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ABSTRACT

In this thesis a straight-forward and robust new method to price European as well as

American options is proposed. The algorithm uses the characteristics of each stochas-

tic process implemented to describe the behavior of the underlying asset to compare the

immediate exercise value with the value of postpone the exercise decision based on a con-

ditional probability distribution function. This conditional probability distribution func-

tion is used to determine the risk-adjusted probabilities assigned to the expected payoffs.

The algorithm is tested using a general Markovian pricing framework under the Black &

Scholes dynamic and under the stochastic volatility pricing model proposed by Heston

(1993). The method can be seen as a generalization of the Binary Tree model, since it has

similar characteristics to Binomial Trees methods regarding the simplicity of the valua-

tion procedure and the flexibility to price both type of options. Also, the method shows

to be robust, converging towards the True Value defined for each option value and with a

low level of error. Furthermore, we developed the theoretical mathematical framework to

price more complex stochastic jump-diffusion processes under the proposed new method,

including the stochastic volatility with stochastic jumps pricing model proposed by Duffie,

Pan, and Singleton (2000).

Keywords: European Options, American Options, Conditional Probability Distribution

Function, Immediate Exercise Value, Value of Postpone, Risk-Adjusted Probabilities,

Black & Scholes Model, Heston Model.
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RESUMEN

En esta tesis se propone un nuevo método, sencillo y robusto, para determinar el valor

tanto de opciones Europeas como Americanas. El algoritmo usa las caracterı́sticas de

cada proceso estocástico implementado para describir el comportamiento del activo sub-

yacente comparando el valor inmediato de ejercicio con el valor de posponer la decisión

de ejercicio, basandose en una función de distribución de probabilidad condicional. Esta

función de distribución de probabilidad condicional es utilizada para determinar las prob-

abilidades ajustadas por riesgo asignadas a los pagos esperados. El algoritmo es testado

usando un marco general de procesos Markovianos bajo la dinámica de Black & Scholes

y bajo el modelo de precios de volatilidad estocástica propuesto por Heston (1993). El

método puede ser visto como una generalización del modelo Binario de Árbol, ya que

tiene caracterı́sticas similares a métodos de Árboles Binomiales respecto a la simplici-

dad del procesos de valorización y a la flexibilidad para asignar precios a ambos tipos

de opciones. También, el método muestra ser robusto, convergiendo al Valor Verdadero

definido para cada opción y con un bajo nivel de error. Además, hemos desarrollamos el

marco teórico matemático para determinar el valor de opciones bajo procesos de difusión

más complejos utilizando el nuevo método propuesto, incluyendo el modelo de volatilidad

estocástica con saltos estocásticos propuesto por Duffie, Pan y Singleton (2000).

Palabras Claves: Opciones Europeas, Opciones Americanas, Función de Distribución

Condicional, Valor Inmediato de Ejercicio, Valor de Posponer, Probabilidades Ajustadas

por Riesgo, Modelo de Black & Scholes, Modelo de Heston.
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1. ARTICLE BACKGROUND

1.1. Introduction

In the option pricing theory, American options have been widely studied because of

the challenge they present in the valuation and determination of the optimal exercise pol-

icy. Through the years, we have seen in the literature several studies that propose methods

to price American options, starting with Brennan and Schwartz (1977), who were the

first ones to price American options through a partial differential equation solving method

(PDE).

Cox, Ross, and Rubinstein (1979) proposed a binomial method in which they discretized

the time space and the price of the asset. Although, these methods are widely used be-

cause of their simplicity, they are not easily adapted to price options that follow more

complex stochastic processes, for example, the stochastic volatility and jump-diffusion

models, which incorporate other risk factors.

Furthermore, Longstaff and Schwartz (2001) developed the world known least-squares

method to value options by simulation, which determines the conditional expected pay-

off by regressing the realized payoff against the price of the asset. In this case, the least

square approach is used with the cross-sectional information in the simulation to compute

the expectation function. This method is more flexible and easily adapted to more com-

plex stochastic processes, but its main constrain lies on that fact that there is uncertainty

on the election of the appropriate number of variables and polynomial to be used in the

least-square regression.

Notwithstanding we have seen even further advances in the development of option pricing

models, including the fixed-point iteration methods to solve the early-exercise boundary

first proposed by Kim (1990), we have also seen that models are becoming increasingly

complex over the years due to the advance that has been made on the implementation of

additional risk factors to improve the simulation of the behavior of the underlying vari-

ables.
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In contrast to the problem described above, we present a straight-forward and robust new

method to price American options, which uses the characteristics of each stochastic pro-

cess implemented to describe the behavior of the underlying asset to compare the imme-

diate exercise value with the value of postpone the exercise decision, throughout a condi-

tional expectation function. In this context, we use a conditional probability distribution

function as the expectation function to determine the risk-adjusted probabilities assigned

to the expected payoffs, which is not subject to an implementation decision, since this

function corresponds to the implied distribution function of the process under which the

variable is simulated.

Moreover, the pricing approach presented in this paper can be seen as a generalization

of the Binary Tree model, since it has similar characteristics to Binomial Trees methods

regarding the simplicity of the valuation procedure and the flexibility to price American-

style as well as European-style feature options. However, it incorporates the adaptability

to price options under any stochastic process that can be simulated, since a conditional

probability distribution function can always be computed when the Euler discretized sim-

ulation approach is used to simulate the behavior of the underlying variable. The reason

is that the probability distribution function depends uniquely on the process chosen to de-

scribe the behavior of the variable and the conditional value of the variable in the previous

time step. Hence, the probability distribution function will be normally or mixture of nor-

mally distributed due to the discretization of the time space.

The rest of the document is organized as follows. In Section 2, we introduce the theo-

retical framework of the proposed new model and present a numerical example to price

American options under our methodology. Section 3 presents numerical results computed

we our model using Black & Scholes and Heston processes. In Section 4 we perform a

convergence analysis to test the scope and limits of the new pricing approach. In Section

5 we present final results and conclusions.
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1.2. Hypothesis

The hypothesis of this work is that it is possible to formulate a option pricing method,

for European-style as well as American-style feature options, with the capability of being

adaptable to price options under any stochastic process by using the characteristics of each

stochastic process implemented to describe the behavior of the underlying asset, while

maintaining the simplicity of its valuation procedure.

1.3. Main Objectives

The main objective of this thesis is develop of a straight-forward and robust new

method to price European as well as American options, which uses the characteristics

of each stochastic process implemented to describe the behavior of the underlying as-

set through the implementation of a conditional probability distribution function. In this

context, the thesis has three specific objectives: First, this work intends to establish a the-

oretical framework that supports the utilization and the main features of the methodology.

The second objective is to introduce the SFR Method for a general Markovian pricing

framework under the Black & Scholes dynamic and under the stochastic volatility pricing

model proposed by Heston (1993). Finally, the third objective is to demonstrate the con-

vergence of the method to the True Value defined for each option value and to determine

research topics to further study the benefits and constrains of the new pricing mechanism.

1.4. Methodology

The source code for the SFR Method and the corresponding benchmarks are imple-

mented using MATLAB 2013b running on a 2.50GHz Intel Core i5 8GB RAM. The Black

&Scholes closed-form solution is implemented according to Black and Scholes (1973),

Binomal Tree is implemented according to Cox, Ross, and Rubinstein (1979), Heston

closed-form solution is implemented according to Heston (1993) and the Least-Squares

Monte Carlo (LSM) method is implemented according to Longstaff and Schwartz (2001).

3



Mean Absolute Errors (MAE) are measured against the True Values computed by the

Black &Scholes closed-form solution, Binomal Tree, Heston closed-form solution and

LSM.

4



2. DESCRIPTION OF THE NEW PRICING METHOD

2.1. General Model

Let S denote the underlying asset and St its value on a given time t. Accordingly, the

dynamics of the asset are characterized by the following Markov process under the risk

neutral pricing measure:

dSt
St

= (r(Yt)− q(Yt))dt+ σS(Yt)dW
S
t + ξ(Yt)dJt (2.1)

dYt = µY (Yt)dt+ σY (Yt)dW
Y
t + ψ(Yt)dJt (2.2)

where Yt is a Markov process in a space state D ⊂ Rn, W S and W Y are standard

Brownian motions in R and Rn, respectively and Jt is a Poisson process in Rn+1. In (2.1),

r : D → R denotes the instantaneous risk-free rate, q : D → R denotes the instantaneous

dividend yield, σS : D → R denotes the instantaneous volatility and ξ : D → Rn+1

denotes the jump scale of J . In (2.2), µY : D → Rn, σY : D → Rn×n and ψ : D → Rn+1.

Given the general process described in this section, we focus our attention on presenting

the simulation approach used on the new Straight-Forward and Robust Method (SFR

Method).

2.2. Simulation Approach

We adopted the Euler discretized simulation approach to construct the paths of the

underlying asset through the time horizon. The technique applied consists on generating

discrete paths of the variables St and Yt, which we denote by Ŝt and Ŷt, respectively. The

dynamics of these variables are given by a discrete version of (2.1) and (2.2), which are

presented as follows:

Ŝti+1
= Ŝti + Ŝti(r(Ŷti)− q(Ŷti))∆t+ Ŝtiσ

S(Ŷti)∆W
S
ti

+ Ŝtiξ(Ŷti)∆Jti (2.3)

Ŷti+1
= Ŷti + µY (Ŷti)∆t+ σY (Ŷti)∆W

V
ti

+ ψ(Ŷti)∆Jti (2.4)
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The simulation starts with the initial values (Ŝ0, Ŷ0) and continues according to (2.3) and

(2.4) until it reaches the time horizon given for the option being value.

