyses. The first two focus

on the impacts of errors in beliefs in grape yields, and the last two analyze the impacts

of errors in beliefs in transition probabilities. Each pair of analyses considers separately

two kinds of behaviors of grape quality over time, by analyzing different ripening rates

and maximum reachable qualities. Finally, for each analysis, we look at the impact of

different flexibility levels.

To quantify the effect that errors in the yields and transition-matrix beliefs have, we

must compare the productive plan value generated and actions the decision-maker takes

under two scenarios. First, with perfect information and no mistakes, the plan is the ”per-

fect information scenario,” (PI) and we compare it to the plan containing mistakes in

beliefs, the ”believed scenario” (BS). Finally, to determine the effective value of the plan

with errors in beliefs, now under the effective yields, we determine the value of the plan

with the real yields but, using the decisions in the context of the believed scenario, we

define this as the ”real scenario” (RS). With these three values, we can determine the

effect that errors in the grape yields have on the decisions and value of using an MSSP

approach.

To study the effect of flexibility on the decisions and value with errors in the beliefs,

we add the possibility of the decision-maker modifying the harvest plan after a certain

number of periods as uncertainty reveals itself. The number of periods that pass before

changing the schedule is possible aims to represent the level of the decision-maker’s flex-

ibility. As fewer periods pass before it can modify its decisions, the level of flexibility
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rises. As indicated, we suppose that the decision-maker does not update or recalculate its

beliefs as new information is available, since we focus on determining the effect of errors

in the beliefs and not an optimal learning process for the decision-maker.

To quantify the effect that the errors have and determine where the value is lost or

gained, we look into five components of the objective function and use them as evaluation

metrics: first, the absolute objective function value for each level of error (OF); second, the

relative difference between the objective of the PI scenario and the real scenario (OFD);

third, the income deficit of the real scenario compared to the PI scenario (ID) and the

percentage reduction in incomes that it represents (RI); fourth, the percentage impact

of unharvested grapes (UG) and, fifth, the average quality of harvested grapes on total

incomes (AQ). These indicators allow us to determine the effect of errors in beliefs on

plan value, decisions, and the quality effect.
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Determining each of these factors appears in the following pseudo-code and equa-

tions:

Input: real values of yields and transition probabilities (αPI1 , αPI2 , αPI3 ,PPI);

Run the MSSOM;

DPI ← (x1, ..., xT , y1, ..., yT , h1, ..., hT ) ;

OFPI ← objective function value ;

IPI ← net incomes ;

Input: believed values of yields or transition probabilities (according to the analysis) ;

Run the MSSOM;

DBS ← (x1, ..., xT , y1, ..., yT , h1, ..., hT ) ;

OFBS ← objective function value ;

IBS ← net incomes ;

Input: (αPI1 , αPI2 , αPI3 ,PPI), DBS , number of periods passed f before re-optimize the

decision plan;

While t <= f do;

xt ← xBSt , yt ← yBSt , ht ← hBSt ;

Run the MSSOM for t > f ;

DRS ←

(xBS1 , ..., xBSf , xf+1, ..., xT , y
BS
1 , ..., yBSf , yf+1, ..., yT , h

BS
1 , ..., hBSf , hf+1, ..., hT ) ;

OFRS ← objective function value ;

IRS ← net incomes ;

Calculate: OFD, ID,RI,UG,AQ
Algorithm 1: Pseudo code for optimization methodology
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OF =
Ω∑
ω=1

{ T∑
t=1

pωt

(
Ce,tx

ω
t + Cfy

ω
t + Ckm

ω
t +

J∑
j=1

(Ch − bjqj,t)hωj,t
)

+
J∑
j=1

pωT

(
bjq

max
j (Sωj,T −hωj,T )

)}
(2.1)

OFD = OFPI −OFRS (2.2)

I =
Ω∑
ω=1

T∑
t=1

pωt

( J∑
j=1

(−bjqj,t)hωj,t
)

(2.3)

ID = IPI − IRS (2.4)

RI = ID/IPI (2.5)

H =
Ω∑
ω=1

T∑
t=1

pωt

J∑
j=1

hωj,t (2.6)

UG = HPI −HRS (2.7)

AQ = IRS − IPI(HRS/HPI) (2.8)
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2.6. Model Parameters

We based our model parameters on the previous work by Ferrer et al., 2008 and

Avanzini et al., 2021. Table 2.2 presents the vineyard characteristics.

