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R E S U M E N

Detectar la tenue luminosidad en las Galaxias de Bajo Brillo Superfi-
cial (LSBGs) presenta desafíos significativos, principalmente debido
al brillo del cielo y la contaminación de fuentes más brillantes al sep-
arar las LSBGs del fondo. A pesar de estos desafíos, el estudio de las
LSBGs tiene un gran potencial para avanzar en nuestra comprensión
de diversos campos, incluyendo la cosmología, formación de galax-
ias, evolución y las características de los cúmulos de galaxias. El obje-
tivo principal de este estudio es desarrollar un código automatizado
capaz de detectar eficazmente las LSBGs, incluidas aquellas más di-
fusas que solo son detectables mediante búsqueda visual. El enfoque
inicial se centra en el cúmulo de galaxias Fornax, con la posibilidad
de extenderse a otros cúmulos de galaxias. El propósito es contribuir
significativamente al avance de la investigación en LSBGs y sus impli-
caciones para estudios astronómicos más amplios. Hemos creado un
código automatizado que detecta con éxito las LSBGs en imágenes
digitales a una velocidad de procesamiento razonable. Hemos incor-
porado un algoritmo innovador para separar las LSBGs del fondo
utilizando un núcleo de fondo dinámico y un umbral aplicado a seg-
mentos de imagen para lograr esto. También hemos implementado
un filtro bilateral que identifica las LSBGs más difusas y preserva
la morfología, asegurando una identificación y clasificación precisas.
Además, hemos desarrollado y entrenado un clasificador de Máquina
de Vectores de Soporte de una Clase (SVM) utilizando una muestra
de referencia de 143 LSBGs, resultando en un clasificador con una
baja tasa de falsos positivos. El código implementado ha detectado
con éxito las LSBGs, demostrando su capacidad para abordar los de-
safíos asociados con la identificación de la tenue luminosidad en estas
galaxias, incluso en presencia de fuentes más brillantes. El algoritmo
integrado ha mejorado significativamente la precisión y eficiencia del
proceso de detección, permitiendo la identificación de un número
sustancial de candidatos a LSBG. Específicamente, en el Cúmulo For-
nax, nuestro algoritmo identificó con éxito 31,295 candidatos a LSBG,
como se documenta en el catálogo integral disponible en el Reposito-
rio de GitHub: https://github.com/Alevhf/LSB_candidates/blob/
main/Catalog_result.csv#L19304.

A B S T R A C T

Detecting the faint luminosity in Low Surface Brightness Galaxies (LS-
BGs) poses significant challenges, primarily due to sky brightness and
contamination from brighter sources while separating LSBGs from
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the background. Despite these challenges, the study of LSBGs holds
great potential to advance our understanding of various fields, includ-
ing cosmology, galaxy formation, evolution, and the characteristics of
galaxy clusters. The primary goal of this study is to develop an au-
tomated code capable of effectively detecting LSBGs, including the
more diffuse LSBGs that are only detectable through visual search.
The initial focus is on the Fornax cluster of galaxies, with the pos-
sibility of extension to other galaxy clusters. The purpose is to sig-
nificantly contribute to advancing research in LSBGs and its implica-
tions for broader astronomical studies. We have created an automated
code that successfully detects LSBGs in digital images at a reasonable
processing speed. We have incorporated an innovative algorithm to
separate LSBGs from the background using a dynamic background
kernel and threshold applied to image segments to achieve this. We
have also implemented a bilateral filter that identifies the most dif-
fuse LSBGs and preserves morphology, ensuring precise identifica-
tion and classification. Additionally, we have developed and trained
a One-Class Support Vector Machine (SVM) classifier using a gold
sample of 143 LSBGs, resulting in a classifier with a low rate of
false positives. The implemented code has successfully detected LS-
BGs, showcasing its ability to address the challenges associated with
identifying the faint luminosity in these galaxies, even in the pres-
ence of brighter sources. The integrated algorithm has significantly
improved the accuracy and efficiency of the detection process, allow-
ing for the identification of a substantial number of LSBG candidates.
Specifically, in the Fornax Cluster, our algorithm successfully iden-
tified 31,295 LSBG candidates, as documented in the comprehensive
catalog available at GitHub Repository: https://github.com/Alevhf/
LSB_candidates/blob/main/Catalog_result.csv#L19304.
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1
I N T R O D U C T I O N

The study of the faintest objects in the universe goes hand in hand
with advances in observational techniques and the invention of more
powerful telescopes. Low surface brightness galaxies (LSBGs) are a
clear example of this. One of the most interesting of these cases is
Malin 1 [6, 2, 4]. The galaxy Malin 1 is a large spiral galaxy, fortu-
itously observed due to the presence of a suitable nucleus for opti-
cal spectroscopy, allowing the determination of its redshift and an
approximate distance of about 10 kpc. However, as noted by [6], if
Malin 1 were embedded in the Virgo cluster, the bulge component
would manifest as a prominent elliptical at V = 12 with an effec-
tive radius of 1 ′′. Additionally, its low-surface-brightness (LSB) disk
would be spread across a degree of the sky, and any individual H I
regions might appear as unresolved, faint, blue objects. By enhancing
the power of telescopes and, consequently, the resolution of astronom-
ical images, it was confirmed not only that Malin 1 is a giant spiral
galaxy with a low-surface-brightness disk but also that there are more
low-surface-brightness galaxies similar to Malin 1 [27, 2, 4]. Thanks
to the resolution of today’s telescopes, more diffuse objects can be
detected in rich, high-density environments. [38]. Many dwarf, LSB-
type galaxies have been found in the Virgo Cluster, Coma Group, and
Fornax Cluster. The finding of more LSBGs allowed the questioning
of the knowledge of galaxy evolution and cosmological theories [27].

LSBGs, as the name implies, encompass a group of galaxies inher-
ently characterized by their low luminosity. A galaxy qualifies as an
LSBG if its surface brightness registers above 25 mag/arcsec2 in the
B-band. While the threshold value for this classification has not been
universally standardized, it typically falls within the range of 22.0
to 25.0 mag/arcsec2 in the scientific literature. Notably, the low sur-
face brightness of these galaxies suggests that they evolve at a no-
tably slower pace and may undergo star formation outside the typi-
cal molecular cloud environments. LSBGs are also enveloped by dark
matter halos of lower density, which are more extensive than those
surrounding high surface brightness (HSB) galaxies. In contrast to
HSB disks, LSBG disks exhibit a substantial dominance of dark mat-
ter across all radii, accompanied by a systematic increase in the M/L
(mass-to-light) ratio as central surface brightness decreases [5].

The distinctive feature of LSBGs that renders their identification
and mass detection challenging is their surface brightness, which of-
ten dims to levels fainter than the natural night sky brightness itself
[5, 16, 23, 22, 72]. Notably, extremely low surface brightness dwarfs
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even surpass classical Ultra Diffuse Galaxies (UDGs) in terms of faint-
ness [19, 38]. LSBGs encompass many galaxy morphologies, includ-
ing spiral, elliptical, dwarf, and irregular galaxies [69]. It is also note-
worthy that LSBGs are found in a diverse array of physical environ-
ments, ranging from being satellite galaxies to residing in densely
populated galaxy clusters [46, 49, 13]. Among the well-documented
clusters hosting LSBGs are the Virgo, Coma, Perseus, and Fornax clus-
ters of galaxies [27, 36, 38].

