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We construct an effective action for QCD by expanding the quark determinant in powers of the

chemical potential at finite temperature in the case of massless quarks. To cut the infinite series, we adopt

the Weinberg power counting criteria. We compute the minimal effective action (� p4), expanding in the

external momentum, which implies the use of the hard thermal loop approximation. Our main result is a

gauge invariant expression for the phase � of the functional determinant in QCD and recovers dimensional

reduction in the high-temperature limit. We compute, analytically, h�2i in the range of p � 2�T,

including perturbative and nonperturbative contributions, the latter treated within the mean field

approximation. Implications for lattice simulations are briefly discussed.
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I. INTRODUCTION

There has been an increasing interest in the last few
years in the sign problem or phase problem in QCD [1]. For
a finite chemical potential, �, the fermion determinant
matrix is non-positive definite, so it is not possible to
perform Monte Carlo simulations in the usual fashion
[2,3]. Nevertheless, the Glasgow method [4] and reweight-
ing techniques [5] have provided great advances in the
description of phase transitions on the lattice, considering
a set of parameters near the transition line.

There is special interest in the region of high tempera-
ture and low chemical potential, since it corresponds to the
sector of the phase diagram of strong interactions probed
by high-energy heavy-ion collision experiments [6]. In this
regime, it is possible to expand the fermion determinant in
powers of �=�, where � is some mass scale related to the
temperature, �� T [7–11]. In association with the ones
mentioned previously, this technique is very convenient
and successful to describe this region. Besides, several
other complementary approaches were proposed with the
intent to shed some light on the sign problem [12–17].

In this paper, we investigate the small chemical potential
sector of the QCD phase diagram. In particular, we present
a scheme that is valid for a wide range of temperatures in
the soft region. Methods that are based on an expansion in
� always have to resort to approximations to compute the
coefficients of the series. For this purpose, there are nu-
merical approximation techniques that yield good results
but do not allow for a deeper analytic study, the most
frequently used being the random noise method (see,
e.g., Ref. [18]). Analytic treatments are usually restricted
to very high temperatures. For instance, the dimensional
reduction effective action [19–24] is valid for T * 2Tc,
where Tc is the critical temperature. A complete study of
the pressure within perturbative QCD for all values of the
temperature and chemical potential can be found in
Ref. [25] where the authors make use of the hard thermal

loop, hard dense loop, and dimensional reduction
approximations.
Here, we start from a different perspective: instead of

expanding all quantities and desired observables in powers
of �=�, the idea is to keep the relevant terms in the
effective action according to the Weinberg power counting
criteria [26]. In what follows, we construct an effective
action for QCD by expanding the quark determinant in
powers of the chemical potential at finite temperature in the
case of massless quarks. We compute the minimal effective
action expanding in the external momentum up to order
�p4 in power counting. In practice, the momentum ex-
pansion performed here is equivalent to the hard thermal
loop (HTL) approximation [27–29]. Our main result is a
gauge invariant expression for the phase angle �ð�Þ of the
functional determinant in QCD, which can be written as

detMð�Þ ¼ j detMð�Þjei�ð�Þ. An interesting analysis of the
angle � has been recently performed using the random
matrix framework [16,17].
As a first test of our method, we recover the dimensional

reduction approximation in the limit of high temperature.
As a second step, we compute analytically h�2i in the range
of p � 2�T, keeping nonzero mode contributions in the
effective action. In this calculation, we include perturbative
and nonperturbative contributions, treating the latter in the
mean field approximation. Implications for lattice simula-
tions are also discussed.
This paper is organized as follows. In Sec. II, we develop

the general expansion for the fermionic determinant,
present the Feynman rules, and the relevant diagrams,
settling the framework. In Sec. III, we discuss the power
counting hierarchy in order to be able to cut the series and
compute the minimal effective action. As a first test of our
framework, we also obtain the result again from dimen-
sional reduction in the limit of high temperature, including
the nonzero mode terms. In Sec. IV, we present the calcu-
lation of h�2i in the range of p � 2�T. Section V contains
our conclusions.
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II. THE EXPANSION

