
 

 

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE 

SCHOOL OF ENGINEERING 

 

 

DESIGN OPTIMIZATION OF A 

REINFORCED CONCRETE FRAME 

BUILDING TO MINIMIZE THE DRIFT 

 ORLANDO DANIEL ARROYO AMELL 

 Thesis submitted to the Office of Research and Graduate Studies in 

partial fulfillment of the requirements for the Degree of Master of 

Science in Engineering (or Doctor in Engineering Sciences) 

 Advisor: 

SERGIO GUTIÉRREZ CID 

 Santiago de Chile, november, 2016 

 2016, Orlando Daniel Arroyo Amell 



 

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE 

SCHOOL OF ENGINEERING 

 

DESIGN OPTIMIZATION OF A REINFORCED 

CONCRETE FRAME BUILDING TO MINIMIZE 

THE DRIFT 

 ORLANDO DANIEL ARROYO AMELL 

 Members of the Committee: 

 
SERGIO GUTIÉRREZ CID 

MATÍAS HUBE GINESTAR 

DIEGO LÓPEZ-GARCÍA 

JUAN FELIPE BELTRÁN 

CRISTIAN VIAL EDWARDS 

 
 Thesis submitted to the Office of Graduate Studies in partial fulfillment of 

the requirements for the Degree of Doctor in Engineering Science  

 Santiago de Chile, november, 2016 



ii 

 

 

A Dios, mis padres y amigos, por su 

apoyo en el camino. 



iii 

AGRADECIMIENTOS 

Al Padre Universal por su provisión de sabiduría, discernimiento y comprensión. Gracias 

por haber puesto en el camino las personas maravillosas que contribuyeron a llevar a cabo 

este trabajo. 

A Emilce, mi madre por su apoyo incondicional y por animarme en cada momento para 

cumplir esta meta en mi vida. A mi familia por creer en mí en todo momento. A mi mejor 

amiga, Lilibeth, por su confianza y su apoyo constante durante estos años. A mis amigos 

de la Legión, mil gracias por toda la camaradería y hermandad. 

A mi asesor, Sergio por haberme dado la oportunidad de emprender este proyecto, por sus 

consejos académicos y humanos. A mi asesora Abbie, por su apoyo constante, su voluntad 

de ayuda y sus valiosas contribuciones a este proyecto. A los Profesores Matías, Diego, 

Juan Felipe y Christian, por sus aportes como parte de mi comisión doctoral. 

A Jennifer, Josefina, Carlos y todas las personas cuyos nombres no alcanzaría a escribir, 

quienes hacen posible nuestras labores académicas, mil gracias por sus esfuerzos. 

 

 



iv  

TABLE OF CONTENTS 

 

Pág. 

AGRADECIMIENTOS .............................................................................................. iii 

TABLE OF CONTENTS ............................................................................................ iv 

INDEX OF TABLES .................................................................................................. vi 

INDEX OF FIGURES ................................................................................................ vii 

RESUMEN ................................................................................................................ viii 

ABSTRACT ................................................................................................................ ix 

EXECUTIVE RESUME .............................................................................................. x 

1. INTRODUCTION .............................................................................................. 1 

1.1 Context ....................................................................................................... 1 

1.2 Objective and Hypothesis ........................................................................... 3 

1.3 Summary of theoretical principles ............................................................. 3 

1.3.1 Eigenfrequency Optimization .......................................................... 4 

1.3.2 Problem formulation based on partial differential equations ........... 5 

1.4 Results and scientific contribution ............................................................. 6 

1.4.1 Eigenfrequency optimization as a framework for RCF seismic 

optimization. .................................................................................... 6 

1.4.2 Eigenfrequency optimization with full homogenization ............... 10 

1.4.3 Investigation of the method’s extension of benefits using performance 

based earthquake engineering ........................................................ 13 

1.5 Conclusions and future work.................................................................... 21 

2. EIGEFREQUENCY OPTIMIZATION WITH GEOMETRIC OPTIMIZATION 

FOR REINFORCED CONCRETE FRAMES ................................................. 24 

3. EIGENFREQUENCY OPTIMIZATION WITH FULL HOMOGENIZATION FOR 

REINFORCED CONCRETE FRAMES ........................................................ 488 



v  

4. EVALUATION OF THE IMPACT OF EIGENFREQUENCY OPTIMIZATION 

USING PERFORMANCE BASED EARTHQUAKE ENGINEERING ......... 88 
 

 



vi  

INDEX OF TABLES 

Pág. 

 

 

Table 1-1: Dimensions for 10-story buildings ……………………………………….11 

 

Table 1-2. Comparison of first-mode periods Tn …………………………………….14 

 

 

 



vii  

INDEX OF FIGURES  

Pág. 

Figure 1-1: Design process for a reinforced concrete moment resisting frames ........   1 

 

Figure 1-2: Two dimensional model of a membrane ……………………………….  7 

 

Figure 1-3: Ten story regular building ……………………………………………...  8 

 

Figure 1-4: Optimized and rounded dimensions for the 10 story building ………...   8 

  

Figure 1-5: Pushover results for the 10 story building …………………………….    9 

 

Figure 1-6: Pushover results for the 10 story building …………………………….  11 

 

Figure 1-7: Displacement and drift responses for a scale factor of 1.0 ……………  12 

 

Figure 1-8: Impact of optimization on different structural parameters ……………  15 

 

Figure 1-9: Pushover comparison of 15 story buildings …………………………..  16 

 

Figure 1-10: Pushover story drift distribution for the 15 story buildings …………  17 

 

Figure 1-11: Median of maximum story drift response for the 15 story buildings ..  18 

 

Figure 1-12: Comparison of collapse fragility functions for the 15 story buildings.. 19 

 

Figure 1-13: Deaggregation of losses for the 15 story buildings ………………….. 21 

 

 

 

 

 

 

 

 

 

 

 



viii  

RESUMEN  

 

Los marcos de hormigón armado son un sistema estructural utilizado en todo el mundo, 

especialmente en los países en desarrollo, debido al costo relativamente bajo del sistema en 

comparación con otras alternativas. Como reflejo de esta ubicuidad, los investigadores han 

propuesto métodos de optimización basados en diferentes marcos de optimización, que son 

capaces de proporcionar buenas soluciones para el problema de optimización, sin embargo, 

su uso en la práctica por parte de los ingenieros estructurales ha sido escaso. Esta situación 

se ha producido debido a que estos métodos utilizan modelos estructurales no lineales para 

evaluar el desempeño sísmico y que son difíciles de implementar para el ingeniero 

estructural promedio. Además, éstos no pueden proporcionar resultados dentro de los 

plazos utilizados en la práctica de la ingeniería. Esta investigación presenta un método de 

optimización para mejorar el rendimiento sísmico de edificios de marcos de hormigón que 

utiliza la optimización de frecuencias propias para formular el problema y optimización 

geométrica y el método de homogenización de proponer algoritmos de solución eficientes. 

El método se aplicó para optimizar edificios con varias configuraciones de altura y planta. 

Los beneficios de optimización se evaluaron mediante análisis tiempo historia no lineales 

los análisis aplicados a modelos de fibras de los edificios, cuyos resultados se utilizan para 

llevar a cabo evaluaciones basadas en la ingeniería sísmica basada en desempeño. Los 

resultados muestran que la aplicación del método reduce las derivas y desplazamientos de 

entrepiso en los pisos inferiores y que la fragilidad a colapso de los edificios se reduce. 

Además, los edificios optimizados tienen una distribución más uniforme de la deriva a lo 

largo de la altura de los edificios, como consecuencia de la distribución de resistencia que 

resulta de la aplicación del método. El trabajo futuro en este tema puede llevarse a cabo 

investigando la aplicación de la optimización de frecuencias propias para marcos de acero, 

así como evaluar si la formulación del problema se puede extender para incluir más 

variables de diseño sin comprometer la simplicidad en la formulación y el rendimiento 

computacional. 

 

Palabras Claves: Marcos de hormigón armado, Optimización de frecuencias propias, 

ingeniería sísmica basada en desempeño, homogenización, optimización geométrica. 
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ABSTRACT  

 

Reinforced concrete frames (RCF) are a widely used structural system around the world, 

especially in developing countries, due to the system’s relatively low cost compared to 

other alternatives. Reflecting this ubiquity, researchers have proposed optimization 

methods for RCF based on different optimization frameworks, which are capable of 

providing good solutions to the optimization problem, however, their usage by practicing 

structural engineers has been scarce. This situation has occurred because these methods use 

nonlinear structural models to evaluate the seismic performance and they are difficult to 

implement for the average structural engineer. Besides, they cannot provide results within 

the time frames used in engineering practice. This research presents an optimization 

method to improve the seismic performance of RCF buildings that uses eigenfrequency 

optimization to formulate the problem and geometric optimization and the homogenization 

method to propose efficient solution algorithms. The method is applied to optimize 

buildings with several height and plan configurations. The optimization benefits are 

assessed using nonlinear time history analyses applied to fiber models of the buildings, 

whose results are used to conduct evaluations based on performance based earthquake 

engineering. The results show that the method application reduces the story drifts and 

displacements in the bottom stories and that the buildings collapse fragility is reduced. 

Furthermore, optimized buildings have a more uniform distribution of the drift along the 

buildings’ height as a consequence of the strength distribution that results from the 

application of the method. Future work in this topic can be pursued investigating the 

application of eigenfrequency optimization for steel frames and evaluate if the problem 

formulation can be extended to involve more design variables without compromising the 

simplicity in the formulation and the computational performance. 

 

Keywords: Reinforced concrete frames, Eigenfrequency optimization, Performance based 

earthquake engineering (PBEE), homogenization, geometric optimization 
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EXECUTIVE RESUME 

 

This thesis proposes a method to minimize the drift of reinforced concrete frames (RCF) 

based on eigenfrequency optimization. This work has two major scientific contributions: 

first, it demonstrated that eigenfrequency optimization can be used as a framework to 

formulate the seismic optimization problem for reinforced concrete frames. Second, it 

proposed an efficient algorithm to solve the optimization problem based on geometric 

optimization and on the homogenization method.  

This document is structured in four chapters. The first one corresponds to an introductory 

chapter, describing the problem, its objectives, hypothesis, methodology and results.  

Chapters 2 to 4 correspond to three ISI papers that present the results of this work to the 

scientific community. The first paper was published in the Journal of Computing in Civil 

Engineering and it describes the eigenfrequency optimization as a framework, proposing a 

simplified solution method based on geometric optimization. The second paper is accepted 

for publication in Engineering Optimization and it presents the eigenfrequency 

optimization based on homogenization for optimizing the seismic design of RCF. The third 

paper presents an in-depth investigation based on performance based earthquake 

engineering, of the seismic improvements obtained by using the method proposed in the 

second paper. It is the result of the collaboration with Dr. Abbie Liel during the author’s 

research internship at the University of Colorado Boulder. At the time of presenting this 

document, this paper is under review. A fourth, practical paper is being elaborated based 

on design recommendations extracted from the third paper, which will be submitted to a 

suitable journal. 
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1. INTRODUCTION 

1.1 Context 

 

Reinforced concrete frames (RCF) are a widely used structural system around the world, 

especially in developing countries, due to the system’s relatively low cost compared to 

other alternatives. Reports from the World Housing Encyclopedia indicate that RCF 

account for about 75% of the building stock in Turkey (WHE Report 64), 60% in 

Colombia (WHE Report 11) and 80% in Mexico (WHE Report 115).  

 

Figure 1-1. The typical design process for a reinforced concrete moment resisting frame 

uses an iterative process to calculate the column and beam (members) dimensions and steel 

reinforcement that satisfy the code provisions.  

 

 Traditionally, these buildings are designed by structural engineers following an iterative 

process that involves three steps (Figure 1-1). First, gravitational and seismic loads are 

evaluated following the procedures stated by design codes. Then, they calculate a set of 

columns and beams dimensions that satisfy the elastic drift limit imposed by the code. 

Finally, steel reinforcement is calculated to satisfy the codes’ strength and ductility 

requirements. In few cases, when elements dimensions are small and they exceed the 

maximum allowable steel, it is necessary to adjust the columns and beams dimensions to 

meet these requirements. A design is said to satisfy the code when it fulfills the drift limit 
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and the strength and ductility requirements. Due to the rapid pace of structural design 

offices, the customary practice is that a design is considered as final when it satisfies the 

code and conforms to what previous experience has taught. Because of this practice, most 

RCF buildings have suboptimal seismic performance. 

To address this issue, researchers have proposed optimization methods (e.g. Zou, et al. 

2007; Li & Liu, 2010; Li et al. 2010; Khatibinia et al. 2013; Bai et al. 2016; Hajirasouliha 

et al. 2012) for RCF based on different optimization frameworks (Fragiadakis & Lagaros, 

2011), such as deterministic based optimization (DBO) and reliability based optimization 

(RBO), where the cost of the structure is considered as the objective function and the code 

requirements are considered as constraints. These methods have demonstrated being 

effective to solve the optimization problem; however, their usage among engineers have 

been scarce because they do not have enough computational performance and feasibility of 

implementation in a practical environment.  

The fact that engineers demand seismic optimization methods that are easy to implement 

and computationally efficient have been acknowledged by researchers, who have 

introduced methods with improved solution techniques (Hoffman & Richards, 2014), 

simplified methods for seismic evaluation (Zacharenaki et al, 2013) and where they 

explicitly consider code constraints (Zou et al., 2007). Although these efforts have yielded 

improvements in the computational cost, solving RCF seismic optimization problems still 

takes several hours or even days in consumer-level computers (Zacharenaki et al., 2013). 

More importantly, these methods still demand the development of complex nonlinear 

structural models and therefore, they have not captured the attention of engineers. A more 

detailed discussion about the need to develop seismic optimization methods with an 
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orientation to being useful in practice is presented at the end of this chapter, corresponding 

to an opinion paper written during the development of this thesis. 

1.2 Objective and Hypothesis 

 

This thesis is developed with the objective to propose a seismic optimization method that 

finds the dimensions of columns and beams that minimize the drift in a RCF building, 

subjected to a constraint in the total volume of the building. The method must have the 

following characteristics: 

1. Optimized buildings must have better seismic performance than traditionally 

designed buildings, both in the elastic and inelastic regimes. 

2. Buildings must be within the scope of existing seismic design codes. 

3. High computational performance and feasibility of implementation. 

4. The construction complexity of resulting building designs should not increase 

significantly, nor its analysis and design. 

To meet these goals, this work develops an optimization procedure to improve the seismic 

performance of RCF buildings that uses an eigenfrequency optimization framework for the 

problem statement and which can be solved using the homogenization method. The 

hypothesis of this thesis is that eigenfrequency optimization can provide a solid framework 

to optimize the seismic design of RCF buildings.  

1.3 Summary of theoretical principles 

 

This section presents a short description of the theoretical background in this thesis. A 

more detailed discussion is given in Arroyo and Gutiérrez (2017) and in the third chapter 

of this document.   
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1.3.1 Eigenfrequency Optimization 

 

 

Topology optimization describes a class of optimization that addresses the problem of 

determining the optimum distribution of material within a domain. The two most common 

objectives for topology optimization are the minimum compliance and the eigenfrequency 

optimization. In eigenfrequency optimization, one or more structural frequencies are 

optimized. Eigenfrequency optimization has seen several applications in structural 

engineering, such as stiffness maximization of beam-column connections (Lee et al. 2012) 

vibration reduction in truss structures (Senba et al. 2013) and the maximization of the 

fundamental eigenfrequency of geometrically nonlinear beams (Yoon, 2010). 

Several solution methods have been proposed for topology optimization problems, 

including the solid isotropic material with penalization (SIMP) method (Bendsoe and 

Sigmund, 2003) evolutionary algorithms, and the full homogenization method (Bendsoe 

and Kikuchi, 1988). The nature of the topology optimization problem can lend itself to 

solution methods that start with a single initial solution that is gradually improved (e.g. 

SIMP and full homogenization), offering outstanding computational performance that can 

be programmed to solve 3D problems even on devices with modest computational power 

such as smartphones and tablets (Nobel-Jørgensen et al. 2014). 

The method proposed in this work uses eigenfrequency optimization for the problem 

formulation and the homogenization method as solution technique. The application of 

eigenfrequency optimization for RCF makes sense, because during an earthquake the 

response of a building is heavily dependent on the smallest natural frequencies of the 

structure, thus, it is reasonable to optimize these structural properties. This dominating 
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nature of the smallest natural frequencies in the structural response has been used to 

develop efficient analyses procedures, such as the modal pushover analysis (Chopra et al., 

2004; A. K. Chopra & Goel, 2002); moreover, several standards (ASCE 7-10; ASCE 41-

06) acknowledge that the seismic behavior in structures without important torsional 

irregularities, is controlled by the first natural frequency, allowing the use of the equivalent 

lateral force procedure to evaluate the seismic demands on structural members. 