TABLE 2.2. Model base parameters

Model Parameter Notation Value Units
Grape price bj 215 $/kilograms

Initial harvest stock Sj,0 7,000 kilograms
Worker productivity β 1,600 kilograms/period

Vineyard blocks n(J) 6 blocks
Planning time horizon n(T ) 6 periods

2.6.1. Costs

To account for scarcity of labor as the harvesting season advances, we represent it by

using an exponential cost function. The cost of hiring labor at each period t is represented

by:

Ce,t = Ce(t) = 100, 000 · 1.7t ∀t ∈ T ($/worker)

The other labor costs appear in Table 2.3

TABLE 2.3. Model costs parameters

Model Parameter Notation Value Units
Cost of firing Cf 4,000 $/worker

Cost of keeping labor Ck 3,500 $/worker
Cost of harvesting Ch 21 $/kilograms
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2.6.2. Grape Yields

Since the decision-maker does not have perfect information about the future, the be-

lieved grape yields differ from the real values. As indicated, we use a factor αωt that can

take values in three different scenarios of 1.1, 1.5, or 2 and account for the uncertainty in

the level of increase in the remaining grape stock.

Using these values of alpha at the end of the planning period, we find that the scenarios

of under- or over-estimation of the yields are: {3, 2, 1.5, 1.1, 1, 0.9, 0.7, 0.5}. This means

that if the level of overestimation was 0.5, the decision-maker overestimated the harvest

by 50% (expecting a level of 1 and obtaining a level of 0.5). On the other side, if the

level is 1.5, the decision-maker underestimated the yields by 50% (expecting a level of 1,

obtaining a level of 1.5), and so forth.

2.6.3. Transition Probability scenarios

Transition probabilities determine how the grape growth rate will vary over periods,

since they determine whether yields will rise or fall in the next period and by which factor

(αi). The producer forecasts these probabilities as the grape yields, and they can also differ

from what he had believed them to be.

For our base case, we suppose that each growth rate has equal probability of occur-

rence (Scenario 4) and reflect the producer’s current beliefs. From this base scenario, the

real transition probabilities can differ, ranging from the pessimist scenario (Scenario 1)

where, initially, the probabilities were thought to be equi-probable and, finally, the growth
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factor is absorbed to a value of 2. At the other extreme, the optimist scenario (scenario

8) was again thought to be equi-probable, but, finally, the growth factor is absorbed to a

value of 1.1. Between these extremes is a continuum of scenarios of transition probabili-

ties representing different levels of pessimist scenarios.

Scenario 1

(Optimist)

αi 1.1 1.5 2

1.1 1 0 0

1.5 1 0 0

2 1 0 0

Scenario 2

αi 1.1 1.5 2

1.1 0.5 0.5 0

1.5 0.5 0.5 0

2 0.5 0.5 0

Scenario 3

αi 1.1 1.5 2

1.1 0.6 0.3 0.1

1.5 0.4 0.3 0.3

2 0.5 0.3 0.2

Scenario 4

αi 1.1 1.5 2

1.1 0.3 0.6 0.1

1.5 0.3 0.4 0.3

2 0.3 0.5 0.2

Scenario 5

Base case

αi 1.1 1.5 2

1.1 0.3 0.3 0.3

1.5 0.3 0.3 0.3

2 0.3 0.3 0.3

Scenario 6

αi 1.1 1.5 2

1.1 0.1 0.3 0.6

1.5 0.3 0.3 0.4

2 0.2 0.3 0.5
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Scenario 7

αi 1.1 1.5 2

1.1 0 0.5 0.5

1.5 0 0.5 0.5

2 0 0.5 0.5

Scenario 8

(Pessimist)

αi 1.1 1.5 2

1.1 0 0 1

1.5 0 0 1

2 0 0 1

2.7. Results

In this section, we present the main results, starting with the effect of errors in grape-

yield estimation on the different evaluation metrics, then proceeding with the effect of

errors on forecasting transition probabilities.

For both sources of errors (yields and transition matrix), we present the results ob-

tained for lots having different maximum reachable quality levels and those having the

same maximum quality but different ripening rates. Finally, for all cases, we compare the

effect that different flexibility levels have on the metrics.

