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A la memoria de mi Tata Julio,
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ABSTRACT

An extensive range of problems in science and engineering involve two-dimensional

crack, screen (Shestopalov, Smirnov, & Chernokozhin, 2000; Meixner, 1972; E. Stephan,

1987), or interface problems (Costabel & Dauge, 2002; Nicaise & Sändig, 1994a, 1994b;

E. P. Stephan & Wendland, 1984). The simplest approach to model them is to consider the

following problem for an open curve C ⊂ R
2,

−∆U = 0 in R
d
\ C , U = g or

∂U

∂n
= h on C , (0.1)

plus decay conditions at ∞, and with suitable boundary data g and h.

Boundary integral methods (BEM) are an attractive option to deal with the unbounded-

ness of the domain and the decay conditions at ∞. Unfortunately, the singular behaviour

of the solutions causes the linear systems arising from the related integral operators to be

numerically ill-conditioned. Therefore, iterative solvers require unreasonable computational

work. This can be tackled by using suitable preconditioners (Hiptmair, 2006).

This thesis presents the numerical implementation of the Calderón-type identities de-

duced from Jerez-Hanckes and Nédélec (Jerez-Hanckes & Nédélec, 2011; Jerez-Hanckes

& Nédélec, 2012) for an open interval. In addition, they are used to build optimal precon-

ditioners for the associated integral operators arising from (0.1) and their extension to the

Helmholtz equation. Finally, since the singularities of the solutions to the associated weakly

singular operator behave as 1/
√
d where d is the distance to the endpoints, we can achieve

more accuracy through local refinement around the two endpoints. Therefore, this work also

extends preconditioning theory to non-uniform meshes.

Keywords: Calderón preconditioning, screen problems, fracture problems, boundary

integral operators.
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RESUMEN

Muchos problemas en ingenierı́a pueden ser formulados como problemas de fractura ,

pantalla (Shestopalov et al., 2000; Meixner, 1972; E. Stephan, 1987), o interfaz (Costabel

& Dauge, 2002; Nicaise & Sändig, 1994a, 1994b; E. P. Stephan & Wendland, 1984) en dos

dimensiones. La forma más simple de modelarlos es considerar el siguiente problema para

una curva abierta C ⊂ R
2,

−∆U = 0 en R
2
\ C , U = g o

∂U

∂n
= h en C , (0.2)

más condiciones de decaimiento en ∞ y condiciones de borde g y h apropiadas.

El método de elementos de frontera (BEM) es una opción atractiva para lidiar con el

carácter infinito del dominio y la condición de decaimiento. Desafortunadamente, el com-

portamiento singular de las soluciones hace que los operadores integrales asociados estén

mal condicionados. Por lo tanto, la resolución mediante métodos iterativos requiere un alto

costo computacional. Una forma de abordar esta dificultad y mejorar el condicionamiento

de dichos operadores es utilizando precondicionadores (Hiptmair, 2006).

En esta tésis se presenta la implementación de las las identidades de tipo Calderón for-

muladas por Jerez-Hanckes y Nédélec (Jerez-Hanckes & Nédélec, 2011; Jerez-Hanckes &

Nédélec, 2012) para intervalos abiertos. Adicionalmente, éstas se utilizan para construir pre-

condicionadores óptimos para los operadores integrales asociados a (1.1) y su extensión a

la ecuación de Helmholtz. Finalmente, dado que la singularidad de las soluciones se com-

porta como 1√
d
, donde d es la distancia a los bordes de la fractura, se puede obtener mayor

precisión utilizando mallados que se refinen cerca de los bordes. Por esta razón el presente

trabajo también muestra la extensión de la teorı́a de precondicionamiento a mallados no

uniformes.

Keywords: Precondicionamiento tipo Calderón, Problemas de pantalla, problemas de

fractura, operadores integrales de frontera.
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1. INTRODUCTION

We want to describe the behaviour of an incident wave hitting an open curve C ⊂ R
2.

For this, we assume an homogeneous and isotropic medium.

We split the solution u of the problem into two parts, u = uinc + usc, where usc is the

scattered part of the solution and uinc is the incoming wave, which is assumed to be a planar

wave. These hypotheses allow us to reduce the model problem from the Maxwell’s equations

to the Helmholtz equation.

For the sake of simplicity, we set the wave number k to be zero and consider the fol-

lowing Dirichlet and Neumann boundary value problems (BVPs) in the exterior of an open

curve C ⊂ R
2,

−∆U = 0 in R
2
\ C̄ , U = g or

∂U

∂n
= f on C , (1.1)

plus appropriate decay conditions at ∞, see (McLean, 2000, Thm. 8.9) and with suitable

boundary data g or f . If C is a regular Lipschitz curve, then (1.1) possesses a unique weak

solution in H1
loc(R

2 \ C̄). Exterior BVPs like (1.1) play a central role in a number of math-

ematical models like crack models in elasticity (Gross & Seelig, 2011) or dimensionally

reduced antenna models in electromagnetics (Shestopalov et al., 2000).

For the approximate numerical solution of boundary value problems like (1.1), posed

on an unbounded homogeneous exterior domain, boundary element methods are an attrac-

tive option, because they respect the decay conditions at infinity and require a mesh on C

only. They exploit the possibility that (1.1) can be converted into first-kind boundary in-

tegral equations (BIEs) for the unknown jump of the complementary boundary data on C.

These boundary integral equations, their variational formulation in suitable Sobolev spaces,

and boundary element Galerkin discretization have been studied thoroughly, prominently by

E. Stephan and coworkers. Please refer to (E. Stephan, 1987; Wendland & Stephan, 1990;

Ervin & Stephan, 1990; Tran, 1995), and the textbook (Sauter & Schwab, 2010, Sect. 3.5.3).
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Since we face first-kind BIEs, the spectral condition numbers of the linear systems of

equations arising from low-order Galerkin boundary element methods (BEM) for (1.1) using

the customary locally supported basis functions will grow like O(h−1), where h is the size

of the smallest cell of the mesh, see (Sauter & Schwab, 2010, Sect. 4.5). Thus, effective

preconditioning becomes indispensable when conjugate gradient type iterative solvers are

used to compute BEM solutions on (locally) fine meshes.

Admittedly, on curves satisfactory resolution can already be achieved with moderate

numbers of degrees of freedom, which allows the assembly of the dense Galerkin matrices

and the use of direct solvers. This is no longer the case for the three-dimensional counterpart

of (1.1), where C has to be replaced with an oriented two-dimensional Lipschitz manifold.

Then we encounter a genuine screen problem, for which we may have to resort to fine trian-

gulations of C, which, in turns, entails the use of matrix compression and iterative solvers.

Then preconditioning becomes a key issue. Thus, this thesis with its focus on curves and nu-

merical analysis, should be viewed as a first “proof of concept” for a preconditioning strategy

that, we believe, can be extended to three dimensions.

A powerful preconditioning technique for BEM on closed surfaces is the so-called pol-

icy of Calderón preconditioning, which exploits Calderón identities, that is, the fact that

certain products of boundary integral operators evaluate to the identity map plus a compact

perturbation (Sauter & Schwab, 2010, Sect. 3.6). It fits the more general strategy of oper-

ator preconditioning for Galerkin discretizations, introduced in (Hiptmair, 2006), see also

(Mardal & Winther, 2011). For low-order Galerkin BEM on closed surfaces, it takes pairs of

primal and dual meshes to realize this approach to preconditioning, as has been discovered by

Steinbach and Wendland in (Steinbach & Wendland, 1998). A very general perspective was

developed by Buffa and Christiansen in (Buffa & Christiansen, 2007) and it paved the way

for the application of Calderón preconditioning to electromagnetic boundary integral equa-

tions. The new technique has quickly been adopted in computational engineering (Bagci,

Andriulli, Cools, Olyslager, & Michielssen, 2009; Andriulli et al., 2008; Cools, Andriulli, &

Olyslager, 2009), which highlights its huge potential for practical simulations.

2



For open curves, analogues of Calderón identities had been elusive until recently, which

hampered the adaption of Calderón preconditioning. One can still pursue a weaker version,

the idea of preconditioning with operators of opposite order. This was done by McLean and

Steinbach (McLean & Steinbach, 1999), where the single layer operator provided a precon-

ditioner for the discrete hypersingular BIE on an arc. Yet, this method is not asymptotically

optimal in a strict sense, because the condition number of the preconditioned linear system

still grows like O(| log h|). The reason is that on open curves the boundary integral opera-

tors have to be considered on Sobolev spaces that take into account special conditions at the

endpoints. These spaces fail to provide the duality relationships that form the foundations of

operator preconditioning.

Several approaches have been proposed in the literature to overcome this difficulty by

extending the classical Calderón relations to the case of open surfaces. Recently, Bruno and

Lintner in (Lintner & Bruno, 2012; Bruno & Lintner, 2012) have developed a generalized

Calderón formula for open surfaces. When combined with their high-order numerical meth-

ods, they observe excellent performance of their Calderón preconditioner for a wide range

of geometries and wave propagation problems. However, no mathematical analysis of this

method is available, let alone results about asymptotic optimality of the preconditioner.

In this thesis we propose the first provably asymptotically optimal Calderón precon-

ditioning approach for low-order Galerkin BEM for the BIE arising from (1.1). This has

been made possible by a breakthrough result achieved by Nédélec and one of the authors

in (Jerez-Hanckes & Nédélec, 2011; Jerez-Hanckes & Nédélec, 2012). They have found

explicit inverses for weakly singular and hypersingular integral operators on a line segment.

These new relations are a perfect substitute for the conventional Calderón identities in the

context of operator preconditioning, and we are going to elaborate this rigorously.

Throughout we take pains to cover rather general locally refined meshes in our analysis.

This is important, because we can expect pronounced singularities of the solutions of the

BIE related to the weaklysingular operator at the endpoints. More precisely, they behave

as 1/
√
d where d is the distance to the endpoints (Costabel, Dauge, & Duduchava, 2003;
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Meixner, 1972; Kelley, 1999). For piecewise polynomial approximation spaces this entails

using algebraically or geometrically graded meshes, for which cells adjacent to the endpoints

are much smaller than those in the middle of C.

Operator preconditioning

Awareness of the gist of operator preconditioning as presented in (Hiptmair, 2006) is

crucial for appreciating the considerations in the remainder of the thesis. Thus, we briefly

recall the main result of (Hiptmair, 2006).

Theorem 1.1 (Theorem 2.1 (Hiptmair, 2006)). Let X , Y be reflexive Banach spaces,

Xh := span{ϕi}
N

i=0 ⊂ X , Yh := span{φj}
M

j=0 ⊂ Y finite-dimensional subspaces with

bases {ϕi}
N

i=0 and {φj}
M

j=0. Further, let a ∈ L(X × X,C) and b ∈ L(Y × Y,C) be con-

tinuous sesquilinear forms (with norms �a� and �b�, resp.), each satisfying discrete inf-sup

conditions with constants cA, cB > 0 on Xh and Yh, respectively. If there is a continuous

sesquilinear form t ∈ L(X×Y,C) that also satisfies a discrete inf-sup condition on Xh×Yh

with constant cT > 0, then the associated Galerkin matrices:

Ah := (a(ϕi, ϕj))
N

i,j=1 , Bh := (b(φi, φj))
M

i,j=1 , Th := (t(ϕi, φj))
N,M

i,j=1 ,

satisfy

κ(T−1
h
BhT

−H

h
Ah) ≤

�a��b��t�2

cAcBc2T
, (1.3)

where κ designates the spectral condition number.

As this theorem targets variational problems and Galerkin discretization, we will always

focus on the weak form of boundary integral equations. Moreover, as explained in (Hiptmair,

2006, Sect. 4), Calderón preconditioning boils down to an application of Theorem 1.1 where

the spaces X and Y are dual to each other, with duality induced by the pairing sesquilinear

form t. For the concrete trace spaces, on which the weak BIEs are posed, t will be an

extension of the inner product in L2(C).

In light of Theorem 1.1, when confronted with a variational BIE a(u, v) = �(v), v ∈ X ,

� ∈ X �, on a trace space X , the key questions are,
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(Q1): whether we can find another boundary integral operator that induces a bounded

sesqui-linear form on Y := X �,

(Q2): what sub-spaces Xh ⊂ X and Yh ⊂ Y furnish stable Galerkin discretizations,

(Q3): if the pairs Xh and Yh allow an X/Y -stable L2-pairing (, for which a necessary

condition is dimXh = dimYh).

Given positive answers to these questions and assuming that all inf-sup constants can be

chosen independently of the (local) mesh width, Theorem 1.1 will permit us to conclude that

the product T−1
h
BhT

−H

h
of Galerkin matrices represents an asymptotically optimal precon-

ditioner for Ah.

REMARK 1.1. We stress that the assertion of Theorem 1.1 is valid for any choice of

bases for Xh and Yh and the associated Galerkin matrices. Thus, the focus can exclusively

be on the construction of appropriate spaces Xh and Yh.

Outline

Next, Chapter 2 is dedicated to present the theoretical background and main results of

this thesis. In Section 2.1 we give a precise description of the relevant Sobolev spaces, and

afterwards, we introduce the boundary integral operators, along with elliptic boundary inte-

gral equations in variational form. This will done on a straight line segment, but Section 2.1.4

will argue, why the case of a smooth open curved is fully covered. Theorems 2.1 and 2.4

will answer Questions (Q1) and (Q2). Piecewise polynomial boundary element spaces on

primal and dual meshes are defined in Section 2.2. In Section 2.3 uniform inf-sup conditions

for discrete L2-duality pairings are established, thus verifying the last missing assumption of

Theorem 1.1, see Theorem 2.5. The proofs take the cue from the general technique devel-

oped by O. Steinbach in (Steinbach, 2003).

We dedicate Chapter 3 to explain the implementation of our method. With this purpose

in mind, we first introduce the main tools to be used in our code. In Section 3.3 we give a

description of the computational realization of our BIOs in their variational form, while we

present their strong formulation in 3.4. The remaining of the Chapter gives details of other
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operators related to our preconditioning technique and finishes introducing the implementa-

tion of the Helmholtz equation BIOs also on a straight line segment.

Finally, in Chapter 4, a number of numerical experiments confirm the power of Jerez-

Nédélec’s Calderón-type identities and asymptotic optimality of the new preconditioners

arising from them. We conclude this thesis with the discussion of these results.
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2. THEORY AND NOTATION

2.1. Boundary Integral Operators (BIO)

2.1.1. Sobolev spaces

We employ the usual notations for Sobolev spaces from (McLean, 2000, Ch. 3); let

O ⊆ R
d, with d = 1, 2, be open. For s ∈ R, Hs(O) denotes standard Sobolev spaces

(McLean, 2000; Steinbach, 2008). If s > 0 and O ⊂ R
d is a Lipschitz domain, �Hs(O)

stands for the space of distributions in Hs(O) whose extension by zero to R
d belongs to

Hs(Rd). We introduce

�H−1/2(O) ≡ (H1/2(O))� and H−1/2(O) ≡ ( �H1/2(O))�. (2.1)

Here and below primes designate dual spaces and duality pairings will be indicated by angu-

lar brackets �·, ·�. Using L2(O) as pivot space, this yields the Gelfand triples

H1/2(O) ⊂ L2(O) ⊂ �H−1/2(O) , �H1/2(O) ⊂ L2(O) ⊂ H−1/2(O) ,

with continuous and dense embeddings.

Below we are going to examine integral equations on a special curve, namely the straight

line segment (−1, 1) × {0} ⊂ R
2. Thus, we abbreviate Γ := (−1, 1). Based on the weight

function

ω(x) :=
√
1− x2, x ∈ Γ ,

let us introduce the subspaces

�H−1/2
�0� (Γ) :=

�
ϕ ∈ �H−1/2(Γ) : �1 , ϕ�

L2(Γ) = 0
�
, (2.2)

H1/2
∗ (Γ) :=

�
g ∈ H1/2(Γ) :

�
g , ω−1

�
L2(Γ)

= 0
�
. (2.3)

We point out that in the above definitions 1 ∈ H1/2(Γ) and ω−1 ∈ �H−1/2
�0� .
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2.1.2. Boundary integral operators on a segment

Following the notation in (Hsiao & Wendland, 2008), we introduce the standard weakly

singular boundary integral operator (BIO) associated with the Laplacian −∆ as V, and recall

that it is defined by

Vϕ(x) :=

�

Γ

log
1

|x− y|
ϕ(y) dy, x ∈ Γ, ϕ ∈ C∞

0 (Γ) . (2.4)

Additionally, taking the cue from (Jerez-Hanckes & Nédélec, 2012, Sec. 3), we define a

modified version of the weakly singular BIO as

V̄ϕ(x) :=

�

Γ

log
M(x, y)

|x− y|
ϕ(y) dy, x ∈ Γ, ϕ ∈ C∞(Γ) , (2.5)

where

M(x, y) :=
1

2

�
(y − x)2 + (ω(x) + ω(y))2

�
, (x, y) ∈ Γ× Γ .