In addition to optimizing a property that has a direct influence on the seismic performance 

of the structure, eigenfrequency optimization offers several advantages. First, the objective 

function is calculated based on the elastic model of the building, resulting in low 

computational costs. Second, it provides easiness and flexibility in terms of the problem 

formulation, as it allows for a discrete statement in terms of classical structural analysis 

(SA), and it can also be stated in a continuous formulation based on partial differential 

equations (PDEs), which is used here to solve the problem with the homogenization 

method. 

1.3.2 Problem formulation based on partial differential equations 

 

Eigenfrequency optimization is formulated using PDEs as follows:  
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Here, ρ  represents density of material, which should be greater than a function minρ  in the 

domain  , and 0( )V Vρ  means that the total amount of material must be equal to a 

predefined volume 0V . The last three constraints mean that n  is an eigenfrequency of the 

structure.  

As a result of using the material density ρ  as the optimization variable, this formulation 

requires minρ  and   to be defined in terms of the lower and upper bounds of the 

dimensions of the structural members. Once the optimal density of material 
optρ  has been 

obtained, it needs to be expressed as column and beam dimensions. The steel 

reinforcement to be used is calculated after the optimization. 

The main advantage of the PDE formulation is that it lends itself to solution methods that 

work with a single initial solution that is gradually improved, like the SIMP (Bendsoe & 

Sigmund, 2003) and the full homogenization (Tartar, 2009) methods, offering higher 

computational efficiency and the associated possibility of having a larger search space.  

Details about the solution method used in this work, as well as the proposed computational 

algorithm are presented in Chapter 3. 

1.4 Results and scientific contribution 

 

1.4.1 Eigenfrequency optimization as a framework for RCF seismic 

optimization. 

 

The first scientific contribution of this work is the demonstration that eigenfrequency 

optimization can be used as a framework to formulate the seismic optimization problem for 

reinforced concrete frames. This is the result of the first stage of the research and it is 
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covered in the second chapter of this document, which is published in the ASCE Journal of 

Computing in Civil Engineering.  

In this publication, the eigenfrequency optimization is proposed for optimizing the column 

dimensions of RCF buildings. A surrogate model for the buildings based on a membrane is 

considered (Figure 1-2). The surrogate model to use consists in viewing the building in 

elevation as a membrane of variable thickness, then optimizing on the thickness to 

maximize the first eigenfrequency of the membrane and then translating this thickness into 

depths of the columns of the frames to be used in the building. If the building is either not 

regular or not slender, the proposed surrogate model is not appropriate for eigenfrequency 

optimization. 

 

Figure 1-2.  Two dimensional model of a membrane 

 

The simplicity of the surrogate model allowed to use geometric optimization to solve the 

problem (more details in Chapter 2), which was applied to a 10 story building (Figure 1-3). 
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Figure 1-3.  Ten story regular building used for demonstrating the applicability of 

eigenfrequency optimization 

 

The optimization of dimensions gave the results shown in the blue line of figure 1-4, which 

were rounded to the closest multiple of 5cm in order to accommodate with construction 

practices. The total time invested for the optimization is 27s running on a desktop 

computer with an Intel Core i5 3570K (3.4GHz) with 8GB of RAM. 

 

Figure 1-4.  Optimized and rounded dimensions for the 10 story building. 
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The seismic performance of the optimized building is compared using a pushover analysis 

with a traditional building designed following the procedure described in figure 1-1. The 

details of the nonlinear models are presented in Chapter 2, and the results of this 

comparison is shown in figure 1-5, where it can be observed that the optimized building 

has an overstrength that is 22.3 and 22.4% higher than the baseline structure for the x- and 

y-directions, respectively. Similarly, the ductility factor is 31.2% greater in the x-direction 

and 10.2% in the y-direction. 

 

Figure 1-5.  Pushover results for the 10 story building. 

 

Further details about these results can be found in Chapter 2 of this document, but to sum 

them up, it can be stated that the optimized building shows an improved behavior with 

respect to the baseline in three key areas: elastic drift, overstrength, and ductility. What is 

more, all these improvements come with no additional expenses associated with material 

costs, because the volume of the optimized building is almost the same as that of the 

traditional one. 
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1.4.2 Eigenfrequency optimization with full homogenization 

 

The second contribution of this work is proposing an optimization method that uses 

eigenfrequency optimization with the full homogenization method to determine the 

optimum member dimensions of reinforced concrete frames. 

In this stage, eigenfrequency optimization is formulated as described in section 1.3.2, 

which requires solving the problem using the finite element method. In this formulation, an 

optimization domain   must be defined based on the maximum desired dimensions for 

beams and columns. In this domain, the columns and beams dimensions are expressed as a 

material density  , therefore, the minimum dimensions are expressed as min . As 

previously discussed, this formulation allows to use efficient optimization techniques. 

In this work, the full homogenization (FH) method is used as a solution technique for this 

approach. A description of the mathematical basis of the FH method for a two dimensional 

case and a computational algorithm to solve the problem are presented in Chapter 3. A 

more complete description of the method can be found in (Allaire, 2002) and, more 

specifically, for eigenfrequency optimization in (Allaire et al., 2001). Being this a first 

study on eigenfrequency optimization for RCF based on full homogenization, this work 

focuses only on the first eigenfrequency. 

The proposed method is used to determine the column and beam dimensions that optimize 

the seismic performance of the building in figure 1.3. The building was first designed 

following the traditional procedure according to the ASCE 7 and the ACI 318 for the state 

of California (37.38ºN, 121.88ºW) using ETABS v13.1.2 (Habibullah, 1997). After that, it 

was optimized using the method proposed in this thesis, with the results shown in the 

following table: 
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Table 1-1. Dimensions for 10-story buildings (all dimensions are given in cm) 

 Optimized building Traditional building 

 

Columns Beams   Columns Beams 

Story Inner Outer X Dir Y Dir Both Both 

10 50x60 50x60 35x35 35x35 55x75 35x40 

9 55x65 55x65 35x35 35x35 55x75 35x40 

8 55x70 55x70 35x40 35x40 55x75 35x40 

7 60x70 55x70 35x40 35x40 55x75 35x40 

6 60x75 55x75 35x40 35x40 55x75 35x40 

5 60x75 55x75 35x40 35x40 55x75 35x40 

4 65x80 60x80 35x45 35x45 55x75 35x40 

3 70x80 65x80 35x45 35x50 55x75 35x40 

2 70x80 70x80 35x45 35x50 55x75 35x40 

1 70x85 70x80 35x45 35x45 55x75 35x40 

 

The seismic performance of the buildings is compared using OpenSees by means of a 

pushover analysis and an incremental dynamic analysis of the record set of the FEMA P-

695. 

 

Figure 1-6.  Pushover results for the 10 story building. 

 

The pushover results (figure 1-6) show that the optimized building has an overstrength that 

is 23.8% and 27.9% higher than the baseline building for the X and Y direction, 

respectively. On the other hand, the ductility factor sees a notable improvement, as it is 

81.9% greater in the X direction and 98.2% in the Y direction. 
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The performance improvement shown in the Pushover is verified using Nonlinear Time 

History Analysis. We start by looking at the displacement response for a scale factor of 1.0 

in figure 6, where it can be appreciated that the median displacement of the optimized 

building is smaller than the baseline, in a range that varies from 45% for the first floor in 

the X direction, down to 10% for the tenth floor in the Y direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-7. The displacement and drift responses for a scale factor of 1.0 are smaller for 

the optimized building, especially in the bottom stories. Top: X direction. Bottom: Y 

direction. Dotted and continuous gray lines represent individual ground motion results for 

the optimized and traditional buildings, respectively. 
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The behavior of the structures is further clarified by examining the drift responses in figure 

6, where can be seen that for both directions, the optimized building has a significant 

reduction in the interstory drift for the first five stories, with moderate improvements in the 

sixth and seventh; nonetheless, this comes at the expense of having a bigger interstory drift 

in the top three stories. In practice, this means that there is a shift in the expected location 

of the damage; the optimized building is expected to have more damage in the top stories, 

as opposed to the baseline building where it is expected to take place in the intermediate 

stories. 

Similar results were obtained for scale factors of 2.2 and 3.5, which are shown in Chapter 

3. The evidence found in this stage of the thesis showed that the proposed optimization 

method is capable of optimizing the seismic performance RCF within minutes, with the 

resulting building consuming the same amounts of concrete and reinforcing steel as the 

initial design proposed by engineers. All things considered, the proposed method fulfills 

the objectives of being computationally efficient, easy to implement and effective; benefits 

that make it a solid candidate to be used within the design of RCF buildings. In addition, 

the results also validate that eigenfrequency optimization is a suitable framework for the 

seismic optimization of RCF. 

1.4.3 Investigation of the method’s extension of benefits using performance 

based earthquake engineering 

 

Chapters 2 and 3 of this thesis demonstrate that eigenfrequency optimization is a viable 

framework to formulate the seismic optimization problem and that it can be coupled with 

the full homogenization method to propose a computationally efficient algorithm. 

However, the full extent of seismic improvements from this approach and the mechanisms 
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by which seismic performance is improved remain unclear. Due to the method potential for 

practical application, this is an issue that deserves investigation. This task was conducted 

using performance based earthquake engineering (PBEE) and it is presented in full details 

in Chapter 4 of this document. 

Three regular RCF buildings with 5, 10 and 15 stories are considered, as well as an 

irregular 6 story building. These are first designed according to the ASCE 7 standard 

(ASCE 2010) and the ACI 318 design code (ACI 2008), and then redesigned based on the 

results of the eigenfrequency optimization. The redesigned buildings satisfy all code 

requirements and use the same material volumes as the original design, but this material is 

redistributed to minimize the period. Nonlinear simulation models of the traditional and 

redesigned buildings are subjected to dynamic analysis that provides the input for the 

assessment of collapse risk and earthquake-induced losses. The structural response is 

quantified in terms of drift demands over the height of the building and collapse fragility 

curves. In addition, the expected annualized losses associated with repairing earthquake-

induced damage are calculated and disaggregated based on the contributions of the 

buildings’ structural and nonstructural components. Furthermore, the buildings’ collapse 

modes are identified and the expected number of casualties computed.  

Table 1-2. Comparison of first-mode periods Tn between traditional and optimized 

building designs. 
 

Building 

Traditional Tn 

(sec) 

Optimized Tn 

(sec) 

% Reduction with 

optimization 

15 Story 2.28 2.14 6.1% 

10 Story 1.70 1.58 7.1% 

5 Story 0.95 0.88 7.4% 

6 Story 0.96 0.92 4.3% 
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The first comparison conducted between the traditional and optimized building is the 

fundamental period (table 1-2), which show an average reduction of 6.2%, which by itself 

cannot explain the reasons behind the improvements in seismic performance described in 

Chapter 3.  

 
Figure 1-8. Impact of optimization on (a) column moment strength, (b) ratio of column 

moment to beam moment strength and (c) column shear strength over the height of the 

building. The x-axis reports the ratio of the optimized building’s value for that parameter 

to that of the traditional building. The y-axis shows the distribution over height, 

normalized by the total height of each building.  
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To obtain a more comprehensive understanding of the potential implications of the 

changes introduced by the proposed method on the buildings’ structural configuration, the 

column moment strength (figure 1-8a), column-to-beam moment strength ratio (figure 1-

8b) and column shear strength (figure 1-8c) are computed for the 5, 10 and 15 story 

buildings. 

In the case of the columns’ moment strenght (Figure 1-8a), the optimized buildings have 

on average 142% of that of traditional buildings at their base, with gradual decrease to a 

75% average on the roof. For column shear strength and the column to beam strength ratio, 

the percentages of variation are respectively 127% to 87% and 125% to 84%. Though not 

shown in the figure, beam capacities also follow a stair-like pattern, with the optimized 

buildings’ beams having 10% greater moment capacity at the bottom third, equal capacity 

in the middle and 10% lower at the top third. 

 

Figure 1-9. Pushover comparison of 15 story buildings. 
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Full details of the PBEE results are presented in Chapter 4 of this document. A brief 

summary of the 15 story building is presented in the following paragraphs. 

Pushover results (figure 1-9) show a 15% percent of improvement in the maximum base 

shear withstood by the optimized building as compared to the traditional building. Besides, 

the post-peak slope of the optimized building that is 26% flatter than the traditional one. 

The displacement profiles for the points marked in figure 1-9 is shown in figure 1-10. 

 

 

 

 

 

 

 

 

 

 

Figure 1-10. Pushover story drift distribution for the 15 story buildings: (a) traditional 

building and (b) optimized building. Points selected for the drift distribution plots are 

shown in Figure 1-9.  

 

 

The behavior for the traditional building (figure 1-10a) is as expected, with largest drift 

values in the bottom third of the building and a sharp decline in drifts moving up in the 

building. This behavior is accentuated at the higher levels of displacement demand, as 

damage concentrates in the lower stories. The optimized building has a different behavior. 

To start, there are similar levels of drifts for stories 2 to 9 regardless of the level of 

displacement, indicating that the displacement demand and damage is spread more evenly 

(a) (b) 
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over the height of the building compared to the traditional building. Indeed, at all levels of 

displacement, 8 out of 15 stories have between 75 and 100% of the maximum story drift, 

compared to 6 stories having close to the maximum drift in the traditional building. 

The PBEE analysis relies on nonlinear dynamic analysis to simulate the building response. 

For this purpose, the 44 ground motion suite of FEMA P-695 was selected (FEMA 2009) 

and each ground motion was scaled such that its Sa  matched eight different intensity 

levels at {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.5, 6.0} DSa . Here, DSa  for the 15 story building 

models denotes the spectral design acceleration at a period T1 = 2.2s, an intermediate value 

between the fundamental period of the traditional building (2.28s) and the optimized 

building (2.14s).  

 
Figure 1-11. Median of maximum story drift response for the 15 story buildings: (a) 

traditional building, and (b) optimized building. 

 

 

For those ground motions where no collapse is observed, the median of maximum drift at 

each story are calculated for both buildings and plotted in Figure 1-11. The behavior of 
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both buildings is as expected based on the pushover results, with the optimized building 

having a more uniform distribution of drift along its height, while in the traditional 

building, the drift is concentrated more in the lower stories and decreases in the uppermost 

stories. In addition, the story drift in the first three stories for the optimized building is 

notably smaller than the traditional building, which is critical because these stories have an 

important role in the overall structural stability. 

In the dynamic analysis, collapse is considered to occur when the story drift exceeds 10% 

in any story of the building (Vamvatsikos and Cornell 2004). The probability of collapse is 

calculated at each intensity level as the ratio of the number of collapsed records divided by 

the total number of records (i.e., 44). The results for both buildings are fitted to a 

lognormal distribution using the maximum likelihood method (Baker 2014) and shown in 

Figure 1-12. 

 
Figure 1-12. Comparison of collapse fragility functions for the 15 story buildings. 
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Several conclusions can be drawn about the seismic performance of optimized buildings 

based on the fragility results. First, for values of Sa up to 1.5SaD (i.e., 1.5 times the 

building design acceleration, which equals the maximum considered earthquake (MCE) 

level), the traditional and optimized buildings have similarly low probabilities of collapse. 

This similarity can be explained by the fact that both buildings were designed according to 

code regulations and they are expected to show good performance at these levels. 

However, as the intensity level increases, the optimized building has a significantly smaller 

probability of collapse than the traditional building. This reduced fragility is due to the 

more distributed deformations over the height of the optimized as compared to the 

traditional building. 

For each building, the expected annual losses are calculated according to FEMA P-58 

using the SP3 tool, and considering both structural and nonstructural components. This 

calculation considers the possible losses at each intensity level, and weighting these losses 

by the probability that shaking of that intensity would occur. For the optimized building, 

the losses are $120,320/year and for the traditional building the losses are $122,067/year, 

which for both buildings corresponds to approximately 0.38% of the building replacement 

cost (per year). 