Research conducted by the Complex Stellar Systems Group1, such
as [38, 41], has demonstrated that dwarf galaxies classified as LSBGs
exhibit a size-luminosity relation that allows for the constraint of spe-
cific characteristics. These characteristics facilitate the identification
of LSBGs as a distinct group from other faint celestial sources, such
as bright dwarf galaxies and ultra-compact objects. In addition to the
challenges associated with detecting LSBGs, there are complexities
in modeling LSBG profiles and parameters. The faintest LSB galaxies
exhibit a porous structure, and their surface brightness is scarcely dis-
tinguishable from the background intrinsic luminosity [26, 72]. These
characteristics render the fitting of profiles challenging, often leading
to significant errors. Moreover, determining the maximum extent of
LSBGs is hindered by their low luminosity, making it, in some cases,
impossible to derive reliable adjustable parameters for the faintest LS-
BGs. As a result, the identification of LSBGs is frequently carried out
manually, relying on visual detection. This manual approach tends to
result in the identification of a limited number of galaxies compared
to what could be found in extensive databases of sky observations, es-
pecially when the search is automated. Additionally, manually iden-
tified LSBs predominantly consist of dwarf galaxies, overlooking the
ultra-diffuse LSBs, which are detected incidentally to a large extent.
This underscores the need for a comprehensive database for study-
ing low surface brightness galaxies (LSBGs). This approach is imper-
ative to gain a better understanding of the characteristics of LSBGs
without introducing selection biases, encompassing both dwarf and
ultra-diffuse galaxies on an equitable basis.

LSBGs play a pivotal role in refining cosmological theories. Accord-
ing to the conventional Cold Dark Matter (CDM) model, galaxies
form due to initial Gaussian density fluctuations in the early uni-
verse, evolving linearly, collapsing, and eventually virilizing into the
galaxies we observe today. These simulations and models make pre-
dictions regarding the local galaxy population. However, CDM mod-
els predict more galaxies than have been detected or observed [33].
The discrepancy between predicted and observed galaxies has led to
the proposal of alternative theories. In this context, LSBGs are con-
sidered potential reservoirs of baryonic matter within the universe
[5, 13, 33]. The study of LSBGs can contribute valuable insights into

1 https://www.astro.puc.cl/~tpuzia/PUC/Research.html
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the broader galaxy population, the three-dimensional distribution of
galaxies, and the quantity of baryonic matter residing in galactic po-
tentials.

LSBGs contribute to refining cosmological models through their
impact on the Luminosity Function (LF). The optical luminosity func-
tion of galaxies holds a fundamental role in cosmology [49]. Pre-
cise knowledge of the luminosity function enables the estimation of
the universe’s average luminosity density and predictions regarding
the redshift distribution of objects across various magnitude inter-
vals. Moreover, the shape of the luminosity function serves as a test-
ing ground for galaxy formation theories [49]. LSBGs significantly
influence the faint tail of the galaxy luminosity function, allowing
for tighter constraints to be imposed on models of galaxy formation
[38, 49]. Nevertheless, it remains uncertain whether extrapolating the
luminosity function to fainter magnitudes is valid, as the luminosity
density drops significantly below MB = −17 [38].

Despite the challenges and objectives of this research, there is an
ongoing effort to develop an automated method for identifying LS-
BGs, particularly in large digital sky survey images. The aim is to
create an automatic process that minimizes or eliminates the need
for user intervention in the identification process. This entails both
detection and classification methods. To achieve this, non-parametric
variables are employed to describe and train machine learning algo-
rithms for classification. These parameters have been adapted from
crystal parameterizations in microscopy observations [38].

1.1 fornax cluster image selection

To develop a search algorithm for Low Surface Brightness Galaxies
(LSBGs), it is essential to have access to a laboratory with identified
LSBGs for testing. In our research, we developed the search algorithm
using data from the Fornax cluster of galaxies. The Fornax Cluster is
the nearest galaxy over-density in the Southern Hemisphere, making
it the brightest galaxy cluster in this region. It boasts twice the central
galaxy density with a lower mass of approximately [(7±2)×1013M�].
Additionally, the fraction of early-type galaxies in the Fornax Clus-
ter is significantly higher than in the Virgo Cluster, as reported by
[38]. Recent research, including studies by [36], [38], and [41], has
identified faint over-densities and potential LSBGs within the Fornax
galaxy cluster, from which [41] has compiled a diverse LSBGs (nucle-
ated, non-nucleated, and diffuse galaxies). This makes Fornax Cluster
an excellent candidate for the search and discovery of LSBGs, as un-
derscored in [41].

The Next Generation Fornax Survey (NGFS) III, as described in [19]
and [41], serves as the primary survey dataset utilized in the develop-
ment of our LSBGs search algorithm. The NGFS is a comprehensive
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multi-wavelength survey spanning the central 30 square degrees of
the Fornax cluster of galaxies. These observations were conducted
using the 4-meter Blanco telescope at Cerro Tololo Interamerican Ob-
servatory (CTIO). The NGFS dataset comprises seven contiguous mo-
saics, with the central mosaic (tiles 1) corresponding to the core of
the Fornax cluster, covering an area of 3 central square degrees. The
survey area extends from the cluster core to a radius of 350 kpc, with
the galaxy NGC 1399 serving as the cluster center. This extension en-
compasses 25% of the virial radius of the cluster, equivalent to 100%
within 1.4 Mpc. The remaining regions outside the 350 kpc radius
are called mosaics or tiles 2-19, detailed in [41]. We tested our code
across the entirety of Fornax, encompassing both the central region
of Fornax (tile 1) and the remaining 19 tiles. The catalog of LSBGs
used for calibrating the detection code to identify LSBG candidates
consists of data from the central region of Fornax and 19 tiles. This
catalog comprises 590 LSB dwarf galaxies presumably found via vi-
sual inspection, as documented in [19] and [41]. Our detection algo-
rithm was exclusively applied to images in the g-band for DECam.
The choice to use only the g-band was due to its lower contamination
of background or sky noise compared to bluer bands. The raw im-
ages underwent processing using the DECam Community Pipeline
(v2.5.0) [57], which included bias calibration, crosstalk correction, lin-
earity correction, flat-fielding, and gain calibration. For more detailed
information on image calibration procedures, please refer to [19], [38],
and [41].

1.2 background on the detection of lsb type galaxies

The evolution of Low Surface Brightness Galaxies (LSBGs) detection
can be divided into two distinct eras of observational techniques. The
Photographic Plate Era, characterized by identifying LSBGs on pho-
tographic plates, was influenced by limitations in early observational
tools, leading to selection biases and assumptions about the nature
of these galaxies. During this period, the groundwork for incorporat-
ing automation into LSBG searches was laid, setting the stage for ad-
vancements in the Digital Imaging Era through Charge-Coupled De-
vices (CCD). The transition to digital images brought improvements
and introduced challenges in detecting diffuse LSBGs. It also led to
the development of automated source detection algorithms for digi-
tal images, such as SEXTRACTOR, for the identification process. De-
spite progress, visual inspection remained crucial in modern LSBG
surveys, particularly in the search for extremely diffuse LSBs. This
chapter navigates through these historical milestones, documenting
the evolution from manual techniques in the Photographic Plate Era
to semi-automated approaches in the CCD Imaging Era, and explores
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the promising avenue of Machine Learning for enhanced automation
in LSBG detection.