2.3. Description of the Pricing Procedure for the SFR Method

American options are exercisable at any time and the option holder has to compare the

immediate exercise payoff with the value to postpone the exercise decision to the next time

step, which is also known as the expectation value. In Longstaff and Schwartz (2001), the

conditional expectation value is determined by an expectation function. In their case, a

least square approach was used with the cross-sectional information in the simulation to

compute the expectation function.

In this paper, we present a new approach to compute the conditional expectation function,

which uses the specific characteristics behind each process assumed to describe the behav-

ior of the underlying variable. In this context, we use a conditional probability function

as the expectation function to determine the risk-adjusted probabilities assigned to the ex-

pected payoffs. This conditional probability function is computed using the probability

distribution of the process chosen to simulate the underlying variable, conditional on the

value of the variable at the time of comparison (t − 1). A more detailed explanation is

presented as follows:

(i) Using the Euler discretized simulation approach, we simulate a certain number

i : 1→ I of random paths of the underlying variable for the complete discretized

time period, which we will denominated Si,t.

6



Figure 2.1. Simulated paths for the complete time period T

(ii) Using the information given by the simulation, we compute for each path i the

value of the associated expected payoff at time T (CFi,T ), as Max(Si,T − K)

for a call option, or Max(K − Si,T ) for a put option, with a strike price of K,

which in this case corresponds to the value of immediately exercising the option

at its maturity.

7



Figure 2.2. Expected cash flows at time T

(iii) For each path i at time t − 1, we compute the expected cash flows (CFi,t−1) by

comparing the value of postponing the exercise of the option at time t − 1 with

the value of immediate exercise it (we described in point 2 how to compute the

immediate exercise value). As we explained before, to determine the value of

postponing we use a conditional probability function as the expectation function

to define the risk-adjusted probabilities assigned to each expected payoffs CFi,t.

Hence, for each path i at time t−1, we define a conditional probability function,

F i(X|Si,t−1), which is conditional on the value of the path i of the variable at

time t− 1.

8



Figure 2.3. Definition of the expectation function as a conditional risk-
adjusted probability function, F i(X|Si,t−1), for each path i at t− 1

(iv) Once we define the probability function F i(X|Si,t−1), we compute the risk-

adjusted probabilities of occurrence for each expected cash flow CFi,t, which

we will denominate Pr[CFi,t|Si,t−1] for j : 1 → I . Hence, for each path i at

time t− 1 we proceed as follows:

(a) First, we evaluate each simulated value, Si,t, on the conditional expectation

function calculated in point 3, obtaining for each Si,t and for each associated

cash flow, CFi,t, a conditional risk-adjusted cumulative probability, which

we will denominate Pj = P [X <= Si,t|Si,t−1]. In Figure 2.4, we illustrate

how to compute a conditional cumulative probability, using as an example

path 1 at time t− 1.

9



Figure 2.4. Illustrative example of how to compute the conditional cumu-
lative probabilities for path 1 at time t− 1

(b) In second place, after we have obtained the cumulative probabilities Pj as-

sociated to each Si,t and to its corresponding CFi,j , we determine the risk-

adjusted probabilities of occurrence pj . To determine these probabilities,

we decided to assign to each expected cash flow, CFi,t, half of the differ-

ence of the cumulative probabilities between that expected cash flow and

its predecessor (CFi−1,t) and successor (CFi+1,t). This process of assign-

ing the risk-adjusted probabilities is not model-specific, since its subject

to implementation decision. Mathematically, this process of assigning the

probabilities of occurrence can be described as:

(i) For each Pj from j = 2 to j = j − 1, compute the risk-adjusted

probabilities pj as

pj =
1

2
(Pj − Pj−1) +

1

2
(Pj+1 − Pj)

(ii) For Pj=1 compute the risk-adjusted probability pj=1 as

pj=1 = Pj=1 +
1

2
(Pj=2 − Pj=1)

(iii) For Pj=I compute the risk-adjusted probability pj=I as

pj=I =
1

2
(Pj=I − Pj=I−1) + Pj=I

10



Figure 2.5. Illustrative definition of the risk-adjusted probabilities of oc-
currence pj for path 1 at time t− 1

(v) After completing step 4, we compute for each path i at time t− 1 the discounted

cash flows by multiplying the risk-adjusted probabilities, pj , by its correspond-

ing cash flow, CFi,t, and then discount them at the risk free rate. Once we have

summed up all discounted expected cash flows for each path i at time t − 1,

we can compute the value of postponing the exercise decision with the value of

immediate exercise.

(vi) Finally, to obtain the value of the option, we have to repeat the process describe

above until we have analyzed all early exercise decisions of each path i at each

time period t.

The main constraint of the method is the challenge of determining the cumulative

probability distribution function for each path i at time t − 1 and to evaluate it for each

path i at time t. However, it can be anticipated that the conditional probability distribution

function will be normal or mixture of normal distributions. The former is a consequence of

the approach being used, since we know from the simulation that each value of St and Yt

from equations (2.1) and (2.2) will remain constant until the next discrete period, because

of the Euler discretized simulation approach.

11



2.4. Pricing The American Option: A Numerical Example

As it was explained in Subsection 2.3, the conditional expected value of continuing has

to be determined and compared to the value of immediate exercise to identify the optimal

exercise strategy for an American option. In our approach this is done by computing the

conditional expectation function with the characteristics of the distribution function of the

process used to simulate the behavior of the underlying variable, conditional on the value

of the variable in the previous time step. To illustrate how the SFR Model operates we

present the following numerical example.

Consider an American put option on an asset that does not pay dividends, has an initial

value of 100 and volatility of 20%. The put option has a strike price of 120 and a maturity

of 2 years, which is divided into 4 time periods. The risk free rate is 4%. Suppose the

dynamics for the risky asset St under the Black & Scholes model is given by the following

SDE:
dSt
St

= 0.04 ∗ dt+ 0.2 ∗ dWt (2.5)

In this case, we simulate 6 (3 plus 3 antithetic) random paths for the asset to illustrate

the mechanism of the algorithm, which are shown in Table 2.1.

Table 2.1. Simulated asset paths

Path t=0 t=1 t=2 t=3 t=4

S1,t 100 104.3973 95.3886 99.0492 93.6654

S2,t 100 123.6339 124.4971 152.6123 172.2063

S3,t 100 96.8789 117.8335 130.2552 109.2978

S4,t 100 99.6027 112.1818 112.3640 122.9660

S5,t 100 80.3661 83.0196 67.5921 61.6176

S6,t 100 107.1211 88.2360 82.4638 99.0304

12



Following the approach explained in Subsection 2.3, we need to compute the expected

cash flow matrix at each time step, conditional on not exercising the option, comparing

the value of continuing with the immediate exercise value. The cash flow realized at time

4 are presented in Table 2.2.

Table 2.2. Cash flows at time 4

Path t=1 t=2 t=3 t=4

S1,t - - - 26.3364

S2,t - - - 0

S3,t - - - 10.7022

S4,t - - - 0

S5,t - - - 58.3824

S6,t - - - 20.9696

For each path at time 3 (Si,t=3), the holder of the option has to decide whether to

immediately exercise the option if it is in-the-money (paths 1, 4, 5 and 6) or to hold the

option until its maturity date at time 4. Hence, for each path i at time t − 1 we compare

the value of continuing with the value of immediate exercise at the same period, which we

proceed as follows:

(i) Decreasingly sort all cash flows CFi,t and asset values Si,t at time t, obtaining

ĈF i,t and Ŝi,t. In Table 2.3 we present each sorted asset value at time 4 with its

respectively cash flow.

13



Table 2.3. Sorted cash flows

Ŝi,t=4 ĈF i,t=4

61.6176 58.3824

93.6654 26.3346

99.0304 20.9696

109.2978 10.7022

122.9660 0

172.2063 0

(ii) Compute the conditional expectation function as a normally distributed function,

conditional on the value of the path i at time t− 1, as

N(X <= x|Si,t−1) = N(
x− Si,t−1 ∗ (1 + r ∗ dt)

Si,t−1 ∗ σ ∗
√
dt

)

In Table 2.4 we present the conditional expectation function conditional on the

value of each path i at time 3.

Table 2.4. Conditional Expectation Function

Si,t=3 Expectation Function Conditional on Si,t=3

99.0492 N(x−101.0302
14.0077

)

152.6123 N(x−155.6646
21.5826

)

130.2552 N(x−132.8603
18.4209

)

112.3640 N(x−114.6113
15.8907

)

67.5921 N(x−68.9439
9.5590

)

82.4638 N(x−84.1131
11.6621

)
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(iii) Evaluate each asset value Ŝi,t on the conditional expectation function calculated

in 2, obtaining for each Ŝi,t a conditional cumulative normally distributed prob-

ability, Nj = N(X <= Ŝi,t|Si,t−1) with j : 1 → I . In Table 2.5 we evaluate

each asset value Ŝi,t=4 on the conditional expectation function conditional on

each Si,t=3.