Although the expected annual losses are similar, the contributions of building components 

to the losses differ between the two buildings. Figure 1-13 shows that the main sources of 

losses for both buildings are the losses due to collapse, the residual drift irreparability 

trigger (wherein a residual drift of 1% is the median value considered to trigger an 

assessment that the building needs to be torn down and replaced), structural components 

and partition walls. However, in the traditional building, the aggregate effect of collapse 
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and residual drift accounts for 35% of the total loss, whereas in the optimized building, 

these factors contribute 27% of the losses. In constrast, losses that result from damage of 

structural components and partition walls represent 57% of the total loss of the traditional 

building, while in the optimized building their contribution to total losses is 65%. 

 
  

 

 

 

 

 

 

 

Figure 7. Deaggregation of losses for the 15 story buildings: (a) traditional building and (b) optimized 

building. 

 

 

 

 

 

 

 

Figure 1-13. Deaggregation of losses for the 15 story buildings: (a) traditional building and 

(b) optimized building. 

 

 

1.5 Conclusions and future work 

 

This thesis proposes a method to optimize the seismic performance of reinforced concrete 

frames that uses eigenfrequency optimization to formulate the problem and the geometric 

optimization and the homogenization method as the basis of an efficient computational 

algorithms. 

The proposed optimization method is capable of optimizing the seismic performance RCF 

within minutes, with the resulting building consuming the same amounts of concrete and 

reinforcing steel as an initial design proposed by engineers. The method fulfills the 

(a) (b) 
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objectives of being computationally efficient, easy to implement and effective; benefits 

that make it a solid candidate to be used within the design of RCF buildings. Furthermore, 

the results show that eigenfrequency optimization is a suitable framework for the seismic 

optimization of RCF. 

The reasons behind the method effectiveness are that it achieves reductions of building 

periods of about 6% by means of redistributing material along building height. This 

material redistribution in turn redistributes strength in a manner that is more appropriate to 

withstand the seismic forces, hence optimized buildings have improved seismic 

performance. In particular, for the bottom third of the buildings, the column-to-beam 

moment strength ratios are increased on average by 21%, the moment and shear strength 

are increased by 32% and 23% for columns, and the moment capacity of the beams is 

increased by 10%. For the top third of the buildings, the column moment and shear 

strength is reduced by 22% and 16% respectively, while the column-to-beam moment 

strength ratio is decreased by 15% and the beams’ moment strength is decreased by 10%. 

Optimized buildings have a more uniform drift distribution along its height, compared to 

those of the traditional building, with important reductions in the bottom stories and larger 

drifts in the top stories. As a consequence, the optimized buildings are less susceptible to 

collapse. As a result, the expected number of fatalities is reduced from 7 to 3 and from 21 

to 13 at intensity levels of 1.5 and 2.0 times the design level.  However, if collapse occurs, 

there is a greater probability that it will happen in a larger portion of the building for the 

optimized building.  

The method produces buildings whose expected annual losses associated with earthquake-

induced damage and associated repairs are 1.4% smaller than those for traditional 
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buildings.  Thus, the aforementioned seismic performance is achieved while maintaining 

the same material quantities (construction costs) and similar levels of annual seismic 

expected losses. 

Future research on this topic can be pursued in different areas: 

About eigenfrequency optimization, a continuation of this work would be investigating if it 

can be used for steel MRF. In addition, it would be worth investigating the application of 

the proposed problem formulation in three dimensions. Moreover, it is also interesting to 

evaluate if the problem formulation can be extended to involve more design variables 

without compromising the simplicity in the formulation and the computational 

performance. In particular, including steel reinforcement and nonlinear behavior in the 

problem would be a good addition for the procedure. 

From an optimization perspective, this is an interesting problem because the objective 

function is not expensive and the search space can become very large, hence, it is worth 

investigating the feasibility and the computational performance of other solution 

techniques, such as simulated annealing or particle swarm. 

From an earthquake engineering perspective, it would be interesting to evaluate how the 

response of the optimized buildings is sensitive to the frequency content of seismic 

records, and developing a software that uses the proposed method and integrates with 

existing structural engineering packages, giving engineers a powerful tool to improve 

current design practice. 
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2. EIGEFREQUENCY OPTIMIZATION WITH GEOMETRIC 

OPTIMIZATION FOR REINFORCED CONCRETE FRAMES 

 

 

This chapter is presented in a paper format, corresponding to the publication “Method to 

Improve Seismic Performance of RC Moment-Resisting Frames Using Geometric 

Optimization”, which is published in the Journal of Computing in Civil Engineering. 
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Method to Improve Seismic Performance of RC Moment-Resisting 

Frames Using Geometric Optimization 

 

Abstract: This article presents an optimization method to determine the column 

dimensions that maximize the fundamental frequency of a building, which translates into a 

highly efficient computational algorithm for approximately solving this optimization 

problem. A thoroughly detailed example is provided for a 10-story building whose elastic 

behavior is analyzed using a three-dimensional model, employing a two- dimensional fiber 

model to assess its inelastic performance. The results show that, compared with the classical 

design, which has columns of uniform depth, the maximum elastic drift is reduced by 10% 

and that the drift demand decreases on the lower stories of the building. In addition, the 

overstrength of the structure and its ductility are increased by between 10 and 30%. Similar 

improvements are also observed in a second example for a five-story building, showing that 

the method is useful at least for mid-rise buildings. 

Author keywords:  Structural optimization; Geometric optimization; Ductility; 

Overstrength; RC moment-resisting frames; Seismic performance 

 

Introduction 

Structural optimization has been a very active field of research in recent decades. 

Nowadays, thanks to advances in computational power, as well as the development of new 

optimization strategies, it is possible to determine the optimal configuration of elements for 

many structures. 
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Several methodologies have been proposed for RC buildings using various approaches, 

for instance, optimization based on the explicit formulation of design constraints (Zou et 

al. 2007), as well as heuristic methods, such as genetic algorithms (GAs) (Li et al. 

2010a), simulated annealing (Li et al. 2010b), and discrete gravitational search (Khatibinia 

et al. 2013). 

Although these methodologies make use of different optimization frameworks (Fragiadakis 

and Lagaros 2011), they have two elements in common: their objective function consists in 

minimizing the cost of the structure, and the results of the optimization are the element 

dimensions and reinforcement layout. As a result, they also share the high computational 

cost and numerical issues associated with heuristic methods, and even though research has 

been con- ducted on these topics (Hoffman and Richards 2014; Zacharenaki et al. 2013), 

there is still room for improvement and innovation. 

With this motivation and based on a robust mathematical theory (Murat and Simon 1974), 

this paper introduces an innovative methodology to improve the seismic performance of RC 

buildings. Geo- metric or shape optimization is now an established field in applied 

mathematics that has been proven useful in various engineering problems, such as, for 

example, airfoil design and beam optimization (Pironneau 1984) and heat diffusion 

(Henrot and Sokolowski 2007). In the proposed approach the idea is to maximize the 

fundamental frequency (ω) of a structure, while the material cost is indirectly considered as 

an optimization constraint by limiting the total volume of the structure. The physical 

justification of maximizing the fundamental frequency is that improving the elastic 

performance of the building leads to a delay in the start of the inelastic regime. An 

assumption about the development of this method is that the structure is sufficiently 
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regular, which makes it possible to introduce a surrogate model and formulate a very 

efficient optimization algorithm.  Seismic performance is evaluated using modal spectral 

analysis and pushover analysis, which is considered appropriate given the regularity of the 

structure (Krawinkler and Seneviratna 1998). Even though seismic performance is not 

directly optimized, the numerical evidence provided here suggests that in some cases, 

increasing the first natural frequency of a building improves its seismic performance. This 

relationship is similar to the one found in (Herranz et al. 2012), between a good Strut-and-

Tie model for designing irregular RC beams (which is evaluated in an inelastic regime), 

and maximizing the stiffness of the beam in its linear elastic regime through layout 

optimization. However, more research needs to be done to improve the understanding of 

the relationship between eigenfrequency optimization and seismic performance. 

This paper is structured as follows. The second section, “Geometric Optimization Using a 

Membrane,” presents the mathematical formulation and computational algorithm for the 

maximization of the first eigenfrequency for the surrogate model. The next section, 

“Illustrative Examples,” provides a detailed application of the proposed methodology, first 

for a 10-story building and then for a 5-story one. The performance of the optimum 

buildings is compared against its non- optimized counterparts in the section titled 

“Structural Performance of Optimized Structure.” The final section presents the 

conclusions of the study and outlines directions for future research on this topic. 

 

Geometric Optimization Using a Membrane 

All the buildings considered in what follows have the same floor plan, namely, a 

rectangular plan with depth significantly smaller than length, in order to have the first 
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vibration mode of the buildings containing mainly displacements in the direction of the 

depth of the building. The surrogate model to use consists in viewing the building in 

elevation as a membrane of variable thickness, then optimizing on the thickness to 

maximize the first eigenfrequency of the membrane and then translating this thickness into 

depths of the columns of the frames to be used in the building. If the building is either not 

regular or not slender, the proposed surrogate model is not appropriate for eigenvalue 

optimization. Let Ω be a rectangular domain in the X − Z plane (Fig. 1) representing a 

membrane of variable thickness h∶Ω → hmin ; hmax  , with 0 < hmin  ≤ hmax  being b given 

values. The membrane has only displacements transversal to the X − Z plane and all points 

on a line perpendicular to the plane experience the same displacement, and assuming 

additionally that the membrane is made of homogeneous material, one finds by simplifying 

the linear elasticity equations under these assumptions that its stiffness is proportional to h. 

The thickness h could be a discontinuous function, which does not pose a problem to the 

optimization algorithm since the objective function can be shown to depend on h in a 

differentiable way. Ω has two different boundary conditions. One is a zero displacement 

Dirichlet condition, which in Fig. 1 corresponds to the bottom of the membrane, 

representing the free boundaries of the building. 

The first eigenvalue of a continuous physical system corresponds to the square of the 

minor natural frequency of the system (eigenfrequency), and to obtain this eigenfrequency, 

the Rayleigh quotient is calculated. For this the following problem on the two- dimensional 

membrane is solved (Fig. 1): 
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where u is the deflection and ω is an eigenfrequency. 

To optimize on h we need to look at the variational, or weak, formulation of problem (1). 

Then the space where we look for the solution is: 

 1{ ( ); 0  on }DV v H v        

 

where H1(Ω) corresponds to the space of functions defined over Ω and over its boundary 

ΓD  ∪ ΓN, which are square integrable over Ω and have first (distributional) derivatives that 

are also square integrable over Ω. This is the appropriate space where one is certain that 

there is a unique solution to the variational formulation of problem (1). 

Then the variational formulation of problem (1) becomes to look for u ∈ V such that 

 
2      for all .h u vdx uvdx v V

 
       (2) 
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Then if v = u we obtain the Rayleigh quotient 
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Is the norm of u in the space of square integrable functions, which contains V. 

The smallest eigenvalue, denoted by ω2, is obtained by solving 

 
2

2 2

1 2

1
( ) min | | .u V

L

J h h u dx
u

 


  ‖ ‖
 (4) 

Denote by u1 the eigenfunction that realizes this minimum. The set of admissible thickness 

functions is given by 

 2

0 0: [ , ]; ( ); ,ad min maxU h h h h L hdx V V 


        

where V0 = given value for the volume constraint on the total volume of the material in the 

membrane. 

Because the maximization is with respect to the thickness h, differentiating the objective 

function with respect to this variable and considering that u = u1, the first eigenfunction, 

the evaluation of this derivative on a generic admissible perturbation k gives 
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Now, using the fact that 1 ( )
u

k V
h





, and therefore it can be used as a test function in 

equation (2) for ω = ω1 and u = u1, the last two terms on the right hand side of equation (5) 

cancel each other. Hence, taking 
2
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1

2

1

| |

L

u
k

u


  we obtain a positive value of the derivative is 

obtained and then the objective function will increase if h is perturbed infinitesimally in 

this direction. Therefore, the following numerical algorithm is proposed to maximize ω, 

based on the so-called method of perpendicular directions, meaning that it first optimizes 

on h and then adjusts the eigenfunction u and eigenvalue ω using the Arnoldi algorithm. 

The idea behind the Arnoldi algorithm is to write the discretization using the finite element 

method of Eq. (2) in matrix form, 2KU MU ; then, since in the case considered K in 

nonsingular, the eigenvalue problem can be written as 1

2

1
K MU U



  ; then, through an 

orthogonalization process, it can efficiently compute the first eigenvalue 1  of Eq. (2). 

The steps are the follows:   

1. Let 0h  be a given initial thickness 

2. With 0h  we calculate 0u , the first eigenfunction, using the Arnoldi algorithm. 
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3. Evaluate the objective function, 
2

2

0 0 02
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( ) | |

L

J h h u dx
u 

  , the initial smallest 

eigenvalue. Call this oldJ .  

4. Calculate the direction of perturbation of h , given by 
2

2

0

2

0

| |

L

u
k

u


 . Take 0t t  an 

initial step size. 

5. Calculate the new thickness: 0h h tk l   , where l  is the Lagrange multiplier for 

the volume constraint. Choose l  in such a way that  min maxh h h   and 0hdx V


  

. 

6. Using h  calculate 0u  by the Arnoldi algorithm and evaluate ( )J h . Call this newJ . If 

new oldJ J , make old newJ J , and go to step (4). If new oldJ J   diminish the value 

of t . If t  becomes too small, stop. If not, go to step (5). 

 

This method is extremely efficient from a computational perspective since it generally 

makes one objective function evaluation per iteration, and it needs only 47 iterations to 

reach convergence for a 10-story building, and 43 iterations for a 5-story building, 

corresponding to about 30 seconds of execution time using a Desktop Computer with a 

Core i5 3570k and 8GB of RAM. In the next section we show that this method can also be 

used to optimize the dimensions of columns in regular three-dimensional frames. 

 

Illustrative Examples 

Ten-Story Building 
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To demonstrate the aforementioned procedure, we consider a 10-story moment resisting 

frame with 5 m spans and 3 m story height, whose plan view is shown in figure 2. To 

establish a baseline for comparison, this building is designed according to the Colombian 

Code for the Seismic Design of Structures (NSR-10 2010) for a zone of intermediate 

seismicity. The design results show that the design requirements of this code are fulfilled 

using columns with a cross section of 55cm x 75cm and a reinforcement ratio of 1.2%. 

Beams sections are calculated and sections of 30cm x 40cm with a top and bottom 

reinforcement of 3φ16 are found to satisfy the code requirements. 

As a consequence of its regularity, this building can be optimized independently for both 

directions. A description of the optimization procedure is given next. 

First, the optimization domain must be established. To optimize for the x-dimension of 

columns, the domain must be consistent with the elevation in the Y axis, therefore, for the 

building under consideration, this domain is described by rectangular shape with 

dimensions of 30m height and15m width. Similarly, the optimization for the y-dimension 

of columns is performed using an elevation consistent with the X direction of the building, 

which results in a square domain with sides of 30m. As a general guideline, the width of 

the domain is determined based on the building plan distribution, whereas the height 

corresponds to the height of the building. As can be seen in Fig. 2, the building has 15m in 

the Y axis and 30m in the X axis, values that correspond to the width of the domain for the 

optimization of the x-dimension and y-dimension of columns, respectively. 
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. 

The second step involves setting proper values for [hmin, hmax], which represent the 

minimum and maximum desired values for the column dimension. These values must be 

set for each optimization direction. Several reasonable strategies may be used for this, for 

instance, values suggested by past experience in structural projects, or by means of a pre-

design based on approximate methods of analysis.  In this example, a previous analysis 

suggests values around 55cm for the x-dimension and 75cm for the y-dimension, thus, a 

[40cm, 75cm] range is used for the former and [50cm, 85cm] for the latter. 
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Once [hmin ; hmax ]  are set, the same must be done with V0 . The values of hmin , hmax  and 

V0  must be chosen such that V0 lies between Ahmin  and Ahmax , where A is the area of the 

membrane in plan view. Setting values outside this interval will make it impossible to 

achieve convergence since that would require having values lower than hmin or higher than 

hmax (depending on the case), which contradicts the previously imposed optimization 

constraint. For the sake of making a fair comparison, this example uses the column 

dimensions of the baseline structure as the basis for the calculation of V0. In particular, for 

the optimization in the x-dimension, this means that V0 = (0.55 × 30 × 30 m) = 495 m3; 

similarly, for the optimization in the y-dimension V0 =337.5 m3. It should be noted that 

these volumes are only for feeding the optimization method whit the membrane model; 

they are not the actual volumes of the columns. 