1.2.1 Photographic plate era

The first detections and characterizations of LSBGs, known as Ma-
lin objects at the time, were documented in several articles [5, 26, 27].
However, it’s important to note that the characteristics of these LSBGs,
as revealed in the initial survey [5, 24, 27, 65], were influenced by the
observational techniques available during that era. Consequently, the
first detections of LSBGs were susceptible to selection bias [16]. This
selection bias resulted in underestimating the number of LSB galaxies
and introducing erroneous features [5, 23, 60]. For instance, it was as-
sumed that the faintest LSBGs must be small, similar in size to their
High Surface Brightness Galaxy (HSBG) counterparts [5, 34]. Addi-
tionally, the assumption of an exponential luminosity profile limited
the identification of LSBGs. Only later, in papers like [20, 31], the pos-
sibility arose that LSB galaxies might be more common but largely
undetected and uncharted. This revelation had significant implica-
tions for estimating the population density of LSBGs, particularly in
the faintest part of the luminosity function [5, 23].

Subsequent research such as [5, 43, 47, 50, 69, 72] laid the foun-
dations for understanding LSBGs by incorporating diffuse galaxies
into the analysis. As astronomical observation techniques improved,
higher-quality images became available for exploration, enabling the
detection of more sources, such as DRAGONFLY [1]. However, the
ability to detect additional sources and potential LSBG candidates
was still constrained by the visual identification of these sources, as
discussed in [72]. Consequently, it became evident that optimizing
detection techniques for LSBGs was essential.

The first improvements and automation of LSBG detection tech-
niques are documented in subsequent research articles, including
[14, 21, 26, 28, 36, 37, 43, 44, 48, 59, 62]. These studies introduced
automatic photographic plate detection (APM) of UK Schmidt ob-
servations for source detection, followed by profile fitting to identify
LSBGs. While APM contributed to numerous LSBG detections and
surveys, it was limited by the noisy nature of photographic plates,
making it challenging to detect faint and extensive LSBGs and intro-
ducing its own detection bias [28, 53, 60]. Additionally, the reliance on
the exponential profile setting restricted the identification of LSBGs
to those conforming to this profile. An attempt to enhance source de-
tection on Schmidt survey plates was made in the article [58], which
marked a transition from source detection on photographic plates to
digital images using the PISA algorithm based on APM. The research
of [58] also explored other algorithms, including clustering, for LSBG
identification. However, [53] concluded this transition to digital im-
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age detection with low noise levels but still required visual inspection
for LSBG detection.

1.2.2 CCD imaging era

With the advent of digital imaging, astronomical image processing
and reduction techniques significantly improved, enabling the reduc-
tion of sky noise for the detection of diffuse objects. Automated source
detection algorithms like SEXTRACTOR [3] were developed and re-
fined. SEXTRACTOR relies on the "connected pixel" method to locate
objects, where groups of connected pixels above a threshold are iden-
tified as detections. However, SEXTRACTOR and similar algorithms
were not efficient enough in detecting fainter, diffuse, or extended LS-
BGs [15, 32, 48, 49, 62, 64]. The main limitation was that connected
pixel detection depended on a high signal-to-noise ratio. In contrast,
LSBGs typically exhibit a low signal-to-noise ratio. Although some
improvements were made in SEXTRACTOR to detect LSBGs [51, 52],
they still required manual configuration and visual inspection, ren-
dering them semi-automatic algorithms.

An alternative to SEXTRACTOR for the automatic detection of LS-
BGs is MARSIAA (Markovian Software for Image Analysis in As-
tronomy) [68], which employs stochastic processes to determine the
best threshold adaptively and incorporates multi-band data imaging.
While the Markovian algorithm finds fainter and more diffuse LSBGs
than SEXTRACTOR, it generates many false detections and still neces-
sitates visual inspection [32]. Modern LSBG surveys continue to rely
on visual inspection, as exemplified in [17, 18, 19, 30, 32, 38, 39, 63, 67].
SEXTRACTOR and Markovian-type algorithms are used as detection
guides. Still, they do not fully automate the process.

An emerging approach in LSBG research is using Machine Learn-
ing algorithms for automated detection and identification. Various
articles have explored this avenue, albeit with limited application to
diffuse objects. Machine learning algorithms are categorized as super-
vised, semi-supervised, or unsupervised [10, 29], each with its unique
methodology and biases [29].

Supervised algorithms rely on galaxy catalogs or models for train-
ing and are limited in detecting galaxies with specific morphologies.
This approach may not be suitable for LSBGs, as they exhibit diverse
morphologies [11]. An example of a supervised machine learning al-
gorithm can be found in [11], which uses the random forest algorithm
to distinguish galaxies, stars, and quasars but faces difficulties with
faint objects.

Unsupervised algorithms, such as clustering, have been employed
in low surface brightness galaxy (LSBG) detection research, as demon-
strated in [55] for high surface brightness (HSB) galaxies. Clustering
has also been explored in LSBG detection, as shown in [44], where
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the DBSCAN algorithm was utilized. However, the clustering result
from DBSCAN, as per [44], presents false detections that were not
successfully distinguished from LSBGs.

Deep learning algorithms, a subset of machine learning, are highly
adaptable but require extensive databases to operate effectively. Some
studies, like [25, 55], have utilized deep learning algorithms for LSBG
detection, showing promise but needing substantial data. A particu-
larly successful application of deep learning in LSBG identification
is found in [70], where LSBGs were successfully identified among
artificial LSBGs.
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2
M E T H O D

This section explains the algorithms and steps for searching for LS-
BGs in astronomical images. Detecting LSBGs or other objects in im-
ages involves Computer Vision, a sub-field of artificial intelligence.
Computer Vision aims to develop programs capable of object detec-
tion, segmentation, localization, and recognition within images [54].

It is crucial to differentiate between the detection and identification
processes in Computer Vision, although they are closely related con-
cepts [42]. Detection involves applying processes to a digital image
to separate and label a set of pixels of interest (object or pattern of in-
terest) from the background or threshold of the image. On the other
hand, identification or recognition involves cataloging or classifying,
assigning a known label or specific group to an object [42].

Identifying a figure in an image requires initial conditions or fea-
tures that can describe, compare, and classify the detected pixels.
These features act as rules to define and describe the detected fig-
ure in the image, establishing a correlation with the astrophysical
object being sought, in our case, the LSBGs. Typically, these features
are derived from the analysis and theoretical understanding of the
object sought in the images. However, it is also possible to create fea-
tures based on correlations derived from the initial detection process,
which can be identified manually. The ultimate goal of classifying or
identifying figures in images is to leverage these features, represent-
ing our knowledge, to refine the detection process and retain those
figures that best describe astrophysical objects of interest rather than
false positives, i.e., any detection that is not the object of interest.

In the context of Machine Learning algorithms, it is common to
structure them into three main parts, as outlined by [7]. These parts
are typically referred to as pre-processing, processing, and post-processing.

• Pre-processing: This stage encompasses all the algorithms ap-
plied to the image before the detection process. Its purpose is to
modify the image to facilitate the subsequent detection process.