Analogously, we define the Laplace standard hypersingular operator W and its modified

version W̄ as

W := −
�

d

dx

�∗
◦ V ◦

d

dx
, W̄ := −

d

dx
◦ V̄ ◦

�
d

dx

�∗
. (2.6)

Here, d

dx
is a derivation operator defined distributionally, which gives rise to a mapping

d

dx
: �H1/2(Γ) → �H−1/2

�0� (Γ) with continuous adjoint
�

d

dx

�∗
: H1/2

∗ (Γ) → H−1/2(Γ). The

following fundamental result establishes key continuity properties of the integral operators.

Theorem 2.1 ((Jerez-Hanckes & Nédélec, 2012, Prop. 3.1 and 3.3)). The boundary

integral operators introduced above can be extended to bounded operators

V : �H−1/2
�0� (Γ) → H1/2

∗ (Γ) ,

V̄ : H−1/2(Γ) → �H1/2(Γ) ,
and

W : �H1/2(Γ) → H−1/2(Γ),

W̄ : H1/2
∗ (Γ) → �H−1/2

�0� (Γ).

The significance of this theorem for operator preconditioning is evident: we see that W̄

and V̄ induce continuous bilinear forms on the image spaces of V and W, respectively. In a

sense, Theorem 2.1 answers Question (Q1) for the operators V and W.
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We would like to point out that the pairs V ↔ W̄ and W ↔ V̄ of operators are even

connected by a particularly simple “Calderón identity”, expressed in the next theorem.

Theorem 2.2 ((Jerez-Hanckes & Nédélec, 2012, Prop. 3.6)). The following identities

hold:
V̄ ◦W = Id �H1/2(Γ), V ◦W̄ = Id

H
1/2
∗ (Γ)

, (2.7a)

W̄ ◦ V = Id �H−1/2
�0� (Γ)

, W ◦V̄ = IdH−1/2(Γ) . (2.7b)

However, we emphasize that it is Theorem 2.1 that paves the way for operator precon-

ditioning. The result of Theorem 2.2 merely bolsters confidence that excellent condition

numbers can be achieved.

REMARK 2.1. We would like to alert the reader to the striking differences between the

cases of closed (boundaries) and open curves. In the former the single layer and hypersin-

gular operators map continuously back and forth between H1/2(∂Ω) and H−1/2(∂Ω). These

spaces are in natural duality, so that operator preconditioning can rely on these operators

alone. Conversely, on open curves the “˜-spaces” come into play and we need to modify the

integral operators in order to ensure continuity on the L2-duals of these ˜-spaces.

2.1.3. (Augmented) boundary integral equations

In line with the perspective of operator preconditioning, we introduce the weak form

of the boundary integral equations. First, consider the variational problem for the weakly

singular operator V: given g ∈ H1/2
∗ (Γ) find ϕ ∈ �H−1/2

�0� (Γ) such that

aV(ϕ, ψ) = �Vϕ , ψ� �H−1/2(Γ) = �g , ψ� �H−1/2(Γ) , ∀ ψ ∈ �H−1/2
�0� (Γ). (2.8)

This variational problem is connected with the Dirichlet problem of (1.1), when C is the line

segment {0} × Γ, see (E. P. Stephan & Wendland, 1984).

The variational problem for the hypersingular operator W (Case B) can be stated as:

find u ∈ �H1/2(Γ) such that for f ∈ H−1/2(Γ)

aW(u, w) = �W u , w� �H1/2(Γ) = �f , w� �H1/2(Γ) , ∀ w ∈ �H1/2(Γ). (2.9)
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As demonstrated in (Wendland & Stephan, 1990), this variational problem is satisfied by the

jump of the Dirichlet trace of the solution of the Neumann problem (1.1) in the exterior of

the line segment.

The next two variational problems are not directly related to the boundary value prob-

lems (1.1). Nevertheless, we are going to discuss operator preconditioning also for them. For

the modified weakly singular operator V̄ the associated variational problem reads as follows

(Case C): for g ∈ �H1/2(Γ) find φ ∈ H−1/2(Γ) such that

aV̄(φ, ψ) =
�
V̄φ , ψ

�
H−1/2(Γ)

= �g , ψ�
H−1/2(Γ) ∀ ψ ∈ H−1/2(Γ). (2.10)

Finally the variational problem for the modified hypersingular operator W̄ is: find v ∈

H1/2
∗ (Γ) such that for a given f ∈ �H−1/2

�0� (Γ), it holds

aW̄(v, w) :=
�
W̄v , w

�
H1/2(Γ)

= �f , w�
H1/2(Γ) ∀ w ∈ H1/2

∗ (Γ). (2.11)

Direct Galerkin discretization of aV(ϕ, ψ) and aW̄(w, v) would require trial and test

spaces to comply with the constraints in (2.2) and (2.3). In order to avoid this, we sup-

press the orthogonality restrictions and define two augmented bilinear forms. First introduce

for α ∈ R

�aV[α](ϕ, ψ) := �Vϕ , ψ�+ α �1 , ϕ� �1 , ψ� , ϕ, ψ ∈ �H−1/2(Γ) , (2.12)

with duality pairings �· , ·� on �H−1/2(Γ). Obviously, �aV[α] : �H−1/2(Γ) × �H−1/2(Γ) → C is

continuous for any α ∈ R. Similarly, define for β ∈ R

�aW̄[β](v, w) :=
�
W̄v , w

�
+ β

�
v , ω−1

� �
w , ω−1

�
, v, w ∈ H1/2(Γ) , (2.13)

where �aW̄[β] : H1/2(Γ) × H1/2(Γ) → C is bounded for any β ∈ R. Now we consider

α > 0 and β > 0 fixed and usually drop [α] and [β] from the notation for the bilinear forms.

To begin with we note that augmentation does not change the solutions of the variational

problems. The proof is given in Appendix B.
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Theorem 2.3. The variational problem (2.8) is equivalent to the augmented variational

problem (Case A): find ϕ ∈ �H−1/2(Γ) such that

�aV(ϕ, ψ) = �g , ψ� , ∀ ψ ∈ �H−1/2(Γ) , (2.14)

and the variational problem (2.11) is equivalent to the augmented variational problem (Case

D): find v ∈ H1/2(Γ) such that

�aW̄(v, w) = �f , w�
H1/2(Γ) , ∀ w ∈ H1/2(Γ) . (2.15)

The next result essentially confirms the unique solvability of all (augmented) variational

problems. Its proof relies on the �H−1/2
�0� (Γ)-ellipticity of V and the H1/2

∗ (Γ)-ellipticity of W̄,

both established in (Jerez-Hanckes & Nédélec, 2012, Prop. 3.1).

Theorem 2.4. For any α, β ∈ R+ the (augmented) bilinear forms �aV, aW, aV̄, and �aV̄
are bounded and elliptic on �H−1/2(Γ), �H1/2(Γ), H−1/2(Γ), and H1/2(Γ), respectively.

Thanks to the Lax-Milgram lemma, Theorem 2.4 gives a positive answer to Ques-

tion (Q2) for any conforming choice of trial/test spaces for the Galerkin discretization of

the variational problems (2.9), (2.10), (2.14), and (2.15): throughout the ellipticity constants

will supply possible constants in the inf-sup conditions and those will obviously be indepen-

dent of the finite dimensional spaces.

2.1.4. Generalizations

We argue that the setting of the line segment {0} × Γ is sufficiently general for the

discussion of operator preconditioning, because the variational problems (2.8)– (2.11) can

be lifted to an open curve C defined by a C2-parametrization s : Γ → C with �ṡ(τ)� = 1

for all τ ∈ Γ. For instance, the bilinear form associated with the weakly singular integral

operator on C reads

aV,C(φ, ψ) :=

1�

−1

1�

−1

log
1

�s(x)− s(y)�
φ(s(x))ψ(s(y)) dy dx , φ, ψ ∈ �H−1/2(C) .
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It can be pulled back to Γ, which yields

aV,C(φ, ψ) :=

1�

−1

1�

−1

log
1

�s(x)− s(y)�
φ(x)ψ(y) dy dx , φ, ψ ∈ �H−1/2(Γ) .

Slightly abusing notation, we have kept the same symbol aV,C . Analogous considerations

apply to the other bilinear forms aW,C , aV̄,C , and aW̄,C defined for functions on C. We point

out that it is exactly the bilinear forms aV,C and aW,C that occur in the variational boundary

integral equations associated with (1.1).

PROPOSITION 2.1. The following bilinear forms are compact

aV − aV,C : �H−1/2(Γ)× �H−1/2(Γ) → R , aW − aW,C : �H1/2(Γ)× �H1/2(Γ) → R ,

aV̄ − aV̄,C : H−1/2(Γ)×H−1/2(Γ) → R , aW̄ − aW̄,C : H1/2(Γ)×H1/2(Γ) → R .

PROOF. We focus on the modified weakly singular integral operator V̄ and note that

(aV̄ − aV̄,C)(φ, ψ) =

1�

−1

1�

−1

�
log

�s(x)− s(y)�

|x− y|
+ log

MC(s(x), s(y))

M(x, y)

�
φ(x)ψ(y) dy dx ,

where MC(x,y) :=
1

2

�
�x− y�2 + (dist(x, ∂C) + dist(y, ∂C))2

�
. By Taylor expansion

about x = y and using �ṡ� = 1, we find for x ≈ y

log
�s(x)− s(y)�

|x− y|
= log(1 + ṡ(x) · s̈(x)(x− y) +O(|x− y|2)) = O(|x− y|) ,

log
MC(s(x), s(y))

M(x, y)
= log

�s(x)− s(y)�2 + (ω(x) + ω(y))2

|x− y|2 + (ω(x) + ω(y))2
≤ O(|x− y|) .

Hence, the difference aV̄ − aV̄,C of the bilinear forms is induced by an integral operator

δ V with a piecewise smooth and globally Lipschitz continuous kernel δk = δk(x, y), see

Figure 2.1 for plots of two specimens.

In particular, the kernel δk belongs to W 1,1(Γ × Γ), the Sobolev space of functions

in L1(Γ × Γ) such that its first order weak derivatives are also L1(Γ × Γ). Recalling that

integral operators with L1-kernels induce compact mappings L2(Γ) → L2(Γ), we conclude

that a kernel in W 1,1(Γ × Γ) generates a compact operator L2(Γ) → H1(Γ). Hence, after
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FIGURE 2.1. Plot of kernel δk associated with aV̄ − aV̄,C for s(t) =
�sin(t)
cos(t)

�
(arc

curve, left) and s(t) = t+0.01√
2

�cos(log( t+0.01√
2

))

sin(log( t+0.01√
2

))

�
(spiral, right). The kernels are piece-

wise smooth and continuous.

subtracting a linear function, which is a simple compact modification, we end up with a

compact mapping L2(Γ) → H1
0 (Γ). Thanks to the symmetry of the kernel, it agrees with

its adjoint (modulo a compact perturbation), which will be a compact mapping H−1(Γ) →

L2(Γ). By interpolation between L2(Γ)/H−1(Γ) and H1(Γ)/L2(Γ) we finally infer that δ V

is an integral operator mapping compactly H−1/2(Γ) → H1/2(Γ).

Similar arguments apply to the other differences of bilinear forms. As regards aV − aV,C

and aW − aW,C we can simply appeal to the continuous embeddings �H−1/2(Γ) ⊂ H−1/2(Γ)

and �H1/2(Γ) ⊂ H1/2(Γ). �

A first conclusion we can draw from this theorem is that the stability of Galerkin dis-

cretizations of the bilinear forms on C can be inferred from Theorem 2.4, provided that

the resolution of the trial and test spaces is large enough, cf. (Sauter & Schwab, 2010,

Sect. 4.2.3).
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Further, as compact perturbations of a bilinear form do not affect the asymptotic per-

formance of operator preconditioning, this result confirms that aW̄ is suitable for precondi-

tioning aV,C , aV̄ spawns a preconditioner for aW,C , and so on. Of course, the constants will

depend on the shape of C.

The building blocks of operator preconditioning as they have been assembled so far, are

listed in Table 2.1. The missing pieces, namely the families of boundary element spaces Xh

and Yh, will be specified in the next section.

a b X Y

Case A: �aV,C , cf. (2.14) aW̄,C
�H−1/2(C) H1/2(C)

Case B: aW,C , cf. (2.9) aV̄,C �H1/2(C) H−1/2(C)

Case C: aV̄,C , cf. (2.10) aW,C H−1/2(C) �H1/2(C)

Case D: �aW̄,C , cf. (2.15) aV,C H1/2(C) �H−1/2(C)
TABLE 2.1. (Partial) summary of operator preconditioning strategy for variational
boundary integral equations on an open curve C. For notations see Theorem 1.1.

REMARK 2.2. As another generalization of the variational problems studied in Sec-

tion 2.1.3 we may consider the boundary integral operators associated with boundary value

problems for the Helmholtz equation −∆u− k2u = 0 with wave number k > 0. For the line

segment the corresponding weakly singular and hypersingular operators, Vk and Wk, read

Vk ϕ(x) :=
i

4

�

Γ

H(1)
0 (k |x− y|)ϕ(y) dy , x ∈ Γ , ϕ ∈ C∞

0 (Γ) ,

Wk := −
�

d

dx

�∗
◦ Vk

◦
d

dx
+ k2 Vk ,

(2.16)

where H(1)
0 (ξ) stands for the Hankel function of the first kind (Sauter & Schwab, 2010,

Eq. (3.3)). Since the following representation holds (Shestopalov et al., 2000, Sect. 2.3.1)

H(1)
0 (k |x− y|) =

1

π
log

1

|x− y|
+K(k |x− y|) , (2.17)

one can write the operators as

Vk =
i

4π
V+Hk, and Wk =

i

4π

�
W+k2 V

�
+ Lk , (2.18)
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with compact operators Hk : �H−1/2
�0� (Γ) → H1/2

∗ (Γ) and Lk : �H1/2(Γ) → H−1/2(Γ), as

the convolution kernel K(·) is piecewise smooth and continuous, and integration is over

a bounded domain (Moiseiwitsch, 1977). As a consequence, the bilinear forms for the

Helmholtz counterparts of the variational problems (2.8) and (2.9) will be compact per-

turbations of aV and aW, respectively, cf. (Sauter & Schwab, 2010, Lemma 3.9.8).

2.2. Boundary Element Spaces

We employ low-order mapped piecewise polynomial conforming boundary element spaces

Xh ⊂ X and Yh ⊂ Y for the Galerkin discretization of the various bilinear forms a and b as

listed in Table 2.1 and defined in Section 2.1.4. These spaces are built upon partitions of Γ

and, by virtue of the mapping approach outlined in Section 2.1.4, all considerations can be

confined to Γ.

2.2.1. Primal and dual meshes

First we construct primal and dual meshes of Γ as explained in (Steinbach, 2003, Sect. 2.2),

(Hiptmair, 2006, Section 4), and (Buffa & Christiansen, 2007). We introduce a primal mesh

Γh of the interval Γ and denote its N nodes by −1 =: x1 < x2 < · · · < xN−1 < xN := 1,

N ∈ N.

Based on Γh we build a dual mesh Γ̂h of Γ, whose nodes are the midpoints of intervals

of Γh plus the points −1 and +1. More explicitly, the N + 1 nodes ηi, i = 0, . . . , N , of the

dual mesh Γ̂h are given by

η0 := −1 , ηi :=
1
2(xi + xi+1) , i = 1, . . . , N − 1 , ηN := 1 . (2.19)

2.2.2. Dual pairs of spaces

A positive answer to Question (Q3) entails a judicious construction of dual pairs of

spaces Xh ⊂ X , Yh ⊂ Y in each of the four cases. They will be based on pairs of primal and

dual meshes. Throughout, we write Pm for the space of uni-variate polynomials of degree

≤ m.
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Case A: Discrete spaces for X := �H−1/2, Y := H1/2 (Row 1 of Table 2.1)

Primal: S−1,0(Γh) ⊂ H̃
−1/2(Γ) Dual : S̄0,1(Γ̂h) ⊂ H

1/2(Γ)

η1 η2 η3 η4

...

b1 b2 b3

ηN−4 ηN−3 ηN−2 ηN−1

bN−3 bN−2 bN−1

| | | |
x1
η0

x2 x3 x4
| | | |

xN−2 xN−1 xN
ηN

q1 q2 q3 qN−3 qN−2 qN−1

xN−3

FIGURE 2.2. Case A: X := �H−1/2, Y := H
1/2, piecewise constant basis functions

qj for Xh := S−1,0(Γh) in blue, piecewise linear basis functions (“tent functions”)
bj for Yh := S̄0,1(Γ̂h) in red/green. Note the extended “ramp functions” (in green)
supported in the two leftmost and rightmost intervals of the dual mesh.