The third and final step is solving the optimization problem using the optimization 

algorithm in the previous section. 
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 This algorithm is implemented in FreeFem++ (Hecht 2012). As mentioned before, one 

of the advantages of this method is its computational efficiency; each optimization takes 

less than 30 seconds in a PC with a Core i5 3570k (running at stock speeds) and 8GB of 

RAM. The optimization results for the column dimensions are shown in Fig. 3. 

Based on these results, the following observations are made: 

1. The dimension profile starts at the bottom of the building with a value equal to hmax and 

decreases until it reaches hmin at the upper levels. From a seismic design perspective, 

this is a reasonable decision because the shear demand is higher in the lower floors and 

strong columns are best suited to withstand that demand. 

2. Despite the latter similarity, different behaviors are observed in the profiles of the x- 

and y-dimensions. While the former has a gradual decrease between the first and sixth 

floors, the latter remains equal to its hmax for the first six floors and shows a sharp 

decline, reaching hmin at the eight floor. This kind of behavior suggests that special 

attention must be given to the selection of ½hmin; hmax in order to consider existing 

limitations imposed by design codes, most of which are aimed at avoiding abrupt 

changes in section dimensions between consecutive floors. In this particular case, 

however, these changes are in compliance with NSR-10 (NSR-10 2010) and therefore 

do not violate common design practice. 

3. For construction purposes, these dimensions must be approximated to values in 

concordance with building practices. In this example, dimensions are rounded to the 

closest multiple of 5 cm, which results in columns that vary from 75 × 85 cm at the 

base up to 40 × 50 cm at Floors 8–10. These are the final dimensions of the 

optimization process and are used to compare against the baseline structure. The curves 
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showing the column dimensions before and after the rounding are shown in Fig. 3. The 

change induced by this rounding in the ductility is negligible, while the fundamental 

frequency in- creases from 1.468 up to 1.477, i.e., by 0.6%. These small changes are 

closely related to the fact that, as shown in Fig. 6, the pushover pushover curves in both 

directions are barely distinguishable before and after roundup. The resulting structure 

has 2% lower consumption of concrete for the columns. It should be noted, however, 

that the optimized building requires additional in situ controls compared to the 

traditional building owing to the varying column dimensions. 

Five-story Building 

As a second example, a regular five-story building is considered (see Fig. 4 for plan view) 

with a story height of 3 m. For this example, only the relevant parameters and results are 

indicated since the procedure is detailed in the previous example. 

First, a baseline structure is established for the same seismic region of the previous 

example. Here, according to the Colombian NSR-10, columns of 55 × 75 cm and beams of 

35 × 40 cm satisfy the code requirements. Considering these dimensions, the optimization 

parameters [hmin, hmax , V0 ] for the x- and y-directions are set to [0.50 m, 0.60 m, 198 m3 ] 

and [0.60 m, 0.80 m, 202.5 m3 ], respectively.  After performing the optimization and 

rounding, the resulting dimensions are columns of 60 × 80 cm for the first three stories and 

50 × 65 cm for the fourth and fifth stories. The change induced by this rounding in the 

ductility is negligible, while the fundamental frequency increases from 0.783 up to 0.791, 

i.e., by 1%. 

Structural Performance of Optimized Structure 
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In the two cases presented here—traditional building and optimized building—both types 

of building use almost the same volume of concrete for their columns (i.e., same weight), 

so the difference in the design shear base between the optimized and the traditional 

buildings is negligible. 

Ten-Story Building 

The building with optimized column dimensions is designed according to the Colombian 

standard NSR-10 (NSR-10 2010). Column reinforcement ranged between 1.1 and 1.3%, 

and although slight differences are observed in the beams, they are kept the same as in the 

baseline building for the sake of an objective comparison of the effect of the optimized 

column dimensions. Both the baseline and the optimized buildings are modeled in three 

dimensions and subjected to modal analysis in ETABS v.13.1.2, using the unreduced 

spectrum calculated for Sincelejo (Colombia). 

The results in Fig. 5 show that the maximum drift of the structures is reduced by 11%; 

furthermore, its location is displaced up- ward one story in the x-direction of the structure 

and two stories in the y-direction. Roof displacement is calculated and the optimized 

structure sees a 10.3 and 11.4% reduction compared to the baseline structure for the x- and 

y-directions, respectively. Further analysis of the shape of the drift shows higher stories in 

the optimized build- ing having drifts larger than their corresponding counterparts in the 

baseline building; however, this is an expected result as a consequence of having weaker 

columns on these stories. 

To gain a more comprehensive vision of the structural behavior, OpenSees (Mazzoni et al.  

2006)  is used to perform a two- dimensional pushover analysis for the typical X and Y 

frames of the buildings, i.e., frames corresponding to elevations designated by B and 2 in 



39 

 

  

Fig. 2. Based on these results, ductility (μ) and overstrength (Ω0) are calculated according 

to the FEMA P695 (FEMA 2009) methodology. 

The mathematical model of the structure is created using force-based elements whit 

confined and unconfined concrete. To avoid localization issues, the constant fracture 

energy criterion (Coleman and Spacone 2001) is used, with Gc = 180 N/mm, with concrete 

properties fc = 28 MPa, fcc = 31 MPa, ec = 0.0019, and ecc =0.0028.  Reinforcing steel is   

modeled using   Es = 210 GPa, fy = 420 MPa, fu = 630 MPa, a plateau limit esh = 0.04, and 

an ultimate strain eu = 0.14. P-delta effects are included, and a dis- placement control is 

used with 0.5 mm steps.  Mode shapes and elastic behavior are checked and found to be 

consistent with the expected behavior.  A uniform gravitational load of wv =3.5 tonf/m is 

applied to the beams, and point loads are applied to nodes to account for the self-weight of 

the columns. 
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The pushover results in Fig. 6 show that the optimized building performs significantly 

better than the baseline in several aspects. First of all, the slope in the elastic range is 

steeper for the optimized building, which means that it is more rigid than the baseline. This 

occurs as a direct consequence of the optimization because its goal is to maximize the first 

eigenvalue of the building. Second, the maximum base shear V max supported by the 

optimized building is higher than that from the baseline. This could have an important 

practical implication because it suggests that the optimized building could withstand 

earthquakes with higher accelerations before starting to deteriorate. Third, the optimized 
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building has a better postpeak performance than the baseline. This can be seen in the 

results for the x-direction, where an approximately 8% higher (less negative) slope can be 

observed for the optimizes building. This This behavior implies that the rate of 

deterioration is smaller for the optimized building, which translates into a better ability to 

withstand damage and the potential to resist stronger earthquakes. 

 

This conceptual analysis is further confirmed by the overstrength and ductility calculations 

shown in table 1.  There it can be observed that the optimized building has an overstrength 

that is 22.3% and 22.4% higher than the baseline structure for the X and Y directions, 
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respectively. Similarly, the ductility factor is 31.2% greater in the X direction and 10.2% in 

the Y direction. 

To sum up the results, it can be said that the optimized building shows an improved 

behavior respect to the baseline in three key areas: elastic drift, overstrength and ductility. 

What is more, all these improvements come with no additional expenses associated to 

material costs, as the volume of the optimized building is the same as that of the baseline. 

Five-Story Building 

Performance for the 5-story building is analyzed using the same approach as for the 10 

story. To start, we create a 3D Model in ETABS v13.1.2 and perform a Modal Spectral 

Analysis, whose results are shown in figure 7. Due to the fact that both buildings use 

almost the same volume of concrete for their columns (i.e. same weight), it must be noted 

that the difference in the design base shear between the optimized and the traditional 

building is negligible. 

The results for the X direction show a reduction of the drift for the optimized building that 

ranges from 12% to 40% for the first three stories; nonetheless, the maximum drift only 

saw a reduction of 4.3% and just as in the previous example, it is displaced upwards one 

story.  On the other hand, the Y direction shows consistent decrease in drift along the 

whole building, with significant improvements for the first three stories and slight benefits 

for the fourth and fifth stories. Roof displacement is calculated for both buildings and the 

optimized structure sees a reduction of 12.1% in the X direction and 17.9% in the Y 

direction. 
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Continuing with the performance evaluation, we analyze the structure using OpenSees 

(Mazzoni et al. 2006) with the same parameters as for the 10-Story example. The Pushover 

results are presented in Fig. 8 with the overstrength and ductility indicators shown in table 

2. 

 

Based on these results, we see that compared to the baseline, the optimized building has 

21.6% greater ductility in the X direction and 30.7% for the Y direction. Furthermore, it 
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has a steeper slope in the elastic range and a higher overstrength factor, likewise associated 

to an increase in the maximum base shear supported by the building.  

 

All things considered, the optimized building exhibits a better behavior than the baseline. It 

has lower elastic drift for both directions, greater overstrength and significantly better 

ductility. What is more, these improvements do not carry on any additional costs 

associated to materials, as the difference in concrete volume between both buildings is 

negligible. 
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CONCLUSIONS AND FUTURE WORK 

A structural optimization method to determine the optimal dimensions of columns in RC 

Moment Resisting Frames has been proposed.  The method is based on a very simplified 

physical model of the building, since it only considers displacements in the weaker 

direction of the building, which leads to the implementation of a very efficient 

computational algorithm, that can even be implemented using a freely available finite 

elements platform. 
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Numerical results show that, compared to a baseline building having all columns with the 

same dimensions, the behavior of the optimized buildings is improved between 10% and 

30% in three areas: elastic drift, ductility and overstrength. These improvements are 

observed for buildings of 

5 and 10 stories, and in both cases are achieved based on the optimization results by 

reducing the column dimensions with the building height.  Furthermore, achieving these 

improvements requires no additional investment in material cost, as both buildings have 

the same volume of concrete. More supervision would be needed to ascertain that the 

correct dimensions of columns are used at the prescribed floor, nonetheless, the benefits in 

structural performance compensate this endeavor. 

In addition to the above, an important advantage of this method comes as a result of these 

features; it has the potential to become a tool for practitioners, allowing them to leverage 

their design workflow by reducing the time spent on finding proper column dimensions. 

Finally, a continuation of this work would be to include more design variables in the 

optimization, like column widths and beam dimensions; however, this comes with 

significant challenges, as it requires a more complex mathematical theory and the 

development of an efficient algorithm to keep the aforementioned advantages. Similarly, it 

is also worth to conduct a research to determine if varying the column dimension along the 

building height can consistently lead to improved results like the ones shown in this paper. 
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3. EIGENFREQUENCY OPTIMIZATION WITH FULL 

HOMOGENIZATION FOR REINFORCED CONCRETE FRAMES 

 

 

This chapter is presented in a paper format, corresponding to the publication “A seismic 

optimization procedure for RC framed buildings based on eigenfrequency optimization”, 

which is accepted for publication in the journal Engineering Optimization. The accepted 

manuscript is presented here. 
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A seismic optimization procedure for RC framed buildings based on 

eigenfrequency optimization 

 
 

 
Abstract 

Several seismic optimization methods have been proposed to improve the performance of 

RC Framed (RCF) buildings, however, they have not been widely adopted among 

practicing engineers because they require complex nonlinear models and are 

computationally expensive. This article presents a procedure to improve the seismic 

performance of RCF buildings based on eigenfrequency optimization, which is effective, 

simple to implement and efficient. The method is used to optimize a 10-story regular 

building, and its effectiveness is demonstrated by nonlinear time history analyses, which 

show important reductions in story drifts and lateral displacements when compared to a 

non-optimized building. A second example for an irregular 6-story building demonstrates 

that the method provides benefits to a wide range of RCF and supports the applicability of 

the proposed method. 

 
Keywords: eigenfrequency optimization; homogenization; structural optimization; 

reinforced concrete moment frames; nonlinear time history analysis; genetic algorithms. 

 

Introduction 

 

Reinforced concrete framed structures (RCF) are a widely used structural system in 

buildings across the world. These frames are designed by structural engineers following an 

iterative process that involves three steps (Figure 1). First, gravitational and seismic loads 

are evaluated following the procedures stated by design codes. Then, they calculate a set of 

columns and beams dimensions that satisfy the elastic drift limit imposed by the code. 

Finally, steel reinforcement is calculated to satisfy the codes’ strength and ductility 

requirements. In few cases, when elements dimensions are small and they exceed the 

maximum allowable steel, it is necessary to adjust the columns and beams dimensions to 
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meet these requirements. A design is said to satisfy the code when it fulfills the drift limit 

and the strength and ductility requirements.  

 

Figure 1. The typical design process for a reinforced concrete moment resisting frame uses an iterative 

process to calculate the column and beam (members) dimensions and steel reinforcement that satisfy the code 

provisions.  

 

Due to the rapid pace of structural design offices, the customary practice is that a 

design is considered as final when it satisfies the code and conforms to what previous 

experience has taught. Because of this practice, most RCF buildings have suboptimal 

seismic performance.  

To address this issue, researchers have proposed optimization methods for RCF 

based on different optimization frameworks (Fragiadakis & Lagaros, 2011), such as 

deterministic based optimization (DBO) and reliability based optimization (RBO), where 

the cost of the structure is considered as the objective function and the code requirements 

are considered as constraints. Several solution techniques have been used to solve the 

problem and to optimize the seismic performance. For instance, DBO have been solved 

with genetic algorithms (Li, Lu, & Liu, 2010) and simulated annealing (Gang Li, 2010), 

RBO with discrete gravitational search (Khatibinia, Salajegheh, Salajegheh, & Fadaee, 

2013), DBO and RBO with evolutionary strategies (Fragiadakis & Papadrakakis, 2008), 
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and the implementation of particle swarm for DBO and RBO has also been discussed 

(Fragiadakis & Lagaros, 2011).  

These methods are capable of providing good solutions to the optimization 

problem, however, their usage by practicing structural engineers has been scarce. This 

situation has occurred because of two causes: a) these methods use nonlinear structural 

models to evaluate the seismic performance, which are difficult to implement for the 

average structural engineer, and b) these methods cannot provide results within the time 

frames used in engineering practice. While the latter cause can be offset by increasing the 

computational resources, the former poses a major challenge, since the development of 

nonlinear structural models requires a high level of knowledge and expertise that few 

practitioners have.  

The fact that engineers demand seismic optimization methods that are easy to 

implement and computationally efficient have been acknowledged by researchers, who 

have introduced methods with improved solution techniques (Hoffman & Richards, 2014), 

simplified methods for seismic evaluation (Zacharenaki et al, 2013) and where they 

explicitly consider code constraints (Zou et al., 2007). Although these efforts have yielded 

improvements in the computational cost, solving RCF seismic optimization problems still 

takes several hours or even days in consumer-level computers (Zacharenaki et al., 2013). 

More importantly, these methods still demand the development of complex nonlinear 

structural models and therefore, they have not captured the attention of engineers. 

To meet the needs of structural engineers, this article presents an optimization 

procedure to improve the seismic performance of RCF buildings that uses an 

eigenfrequency optimization framework for the problem statement and which can be 
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solved using either evolutionary algorithms or the homogenization method. The physical 

justification of maximizing the fundamental frequency is that it improves the elastic 

performance of buildings, leading to a delay in the start of the inelastic behavior. This 

formulation brings two benefits to the proposed method: a) it does not demand complex 

structural models and b) it is easy to implement and computationally efficient. These 

benefits allow the method to work within the engineers’ workflow (Figure 2) by 

optimizing two and three dimensional RCF buildings. The method uses the result of 

engineers’ design and returns the set of columns and beams dimensions that satisfies the 

drift limit of the code, maximizes the fundamental eigenfrequency of the building and uses 

the same amount of concrete as the engineers’ design. Based on these dimensions, the 

engineer finishes the design by calculating the steel reinforcement following the 

procedures specified by the design code that apply for his design (Figure 2). Though it 

would be preferable to include steel reinforcement and nonlinear behavior in the 

optimization, this would increase significantly the search space and would lead to a 

method without the benefits of ease of implementation and computational performance, 

which are key elements for a method to be used in practice, and are offered by the method 

herein proposed, which uses a problem formulation based on elastic properties of the 

buildings. 
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Figure 2. The proposed optimization method integrates within the structural design process and uses the 

results of the engineers design as starting point to determine a set of optimal dimensions.  

In this work, the method is applied to optimize the planar frames of a three 

dimensional 10 story RCF building. The problem was solved in a computer with a Core i5 

3570 and 8GB of RAM using the homogenization method in FreeFem++ (Hecht, 2012) in 

5 minutes, and using the evolutionary algorithm Borg (Hadka & Reed, 2012) in 27 

minutes. The solutions achieved by both methods use the same concrete as the building 

designed by the engineer and they satisfy all code requirements. After the reinforcement 

calculation, the tally of material quantities shows that the buildings’ material consumption 

is the same, within building construction practices, and any differences come from the 

need to accommodate to those practices and not from the method.  