• Processing: The processing stage involves algorithms and pro-
cedures to detect LSBGs or the target objects of interest in the
images.

• Post-processing: Various studies and techniques are employed
in the post-processing phase, mainly focusing on feature selec-
tion and identification. This stage aims to refine the results ob-
tained during the detection process and improve the accuracy
of object identification.
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These three stages collectively form the foundation of machine
learning-based object detection and identification approaches in as-
tronomical images.

2.1 pre-processing

Image segmentation involves dividing an image into multiple seg-
ments and assigning an identification to each component. This tech-
nique offers several advantages in pre-processing, including faster
and more straightforward extraction of galaxies when working with
smaller images. Moreover, processing smaller images provides the
additional benefit of enhancing the accuracy of sky or background
determination, given the algorithm’s functioning.

Numerous algorithms and approaches exist for image segmenta-
tion. Still, our objective was to identify an algorithm that would yield
the fewest segments while ensuring that galaxies, mainly those not
yet identified, are not divided. The segmentation algorithm that meets
these criteria is the Simple Linear Iterative Clustering (SLIC), avail-
able in the Python Scikit-image library [66]. SLIC relies on super-
pixel algorithms to perform segmentation. Super-pixels are groups of
pixels sharing common characteristics, such as pixel intensity. Super-
pixel algorithms cluster pixels into perceptually meaningful regions,
effectively replacing the rigid pixel grid structure. Various methods
can be employed to generate super-pixels. In the case of SLIC, the K-
means clustering algorithm generates super-pixels, utilizing the con-
tours of planar figures in the image as super-pixel boundaries.

SLIC is known for its simplicity, ease of use, and efficiency in
quickly processing segments from a complete tile with irregular bor-
ders following the contrast of the less bright pixels in the sky, prevent-
ing the division of ultra-diffuse LSBGs.The most critical parameter is
n_segments, which defines the desired number of super-pixels. Other
parameters are typically left at their default values. For example, the
initial number of segments was set to 54 to ensure that each segment’s
size is approximately 263× 263 arcsecond, considering the segments
are irregular. As a result, the central Fornax image was divided into
53 parts, and the tiles were split into 57 segments. This segment size
is sufficiently small to represent the sky accurately and accommodate
larger galaxies within segments without breaking them. Since the al-
gorithm generates segments based on super-pixels, the segments vary
in size and are not uniform. This irregularity of segments offers the
advantage of effectively adapting to the image’s edges, where noise
levels are typically higher.

Listing 1: slic

from skimage.segmentation import slic
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segments_slic = slic(img, n_segments=54, compactness=0.001, sigma

=3.0, enforce_connectivity=True) �

Figure 1: The left diagram depicts Tile 1, corresponding to Fornax’s center.
The specifications for Tile 1 and the LSB dwarf galaxies are in the
[19]. The right diagram shows the result of reducing the size of
Tile 1 in the g band into more manageable segments using SLIC.
The outcome displays 57 irregular and independent segments dis-
tinguished by different colors.

To ensure that our segmentation process does not inadvertently
truncate galaxies, especially faint ones that may go undetected or
whose precise locations are unknown, we implement a strategy in-
volving a guide galaxy from the g-band image of Central Fornax. We
choose the NGFS J033754-353429 galaxy as it is the most diffuse and
free from contamination by other sources among those listed in the
catalog [19].

Our technique involves using the guide galaxy NGFS J033754-353429

to detect similar galaxies against the background. To do this, we set
a threshold that allows the guide galaxy to be detected against the
background. The threshold does not need to be exact, but it should
be robust enough to reduce the size of the entire image or slab into
more manageable sections. We have determined that the threshold for
the image occurs when the intensity scale of the pixels in a monochro-
matic image (the grayscale) reaches the 57.5% percentile. This thresh-
old is crucial as it indicates the point at which the guide galaxy
becomes distinguishable from the background. Once we have deter-
mined this threshold, we use it to remove the sky background. After
that, we perform the segmentation using SLIC on the image with ro-
bust detections.

The detections created after removing the sky guide the SLIC seg-
mentation algorithm, ensuring it does not inadvertently divide galax-
ies like NGFS J033754-353429. It is important to note that SLIC could
potentially divide galaxies only if the grid guide used for segmen-
tation is smaller than the flat figures detected in the image. How-
ever, we prevent this situation by consistently using a segment size of
263× 263 arcseconds, ensuring that galaxies remain intact. It is also
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relevant to highlight that very small or empty segments indicating
the absence of sources can be generated, and in such cases, the code
issues warning messages. For the complete segmentation code and
implementation details, please refer to this document’s appendix A
in Section A.2.1.

2.1.1 Weight map

Weight maps are frames of the same size as the images in which
objects are detected or measured, and they serve to characterize the
noise intensity present in each pixel. By doing so, weight maps ef-
fectively mitigate errors linked to instrumental variations. In our con-
text, we are primarily concerned with the search for LSBGs, which
often hover near the detection limit. In such cases, the noise from the
sky background becomes particularly problematic, as it can approach
the LSBG intensity levels. This presents a substantial challenge in de-
tecting LSBGs, as it becomes difficult to differentiate the source sig-
nal from the sky background due to the comparable intensities and
higher error rates associated with these faint objects.

Given the complexities of accurately determining the sky threshold,
we have employed a convolution operation between the astronomical
image and the corresponding weight map. This convolution opera-
tion holds several advantages in our approach. Most notably, it serves
to suppress the influence of unreliable pixels. When establishing the
sky background, any irregularities or noise present in the image are
effectively damped, allowing the true intensities of the astronomical
sources to emerge more distinctly. The mathematical computation for
this convolution is elaborated upon in sample listing 2.

Listing 2: Image convolution

weight_total = np.sum(image_weight.ravel())

weight = image_weight/weight_total

fusion = image_data*weight �
It’s worth highlighting that the value of weight_total is computed

as the sum of all pixel values comprising the weight map. The im-
age outcome of the convolution operation, referred to as fusion, is
determined by multiplying the pixel intensities of the original astro-
nomical image by their corresponding weights, which have been ap-
propriately normalized to account for errors. This approach enables
us to enhance the visibility of astronomical sources in the presence
of noise and uncertainty, ultimately improving the accuracy of LSBG
detection. In this way, the image to which the methodology for de-
tecting LSBGs in the background will be applied is the fusion image
instead of the original image.
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2.1.2 Intensity scaling

Setting an accurate sky value within each image segment is crucial
in detecting astronomical sources. However, evaluating every single
pixel value within the segment is not only unnecessary but also com-
putationally intensive. Limiting the range of pixel values for calculat-
ing the background value is advantageous to streamline this process
and enhance sky determination’s efficiency. This approach reduces
computation time and facilitates smoothing pixel variations in the
region of interest, particularly at the transition between the sky back-
ground and the astronomical sources.

First, we rescaled the image based on minimum and maximum
values. Then, we applied a percentile filter to exclude extreme pixel
values within each segment. This streamlined the threshold detection
process and enhanced the contrast between source and background
pixels. After testing with various values, we determined that setting
the filter ideal percentile value to ±2% was the best option. Specifi-
cally, we replace all pixel values that exceed 2% of the brightest pixels
in the segment with the value of the upper percentile (corresponding
to the 98% percentile). Similarly, pixel values falling below 2% of the
least bright pixels are substituted with the value of the 2% percentile,
establishing the lower limit. As a result, we assign each image seg-
ment a lower and upper limit for pixel values, determined based on
the extreme values within that specific segment. The result of the en-
tire scaling process is shown in Figure 2.