This case addresses the variational equation (2.14) with a = �aV using b = �aW̄ as pre-

conditioning bilinear form, cf. Theorem 1.1. The primal and dual boundary element spaces

are given by

Xh := S
−1,0(Γh) = {ϕh ∈ L2(Γ) : ϕh|[xj ,xj+1] ∈ P0, j = 1, . . . , N − 1} ⊂ X ,

Yh := S̄
0,1(Γ̂h) :=




vh ∈ C0(Γ) :
vh|[ηj−1,ηj ] ∈ P1, j = 3, . . . , N − 2

vh|[η0,η2], vh|[ηN−2,ηN ] ∈ P1




 ⊂ Y .

By means of their canonical basis functions the spaces are visualized in Figure 2.2. Obvi-

ously, they have the same dimension, which is N .

Case B: Discrete spaces for X := �H1/2, Y := H−1/2 (Row 2 of Table 2.1)

This setting arises from the variational equation (2.9) where a = aW. Thus, we precon-

dition a by the bilinear form b = aV̄, cf. Theorem 1.1. The primal and dual boundary element

spaces are defined as follows

Xh := S
0,1
0 (Γh) := {vh ∈ C0(Γ), vh|[xj−1,xj ] ∈ P1, j = 2, . . . , N − 1} ⊂ X ,

Yh := S̄
−1,0(Γ̂h) :=




ϕh ∈ L2(Γ) :
ϕh|[ηj ,ηj+1] ∈ P0, j = 2, . . . , N − 3

ϕh|[η0,η2], ϕh|[ηN−2,ηN ] ∈ P0




 ⊂ Y .
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Primal: S0,1
0 (Γh) ⊂ H̃

1/2(Γ) Dual : S̄−1,0(Γ̂h) ⊂ H
−1/2(Γ)

| | | | | | |

qN−4 qN−3 qN−2q1 q2 q3

η1 η2 η3 η4

...

b1 b2 b3

ηN−4 ηN−3 ηN−2 ηN−1

bN−2bN−4 bN−3

x1
η0

x2 x3 x4 xN−3 xN−2 xN−1 xN
ηN

FIGURE 2.3. Case B: X := �H1/2, Y := H
−1/2, piecewise linear basis functions

(“tent functions”) bj for Xh := S
0,1
0 (Γh) in blue, piecewise constant basis functions

qj for Yh := S̄−1,0(Γ̂h) in red/green. Note the extended “characteristic functions”
(in green) for the two leftmost and rightmost intervals of the dual mesh.

Figure 2.3 shows these spaces’ representation in terms of their canonical basis functions.

Note that both spaces have dimension N − 2.

Case C: Discrete spaces for X := H−1/2, Y := �H1/2 (Row 3 of Table 2.1)

Primal: S−1,0(Γh) ⊂ H
−1/2(Γ) Dual: S0,1

0 (Γ̂h) ⊂ H̃
1/2(Γ)

η1 η2 η3 η4

...

b1 b2 b3 b4

ηN−4 ηN−3 ηN−2 ηN−1

bN−4 bN−3 bN−2 bN−1

| | | |
x1
η0

x2 x3 x4
| | |

xN−3 xN−2 xN−1 xN
ηN

q1 q2 q3 qN−3 qN−2 qN−1

|

FIGURE 2.4. Case C: X := H
−1/2,Y := �H1/2, piecewise constant basis functions

qj for Xh := S−1,0(Γh) in blue, piecewise linear basis functions (“tent functions”)
bj for Yh := S

0,1
0 (Γ̂h) in red/green. Note that no basis functions are assigned to η0

and ηN .

In order to perform operator preconditioning for the variational equation (2.10), we em-

ploy b = aW as preconditioning bilinear form. The primal and dual boundary element spaces
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are given by

Xh := S
−1,0(Γh) = {ϕh ∈ L2(Γ) : ϕh |[xj ,xj+1] ∈ P0, j = 1, . . . , N − 1} ⊂ X ,

Yh := S
0,1
0 (Γ̂h) :=




vh ∈ C0(Γ) :
vh|[ηj−1,ηj ] ∈ P1, j = 1, . . . , N,

vh(η0) = vh(ηN) = 0




 ⊂ Y .

This yields dimension N − 1 in both cases, as the reader may see from Figure 2.4, where the

boundary element spaces are illustrated using their canonical basis functions.

Case D: Discrete spaces for X := H1/2, Y := �H−1/2 (Row 4 of Table 2.1)

This last case corresponds to the variational equation (2.11) where a = �aW̄. Hence, we

use bilinear form b = �aV to build the preconditioner. One can define the primal and dual

boundary element spaces as follows

Xh := S
0,1(Γh) = {vh ∈ C0(Γ), vh|[xj−1,xj ] ∈ P1, j = 2, . . . , N} ⊂ X ,

Yh := S
−1,0(Γ̂h) := {ϕh ∈ L2(Γ) : ϕh|[ηj−1,ηj ] ∈ P0, j = 1, . . . , N} ⊂ Y .

As in the previous cases, we provide their canonical representation in Figure 2.5. Observe

both spaces have dimension N .

Primal: S0,1(Γh) ⊂ H
1/2(Γ) Dual : S−1,0(Γ̂h) ⊂ H̃

−1/2(Γ)

| | | | | |

qN−1qN−3 qNq1 q2 q3 q4

η1 η2 η3 η4

...

b1 b2 b3 b4

ηN−4 ηN−3 ηN−2 ηN−1

bN−1bN−3 bN−2

x1
η0

x2 x3 x4 xN−3 xN−2 xN−1 xN
ηN

qN−2

bN

||

FIGURE 2.5. Case D: X := H
1/2, Y := �H−1/2, piecewise linear basis functions

(“tent functions”) bj for Xh := S0,1(Γh) in blue, basis functions qj for Yh :=

S−1,0(Γ̂h), the characteristic functions of the dual mesh intervals, in red/green.

The choices for the discrete spaces Xh and Yh are summarized in Table 2.2, whose rows

correspond to those of Table 2.1.
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TABLE 2.2. Summary of operator preconditioning strategy for variational boundary
integral equations on the interval Γ. For notations see Theorem 1.1.

Continuous Discrete
a b X Y Xh Yh

Case A �aV �aW̄ �H−1/2(Γ) H1/2(Γ) S−1,0(Γh) S̄0,1(Γ̂h)

Case B aW aV̄ �H1/2(Γ) H−1/2(Γ) S
0,1
0 (Γh) S̄−1,0(Γ̂h)

Case C aV̄ aW H−1/2(Γ) �H1/2(Γ) S−1,0(Γh) S
0,1
0 (Γ̂h)

Case D �aW̄ �aV H1/2(Γ) �H−1/2(Γ) S0,1(Γh) S−1,0(Γ̂h)

2.3. Stability of Discrete Duality Pairings

Now we tackle Question (Q3) for the pairs (Xh, Yh) of discrete spaces defined for Cases

A–D in Section 2.2.2. We closely follow the policy developed by O. Steinbach in (Steinbach,

2001, 2002, 2003) for the case when X = H1/2(Γ) (Case D), and we are going to extend his

results to the other remaining cases.

Since we aim for mesh-uniform stability results, we consider an infinite family of meshes

{Γh}h∈H of Γ, whose members are labelled by h from the index set H and serve as primal

meshes. Concrete specimens of such families will be presented in Section 2.3.3. All of the

constants introduced below can be chosen independently of h. Suppressing the dependence

on h we continue using the notations xi and ηj to designate the nodes of the primal mesh Γh

and its associated dual mesh Γ̂h, see Section 2.2.1. We also keep N for the total number of

nodes of Γh.

2.3.1. Assumptions on mesh geometry

The stability results will hinge on certain assumptions on local properties of the meshes

Γh, h ∈ H. From the elaborations of Section 2.3.2 it will become clear that cases A, D, and

B,C are connected by duality. Therefore, only two sets of assumptions on the geometry of

the meshes will suffice, corresponding to the cases A/D and B/C.

Below, we are going to use the same notations for entities that will be different for differ-

ent cases. The concrete meaning should always be clear from the context of the current case

being discussed. Moreover, in what follows, many notations are borrowed from (Steinbach,
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2003). In particular, we designate by τl := (xl, xl+1) a mesh interval of the primal mesh Γh

with length hl := xl+1 − xl, l = 1, . . . , N − 1.

Case D (Case A)

In this case we set ĥ1 :=
1
3h1, ĥk :=

1
3(hk−1 + hk), k = 2, . . . , N − 1, ĥN := hN−1.

Then we define the following 2 × 2 matrices associated with the intervals of the primal

mesh

G̃l =
hl

8



 3 1

1 3



 , Gl =
hl

6



 2 1

1 2



 , Hl =



 ĥ1/2
l

0

0 ĥ1/2
l+1



 , (2.20)

for l = 1, . . . , N − 1.

Case B (Case C)

In this case we define ĥk :=
1
3(hk + hk+1), k = 1, . . . , N − 2.

Further, for l = 2, . . . , N −2, the 2×2-matrices G̃l, Gl, and Hl are defined exactly as in

(2.20). Besides, for mesh intervals adjacent to the endpoints −1 and 1 these matrices reduce

to the following 1× 1-matrices (numbers)

G̃l =
hl

2
, Dl =

hl

3
, Hl = ĥl , for l = 1, N − 1 . (2.21)

Using the notations just introduced, we now state geometric assumptions on the meshes

Γh valid for all cases. Throughout, l runs through the maximum possible index interval,

and Ml ∈ {1, 2} designates the size of the matrices G̃l, Gl, and Hl, from (2.20) and (2.21),

respectively.

ASSUMPTION 2.1 (Assumption 1.1 in (Steinbach, 2003)). There are constants cG1 , cG2 >

0 independent of h and l such that

cG1 (Dlxl,xl) ≤ (Glxl,xl) ≤ cG2 (Dlxl,xl), ∀xl ∈ R
Ml , (2.22)

where Dl := diag(Dl).
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ASSUMPTION 2.2 (Assumption 2 in (Steinbach, 2003)). We can find a constant c0 > 0

such that

(HlG̃
T

l
H−1

l
xl,xl) ≥ c0 · (Dlxl,xl), ∀xl ∈ R

Ml (2.23)

for all l and h.

2.3.2. Stability Results

Now we establish the crucial stability results for the four cases A-D. Their proof will be

elaborated in several steps throughout this section.

Theorem 2.5. Let Assumptions 2.1 and 2.2 be satisfied. Then, for the following combi-

nations of discrete spaces

Case A: Xh = S−1,0(Γh)⊂ X = �H−1/2(Γ), Yh = S̄0,1(Γ̂h) ⊂ Y = H1/2(Γ),

Case B: Xh = S
0,1
0 (Γh) ⊂ X = �H1/2(Γ), Yh = S̄−1,0(Γ̂h)⊂ Y = H−1/2(Γ),

Case C: Xh = S−1,0(Γh)⊂ X = H−1/2(Γ), Yh = S
0,1
0 (Γ̂h) ⊂ Y = �H1/2(Γ),

Case D: Xh = S0,1(Γh) ⊂ X = H1/2(Γ), Yh = S−1,0(Γ̂h)⊂ Y = �H−1/2(Γ),

the discrete inf-sup condition:

sup
vh∈Yh

|�wh , vh�|

�vh�Y
≥

1

cs
�wh�X , ∀ wh ∈ Xh. (2.24)

holds with a positive constant cs independent of h.

Given the assertion of this theorem, all the abstract assumptions of Theorem 1.1 have

now been verified. Theorem 2.1 provides the continuity of the bilinear forms, Theorem 2.4

uniform stability of the (discrete) variational problems, and, finally, Theorem 2.5 the sta-

bility of the discrete duality pairing. Hence, for all the concrete choices listed in Table 2.2

operator preconditioning will yield preconditioners that achieve bounded condition numbers

independently of the resolution of the mesh: they are asymptotically optimal.

We split the proof of Theorem 2.5 into the individual cases. Moreover, inherent depen-

dencies suggest to treat them in the order to D-B-C-A.
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Proof of Theorem 2.5 for Case D

As stated before, this case follows as a Corollorary of (Steinbach, 2003, Theorem 2.1

and 2.2).

Proof of Theorem 2.5 for Case B

In order to prove this case, we extend the stability results developed for Case D (Steinbach,

2003, Theorem 2.2), using an analogous policy. We start with an assertion of L2-stability of

the discrete pairing, see Appendix C for a proof using elementary local estimates.

Lemma 2.1. The L2-stability holds

sup
ψh∈S−1,0(Γ̂h)

|�ψh , wh�|

�ψh�L2(Γ)

≥ cst �wh�L2(Γ) , ∀wh ∈ S
0,1
0 (Γh), ∀h ∈ H, (2.25)

where cst =
1
2 .

Next, consider the standard Galerkin L2-Projection Qh : L2(Γ) → S
0,1
0 (Γh), and the

generalized Galerkin L2-Projection Q̃h : L2(Γ) → S
0,1
0 (Γh), for a given u ∈ L2(Γ) defined

according to

�Qhu , vh�L2(Γ) = �u , vh�L2(Γ) , ∀vh ∈ S
0,1
0 (Γh), (2.26)

�
Q̃hu , φh

�

L2(Γ)
= �u , φh�L2(Γ) , ∀φh ∈ S

−1,0(Γ̂h) . (2.27)

Lemma 2.1 ensures that Q̃h is well-defined, because it guarantees unique solvability of

(2.27). It also furnishes the stability estimate
���Q̃hu

���
L2(Γ)

≤
1

cst
�u�

L2(Γ) , for all u ∈ L2(Γ) . (2.28)

Additionally, we want to prove the H1-stability of Q̃h and, following (Steinbach, 2003,

Section 1.5), resort to a quasi-interpolation operator. For the sake of clarity, the proof of the

following will also be provided in Appendix C.
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PROPOSITION 2.2. Let Assumptions 2.1 and 2.2 be satisfied. Then the L2-projection

Q̃h : H1
0 (Γ) → Xh = S

0,1
0 (Γh) defined in (2.27) satisfies

���Q̃hu
���
H1(Γ)

≤ c̃st �u�H1(Γ) , ∀ u ∈ H1
0 (Γ), (2.29)

with c̃st a positive constant independent of h.

Now we are in a position to prove the key stability results for Case B.

Proof of Theorem 2.5 for Case B. �H1/2(Γ) can be obtained by interpolating between

L2(Γ) and H1
0 (Γ), see (Lions & Magenes, 1972, Thm. 11.7). Thus, by interpolation of

bounded linear operators we obtain from (2.28) and Proposition 2.2 that
���Q̃hu

���
�H1/2(Γ)

≤ cB �u� �H1/2(Γ) , ∀ u ∈ �H1/2(Γ), h ∈ H . (2.30)

Introduce the projection operators Πh : �H1/2(Γ) → S−1,0(Γ̂h) ⊆ H−1/2(Γ), satisfying

�Πhu , wh�L2(Γ) = �u , wh� �H1/2(Γ) , ∀wh ∈ S
0,1
0 (Γh), h ∈ H, (2.31)

where �u , wh� �H1/2(Γ) denotes the �H1/2(Γ)-inner product. By the dual norm definition and

continuity of Q̃h, we have

�Πhu�H−1/2(Γ) = sup
0 �=w∈ �H1/2(Γ)

���Πhu, w�L2(Γ)

��
�w� �H1/2(Γ)

= sup
0 �=w∈ �H1/2(Γ)

����Πhu, Q̃hw�L2(Γ)

���
�w� �H1/2(Γ)

= sup
0 �=w∈ �H1/2(Γ)

����u, Q̃hw� �H1/2(Γ)

���
�w� �H1/2(Γ)

≤ cB sup
0 �=w∈ �H1/2(Γ)

����u, Q̃hw� �H1/2(Γ)

���

�Q̃hw� �H1/2(Γ)

�Πhu�H−1/2(Γ) ≤ cB�u� �H1/2(Γ).
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So now, for any wh ∈ S
0,1
0 (Γh) we can define vh := Πhwh, and by the above inequality

we obtain the assertion

�wh� �H1/2(Γ) =

����wh , wh� �H1/2(Γ)

���
�wh� �H1/2(Γ)

=

����wh , Πhwh�L2(Γ)

���
�wh� �H1/2(Γ)

≤ cB

����wh , Πhwh�L2(Γ)

���
�Πhwh�H−1/2(Γ)

≤ cB sup
0 �=vh∈S−1,0(Γ̂h)

����wh , vh�L2(Γ)

���
�vh�H−1/2(Γ)

.