These results enable us to compare, analyze, and identify the economic and production

performance impacts of the harvest plans as the results of forecast accuracy.
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2.7.1. Effects of errors in grape yields beliefs

We study different scenarios of under- or over-estimation of yields. The proposed

scenarios are levels of under- or over-estimation of {3, 2, 1.5, 1.1, 1, 0.9, 0.7, 0.5} times

the believed yield level.

2.7.1.1. Different Maximum Reachable Quality Case

Figure 2.4 presents the absolute change in the objective function value under different

grape-yield errors, for three levels of flexibility. It is important to indicate that we are min-

imizing the objective value, so the more negative the value is, the better it is. We observe

that the effect of the errors in yield determination are asymmetrical; underestimations of

the yields (Yield factor > 1) have a significant positive effect on the objective value, due

to the larger availability of grapes, while overestimation (Yield factor < 1) does not show

such a significant effect on the absolute value. Flexibility can significantly affect the ob-

jective value as it increases (Flex 1), which means the decision-maker can fix its decisions

in an earlier period—the objective function change is larger to the negative side, enabling

capture of more value. Hence, if yields are underestimated, flexibility plays an impor-

tant role; as the flexibility increases, workers can harvest more, and reduced flexibility

ameliorates this effect.
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FIGURE 2.4. Objective function differences in value for grape yields errors and
flexibility levels

Figure 2.5 shows the relative reduction of value of the real plan (the value of the

plan with the real yields but using the decisions in the believed scenario) with respect to

the prefect-information plan (OFD). When yields are overestimated, the reduction in the

objective function for the real plan, as a percentage of the prefect-information plan, is

much larger, with up to a 200% loss in value against the prefect-information plan, when

the yields are 50% of what was expected. In the case of underestimated yields, when the

underestimated level is 100%, the loss in objective value can range from 36% to 77.9%.

Figure 2.6 shows the income deficit of the real scenario compared to the PI scenario (ID).

When the yields are overestimated, they decrease, and when they are underestimated, they

increase, compared to the original plan. However, neither reduction nor increase in income

is proportional to the percentage reduction or increment. When yields decrease by 50%
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the incomes only decrease by 17%. Underestimating yields by 100% increases income

between 18% and 83%.

Defined as the ability to revise hiring decisions, flexibility does not significantly affect

either the objective function or profits if the yields are overestimated. However, when the

yields are underestimated, flexibility plays an important role in reducing the effect on

the objective value and the income. Underestimating the yields by 100% and having the

ability to immediately re-plan in the second period can reduce the objective function and

income by 36% and 25%, respectively. If flexibility is reduced by allowing re-planning

only in the fourth period, the objective function and income are now reduced by 77.9%

and 83.68%, respectively.
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FIGURE 2.5. Percentage reduction in objective function from original plan (No
error in the beliefs) by flexibility level.
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FIGURE 2.6. Percentage reduction in income from original plan (No error in the
beliefs) by flexibility level.

In Figure 2.7, we can observe the distribution of the income increment/loss between

unharvested and suboptimally harvested grapes, for different levels of errors in the beliefs,

compared to the case in which there was no error in beliefs. We observe that in the case of

underestimating yields, the main source of income losses comes from the increasing levels

of unharvested grape. On the other hand, overestimating these rates implies an increment

in harvested grape as well as a higher average quality and, thus, more profits per unit. This

compensates for part of the loss due to over-hiring labor.
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FIGURE 2.7. Distribution of income increment/loss between unharvested and
suboptimally harvested grapes.

Figures 2.8 and 2.9 present the results for three distinct blocks with different maxi-

mum reachable quality of grapes for flexibility level 2 We observe that in the case of an

underestimation scenario, the model privileges the most premium grape (high maximum

quality), trying to leave unharvested the least amount possible, while the worst grape suf-

fers the higher percentage of losses in the face of variability. Looking at the effect on

income, we notice that despite a lower level of losses of the better-quality grapes, they

correspond to a significant proportion of income and, thus, account for the largest portion

of income loss. Hence the decision-maker must prioritize the premium blocks, allocating

as much labor to these blocks as the firm can.
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FIGURE 2.8. Percentage unharvested grape by maximum reachable quality.
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FIGURE 2.9. Unrealized income by maximum reachable quality.
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2.7.1.2. Different Ripening Rates of Quality Case

Figure 2.10 presents the aggregate performance of harvest plans, dealing with grapes

with different ripening rates in the context of the three different levels of flexibility. Here,

we observe that the flexibility to fix the harvest labor plan similarly impacts the objective

function. Having the possibility to fix the decisions immediately afterward, in the second

period, manages to reduce the losses about 40%.
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FIGURE 2.10. Objective function differences in value for grape yields errors and
flexibility levels.