This approach ensures that the sky determination process is effi-
cient and adaptive, allowing us to focus on the pixel values most rep-
resentative of the sky background in each segment. By reducing the
influence of extreme values, we can obtain more accurate and stable
background estimates, which is essential for accurate LSBG detection
in astronomical images. However, when using SLIC for segmentation,
it is possible to encounter cases where segments are created that lack
detectable objects. This may result in notifications of missing or un-
detected segments. However, it is important to note that these cases
do not affect detection.

2.2 processing

Detecting the faintest LSBGs presents a unique challenge, as their
signals barely stand out from the background noise. This starkly con-
trasts with other sources or galaxies, which produce more detectable
signals that can be readily adjusted based on their intensity profiles.
LSBGs, on the other hand, exhibit signal discontinuities due to their
low intensity, and when combined with the effects of High Surface
Brightness Galaxies (HSBGs), the LSB galaxy signals often appear as
mere noise. As a result, traditional detection methods relying on sur-
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(a) Image threshold. (b) Normalized image threshold.

(c) Image threshold with percentile filter.

Figure 2: The following figures show the image threshold manipulations for
setting a background cut-off value.

face fits become inadequate, as they tend to miss irregular or faint
LSBGs.

Recognizing these difficulties, we have developed an algorithm specif-
ically designed to detect exceedingly faint LSBGs still perceptible to
the human eye. Our approach is not limited to detecting dwarf LS-
BGs, which dominate the catalog [19, 41], but is also adaptable to
detecting other LSBGs. Our detection algorithm centers around de-
termining the optimal threshold value for the sky or background to
remove it from the image, thereby revealing the LSBGs.

Various strategies can be employed to set the sky threshold for
LSBG detection. One approach involves modeling the intrinsic noise
of the background, but this method tends to incur longer computa-
tional times. Our method seeks sky threshold values while leveraging
image segmentation to divide the image into distinct, independent
segments. By doing so, we can autonomously determine the best-
suited sky value for each segment. The sky adjustment process is
rooted in estimating each segment’s most appropriate grayscale value.
This value correlates with the number of sources in the segment and
their respective intensities. As a result, the optimal sky threshold set-
ting may vary from one segment to another, ensuring that LSBGs are
effectively detected within the image. This segment-specific approach
allows us to achieve accurate and adaptive LSBG detection without
extensive computational overhead.

To optimize the selection of the best sky threshold, we’ve devel-
oped an internally consistent approach that considers the size of the
detection kernel from the Mahotas library [12]. Mahotas is a Python
library tailored for Computer Vision tasks and offers functions that
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allow the assignment of "Labels" to connected regions once a back-
ground threshold is established. The Mahotas kernel, or connection
matrix, is a Boolean matrix that the algorithm employs to scan the im-
age and assign labels to adjacent pixels belonging to the same group
of connected objects. This association of labels with detections enables
us to correlate our approach with the Mahotas kernel. The primary
objective here is to eliminate bright sources from the image to en-
hance the detectability of LSBGs. The crucial factor influencing this
process is the size of the kernel.

The size of the Mahotas kernel directly impacts the maximum num-
ber of detectable sources and, consequently, affects the sky background
estimation. A larger kernel size is more effective at detecting sizable
objects, which are often brighter but less numerous. Conversely, a
smaller kernel is better suited for capturing minor fluctuations and,
consequently, smaller or irregular objects, which tend to be more
abundant. To strike a balance, we avoid starting with an overly large
kernel size, as it would significantly increase computation time for de-
tection. Instead of having a fixed kernel size, it was decided to make it
dynamic. For this purpose, we chose the 90th percentile of pixel inten-
sity as the provisional sky threshold, and with this sky threshold, we
calculated the size, in pixels, of all detected objects. After evaluating
the sizes of the objects in pixels detected using the provisional thresh-
old, we determine the maximum size of the kernel for the segment
through percentile analysis. In this context, we choose the pixel size of
the kernel to be equal to the size of the smallest source in pixels, corre-
sponding to the 90th percentile of the detected source sizes. With this
maximum kernel size, we iteratively adjust the background threshold
value again to maximize the possible detections within the constraints
of the selected kernel size. Subsequently, the detected sources are sys-
tematically removed from the background, and the same process is
repeated with the resulting image after removing the sources (see fig-
ure 2). This approach allows us to dynamically adapt the kernel size
to optimize source detection, considering the variability in the sizes
of objects within the image.

The shape of the detection kernel is circular, resulting in a Boolean
matrix where true values form a circumscribed circle within the ma-
trix. We opt for a circular distribution to ensure smooth edges in
the detected objects, as the sources we aim to detect often possess
convex signals, including irregular ones. We also experimented with
different shapes, such as ellipses or stars, but they failed to detect ir-
regular sources that were detected using the circular shape. We create
this circular kernel in Python using the command disk(r), where r

represents the circle radius in pixels. The final detection kernel size,
which we determined to be 29 pixels or 7.627 arcseconds (0.263 arc-
seconds/pixel resolution, DECam), corresponds to disk(r=3). This
represents the smallest detected size.
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(a) kernel = 149 (b) kernel = 81

(c) kernel = 49 (d) kernel = 29

(e) Filter bilateral

Figure 3: The following figures illustrate how the source detection algorithm
works by optimizing the kernel size and threshold adjustment. In
the center of the image is the guide galaxy NGFS J033754-353429,
which is affected by brightness contamination produced by the
brightest sources. The detection algorithm starts with a tentative
kernel size of 149 pixels, which is reduced in each iteration until
reaching a minimum cutoff size of 29 pixels. Once the minimum
size is reached, the bilateral filter is applied to the resulting sky af-
ter removing all detected bright sources. By applying the bilateral
filter, a structure in the center of the image can finally be distin-
guished, representing the galaxy NGFS J033754-353429 from the
catalog [19, 41]

.

After removing all contaminating bright sources from the image,
gaps remain in the resulting sky, preserving the fainter sources that
were previously undetectable. However, Mahotas alone struggle to
detect the weakest LSBGs because they lack a well-defined shape,
and the pixel connectivity within them is low compared to the sky
background. These extremely faint LSBGs appear as diffuse objects
without clear outlines. In its default mode, Mahotas only captures the
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brightest portions of the LSBGs. We apply a blur "bilateral filter" fil-
ter to detect LSBGs, including their faint extensions comprehensively.
This filter smoothens and outlines the brightest pixels, enhancing the
connectivity between them and ultimately defining the shape of the
source. It is crucial to note that this filter is utilized on the sky back-
ground after removing all bright sources, thereby maximizing the de-
tection of the fainter sources.

We follow a process analogous to the background threshold opti-
mization described previously to identify the correct values for the bi-
lateral filter parameters. The ’d’ parameter of the bilateral filter can be
expressed as a function of ’σ’ through the equation from Scikt-image,
d = int(max(5.2*np.ceil(3*i)+1)). Consequently, the optimization
procedure encompasses both the background threshold and the ’σ’
parameters of the bilateral filter, which are adjusted based on the
number of detected sources.