Proof of Theorem 2.5 for Case C

We appeal to an analogue of Lemma 2.1 to define Q̃2
h
: L2(Γ) → S

0,1
0 (Γ̂h) for a given

u ∈ L2(Γ) as solution of the variational problem
�
Q̃2

h
u , φh

�

L2(Γ)
= �u , φh�L2(Γ) , ∀φh ∈ S

−1,0(Γh) . (2.32)

Along the same lines as above one can prove that
���Q̃2

h
u
���

�H1/2(Γ)
≤ cC �u� �H1/2(Γ) , ∀ u ∈ �H1/2(Γ), h ∈ H . (2.33)

The arguments are very similar to those employed in the proof of Proposition 2.2 and (2.28)

for Q̃h. Next, using the dual norm definition and (2.33), we have for all vh ∈ S−1,0(Γh) that

�vh�H−1/2(Γ) = sup
0 �=w∈ �H1/2(Γ)

����vh , w�L2(Γ)

���
�w� �H1/2(Γ)

= sup
0 �=w∈ �H1/2(Γ)

����
�
vh , Q̃2

h
w
�

L2(Γ)

����
�w� �H1/2(Γ)

≤ cC sup
0 �=w∈ �H1/2(Γ)

����
�
vh , Q̃2

h
w
�

L2(Γ)

����
���Q̃2

h
w
���

�H1/2(Γ)

≤ cC sup
0 �=wh∈ �S0,1(Γ̂h)

����vh , wh�L2(Γ)

���
�wh� �H1/2(Γ)

,

which amounts to the assertion in Case C.

Proof of Theorem 2.5 for Case A

The assertion for Case A follows in a similar way from Case D as Case C from Case B.
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2.3.3. Local mesh conditions

For important families of meshes that feature local refinement towards the endpoints

of Γ, we demonstrate that the constraints imposed by Assumption 2.2 are not severe. As

explained above, we need consider only the cases D and B.

In the interest of reducing this mesh condition to an eigenvalue problem, we use the

symmetric form of Assumption 2.2 as in (Steinbach, 2003, Assumption 2.1): with

GS

l
:=

1

2

�
HlG̃

T

l
H−1

l
+H−1

l
G̃lHl

�
, (2.34)

(2.23) becomes equivalent to

(GS

l
xl,xl) ≥ c0 · (Dlxl,xl), for all xl ∈ R

Ml . (2.35)

We will study the following non-uniform meshes, all of which are symmetric to x = 0:

• For odd N and q > 1 geometric meshes whose nodes are

xk :=






−1 , for k = 1 ,

−1 + q−
N−1

2 +k−1 , for k = 2, . . . , N−1
2 + 1 ,

1− q
N−1

2 −k+1 , for k = N−1
2 + 2, . . . , N − 1 ,

1 , for k = N .

(2.36)

• For even N and grading factor α > 0 algebraically graded meshes defined by

xk :=






−1 +
�
2 k−1

N−1

�α
, for k = 1, . . . , N2 ,

1−
�
2− 2 k−1

N−1

�α
, for k = N

2 + 1, . . . , N .
(2.37)

• Chebychev meshes with nodes

xk := − cos
�
π k−1

N−1

�
, k = 1, . . . , N . (2.38)
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Case D

As can easily be deduced from the definition of the matrices from (2.20), Assumption

2.2 boils down to

λmin



 6
�

ĥl

ĥl+1
+
�

ĥl+1

ĥl�
ĥl

ĥl+1
+
�

ĥl+1

ĥl
6





= 6−




�

ĥl

ĥl+1

+

�
ĥl+1

ĥl



 ≥
16

3
c0 for l = 1, . . . , N − 1 .

Hence, if this minimal eigenvalue is positive, we can set

c0 = min
l=1,...,N−1

3

16



6−




�

ĥl

ĥl+1

+

�
ĥl+1

ĥl







 . (2.39)

Note that the minimum will be attained for extremal values of the ratios ĥl : ĥl+1.

Case B

As mentioned in Section 2.3.1, we get the same matrices (2.20) for l = 2, . . . , N − 2.

Hence, for the internal mesh intervals, we obtain the same formulas as in Case D. For the

terminal intervals we merely have to compare the numbers from (2.21) and find that this just

means c0 ≤ 3
2 .

Hence, for all cases we have to check the existence of c0 > 0 given by (2.39).

We introduce the abbreviation rl := ĥl

ĥl+1
and note that thanks to symmetry, only the

mesh intervals in [−1, 0] have to be examined.

For the geometrically graded mesh (2.36) we find hl = q−
N−1

2 +l−1(q−1), k = 1, .., N−1
2 ,

and end up with

rl =






1 + q for l = 1 ,

q for l = 2, . . . , N−1
2 + 1 .
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From this we conclude

c0 =
3

16

�
6−

�
1 + q −

�
1 + q

−1
�
> 0 , if q < 16 + 12

√
2 ≈ 32.9 .

For the algebraically graded mesh (2.37) we obtain

rl =






2α for l = 1 ,

(l+1)α−(l−1)α

(l)α−(l−2)α for l = 2, . . . , N2 .

Here, rl attains its extremal value for l = 1 and we find

c0 =
3

16
(6− 2α/2 −

1

2α/2
) > 0 , if α < 2

log(3 +
√
2)

log 2
≈ 4.28 .

For the Chebychev meshes, we find

rl =






sin2( π
2(N−1) )

sin2( π
N−1 )

for l = 1, N − 1 ,

sin( πl
N−1 )

sin(π(l−1)
N−1 )

for l = 2, . . . , N − 2 ,

which attains its extremal values for l = 1, N − 1. Furthermore, λmin �
7
2 as N → ∞ and

we can chose c0 =
21
32 .
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3. IMPLEMENTATION

3.1. Quadrature

For numerical integration we use Gauss-Legendre quadrature. In order to explain how

it was implemented, let us consider Legendre polynomials defined as follows

P0 = 1, P1 = x and Pn+1 =
(2n+ 1)xPn(x)− nPn−1(x)

n+ 1
.

Also introduce

Lk =
1

P �
n+1(x)

Pn+1

(x− zk)
,

where zk is k-th root of the Legendre’s polynomial. Then, Gauss-Legendre quadrature with

Nq quadrature points is defined as

I(h) ∼

� 1

−1

hn(t)dt =
Nq�

k=0

h(zk)wkdt

where wk :=
� 1

−1 Lk(s)ds =
2

(1−z
2
k)(P

�
Nq+1(zk))

2 .

Suppose we are interested in integrating the following
�

b

a

f(x)dx.

Since Gauss-Legendre quadrature is designed to integrate over [−1, 1], we need to introduce

the following change of variable

f(x) = f(
(b− a)t+ (a+ b)

2
),

dx =
(b− a)

2
dt.

Finally, by introducing the following auxiliary variables

xk =
(b− a)zk + b+ a

2
, k = 0, . . . , Nq,
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the quadrature is calculated by

�
b

a

f(x)dx ∼

Nq�

k=0

f(xk)
b− a

2
wk.

This quadrature is implemented for simple integration following the above. For the two-

dimensional case, we use a product tensor of one-dimensional quadratures. However, to

avoid the singularity of the integrands at x = y, we consider Nq points for one axis and

Nq + 1 points for the other one.

3.2. Trial and Test Spaces

Recall from Section 2.2 (Figures 2.2, 2.5, 2.4, and 2.3), the following finite dimensional

basis defined over the primal mesh

S
−1,0(Γh) := span{qk}N−1

k=1 ⊆ H−1/2(Γ),

S
0,1
0 (Γh) := span{bk}N−2

k=1 ⊆ �H1/2(Γ),

S
0,1(Γh) := span{bk}Nk=1 ⊆ H1/2(Γ),

where qi and bj are p.w. constant and p.w. linear functions, respectively. The reader should

notice we use the same basis for H−1/2(Γ) and �H−1/2(Γ), hence there is no ambiguity in

the above definition for qk. However, even though bk will always refer to “hat functions”, it

admits two different connotations. For this reason, whenever we use this notation, we will

explicit its meaning.

3.3. Boundary Integral Operator’s implementation

3.3.1. Weakly singular operator

We recall from (2.8) the variational form of the weakly singular for ϕ ∈ �H−1/2
�0� (Γ)

aV(ϕ, ψ) = �Vϕ , ψ� �H−1/2(Γ) ∀ ψ ∈ �H−1/2
�0� (Γ).
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The (N − 1) × (N − 1) Galerkin Matrix corresponding to this variational form can be

expressed as follows

Vh [i, j] = �V qi, qj�

=

� 1

−1

� 1

−1

− log |x− y|1supp{qi}(x)1supp{qj}(y)dxdy

=

�
xj+1

xj

�
xi+1

xi

− log |x− y|dxdy.

One can calculate this integral analytically by using the following formula,

−

�
b

a

�
d

c

log |x− y| dxdy =− {
(d− a)2

4
(2 log |d− a| − 1)−

(d− b)2

4
(2 log |d− b| − 1)

−
(c− a)2

4
(2 log |c− a| − 1) +

(c− b)2

4
(2 log |c− b| − 1)

− (b− a)(d− c)}.

Moreover, since limz→0 z2 log |z| = 0, this expression allows us to get rid of the singularity.

However, since matlab does not calculate limits, the implementation takes into account the

special cases of the diagonal and subdiagonals of Vh and eliminates the corresponding terms.

This formula reduces the calculations associated to this matrix. Unfortunately, when

h → 0, it is no longer a stable way to compute this integral because cancellation comes into

play. We tackle this difficulty by using a semi-analytical formula. This is to calculate the

first integral analytically employing the next formula

f(y) :=

�
d

c

− log |x− y| dx = −(d− y) log |d− y|+ (c− y) log |c− y|+ (d− c),

(3.1)

and then integrate
�

b

a
f(y)dy by using the aforementioned Gauss-Legendre Quadrature.
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3.3.2. Hypersingular operator

The weak formulation of the hypersingular operator for u ∈ �H1/2(Γ) is given by

aW(u, w) = �W u , w� �H1/2(Γ) ∀ w ∈ �H1/2(Γ).

Moreover, by integrating by parts, it can be written as

aW(u, w) = �V u� , w�
� �H1/2(Γ) ∀ w ∈ �H1/2(Γ).

Then, its Galerkin Matrix is

Wh [i, j] = �V b�
i
, b�

j
�, bi, bj ∈ S

0,1
0 (Γh)

where

∀ k = 1, . . . , N − 2, b�
k
(x) :=






ba
k
:= 1

xk−xk−1
x ∈ [xk−1, xk] ,

bb
k
:= −

1
xk+1−xk

x ∈ (xk, xk+1]

0 else.

From this, we can compute our (N − 2)× (N − 2) matrix as

Wh [i, j] = �V b�
i
, b�

j
�

= ba
i
ba
j
Vh [i− 1, j − 1] + ba

i
bb
j
Vh [i− 1, j]

+ bb
i
ba
j
Vh [i, j − 1] + bb

i
bb
j
Vh [i, j] ,

Finally, because its entries rely on the implementation of Vh, it will depend on the mesh if

this matrix is computed analytically or semi-analitically, as it was explained in the previous

section.

3.3.3. Modified weakly singular operator

The associated variational form (see (2.10)) for ϕ ∈ H−1/2(Γ) is

aV̄(φ, ψ) =
�
V̄φ , ψ

�
H−1/2(Γ)

∀ ψ ∈ H−1/2(Γ).
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Its corresponding Galerkin Matrix is given by

V̄h [i, j] = �V̄qi, qj�

=

� 1

−1

� 1

−1

log
M(x, y)

|x− y|
1supp{qi}(x)1supp{qj}(y)dxdy

=

�
xj+1

xj

�
xi+1

xi

log
M(x, y)

|x− y|
dxdy,

Now, by defining

Mh [i, j] =

�
xj+1

xj

�
xi+1

xi

logM(x, y)dxdy.

and splitting the logarithm, we implemented V̄h ∈ R
(N−1)×(N−1) by

V̄h = Mh + Vh,

where Mh is calculated by quadrature and Vh as explained in section 3.3.1.

3.3.4. Modified hypersingular operator

From (2.11) we know the weak formulation of the modified hypersingular operator for

u ∈ H1/2(Γ) is

aW̄(u, w) =
�
W̄u , w

�
H1/2(Γ)

=
�
V̄u� , w��

H1/2(Γ)

for all w ∈ H1/2(Γ), as it it shown in (Jerez-Hanckes & Nédélec, 2012, Prop. 3.1). Now,

since S0,1(Γh) = span{bk}N1 , we have

b�1(x) :=





−

1
x2−x1

, x ∈ [x1, x2]

0, else
, b�

N
(x) :=






1
xN−xN−1

x ∈ [xN−1, xN ]

0 else
,

b�
k
:=






ba
k

x ∈ [xk−1, xk]

bb
k

x ∈ (xk, xk+1]

0 else

, ∀ k = 2, . . . , N − 1.
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Consequently, the associated Galerkin Matrix has entries

W̄h [i, j] = �V b�
i
, b�

j
�

= ba
i
ba
j
V̄h [i− 1, j − 1] + ba

i
bb
j
V̄h [i− 1, j]

+ bb
i
ba
j
V̄h [i, j − 1] + bb

i
bb
j
V̄h [i, j] ,

where W̄h ∈ R
N×N . Lastly, we point out that we implemented this operator considering the

above formula and the decomposition of V̄h explained in the previous section.

3.4. Calderón-type Identities and Strong Formulations

In the interest of numerically testing the Calderón-type identities proposed by Jerez-

Hanckes and Nédélec (Jerez-Hanckes & Nédélec, 2012), we also need to implement strong

formulations of our operators.

We deduce the discrete strong formulation for the weakly singular and modified weakly

singular operators from their definition in (2.4) and (2.5). Then, by using our trial basis and

ϕh(y) =
�

N−1
k=1 ϕkqk(y), we derive

[V(ϕh)]h =

� 1

−1

− log |x− y| 1supp{ql}(x)1supp{qk}(y)ϕkdx,

�
V̄(ϕh)

�
h
=

� 1

−1

log
M(x, y)

|x− y|
1supp{qi}(x)1supp{qj}(y)ϕjdx,

which can be rewritten as

[V(ϕh)]h = VS

h
ϕ
h

�
V̄(ϕh)

�
h
= V̄

S

h
ϕ
h
,

where VS

h
, V̄

S

h
∈ R

N×(N−1), and ϕ
h
= (ϕ1, . . . , ϕN−1)T .

VS

h
was implemented using the analytical formula (3.1), while V̄S

h
was computed through

Gauss-Legendre quadrature.
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For the remaining operators, first recall d

dx
: �H1/2(Γ) → �H−1/2

�0� (Γ) and
�

d

dx

�∗
: H1/2

∗ (Γ) →

H−1/2(Γ) as defined in Section 2.1.2. It is worth mentioning the first operator corresponds

to the classical derivative while the second should be considered in a distributional sense.

Nevertheless, for implementation purposes, they behave the same. Since we have N

mesh points and N − 1 mesh elements, we define the discrete operator D ∈ R
(N−1)×N

through the following decomposition

Dh = ∆x−1L

where

∆x−1 = diag(
1

xi+1 − xi

) ∈ R
(N−1)×(N−1),

and

L =





−1 1 0 · · · 0

0 −1 1 · · · 0
... . . . ...

0 · · · 0 −1 1




, ∈ R

(N−1)×(N).

Then, combining the above and the definitions in (2.6), we can write the strong formula-

tions of the hypersingular and modified hypersingular operators in the discrete proxy as the

following matrix products

WS

h
:= −Dh V

S

h
Dh , W̄

S

h
:= −DhV̄

S

h
Dh .

3.5. Tensors for the Augmented Operators

Since kerVh �= ∅ and kerW̄h �= ∅, the preconditioners arising from V and W̄ are singular.

Therefore, the augmented operators allow us not only to avoid the related space restrictions

but also correct the matrices required for our preconditioning strategy. These corrections are

done via adding tensor operators defined in (2.12) and (2.13). We will call them OV and OW̄

respectively, honoring the operator they rectify. In the aim of implementing these tensors,
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we introduce the following auxiliary vectors

f1 [j] := �1 , qj� = diff(x), qj ∈ S
−1,0(Γh),

g 1
ω
[j] :=

�
1

ω
, bj

�
, bj ∈ S

0,1(Γh).

Then, we reduce our implementation to the following vector product

OV := f1f
T

1 ∈ R
N−1, OW̄ := g 1

ω
gT

1
ω

∈ R
N .

3.6. Dual Parity Operators

We point out that the dual parity operator t from Theorem 1.1 agrees with the inner

product in L2(Γ). The spaces Xh and Yh in Cases A-D are chosen as defined in Section 2.2,

see Table 2.2 for a summary.

The following subsections develop the explicit computation of Th for each setting. Since

we use the locally supported basis functions illustrated in Figures 2.2– 2.5, the resulting

“primal-dual mass matrices” Th are tridiagonals.