We observe in Figure 2.11 similar impacts on net incomes, the effect of under- and

over-estimating grape yields with different grape ripening rates. About 60% of net income

losses are avoidable by investing in improving flexibility. In the next figure, we notice that

additional unharvested grape is the main source of income losses; when overestimating

rates, both factors more equally generate extra income sources.
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FIGURE 2.11. Percentage reduction in income from original plan (No error in
beliefs) for different flexibility levels.
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FIGURE 2.12. Distribution of income increment/loss between unharvested and
suboptimally harvested grapes.

In the following graphs, we observe a very important facet of each quality behavior.

The results show that grapes that improve their quality early give the decision-maker an
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extra level of flexibility to adjust the harvesting plan. As this kind of grape reaches its

optimal quality early and stays in that condition for more periods, the planner can start

its harvest earlier, if necessary. This appears in the lower amount of unharvested grape as

the error increases. On the other hand, we see that the grapes with late quality improve-

ment limit the decision-maker’s flexibility to extend the harvest period, due to the quality

rendering it unprofitable. These results are almost the same for the other two levels of

flexibility, so we present just those corresponding to flexibility level 2.
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FIGURE 2.13. Percentage unharvested grape for different ripening rates of grapes.
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FIGURE 2.14. Unrealized income for different ripening rates of grapes.

2.7.2. Transition Probabilities Analysis

2.7.2.1. Different Maximum Reachable Quality Case

In this analysis we can observe a more linear behavior in comparison with the grape-

yield analysis. Despite this, the following graphs still show an asymmetric performance

between overestimating and underestimating the probabilities of good scenarios. Under-

estimating them can cost five times what overestimating them would cost.
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FIGURE 2.15. Objective function value for different scenarios and flexibility levels.

In the graphs 2.16 and 2.19, we notice that flexibility has less impact on global results

than in the previous analysis. The reduction of a deficit could reach just about 15%. In

addition, we observe that the less flexibility there is, the less impact the improvement

of flexibility has on the ability to fix the schedule one period before. A very important

result that we see here is the fact that flexibility makes no difference when bad-scenario

probabilities are underestimated (left side of the graphs).
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FIGURE 2.16. Percentage reduction in objective function from original plan (No
error in beliefs) for different scenarios and flexibility levels.
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FIGURE 2.17. Percentage reduction in income from original plan (No error in
beliefs) for different scenarios and flexibility levels.

As in the previous analysis, the next histogram shows the percentage implication for

total incomes by two different factors. The extra or less unharvested grape, compared
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to the perfect-information scenario, means a variation in total incomes and a penalty for

leaving this amount unharvested and the average quality of harvested grape that impacts

on revenue. We observe similar results when yields are underestimated; here, too, the main

source of income losses is the increasing levels of unharvested grape. But overestimating

these rates does not imply the same result as before; the main source of loss compensation

is the increment of harvested grape. These results are almost the same for the other two

levels of flexibility, so we present just those corresponding to flexibility level 2.
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FIGURE 2.18. Distribution of income increment/loss between unharvested and
suboptimally harvested grapes for different scenarios.

In the graphs 2.19 and 2.20, we present the main results separately by grapes with

different maximum reachable quality for flexibility level 2, which the level of belief pes-

simism affects. Here, we observe similar outcomes. Unlike the lower quality grapes, he
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most premium grape is prioritized. Even so, it also happens that the extra unharvested

premium-quality grape makes up the major part of income losses.
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FIGURE 2.19. Percentage unharvested grape for different scenarios and maxi-
mum reachable quality.
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FIGURE 2.20. Unrealized income for different scenarios and maximum reachable
quality.
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2.7.2.2. Different ripening rates of grapes

In the following graphs (2.21 and 2.22) we observe that flexibility makes no differ-

ence when bad scenarios have greater probability of occurring than expected. On the

other hand, flexibility again plays an important role when good-scenario probabilities are

underestimated.
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FIGURE 2.21. Objective function value for different scenarios and flexibility levels.