Table 2.5. Cumulative normally distributed probabilities for each expecta-
tion function conditional on each Si,t=3

ĈF i,t=4 N(X|S1,t=3) N(X|S2,t=3) N(X|S3,t=3) N(X|S4,t=3) N(X|S5,t=3) N(X|S6,t=3)

58.3824 0.0024 0.0000 0.0001 0.0004 0.2217 0.0269

26.3346 0.2995 0.0020 0.0167 0.0937 0.9951 0.7936

20.9696 0.4432 0.0043 0.0331 0.1634 0.9992 0.8996

10.7022 0.7225 0.0158 0.1004 0.3690 1.0000 0.9846

0 0.9413 0.0649 0.2956 0.7005 1.0000 0.9996

0 1.0000 0.7783 0.9837 0.9999 1.0000 1.000

(iv) For each cumulative probability Nj associated to each Ŝi,t, determine a risk-

adjusted probability of occurrence pj:

(a) For eachNj from j = 2 to j = i−1, compute the risk-adjusted probabilities

pj as

pj =
1

2
(Nj −Nj−1) +

1

2
(Nj+1 −Nj)

(b) For Nj=1 compute the risk-adjusted probability pj=1 as

pj=1 = Nj=1 +
1

2
(Nj=2 −Nj=1)

(c) For Nj=I compute the risk-adjusted probability pj = I as

pj=I =
1

2
(Nj=I −Nj=I−1) +Nj=I
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In Table 2.6, we present the risk-adjusted probabilities of occurrence of each

cash flow ĈF i,t=4 for each conditional expectation function.

Table 2.6. Risk-adjusted probabilities of occureance for each expectation
function conditional on each Si,t=3

ĈF i,t=4 P (X|S1,t=3) P (X|S2,t=3) P (X|S3,t=3) P (X|S4,t=3) P (X|S5,t=3) P (X|S6,t=3)

58.3824 0.1510 0.0010 0.0084 0.0417 0.6084 0.4103

26.3346 0.2204 0.0022 0.0165 0.0815 0.3887 0.4364

20.9696 0.2115 0.0069 0.0419 0.1377 0.0024 0.0955

10.7022 0.2490 0.0303 0.1312 0.2685 0.0004 0.0500

0 0.1388 0.3812 0.4416 0.3154 0.0000 0.0077

0 0.0293 0.5784 0.3604 0.1498 0.0000 0.0002

(v) Finally, we compute the value of continuing at time t− 1 as a weighted average

sum, multiplying each risk-adjusted probability pi by the associated cash flow

ĈF i,t, discounted at the risk free rate r as∑
pi ∗ ĈF i,t ∗ exp(−r)

In Table 2.7 we show the calculation of the value of continuing at time 4 for each

path Si,t=3.
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Table 2.7. Value of continuing to time 4 for each path Si,t=3

Illustrative Calculation of the Continuing Value

(58.38 * 0.15 + 26.33 * 0.22 + 20.97 * 0.21 + 10.70 * 0.25 + 0 * 0.14 + 0 * 0.03)*exp(−r)

(58.38 * 0.00 + 26.33 * 0.00 + 20.97 * 0.01 + 10.70 * 0.03 + 0 * 0.38 + 0 * 0.58)*exp(−r)

(58.38 * 0.01 + 26.33 * 0.02 + 20.97 * 0.04 + 10.70 * 0.13 + 0 * 0.44 + 0 * 0.36)*exp(−r)

(58.38 * 0.04 + 26.33 * 0.08 + 20.97 * 0.14 + 10.70 * 0.27 + 0 * 0.32 + 0 * 0.15)*exp(−r)

(58.38 * 0.61 + 26.33 * 0.08 + 20.97 * 0.00 + 10.70 * 0.00 + 0 * 0.00 + 0 * 0.00)*exp(−r)

(58.38 * 0.41 + 26.33 * 0.44 + 20.97 * 0.10 + 10.70 * 0.05 + 0 * 0.01 + 0 * 0.00)*exp(−r)

After following the procedure explained before, we compare the value of continuing

with the immediate exercise value for each path at time 3.

Table 2.8. Comparison between continuing value and immidate exercise
value at time 3

Path Exercise Continuing

S1,t=3 20.9508 21.28888

S2,t=3 0 0.5738

S3,t=3 0 3.1431

S4,t=3 7.6360 10.4442

S5,t=3 52.4079 44.9066

S6,t=3 37.5362 37.2278

The comparison implies that it is optimal to exercise the option in the case of path 5

and 6, and to not exercise it in all other cases, which is represented in the cash flow matrix

of Table 2.9.
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Table 2.9. Cash flows at time 3

Path t=1 t=2 t=3 t=4

S1,t - - 21.2888 26.3364

S2,t - - 0.5738 0

S3,t - - 3.1431 10.7022

S4,t - - 10.4442 0

S5,t - - 52.4079 58.3824

S6,t - - 37.5362 20.9696

Proceeding using the same approach, we compared the value of continuing with the

immediate exercise value for each path at time 2.

Table 2.10. Comparison between continuing value and immidate exercise
value at time 2

Path Exercise Continuing

S1,t=2 24.6114 23.8399

S2,t=2 0 7.1486

S3,t=2 2.1665 9.6897

S4,t=2 7.8182 12.4195

S5,t=2 36.9804 34.2954

S6,t=2 31.7640 29.8193

The comparison implies that it is optimal to exercise the option in the case of path 1, 5

and 6, and to not exercise it in all other cases, which is represented in the cash flow matrix

of Table 2.11.
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Table 2.11. Cash flows at time 2

Path t=1 t=2 t=3 t=4

S1,t - 24.6114 21.2888 26.3364

S2,t - 7.1486 0.5738 0

S3,t - 9.6897 3.1431 10.7022

S4,t - 12.4195 10.4442 0

S5,t - 36.9804 52.4079 58.3824

S6,t - 31.7640 37.5362 20.9696

Then, we compared the value of continuing with the immediate exercise value for each

path at time 1.

Table 2.12. Comparison between continuing value and immidate exercise
value at time 1

Path Exercise Continuing

S1,t=1 15.6027 17.8243

S2,t=1 0 10.4462

S3,t=1 23.1211 22.1491

S4,t=1 20.3973 20.5138

S5,t=1 39.6339 32.1422

S6,t=1 12.8789 16.4287

The comparison implies that it is optimal to exercise the option in the case of path 3

and 5, and to not exercise it in all other cases, which is represented in the cash flow matrix

of Table 2.13.
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Table 2.13. Cash flows at time 1

Path t=1 t=2 t=3 t=4

S1,t 17.8243 24.6114 21.2888 26.3364

S2,t 10.4462 7.1486 0.5738 0

S3,t 23.1211 9.6897 3.1431 10.7022

S4,t 20.5138 12.4195 10.4442 0

S5,t 39.6339 36.9804 52.4079 58.3824

S6,t 16.4287 31.7640 37.5362 20.9696

Finally, we discount and average the value of the expected cash flows at time 1 to ob-

tain the value of the American put option, corresponding to 20.9057. The same simulation

sample and method can be used to compute the value of an European put option, in which

case in each iteration and for each path, we do not compute neither compare the immediate

exercise value with the value of postponing. In this case, the European put option value

corresponds to 18.07121.

We tested the SFR Method under two different dynamics for the risky asset satisfying

(2.1) and (2.2), which we present in the Section 3.

1European and American option values for the Black & Scholes closed-formed solution and a Binomial Tree
proposed by Cox et al. (1979) with 17,000 time steps, using the same parameters used to illustrate the SFR
algorithm are 18.0004 and 21.1506, respectively.
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3. NUMERICAL RESULTS

In this section we present our findings regarding the calculation of American, as well

as, European option prices by the SFR Method under two different dynamics for a vari-

able satisfying (2.1) y (2.2), including the Black & Scholes and Heston models.

3.1. The Black & Scholes Model

The dynamics for the risky asset St under the Black & Scholes model introduced in

Black and Scholes (1973) is given by the following SDE:

dSt = (r − q)Stdt+ σStdWt (3.1)

In (3.1), r corresponds to the instantaneous risk-free rate, q corresponds to the instanta-

neous dividend rate, σ corresponds to the instantaneous volatility and Wt is a standard

Brownian process. In the Black & Scholes model, r, q and σ are considered constant. Fol-

lowing the simulation approach discussed earlier, the Euler discretized process followed

by the underlying asset is characterized by the following equation:

St+1 = St + (r − q)St∆t+ σSt∆Wt (3.2)

For the purposed of the SFR Method, we need to know the distribution of the underling

asset at time t+1 under the Black & Scholes process, conditional on the value of the asset

at time t (F [St+1|St]). It follows from (3.2) that the probability distribution of the asset is:

St+1 − St
St

|St ∼ N((r − q)∆t, σ2∆t) (3.3)

The Black & Scholes closed-form solution is the first comparison analysis that was tested.

In this case, we compute several option values using the well-known equation introduced

in Black & Scholes (1973), which we compare to the values obtained by the SFR Method

used for European options. We compute at-the-money option prices considering the values

80, 100 and 120 for the underlying asset using the pricing method described previously.
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Also, we use 100 time steps (Nt), while the number of paths (Ns) range from 1000 to

100.000, which is presented as SFR(Nt/Ns).