In the initial phase, we applied a bilateral filter with tentative val-
ues of ’σ’ and ’d’, similar to finding the threshold in the source de-
tection with Mahotas. Subsequently, we calculated the background
threshold using the Mahotas kernel on the blurred image to maximize
the number of detected sources. The number of detections effectively
depends on the parameters ’σ’ and ’d’ of the bilateral filter. Exploring
’σ’ values from 1 to 10, we determined the ’σ’ value that minimizes
the highest number of detected sources. The filter blurs the image
to interconnect elements and reduce detected sources. However, the
bilateral filter saturates with a very high ’σ’ value, ceasing to merge
elements. Therefore, an optimal ’σ’ value exists that effectively blurs
and merges sources. It’s important to note that the Mahotas kernel
used during the sky optimization process with the bilateral filter re-
mains fixed. The choice of kernel size in this case, disk(r = 3), is
suitable because the signals from detected sources are relatively small,
rendering the use of a larger kernel unnecessary.

2.3 post-processing

This section analyzes the data obtained in our search for LSBGs and
the subsequent selection of LSB candidates. Our source detection al-
gorithm generates an output where each segment’s original image
sky background has been successfully removed. This detection pro-
cess occurs in multiple stages, which are influenced by the kernel size
and operate top-down. After these step-wise detections, the resulting
image is organized into a 3-dimensional matrix.

At the top of this matrix, we identify the sources detected with the
largest kernel size, corresponding to the brightest sources. Moving up
the matrix levels, we encounter sources detected with progressively
smaller kernels until reaching the top, where the faintest and most dif-
fuse sources reside. The detection of these extremely diffuse sources
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requires the application of bilateral filtering. However, false detec-
tions are also present at the bottom of the matrix, where the faintest
LSBG candidates are found. These false detections can occur due to
galaxy interference, bright stars, image reduction residuals, and back-
ground noise. The main challenge at this stage is distinguishing gen-
uine LSBG candidates from these false detections. Another issue in
discerning LSBGs detected at the last level from false detections arises
from gaps in the detection. These gaps lead to the low signal intensity
of LSBGs because they are inherently faint and exhibit fluctuations
in intensity, both maximum and minimum. To address the issue of
over-detection caused by these discontinuities, we generated an im-
age by aggregating all the detections from the matrix. This approach
effectively fills the gaps in detection with information from previous
detections, thereby reconstructing the LSBGs. Besides gap filling, this
final step of creating a composite image facilitates the detection of
the LSBGs’ maximum extent. Recovering this maximum extent is cru-
cial for characterizing LSBG detection using non-parametric features.
However, it does have the drawback of potentially losing some of
the previous LSBG detections when combined with halos or bleed-
through from other bright sources.

To optimize the recovery of LSBGs, we designed a galaxy separa-
tion algorithm based on two criteria: contrast and morphology. The
first criterion utilizes the watershed segmentation technique from the
Ski-image library. In this approach, we apply watershed segmenta-
tion, but with the unique aspect of using initial detections as seeds
before creating the composite image. The second criterion focuses on
the morphology or shape of the detections, employing the watershed
segmentation technique with a distance filter to select the seeds. Cali-
brating this separation through watershed segmentation poses signif-
icant challenges. While a small kernel effectively separates sources, it
may not be effective for separating galaxies with high ellipticity, situ-
ations where more than one source is merged, or when there are ex-
treme differences in the size of the sources. Comparing the results of
the separation algorithm with the galaxies from the catalog by [19, 41],
we successfully recovered 90% of the LSBGs listed in the catalog. This
achievement represents a significant advancement in our search for
LSB candidates.

While the watershed algorithm effectively aids in the recovery of
LSBGs located near bright sources, the introduction of the galaxy sep-
aration algorithm does lead to an increase in the number of false de-
tections. These false detections result from the watershed algorithm’s
limitations, where faint sources embedded in the bleed-through of
bright sources are not entirely restored to their original forms. In-
stead, the algorithm may recover only a portion or section of these
faint sources, rendering them unrecognizable as galaxies and cate-
gorizing them as false detections. No superior galaxy segmentation
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algorithm can successfully separate and recover these faint sources
without resorting to complex fits and profiles. However, employing
such fitting techniques for detecting faint galaxies in large databases
is impractical due to their high computational demands and non-
automatable fit parameters. Non-automatability implies that targets
must be pre-detected, and fit parameters must be manually validated
for each case, posing significant challenges in image processing. While
astronomy does employ non-parametric morphological parameters
like Gini and M20, when used in detecting the LSBGs from [19, 41],
they increase the number of false negatives compared to not using
them. We have observed that these parameters are susceptible to con-
tamination from other bright sources, making them overly restrictive
features in our context, especially when dealing with diffuse and ex-
tensive LSBGs near small, bright sources. Nevertheless, we intend to
incorporate these parameters in future code versions, aiming to en-
hance the robustness and accuracy of our morphological assessments.

Consequently, we have introduced alternative definitions of mor-
phological parameters, drawing inspiration from a compilation of pa-
rameters designed initially for microscope image analysis, specifically
for characterizing crystals and minerals [56, 35, 9, 45, 71]. Notably, the
authors of these studies have had the freedom to define their concepts,
which has led to multiple denominations for similar equations.

The selection of features used to describe the sources detected and
to train the machine-learning classification algorithm is presented be-
low. To facilitate a better understanding of these equations, it is cru-
cial to establish the following concepts:

• Equivalent radius:

r ′ =

√
A

π
(1)

Where A is the area of the Figure in pixels.

• Equivalent radius from convex object:

r ′hull =

√
Ahull
π

(2)

Where areahull, is the convex area of an object is the area of
the convex hull that encloses the object [71, 45].

The convex perimeter of an object is the perimeter of the convex
hull that encloses the object.

• Eccentricity:

eccentricity1 =

√
1. −

(m
M

)2
(3)

M and m correspond to the semi-major axis (M) and semi-
minor axis (m) of a circumellipse source.
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• Aspect ratio/Chunkiness/Elongation:

chunkiness =
a

b
(4)

The aspect ratio or "chunkiness" measures the relationship be-
tween the height and width of a source inscribed in a rectangle.
Here, a represents the maximum length of the rectangle, and b
represents the maximum width of the rectangle.

• P-area:

PA =
P

A
(5)

P-area is the ratio between the perimeter and the area. The
perimeter (P) is the number of pixels in the boundary of the
source [71].

• Surface Factor:

sf2 =
M

m× blk2
(6)

blk2 =
4πMm

A
(7)

According to [56], is defined bulkiness (blk2). M and m are the
semi-axes from the ellipse circumellipse.

• Geodesic length:

xlg =
P+
√
P2 − 16A

4
(8)

Geodesic length is defined in [45].

• Straightness:

stss =
2M

xlg
(9)

Straightness is defined in [45]. M is the semi-major axis of the
ellipse circumellipse, which derives the maximum length of the
object.

• Fiber thickness:

xe =
P−
√
P2 − 16A

4
(10)

Fiber thickness is a measure of degrees of curl. It is defined in
[71, 45]
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• Bulkiness:

blk1 =
ab

A
(11)

blk2 =
4πMm

A
(12)

[56] makes a distinction in the definition of "Bulkiness" (blk2)

and "Bulkiness Factor" (blk1). Where a and b correspond to the
sides of a rectangle containing the source.