61



0

50

100

150

1 2 3 4 5 6 7 8
Scenario

R
ed

uc
tio

n
in

ob
je

ct
iv

e
fu

nc
tio

n

re
al

pl
an

vs
PI

O
FD

(%
)

Flex 1
Flex 2
Flex 3

FIGURE 2.22. Percentage reduction in objective function from original plan (No
error in beliefs) for different scenarios and flexibility levels.

We observe in figure 2.23 a similar behavior to that in the previous analysis. Underes-

timated good-scenario probabilities lead to the main source of income losses correspond-

ing to the increment of unharvested grape. On the other hand, when good-rate scenarios

are overestimated, the compensating extra income comprises more equally the increment

of harvested grape and its better average quality. These results are almost the same for the

other two levels of flexibility, so we present just those corresponding to flexibility level 2.
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FIGURE 2.23. Distribution of income increment/loss between unharvested and
sub-optimally harvested grapes for different scenarios.

The last two graphs show separately the results regarding grape performance by the

ripening rates of grape for flexibility level 2. A high ripening rate corresponds to grapes

whose quality improves earlier; then, a medium ripening rate improves linearly, and, last,

low-ripening-rate grape quality improves later. Here, we observe again that grapes with

late improvement reduce the decision-maker’s ability to adjust the harvest schedule, ac-

cording to its flexibility. We notice this in low-ripening-rate blocks, where the unharvested

amount and the loss income are higher than the others.
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FIGURE 2.24. Percentage unharvested grape scenarios and ripening rates of grapes.
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2.8. Discussion and Conclusions

In this research, we first develop a multistage optimization model, based on the one

proposed by Ferrer et al., 2008 and differing from the one that Avanzini et al., 2021

present, since it considers the uncertainty in the yields and the transition probabilities.

Using this model, we study the effect that errors in beliefs have on the value of using a

Multistage Stochastic Optimization approach. Finally, we also analyze the effect that the

quality and flexibility the resources have when errors in beliefs occur. From these findings,

we can determine conditions under which acting to reduce the errors in future events will

pay off, and conditions under which there is not much value to gain.

Results show that errors in grape-yield estimation have a significant impact on value,

evidencing that it is not symmetrical when yields are over- or under-estimated. Reductions

in value can be up to 77.9% and 232% when the yields are over- or under-estimated by

100%, respectively. They also show that an important part of these value losses comes

from the reduction in net incomes, which can go up to 98% of the potential amount.

When yields are underestimated, flexibility or the ability to modify the decisions once

the state of the nature reveals itself—for example, the process of adjusting the labor as-

signment—plays an important role. A high level of flexibility enables reducing the loss in

value from the 77.9% to just 36%.

This effect is mainly attributable to the reduction of net income losses, which can de-

crease from 98% to 40% as flexibility increases. This occurs because the loss in value is
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lightly compensated with an increment in the income, due to the available grapes. How-

ever, since there it is not enough labor to harvest the grapes, a significant amount is left

unharvested. If we look at how the model reacts in light of quality, it generally favors the

harvest of high-quality grapes over low quality, but the unrealized income is greater for

the high-quality grapes, due to their greater value.

On the other hand, when yields are overestimated, results show that flexibility does

not play a significant role in ameliorating the value loss. This is because the adjustment

of labor cannot compensate for the reduction in the amount of available grapes to harvest.

However, the harvest of grapes that would been unharvested under normal conditions, as

well as the increment of high-quality grapes being harvested on their optimal dates due to

labor availability, offset some of the value loss.

Looking at the different quality of grape in the contexts of under- and over-estimation

of yields, the model tries to reduce comparatively the amount of unharvested high-quality

grapes compared to those of low quality. Only when the yields decrease by 50% is the

percentage of high-quality grapes larger. If we compare value or unrealized gains from

underestimated yields, most of the value loss comes from the high-quality grapes (due

to their higher kg value) rather than those of low quality. However, in absolute terms,

overestimated yields do not result in significant value loss.

For the same flexibility level, we analyzed the effect that the ripening rate has on the

amount of unharvested grapes and on the unrealized gains when mistakes occur in the

determination of the yields. When the ripening rate is low, grapes mature very close

66



to their optimal date, and the yields are underestimated. The amount of unharvested

grapes—hence, the unrealized gains—are largest, with insufficient labor to process them

all. This amount decreases when the ripening rate is high with is a more ample window

of time for harvesting the ripe grapes. This same effect occurs for the three levels of

flexibility, and it increases as flexibility decreases.