3.6.1. X := �H−1/2(Γ), Y := H1/2(Γ) (Case A)

Since t : �H−1/2(Γ) → H1/2(Γ), we have t := �ψh , wh�, where ψh ∈ S−1,0(Γh) and

wh ∈ S̄0,1(Γ̂h). Therefore, it’s discretized version is given by

Th [i, j] := �qi, bj�,

which leads us to the following expression

Th =
1

4





h1 b1 · · · 0 . . . 0 0
... . . . . . . ...

0 · · · ai di bi · · · 0
... . . . . . . ...

0 0 · · · 0 · · · an−1 hn−1





,
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where ai =
h
2
i−1

hi−1+hi
, bi =

h
2
i+1

hi+hi+1
, and di :=

�
h
2
i+2hi−1hi

hi−1+hi
+ h

2
i+2hihi+1

hi+hi+1

�
.

3.6.2. X := �H1/2(Γ), Y := H−1/2(Γ) (Case B)

In this case t : �H1/2(Γ) → H−1/2(Γ), consequently wh ∈ S
0,1
0 (Γh), ψh ∈ S̄−1,0(Γ̂h),

and t := �wh , ψh�.

Moreover, its associated (N − 2)× (N − 2) matrix has entries

Th =
1

8





h1 + 3c1 h2 0 0 0 0 · · · 0 0
... . . . . . . ... 0

0 0 · · · hi 3ci hi+1 · · · 0 0

0
... . . . . . . ...

0 0 · · · 0 0 0 0 hN−2 3cN−2 + hN−1





, (3.2)

where hi = xi+1 − xi > 0 and ci := hi + hi+1 > 0.

3.6.3. X := H−1/2(Γ), Y := �H1/2(Γ) (Case C)

Now, due to ψh ∈ S−1,0(Γh) and wh ∈ S
0,1
0 (Γ̂h), the Galerkin Matrix corresponding to

t : H−1/2(Γ) → �H1/2(Γ) is given by t := �ψh , wh�.

We explicitly compute it as

Th =
1

4





h1 + c1 b1 0 0 0 0 · · · 0 0

a2 d2 b2 0 0 0 · · · 0 0

0
... . . . . . . ... 0

0 0 · · · ai di bi · · · 0 0

0
... . . . . . . ... 0

0 0 · · · 0 0 0 an−2 dn−2 bn−2

0 0 · · · 0 0 0 0 an−1 hn−1 + cn−1





,

where c1 =
h
2
1+2h2h1

h1+h2
, cn−1 =

h
2
n−1+2hn−1hn−2

hn−1+hn−2
di =

h
2
i+2hi−1hi

hi−1+hi
+ h

2
i+2hihi+1

hi+hi+1
, ai =

h
2
i−1

hi−1+hi
, and

bi =
h
2
i+1

hi+hi+1
.
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3.6.4. X := H1/2(Γ), Y := �H−1/2(Γ) (Case D)

In this last case, the dual parity operator t : H1/2(Γ) → �H−1/2(Γ) satisfies t :=

�wh , ψh�, where wh ∈ S0,1(Γh), and ψh ∈ S−1,0(Γ̂h). From this, the associated “primal-

dual mass matrix” has entries

Th [i, j] := �bi, qj�,

which can be expressed as follows

Th =
1

8





3h1 h1 0 0 0 0 · · · 0 0

h1 3d2 h2 0 0 0 · · · 0 0

0
... . . . . . . ... 0

0 0 · · · hi−1 3sI hi · · · 0 0

0
... . . . . . . ... 0

0 0 · · · 0 0 0 hn−2 3dn−1 hn−1

0 0 · · · 0 0 0 0 hn−1 3hn−1





,

where di = hi−1 + hi = hi = xi+1 − xi > 0.

3.7. Helmholtz Equation Integral Operators Implementation

The boundary integral operators corresponding to the Helmholtz equation were already

introduced in Remark 2.2. We recall from (2.18) that they admit the next splitting

Vk =
i

4π
V+Hk, Wk =

i

4π

�
W+k2 V

�
+ Lk .

Therefore, as Vh and Wh were addressed in Sections 3.3.1 and 3.3.2, the remaining step to

complete the implementation of our Helmholtz BIOs is to compute the following matrices:

Hk

h
[i, j, ] =

�
Hk qi , qj

�
,

Lk
h
[i, j, ] =

�
Lk bi , bj

�
, bi, bj ∈ S

0,1
0 (Γh).
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Since Hk and Lk are compact, we use Gauss-Legendre quadrature to calculate their corre-

sponding mattrices. For the sake of completeness, we dedicate the remaining of this Section

to show how we derived the decomposition for Wk .

Consider the usual definition of this operator

Wk α(x) :=
i

4

∂

∂nx

�

Γ

u(x)
∂

∂nx�
H(1)

0 (k |x− x�
|) dx�, ∀ x ∈ Γ,

By defining r =
�

(x− x�)2 + (y − y�)2, we can rewrite the following

∂H(1)
0 (k |x− x�|)

∂nx�
=

�
∂H(1)

0 (kr)

∂y�

�

|y�=0+

, ∀ x ∈ Γ,

Then
�
∂H(1)

0 (kr)

∂y�

�

|y�=0+

=
i

4

H(1)
1 (kr)

r
ky,

where r =
�

(x− x�)2 + (y)2. Analogously, since the integral and the differential operator

are interchangeable for this case, we derive

∂

∂nx

∂H(1)
0 (kr)

∂nx�
=

�
∂

∂y

i

4

H(1)
1 (kr)

r
ky

�

|y=0+

=
ik

4

H(1)
1 (k |x− x�|)

|x− x�|
.

Then, by Hankel function’s properties we have the following identity

ik

4

H(1)
1 (k |x− x�|)

|x− x�|
=

i

4

�
k2H(1)

0 (k |x− x�
|)−

d

dx

d

dx�H
(1)
0 (k |x− x�

|)

�
,

from where

�
Wk u , v

�
:=

i

4

�

Γ

∂

∂nx

�

Γ

u(x)
∂

∂nx�
H(1)

0 (k |x− x�
|) dx�dx

=
ik2

4

�

Γ

�

Γ

H(1)
0 (k |x− x�

|)u(x)v(x�)dx�dx

−
i

4

�

Γ

�

Γ

d

dx

d

dx�H
(1)
0 (k |x− x�

|)u(x)v(x�)dx�dx.
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Finally, using integration by parts in the second term, we obtain

�
Wk u , v

�
=

i

4
k2

�

Γ

�

Γ

H(1)
0 (k |x− x�

|)u(x)v(x�)dx�dx

+
i

4

�

Γ

�

Γ

H(1)
0 (k |x− x�

|)u�(x)v�(x�)dx�dx,

which is

�
Wk u , v

�
=

i

4
k2

�
Vk u , v

�
+

i

4

�
Vk u� , v�

�
.

Then, the proposed decomposition for Wk follows from this result combined with the de-

composition for Vk.

3.8. Norms

Numerical errors are calculated by using the discrete energy norms inherited by the

continuity and coercivity of our BIOs as shown in (Jerez-Hanckes & Nédélec, 2012; Jerez-

Hanckes & Nédélec, 2011). We explicitly implemented them as follows

�ϕh�
2
�H−1/2
�0� (Γ)

= ϕT

h
Vh ϕ

h
, ∀ ϕh =

N−1�

k=1

ϕkqk ∈ S
−1,0(Γh), (3.3)

�φh�
2
H−1/2(Γ) = φT

h
V̄hφ

h
, ∀ φh =

N−1�

k=1

φkqk ∈ S
−1,0(Γh), (3.4)

�uh�
2
�H1/2(Γ) = uT

h
Wh uh

, ∀ uh =
N−2�

k=1

ukbk ∈ S
0,1
0 (Γh), (3.5)

�vh�
2

H
1/2
∗ (Γ)

= vT
h
W̄hvh, ∀ vh =

N�

k=1

vkbk ∈ S
0,1(Γh), (3.6)

where the underlined symbols represent the vector containing the coefficients of their corre-

sponding functions. For instance, ϕ
h
= (ϕ1, . . . , ϕN−1)T denotes the coefficients for ϕh.
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4. NUMERICAL EXPERIMENTS

We now provide numerical tests using three families of meshes: (i) uniform meshes

with equidistant nodes, (ii) Chebychev meshes according to (2.38),which gives a smooth

local refinement around the singularities, and (iii) algebraically graded meshes with grading

factor α = 3 as specified in (2.37). This last mesh also allows us to achieve a local refinement

around the two end points (McLean & Steinbach, 1999).

We recall from Section 2.3.1 that these three meshes satisfy the mesh conditions required

for our stability results. 1.

4.1. Calderón-type Identities

On the one hand, we need to validate the implementation of our BIOs by numerically

testing them. In order to achieve this purpose, we will derive systems of equations for each

BIO by using the series expansion of their kernels and the Chebychev polynomial’s proper-

ties summarized in Appendix A. Then we will compare the results obtained by MATLAB’s

command “ \ ” with our analytical solution.

On the other hand, we are interested in numerically solving the integral equations for

the Laplace kernel using the Calderón-type identities defined in Proposition 2.2 as inverses.

Recall these inverses arise from the strong formulation of our BIOs. We will compare so-

lutions obtained via the direct application of the inverses over the right hand side and their

standard discrete variational forms and mandatory matrix inversion. They will be identified

by subscripts ·d and ·v, respectively.

For each method, we will provide the obtained errors and their corresponding slopes.

These slopes are calculated using

τ(k) =
log(Errork+1)− log(Errork)

log(Nk+1)− log(Nk)
. (4.1)

1The numerical experiments presented in this section were performed with MATLAB R2013a, 64-bit.
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4.1.1. Weakly singular operator

We consider the next formula

Vϕ = πx, (4.2)

where the exact solution is ϕ(x) = x√
1−x2 . We calculate the error using the energy norm

combined with Chebyshev polynomial’s properties as follows

�ϕ− ϕh�V = �V(ϕ− ϕh) , (ϕ− ϕh)�

= �Vϕ , ϕ� − �Vϕh , ϕh�

(4.2) =
�
πx ,

x
√
1− x2

�
− �Vϕh , ϕh�

=
π2

2
− ϕt

h
Vh ϕ

h
.

(4.3)

The results documented in Table 4.1 and Figure 4.1 validate both methods and the imple-

mentation of Vh. You may observe the direct approach performs in a poorer way, which can

be explained by the fact that it uses a strong formulation of the BIOs.

TABLE 4.1. Errors obtained for Vh. The first part shows the error obtained by indi-
rect solving (ϕv = Vh \g

h
), while the second part exhibits our results when applying

the inverse deduced from Proposition 2.2 to right hand side (ϕd = W̄
S

hπx).

N Uniform mesh Chebychev mesh Algebraic mesh
�ϕ−ϕv� �H−1/2

�0�
τ �ϕ−ϕv� �H−1/2

�0�
τ �ϕ−ϕv� �H−1/2

�0�
τ

128 1.3395e-01 -0.5041 1.9303e-02 -1.006 4.0350e-03 -1.445
256 9.4451e-02 -0.5020 9.6138e-03 -1.003 1.4819e-03 -1.452
512 6.6694e-02 -0.5010 4.7975e-03 -1.001 5.4165e-04 -1.465

1024 4.7127e-02 -0.5005 2.3964e-03 -1.002 1.9626e-04 -1.487
2048 3.3312e-02 -0.5002 1.1970e-03 -0.9969 7.0019e-05 -1.531
4096 2.3551e-02 5.9976e-04 2.4230e-05

�ϕ−ϕd� �H−1/2
�0�

τ �ϕ−ϕd� �H−1/2
�0�

τ �ϕ−ϕd� �H−1/2
�0�

τ

128 6.7883e-02 -0.2351 9.3583e-02 -0.5290 9.3186e-02 -0.5699
256 5.7674e-02 -0.3579 6.4854e-02 -0.5148 6.2772e-02 -0.5377
512 4.5004e-02 -0.4138 4.5389e-02 -0.5075 4.3243e-02 -0.5196

1024 3.3783e-02 -0.4445 3.1929e-02 -0.5038 3.0166e-02 -0.5099
2048 2.4825e-02 -0.4631 2.2518e-02 -0.5019 2.1183e-02 -0.5051
4096 1.8010e-02 1.5902e-02 1.4926e-02

In addition, it is worth recalling from Section 3.3 that due to cancellation phenomena,

the operators used for the algebraic mesh differ from the other meshes. Hence, the fact that
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its convergence rate for ϕv is slightly above the theoretical bound might be caused by the

numerical errors introduced by the quadrature. Although it is not a proof of our hypothesis,

Table 4.2 shows how this slope is regularized by increasing the number of quadrature nodes.

TABLE 4.2. Errors slopes τ obtained for Vh when using algebraic mesh and different
numbers of quadrature nodes Nq.

N
Nq 128 256 512 1024 2048
2 -1.485 -1.529 -1.641 -2.075 -1.114
3 -1.453 -1.467 -1.495 -1.552 -1.699
4 -1.445 -1.452 -1.465 -1.487 -1.531
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FIGURE 4.1. Plot of errors obtained by both methods for Vh. We use black to show
the results when using a uniform mesh, blue for the Chebyshev mesh, and red for the
algebraically graded mesh.

4.1.2. Hypersingular operator

Now we propose the following equation

Wψ = π, (4.4)

which has ψ(x) =
√
1− x2 as it exact solution. This time, the errors shown in Table 4.3 and

Figure 4.2, are calculated using the next error measurement
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�ϕ− ϕh�W =
π2

2
− ϕt

h
Wh ϕ

h
,

which has been derived by using the same ideas as in (4.3).

TABLE 4.3. Errors obtained for Wh. The first part shows the error obtained by
indirect solving (ϕv = Wh \g

h
), while the second part exhibits our results when

applying the inverse deduced from Proposition 2.2 to right hand side (ϕd = V̄
S

hπ).

N Uniform mesh Chebychev mesh Algebraic mesh
�ϕ−ϕv� �H1/2(Γ) τ �ϕ−ϕv� �H1/2(Γ) τ �ϕ−ϕv� �H1/2(Γ) τ

128 1.3395e-01 -0.5041 1.9303e-02 -1.006 4.1464e-03 -1.359
256 9.4451e-02 -0.5020 9.6138e-03 -1.003 1.6168e-03 -1.205
512 6.6694e-02 -0.5010 4.7975e-03 -1.001 7.0152e-04 -0.9466

1024 4.7127e-02 -0.5005 2.3964e-03 -1.001 3.6399e-04 -0.7394
2048 3.3312e-02 -0.5003 1.1970e-03 -0.9970 2.1803e-04 -0.6109
4096 2.3551e-02 5.9976e-04 1.4276e-04

�ϕ−ϕd� �H1/2(Γ) τ �ϕ−ϕd� �H1/2(Γ) τ �ϕ−ϕd� �H1/2(Γ) τ

128 8.4742e-02 -0.3185 7.4689e-02 -0.5510 9.3182e-02 -0.5700
256 6.7956e-02 -0.3944 5.0978e-02 -0.5250 6.2769e-02 -0.5377
512 5.1702e-02 -0.4334 3.5428e-02 -0.5124 4.3241e-02 -0.5196

1024 3.8285e-02 -0.4562 2.4838e-02 -0.5061 3.0164e-02 -0.5099
2048 2.7906e-02 -0.4705 1.7488e-02 -0.5031 2.1182e-02 -0.5051
4096 2.0141e-02 1.2340e-02 1.4925e-02
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FIGURE 4.2. Plot of errors obtained by both methods for Wh. We use black to show
the results when using a uniform mesh, blue for the Chebyshev mesh, and red for the
algebraically graded mesh.
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One would expect the convergence rates obtained for the algebraically graded mesh to be

better than the ones corresponding to the Chebychev mesh. However, since Wh ponderates

the entries of Vh by b�
i

as shown in Section 3.3.2, the cancellation phenomena observed for

the algebraic mesh might explain this behaviour.

4.1.3. Modified weakly singular operator
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FIGURE 4.3. Plot of errors obtained by both methods for V̄h. We use black to show
the results when using a uniform mesh, blue for the Chebyshev mesh, and red for the
algebraically graded mesh.

We test this operator using the next formula

V̄φ = πx
√
1− x2, (4.5)

since its exact solution is φ = 2x. We develop the following error measurement

�ϕ− ϕh�V̄ =
�
V̄(ϕ− ϕh) , (ϕ− ϕh)

�

(4.5) =
�
πx

√
1− x2 , 2x

�
−
�
V̄ϕh , ϕh

�

=
π2

4
− ϕt

h
V̄hϕ

h
,

by using the energy norm, (4.5) and Chebyshev polynomial’s orthogonality.
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The results in Table 4.4, which are also summarized in Figure 4.3, support the imple-

mentation of our operator and the effectiveness of the proposed Calderón type identity.