• Convexity/roughness/circularity:

cvx =
Phull
P

(13)

Convexity (cvx) is defined in [71, 45, 56]. Phull is the perimeter
of the convex area y P is the object’s perimeter.

• Solidity/sphericity/circularity/compactness:

slty =
Ahull
A

(14)

The solidity (slty) corresponds to a measure of the density of an
object. It is defined in [71, 45, 56].

• Circularity/roundness/compactness:

cir1 =
4πA

P2
(15)

cir2 =
4πAhull

P2hull
(16)

cir3 =
4πA

P2hull
(17)

cir5 =
r ′

R
(18)

These concepts are explained in [71, 45, 56]. R is the radius of
the circumscribed circle of the object.
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• Roundness:

rdss1 =
4A

πM2
(19)

rdss2 =
r ′hull
M

(20)

rdss3 =
2r ′hull
M+m

(21)

rdss4 =
Phull
πR

(22)

These concepts are explained in [71, 45, 56]

• Sphericity:

sph =
(36πV)1/3

A
(23)

It is in [56]. V is the volume of a sphere of radius r ′.

2.3.1 One-class SVM

With all the detected sources reconstructed and separated, our next
step is the identification of LSB dwarf galaxies using a Machine Learn-
ing algorithm. This choice stems from our understanding that some
false detections are virtually indistinguishable from genuine LSBGs
due to their intensity. Armed with the catalog of LSBGs from Fornax
[19, 40] and visually identified LSBGs from the Fornax tiles, we opted
for a supervised algorithm.

The challenge with supervised algorithms lies in determining which
parameters or features should represent the detected sources and how
to train the algorithm effectively. Because detection preserves partic-
ular source morphology, we have chosen non-parametric morpholog-
ical parameters as our features. These parameters possess the advan-
tage of rapid calculation since they don’t rely on elaborate settings. As
we move from representing the image information of each detected
source to numerical datasets, we shift from computer vision chal-
lenges to tasks involving database management and machine learn-
ing. This entails handling outliers, normalization, and testing the ma-
chine learning algorithm.

Our initial step is to reduce the sample of detected sources, as there
are many detected sources and false positives (in the case of tile 1, a
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total of 4 million sources were detected) in which we are not inter-
ested. We aim to narrow the sample to sources similar to LSBGs (Low
Surface Brightness Galaxies) in the reference catalogs [19, 40]. We use
extreme values of morphological non-parametric features extracted
from the LSBGs in the catalog to achieve this initial data reduction.
This allows us to effectively separate LSBGs from false positives, fa-
cilitating the subsequent training of the machine-learning algorithm.
Reducing the sample size not only decreases computation time but
also helps eliminate outliers that might affect the quality of the results.
Once the sample size is reduced, we perform scaling and normaliza-
tion of each feature (non-parametric morphological parameters). We
avoid using direct features like source intensity and equivalent ra-
dius, which can significantly constrain or bias the classifier. The scal-
ing technique implemented is based on scikit-learn maximum and
minimum scaling, ensuring that the features are in a specific range
and comparable. This step prepares the data for further processing
and enhances consistency in applying machine learning algorithms.

Once we had a clean and scaled database table of detected sources,
we prepared and selected the LSBGs, i.e., the golden selection of LS-
BGs from the catalogs [19, 40], for training. Using coordinates and po-
sitions of the sources, we identified LSBGs from the catalog [19, 40]
and those visually recognized by the team working on the Fornax
tiles. In theory, there should be a total of 590 LSBGs available for train-
ing. The watershed source separation algorithm fails when multiple
sources are merged within the same function, especially if there’s a
significant size difference between the sources. This results in galaxies’
fragmentation, where the galaxies’ morphological characteristics are
no longer discernible or representative of LSBGs. These fragmented
LSB galaxies also introduce noise into the sample. Due to these issues,
the best 143 LSBGs were manually selected for training the algorithm.

The choice of which supervised machine-learning algorithm to use
was based on our dataset-specific issues and characteristics and the
objectives we aimed to achieve. Our dataset constitutes a single class,
as no other information besides the training LSBGs is available. More-
over, it’s an unbalanced dataset since the training LSBGs comprise
only 0.26% of the total data. The training set also does not encom-
pass all the morphological types of LSBGs, further complicating the
situation. Given these challenges, the most suitable algorithm for our
purposes, which is robust against unbalanced data and belongs to
a single class, is the One-Class Support Vector Machine (One-Class
SVM) available in scikit-learn.

The One-Class SVM is a supervised machine-learning method pri-
marily used for outlier detection. It is well-suited for working with un-
balanced datasets and single-class classification problems. The scikit-
learn implementation of the One-Class SVM is based on Schölkopf’s
Support Vector Machine (SVM) algorithm. Schölkopf’s One-Class SVM
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operates by creating hyperplanes from data points and maximizing
the distance from the center of these hyperplanes. Each data point
is transformed into an n-dimensional vector, representing the hyper-
space based on the selected features or F-hyperspace. The equation
describes the hyperplanes:

WTx− b = 0 (24)

W is a normal vector belonging to the feature space F (note that
it’s not necessarily normalized). b is a real number, and x represents
each point satisfying the hyperplane.

The role of hyperplanes in this context is to separate and define the
dataset. They perform classification by assigning a value of +1 within
a small region, which effectively captures the training data points
and −1 outside this region. The classification occurs in a hyperspace,
enabling data projection to exhibit nonlinear characteristics.

When dealing with Support Vector Machines (SVM) for multiple
classes, the construction of the hyperplane aims to determine the mar-
gin between the classes, encompassing all the data points for each
class. In contrast, in the case of the One-Class SVM, the hyperplane
is designed to separate all the data points from the origin within the
feature space F. It maximizes the distance from this hyperplane to the
origin. This distinction alters the minimization process of the decision
function, which is responsible for determining whether a data point
x belongs to a class. In the case of One-Class SVM, this function is
defined as:

f(x) = sgn

(
n∑
i=1

αiyiK(x, xi) + b

)
(25)

Here αi are the Lagrange multipliers; every αi > 0 is weighted in
the decision function or supports. K(x, xi) is defined as the kernel.

The linear One-Class SVM model minimization function can be
defined as:

min
w,b,ξi

‖w‖2

2
+
1

νn

n∑
i=1

ξi − ρ (26)

Subject to:

(w ·φ(xi)) > ρ− ξi for all i = 1, . . . ,n

ξi > 0 for all i = 1, . . . ,n

This method creates a hyperplane characterized by w and ρ that
maximizes the distance to the origin in the feature space Fwhile effec-
tively separating all data points from the origin. To introduce some
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flexibility, we incorporate ξi to introduce some flexibility to permit
specific data points to lie within the margin. The nonlinear function
σ plays a pivotal role in delineating the decision boundary between
one class and another.

In the context of the One-Class SVM provided by scikit-learn, the
model fitting and learning process considers two parameters: ν and
γ. ν is represented as v and serves as a crucial parameter for the func-
tion. On the other hand, γ represents the default kernel parameter,
which happens to be the radial-basis function kernel (RBF), denoted
as follows:

K(x, xi) = exp
(
−
‖x− xi‖2

2σ2

)
(27)

Intuitively, ν is an upper constraint on the fraction of training errors
and a lower constraint on the fraction of support vectors. Essentially,
it dictates the proportion of outliers we expect in our data [8, 61].
Notably, the ν value must fall within 0 to 1.