The generating functional for QCDwith massless quarks
at finite chemical potential is defined, in euclidean space,
as

Z ¼
Z

DG detð�i 6Dþ i��4Þe�SYM½G�; (1)

where G are the gluon fields, also present in the covariant
derivative D� ¼ @� � iG�, and SYM is the Yang-Mills

(YM) action. We can expand the fermion determinant in
powers of the chemical potential assuming that �<��
T:

detð�i 6Dþ i��4Þ

¼ detð�i 6DÞ exp
�
�Nf

X1
s¼1

ð�i�Þs
s

Z
�
dy1 � � �dys

� Tr�4Sðy2; y1Þ�4Sðy3; y2Þ � � ��4Sðy1; ynÞ
�
; (2)

where
R
� dy � R�

0 dy4
R
d3y and Sðyb; yaÞ is the dressed

fermion propagator, which can be expressed as a series in
powers of the gauge field and the free fermion propagator
using the self-consistent relation

Sðx; yÞ ¼ SFðx� yÞ �
Z
�
dzSðx; zÞG6 ðzÞSFðz� yÞ: (3)

The expansion, then, will contribute to additional terms

in the effective action Seff ¼ SYM þP
n;sS

ðn;sÞ. The new

terms, expressed in momentum space, are of the form

Sðn;sÞ ¼ �s
ZX

dp1 � � �dpnð2�Þ4�ðp1 þ � � � þ pnÞ

� �ðs;nÞ
�1����nðfpigÞ tr ~G�1

ðp1Þ � � � ~G�n
ðpnÞ; (4)

where the last integral denotes also the sum over bosonic

Matsubara frequencies
RP
dp � T

R d3p
ð2�Þ3

P
p4¼2np�T

, and

2�T�ðp4Þ ¼ �np;0. In this way, one obtains a positive-

definite fermion determinant, and the contribution from
the chemical potential will be part of an effective gluon
action.

The Feynman rules in momentum space for calculating
the different effective vertices are almost the same as the
usual ones. The difference is that all of the operators
between chemical potential insertions must be transposed
in order. Figure 1 shows a general diagram with chemical
potential and gluon insertions. To construct a diagram for a
vertex with n gluons and s chemical potential insertions,
one puts �tai��i

for any gluon insertion, �i�4 for any

chemical potential insertion, and divides by the symmetry
factor s.

Between chemical potential insertions, the order of the
operator must be transposed considering momentum con-
servation. In a piece of the effective vertex shown in Fig. 2,
the integrand must be written as

ð�i�4Þ½~SFðkÞð�ta1��1
Þ~SFðkþ p1Þ � � � ð�tar��r

Þ
� ~SFðkþ p1 þ � � � þ prÞ�ðtÞð�i�4Þ; (5)

where the exponent (t) in the brackets is a reminder
to transpose the order of the operators:

½O1O2 � � �Or�1Or�ðtÞOrOr�1 � � �O2O1.
Finally, one takes the trace over gamma matrices and

color group representation, integrating over internal fermi-
onic momentum (odd Matsubara frequencies). The sum of

all diagrams will produce the effective vertices �ðn;sÞ,
which will be invariant under any cyclic change in the
set of indices �i, ai, pi (or xi in the case of configuration
space).

III. THE MINIMAL EFFECTIVE ACTION

Now, we need a criteria to cut the series. For low-energy
effective theories, one can consider the Weinberg power
counting [26], which uses the argument that all mass
parameters (external momentum, chemical potential, and
gluon fields) must be less than a certain scale that is
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FIG. 1 (color online). General diagram for the construction of
the effective vertices. The small circles correspond to chemical
potential insertions.

FIG. 2 (color online). A set of operators between two chemical
potential insertions.
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proportional to the temperature. This approach has pro-
vided a very successful description within chiral effective
models of QCD. Although this is not exactly the case here,
it is reasonable that for low-energy processes at high
temperature typical values of the operators mentioned
above, as well as the chemical potential, can be considered
to be in a region of the same order or smaller than the scale.
Then, assuming ��G� p, and expanding the effective
Lagrangean in soft modes, we can cut it at a given order in
powers of the momentum scale.