Another important feature of the simulation approach is that we computed 50 option prices

for each value of the underlying asset, which were averaged and used to obtain diverse

accuracy parameters (i.e. Mean Absolute Errors and standard deviations), which we then

used in Section 4 to test the convergence of the method and its deviation respect to the

True Value. The parameters used to test the method are provided in Table 3.1.

Table 3.1. Parameter values

Parameter Value

T 0.50

r 0.04

q 0.04

σ 0.20

In Table 3.2, we present the European put prices computed by the SFR Method and

Black & Scholes closed-form solution. We also present the standard deviation and the

mean absolute error for each option value in relation to the True Value given by the Euro-

pean closed-form solution.
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Table 3.2. At-the-money European put option values under the Black &
Scholes process

S

80 100 120

Closed-Form 4.4205 5.5256 6.6307

SFR(100/2,500) 4.4200 5.5249 6.6314

Std Dev. 0.0050 0.0060 0.0072

MAE 0.0039 0.0048 0.0057

SFR(100/5,000) 4.4205 5.5252 6.6305

Std Dev. 0.0026 0.0031 0.0035

MAE 0.0021 0.0025 0.0029

SFR(100/10,000) 4.4205 5.5259 6.6308

Std Dev. 0.0013 0.0012 0.0016

MAE 0.0010 0.0009 0.0009

SFR(100/20,000) 4.4208 5.5259 6.6313

Std Dev. 0.0006 0.0007 0.0009

MAE 0.0005 0.0006 0.0009

SFR(100/50,000) 4.4209 5.5261 6.6313

Std Dev. 0.0002 0.0003 0.0003

MAE 0.0004 0.0005 0.0007

SFR(100/100,000) 4.4208 5.5261 6.6313

Std Dev. 0.0001 0.0001 0.0002

MAE 0.0003 0.0005 0.0006

We observe that for European options the convergence of the algorithm is obtained

using over 20,000 paths, which is similar to what we observe in the next table for American

options.
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In Table 3.3, we present the American put prices computed by the SFR Method, as well

as the standard deviation and the mean absolute error for each option price in relation to

the True Value given by a Binomial Tree with 17,000 time steps.

Table 3.3. At-the-money American put prices under the Black & Scholes model

S

80 100 120

Binomial Tree 4.4371 5.5464 6.6557

SFR(100/2,500) 4.4478 5.5604 6.6739

Std Dev. 0.0049 0.0061 0.0105

MAE 0.0107 0.0140 0.0182

SFR(100/5,000) 4.4418 5.5524 6.6630

Std Dev. 0.0026 0.0031 0.0040

MAE 0.0047 0.0060 0.0073

SFR(100/10,000) 4.4390 5.5489 6.6586

Std Dev. 0.0009 0.0013 0.0014

MAE 0.0019 0.0025 0.0029

SFR(100/20,000) 4.4381 5.5477 6.6573

Std Dev. 0.0005 0.0008 0.0009

MAE 0.0010 0.0013 0.0016

SFR(100/50,000) 4.4376 5.5470 6.6564

Std Dev. 0.0002 0.0002 0.0003

MAE 0.0005 0.0006 0.0006

SFR(100/100,000) 4.4374 5.5468 6.6561

Std Dev. 0.0001 0.0001 0.0001

MAE 0.0003 0.0004 0.0004
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The results presented in Tables 3.2 and 3.3, respectively, show that even with a low

number of simulated paths, the SFR Method computes results with low MAEs and stan-

dard deviations and as we increase the number of simulated paths used to compute the

value of the option, the prices obtained with the SFR Method converge to the True Value.

Moreover, in Section 4.1 we present a convergence analysis of the results presented in this

section. Finally, in Section A we present further results for in and out-of-the-money option

prices using the SFR Method under the Black & Scholes process.
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3.2. The Heston Model

The dynamics for the risky asset St are given by a Geometric Brownian Motion, while

the squared volatility follows the dynamics proposed by Heston (1973). Thus, the model

is characterized by the following SDEs system:

dSt = (r − q)Stdt+
√
VtStdW

S
t (3.4)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

V
t (3.5)

dW S
t dW

V
t = ρdt (3.6)

Vt represents the instantaneous squared volatility, W S and W V correspond to standard

Brownian processes with correlation of ρ. Furthermore, θ is the long-run mean for Vt, κ is

the rate of mean reversion and ξ is the instantaneous variance of Vt. Following the simula-

tion approach discussed earlier, the Euler discretized process followed by the underlying

variable is characterized by the following equation:

St+1 = St + (r − q)St∆t+
√
VtSt∆W

S
t (3.7)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

V
t (3.8)

dW S
t dW

V
t = ρ∆t (3.9)

For the purposed of the SFR Method, we need to know the distribution of the underling

asset at time t + 1 under the Heston process, conditional on the value of the asset at time

t and the value of the instantaneous squared volatility at time t (F [St+1|St, Vt]). It follows

from equations (3.7) to (3.9) that the probability distribution of the asset is:

St+1 − St
St

|St, Vt ∼ N((r − q)∆t, Vt∆t) (3.10)

Following Selection 3.1, we compute several European option values using the closed-

form solution introduced in Heston (1993), which we compare to the values obtained by

the SFR Method used for European option. We compute at-the-money option prices

considering the values 8, 10 and 12 for the underlying asset using the pricing method
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described previously. We also follow the same simulation approach and result analysis

described in Selection 3.1. The parameters used to test the method are provided in Table

3.4.

Table 3.4. Parameter values for Heston model

Parameter Value Parameter Value

T 0.25 θ 0.16

r 0.1 ξ 0.90

q 0.00 ρ 0.10

κ 5.00 V0 0.25

Moreover, we used a numerical integration technique know as Simpsons quadrature

rule to evaluate the Heston integral. Adapted from Moodley (2005), the Simpsons quad-

rature rule for the numerical integration of a function p(x) is:∫ b

a

p(x)dx ≈ b− a
6

[p(a) + 4p(
a+ b

2
) + p(b)]

Error = − 1

90
(
b− a

2
)5p(4)(ξ)

ξε(a, b)

The accuracy of the technique depends on te number of subintervals, which is quantified

by the error measure. The Matlab function quad uses the Simpsons quadrature rule and

produces a result that has an error of less than 10−6 and can be used to compute American

options under the Heston dynamic.

In Table 3.5, we present the European put prices computed by the SFR Method and He-

ston closed-form solution. We also present the standard deviation and the mean absolute

error for each option value in relation to the True Value given by the European closed-form

solution.

We observe that for European options the convergence of the algorithm is obtained using
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over 20,000 paths, which is similar to what we observe in the next table for American

options as well as what we observed for European options.

Table 3.5. At-the-money European put option values under the Heston model

S

8 10 12

Closed-Form 0.6158 0.7697 0.9236

SFR(100/2,500) 0.6160 0.7700 0.9242

Std Dev. 0.0012 0.0013 0.0019

MAE 0.0010 0.0010 0.0016

SFR(100/5,000) 0.6162 0.7701 0.9242

Std Dev. 0.0007 0.0009 0.0011

MAE 0.0007 0.0008 0.0010

SFR(100/10,000) 0.6162 0.7703 0.9244

Std Dev. 0.0006 0.0007 0.0009

MAE 0.0006 0.0007 0.0008

SFR(100/20,000) 0.6162 0.7702 0.9243

Std Dev. 0.0003 0.0004 0.0005

MAE 0.0004 0.0005 0.0007

SFR(100/50,000) 0.6163 0.7703 0.9244

Std Dev. 0.0002 0.0003 0.0004

MAE 0.0005 0.0006 0.0008

SFR(100/100,000) 0.6162 0.7703 0.9243

Std Dev. 0.0001 0.0002 0.0002

MAE 0.0004 0.0006 0.0007

In Table 3.6, we present the American put prices computed by the SFR Method, as

well as the standard deviation and the mean absolute error for each option price in relation
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to the True Value given by the Longstaff and Schwartz method (LSM) computed under

the Heston process1. We used the Euler discretized simulation approach and computed

50 option prices for each value of the underlying asset, using 100 time steps and 150,000

paths, which we averaged to compute the option prices under the LSM.