The seismic evaluation in OpenSees (Mazzoni, McKenna, Scott, Fenves, & others, 

2006) demonstrates that the optimized building has better seismic performance than the 

initial building designed by the engineer, which is evidenced by greater overstrength and 

ductility and smaller story displacements and interstory drifts. Seismic performance results 

for a second example of a six story irregular building are also presented, showing 

improvements in the seismic behavior.  These results show that the eigenfrequency 

optimization procedure herein proposed can be used to improve the seismic design of RCF 
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buildings, and due to its computational performance and ease of implementation, it is a 

viable option to improve the structural engineers’ workflow.  

Eigenfrequency optimization framework for RCF 

Eigenfrequency optimization (Tsai & Cheng, 2013) describes a problem where one 

or more structural frequencies are optimized and it has been used for several problems in 

structural engineering, such as the strength maximization of RC beam column joints (Lee, 

Yang, & Starossek, 2012), vibration reduction in trusses (Senba et al., 2013). The authors 

used eigenfrequency optimization with a surrogate membrane model of RCF to optimize 

column dimensions, obtaining improvements in structure overstrength and ductility 

between 10% to 30% (Arroyo et al., 2015.).  

The application of eigenfrequency optimization for RCF makes sense, because 

during an earthquake the response of a building is heavily dependent on the smallest 

natural frequencies of the structure, thus, it is reasonable to optimize these structural 

properties. The dominating nature of the smallest natural frequencies in the structural 

response has been used to develop efficient analyses procedures, such as the modal 

pushover analysis (A. K. Chopra et al., 2004; A. K. Chopra & Goel, 2002); moreover, 

several standards (ASCE 7-10; ASCE 41-06) acknowledge that the seismic behavior in 

structures without important torsional irregularities, is controlled by the first natural 

frequency, allowing the use of the equivalent lateral force procedure to evaluate the 

seismic demands on structural members. 

In addition to optimizing a property that has a direct influence on the seismic performance 

of the structure, eigenfrequency optimization offers several advantages. First, the objective 

function is calculated based on the elastic model of the building, resulting in low 
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computational costs. Second, it provides easiness and flexibility in terms of the problem 

formulation, as it allows for a discrete statement in terms of classical structural analysis 

(SA), and it can also be stated in a continuous formulation based on partial differential 

equations (PDEs). 

Structural analysis formulation  

The eigenfrequency optimization problem is formulated based on the stiffness (K) 

and mass matrix (M) of a given MRF, calculated using structural analysis theory: 

 
i,min
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Here, n  represents the n-th eigenfrequency of the structure, p  represents the set 

dimensions of beams and columns. A constraint can be imposed on each property ip  to be 

greater than a given value
i,minp , for instance, beam height can be set to be greater than the 

code requirements for deflection control. In addition, a volume constraint 0( )V Vp  is 

used to set the amount of concrete. This constraint is imposed to the problem to limit the 

amount of material and indirectly controlling the cost of the structure, since the proposed 

method does not use the cost as objective function, unlike traditional RCF optimization 

methods. The third constraint is based on structural dynamics (Anil K. Chopra, 1995) and 

states that n  is an eigenfrequency of the structure. The authors recommend setting the 

values
i,minp  and the value 0V  using the information of a design that fulfills the design code 

(Figure 2); however, these parameters can also be set arbitrarily. The advantage of the 
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former is that the optimized dimensions will fulfill the drift limit imposed by the code, as 

this check is performed elastically and the optimized structure is stiffer in this regime. 

Once p  has been determined, the reinforcement steel is obtained following design 

codes procedures. In practice, if the authors’ recommendation is followed, engineers can 

modify the models in their preferred structural software and recalculate the reinforcement. 

Formulation based on PDEs 

Eigenfrequency optimization is formulated using PDEs as follows:  
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Here, ρ  represents density of material, which should be greater than a function 

minρ  in the domain  , and 0( )V Vρ  means that the total amount of material must be 

equal to a predefined volume 0V . The last three constraints mean that n  is an 

eigenfrequency of the structure.  

As a result of using the material density ρ  as the optimization variable, this 

formulation requires minρ  and   to be defined in terms of the lower and upper bounds of 

the dimensions of the structural members. Once the optimal density of material 
optρ  has 

been obtained, it needs to be expressed as column and beam dimensions. The steel 

reinforcement to be used is calculated after the optimization, similarly as for the SA 
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formulation. Further details on how to perform these calculations are provided below in the 

example section. 

Comparison between eigenfrequency formulations 

Both formulations come with their own set of advantages and disadvantages. The 

main advantage of the SA over the PDE formulation lies on its more straightforward 

statement of the problem, where the decision variables (i.e. column and beam dimensions) 

are explicitly used. In addition to this, the SA formulation can be applied to RC and steel 

structures. On the other hand, the discrete character of the physical model used to evaluate 

the objective function and when used for evolutionary algorithms, requires that the search 

space be carefully defined to have a good computational performance. A description of the 

aforementioned evolutionary algorithms can be found in (Simon, 2013) and for its 

applications in engineering, see (Dasgupta & Michalewicz, 2013). 

The main advantage of the PDE formulation is that it lends itself to solution 

methods that work with a single initial solution that is gradually improved, like the SIMP 

(Bendsoe & Sigmund, 2003) and the full homogenization (FH) (Tartar, 2009) methods, 

offering higher computational efficiency and the associated possibility of having a larger 

search space. The tradeoffs are that the mathematical representation of the decision 

variables requires a conversion into member dimensions and that their implementation 

require a good understanding of the finite element method, hence it is more complex than 

the SA formulation, though not as complex as existing optimization methods that need 

nonlinear models of the building. 

Numerical implementation 

Formulation based on SA 
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The SA formulation has a very straightforward implementation when used with 

numerical software like Matlab. It requires writing a function whose inputs are the 

columns and beams dimensions and its outputs are the desired eigenfrequencies. This can 

be done for either two or three dimensional problems. This function only requires 

knowledge of structural analysis that is taught in most universities. This represents an 

advantage compared to the PDE formulation, and specially against existing optimization 

methods that need the development of nonlinear models.  

Once the function is written, an appropriate solver must be used to find a solution. 

In this article, a state of the art multiobjective optimization algorithm, Borg (Hadka & 

Reed, 2012), is used as a solver. An example function written in Matlab that works with 

this algorithm for a 15 story building is provided (Arroyo, 2015). 

Formulation based on PDE 

The PDE formulation requires solving the problem using the finite element method 

according to problem (1). In this formulation, an optimization domain   must be defined 

based on the maximum desired dimensions for beams and columns. In this domain, the 

columns and beams dimensions are expressed as a material density  , therefore, the 

minimum dimensions are expressed as min . As previously discussed, this formulation 

allows to use efficient optimization techniques, however, it is more complex to implement 

than the SA formulation. 

In this article, the full homogenization (FH) method is used as a solution technique 

for this approach. For the sake of completeness, a description of the mathematical basis of 

the FH method for a two dimensional case is presented in the following subsection. A 

more complete description of the method can be found in (Allaire, 2002) and, more 
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specifically, for eigenfrequency optimization in (Allaire et al., 2001). Being this a first 

study on eigenfrequency optimization for RCF based on FH, this work focuses only on the 

first eigenfrequency, and the solution method presented herein accounts for this fact. 

Readers not interested in the mathematical details can skip this subsection and proceed 

directly to the algorithm described in 3.2.2. In this work, this algorithm is coded in 

FreeFem++ (Hecht, 2012).  

Mathematical model 

Let 
2R  be a bounded open set in 

2R . In   we have two linearly elastic 

materials with Hooke’s laws A  and B . Let  be a positive real number, 0 , such that 

A B . Therefore, A  is the Hooke law of a very flexible material, and in the limit when 

0 , it imitates void. Let ( ;{0,1})L    be a characteristic function of the most rigid 

material, i.e., ( ) 1x   if material B  is present at x , and ( ) 0x   otherwise.  

The heterogeneous Hooke's law in   is  

 ( ) 1 ( ) ( ) .C x x A x B     

The heterogeneous density in   is 

 ( ) 1 ( ) ( ) ,A Bx x x        

where , 0A B    are the densities of the materials. 

The boundary   is divided in two disjoint parts D  and N  supporting 

respectively Dirichlet boundary condition (zero displacement) and Neumann boundary 

condition (zero traction). The vibration frequencies   of the heterogeneous domain  , 

filled by A  and B , are the square roots of the eigenvalues of the following problem: 
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where 
1 2( )u H   is the displacement field, and  

1
( )

2

Te u u u    is the infinitesimal 

strain tensor. As is well known, problem (3) admits a countable family of positive 

eigenvalues. 

 2 2 2

1 20 ... k         

In this work we want to maximize the first eigenvalue, which is given by the 

following formula 
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where  1 2( ) | 0 on  Du H u     . 

We want to find the best arrangement of A  and B  in   that maximizes 2

1 . If 

A B   and there is no volume constraint on the amount being used of each material, the 

problem has a trivial solution, that is to fill   only with the most rigid material, namely, 

that with elasticity tensor B . Therefore, we add a constraint on the volume being used of 

that material, say 0V , and introduce a Lagrange multiplier l R  for such constraint. Then 

the optimization problem becomes 

   2

1 0
( ;{0,1})

sup ( )
L

l x dx V


 
 

 

    (4) 
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We want to find a sequence of characteristic functions n  that maximizes (4). 

However, it is known that this problem admits no optimal solution. Hence, one needs to 

enlarge the class of admissible designs by allowing fine mixtures of the two materials on a 

scale which is much smaller than the mesh used for the actual computation. However, the 

set of all Hooke’s laws that can be created is not known. Fortunately in the case of 

eigenfrequency optimization, the optimal microstructure is known to be among the subset 

of sequential laminates (Allaire, 2002). This process of enlarging the set of admissible 

designs in order to get a well-posed problem is called relaxation. The derivation of the 

relaxed formulation was done by the pioneering work of Murat and Tartar (Murat & 

Tartar, 1997), which is briefly sketched for the sake of completeness. 

Let ( ;{0,1})n L    be a maximizing sequence for (4). We want to pass to the 

limit in (4) and compute its maximal value. The sequence n  is bounded in ( ;{0,1})L  , 

therefore one can extract a subsequence, still denoted by n , such that it converges in 

( )L   weak-  to  . The limit   is, in general, a density, i.e., it belongs to ( ;[0,1])L  . 

According to the theory of H-convergence (Murat & Tartar, 1997), a subsequence of 

(1 ( )) ( )n n nC x A x B     H-converges to a homogenized Hooke’s law 
*C  as n  . 

As a consequence the eigenvalue 2

1( )n  and its corresponding normalized eigenfunction 

1

nu , solutions to  
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satisfy 1 1lim n

n
 


 , and the sequence of eigenfunctions 

1

nu  converges weakly in 
1 2( )H   

and strongly in 
2 2( )L   to a limit eigenfunction 1u  such that  
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with ( )x , the weak limit of the sequence n , i.e.,  

( ) (1 ( )) ( ) .A Bx x x        

In turn 
*C  belongs to  , defined as  

  H-limits of (1 ) |n n n nC A B          

Thanks to the work of Murat and Tartar (Murat & Tartar, 1997), we can find the 

optimal Hooke’s law 
*C  in the subset L  of sequential laminates obtained by laminating 

B  around a core of A  in proportion   and 1  , respectively. 

Thus, we define a relaxed objective functional by 

   *

2 *

1 0( ;[0,1])
max max ( , ) ( )

L C L
C l x dx V


     

    (7) 

The new material is built by laminating, in a very fine scale, a proportion 1  of B  

with a proportion 11   of A  in one direction, say 1e , and then the resultant tensor 
1A  is 

laminated again, at a scale coarser than the previous one but still finer than the macroscale, 

in a direction 2e , and in proportion 2  with one of the initial materials, say A , and obtain 

*C , the Hooke’s law of a rank 2 laminate. Figure 3 illustrates this procedure. 
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Figure 3. Homogenized rank 2 laminated material 

The effective Hooke’s law *C  is obtained from equation (2.68)  in (Allaire et al., 

2001) 

       
1

1* 1 2

1 21 ( ) ( )B BC B A B m f e m f e 



        (8) 

Where 1 2    is the total proportion of material B , the unit vectors 
1 2,e e  are the 

lamination directions, the real numbers 1 20 , 1m m   such that 1 2 1m m  , are the 

lamination parameters, and ( )i

Bf e  is a positive non-definite fourth-order tensor defined 

for any symmetric matrix   by the following quadratic form 

 
221

( ) :i i i i

Bf e e K e e   


  

,

 

where 
(2 )

K
 

  





 and ,   are the Lamé parameters of material B . 

By means of theorem (4.1.46) in (Allaire, 2002), in the case when the first 

eigenvalue is simple we can find the globally optimal lamination parameters and 

lamination directions in order to maximize our objective function.  



64 

 

  

If the eigenvalues of the stress tensor *

1( )C e u   are denoted 1  and 2 , they are 

given by 

 2 2

1 11 22 11 22 12

1
( ) 4 ,

2
           

 2 2

2 11 22 11 22 12

1
( ) 4

2
           

The lamination parameters are 

2 1
1 2

1 2 1 2

| | | |
  and   

| | | | | | | |
m m

 

   
 

 
, 

therefore the intermediate proportions are: 

1 2 1 2
1 2

1 2 1 2

| | | | (| | | |)
.

| | | | | | | |

     
 

    

 
 

 
 

The lamination directions are chosen as the eigenvectors of  . Then 
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where 
610    is introduced to avoid numerical problems. 

The optimal density of rigid material is chosen by: 

  

 
*

2

( )
max ,min 1,min

g

l u


 




  
  

   
    

  (9) 

where:   
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 
2*

1 2

lower limit for material density.

2
( )

4 ( )

lagrange multiplier for the volume constraint of the rigid material

(1 )

optimal density of rigid material obtained in the prev

min

p p

p

g

l

B A



 
  

  

  






 





  

 ious iteration

first eigenfunction obtained in the previous iteration.u 

 

Computational algorithm 

The previous subsection shows the formulas necessary to implement a computational 

algorithm. The algorithm is constructed as follows: 

(1). Initialization of the design parameters *

0 0( , )C . 0  can be set to 0V . 

(2). Iteration until convergence, for 0k  : 

a) Compute the first eigenfunction 
1

ku  with the previous design parameters *( , )k kC , and 

calculate the stress field k . 

b) Update the design variables *

1 1( , )k kC  
 by using the stress k  in the explicit optimality 

formulas (8) and (9). Convergence can be monitored using norm of 
1

1 1

k ku u  . Also, a 

limit can be imposed to the maximum number of iterations. 

 To optimize 3D buildings, this algorithm is applied to frames in each building 

direction X and Y independently, because it is expected that for structures without 

important irregularities, the first mode in each direction is not significantly affected by the 

first mode in the perpendicular direction. 

 

Example application: optimization of a 10 story building  
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 In order to demonstrate that the proposed method can produce better designs than 

the current engineering practice, we consider a 10 story building whose plan view is shown 

in Figure 4. The building has four moment resisting frames in the X direction and seven in 

the Y direction, it is completely regular, its total height is 30 m and has a 12 cm slab. 

Concrete and reinforcement steel are considered to satisfy the standard strength 

requirements 4000 psi and A615Gr60. Following the procedure depicted in Figure 1, and 

since the proposed method is aimed to be used within engineering practice, a preliminary 

step is to design this building for residential purposes, according to the ASCE 7 and the 

ACI 318 for the state of California (37.38ºN, 121.88ºW) using ETABS v13.1.2 

(Habibullah, 1997), which will be used to demonstrate that the proposed method (Figure 2) 

produces buildings with superior seismic performance than those designed by traditional 

engineering practice (Figure 1). The design results are columns with a cross section of 

55cm x 75cm and a reinforcement ratio of 1.18%, with beam sections of 35cm x 40cm 

with a top and bottom reinforcement ratios of 0.93% and 0.70%. These column and beam 

dimensions are used as the base for the optimization algorithm, as illustrated in Figure 2. 
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Figure 4. The 10 story building to be optimized has 5m spans in both directions, with four frames in the X 

direction and seven in the Y direction. 

 

 In this example, the optimization is performed using two dimensional frames, one 

representative of the X direction and the other of the Y direction. The minimum and 

maximum dimensions for the optimization algorithm are defined based on the design 

results. Columns sections will be allowed to vary between 52.5cmx60cm to 80cmx85cm. 