We analyze the effect that errors in determining the transition probabilities have on

the value of the plan. When the decision-maker is optimistic (the transition probabilities

absorb the low yields), the value decreases significantly, with loss in value in the range

of 50% for the most optimistic scenario. When the decision-maker is pessimistic (the

transition probabilities absorb the high yields), we see less reduction in value, compared

to the optimistic scenario, which can go between 15% and 30% when we approach the

extreme cases.

If we look at the effect of flexibility on the value under different scenarios of

transition-probability errors, results show that decision-maker optimism has no effect on

reducing value loss. In pessimistic scenarios, flexibility ameliorates value loss by 15%,

due to workers’ ability to adjust productivity and reduce the amount of unharvested grapes.

For the case of the optimistic scenario, the reduction in value due to the change in

the transition probabilities is attributable to high labor cost for the level of grape yields.

Although reducing the unharvested grapes and harvesting them on dates closer to their

optimal date produces some value, the reduction in yields and labor costs overcomes this
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value increment. In the pessimistic scenario, the value loss and unrealized gain results

from the amount of unharvested grapes due to the lack of labor.

The maximum reachable quality of the grape also makes an important difference when

errors in transition probabilities occur. When the decision-maker’s level of pessimism is

high, the better average quality of the harvested grape lightly compensates for the value

loss from the unharvested grape due to lack of labor. In these cases, the model prioritizes

harvesting the high-quality grapes, leaving more low-quality grape unharvested. High-

quality grapes still represent the greater part of harvest value.

If we analyze the effect that the ripening rates have on value when the scenario is

optimistic, the excess available labor leaves less grape unharvested. When the decision-

maker is too pessimistic, grapes with a low ripening rate are more difficult to harvest,

with the smaller window available for harvesting on optimal dates preventing their harvest

starting earlier.
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3. GENERAL CONCLUSIONS AND FURTHER RESEARCH

This thesis centers fundamentally on the application of operations research models

and methodologies in agricultural industry problems, especially focusing here on wine-

grape harvesting planning. We first developed a multistage optimization model, based on

the one proposed by Ferrer et al., 2008, adding uncertainty in the yields and the transition

probabilities. Using this model, we studied the effect that errors in beliefs have on the

value of using a Multistage Stochastic Optimization approach. We also analyzed the effect

that the quality and flexibility of the resources have when errors in occur.

3.1. Remarkable Results and General Conclusions

In general, errors in the yield and transition probabilities beliefs reduce the value of

the plans. We observe that these reductions are not symmetrical when the yields are either

under- or over-estimated, having a larger absolute effect when they are underestimated,

but a higher relative effect when they are overestimated.

Three factors can affect the level of reduction in value: flexibility, grape maximum

reachable quality, and ripening rate. Flexibility, the possibility to adjust the decision once

the state of nature reveals itself, helps to ameliorate the value reduction when yields are

underestimated, allowing for increased labor, and in pessimist scenarios.

When the maximum quality of the grapes is high and yields are underestimated, the

value loss increases due to the unharvested grapes, rather than when the grapes are of low

quality. The same happens in the pessimist scenario. The high-quality grapes represent
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the greatest part of the harvest value, so in the presence of a lack of labor, the model

favors harvesting the high-quality grapes, leaving greater quantities of low-quality grape

unharvested.

When the ripening rates are low and the grapes mature close to their optimal date, the

value loss is greater, due to the small window of time available for harvesting them on

optimal dates. This amount decreases when the ripening rate is high, with a more ample

time window for harvesting the ripe grapes.

This research has several limitations. For example, we only analyzed errors in yields

and transition probabilities beliefs. Many other errors in beliefs can occur, such as in labor

productivity levels, grape quality level, probability of adverse climatic events (e.g., rain).

A second limitation is that our assumptions do not allow the decision-maker to update

future beliefs having learned from mistakes or the process.

3.2. Other Applications

Although the presented model was built from the wine-grape harvest problem, its na-

ture and scope share common objectives and problems with many other industries besides

agriculture where uncertainty is present, including how to improve forecast accuracy, a

planning process, labor hiring, and other decisions with limited information about the

future and flexibility to adjust decisions after uncertainty appears. The model helps the

decision-making process in any highly uncertain environment, providing insights into how

uncertainty affects planning performance. Some examples are:
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Warehouses and supply chain industries where, in general, future demand is un-

certain. Here, a multistage stochastic optimization to make decisions works similarly,

with different scenarios that can happen and their respective probability, all of which the

decision-maker must consider during the planning process. Also, cases of perishable prod-

ucts can be modeled in the same way, as the changing quality that affects the value function

result. Different threshold quality can function to determine the optimal value of a certain

product in a determined specific period.