1We implemented the LSM using a Languerre polynomial with two variables X1(x) = 1− x and X2(x) =
1
2 ∗ (x

2 − 4 ∗ x+ 2), respectively.
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Table 3.6. At-the-money American put prices under the Heston model

S

8 10 12

Heston LSM 0.6364 0.7960 0.9556

SFR(100/2,500) 0.6373 0.7966 0.9560

Std Dev. 0.0011 0.0012 0.0018

MAE 0.0046 0.0006 0.0070

SFR(100/5,000) 0.6370 0.7963 0.9555

Std Dev. 0.0007 0.0008 0.0010

MAE 0.0043 0.0003 0.0065

SFR(100/10,000) 0.6369 0.7961 0.9554

Std Dev. 0.0005 0.0007 0.0008

MAE 0.0042 0.0001 0.0064

SFR(100/20,000) 0.6368 0.7960 0.9552

Std Dev. 0.0004 0.0004 0.0005

MAE 0.0004 0.0003 0.0004

SFR(100/50,000) 0.6369 0.7961 0.9553

Std Dev. 0.0002 0.0003 0.0004

MAE 0.0005 0.0002 0.0004

SFR(100/100,000) 0.6368 0.7960 0.9552

Std Dev. 0.0001 0.0002 0.0002

MAE 0.0004 0.0001 0.0004

As in Selection 3.1, the results presented in Tables 3.5 and 3.6, respectively, show

that even with a low number of simulated paths, the SFR Method computes results with

low MAEs and standard deviations and as we increase the number of simulated paths, the

prices obtained with the SFR Method converge to the True Value. Finally, in Section
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B we present further results for in and out-of-the-money option prices using the SFR

Method under the Heston process.
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4. ANALYSIS OF THE RESULTS

4.1. Convergence Analysis

We perform a numerical convergence analysis to test the convergence of the method

and the number of paths and time steps needed to obtain different levels of errors and

volatility values. We compute put options values with the SFR Method using a fixed

value for the underlying asset (S = 80), increasing the number of time steps and paths

from 25 to 400 and from 100 to 5,000, respectively. We also use a risk free rate of 0.04,

dividend rate of 0.04, variance rate of 0.2, strike price of 100 and maturity of 0.5.

First, we present the evolution of the mean absolute error and standard deviation obtained

by the SFRMethod for an European put option, increasing the number of paths for certain

values of time steps. We use the Black & Scholes closed-form solution as benchmark to

compute the MAE of each iteration.

In Figure 4.1, we observe that as the number of paths increase the MAE decreases, given

different values for the number of time steps. This shows that the convergence of method,

and thereby the value of the option, depends primary on the number of paths and secondary

by the number of time steps.

Figure 4.1. MAE vs number of paths for an European put option for dif-
ferent time steps
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Figure 4.2 shows the variation of the standard deviation as the number of paths in-

crease. It can be seen that the standard deviation behaves similar to the MAE when we

change the number of paths.

Figure 4.2. Standard deviation vs number of paths for an European put
option for different time steps

We also compute the average value of the metrics discussed above for each series

of paths (given a certain path number, we varied the number of time steps), which are

presented in Table 4.1.

Table 4.1. Average MAE and standard deviation for each series of paths

Paths MAE Standard Deviation

100 0.0577 0.1407

500 0.0170 0.0434

1000 0.0083 0.0101

1500 0.0055 0.0064

5000 0.0021 0.0023
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It can be observed that the MAE and standard deviation decrease as the number of

paths increase, reaching for this analysis an average value of 0.0021 and 0.0023, respec-

tively.

Moreover, we present the evolution of the MAE and standard deviation computed using

the SFR Method for an American put option, increasing the number of paths for certain

values of time steps. We use a Binomal Tree with 17,000 time steps as benchmark to

compute the MAE of each iteration.

Figure 4.3 shows that the value of the MAE decreases as the number of paths increase,

which is similar to what we presented for an European option.

Figure 4.3. MAE vs number of paths for an American put option for dif-
ferent time steps

Figure 4.4 shows the variation of the standard deviation as the number of paths in-

creases. It can be seen that the standard deviation has a similar behavior to the MAE when

we change the number of paths. The same movement is observed for an European option.
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Figure 4.4. Standard deviation vs number of paths for an American put
option for different time steps

Finally, we also compute the average value of the metrics discussed above for each

series of paths (given a certain path number, we varied the number of time steps), which

are presented the following table.

Table 4.2. MAE and standard deviation for each series of paths

Paths MAE Standard Deviation

100 1.03507 0.2233

500 0.0892 0.0334

1000 0.0250 0.0142

1500 0.0100 0.0067

5000 0.0024 0.0023

MAE and standard deviation decrease as the number of paths increases, reaching for

this analysis a value of 0.0024 and 0.0023, respectively.

Moreover, we compute further analysis to further understand the convergence of the SFR

Method. In this context, we perform a runtime analysis for different option prices to
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test the time needed to obtain certain levels of errors, which we present in Section 4.2.

Additionally, we compute different option prices applying Itos Lemma to understand the

convergence and accuracy of the SFR Method when we assumed a log-normal distribu-

tion for the underlying asset, which we present in Appendix C.
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4.2. Runtime and MAE Analysis

We present a runtime analysis for different option results to understand the numbers of

path and time steps needed to obtain a certain level of error and to test the computational

requirements of the method. We perform analysis using the SFR Method under the Black

& Scholes process, where we averaged 50 iterations of each option value. We use for each

option a value of 80 for the underlying asset, strike price of 100, risk free rate of 0.04,

divided rate of 0.04, variance rate of 0.2 and maturity of 0.5.

Also, we run the SFR Method using two computational implementations. In first place,

we use a regular CPU computer with Intel i5 core processing system, which results we

compare with the ones obtained from a Cluster implementation with 200 cores. Hence,

for each of the implementations, runtime values were computed as the average runtime

per iteration, so that total runtime can be computed as the multiplication of the average

runtime by the number of iterations. Moreover, we compute MAE for European and Amer-

ican option prices as described in previous sections, using as benchmark Black & Scholes

closed-form solution and a Binomal Tree with 17,000 time steps, respectively. The results

obtained are presented in Table 4.3

Table 4.3 shows the speedup and the levels of errors when we use the two different compu-

tational implementations. As we observed in Sections 3 and 4.1, we reach convergence in-

creasing the number of paths, but the amount of time required to price the option increases

as well. However, the amount of time required to price the option decreases significantly

when we use the Cluster implementation. Even though the Cluster implementation is

faster than the regular CPU, the algorithm could run faster if we implement it using an

optimized parallel computing language.
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Table 4.3. Option prices under the Black & Scholes model computed using
the SFR Method for regular CPU and Cluster implementations

Method Runtime European American Runtime

(Nt/Ns) CPU (sec) MAE MAE Cluster (sec)

SFR(50/100) 0.95 0.0539 0.3029 1.44

SFR(50/500) 2.36 0.0139 0.0131 2.64

SFR(100/1,000) 12.47 0.0081 0.0060 4.28

SFR(100/5,000) 207.66 0.0020 0.0032 20.28

SFR(100/10,000) 782.50 0.0027 0.0036 46.49

SFR(100/20,000) 2,859.24 0.0023 0.0029 252.95

SFR(100/50,000) - 0.0015 0.0029 1,213.09

SFR(100/100,000) - 0.0014 0.0029 4,179.07

SFR(300/20,000) - 0.0002 0.0014 765.48

SFR(300/50,000) - 0.0001 0.0015 3,711.36

LSM(150/50,000) 2.13 - 0.0114 -

LSM(250/100,000) 8.04 - 0.0031 -

On the other hand, we can further reduce the pricing errors by increasing the number

of time steps, decreasing the error from 0.0015 to 0.0001, using the same number of paths

(50,000 paths), but increasing the number of time steps from 100 to 300. However, to

increase the number of time steps and paths used, a regular CPU and even a Cluster im-

plementation are not sufficient given the time required to price the option using more than

5,000 paths and 100 time steps, requiring a parallel computing implementation approach

to price options in times closer to other methods commonly used.

Finally, we observe that even when the time required to price options under the SFR
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Method is longer than using LSM method1, the use of new computational implementa-

tion methods to speedup the algorithm (i.e. parallel computing) could make it competitive

regarding this metric. On the other hand, we also observe that the level of error using the

same number of time steps and paths is lower, which could be an advantage over the LSM

method, but this feature has to be further studied.

1We implemented the LSM using a Languerre polynomial with two variables X1(x) = 1− x and X2(x) =
1
2 ∗ (x

2 − 4 ∗ x+ 2), respectively.
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5. FURTHER RESEARCH TOPICS

In this section, we present research topics for further studies and testing of the SFR

Method, including the development of the theoretical mathematical approach for three

additional processes to simulate the underlying asset, which include more complex sto-

chastic jump-diffusion processes.

Other potential lines of investigation and research not covered in this paper are the imple-

mentation of an optimized parallelization of the SFR algorithm in GPU devices and/or

the use of different probability-assignation algorithms for the risk-adjusted probabilities

assigned to the expected cash flow.