For beams, the height will vary between 35cm to 50cm and the width will be fixed in the 

design value, since this property has a smaller influence in seismic performance than the 

other optimization variables.  

 The optimized building is constrained to have the same volume as the designed 

building, allowing to elaborate a direct comparison since both buildings will have the same 

costs of concrete. Although the reinforcing steel is not constrained, it is expected that the 

optimized building will use a similar amount, given that it will have the same volume of 

concrete. Comparisons with other optimization methods are not presented here because 

they do not accomplish the goal of being implementation-friendly for practitioners; 
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however, we acknowledge that once they are implemented, and given enough 

computational resources, they might provide more effective solutions, since they optimize 

the reinforcing steel.  

 

Numerical results 

 The proposed building is optimized according to the SA and the PDE 

formulations presented in this article. For the SA formulation, this was accomplished 

following the process described in section 3.1, writing a Matlab function and using it as 

input for the Borg MOEA (Hadka & Reed, 2012), which is a state of the art multiobjective 

optimization algorithm that combines epsilon-dominance, randomized restarts and 

autoadaptive multioperator recombination. As previously discussed, this is a very 

straightforward implementation that only demands knowledge of structural analysis. The 

PDE formulation is written in FreeFem++, but it requires a more detailed discussion, 

which is presented in the following paragraphs. 

 The first step is to define the optimization domain  . We begin by establishing a 

centerline consistent with the elevation view of a typical moment resisting frame in this 

direction, i.e., those in axis 1 to 4. After that, we set the maximum dimensions for columns 

and beams, which are used to define the domain borders. In this case, 80cm is chosen for 

the maximum column dimension in the X direction, and 50cm for the beam height. An 

easy way to visualize   is as an elevation view of the building formwork. The second step 

is to define the value of 0V . Taking into account that   is a bidimensional domain, 0V  is 

defined as a fraction of the area of  . For this example, we calculate 0V  as the area 
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occupied by the corresponding view of the elements in the baseline building, which 

corresponds to a 76% of  . 

 The third step involves defining the minimum density of material min  based on 

the minimum column and beam dimensions. min  is calculated as the ratio between the 

minimum and maximum dimensions, which gives a uniform value  min = 0.65 for this 

example. We did not impose a constraint for the relative stiffness between stories, since the 

optimal solutions found are always with decreasing stiffness in height, therefore, avoiding 

having a lower story being softer than a higher one. 

 To perform the optimization in the Y direction we follow the same steps. First we 

calculate 0V  as the 85% of the domain and, finally, based on the minimum dimension for 

columns and beams we obtain min = 0.7. In this formulation, the optimized dimensions are 

obtained after converting the material density into column and beam dimensions. Hence, 

the mass and stiffness are strictly positive at each point in  , making the mass and 

stiffness matrices to be positive definite. 

 The resulting dimensions from both formulations are rounded to multiples of 5cm 

to accommodate with construction practices, providing the same final result for columns 

and beams dimensions, shown in Table 1. 

 

Table 1. Dimensions for 10-story buildings (all dimensions are given in cm) 

 OPTIMIZED BUILDING 
TRADITIONAL 

BUILDING 

 

COLUMNS BEAMS   COLUMNS BEAMS 

Story Inner Outer X Dir Y Dir Both Both 

10 50x60 50x60 35x35 35x35 55x75 35x40 

9 55x65 55x65 35x35 35x35 55x75 35x40 

8 55x70 55x70 35x40 35x40 55x75 35x40 
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7 60x70 55x70 35x40 35x40 55x75 35x40 

6 60x75 55x75 35x40 35x40 55x75 35x40 

5 60x75 55x75 35x40 35x40 55x75 35x40 

4 65x80 60x80 35x45 35x45 55x75 35x40 

3 70x80 65x80 35x45 35x50 55x75 35x40 

2 70x80 70x80 35x45 35x50 55x75 35x40 

1 70x85 70x80 35x45 35x45 55x75 35x40 

 

 

 Based on the rounded dimensions calculated for both directions and following the 

procedure of Figure 2, the reinforcing steel for the optimized building is calculated in 

ETABS v13.1.2. The results indicate that the elements of the optimized building use the 

same reinforcement ratios as their traditional counterparts. The calculation of materials 

consumption shows that the baseline building uses 1201.5 m3 of concrete and 68758 kg of 

longitudinal reinforcing steel. The optimized building respectively uses 1231.94 m3 and 

69217 kg, values that are 2.5% and 0.67% higher than the baseline building, but they are 

within the error margin of construction practices and are the result of the roundup process 

required to accommodate to them. The buildings’ total weight is 2770.33 ton for the 

traditional building and 2840.38 ton for the optimized one. 

 A close examination of the optimization results shows that the dimensions of 

structural members in the bottom third of the building are increased compared to the 

baseline building, with columns having about 25% greater cross sectional area and beams 

being 5 cm taller. These dimensions are gradually reduced with the building height up to 

the top floor, where columns are approximately 25% smaller than in the baseline building, 

and beam height is decreased by 5cm. 

Computational efficiency 
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 An important remark about the proposed optimization algorithm is its numerical 

efficiency. Running in a desktop with an Intel Core i5 4460 at 3.2GHz and 8GB of RAM, 

it takes 5 minutes to run the optimization for both directions with the homogenization 

method and 27 minutes using Borg (with an  for the building frequency), times that 

are fast enough for engineering practice. Although not presented here, the proposed 

method was also used to optimize a 5 story and a 15 story buildings, with computational 

times of 3 and 8 minutes for the homogenization method and 13 and 40 minutes for 

evolutionary algorithms (Borg). The Matlab code of the objective function for the 15 story 

building can be freely downloaded (http://bit.ly/23am22r) and used with any genetic 

algorithm solver. As mentioned before, the easy implementation and computational 

efficiency of the method come with a tradeoff on its effectiveness, since the reinforcing 

steel is calculated by the engineer following the design codes.  

 These computational times compare favorably to other methods reported in 

literature, where the computational time for optimizing in two dimensions may range, 

depending on the seismic evaluation method, between 12 hours and 1.5 weeks for a 

bidimensional 3 story building on a Core 2 Duo (Zacharenaki et al., 2013). The reason for 

those long computational times is that this optimization method uses nonlinear models to 

evaluate the seismic performance of the building; what does not occur in the proposed 

method that takes advantage of the influence of the eigenfrequency in the structural 

response and optimizes directly this property. 

 To sum up, the proposed method brings a combination of computational 

performance and easiness of implementation, providing a viable practical alternative for 

the design of RCF building that is not compromised by its tradeoff on effectiveness. 

http://bit.ly/23am22r
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Structural performance of optimized building 

 As previously stated, the proposed optimization approach works with the 

hypothesis that optimizing the eigenfrequency brings benefits to the structural 

performance, and although previous research (Arroyo et al., 2015.; Lee et al., 2012; Senba 

et al., 2013) supports this idea, in this section we proceed to demonstrate that this 

hypothesis holds by comparing the seismic performance of the optimized building with the 

baseline. 

 Since the method ensures better seismic performance only in the elastic range, in 

order to have a comprehensive vision of the structural behavior, OpenSees (Mazzoni et al., 

2006) is used to perform a 2D Pushover Analysis for the typical X and Y frames of the 

buildings, i.e. frames corresponding to elevations designated by B and 2 in figure 4. Beams 

and columns are modeled using fiber elements with rebar, confined and unconfined 

concrete, with 5 integration points. To avoid localization issues, the Constant Fracture 

Energy Criterion (Coleman & Spacone, 2001) is used with 180 /c

fG N mm  and with 

concrete properties 28cf MPa , 33.6ccf MPa , 0.0019ce  , in the modified Kent-Scott-

Park model.
 

Reinforcing steel is modeled using a bilinear relation, with 

210sE GPa , 420yf MPa , 630uf MPa , and an ultimate strain 0.14ue  . The 

foundation is modeled as rigid, and gravity loads for the model are calculated based on the 

expected loads and using the combination 1.05 0.25D L . P-Delta effects are included 

with gravity loads calculated based on the tributary area of the beams. Rayleigh damping is 

applied to the structure with 3% damping in the first and third modes. Masses were 
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assigned in nodes based on the tributary areas and the elements self-mass. Displacement 

control is used in the Pushover using 0.5mm steps. 

 Based on the Pushover results, ductility (  ) and overstrength ( 0 ) are 

calculated according to the FEMA P695 (FEMA 2009). We also perform a Nonlinear Time 

History Analysis for the two buildings using both components of the 22 ground motion 

suite of the FEMA P695 (table 2), normalized and anchored according to chapter A-8 in 

FEMA P695 (FEMA 2009) such that the median of the spectral acceleration set matches 

the spectral acceleration of the maxD  spectrum (see Figure A-1 in FEMA 2009) at the 

fundamental period of the buildings.  

Table 2. Summary of earthquake information. Taken from FEMA P-695 

ID M Year Name 

1 6.7 1994 Northridge 

2 6.7 1994 Northridge 

3 7.1 1999 Duzce, Turkey 

4 7.1 1999 Hector Mine 

5 6.5 1979 Imperial Valley, Delta 

6 6.5 1979 Imperial Valley, El Centro 

7 6.9 1995 Kobe, Japan, Nishi-Akashi 

8 6.9 1995 Kobe, Japan, Shin-Osaka 

9 7.5 1999 Kocaeli, Turkey, Duzce 

10 7.5 1999 Kocaeli, Turkey, Arcelik 

11 7.3 1992 Landers 

12 7.3 1992 Landers 

13 6.9 1989 Loma Prieta, Capitola 

14 6.9 1989 Loma Prieta, Gilroy 

15 7.4 1990 Manjil, Iran 

16 6.5 1987 Superstition Hills, El Centro 

17 6.5 1987 Superstition Hills, Poe Road 

18 7 1992 Cape Mendocino 

19 7.6 1999 Chi-Chi, Taiwan, CHY101 

20 7.6 1999 Chi-Chi, Taiwan, TCU045 

21 6.6 1971 San Fernando 

22 6.5 1976 Friuli, Italy 

 

After this process, the suite was run at three different scale factors, 1.0, 2.2 and 3.5 and the 

displacement and interstory drift were recorded for each story of the building. For each 

scale factor we calculate the median of the maximum values taken from each record of the 
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GM suite, for each story of the building and each demand parameter, i.e., displacement and 

drift. 

 

Figure 5. The pushover results show that the optimized structure supports a larger base shear and has a 

smaller post peak slope than the original structure. 

 

 Pushover Results for the X and Y directions are shown in figure 5 and they show 

that the optimized building performs significantly better than the baseline in several 

aspects: 

 The slope in the elastic range is steeper for the optimized building, which means 

that it is more rigid than the traditional. This comes as a direct consequence of the 

optimization, as its goal is maximizing the first eigenvalue of the building. 

 The maximum base shear maxV  supported by the optimized building is higher than 

the one from the baseline. This could have an important practical implication, as it 

suggests that the optimized building could withstand earthquakes with higher 

accelerations before starting to deteriorate. 

 The optimized building has a better post-peak performance than the baseline. 
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This analysis is further confirmed by calculating the overstrength and ductility as 

shown in Table 2, where it can be observed that the optimized building has an 

overstrength that is 23.8% and 27.9% higher than the baseline building for the X and Y 

direction, respectively. On the other hand, the ductility factor sees a notable 

improvement, as it is 81.9% greater in the X direction and 98.2% in the Y direction. 

Table 3. Overstrenght and Ductility for the 10 story buildings 

 Pushover X Pushover Y 

Structure 
0    

0    

Optimized 4.00 11.50 3.58 14.07 

Traditional 3.23 6.33 2.80 7.1 

 The performance improvement shown in the Pushover is verified using Nonlinear 

Time History Analysis. We start by looking at the displacement response for a scale factor 

of 1.0 in figure 6, where it can be appreciated that the median displacement of the 

optimized building is smaller than the baseline, in a range that varies from 45% for the first 

floor in the X direction, down to 10% for the tenth floor in the Y direction. 
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Figure 6. The displacement and drift responses for a scale factor of 1.0 are smaller for the optimized 

building, especially in the bottom stories. Top: X direction. Bottom: Y direction. Dotted and continuous gray 

lines represent individual ground motion results for the optimized and traditional buildings, respectively. 

 

 The behavior of the structures is further clarified by examining the drift responses 

in figure 6, where can be seen that for both directions, the optimized building has a 

significant reduction in the interstory drift for the first five stories, with moderate 

improvements in the sixth and seventh; nonetheless, this comes at the expense of having a 

bigger interstory drift in the top three stories. In practice, this means that there is a shift in 
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the expected location of the damage; the optimized building is expected to have more 

damage in the top stories, as opposed to the baseline building where it is expected to take 

place in the intermediate stories. 

 When we increase the scale factor to 2.2 we start to see some differences between 

the performance in the X and the Y directions, as shown in figure 7. In the X direction the 

behavior is similar to the previous one for a scale factor of 1.0, with the optimized building 

having smaller displacement along the building, and a notable reduction in the interstory 

drift for the first half of the building that comes at the expense of having larger drifts in the 

upper stories. On the other hand, the performance in the Y direction shows notable 

differences in displacements, especially in the bottom stories, where we observe reductions 

that go up to 60% for the first story.  Similarly, we see that there are significant reductions 

for the optimized building in the interstory drift for the first seven stories, and even though 

the interstory drift in stories 8 to 10 is larger than in the baseline, these differences are 

significantly smaller than the ones seen downwards in the building. 
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Figure 7. The displacement and drift responses for a scale factor of 2.2 are smaller for the optimized 

building, especially in the bottom stories. Top: X direction. Bottom: Y direction. Dotted and continuous gray 

lines represent individual ground motion results for the optimized and traditional buildings, respectively. 

  

 It is important to note that the observed changes in the structural performance are 

worthy tradeoffs for a building, as it is preferable to have damage in upper floors than have 

it in the bottom of the building, as the latter can compromise the structural stability and it 

is more prone to cause undesirable consequences. 

 Finally, when we increase the scale factor to 3.5 in figure 8, the differences 

between the two buildings become even clearer, especially in the bottom stories. For the X 
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direction, we observe in figure 8 that there are notorious differences in displacements for 

all stories, all of them favoring the performance of the optimized building. It can be 

appreciated that the first four stories in the baseline structure have interstory drifts close to 

10%; in the meantime, in the optimized building, all these stories have interstory drifts 

smaller than 6%, with the first floor having almost a third of its baseline counterpart. 

 The displacements in the Y direction of the optimized building are greatly 

reduced compared to its baseline. For instance, the displacement of the first floor is more 

than ten times smaller for the optimized building than for the baseline building; what is 

more, if we look at the roof displacement, we observe that for the baseline building it is 

greater than 3.0m, while for the optimized building, it is close to 1.5m. 

 The difference in structural performance for the Y direction is further confirmed 

by examination of the drifts in the right side of figure 8, where it is seen that for each floor, 

the interstory drift of the optimized structure is smaller than its baseline counterpart. In 

addition to this, we observe that the first five floors in the traditional building have an 

interstory drift around 20%, meanwhile in the optimized building, this value goes from 

3.5% in the first floor, up to 5.5% in the fifth. 

 To sum up the results, the Pushover results show that when compared to the 

baseline building, the optimized building has greater overstrength and a significantly 

increased ductility. As expected from the Pushover result, the seismic performance during 

an earthquake is better in the optimized structure, what is further proved by the NLTHA, 

whose results show that the optimum structure is more capable to withstand the demand 

caused by the selected ground motion suite for different scale factors. 
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Figure 8. The displacement and drift responses for a scale factor of 3.5 are significantly smaller for the 

optimized building, especially in the bottom stories. Top: X direction. Bottom: Y direction. Dotted and 

continuous gray lines represent individual ground motion results for the optimized and traditional buildings, 

respectively. 

Application for an irregular building 

 To further illustrate the effectiveness of the proposed optimization method, an 

irregular 6 story building is considered, whose plan view is shown in Figure 9a. The 

building is designed for a seismic zone with Sa = 0.55g. The optimization is carried on 

independently for each frame in each direction of the building, and the reinforcement for 

the optimized dimensions is determined using a three dimensional model in ETABS 

v13.2.1. No further details are given to keep the length of the article at a reasonable level. 
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 The traditional and optimized buildings are analyzed using three dimensional 

models in OpenSees with the previously described material models and parameters, and the 

Pushover results for the X and Y direction (Figure 9b and 9c) show that there are 

improvements in the building performance for both directions.  