TABLE 4.4. Errors obtained for V̄h. The first part shows the error obtained by indi-
rect solving (ϕv = V̄h\g

h
), while the second part exhibits our results when applying

the inverse deduced from Proposition 2.2 to right hand side (ϕd = WS

h
πx

√
1− x2).

N Uniform mesh Chebychev mesh Algebraic mesh
�ϕ−ϕv�H−1/2(Γ) τ �ϕ−ϕv�H−1/2(Γ) τ �ϕ−ϕv�H−1/2(Γ) τ

128 7.8061e-03 -0.7537 1.5284e-03 -1.510 3.4716e-03 -0.0858
256 4.6296e-03 -0.7510 5.3649e-04 -1.508 3.2711e-03 -0.4019
512 2.7508e-03 -0.7515 1.8859e-04 -1.510 2.4757e-03 -0.4663

1024 1.6339e-03 -0.7533 6.6203e-05 -1.518 1.7919e-03 -0.4864
2048 9.6930e-04 -0.7559 2.3120e-05 -1.535 1.2791e-03 -0.4940
4096 5.7398e-04 7.9765e-06 9.0822e-04

�ϕ−ϕd�H−1/2(Γ) τ �ϕ−ϕd�H−1/2(Γ) τ �ϕ−ϕd�H−1/2(Γ) τ

128 1.8481e-01 -0.5877 4.6544e-02 -1.009 5.6165e-02 -0.9986
256 1.2297e-01 -0.5706 2.3132e-02 -1.004 2.8110e-02 -0.9899
512 8.2801e-02 -0.5553 1.1531e-02 -1.002 1.4153e-02 -0.9773

1024 5.6347e-02 -0.5423 5.7567e-03 -1.001 7.1887e-03 -0.9553
2048 3.8692e-02 -0.5318 2.8762e-03 -1.001 3.7073e-03 -0.9178
4096 2.6763e-02 1.4375e-03 1.9624e-03

4.1.4. Modyfied hypersingular operator

Finally, consider the following equation

W̄ψ =
x

√
1− x2

(4.6)

which has ψ = πx as it exact solution.

We exhibit the obtained errors for the variational and direct approach in Table 4.5 and

Figure 4.4. Once again, both methods show the expected convergence rates, due to the

solution’s regularity. However, even though they support the effectiveness of the proposed

Calderón type identity, we still observe a smaller convergence by this method.

45



TABLE 4.5. Errors obtained for W̄h. The first part shows the error obtained by indi-
rect solving (ϕv = W̄h\g

h
), while the second part exhibits our results when applying

the inverse deduced from Proposition 2.2 to right hand side (ϕd = VS

h
x/

√
1− x2).

N Uniform mesh Chebychev mesh Algebraic mesh
�ϕ−ϕv�H1/2(Γ) τ �ϕ−ϕv�H1/2(Γ) τ �ϕ−ϕv�H1/2(Γ) τ

128 1.2908e-02 -0.7772 1.3678e-02 -0.9984 5.0877e-03 -1.499
256 7.5316e-03 -0.7289 6.8462e-03 -0.9994 1.7994e-03 -1.492
512 4.5444e-03 -0.6840 3.4246e-03 -0.9997 6.3954e-04 -1.480
1024 2.8287e-03 -0.6441 1.7126e-03 -0.9999 2.2922e-04 -1.457
2048 1.8101e-03 -0.6102 8.5638e-04 -0.9999 8.3492e-05 -1.414
4096 1.1858e-03 4.2821e-04 3.1335e-05

�ϕ−ϕd�H1/2(Γ) τ �ϕ−ϕd�H1/2(Γ) τ �ϕ−ϕd�H1/2(Γ) τ

128 4.4294e-01 -0.4203 6.3383e-02 -0.9328 8.8522e-03 -1.321
256 3.3100e-01 -0.4280 3.3203e-02 -0.9369 3.5443e-03 -1.342
512 2.4602e-01 -0.4345 1.7344e-02 -0.9411 1.3985e-03 -1.361
1024 1.8205e-01 -0.4399 9.0335e-03 -0.9451 5.4442e-04 -1.378
2048 1.3421e-01 -0.4444 4.6920e-03 -0.9487 2.0946e-04 -1.392
4096 9.8625e-02 2.4309e-03 7.9798e-05
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FIGURE 4.4. Plot of errors obtained by both methods for W̄h. We use black to show
the results when using a uniform mesh, blue for the Chebyshev mesh, and red for the
algebraically graded mesh.

4.2. Preconditioning

Theory merely gives estimates with undetermined constants. In order to get clues of their

sizes, we report the practical performance of operator preconditioning for the line segment,
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for all cases listed in Table 2.2, and our three different families of meshes. As elaborated in

Section 2.3.3, all these meshes meet the geometric constraints of Assumptions 2.1, 2.2. The

parameters α and β in the augmented bilinear forms from (2.12) and (2.13) were simply set

to 1 throughout.

As stipulated by Theorem 1.1 the matrix Mh := T−1
h
BhT

−H

h
was used as a precon-

ditioner for the Galerkin matrix Ah; please refer to Theorem 1.1 for the definition of the

matrices. The spaces Xh and Yh in Cases A-D are chosen as defined in Section 2.2, see

Table 2.2 for a summary.

In the numerical experiments we monitor the spectral condition numbers κ(D−1
h
Ah) and

κ(MhAh) for sequences of meshes with increasing number of nodes. Here Dh stands for

the diagonal part of Ah. We also plot the spectrum of MhAh. In addition, we recorded

the number of iterations it took the preconditioned conjugate gradient method2 to achieve a

reduction of the residual norm by a factor 1010. Initial guess was zero and the right hand side

vectors had entries +1 in its upper half, −1 for the remaining components.

4.2.1. Weakly singular operator (Case A, row 1 of Table 2.2)

In this case Ah is related to the weakly singular operator V, whereas Bh arises from

the modified hypersingular operator W̄. The results are shown in Table 4.6 and reveal that

the new operator preconditioning strategy achieves condition numbers that are essentially

independent of the resolution of the meshes. Moreover, in Figure 4.5 we observe pronounced

and mesh-independent clustering of the eigenvalues of the preconditioned matrices.

For comparison we include results obtained for operator preconditioning with “opera-

tors of opposite order” in the spirit of (McLean & Steinbach, 1999). There Bh is replaced

with Galerkin matrices associated with the unmodified hypersingular operator W. For its

discretization we used two different boundary element spaces:

2We used the implementation of the preconditioned conjugate gradient method provided by MATLAB’s pcg
function. For the Helmholtz equation we used MATLAB’s gmres function instead.
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FIGURE 4.5. Plot of spectrum for Vh preconditioned by Mh (Case A, row 1 of
Table 2.2) for our three meshes. We use black triangles to show the eigenvalues
when using a uniform mesh, blue circles for the Chebychev mesh, and red squares
for the algebraically graded mesh.

(i) We may choose the trial and test space S
0,1
0 (�Γh) on the dual mesh (from Case C,

see Figure 2.4) and obtain the Galerkin matrix �BC

h
. This spawns the precondition-

ing matrix �MC

h
:= T−1

h
�BC

h
T−T

h
.

(ii) We may also refrain from enforcing zero boundary conditions and use the space

S̄0,1(Γ̂h) on the dual mesh (from Case A, see Figure 2.2). However, by doing

this, we will end up with a singular Galerkin matrix �BA

h
. Consequently, we have

to regularize it by adding a rank-1 correction that removes the kernel. To state

it, we use the same notation as in Section 3.5 and we write g1 and g 1
ω

for the

column vectors that arise from the Galerkin discretization of the linear forms v �→

�1 , v� and v �→ �ω−1 , v�, respectively, on S̄0,1(Γ̂h). Then the correction can be

implemented by adding the matrices g1gT

1 or g 1
ω
gT

1
ω

. This yields the following

matrix representations of the preconditioners:

�MA

1h := T−1
h

�
�BA

h
+ g1g

T

1

�
T−T

h
, �MA

ωh
:= T−1

h

�
�BA

h
+ g 1

ω
gT

1
ω

�
T−T

h
,

For all these preconditioners we still expect a logarithmic growth of κ(�M∗
∗hAh). The mea-

sured condition numbers are listed in Table 4.7 and display the expected moderate growth as

the meshes are refined. Obviously, judged by the condition numbers, our new preconditioner
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Mh is superior to any �M∗
∗h. The gain in terms of speed of convergence of the CG iteration is

not as impressive.

TABLE 4.6. Performance of preconditioners for Vh (Case A, row 1 of Table 2.2).

Uniform mesh Chebychev mesh Algebraic mesh
N D−1

h
Ah

�MC

h
Ah MhAh D−1

h
Ah

�MC

h
Ah MhAh D−1

h
Ah

�MC

h
Ah MhAh

Spectral Condition numbers κ
128 272.8 26.56 2.117 314.2 57 1.836 392.7 94.62 1.760
256 547.7 30.51 2.167 660.8 64.53 1.852 845.6 108.2 1.765
512 1098 33.95 2.210 1375 72.03 1.865 1794 122.1 1.771

1024 2198 37.11 2.248 2841 79.62 1.878 3765 136.2 1.776
2048 4397 40.13 2.282 5837 87.34 1.890 7843 150.7 1.781
4096 8797 43.08 2.313 11950 95.17 1.901 16240 165.4 1.785

Numbers of PCG iterations
128 56 11 10 67 13 10 63 15 8
256 77 12 10 98 14 10 90 15 8
512 106 12 10 140 14 11 127 15 8

1024 145 12 10 205 14 11 177 16 8
2048 201 12 10 290 15 11 249 16 8
4096 273 12 10 417 15 11 347 16 8

TABLE 4.7. Results for operator preconditioning of Vh (Case A) with different (reg-
ularized) discrete versions of the unmodified hypersingular operator W

Uniform mesh Chebychev mesh Algebraic mesh
N �MA

1hAh
�MA

ωh
Ah

�MC

h
Ah

�MA

1hAh
�MA

ωh
Ah

�MC

h
Ah

�MA

1hAh
�MA

ωh
Ah

�MC

h
Ah

Spectral Condition numbers κ
128 7.113 7.035 26.56 9.661 9.638 57 16.18 16.17 94.62
256 7.714 7.648 30.51 11.61 11.59 64.53 20.38 20.38 108.2
512 8.370 8.311 33.95 13.75 13.75 72.03 25.08 25.08 122.1
1024 9.082 9.028 37.11 16.12 16.12 79.62 30.29 30.29 136.2
2048 9.845 9.796 40.13 18.68 18.67 87.34 36.01 36.01 150.7
4096 10.66 10.61 43.08 21.43 21.42 95.17 42.25 42.25 165.4

Numbers of PCG iterations
128 11 11 11 13 12 13 15 14 15
256 11 11 12 14 13 14 16 15 15
512 12 11 12 14 14 14 16 16 15
1024 12 11 12 15 14 14 17 16 16
2048 12 12 12 16 15 15 18 17 16
4096 12 12 12 16 15 15 18 17 16

4.2.2. Hypersingular operator (Case B, row 2 of Table 2.2)

Now, Ah is the Galerking matrix corresponding to the hypersingular operator W, and

the modified weakly singular operator V̄ gives rise to Bh. As before, we also compare
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with the sub-optimal “opposite order” preconditioner �Mh obtained by replacing V̄ with the

unmodified operator V.

TABLE 4.8. Performance of preconditioners for for Wh (Case B, row 2 of Table 2.2).

Uniform mesh Chebychev mesh Algebraic mesh
N D−1

h
Ah

�MhAh MhAh D−1
h

Ah
�MhAh MhAh D−1

h
Ah

�MhAh MhAh

128 62.1 6.16 1.335 46.46 13.27 4.729 42.07 54.72 12.89
256 124.8 7.003 1.335 93.28 16.36 4.731 84.51 69.87 12.89
512 250.2 7.902 1.335 186.9 19.79 4.732 169.7 86.95 12.89

1024 500.9 8.861 1.335 374.2 23.58 4.732 341.3 105.8 12.90
2048 1002 9.879 1.335 748.8 27.71 4.732 682.8 126.7 12.90
4096 2006 10.96 1.335 1499 32.2 4.732 1366 149.6 12.90

Numbers of PCG iterations
128 28 9 9 26 13 9 27 16 10
256 40 9 8 37 14 9 39 17 10
512 58 10 8 52 15 9 57 17 10

1024 84 10 8 74 16 9 110 18 10
2048 119 12 8 101 16 9 156 18 10
4096 169 11 8 136 16 9 222 20 10
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FIGURE 4.6. Plot of spectrum for Wh preconditioned by Mh (Case B, row 2 of
Table 2.2) for our three meshes. We use black triangles to show the eigenvalues
when using a uniform mesh, blue circles for the Chebychev mesh, and red squares
for the algebraically graded mesh.

Mesh-independent performance of the new preconditioner and its superiority to other

approaches is confirmed by the data of Table 4.8. These results are consistent with the plot

of the spectrum for MhAh, which is shown in Figure 4.6.
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4.2.3. Modified weakly singular operator (Case C, row 3 of Table 2.2)

Although one would not try to solve an equation associated to V̄, it is interesting to also

study the preconditioning strategy related to the case when Ah and Bh arise from V̄ and W,

respectively. For this reason do not show PCG results for this operator. Spectral condition

numbers are documented in Table 4.9, while the obtained spectrum is shown in Figure 4.7.

We observe the growth of the condition number is once again minimal.

TABLE 4.9. Spectral condition numbers obtained for V̄h (Case C, row 3 of Table 2.2).

Uniform mesh Chebychev mesh Algebraic mesh
N κ(D−1

h
Ah) κ(MhAh) κ(D−1

h
Ah) κ(MhAh) κ(D−1

h
Ah) κ(MhAh)

128 210 8.726 154 11.78 111.5 13.01
256 420.4 9.195 308.5 11.82 223.8 13.01
512 840 9.442 616.7 11.83 448.1 13.01
1024 1677 9.569 1232 11.83 895.9 13.01
2048 3348 9.634 2459 11.83 1812 13.01
4096 6684 9.666 4911 11.84 3675 13.01
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FIGURE 4.7. Plot of spectrum for V̄h preconditioned by Mh (Case C, row 3 of
Table 2.2) for our three meshes. We use black triangles to show the eigenvalues
when using a uniform mesh, blue circles for the Chebychev mesh, and red squares
for the algebraiclly graded mesh.

4.2.4. Modified hypersingular operator (Case D, row 4 of Table 2.2)

For this final case, Ah is related to W̄ and Bh comes from V. Once again, since the

operator is not related to a BVP, we are just interested in studying the obtained condition
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numbers and eigenvalues. The results in Table 4.10 and Figure 4.8 support that our pre-

conditioner is effective. Notice that for the Algebraicly graded mesh, the behaviour of the

eigenvalues differs from the other two meshes. This might be explained for the special code

considerations included in that case to avoid cancellation.

TABLE 4.10. Spectral condition numbers obtained for W̄h (Case D, row 4 of Table 2.2).

Uniform mesh Chebychev mesh Algebraic mesh
N κ(D−1

h
Ah) κ(MhAh) κ(D−1

h
Ah) κ(MhAh) κ(D−1

h
Ah) κ(MhAh)

128 54.17 1.695 51.53 1.693 72.14 1.741
256 108.9 1.694 103.3 1.693 144.2 1.744
512 218.4 1.694 206.8 1.693 288.2 1.744
1024 437.3 1.693 413.9 1.693 576.4 1.745
2048 875.2 1.693 828.1 1.693 1153 1.745
4096 1751 1.693 1657 1.693 2305 1.745
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FIGURE 4.8. Plot of spectrum for W̄h preconditioned by Mh (Case D, row 4 of
Table 2.2) for our three meshes. We use black triangles to show the eigenvalues
when using a uniform mesh, blue circles for the Chebychev mesh, and red squares
for the algebraiclly graded mesh.

4.2.5. Boundary integral operators for Helmholtz equation

In order to precondition the Galerkin matrices spawned by Vk

h
and Wk

h
from (2.16), we

use the splittings (2.18) and pursue the same strategy that we used for Vh (case A) and Wh

(case B), respectively. For the sake of clarity, we will denote by Mh the preconditioner
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arising from W̄h, and �Mh the one related to V̄h. Table 4.11 gives measurements of num-

bers of GMRES iterations for the diagonally scaled and operator preconditioned Helmholtz

operators using uniform mesh and for different wave numbers k. Observe that for fixed k,

the number of iterations for each operator becomes almost independent of N , when our new

operator preconditioning approach is applied. This is also documented in Figures 4.9, 4.10,

and 4.11, which reveals relative error convergence results for the GMRES implementations

already described.

TABLE 4.11. GMRES iteration counts for Helmholtz operators using k = 1, 4, 8 as
wave numbers.