In the case of Yang-Mills theories, this soft-mode ex-
pansion for high temperatures corresponds to the HTL
approximation. The minimal action must be of order
ðpÞ4. So, applying the power counting criteria, the minimal

effective action is given by Smin
eff ¼ SYM þ Sð0;2Þ þ Sð0;4Þ þ

½Sð2;2Þ þ Sð3;1Þ�OðpÞ0 , where the indices (n; s) are defined in

Eq. (4), and the last two terms are expanded in momentum
up to zeroth order which leads to the appearance of func-
tions of jpj=p4.

The whole series of gauge fields is gauge invariant at

each order in the expansion in �, i.e.
P

nS
ðn;sÞ is gauge

invariant for all values of s as can be seen directly from
Eq. (2). Since the terms in the sum are traces containing
dressed propagators, which are gauge invariant, every term
in the sum is gauge invariant. Moreover, the minimal

effective vertices that we need satisfy Ward identities of
the form

p��
ð2;2Þ
�� ðpÞ ¼ 0; (6)

p��
ð3;1Þ
���ðp; q; rÞ ¼ �ð2;1Þ

�� ðrÞ � �ð2;1Þ
�� ðqÞ; (7)

and analogous relations obtained by changing cyclical
indices and arguments. Equation (7) vanishes, since

�ð2;1Þ ¼ 0. As it is well known, HTL preserves the Ward
identities.
The nonvanishing diagrams for the vacuum contribu-

tions �ðs;0Þ are the known vacuum corrections to the ther-
modynamic potential

�ð0;2Þ ¼ �NcNf

T2

6
; �ð0;4Þ ¼ �NcNf

1

12�2
: (8)

For s > 4, all contributions vanish, as it was demonstrated
in Ref. [30]. The next nonvanishing term has the form of
the polarization tensor in the HTL approximation

�ð2;2Þ
�� ðpÞ ¼ Nf

2�2

Z d�

4�

�
ip4

k̂ � p k̂�k̂� þ ��4��4

�
; (9)

with the lightlike four-vector k̂ ¼ ðk̂; iÞ. Finally, the vertex
components which correspond to i� are

�ð3;1Þ
��	ðp; q; rÞ ¼ iNf

6�2

Z d�

4�

�
2��4��4�	4 � p4

k̂ � p ½k̂���	 � 6k̂�k̂�k̂	 þ 2iðk̂�k̂��	4 þ k̂�k̂	��4 þ k̂	k̂���4Þ�

� q4

k̂ � q k̂��	� � r4

k̂ � r k̂	��� þ 2i

�
p4

k̂ � p
�
2
k̂�k̂�k̂�

þ q4

k̂ � qk̂ � p ½2iq4k̂�k̂�k̂	 þ ðq�k̂	 � r	k̂�Þk̂� þ ðq� � r�Þk̂�k̂	�

þ r4

k̂ � rk̂ � p ½2ir4k̂�k̂�k̂	 þ ðr	k̂� � q�k̂	Þk̂� þ ðr� � q�Þk̂�k̂	�

þ
�
q4ðq2 � r2Þ
k̂ � qðk̂ � pÞ2 �

q4q
2

ðk̂ � qÞ2k̂ � pþ r4ðr2 � q2Þ
k̂ � rðk̂ � pÞ2 �

r4r
2

ðk̂ � rÞ2k̂ � p
�
k̂�k̂�k̂	

�
: (10)

The dimensional reduction approximation can be ob-
tained directly from the last expressions of the effective
vertices by simply considering the case in which jpj �
2�T. In order to expand in powers of the external momen-
tum, we have to separate the zero mode from the other
modes in the gluon fields G� ¼ A� þ B�, with

A�ðxÞ ¼ T
Z d3p

ð2�Þ3 e
ip�x ~G�ðp; 0Þ; (11)