 

Figure 9. The proposed method is used to optimize a six story irregular building (a), with pushovers in the X 

direction (b) and Y direction (c) showing improvements in the overstrength and ductility. 

 

 Due to its computational cost, we did not evaluate the seismic performance of 

this building using incremental dynamic analysis, but given the improvement in the 

pushover results, we expect the building to show similar improvements in the nonlinear 

dynamic analyses. This example shows that the method can be used for irregular buildings, 
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for which is possible to optimize the seismic performance by means of the bidimensional 

optimization of their individual frames. 

 

Conclusions and perspectives 

 The results from this research allow drawing several conclusions: 

 The proposed optimization method is capable of optimizing the seismic 

performance RCF within minutes, with the resulting building consuming the same amounts 

of concrete and reinforcing steel as the initial design proposed by engineers. The seismic 

performance results obtained in OpenSees for the 10 story building considered herein show 

improvements in several aspects. The pushover analyses indicate that the optimized 

building has 23.9% greater overstrength and 81.7% greater ductility. The results of 

incremental dynamic analyses show that the story drifts and displacements are reduced in 

the bottom stories. These reductions became larger as the scale factor was increased, 

suggesting that buildings optimized using the proposed method may have lower collapse 

fragility. The pushover results for a 6 story irregular building demonstrate that the method 

can be used in general for RCF.   Besides the benefits of being computationally fast and 

effective, the provided Matlab code demonstrates that the proposed method can be easily 

implemented; with the potential to improve the structural engineers’ workflow.  

 In terms of the solution techniques, genetic algorithms and the homogenization 

method are appropriate within the proposed method, however they differ in terms of the 

computational efficiency and the simplicity of its formulation. For the example considered, 

the homogenization method solved the problem in 5 minutes, less than one fifth of the 

computational time using genetic algorithms. On the other hand, the problem formulation 
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using genetic algorithms is straightforward and only requires knowledge of structural 

analysis, while the homogenization method requires a good understanding of the finite 

elements method. For a quick implementation, the genetic algorithm implementation is 

preferable; however, the computational performance of the homogenization method may 

offset its more complex formulation when the reductions in computational time for several 

models are aggregated. 

 All things considered, the proposed method fulfills the objectives of being 

computationally efficient, easy to implement and effective; benefits that make it a solid 

candidate to be used within the design of RCF buildings. In addition, the results show that 

eigenfrequency optimization is a suitable framework for the seismic optimization of RCF.  

 Future research on this topic can be pursued in different areas: 

 About eigenfrequency optimization, a continuation of this work would be 

investigating if it can be used for steel MRF. In addition, it would be worth investigating 

the application of the proposed problem formulation in three dimensions. Moreover, it is 

also interesting to evaluate if the problem formulation can be extended to involve more 

design variables without compromising the simplicity in the formulation and the 

computational performance. In particular, including steel reinforcement and nonlinear 

behavior in the problem would be a good addition for the procedure. 

 From an optimization perspective, this is an interesting problem because the 

objective function is not expensive and the search space can become very large, hence, it is 

worth investigating the feasibility and the computational performance of other solution 

techniques, such as simulated annealing or particle swarm. 
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 From an earthquake engineering perspective, it would be interesting to evaluate 

how the response of the optimized buildings is sensitive to the frequency content of 

seismic records, and developing a software that uses the proposed method and integrates 

with existing structural engineering packages, giving engineers a powerful tool to improve 

current design practice. 
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4. EVALUATION OF THE IMPACT OF EIGENFREQUENCY 

OPTIMIZATION USING PERFORMANCE BASED EARTHQUAKE 

ENGINEERING 

 

This chapter is presented in a paper format, corresponding to the publication “A PBEE 

evaluation of a seismic design method for reinforced concrete frames based on 

eigenfrequency optimization”, which is under review at the time of elaborating this 

document. The submitted manuscript is presented here. 
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A PBEE evaluation of a seismic design method based on eigenfrequency 

optimization 

Abstract 

Reinforced concrete frames (RCF) are a widely used structural system, whose 

design is based on drift, strength and ductility requirements given by design codes. 

Recently an eigenfrequency optimization method has been proposed, which 

minimizes the fundamental period of RCF structures, which has potential to be a 

practical tool to improve the seismic performance of RCF. In this work we use 

performance based earthquake engineering (PBEE) to assess the effectiveness of 

the design method. The findings show that the method is effective for low to 

median rise buildings, because it produces distributions of strength and stiffness 

more suitable to withstand seismic forces, specifically with stronger columns, 

beams and ratio of column to beams at the base of the building. Consequently, 

optimized buildings have reduced drifts at lower stories, smaller collapse risk and 

lesser expected casualties. These improvements come despite material volumes that 

are the same as traditionally-designed structures and seismic economic losses that 

are virtually identical.  

1. Introduction  

Reinforced concrete frames (RCF) are a widely used structural system around the 

world, especially in developing countries, due to the system’s relatively low cost compared 

to other alternatives. Indeed, reports from the World Housing Encyclopedia show that 

these structures account for about 75% of the building stock in Turkey (WHE Report 64), 

60% in Colombia (WHE Report 11) and 80% in Mexico (WHE Report 115). Reflecting 

this ubiquity, there has been significant research effort to develop methods to improve 

RCF seismic design procedures beyond the code minimum (e.g. Zou, et al. 2007; Li & Liu, 

2010; Li et al. 2010; Khatibinia et al. 2013; Bai et al. 2016; Arroyo et al. 2016; 

Hajirasouliha et al. 2012; Arroyo and Gutiérrez 2016).  

Among these methods, Arroyo et al. (2016) and Arroyo and Gutiérrez (2016) propose a 

design procedure based on eigenfrequency optimization. This approach uses a topology 

problem formulation that minimizes the frame’s fundamental period. The optimization 
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procedure is easy to implement and can be used to obtain - within minutes - RCF designs 

with improved overstrength (comparison of lateral strength relative to the design strength 

requirement) and deformation capacity (Arroyo et al. 2016). This method uses an iterative 

procedure to select member sizes subject to constraints in the total volume of material used 

and the equilibrium conditions. However, the full extent of seismic improvements from 

this approach and the mechanisms by which seismic performance is improved remain 

unclear, especially since it is potentially at odds with studies suggesting worse seismic 

performance of shorter period buildings. These issues deserve a thorough investigation due 

to the potential for practical application of eigenfrequency-based design methods.  

This paper uses performance-based earthquake engineering (PBEE) to investigate the 

reach of the seismic improvements and evaluate the effectiveness of the eigenfrequency 

optimization method presented in Arroyo and Gutiérrez (2016). For this purpose, three 

regular RCF buildings with 5, 10 and 15 stories are considered, as well as a 6 story 

building with an asymmetric plan configuration. The buildings are first designed according 

to the ASCE 7 standard (ASCE 2010) and the ACI 318 design code (ACI 2008), and then 

redesigned based on the results of the eigenfrequency optimization. The redesigned 

buildings still satisfy all code requirements and use the same material volumes as the 

original design, but this material is redistributed to minimize the period. To investigate the 

extent of the method effectiveness, nonlinear simulation models of the traditional and 

redesigned buildings are subjected to dynamic analysis that provides the input for the 

assessment of collapse risk and earthquake-induced losses. The structural response is 

quantified in terms of drift demands over the height of the building and collapse fragility 

curves. In addition, the expected annualized losses associated with repairing earthquake-

induced damage are calculated and disaggregated based on the contributions of the 

buildings’ structural and nonstructural components. Furthermore, the buildings’ collapse 

modes are identified and the expected number of casualties computed. In addition, the 

paper addresses how period minimization introduces changes in the configuration of 

buildings, which translate into better seismic performance. Design characteristics 

investigated include column-to-beam strength ratios and column shear and moment 

capacities over the height of the building.  
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2. Seismic design and optimization of case study buildings 

2.1. Case study buildings  

Four RCF buildings are considered in this study. Three of them are regular buildings 

with 5, 10 and 15 stories; the fourth building has 6 stories with an irregular plan 

configuration. The buildings’ structural system consists of moment-resisting space frames, 

wherein multiple frame lines are designed to resist lateral loads in each direction. Story 

heights are 3m. Framing layouts are presented in Table 1 for the regular buildings and in 

Figure 1 for the irregular building. The regular buildings are designed for a California 

location (37.38ºN, 122.26ºW) with soil type D conditions and Seismic Design Category D 

(Sa(1s) = 0.945g). The irregular building is designed for a moderate seismicity zone with 

(Sa(1s) = 0.27g). 

Table 1. Regular (rectangular) building geometries in plan.  

Building Number of bays in X Direction Number of bays in Y Direction 

5 Story 4@6m 3@6m 

10 Story 6@5m 3@5m 

15 Story 4@7.5m 4@7.5m 
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Figure 1. Plan view of irregular six story building. 

2.2 Traditional designs 

The buildings are first designed according to U.S. seismic codes; these buildings are 

referred to as the “traditional buildings”. The traditional buildings are designed using 

three-dimensional models in ETABS v13.1.2 (Habibullah 1997), using response spectrum 

analysis according to current seismic design codes (ASCE 2010), (IBC 2015). The 

building floor systems are designed with a 7 cm slab with joists in the X direction. The 

buildings are designed for the office live load requirements of ASCE 7-10 (ASCE 2010), 

but since there is only a small difference in the live loads between office and residential 

occupancies, the same building designs  are later used to represent both condominium and 

office structures. The dimensions of columns and beams are assumed to be uniform over 

the height of the building to represent typical design and construction practice of countries 

like Colombia and Peru and elsewhere, where this practice is customary to facilitate 

construction. The member dimensions and steel reinforcement for the four buildings in this 

study are summarized in Table 2. These designs satisfy all code-required forces, drift 

limits, capacity design principles (strong column weak beam, etc.), and detailing 

requirements.  

Table 2. Traditional design of columns, beams, and joists (dimensions given in cm). For 

beams,  and ’ represent the bottom and top beam reinforcement ratios. 

Building Columns Beams Joist 

5 Story 50x60, = 1.2% 35x45, = 0.6%, ’ = 1.2% 12x38 

10 Story 55x75, = 1.1% 30x40, = 0.8%, ’ = 1.6% 12x32 

15 Story 90x90,  =1.5% 40x60, = 0.5%, ’ = 0.9%  15x52 

6 Story 60x70,  =1.2% 35x45, = 0.6%, ’ = 1.2% 15x38 

 

2.3 Optimized designs 

The building designs are improved using the eigenfrequency optimization method from 

Arroyo and Gutiérrez (2016); these designs are referred to here as the “optimized 

buildings”. In all cases, the optimized buildings are constrained to use the same amount of 

concrete as the traditional buildings, and they use the same steel reinforcement ratios. In 
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order to accommodate to construction practices, the members’ dimensions are rounded to 

multiples of 5 cm and steel ratios design uses standard ASTM rebar sizes. This process 

leads to minor differences in concrete and steel consumption (less than 3%) between the 

traditional and redesigned buildings, which can be considered within the margin of error in 

construction practice. 

The method is used to determine the dimensions of structural members minimizes the 

buildings’ fundamental periods, achieving an average reduction of 6.2%, as shown in 

Table 3. Table 4 shows the impact of the redesign for the 15 story building, producing 

dimensions that are larger in the bottom floors, and gradually reduced along the building 

height. The optimization results of the other buildings give similar results. 

Table 3. Comparison of first-mode periods Tn between traditional and optimized building designs. 

Building 

Traditional Tn 

(sec) 

Optimized Tn 

(sec) 

% Reduction with 

optimization 

15 Story 2.28 2.14 6.1% 

10 Story 1.70 1.58 7.1% 

5 Story 0.95 0.88 7.4% 

6 Story 0.96 0.92 4.3% 

 

Table 4. Dimensions for 15 story buildings (all dimensions are given in cm). Columns are square, 

so the number reported quantifies each dimension. For the beam, just beam depth is reported.  

 Optimized building Traditional building 

 

Columns Beams Columns Beams 

Story Inner Outer Both Both Both 

13-15 80 80 55 90 60 

12 85 80 55 90 60 

11 85 80 60 90 60 

8-10 90 85 60 90 60 

7 95 85 65 90 60 

6 95 90 65 90 60 

5 95 95 65 90 60 

2-4 100 100 65 90 60 

1 105 100 65 90 60 

 

      While the period reductions obtained as a result of the optimization are small, the 

changes in member dimensions suggest that period minimization has a significant impact 
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in the building behavior during a seismic event. To provide a more comprehensive 

understanding of the potential implications of these changes on the seismic performance, 

Figure 2 shows how the design changes between the traditional and optimized building 

over the height of the building, considering column moment strength (Figure 2a), column-

to-beam moment strength ratio (Figure 2b) and column shear strength (Figure 2c). 

      Figure 2 shows a clear trend for these three design characteristics, wherein in each case 

the ratio between the capacity of the optimized building and the traditional buildings is 

higher than 1.0 at the base of each building, and decreases gradually to a value lower than 

1.0 at the top of the building. In the case of the columns’ moment capacity (Figure 2a), the 

optimized buildings have on average 142% of that of traditional buildings at their base, 

with gradual decrease to a 75% average on the roof. For column shear strength and the 

column to beam strength ratio, the percentages of variation are respectively 127% to 87% 

and 125% to 84%. Though not shown in the figure, beam capacities also follow a stair-like 

pattern, with the optimized buildings’ beams having 10% greater moment capacity at the 

bottom third, equal capacity in the middle and 10% lower at the top third. 

As Figure 2 shows, minimizing the period using the eigenfrequency method is a mean of 

achieving a redistribution of strength and ductility along buildings’ height with potential to 

improve the seismic performance. These changes to buildings’ strength suggest that the 

optimized buildings should be capable to withstand larger moment and shear forces in the 

bottom stories. In addition, because of the 21% larger ratio of columns to beam strengths in 

the bottom of the optimized buildings, there is a higher probability that structural failures 

will occur in beams, which is a preferable mode for the system-level stability, potentially 

delaying structural collapse. Nevertheless, member strengths are reduced for stories at the 

top third of the buildings. However, the nature of seismic demands in buildings suggests 

that these reductions will not likely negatively affect the seismic performance. Even with 

the reduction at the top of the building, the designs still satisfy code requirements. 
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Figure 2. Impact of optimization on (a) column moment strength, (b) ratio of column moment to 

beam moment strength and (c) column shear strength over the height of the building. The x-axis 

reports the ratio of the optimized building’s value for that parameter to that of the traditional 

building. The y-axis shows the distribution over height, normalized by the total height of each 

building.  

       

3. Performance-based seismic assessment of traditional and optimized buildings 

In this section, the optimized and traditional buildings are evaluated using PBEE, 

analyzing their collapse risks and earthquake=induced losses. 
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3.1. Methodology 

PBEE is a framework for the probabilistic seismic performance assessment of 

buildings, where uncertainties are explicitly considered and the performance is expressed 

based on possible consequences (Porter 2003; Günay and Mosalam 2013). These 

consequences are evaluated in terms of human losses (death and serious injuries), direct 

economic losses (building repair and/or replacement costs) and indirect losses (repair time 

and unsafe placarding) that result from building damage during an earthquake. The PBEE 

framework has seen several applications related to RC buildings by the authors and others 

(e.g., Haselton et al. 2011; Liel et al. 2011; Ramirez et al. 2012; Tesfamariam et al. 2013; 

Tesfamariam et al. 2014). Here, we apply PBEE through the FEMA P-58 methodology 

(FEMA 2012), which integrates many of the research developments in PBEE over the last 

10 years to provide a standardized set of tools (e.g., fragility functions, population models, 

etc.) necessary to conduct PBEE assessments for different types of buildings subject to 

earthquake-induced ground shaking.  

In this study, the seismic performance of the traditional and the optimized buildings is 

compared in terms of the collapse risk, expected annual loss and the expected number of 

casualties. This constitutes a time-based assessment, wherein evaluate the building 

performance over time, taking into consideration all possible earthquakes and intensities 

and their annual frequencies of exceedance. These calculations are carried out for each 

building considering: i) office/commercial and ii) residential occupancies. The 

performance evaluation is carried out using the results of the nonlinear time history 

analysis at different intensity levels, with the aid of the software SP3, a web tool developed 

by the Haselton-Baker Risk Group (“SP3 | Seismic Performance Prediction Program by 

Haselton Baker Risk Group” 2015), which takes the FEMA P-58  methods, fragility and 

population model library as its foundation.  