Case A Case B
N V1

h
Mh V

1
h

V4
h

Mh V
4
h

V8
h

Mh V
8
h

W1
h

�Mh W
1
h

W4
h

�Mh W
4
h

W8
h

�Mh W
8
h

128 43 10 44 14 44 19 26 9 24 12 21 16
256 55 10 55 14 56 19 38 8 36 12 31 16
512 69 10 70 14 70 19 56 8 51 12 44 16

1024 87 11 87 14 87 19 79 8 73 12 63 15
2048 109 11 109 14 109 19 112 7 104 12 89 15
4096 136 11 136 14 136 19 158 7 147 11 126 15
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FIGURE 4.9. Helmholtz GMRES results when using an uniform mesh and wave
number k = 1.
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FIGURE 4.10. Helmholtz GMRES results when using an uniform mesh and wave
number k = 4.
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FIGURE 4.11. Helmholtz GMRES results when using an uniform mesh and wave
number k = 8.
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5. CONCLUSIONS AND FUTURE RESEARCH

We have proven the amenability of the Jerez-Hanckes and Nédélec Calderón-type iden-

tities to act as optimal preconditioners on a straight line and its extension to any smooth

curve. Moreover, we observed the desired behavior in the numerical tests in Section 4.2 and

its applicability to compact perturbations, as we showed for the Helmholtz Equation BIOs in

section 4.2.5.

We have also extended the existing stability results in order to apply the preconditioning

theory to globally non-uniform meshes satisfying some local assumptions. Furthermore, we

have shown in Section 2.3.3 that the required local mesh conditions are satisfied by a large

family of meshes. This is important, as mentioned in the Introduction, since the singularities

of the solutions of the weakly singular operator behave as 1/
√
d where d is the distance to the

endpoints. Therefore, allowing the use of adaptive meshes means allowing the achievement

of more accuracy. In addition, these stability results are relevant for applications besides

preconditioning.

However, we believe the convergence rates achieved in Section 4.1 by applying the in-

verses arising from the Calderón-type identities might be suboptimal. Even though, we did

not carry out the analysis of the error sources related to the strong fomulations of our opera-

tors, further investigation can be done by studying the effect of the underlying interpolation

and projection operators, and by improving the existing code to reduce these numerical er-

rors.

Further work relates to the implementation of the Calderón-type identities and the de-

velopment of an analogous framework in a spectral discretization scheme in order to tackle

high frequency problems.

On the other hand, motivated by our developments, Professor Nédélec’s group is cur-

rently working on carrying out the extension of the Calderón-type identities to screens in

three-dimensions using the same concepts. Moreover, we have begun working in applying

their preliminaries results for preconditioning. However, as promising as it might be, this is

still ongoing and future work.
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APPENDIX A. CHEBYSHEV POLYNOMIALS AND PROPERTIES.

Here we list some useful identities described in (Jerez-Hanckes & Nédélec, 2012, Sec-

tion 4.1.2) involving the Chebyshev polynomials of the first and second kind, i.e. Tn(x) and

Un(x), respectively. These are polynomials of degree n, defined for x = cos θ ∈ (−1, 1) as

Tn(x) = cosnθ and Un(x) =
sin (n+ 1) θ

sin θ
, (A.1)

Futhermore, they satisfy the following recurrence relations

Pn(x) = 2xPn−1(x) − Pn−2(x) , n = 2, 3, . . . , (A.2)

with initial conditions T0(x) = 1, T1(x) = x, U0(x) = 1 and U1(x) = 2x.

Introduce the weight function ω as

ω(x) :=
√
1 − x2 for x ∈ (−1, 1). (A.3)

The first kind Chebychev polynomials Tn are orthogonal with respect to ω−1:

� 1

−1

Tn(x)Tm(x)ω
−1(x) dx =






0 n �= m ,

π/2 n = m �= 0 ,

π n = m = 0 ,

(A.4)

while the second kind Chebychev polynomials Un verify

� 1

−1

Un(x)Um(x)ω(x) dx =






0 n �= m,

π/2 n = m �= 0.
(A.5)

Moreover, these identities allow us to define the next weighted function spaces and

norms

L2
1/ω :=

�
u measurable : �f�21/ω :=

� 1

−1

|f(x)|2 ω−1(x) dx < ∞

�
,

L2
ω

:=

�
u measurable : �f�2

ω
:=

� 1

−1

|f(x)|2 ω(x) dx < ∞

�
.
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Now, after introducing all of their notation, we are in a position to recall one of their

main results:

Theorem A.1. For a given x ∈ I , the following expansions on Chebychev polynomials

as a function in L2
1/ω hold:

log
1

|x− y|
= log 2 +

∞�

n=1

2

n
Tn(x)Tn(y), ∀y ∈ I,

log
M(x, y)

|x− y|
=

∞�

n=1

2w(x)w(y)

n
Un−1(x)Un−1(y), ∀y ∈ I, x �= y.

Moreover, for all (x, y) ∈ I × I , with x �= y, their derivatives have the following

expressions

1

|x− y|2
=

∞�

n=1

2nUn−1(x)Un−1(y),

d2

dxdy
log

M(x, y)

|x− y|
=

∞�

n=1

2n
Tn(x)Tn(y)

w(x)w(y)
.

In addition, we summarize the relation between the Chebyshev series and the Sobolev

spaces related to our BIOs.

• We express ϕ ∈ �H−1/2(Γ) by:

ϕ(x) =
∞�

n=1

ϕnTn(x)ω
−1(x), (A.7)

where ϕn(x) =






1

π
(ωϕ, T1)1/ω if n = 1,

2

π
(ωϕ, Tn)1/ω if n ≥ 1.

And we calculate its norm as

�φ� �H−1/2(Ω) =

����ϕ2
1 +

∞�

n=2

1

n− 1
ϕ2
n
. (A.8)
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• Expand g ∈ H1/2(Γ) as

g(x) =
∞�

n=1

gnTn(x), (A.9)

where gn(x) =






1

π
(g, T1)1/ω if n = 1,

2

π
(g, Tn)1/ω if n ≥ 1.

Its norm can be calculated by

�g�
H1/2(Ω) =

����g21 +
∞�

n=2

(n− 1)g2
n
. (A.10)

• Consider φ ∈ H−1/2(Γ), one can expand this function by

φ(x) =
∞�

n=1

φnUn(x),

where φn(x) =






1

π
(φ, U1)ω if n = 1,

2

π
(φ, Un)ω if n ≥ 1.

,

and its norm is given by the following formula

�φ�
H−1/2(Ω) =

����
∞�

n=1

1

n
φ2
n
.

• Since f ∈ �H1/2(Γ) we can write

f(x) =
∞�

n=1

fnUn(x)ω(x),
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where fn(x) =






1

π
(f, U1)ω if n = 1,

2

π
(f, Un)ω if n ≥ 1.

,

where the norm can be calculated by

�f� �H1/2(Ω) =

����
∞�

n=1

nf 2
n
.

REMARK A.1. The following equalities hold

��ω−1
��

�H−1/2(Γ)
= �1�

H1/2(Γ) = 1, (A.11)

due to (A.7) – (A.10),

ω−1(x) = 1
T0(x)

ω(x)
∈ �H−1/2(Γ),

and

1(x) = 1T0(x) ∈ H1/2(Γ).
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APPENDIX B. PROOF OF THEOREM 2.3

Recall we first want to prove that the augmented operators pencil �V[α] and �̄W[β] are

bounded and elliptic in �H−1/2(Γ) and H1/2(Γ), respectively, for α, β ∈ R+ bounded.

Notice that �aV[α] is well defined by continuity and linearity of both V and the duality

product, thus showing the boundedness of �V[α]. One can derive

�1 , ϕ� ≤ �1�
H1/2(Γ) �ϕ� �H−1/2(Γ) ,

(Remark A.1) ≤ �ϕ� �H−1/2(Γ) .

From this we obtain the following bound

|�Vϕ , φ�+ α �1 , ϕ� �1 , φ�| ≤ cV2 �ϕ� �H−1/2(Γ) �φ� �H−1/2(Γ)

+ α �ϕ� �H−1/2(Γ) �φ� �H−1/2(Γ)

= (cV2 + α) �ϕ� �H−1/2(Γ) �φ� �H−1/2(Γ) ,

and we define the continuity constant

c
�V
2 (α) := cV2 + α. (B.1)

Now, consider the unique decomposition for ϕ ∈ �H−1/2(Γ):

ϕ = ϕ̃+ ζω−1, where �ϕ ∈ �H−1/2
�0� (Γ) and ζ = �1 , ϕ� . (B.2)
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Given �ϕ ∈ �H−1/2
�0� (Γ), one can prove that �V[α]�ϕ = V�ϕ ∈ H1/2

∗ (Γ) in the weak sense, whence�
�V[α]�ϕ , ω−1

�
is equal to zero. From this we deduce

�
�V[α]ϕ , ϕ

�
=

�
�V[α](�ϕ+ ζω−1) , �ϕ+ ζω−1

�

=
�
�V[α]�ϕ , �ϕ

�
+ 2ζ

�
�V[α]�ϕ , ω−1

�
+ ζ2

�
�V[α]ω−1 , ω−1

�

= �V �ϕ , �ϕ�+ ζ2
�
�V[α]ω−1 , ω−1

�

≥ cV1 ��ϕ�
2
�H−1/2(Γ) + ζ2

�
�V[α]ω−1 , ω−1

�

≥ min
�
cV1 ,

�
�V[α]ω−1 , ω−1

���
��ϕ�2�H−1/2(Γ) + ζ2

�
,

(B.3)

where cV1 is the ellipticity constant of V (Jerez-Hanckes & Nédélec, 2012). Since Vω−1 =

π log 2 = Cω, Cω being a positive constant, the duality product on the second term on the

right-hand side in (B.3) is equal to
�
�V[α]ω−1 , ω−1

�
=

�
Vω−1 , ω−1

�
+ α

�
1 , ω−1

�2

= π2(log 2 + α) > 0,
(B.4)

by Chebychev’s polynomial’s properties on I . Futhermore, the decomposition (B.2) satisfies

�ϕ�2�H−1/2(Γ) =
���ϕ+ ζω−1

��2
�H−1/2(Γ)

≤

�
��ϕ� �H−1/2(Γ) + ζ

��ω−1
��

�H−1/2(Γ)

�2

≤ 2
�
��ϕ�2�H−1/2(Γ) + ζ2

��ω−1
��2

�H−1/2(Γ)

�

(by Remark A.1) ≤ 2
�
��ϕ�2�H−1/2(Γ) + ζ2

�
. (B.5)

Then, combining (B.4), (B.3), and (B.5), ellipticity follows with constant

c
�V
1 (α) :=

min
�
cV1 , π

2 (log 2 + α)
�

2
, for all α > 0. (B.6)

On the other hand, using similar steps to those employed in (B.1), the sesquilinear form

aW̄[β](w, v) has a continuity constant equal to

c
�̄W
2 (β) := cW̄2 + β, (B.7)
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for β fixed. Moreover, for v ∈ H1/2(Γ), the following decomposition holds

v = v∗ + η where v∗ ∈ H1/2
∗ (Γ) and η =

�
v , ω−1

�
. (B.8)

Since W̄ρ = 0 for any constant ρ, we consider KerW̄ = span{1}. In order to show ellipticity,

we recall g ∈ �H−1/2
�0� (Γ) and use v0 = 1 as a test function. Consequently,

�
�̄Wv∗ , 1

�
=

�
W̄v∗ , 1

�
+ β

�
v∗ , ω

−1
� �

1 , ω−1
�

=
�
v∗ , W̄1

�
+ β

�
v∗ , ω

−1
� �

1 , ω−1
�
= 0.

Thus, as in (B.4), we observe
�
�̄Wv , v

�
=

�
�̄W(v∗ + η) , v∗ + η

�

≥ min
�
cW̄1 ,

�
�̄W1 , 1

���
�v∗�

2
H1/2(Γ) + η2

�
,

by ellipticity of W̄ with constant cW̄1 , and derive
�
�̄W1 , 1

�
=

�
W̄1 , 1

�
+ β

�
1 , ω−1

� �
1 , ω−1

�
= π2β > 0.

Then, considering �1�
H1/2(Γ) = 1, one can prove in an analogous way to (B.5) that

�v�2
H1/2(Γ) = �v∗ + η�2

H1/2(Γ)

≤ 2
�
�v∗�

2
H1/2(Γ) + η2

�
,

and so ellipticity of �̄W[β] follows with constant

c
�̄W
1 (β) :=

min
�
cW̄1 , π2β

�

2
, for all β > 0. (B.9)

In what follows, we are interested in showing that the augmented variational problems are

equivalent to their original problems. Our first departure problem is to find φ ∈ �H−1/2
�0� (Γ)

such that (2.8) is satisfied for all ψ ∈ �H−1/2
�0� (Γ). Instead of solving problem (2.8) with a

constraint, consider the following saddle point problem: find (φ, λ) ∈ �H−1/2(Γ) × R such
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that

�V φ , ψ� + λ �1 , ψ� = �f , ψ� , ∀ψ ∈ �H−1/2(Γ), (B.10a)

�1 , φ� = 0. (B.10b)

Again, since Vω−1 = Cω, Cω > 0, we have �Vω−1 , ψ� = 0 for all ψ ∈ �H−1/2
�0� (Γ). On

the other hand, as it is shown in (Jerez-Hanckes & Nédélec, 2012, Proposition 3.1) f ∈

Im �H−1/2
�0� (Γ)

(V) ≡ H1/2
∗ (Γ). Hence, we can use ω−1 as a test function in (B.10a) to derive

�
φ , Vω−1

�
+ λ

�
1 , ω−1

�
= 0,

where we have used the symmetry of V. Finally, by (B.10b) we obtain

λ
�
1 , ω−1

�
= 0,

and therefore λ ≡ 0. Consequently, the saddle point problem (B.10) is equivalent to finding

(φ, λ) ∈ �H−1/2(Γ)× R such that

�V φ , ψ�+ λ �1 , ψ� = �f , ψ� , ∀ ψ ∈ �H−1/2(Γ),

�1 , φ� − λ/α = 0,
(B.11)

with α ∈ R+ a parameter to be chosen later. We obtain a new augmented variational problem

by eliminating λ from (B.11): find φ ∈ �H−1/2(Γ) such that

�aV[α](φ, ψ) = �f , ψ� , ∀ ψ ∈ �H−1/2(Γ), α > 0, (B.12)

where �aV[α] : �H−1/2(Γ) × �H−1/2(Γ) → C is the sesquilinear form pencil associated to the

augmented weakly singular operator �V[α] defined as
�
�V[α]ϕ , ψ

�
:= �Vϕ , ψ�+ α �1 , ϕ� �1 , ψ� , ∀ ϕ, ψ ∈ �H−1/2(Γ), (B.13)

with clear duality pairing.

Lastly, ellipticity allows the use of the Lax-Milgram lemma to guarantee uniqueness

and existence of solutions for (B.12). Now, since f ∈ H1/2
∗ (Γ), when testing (B.12) with
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ψ = ω−1 we obtain

Cω �1 , ϕ�+ α �1 , ϕ�
�
1 , ω−1

�
= 0, with

�
1 , ω−1

�
> 0, (B.14)

and consequently, ϕ ∈ �H−1/2
�0� (Γ), thereby proving the equivalence between the augmented

problem (B.12) and the original one (2.8).

Now we focus on �̄W[β]. Instead of solving problem (2.11) with a constraint, we consider

the following saddle point problem: find (w,Λ) ∈ H1/2(Γ)× R such that

�
W̄w , v

�
+ Λ

�
ω−1 , v

�
= �g , v� , ∀ v ∈ H1/2(Γ), (B.15a)

�
w , ω−1

�
= 0. (B.15b)

The proof follows analogously to the previous case, only this time we use the fact that

KerW̄ = span{1} and v0 = 1 as a test function in (B.15a). Then, since g ∈ �H−1/2
�0� (Γ)

we get

Λ
�
ω−1 , 1

�
= 0,

and therefore Λ ≡ 0. From this, and using similar arguments as before, we derive the

augmented variational problem. The uniqueness and existence for any g ∈ �H−1/2
�0� (Γ) follows

from the ellipticity as well. In particular, when testing with v = 1, we deduce

β
�
w , ω−1

� �
1 , ω−1

�
= 0,

�
1 , ω−1

�
> 0, (B.16)

from where w must lie in H1/2
∗ (Γ),thus showing the equivalence between the augmented and

original problem (2.11).
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APPENDIX C. STABILITY RESULTS FOR CASE B.