Hospitals, where hiring and shift planning to attend a stochastic demand is very im-

portant, to prevent a lack of staff and ensure timely patient treatment. A good forecast

to estimate the demand is also crucial. Furthermore, the optimal time to attend a patient

functions the same as the optimal crop harvest date, with the same risk of value loss.

Restaurants and any service industries, where the time to attend the client matters,

and revenues reflect the level of service. This problem can be approached in the same way

as the harvesting planning and quality degradation.

3.3. Managerial Insights

According to our results, a manager facing the possibility that his beliefs can be incor-

rect or inaccurate would likely hire labor in excess of what planning recommended. This

would allow him to face a potential underestimation of yields without incurring high-cost

hiring at the last minute, forcing the leaving of unharvested grape due to lack of labor. This

same behavior appears in other industries (e.g., airlines, where adding robustness to the
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flight crew pairs solutions by also adding ground time between the incoming and outgoing

flights) (Ehrgott & Ryan, 2002; Yen & Birge, 2006; Weide et al., 2010; Dunbar et al.,

2012).

Errors regarding yield estimation seem to have a larger effect on value than making

the same mistakes in transition probabilities. Thus, facing the decision of where to in-

vest in producing more reliable information, the decision should aim toward accuracy in

determining grape yields.

Flexibility adds significant value to the planning process, as Avanzini et al., 2021

indicate. So, if possible, the manager should try to induce flexibility into the plan, making

possible the adjusting of the plan as the states of nature appear. This could occur by

directly relating the payments of the workers to productivity and reducing hiring and lay-

off costs. Finally, achieving a higher level of flexibility can occur if the decision-maker

has a buffer for harvesting capacity by hiring extra workers.

Regarding the maximum achievable quality of the grapes, the harvesting plan should

prioritize higher-quality grapes since these determine most of the income and net utilities

of production. Also, a situation with a lack of available labor calls for adapting the har-

vest plan to leave as little high-quality grape unharvested as possible. Small increments of

unharvested premium grape can cause higher income losses than low-quality grape pro-

duces.
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In the case of ripening rates, the preferred possibility is to plant varieties that have

high ripening rates and wider optimal harvest windows. This increases the flexibility

of the decision-maker to adjust the harvest plan by starting the harvesting earlier than

expected when reduced labor is available. Likewise, avoiding varieties with low ripening

rates maintains the decision-maker’s flexibility to modify the harvest plan.

Finally, the results this work obtains show that the effects of errors in beliefs on the

planning value behave asymmetrically. This indicates that using regular optimization tech-

niques to solve the problem at hand is not the best method. A better mechanism to handle

errors in beliefs could be the use of a robust optimization approach (Ben-Tal et al., 2009)

or a conditional value at risk (Rockafellar & Uryasev, 2002), which minimizes losses un-

der worst-case scenarios or average expected costs considering them all, a more accurate

approach to results more robust against uncertainty.

3.4. Further Research

This research focuses on analyzing the errors regarding yields and transition proba-

bility matrix beliefs. The agricultural realm includes many other errors in beliefs, such

as: labor productivity levels, quality level of grapes, probability of adverse climatic events

(e.g., rain). Further research that studies the effects of these errors would be a great con-

tribution to the winery industry and agriculture in general.

Transition probabilities and scenarios were considered as discrete events. This work

could go even further if continuous distribution functions were associated with the yields.

73



Also, the same could apply to the change of quality through periods, or ripening rates

behavior. This would enable implementing a distributionally robust optimization model

approach, and a closer representation to the real distribution could offer more useful man-

agerial insights.

Our results indicate that the use of a labor buffer to act as a reserve, in cases of un-

derestimating the harvested stock, is a desirable feature. The use of a robust optimization

approach or a conditional value at risk helps by defining optimal buffer levels.

Finally, studying the effects of using different types of machine-learning schemes

in improving the precision and accuracy of updating would reduce the gap between the

believed values and the real ones. Since the quality and amount of information directly

relates to the quality of the forecasts, studying the use and value of sensor applications

on agricultural industries to collect better and larger amounts of information to support

decision-making would be desirable.
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