Structural analysis models are created for the traditional and optimized buildings to 

gather the information required to perform the PBEE evaluation. These models are created 

in the OpenSees (Mazzoni et al. 2006) software platform and consist of 2D planar frame 

models in each of the orthogonal direction for each building. (A 3D model created for the 

irregular 6 story building is discussed later). Beam and columns are modeled using fiber 
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elements with fibers of rebar, confined and unconfined concrete, with 5 integration points. 

To avoid localization issues, the Constant Fracture Energy Criterion (Coleman and 

Spacone 2001) is used with 180 /c

fG N mm  and with concrete properties 28cf MPa , 

33.6ccf MPa , 0.0019ce   in the modified Kent-Scott-Park model for concrete.
 
Reinforcing 

steel is modeled using a bilinear relation, and 210sE GPa , 420yf MPa , 630uf MPa  and an 

ultimate strain 0.14ue  . The foundation is modeled as rigid, and gravity loads for the model 

are calculated based on the expected loads and using the combination 1.05D + 0.25L. P-

Delta effects are included. Rayleigh damping is applied to the structure with 3% damping 

in the first and third modes. 

Here, full details are presented for the 15 story buildings, while a summary of results is 

presented for the other three case study buildings. 

3.2. Results for the 15 story building 

3.2.1 Pushover results 

First, pushover results are presented in Figure 3, showing a 15% percent of 

improvement in the maximum base shear withstood by the optimized building as compared 

to the traditional building. In addition, the pushover also reveals a post-peak slope of the 

optimized building that is approximately 26% flatter than the traditional structure, 

suggesting the potential for improved behavior under more intense shaking. 
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Figure 3. Pushover comparison of 15 story buildings. 

 

The behavior of the structures during the pushover is further examined by selecting 

five points (shown in Figure 3) and examining the displacement profile in the building at 

each point, as provided in  

Figure 4. The behavior for the traditional building (Figure 4a) is as expected, with the 

largest drift values in the bottom third of the building and a sharp decline in drifts moving 

up in the building. This behavior is accentuated at the higher levels of displacement 

demand, as damage occurs and concentrates in the lower stories. 

 

 

 

 

 

 



98 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The results for the optimized building (Figure 4b) reveal different behavior. To start, 

there are similar levels of drifts for stories 2 to 9 regardless of the level of displacement, 

indicating that the displacement demand and damage is spread more evenly over the height 

of the building compared to the traditional building. Indeed, at all levels of displacement, 8 

out of 15 stories have between 75 and 100% of the maximum story drift, compared to 6 

stories having close to the maximum drift in the traditional building. These observations 

suggest a hypothesis that the optimized building may be capable of withstanding greater 

levels of displacement because the damage is distributed in a greater portion of the 

structure. 

3.2.2 Dynamic structural response 

     The performance evaluation relies on nonlinear dynamic analysis to simulate the 

building response. In this approach, a set of selected ground motions are scaled and applied 

to the structure at multiple stripes of ground shaking intensity intensity. For this purpose, 

the 44 ground motion suite of FEMA P-695 was selected (FEMA 2009) and each ground 

Figure 4. Pushover story drift distribution for the 15 story buildings: (a) traditional building and (b) 

optimized building. Points selected for the drift distribution plots are shown in Figure 3.  

(a) (b) 
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motion was scaled such that its Sa  matched eight different intensity levels at {0.5, 1.0, 1.5, 

2.0, 2.5, 3.0, 4.5, 6.0} DSa . Here, DSa  for the 15 story building models denotes the spectral 

design acceleration at a period T1 = 2.2s, an intermediate value between the fundamental 

period of the traditional building (2.28s) and the optimized building (2.14s). From the 

analysis results, the median value of key structural responses, namely story drifts, floor 

accelerations, and residual drifts, are calculated together with measurements of record-to-

record variability to obtain the probability distributions at each intensity level. These 

engineering demand parameters are chosen because they are good predictors of damage 

and consequences (Ramirez et al. 2012).  

For those ground motions where no collapse is observed, the median of maximum drift 

at each story are calculated for both buildings and plotted in Figure 5. Figure 5 shows that 

the behavior of both buildings is as expected based on the pushover results, with the 

optimized building having a more uniform distribution of drift along its height, while in the 

traditional building, the drift is concentrated more in the lower stories and decreases in the 

uppermost stories. In addition, the story drift in the first three stories for the optimized 

building is notably smaller than the traditional building, which is critical because these 

stories have an important role in the overall structural stability. (Note that for the highest 

intensity level, many of the records caused collapse, so there were fewer data points used 

in the computation and the trends reflect the scarcity of data in this range.) 
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Figure 5. Median of maximum story drift response for the 15 story buildings: (a) traditional 

building, and (b) optimized building. 

 

3.2.3 Collapse fragilities 

A collapse fragility function expresses the probability of building collapse as a function 

of ground motion intensity. Collapse fragilities are typically described by a lognormal 

distribution that is defined by a median value and dispersion. In the dynamic analysis, 

collapse is considered to occur when the story drift exceeds 10% in any story of the 

building (Vamvatsikos and Cornell 2004). The probability of collapse is calculated at each 

intensity level as the ratio of the number of collapsed records divided by the total number 

of records (i.e., 44). The results for both buildings are fitted to a lognormal distribution 

using the maximum likelihood method (Baker 2014) and shown in Figure 6. 

From the collapse fragility results, several conclusions can be drawn. First, for values 

of Sa up to 1.5SaD (i.e., 1.5 times the building design acceleration, which equals the 

maximum considered earthquake (MCE) level), the traditional and optimized buildings 

have similarly low probabilities of collapse. This similarity can be explained by the fact 

that both buildings were designed according to code regulations and they are expected to 

show good performance at these levels. However, as the intensity level increases, the 

optimized building has a significantly smaller probability of collapse than the traditional 
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building. This reduced fragility is due to the more distributed deformations over the height 

of the optimized as compared to the traditional building.  

3.2.4 Loss estimation 

Loss estimation requires the development of a performance model, which constitutes 

an inventory of all the building assets at risk during an earthquake. These include structural 

and nonstructural components. In FEMA P-58, components are classified into fragility 

groups which consist of all components that have similar construction characteristics and 

vulnerability to damage induced by ground motions (FEMA 2012). Those components 

within a fragility group are further categorized into performance groups on the basis of the 

relevant earthquake demands (e.g., story drift, floor acceleration). For instance,  RC beams 

in special moment frames can be classified as a fragility group (Charette and Marshall 

1999) that is associated with demands quantified in terms of the story drift. These beams 

would be further separated into performance groups at each story and in each direction.   

 

Figure 6. Comparison of collapse fragility functions for the 15 story buildings. 

 

The fragility of each group is quantified by defining the median and dispersion of the 

engineering demands necessary to cause different damage and repair states for various 



102 

 

  

types of components. FEMA P-58 (FEMA 2012) compiles these parameters to define over 

700 fragility groups for both structural and nonstructural components. For example, 

fragility curves are provided for RC beams, defining the probability of exceeding particular 

damage states (e.g., spalling of concrete cover, core concrete crushing), as a function of 

story drift.   

In this study, expected annual losses are calculated according to FEMA P-58 using the 

SP3 tool, and considering both structural (i.e., beams and columns) and nonstructural (e.g. 

wall partitions, plumbing, paint, etc.) components. This calculation considers the losses 

possible at each intensity level, and weighting these losses by the probability that shaking 

of that intensity would occur. For the optimized building, the losses are $120,320/year and 

for the traditional building the losses are $122,067/year, which for both buildings 

corresponds to approximately 0.38% of the building replacement cost (per year). These 

values are similar to those reported by Ramirez et al. (2012) for code-conforming RC MRF 

between 0.5% and 1.2%. 

 Although the expected annual losses are similar, the contributions of building 

components to the losses differ between the two buildings. Figure 7 shows that the main 

sources of losses for both buildings are the losses due to collapse, the residual drift 

irreparability trigger (wherein a residual drift of 1% is the median value considered to 

trigger an assessment that the building needs to be torn down and replaced), structural 

components and partition walls. However, in the traditional building, the aggregate effect 

of collapse and residual drift accounts for 35% of the total loss, whereas in the optimized 

building, these factors contribute 27% of the losses. In constrast, losses that result from 

damage of structural components and partition walls represent 57% of the total loss of the 

traditional building, while in the optimized building their contribution to total losses is 

65%. This difference is explained by the more uniform distribution of the interstory drift in 

the optimized building, which results in an overall greater number of components being 

damaged, but, at the same time, a reduced susceptibility to collapse. 
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Figure 7. Deaggregation of losses for the 15 story buildings: (a) traditional building and (b) 

optimized building. 

 

3.2.5 Collapse modes and casualty estimation 

Population models are used as the basis for casualty estimation. They describe the 

number of people inside the building, and also consider the distribution of people within 

the building and its variability during the time of the day and different days of the year. 

Models for common occupancies, e.g. office, residential, etc., are included as part of the 

FEMA P-58 report, building on previous research (e.g., Coburn et al. 1992; Mitrani-Reiser 

2007). 

Casualties depend not only on the building population, but also the expected collapse 

modes of the building, which are obtained here from nonlinear dynamic analysis. For 

records causing collapse, collapse is identified as taking place in those stories having either 

more than 10% drift in that story, or greater than 80% of the maximum observed story drift 

in the building. For the 15 story buildings, results are grouped in three collapse modes: 

those with fewer than 6 collapsed stories, between 6 and 10 stories collapsed, and greater 

than 10 stories. The fraction of the floor area collapsed is calculated based on all records 

collapsing in a particular mode, taking the median fraction of floor area collapsed for that 

record set. The results for the three collapse modes are shown in Table 3. Mode 1 (collapse 

in fewer than six stories) has a significantly higher probability of occurrence for the 

(a) (b) 
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traditional building, while Modes 2 and 3 are more likely to occur for the optimized one. 

Modes 2 and 3 involve failure of larger portions of the structure, as expected based on the 

results from pushover and dynamic analyses. 

Table 5. Collapse modes for the 15 story buildings 

 
Fraction of floor 
area collapsed 

Mode probability 

Mode of collapse Traditional Optimized 

1 (6 or fewer stories 
collapsed) 

0.27 0.50 0.36 

2 (6 to 10 stories 
collapsed) 

0.53 0.43 0.51 

3 (more than 10 
stories collapsed) 

0.80 0.07 0.13 

 

Based on these collapse modes, the expected number of casualties is calculated 

considering two different occupancies: a) the building used as an office and b) the building 

used as a residential multi-unit condominium structure. The results, summarized in Table 

4, provide a clear indication that the optimized building better safeguards human life, as it 

has a significantly lower number of expected casualties for both occupancy cases. 

Moreover, the percent difference is larger for the smaller intensity levels, i.e. those with a 

larger probability of occurrence, and which are more relevant from a practical perspective. 

Table 6. Casualty estimates for the 15 story buildings 

 Office occupancy 
Fatalities 

Residential occupancy 
Fatalities 

IM level Trad Opt Trad Opt 

0.5SaD 0 0 0 0 

1.0 SaD 1 0 1 0 

1.5 SaD 3 2 7 3 

2.0 SaD 10 6 21 13 

2.5 SaD 17 12 37 27 

3.0 SaD 26 20 54 43 

4.5 SaD 42 39 92 85 

6.0 SaD 49 51 106 109 

 

3.3. Results for the 5 and the 10 story buildings 
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The optimization of the 5 story and the 10 story buildings had similar impacts on the 

design to those observed for the 15 story building (Figure 2 and Table 3). As a result, the 

observed seismic responses for the 5 story and the 10 story buildings are similar to that of 

the 15-story building. Figure 8 shows the collapse fragility functions for both buildings, 

which exhibit a similar trend to that shown in Figure 6.  

 

Figure 8. Collapse fragility curves for (a) the 5 story and (b) the 10 story buildings. 

 
The dynamic response of non-collapsed records is presented in Figure 9 for the 5 story 

buildings and in Figure 10 for the 10 story buildings. (The performance is shown for the Y 

direction for the 5 story buildings and in the X direction for the 10 story buildings. 

Although both X and Y directions were considered during the analysis, only one is shown 

to illustrate that the behavior has a similar trend that was observed for the 15 story 

buildings.) In both cases, the optimized buildings have significantly smaller drifts in the 

bottom third of the building than its traditional counterparts, which explains why these 

buildings show better (less fragile) collapse performance. In addition, as observed 

previously, the optimized buildings have a more uniform distribution of drift along their 

height, and bigger drifts in the topmost stories. 
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Figure 9.  Median of maximum story drift response for Y direction in the 5 story buildings: (a) 

traditional building, (b) optimized building. 

 
Figure 10. Median of maximum story drift response for X direction in the 10 story buildings: (a) 

traditional building, (b) optimized building. 

 
As a result of the aforementioned similarities in seismic response to the optimized 15-

story building, the optimized 5 story and 10 story buildings have similar benefits in their 

performance relative to the traditional building of the same height. The authors also 

performed casualty and loss estimates for these buildings (both traditional and optimized), 



107 

 

  

confirming the findings for the 15 story buildings; these results are not presented here for 

reasons of brevity.   

3.4. Results for the irregular building 

       Due to the irregular plan configuration of this building, its seismic performance is 

evaluated in OpenSees by a pushover analysis applied to three dimensional models of the 

buildings in two directions, as presented in Figure 11. Pushover results show that the 

optimized building is capable of withstanding a larger base shear than the traditional 

building in both directions; in addition, it has a better post peak behavior, especially in the 

Y direction, where the post peak slope shows slower deterioration compared to the 

traditional building.  

Although we have not evaluated the performance of this building in the complete 

PBEE framework, the improvement in pushover performance is similar to that seen in 

regular buildings (Figure 2) so we expect the building to show similar improvements in 

collapse capacity, casualties and losses as observed in the comparison of the traditional and 

optimized regular buildings.  This example shows that the eigenfrequency optimization 

approach brings benefits to irregular buildings, even when its frames are optimized 

independently and only first fundamental eigenfrequency is considered in the optimization. 
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Figure 11. Pushover results for a C-shaped irregular building in: (a) X Direction, and (b) Y 

Direction. 

 

4. Conclusions and perspectives 

This paper evaluates a seismic design procedure for RC MRF which is based on 

minimization of the first-mode period (maximizes the eigenfrequency) subject to material 

constraints and seismic code requirements. This article applied PBEE to four buildings to 

investigate the causes and extent of seismic improvements that result from applying the 

eigenfrequency optimization method introduced in Arroyo and Gutiérrez (2016). The 

results reveal a number of advantages of the optimized designed buildings compared to the 

traditional buildings: 

(1) This design procedure achieves reductions of building periods of about 6% by 

means of redistributing material along building height. This material redistribution 

in turn redistributes strength in a manner that is more appropriate to withstand the 

seismic forces, hence optimized buildings have improved seismic performance. In 

particular, for the bottom third of the buildings, the column-to-beam moment 

strength ratios are increased on average by 21%, the moment and shear strength are 

increased by 32% and 23% for columns, and the moment capacity of the beams is 

increased by 10%. For the top third of the buildings, the column moment and shear 

strength is reduced by 22% and 16% respectively, while the column-to-beam 

moment strength ratio is decreased by 15% and the beams’ moment strength is 

decreased by 10%. 

(2) Buildings subject to the design procedure experience a more uniform drift 

distribution along its height, compared to those of the traditional building, with 

important reductions in the bottom stories and larger drifts in the top stories.  

(3) As a consequence, the optimized buildings are less susceptible to collapse. As a 

result, the expected number of fatalities is reduced from 7 to 3 and from 21 to 13 at 

intensity levels of 1.5 and 2.0 times the design level.  However, if collapse occurs, 
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there is a greater probability that it will happen in a larger portion of the building 

for the optimized building.  

(4) The method produces buildings whose expected annual losses associated with 

earthquake-induced damage and associated repairs are 1.4% smaller than those for 

traditional buildings, i.e. almost identical.  Thus, the aforementioned seismic 

performance is achieved while maintaining the same material quantities 

(construction costs) and similar levels of annual seismic expected losses. However, 

the components contributing to the loss differ. In the optimized building. the 

contribution of structural components and partition walls is 65%, and annual losses 

associated to collapse and residual drift have a 27% participation. In contrast, for 

the traditional building these participations are 57% and 35%, respectively. 

These results show that a design approach based on period minimization can produce 

important impacts on seismic design and performance by increasing stiffness – and 

strength – at the lower stories, particularly in columns, and distributing damage more 

uniformly over the height of the building. These benefits are achieved even though the 

differences in period between the traditional and optimized designs are modest.  
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