B�ðxÞ ¼ T
X
p4�0

Z d3p

ð2�Þ3 e
ip�x ~G�ðpÞ; (12)

A� being the field corresponding to the zero mode. The
lowest order contribution in the expansion (p ! 0) is given

by

Sð2;2Þ ¼ �2Nf

2�2

Z
�
dx tr

�
A2
4 �

1

3
B2

�
; (13)

Sð3;1Þ ¼ i�Nf

3�2

Z
�
dx tr½A3

4 þ A4B
2
4�: (14)

If we set B ¼ 0, we recover the dimensional reduction
effective action at tree level [23,24]. The usual effective
action for the high-temperature regime is constructed
through loops integrating the B fields. However, this is
done perturbatively, and this is not the regime in which
we are interested. The fact of including B as a nonpertur-
bative field (except for the power counting) in principle
will enhance the range of validity in temperature to values
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lower than in the case of just considering an infinite tem-
perature expansion. In this sense, our framework goes
beyond dimensional reduction and can probe temperatures
closer to Tc.

IV. h�2i AT HIGH TEMPERATURE

The phase angle � of the complex functional determi-
nant is a crucial quantity for lattice simulations in QCD.
The knowledge of � allows for the separation of the func-
tional integral into two different regions: j�j + �=2.
Nevertheless this is not a simple task, since it is not
restricted to values of ��< �< � but seems to increase
with the volume [31]. The calculation of the average phase

he2i�i ¼
�
detð�i 6Dþ i��4Þ
detð�i 6Dþ i��4Þy

�
(15)

gives a measure of how problematic could be the phase in
lattice simulations. As this quantity must vanish in the
thermodynamic limit, it should be evaluated in a finite
volume (otherwise the average phase above vanishes as
soon as � is nonzero). The random matrix aproximation
[16] yields a vanishing result for �>m�=2. One can use
our effective expression for the phase to compute the
average phase factor in Eq. (15). If one expands the ex-
ponential in powers of the angle, the relevant term will be
�h�2i, since the average of the phase must be real. In
particular, the determination of h�2iP, the average of the
angle as a function of the plaquette, is an important ingre-
dient in order to localize the critical line in the
temperature-number density phase diagram of QCD [31].

In our framework, we have Sð3;1Þ ¼ i�. Writing the fields
in the form

Aa
�ðxÞ ¼ T

Z �

0
dx4G

a
�ðxÞ; (16)

Ba
�ðxÞ ¼ Ga

�ðxÞ � T
Z �

0
dx4G

a
�ðxÞ; (17)

we can use Eq. (14) to express � in the high-temperature
limit as

� ¼ �Nf

12�2
dabcT

Z
V
d3x

Z �

0
dx4dy4G

a

ðyÞGb

�ðxÞGc
�ðxÞ;

(18)

where x ¼ ðx; x4Þ, y ¼ ðx; y4Þ and dabc are real and totally
symmetric as usual. The expectation value of � vanishes,
so we compute the next power, which can be expressed in
terms of two-point correlation functions as

h�2i � �2T2N2
fðN2

c � 4Þ
ð12�2Þ2NcðN2

c � 1Þ2
Z �

0
dx4dx

0
4dy4dy

0
4

�
Z
V
d3xd3x0½2hGa

4ðyÞGa
4ðy0ÞihGa

4ðxÞGa
4ðx0Þi2

þ 4hGa
4ðyÞGa

4ðx0ÞihGa
4ðxÞGa

4ðy0ÞihGa
4ðxÞGa

4ðx0Þi�;
(19)

where the expression is not exact since we allow for non-
perturbative contributions, and we used hGaGbi � �ab.
If we separate the gluon field in a perturbative and a

nonperturbative contribution, G ¼ Gp þGnp, with

hGpGnpi ¼ 0, there will be contributions to h�2i coming

from a purely perturbative term, a purely nonperturbative
term, and the crossed terms. The basic building blocks are
the two-point functions for the field strengths, which we
compute in the sequel.
For the perturbative case, we start with the HTL effec-

tive Lagrangian

Lg ¼ 1

4g2
ðGa

��Þ2 þ 1

4g2
ð@�Ga

�Þ2

þ m2

4g2
Ga

�


Z d�

4�

k̂
k̂�

ðik̂ �DÞ2 G
a
��; (20)

where m is the standard HTL effective mass [32]

m2 ¼ g2

6

�
T2ðNf þ 2NcÞ þ

3Nf�
2

�2

�
: (21)