5.1. The Merton Model

We present the mathematical approach to implement the SFRMethod under the jump-

diffusion process proposed by Merton (1976). The dynamics for the risky asset St is

characterized by the following SDE:

dSt
St

= (r − q − λµ̄)dt+ σdWt + (Y − 1)dJt (5.1)

In (5.1), r corresponds to the instantaneous risk-free rate, q corresponds to the instan-

taneous dividend rate, σ corresponds to the instantaneous volatility. Wt is the Brownian

process and Jt is the Poisson process of intensity λ, which are statically independent. In

the case of Y , it corresponds to the amplitude of the jump and µ̄ is the expected change

in the value of the underlying asset if a jump occurs. Following the simulation approach

discussed earlier, the Euler discretized process followed by the underlying asset, where

there are Nj jumps between t− 1 and t, is characterized by the following equation:

St+1 = St + (r − q − λµ̄)St∆t+ σSt∆Wt +
Nt∑
j=1

(Yj − 1)St (5.2)
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Furthermore, 5.2 can be written as:

dst+1 = ln(
St+1

St
) = {(r − q − σ2

2
− λµ̄)∆t+ σ∆Wt + ln(

Nt∏
j=1

Yj)} (5.3)

Following Merton’s model, Yj is a lognormal random variable with mean µY and variance

σ2
Y . Moreover, µ̄ = E{Yj − 1} and µY and µ̄ area related by the following expression:

µ̄ = exp(µY +
1

2
σ2
Y )− 1

For the purpose of the SFR Method, it is needed to know the distribution of the underling

asset at time t+1 under the Merton dynamic, conditional on the value of the asset at time t

(F [St+1|St]). To obtain the conditional probability distribution function, we use the same

argument as in Zhou (1997), where FQ
t+1(X|St) is the probability that the event {St ≤ X}

occurs conditional on the value of St, under a risk-adjusted probability measure Q:

FQ
t (X|St) = Q(St+1 ≤ X|St) (5.4)

If Nj are the number of jumps between t and t + 1 and the risk-adjusted probability can

be written as:

Q(St+1 ≤ X|St) = Q(ln(St+1) ≤ ln(X)|ln(St)) (5.5)

Then, the risk-adjusted probability conditional on the number of jumps occurred between

the time step can be written as:

FQ
t+1(X|St) =

Nj∑
i=0

Q(ln(St+1) ≤ ln(X)|ln(St), Nj = i) ∗ Pr(Nj = i) (5.6)

In this case, the conditional distribution function is the sum of multiplications of Normal

and Poisson distributions. It follows from (5.6) that the conditional probability distribution

of the asset, FQ
t+1(X|St), is:

FQ
t+1(X|St) =

Nj∑
i=0

N(
ln(St

K
) + (r − q − σ2

2
− λµ̄+ i∗µY

∆t
)∆t√

σ2∆t+ i ∗ σ2
Y

) ∗ exp(−λ∆t)(λ∆t)i

i!

(5.7)
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Finally, it follows from (5.7) that the probability distribution of the asset is:

ln(St+1)|ln(St) ∼
Nj∑
i=0

N(ln(St) + (r− q− σ
2

2
−λµ̄+

iµY
∆t

)∆t, σ2∆t+ iσ2
Y )Pr(Nj = i)

(5.8)

Pr(Nj = i) =
exp(−λ∆t)(λ∆t)i

i!
(5.9)

42



5.2. The SVJ Model

We present the mathematical approach to implement the SFR Method under a the

stochastic volatility with jumps (SVJ) model, where the SDE for St is given by the jump-

diffusion process proposed in section 5.1 and the stochastic volatility process proposed in

section 3.2. Thus, the dynamics for St are given by the SDEs system:

dSt
St

= (r − q − λµ̄)dt+
√
VtdW

S
t + (Y − 1)dJt (5.10)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

V
t (5.11)

dW S
t dW

V
t = ρdt (5.12)

Here, W S and W V corresponds to Brownian processes and Jt is the Poisson process of

intensity λ, both statically independent of each other. All other parameters are the same

that those presented in previous sections. Following the simulation approach discussed

earlier, the Euler discretized processes followed by the underlying asset, where there are

Nj jumps between t− 1 and t, is characterized by the following equation:

St+1 = St + (r − q − λµ̄)St∆t+
√
Vt∆W

S
t +

Nt∑
j=1

(Yj − 1)St (5.13)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

V
t (5.14)

dW S
t dW

V
t = ρ∆t (5.15)

As presented in Section 5.1, Yj is a lognormal random variable with mean µY and variance

σ2
Y . Furthermore, µ̄ = E{Y − 1} and µY and µ̄ are related by the following expression:

µ̄ = exp(µY +
1

2
σ2
Y )− 1

For the purposed of the SFRMethod, it is needed to know the distribution of the underling

asset at time t + 1, conditional on the value of the asset at time t and the square volatility

at time t, under the Heston and Merton dynamic (F [St+1|St, Vt]). To obtain the condi-

tional probability distribution function, we used the same argument as in Zhou (1997) and
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in Section 5.1, where FQ
t+1(X|St, Vt) is the probability that the event {St ≤ X} occurs

conditional on the value of St and Vt, under a risk-adjusted probability measure Q:

FQ
t (X|St, Vt) = Q(St+1 ≤ X|St, Vt) (5.16)

If Nj are the number of jumps between t and t + 1 and the risk-adjusted probability can

be written as:

Q(St+1 ≤ X|St, Vt) = Q(ln(St+1) ≤ ln(X)|ln(St), Vt) (5.17)

Then, the risk-adjusted probability conditional on the number of jumps occurred between

the time step can be written as:

FQ
t+1(X|St, Vt) =

Nj∑
i=0

Q(ln(St+1) ≤ ln(X)|ln(St), Vt, Nj = i) ∗ Pr(Nj = i) (5.18)

In this case, the conditional distribution function is the sum ofNj multiplication of Normal

and Poisson distributions. It follows from (5.18) that the conditional probability distribu-

tion of the asset, FQ
t+1(X|St, Vt), is:

FQ
t+1(X|St, Vt) =

Nj∑
i=0

N(
ln(St

K
) + (r − q − Vt

2
− λµ̄+ i∗µY

∆t
)∆t√

Vt∆t+ i ∗ σ2
Y

) ∗ exp(−λ∆t)(λ∆t)i

i!

(5.19)

Finally, it follows from (5.19) that the probability distribution of the asset is:

ln(St+1)|ln(St), Vt ∼

Nj∑
i=0

exp(−λ∆t)(λ∆t)i

i!
∗N(ln(St) + (r− q− Vt

2
− λµ̄+

iµY
∆t

)∆t, Vt∆t+ iσ2
Y ) (5.20)
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5.3. The SVCJ Model

We present the mathematical approach to implement the SFR Method under the sto-

chastic volatility with co-jumps (SVCJ) model first introduced in Duffie, Pan, and Sin-

gleton (2000), which is similar to the model described in section 5.2, but in this case the

model includes jump in the stochastic volatility process:

dSt
St

= (r − q − λµ̄)dt+
√
VtdW

S
t + (Y − 1)dJt (5.21)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

V
t +XdJt (5.22)

In (5.21) and (5.22), W S and W V correspond to Brownian processes, Jt is the Poisson

process of intensity λ respectively, statically independent with the Brownian processes, Y

is a log-normal variable corresponding to the size of the jump in the underlying asset and

X is an exponential variable corresponding to the size of the jump for the variance with

mean µX . Jumps in the underlying asset and the variance occur simultaneously, and are

correlated by a factor ρj . Given X , Y is a log-normal variable with mean µY + ρjX and

variance σ2
Y , such as µ̄ and µY are related by the following expression:

µ̄ =
exp(µY + 1

2
σ2
Y )

1− ρjµX
− 1

Following the simulation approach discussed earlier, the Euler discretized processes fol-

lowed by the underlying asset, where there are Nj jumps between t − 1 and t, is charac-

terized by the following equations:

St+1 = St + (r − q − λµ̄)St∆t+
√
Vt∆W

S
t +

Nt∑
j=1

(Yj − 1)St (5.23)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

V
t +

Nt∑
j=1

Xj (5.24)

For the purposed of the SFRMethod, it is needed to know the distribution of the underling

asset at time t + 1, conditional on the value of the asset at time t and the square volatility
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at time t, under the Heston and Merton dynamic (F [St+1|St, Vt]). To obtain the condi-

tional probability distribution function, we used the same argument as in Zhou (1997) and

in Section 5.2, where FQ
t+1(X|St, Vt) is the probability that the event {St ≤ X} occurs

conditional on the value of St and Vt, under a risk-adjusted probability measure Q:

FQ
t+1(X|St, Vt) =

Nj∑
i=0

Q(ln(St+1) ≤ ln(X)|ln(St), Vt, Nj = i) ∗ Pr(Nj = i) (5.25)

In this case, the conditional distribution function is the sum ofNj multiplication of Normal

and Poisson distributions. It follows from (5.25) that the conditional probability distribu-

tion of the asset, FQ
t+1(X|St, Vt), is:

Nj∑
i=0

N(
ln(St

K
) + (r − q − Vt

2
− λµ̄+

i∗(µY +ρjµX)

∆t
)∆t√

Vt∆t+ i ∗ σ2
Y

) ∗ exp(−λ∆t)(λ∆t)i

i!
(5.26)

Finally, it follows from (5.26) that the probability distribution of the asset is:

ln(St+1)|ln(St), Vt ∼

Nj∑
i=0

exp(−λ∆t)(λ∆t)i

i!
∗N(ln(St)+(r−q− Vt

2
−λµ̄+

i ∗ (µY + ρjµX)

∆t
)∆t, Vt∆t+iσ

2
Y )

(5.27)
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6. CONCLUSIONS

In this thesis, we have presented a straight-forward and robust new method, the SFR

Method, to price American options using the characteristics implied on the conditional

probability distribution function (expectation function) of each stochastic process imple-

mented to describe the behavior of the underlying asset that is being simulated. Through-

out the implementation of this conditional expectation function we have obtained a new

method to determine risk-adjusted probabilities to be assigned to the expected payoffs,

which is not subject to an implementation decision as oppose to other option pricing mod-

els (i.e. Longstaff and Schwartz method).