As a tool we rely on the “tent functions” bk ∈ S0,1(Γh), k = 1, . . . , N − 2, defined

by bk(xi) = δ(k+1)i (Kronecker symbol), and we write ωk := supp(bk), which consists of

two adjacent mesh intervals for k = 1, . . . , N − 2. Refer to Figure 2.3 for an illustration

(drawn in blue). Moreover, we employ the piecewise constant functions qj ∈ S−1,0(Γ̂h),

j = 1, . . . , N − 2 which are equal to 1 on (ηj−1, ηj) and vanish outside this interval of the

dual mesh, see Figure 2.3 (red/green).

C.1. Proof of Lemma 2.1

We use our trial bases to write wh :=
�

N−2
j=1 wibi ∈ S

0,1
0 (Γh), and ψh :=

�
N−2
j=1 ψjqj ∈

S−1,0(Γ̂h). Hence, we can write the dual product operator in its matricial form

|�ψh , wh�| :=
��ψT TB w

�� , (C.1)

where TB [l, k] := �bl , qk�. Furthermore, TB ∈ R
N−2,N−2 is a tridiagonal matrix given by

the following expression

TB =
1

8





h1 + 3c1 h2 0 0 0 0 · · · 0 0
... . . . . . . ... 0

0 0 · · · hi 3ci hi+1 · · · 0 0

0
... . . . . . . ...

0 0 · · · 0 0 0 0 hN−2 3cN−2 + hN−1





,

where hi = xi+1 − xi > 0 and ci := hi + hi+1 > 0. Observe TB is a strictly diagonal

dominant matrix, furthermore it is symmetric. Then, by Gershgorin we know its eigenvalues

λ1, ..., λk, ...λN−2 ∈ R satisfy

λk ∈ (3c1, 5h1 + 3h2) ∪
N−3�

i=2

(2ci, 4ci) ∪ (3cN−2, 5hN−2 + 3hN−1), ∀ k = 1, . . . , N − 2.
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Consequently, λmin > 0 and TB is invertible. Recall wh :=
�

N−2
i=1 wibi. Now let ψ∗

h
:=

�
N−2
i=1 wiqi. Then, by setting w0 = wN−1 = 0, we have

�ψ∗
h
, wh� = wT TB w =

1

8

�
w1((4h1 + 3h2)w1 + h2w2)

+
N−3�

i=2

wi(hiwi−1 + 3(hi + hi+1)wi + hi+1wi+1)

+ wN−2(hN−2wN−3 + (3hN−2 + 4hN−1)wN−2)
�

=
1

8

�N−2�

i=1

(hi + hi+1)w
2
i
+ h1w

2
1 + hN−1w

2
N−2

�

+
1

8

�
w1(2(h1 + h2)w1 + h2w2)

+
N−3�

i=2

wi(hiwi−1 + 2(hi + hi+1)wi + hi+1wi+1)

+ wN−2(hN−2wN−3 + 2(hN−2 + hN−1)wN−2)
�
, (C.2)

where the last expression on the right hand side can be seen as wT T̃w, with T̃ denoting a

strictly diagonal dominant matrix. Hence, that last term is positive and we can bound (C.2)

by

�ψ∗
h
, wh� ≥

1

8

�N−2�

i=1

(hi + hi+1)w
2
i
+ h1w

2
1 + hN−1w

2
N−2

�
≥

1

3
(DBw,w), (C.3)

where DB = diag(TB). On the other hand,

�wh�
2
L2(Γ) = �wh , wh� =

1

3
wTdiag(hi + hi+1)w ≤

8

9
wTdiag(TB)w =

8

9
(DBw,w),

(C.4)
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and

�ψ∗
h
�
2
L2(Γ) = �ψ∗

h
, ψ∗

h
�

=
1

2
wT





(2h1 + h2) 0 0 · · · 0

0
... . . . ... 0

· · · 0 (hi + hi+1) 0 · · ·

0
... . . . ... 0

0 · · · 0 0 (hN−2 + 2hN−1)





w

≤
1

2
wTdiag(TB)w =

1

2
(DBw,w). (C.5)

Finally, by combining (C.3), (C.5) and (C.4), we obtain

sup
ψh∈S−1,0(Γh)

|�ψh , wh�|

�ψh�L2(Γ)

≥
�ψ∗

h
, wh�

�ψ∗
h
�
L2(Γ)

≥

√
2

3
(DBα, α)

1/2

≥

�
9

8

√
2

3
�wh�L2(Γ) =

1

2
�wh�L2(Γ) . (C.6)

C.2. Proof of Proposition 2.2

We aim to prove the H1-stability for Q̃h. With this purpose in mind, we will introduce a

quasi interpolation operator as in (Steinbach, 2003, Section 1.5).

First recall ωk = supp{bk}, then define the related space locally by Xh(ωk) := {bj|ωk
:

bj ∈ S
0,1
0 (Γh)}. Let Qk

h
denote the L2-Projection onto the local trial space Xh(ωk), such that

for u ∈ L2(ωk)

�
Qk

h
u , vh

�
L2(ωk)

= �u , vh�L2(ωk)
, ∀ vh ∈ Xh(ωk), h ∈ H. (C.7)
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As it is shown in (Steinbach, 2003, Section 1.5), we have the stability estimate as well as the

quasi optimal error estimate

��Qk

h
u
��
L2(ωk)

≤ �u�
L2(ωk)

, for all u ∈ L2(ωk), (C.8)
��(Id−Qk

h
)u
��
L2(ωk)

≤ cloc
st
ĥk |u|H1(ωk)

, for all u ∈ H1(ωk). (C.9)

Furthermore, local quasi-uniformity gives us the following stability estimate

��Qk

h
u
��
H1(ωk)

≤ c̃loc
st
ĥk �u�H1(ωk)

for all u ∈ H1(ωk). (C.10)

Then, it is possible to define a quasi interpolation operator by

(Phu)(x) =
N−2�

k=1

(Qk

h
u)(xk) · bk(x), (C.11)

which is also a projection onto S
0,1
0 (Γh). Moreover, Ph has properties which will be key

pieces for the proof of Proposition 2.2. We introduce these results in the following two

lemmas.

Lemma C.1 (Extension of Lemma 1.9 (Steinbach, 2003)). Let u ∈ H1
0 (Γ). Then, there

exists a positive constant cp1 independent of h such that

�(Id−Ph)u�L2(Γ) ≤ cp1
�

k∈J(l)

ĥk |u|H1(ωk)
, l = 1, . . . , N − 1. (C.12)

Moreover,

�Phu�H1(Γ) ≤ cp1 �u�H1(Γ) , for all u ∈ H1
0 (Γ), (C.13)

and
N−2�

k=1

ĥ−2
k

�(Id−Ph)u�
2
L2(ωk)

≤ cp1 �u�H1(Γ) , for allu ∈ H1
0 (Γ). (C.14)

Since the only difference with the original Lemma is due to the endpoints, where the

arguments involved also hold, proof follows from (Steinbach, 2003, Lemma 1.9).

68



Lemma C.2 (Extension of Lemma 2.3 (Steinbach, 2003)). Let condition (2.23) be sat-

isfied and qk ∈ S−1,0(Γ̂h), k = 1, . . . , N − 2. Then

N−1�

l=1

h−2
l

�vh�
2
L2(τl)

≤ cp2

N−2�

k=1

�
�vh , qk�L2(Γ)

ĥk �qk�L2(Γ)

�2

, (C.15)

for all vh ∈ S
0,1
0 (Γh) with a positive constant cp2.

PROOF. This proof can be derived by adapting Steinbach’s original proof (similarly to

what it was shown in (Bramble, Pasciak, & Steinbach, 2002)). Therefore, we introduce

his notation for the following two index sets: I(k) := {l ∈ {1, . . . , N − 1} : τl ∩ ωk �= ∅}

(indices of elements τl where bk is not zero) and J(l) := {k ∈ {1, . . . , N−2} : ωk∩τl �= ∅)}

(indices of hat functions that do not vanish on τl). Since vh =
�

N−2
k=1 vkbk ∈ S

0,1
0 (Γh) we

can write
N−1�

l=1

h−2
l

�vh�L2(τl)
≤ cp

N−1�

l=1

h−2
l

�

k∈J(l)

v2
k
�bk�

2
L2(τl)

≤ cp

N−2�

k=1

v2
k

�

l∈I(k)

h−2
l

�bk�
2
L2(τl)

= cp

N−2�

k=1

v2
k
γ2
k
,

where γk :=
��

l∈I(k) h
−2
l

�bk�
2
L2(τl)

. Setting xk := vkγk this gives

N−1�

l=0

h−2
l

�vh�
2
L2(τl)

≤ cp �x�
2
2 .

On the other hand,

N−2�

k=1

�
�vh , qk�L2(Γ)

ĥk �qk�L2(Γ)

�2

=
N−2�

k=1

�
N−2�

j=1

vj
�bj , qk�L2(Γ)

ĥk �qk�L2(Γ)

�2

=
N−2�

k=1

�
N−2�

j=1

xj

�bj , qk�L2(Γ)

γjĥk �qk�L2(Γ)

�2

= �Ax�22 ,

where A is a matrix given by

A := D−1
q
G̃hD

−1
γ
, Dq := diag(ĥk �qk�L2(ωk)

), Dγ := diag(γk).
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Let Ḡh = H−1G̃hH . Define for any y ∈ R
N−2

uh :=
N−2�

k=1

hkykbk ∈ S
0,1
0 (Γh), φh :=

N−2�

k=1

h−1
k
ykqk ∈ S

−1,0(Γ̂h).

Then, using

(H−1
l

G̃lHlxl,xl) ≥ c0(Dlxl,xl) for all xl ∈ R
Ml , l = 1...N − 1, (C.16)

which is transposed to (2.23), we derive the following bound:

(Ḡhy,y) = (H−1G̃hHy,y) = (G̃hHy, H−1y) = �uh , φh�L2(Γ) =
N−1�

l=1

�uh , φh�L2(τl)

=
N−1�

l=1

(H−1
l

G̃lHlyl,yl) ≥ c0

N−1�

l=1

(Dlyl,yl) = c0(Dy,y).

Now, set D1/2
h

:= diag(�bk�L2(ωk)
). From

c0
���D1/2

h
y
���
2

2
= c0(Dy,y) ≤ (Ḡhy,y) = (D−1/2

h
Ḡhy, D

1/2
h

y)

≤

���D−1/2
h

Ḡhy
���
2

���D1/2
h

y
���
2
,

we conclude that

c0
���D1/2

h
y
���
2
≤

���D−1/2
h

Ḡhy
���
2
.

Taking z := Dγy, this is equivalent to

c0
���D1/2

h
D−1

γ
z
���
2
≤

���D−1/2
h

DqD
−1
q
ḠhD

−1
γ
z
���
2
.

From (C.4) and (C.5), the definition of ĥk, and local quasi-uniformity, the ratio of the

diagonal entries satisfies

D1/2
h

[k, k]

Dγ[k, k]
=

�bk�L2(Γ)��
l∈I(k) h

−2
l

�bk�
2
L2(τl)

≥ cĥk,
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due to

D1/2
h

[k, k]

Dγ[k, k]
=

�
hk−1+hk

3�
h−2
k−1

hk−1

3 + h−2
k

hk
3
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�
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3�
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3hkhk−1

=
�
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1

cL
h2
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=

�
1

cL
hk ≥ cQ

�
1
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ĥk, for k = 1..N − 2,

and
Dq[k, k]

D1/2
h

[k, k]
=

ĥk �qk�L2(Γ)

�bk�L2(Γ)

≤ cĥk.

We derive this last result from

Dq[k, k]

D1/2
h

[k, k]
=

ĥk �qk�L2(Γ)
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1
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Dq[k, k]

D1/2
h

[k, k]
=

ĥk �qk�L2(Γ)

�bk�L2(Γ)

≤

�
1

3
(hk−1 + hk) = 3
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ĥk, for k = 1, N − 2.

Thus, by taking x = Hz

cp �x�2 = cp �Hz�2 ≤
��HD−1

q
ḠhD

−1
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=

���HD−1
q
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�

71



Proof of Proposition (2.2). With the above, we can finally show

�Q̃hu�
2
H1(Γ) ≤ 2

�
�Phu�

2
H1(Γ) + �(Q̃h − Ph)u�

2
H1(Γ)

�

(C.13) ≤ 2
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(Lemma C.1) ≤ 2
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72



References

Andriulli, F., Cools, K., Bagci, H., Olyslager, F., Buffa, A., Christiansen, S., et al.

(2008). A multiplicative Calderon preconditioner for the electric field integral equa-

tion. IEEE Trans. Antennas and Propagation, 56(8), 2398-2412.

Bagci, H., Andriulli, F., Cools, K., Olyslager, F., & Michielssen, E. (2009, oct.). A

Calderón multiplicative preconditioner for the combined field integral equation. An-

tennas and Propagation, IEEE Transactions on, 57(10), 3387 -3392.

Bramble, J. H., Pasciak, J. E., & Steinbach, O. (2002). On the stability of the l2

projection in h1 ( ). Math. Comp, 71(237), 147–156.

Bruno, O. P., & Lintner, S. K. (2012, December). Second-kind integral solvers for TE

and TM problems of diffraction by open arcs. Radio Science, 47, 6006.

Buffa, A., & Christiansen, S. (2007). A dual finite element complex on the barycentric

refinement. Math. Comp., 76(260), 1743-1769.

Cools, K., Andriulli, F., & Olyslager, F. (2009, Sept.). A Calderón preconditioned

PMCHWT equation. In Proceedgins of the international conference on electromag-

netics in advanced applications, 2009, torino, italy. iceaa ’09. (p. 521 -524).

Costabel, M., & Dauge, M. (2002). Crack singularities for general elliptic systems.

Mathematische Nachrichten, 235(1), 29–49.

Costabel, M., Dauge, M., & Duduchava, R. (2003). Asymptotics without logarithmic

terms for crack problems. Communications in Partial Differential Equations, 28(5-

6), 869-926. Available from http://www.tandfonline.com/doi/abs/10

.1081/PDE-120021180

73

http://www.tandfonline.com/doi/abs/10.1081/PDE-120021180
http://www.tandfonline.com/doi/abs/10.1081/PDE-120021180


Ervin, V. J., & Stephan, E. P. (1990). A boundary element Galerkin method for a hy-

persingular integral equation on open surfaces. Math. Methods Appl. Sci., 13(4), 281–

289. Available from http://dx.doi.org/10.1002/mma.1670130402

Gross, D., & Seelig, T. (2011). Fracture mechanics with an introduction to microme-

chanics (2nd ed.). Springer.

Hiptmair, R. (2006). Operator preconditioning. Computers and Mathematics with

Applications, 52(5), 699-706.

Hsiao, G. C., & Wendland, W. L. (2008). Boundary integral equations (Vol. 164).

Berlin: Springer-Verlag. Available from http://dx.doi.org/10.1007/978

-3-540-68545-6
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Jerez-Hanckes, C., & Nédélec, J.-C. (2011). Variational forms for the inverses of

integral logarithmic operators over an interval. C. R. Math. Acad. Sci. Paris, 349(9-

10), 547–552. Available from http://dx.doi.org/10.1016/j.crma.2011

.01.016

Kelley, C. T. (1999). Iterative methods for optimization (Vol. 18). Philadelphia, PA:

Society for Industrial and Applied Mathematics (SIAM). Available from http://

dx.doi.org/10.1137/1.9781611970920

Lintner, S., & Bruno, O. (2012, April). A generalized calderon formula for open-

arc diffraction problems: theoretical considerations (Preprint No. arXiv:1204.3699

[math.AP]). arXiv.

74

http://dx.doi.org/10.1002/mma.1670130402
http://dx.doi.org/10.1007/978-3-540-68545-6
http://dx.doi.org/10.1007/978-3-540-68545-6
http://epubs.siam.org/doi/abs/10.1137/100806771
http://epubs.siam.org/doi/abs/10.1137/100806771
http://dx.doi.org/10.1016/j.crma.2011.01.016
http://dx.doi.org/10.1016/j.crma.2011.01.016
http://dx.doi.org/10.1137/1.9781611970920
http://dx.doi.org/10.1137/1.9781611970920


Lions, J., & Magenes, F. (1972). Nonhomogeneous boundary value problems and

applications. Springer–Verlag, Berlin.

Mardal, K.-A., & Winther, R. (2011). Preconditioning discretizations of systems of

partial differential equations. Num. Lin. Alg. Appl., 18(1), 1-40.

McLean, W. (2000). Strongly elliptic systems and boundary integral equations. Cam-

bridge, UK: Cambridge University Press.

McLean, W., & Steinbach, O. (1999). Boundary element preconditioners for a hyper-

singular integral equations on an interval. Adv. Comp. Math., 11(4), 271–286.

Meixner, J. (1972). The behavior of electromagnetic fields at edges. IEEE Trans.

Antennas and Propagation, AP-20(4), 442-444.

Moiseiwitsch, B. L. (1977). Integral equations. London: Longman. (Longman

Mathematical Texts)
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