Then, the fourth component of the gluon two-point func-
tion can be written, in the limit p � 2�T, as

hGa
4ðxÞpGb

4ðx0Þpi ¼ �abg2T
Z d3p

ð2�Þ3 e
ip�ðx�x0Þ

�
�

1

p2 þm2
þ X

n�0

ei!nðx4�x0
4
Þ

!2
n þ p2

�
; (22)

where !n ¼ 2n�T is the bosonic Matsubara frequency.
For the nonperturbative case, it is convenient to use the

Schwinger gauge, also known as fixed point or coordinate
gauge [33], x �G ¼ 0. Then, the gauge field can be ex-
pressed in terms of the field strength tensor:

Ga
�ðxÞ ¼

Z 1

0
dssGa

�
ðsxÞx
: (23)

If we approximate the two-point function for the field
strength by its mean field value, i.e.

hGa
4
ðxÞGa

4
ðyÞi � hGa
4
ð0ÞGa

4
ð0Þi � �hE2i; (24)

where Ea
i is the color electric field, we find
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hGa
4ðxÞnpGa

4ðx0Þnpi � � 1

12
x � x0hE2i: (25)

Using the results above, the computation of h�2i is long
but straightforward. Collecting all terms, and assuming a
large volume, we find

h�2i � �2N2
fðN2

c � 4Þ
ð12�2Þ2Nc

�
�hE2i2g2

8ðN2
c � 1ÞT

�
R7

m2
þ R5

m4

�

� 3hE2ig4
32�

R5

5m
þ Fð�m;��MSÞTg6R3

�
; (26)

where R is the radius of the system in spherical coordi-
nates, �MS is the energy scale in the modified minimal

subtraction (MS) scheme, and F is an integral that can be
computed numerically.

The last term is purely perturbative; whereas, the other
ones come from the mixed contribution. The purely non-
perturbative contribution vanishes identically in the mean
field approximation. Notice that, in the thermodynamic
limit, the dominant contribution is the one proportional

to R7 � V7=3, so that h�2i grows faster than quadratically
with the volume, the other contributions being essentially
irrelevant.

V. CONCLUSIONS AND OUTLOOK

We presented a well-defined and systematic procedure
for computing the fermionic determinant in QCD at finite
temperature and chemical potential. In the framework
defined by the power counting method described above,
we calculated exactly the minimal corrections to the effec-

tive action. This procedure can be systematically extended
to higher orders.
We also computed explicitly h�2i in the high-

temperature limit and analyzed its volume dependence.
In this limit, the dominant contribution comes naturally
from the zero Matsubara mode, so that dimensional reduc-
tion is a good approximation. Although we do not present
results beyond the mean field approximation for the gluon
condensate, we expect that in that case, a new length scale
associated with the nonuniformity of the condensate will
compete with the scale R but should not modify the picture
appreciably in the limit considered in this work.
In this paper, we proposed a new way of approaching the

problem of determining the phase of the complex func-
tional determinant in QCD at small chemical potential and
relatively large temperatures, an important issue for lattice
QCD thermodynamics. Our framework clearly contains,
and goes beyond, the dimensional reduction approxima-
tion, being valid for temperatures closer to Tc. We believe
that this analysis, complemented by previous existing re-
sults, might shed some light onto the phase transition in the
region of high temperature and low density presumably
probed by relativistic heavy-ion experiments, and perhaps
indicate a simple way to handle the sign problem for
temperature values closer to the critical temperature.
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