Furthermore, we have proved that the SFR Method can be used as a generalized ver-

sion of the Binary Tree model, since as we have shown, it has the flexibility to price

American-style as well as European-style feature options and the simplicity on the valu-

ation procedure. Moreover, we have shown that the model incorporates the adaptability

to price options under different stochastic processes, including Black & Scholes, Heston,

Merton models as well as other more complex jump-diffusion processes.

We tested the new method under two different dynamics for the underlying asset, which

was presented in Section 3. For the simulation approach, we computed 50 option prices

for each value of the underlying asset, which we averaged and used to obtain MAE and

standard deviations, which we used to test the convergence of the method and the devia-

tion respect to the True Value of reference. First, we implemented the SFR Method under

the Black & Scholes model, calculating at-the-money European and American put option

prices and compared them against their True Value, which we obtained using Black & Sc-

holes closed-form solution and a Binomal Tree with 17,000 time steps, respectively. We

obtained MAE and standard deviation of 0.0003 and 0.0001 in the lower case, respectively

for European as well as American options. We also observed that the convergence of the

algorithm was obtained using over 20,000 paths.

In second place, we implemented the SFR Method under the Heston model, calculating

at-the-money European and American put prices and compared them against their True
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Value, which we obtained using Heston closed-form solution and the LSM method under

the Heston process, respectively. We obtained MAE and standard deviation of 0.0004 and

0.0001 in the lower case, respectively for European options and of 0.0001 and 0.0001 in

the lower case, respectively for American options. Under the Heston process, the conver-

gence of the algorithm was obtained with equal number of paths.

Moreover, we performed a series of additional analysis of the results obtained with the

SFR Method, which we presented in Section 4. We performed the analysis averaging

50 option prices computed with the SFR Method under the Black & Scholes model for

different number of paths.

In the first place, we performed a convergence analysis, where we concluded that as the

number of paths increase, the MAE and standard deviation decreases independent of the

number of time steps used,showing that the convergence of the method depends primary

on the number of paths and secondary by the number of time steps. Also, we observed

that using a number of 5,000 paths per iteration for different time steps, we obtained an

average value for the MAE and standard deviation of 0.0021 and 0.0023, respectively for

European options, and an average value of 0.0024 and 0.0023, respectively for American

options.

In second place, we performed a runtime analysis to understand the number of paths and

time steps needed to obtain a certain level of error and to test the computational require-

ments of the method. We concluded that as we increase the number of paths, the amount

of time required to price the option increases as well, reaching 2,859 seconds for 100 time

steps and 20,000 paths (number of paths required for the model to converge). The time

can be reduced by implementing the algorithm in a cluster computer, reaching 252 second

for the same number of paths and time steps. Also, we observed that the MAE was further

reduced by increasing the number of time steps, decreasing from 0.0015 to 0.0001 for

European options, but increasing the number of time steps from 100 to 300.

Finally, we have presented further research topics to continue studying and testing the

SFR Method, including the development of the theoretical mathematical approach for

the Merton, SVJ and SVCJ processes to be implemented under the SFR pricing model;
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and also we have identified other potential lines of investigation and research not cover in

this work, which could improve the time constrain and the error metrics studied in this the-

sis through the implementation of the SFR algorithm in parallel computing language and

the used of a different probability-assignation algorithm for the risk-adjusted probabilities

assigned to the expected cash flows, respectively.
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A. FURTHER RESULTS UNDER THE BLACK & SCHOLES MODEL

We present further European option results computed with the SFR Method under

the Black & Scholes process in Table A.1. We used the Euler discretized simulation ap-

proach to compute and average 50 iterations of each option value presented in the table.

We also used the following parameters: K = 100, T = 0.50, r = 0.04, q = 0.04, and σ =

0.20. Moreover, we calculate the MAE and standard deviation as described in previous

sections, using as benchmark Black & Scholes closed-form solution.
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Table A.1. European put prices under the Black & Scholes model

S

Method(Nt/Nw) 80 90 100 110 120

Closed-Form 19.9070 11.5393 5.5256 2.1675 0.7061

SFR(100/1,500) 19.9041 11.5366 5.5250 2.1700 0.7062

Std Dev. 0.0069 0.0086 0.0106 0.0104 0.0127

MAE 0.0063 0.0067 0.0085 0.0091 0.0106

SFR(100/5,000) 19.9056 11.5376 5.5250 2.1696 0.7084

Std Dev. 0.0020 0.0027 0.0041 0.0033 0.0029

MAE 0.0019 0.0026 0.0032 0.0031 0.0029

SFR(100/10,000) 19.9055 11.5375 5.5256 2.1697 0.7085

Std Dev. 0.0011 0.0010 0.0013 0.0017 0.0018

MAE 0.0016 0.0019 0.0010 0.0023 0.0024

SFR(100/50,000) 19.9056 11.5376 5.5261 2.1701 0.7088

Std Dev. 0.0002 0.0002 0.0003 0.0003 0.0003

MAE 0.0014 0.0017 0.0005 0.0026 0.0027

SFR(100/100,000) 19.9056 11.5376 5.5261 2.1701 0.7088

Std Dev. 0.0001 0.0001 0.0001 0.0001 0.0002

MAE 0.0014 0.0017 0.0005 0.0026 0.0027
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In Table A.2, we present further American option results computed with the SFR

Method under the Black & Scholes process, using the same parameters used for the Euro-

pean option results describe above. Moreover, we calculate the MAE and standard devi-

ation as described in previous sections, using as benchmark a Binomal Tree with 17,000

time steps.

Table A.2. American put prices under the Black & Scholes model

S

Method(Nt/Nw) 80 90 100 110 120

Binomial Tree 20.1448 11.6147 5.5466 2.1726 0.7073

SFR(100/1,500) 20.1476 11.6298 5.5742 2.2061 0.7415

Std Dev. 0.0038 0.0091 0.0118 0.0128 0.0165

MAE 0.0028 0.0151 0.026 0.0335 0.0342

SFR(100/5,000) 20.1426 11.6146 5.5526 2.1826 0.7176

Std Dev. 0.0010 0.0018 0.0033 0.0040 0.0031

MAE 0.0022 0.0001 0.0060 0.0100 0.0103

SFR(100/10,000) 20.1423 11.6131 5.5488 2.1782 0.7135

Std Dev. 0.0005 0.0006 0.0012 0.0015 0.0017

MAE 0.0025 0.0016 0.0022 0.0056 0.0062

SFR(100/50,000) 20.1419 11.6122 5.5470 2.1756 0.7106

Std Dev. 0.0001 0.0001 0.0002 0.0003 0.0004

MAE 0.0029 0.0025 0.0004 0.0030 0.0033

SFR(100/100,000) 20.1419 11.6121 5.5468 2.1753 0.7102

Std Dev. 0.0001 0.0001 0.0001 0.0002 0.0002

MAE 0.0029 0.0026 0.0004 0.0027 0.0029
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B. FURTHER RESULTS UNDER THE HESTON MODEL

We present further results computed with the SFR Method under the Heston process

in Table B.1. We used the Euler discretized simulation approach to compute and average

50 iterations of each option value presented in the table. We also used the following pa-

rameters: K = 100, T = 0.25, θ = 0.16, r = 0.10, ξ = 0.90, q = 0.00, ρ = 0.10, κ = 5.00

and V0 = 0.25. Moreover, we calculate the MAE and standard deviation as described in

previous sections, using as benchmark Heston closed-form solution.
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Table B.1. European put prices under the Heston model

- S

Method(Nt/Nw) 8 9 10 11 12

Closed-Form 1.9773 1.2800 0.7697 0.4360 0.2373

SFR(100/1,500) 1.9763 1.2797 0.7697 0.4353 0.2391

Std Dev. 0.0033 0.0032 0.0022 0.0034 0.0034

MAE 0.0028 0.0024 0.0017 0.0026 0.0031

SFR(100/5,000) 1.9765 1.2804 0.7701 0.4365 0.2380

Std Dev. 0.0019 0.0019 0.0010 0.0017 0.0015

MAE 0.0016 0.0016 0.0008 0.0014 0.0014

SFR(100/10,000) 1.9767 1.2802 0.7703 0.4371 0.2385

Std Dev. 0.0013 0.0010 0.0007 0.0010 0.0012

MAE 0.0012 0.0008 0.0007 0.0012 0.0014

SFR(100/50,000) 1.9771 1.2802 0.7703 0.4370 0.2384

Std Dev. 0.0005 0.0005 0.0003 0.0005 0.0008

MAE 0.0004 0.0004 0.0006 0.0010 0.0012

SFR(100/100,000) 1.9771 1.2801 0.7703 0.4369 0.2384

Std Dev. 0.0004 0.0004 0.0002 0.0004 0.0008

MAE 0.0004 0.0003 0.0006 0.0009 0.0012
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In Table B.2, we present further American option results computed with the SFR

Method under the Heston process, using the same parameters used for the European op-

tion results described above. Moreover, we calculate the MAE and standard deviation as

described in previous sections, using as benchmark the LSM method1 computed under the

Heston process.

Table B.2. American put prices under the Heston model

S

Method(Nt/Nw) 8 9 10 11 12

Heston LSM 2.0784 1.3336 0.7960 0.4483 0.2428

SFR(100/1,500) 2.0778 1.3337 0.7972 0.4505 0.2488

Std Dev. 0.0023 0.0032 0.0016 0.0033 0.0039

MAE 0.0006 0.0001 0.0002 0.0022 0.0060

SFR(100/5,000) 2.0778 1.3336 0.7962 0.4490 0.2442

Std Dev. 0.0015 0.0018 0.0008 0.0016 0.0016

MAE 0.0006 0.0000 0.0002 0.0007 0.0014

SFR(100/10,000) 2.0779 1.3334 0.7961 0.4492 0.2442

Std Dev. 0.0010 0.0010 0.0007 0.0010 0.0012

MAE 0.0005 0.0002 0.0001 0.0009 0.0014

SFR(100/50,000) 2.0782 1.3334 0.7961 0.4488 0.2436

Std Dev. 0.0004 0.0005 0.0003 0.0005 0.0006

MAE 0.0002 0.0002 0.0001 0.0005 0.0008

SFR(100/100,000) 2.0781 1.3333 0.7960 0.4487 0.2436

Std Dev. 0.0003 0.0004 0.0002 0.0004 0.0004

MAE 0.0003 0.0003 0.0000 0.0004 0.0008

1We implemented the LSM using a Languerre polynomial with two variables X1(x) = 1− x and X2(x) =
1
2 ∗ (x

2 − 4 ∗ x+ 2), respectively.
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C. IMPLEMENTATION OF THE LOG-NORMAL APPROACH

In this section, we compute different option prices applying Itos Lemma to understand

the convergence and accuracy of the SFR Method when we assumed a log-normal distri-

bution for the underlying asset.

We reformulate Equation 2.1 and 2.2 of Section 2.1, applying Itos Lemma to obtain the

following Euler discretized simulation process for the variables Ŝti+1 and Ŷt+1:

Ŝti+1
= Ŝti ∗ exp{(r(Ŷti)− q(Ŷti)− 1/2 σS(Ŷti))∆t+ σ(Ŷti)∆W

S
ti

+ ξ(Ŷti)∆Jti}

Ŷti+1
= Ŷti + µY (Ŷti)∆t+ σY (Ŷti)∆W

V
ti

+ ψ(Ŷti)∆Jti
(C.1)

First, we apply Itos Lemma to Black & Scholes SDE presented in Equation 3.1 of Section

3.1, obtaining the following SDE and probability distribution for the risky asset:

(i) SDE:

dst+1 = ln(
St+1

St
) = {(r − q − σ2

2
)∆t+ σ∆Wt} (C.2)

(ii) Probability Distribution:

dst+1 = ln(
St+1

St
)|St ∼ N((r − q − σ2

2
)∆t, σ2∆t) (C.3)

In second place, we apply Itos Lemma to Heston SDE presented in Equation 3.4, 3.5 and

3.6 of Section 3.2, obtaining the following SDE and probability distribution for the risky

asset:

(i) SDE:

dst+1 = ln(
St+1

St
) = {(r − q − σ2

2
)∆t+

√
Vt∆W

S
t } (C.4)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

V
t (C.5)
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dW S
t dW

V
t = ρdt (C.6)

(ii) Probability Distribution:

dst+1 = ln(
St+1

St
)|St, Vt ∼ N((r − q − σ2

2
)∆t, Vt∆t) (C.7)

We test the SFR Method under the two dynamics for the risky asset satisfying Equations

C.2, and C.4, C.5 and C.6, which we present in Sections D and E, respectively.
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D. RESULTS UNDER THE LOG-NORMAL BLACK & SCHOLES MODEL

We present European put option results computed with the SFR Method under the

Black & Scholes process in Table D.1. We used the Euler discretized simulation approach

described in Equations C.2 and C.3 of Appendix C to compute and average 50 iterations

of each option value presented in the table. We also used the following parameters: K =

100, T = 0.50, r = 0.04, q = 0.04, and σ = 0.20. Moreover, we calculate the MAE and

standard deviation as described in previous sections, using as benchmark Black & Scholes

closed-form solution.

Table D.1. European put prices under the Black & Scholes model

S

Method(Nt/Nw) 80 90 100 110 120

Closed-Form 19.9070 11.5393 5.5256 2.1675 0.7061

SFR(100/20,000) 19.9081 11.5403 5.5261 2.1678 0.7063

Std Dev. 0.0005 0.0007 0.0008 0.0008 0.0009

MAE 0.0011 0.0010 0.0007 0.0007 0.0007

SFR(100/50,000) 19.9081 11.5403 5.5261 2.1678 0.7063

Std Dev. 0.0002 0.0002 0.0003 0.0003 0.0003

MAE 0.0011 0.0010 0.0005 0.0004 0.0003

SFR(100/100,000) 19.9081 11.5403 5.5261 2.1678 0.7063

Std Dev. 0.0001 0.0001 0.0001 0.0001 0.0002

MAE 0.0011 0.0010 0.0005 0.0003 0.0002

In Table D.2, we present American option results computed with the SFR Method

under the Black & Scholes process, using the same simulation approach and parameters

used for the European option results described above. Moreover, we calculate the MAE
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and standard deviation as described in previous sections, using as benchmark a Binomal

Tree with 17,000 time steps.

Table D.2. American put prices under the Black & Scholes model

S

Method(Nt/Nw) 80 90 100 110 120

Binomial Tree 20.1448 11.6147 5.5466 2.1726 0.7073

SFR(100/20,000) 20.1432 11.6146 5.5478 2.1744 0.7093

Std Dev. 0.0002 0.0003 0.0008 0.0011 0.0012

MAE 0.0016 0.0003 0.0013 0.0018 0.0020

SFR(100/50,000) 20.1431 11.6142 5.5470 2.1732 0.7080

Std Dev. 0.0001 0.0001 0.0002 0.0003 0.0004

MAE 0.0017 0.0005 0.0006 0.0006 0.0007

SFR(100/100,000) 20.1431 11.6142 5.5468 2.1729 0.7077

Std Dev. 0.0001 0.0001 0.0001 0.0002 0.0002

MAE 0.0017 0.0005 0.0004 0.0003 0.0004

Results presented are similar to the ones computed with the Normal-distribution Euler

discretized simulation approach. However, we can observe that MAE and standard devi-

ation are lower using the Log-normal distribution, improving the MAE of the algorithm

under the Black & Scholes process.
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E. RESULTS UNDER THE LOG-NORMAL HESTON MODEL

We present results computed with the SFR Method under the Heston process in Table

E.1. We use the Euler discretized simulation approach described in Equations C.4, C.5,

C.6 and C.7 of Appendix C to compute and average 50 iterations of each option value pre-

sented in the table. We also used the following parameters: K = 100, T = 0.25, θ = 0.16,

r = 0.10, ξ = 0.90, q = 0.00, ρ = 0.10, κ = 5.00 and V0 = 0.25. Moreover, we calculate

the MAE and standard deviation as described in previous sections, using as benchmark

Heston closed-form solution.

Table E.1. European put prices under the Heston model

S

Method(Nt/Nw) 8 9 10 11 12

Closed-Form 1.9773 1.2800 0.7697 0.4360 0.2373

SFR(100/20,000) 1.9774 1.2803 0.7702 0.4363 0.2375

Std Dev. 0.0009 0.0008 0.0004 0.0004 0.0008

MAE 0.0008 0.0007 0.0006 0.0003 0.0007

SFR(100/50,000) 1.9776 1.2804 0.7703 0.4363 0.2375

Std Dev. 0.0005 0.0005 0.0003 0.0005 0.0006

MAE 0.0004 0.0005 0.0006 0.0005 0.0005

SFR(100/100,000) 1.9776 1.2804 0.7703 0.4363 0.2375

Std Dev. 0.0004 0.0004 0.0002 0.0004 0.0004

MAE 0.0004 0.0004 0.0006 0.0003 0.0004

In Table E.2, we present American option results computed with the SFR Method

under the Heston process, using the same simulation approach and parameters used for
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the European option results described above. Moreover, we calculate the MAE and stan-

dard deviation as described in previous sections, using as benchmark the LSM method2

computed under the Heston process.

Table E.2. American put prices under the Heston model

S

Method(Nt/Nw) 8 9 10 11 12

Heston LSM 2.0784 1.3336 0.7960 0.4483 0.2428

SFR(100/20,000) 2.0781 1.3331 0.7960 0.4479 0.2429

Std Dev. 0.0007 0.0008 0.0004 0.0003 0.0009

MAE 0.0006 0.0007 0.0003 0.0004 0.0007

SFR(100/50,000) 2.0782 1.3333 0.7961 0.4480 0.2427

Std Dev. 0.0004 0.0005 0.0003 0.0005 0.0006

MAE 0.0003 0.0005 0.0002 0.0005 0.0005

SFR(100/100,000) 2.0782 1.3332 0.7960 0.4479 0.2427

Std Dev. 0.0003 0.0004 0.0002 0.0004 0.0004

MAE 0.0003 0.0005 0.0001 0.0004 0.0003

Results presented are similar to the ones computed with the Normal-distribution Euler

discretized simulation approach. However, we can observe that MAE and standard devi-

ation are lower using the Log-normal distribution, improving the MAE of the algorithm

under the Heston process.

2We implemented the LSM using a Languerre polynomial with two variables X1(x) = 1− x and X2(x) =
1
2 ∗ (x

2 − 4 ∗ x+ 2), respectively.
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