As for γ, it represents the inverse of σ [61]. γ acts as a parameter for
the RBF kernel type and controls the influence of individual training
samples, thus affecting the smoothness of the model [8, 61]. A low
γ value enhances the model’s generalizability, whereas a high value
diminishes it while making it more sensitive to training data [8, 61].
Consequently, by manipulating these two parameters alone, we can
adjust the One-Class model to attain the desired classification.

2.3.2 Calibration and Validation

Testing the One-Class SVM algorithm performance and evaluating
the effectiveness of the characteristics in the classification process pre-
sented a significant challenge. There were limited freely available al-
gorithms suitable for an unbalanced sample, mainly when working
with a single class. To address this, a wrapper method was selected,
which can be applied with scikit-learn One-Class SVM and integrated
with the Leave-One-Out cross-validation technique. The chosen wrap-
per method is known as Sequential Feature Selection.

Sequential Feature Selection algorithms are a family of greedy search
algorithms that aim to reduce an initial d-dimensional feature space
to a k-dimensional feature subspace, where k is typically less than
d. This process involves evaluating various subsets of features, ulti-
mately producing a ranking of the best features for the classifier. The
resulting feature ranking obtained through the wrapper method is
illustrated in the Figure, showcasing the efficiency of the One-Class
SVM classifier concerning the number of features utilized.

Figure 4 depicts the efficiency curve. This curve illustrates how
the performance varies as a different number of features is utilized
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(a)

Figure 4: Figure shows the result of the feature selection through Sequential
feature selection algorithms. The y-axis shows the classifier effi-
ciency, and the x-axis shows the number of features used in each
test. In this figure, the efficiency of the classifier starts to decline
after the use of 7 features, which are the features selected for the
One-Class SVM.

in the classification process. Therefore, a higher efficiency curve in-
dicates better model performance in classifying LSBGs. The curve
gradually changes as different numbers and combinations of features
are employed. Consequently, defining an exact cut-off point becomes
challenging. Ideally, we aim to select high-efficiency features that ef-
fectively represent the LSBGs. To achieve this goal, we decided to
use seven (7) features, representing the maximum number of fea-
tures before a noticeable decrease in efficiency occurs. These selected
features are as follows: Eccentricity1 3, Chunkiness 4, P − area 5,
Geodesic length 8, Straightness 9, Roundness2 20, and Roundness3
21.

We employed the well-known f1-score and f0.5-score metrics to
evaluate the One-Class SVM algorithm as a classifier. The F-score,
or F-measure, is a reliable indicator of a test’s accuracy. It is derived
from the precision and recall of the test, effectively combining the pre-
dictive and analytical aspects of these two evaluations into a single
value. One notable advantage of using the F-score is its robustness
when dealing with unbalanced data.

The recall metric quantifies the machine learning model’s ability to
correctly identify instances of the positive class. It summarizes how
effectively the model predicted the positive class.

Recall =
TruePositive

TruePositive+ FalseNegative
(28)
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Precision, conversely, indicates the quality of the machine learning
model in classifying.

Precision =
TruePositive

TruePositive+ FalsePositive
(29)

The f1-score is the harmonic mean of precision and recall; see equa-
tion 30.

f1 = 2
Precision × Recall
Precision+ Recall

(30)

In the case of the f0.5-score, it is a variation of the F-measure with
a higher weight in false positives, see equation 31. We consider this
important since erroneous classifier results produce false detections.

f0.5 =
5

4

Precision× Recall
1/4 Precision+ Recall

(31)

These metrics are combined with cross-validation to evaluate whether
the one-class SVM algorithm is over-fitting or under-fitting new data.
Cross-validation consists of dividing the training data into groups, to
which the machine-learning algorithm is applied, and comparing the
results of each group.

Different ways and methods exist to divide the sample and se-
lect the proportion of data training and tests. As we have a small
and varied selection, the best way to do a cross-validation without
losing information is to apply the Leave One Out Cross Validation
(LOOCV) method, which is the same as the range of features. This
Cross-validation approach leaves 1 data point out of the training data,
and then, the remaining samples are used to train the model, the
point being the validation of the model. This is repeated for all com-
binations where the original sample can be separated in this way, and
then the error of all trials is averaged to obtain the overall efficiency.
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3
R E S U LT S A N D D I S C U S S I O N S

The following section presents the results of the process for searching
and detecting candidate Low Surface Brightness Galaxies (LSBGs) in
astronomical images. The outcome of our image source extraction al-
gorithm yielded approximately 55,174 unclassified sources for the 19

tiles. This algorithm conducts a coordinate matching between the cat-
alog [19, 41] and our identified sources. We successfully identified all
590 Low Surface Brightness Galaxies (LSBGs). However, due to con-
tamination from bright sources, in some cases, the galaxy separation
algorithm truncates the LSBG, leaving it with unrecognizable mor-
phology due to false positives. In other cases, the LSBGs could not be
separated from brighter sources. Of the 590 LSBGs, only the 143 most
visually appealing and isolated ones were selected for the One-Class
Support Vector Machine (SVM) training purposes.

The One-Class SVM, with fitting parameters ν = 0.1 and γ = 10,
detected 31,294 candidate Low Surface Brightness Galaxies (LSBGs)
within the central Fornax region across 19 Fornax tiles. Our algorithm
identified 31,295 LSBGs from these sources, and most of them are
likely background galaxies. However, definitive identification is chal-
lenging without criteria related to galaxy distance. Furthermore, 80%
of the 143 LSBGs found in the Fornax Cluster were correctly classified.
Figure 8 displays a sample of these candidate galaxies.

The following plots depict features versus features, as shown in
Figure 5. These visualizations enable us to understand the classifi-
cation performed by the One-Class SVM algorithm within the space
defined by the seven selected features discussed in this chapter. In Fig-
ure 5, all sources detected by the detection algorithm are represented
as dark blue dots. In contrast, the cyan dots represent the candidate
LSBGs predicted by the One-Class SVM algorithm. The red plus sym-
bol (+) represents LSBGs identified in the catalog [19, 41], which the
Machine Learning algorithm correctly classifies as LSBGs, marking
them as True Positives. Conversely, the red "x" symbol (×) represents
the LSBGs that the algorithm rejects, indicating False Negatives, as
shown in Figure 7.

We can analyze the data behavior upon examining Figure 6. At first
glance, as illustrated in the figure, it becomes apparent that surface
intensity (or flux) and equivalent radius alone are insufficient param-
eters to distinguish candidate LSBGs from false detections. We conjec-
ture that when considering all the features, including surface inten-
sity and equivalent radius, these parameters lose their effectiveness
in identifying candidate LSBGs versus false detections. All selected
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Figure 5

feature cut-offs already satisfy the criteria for classification as a LSBG.
Hence, exploring additional features, studying feature rankings, and
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Figure 5: The following figures show the feature versus feature plots for the
seven selected features. As in the figure, the blue dots show all For-
nax source detection. The cyan dots show the LSBG candidate pre-
dictions. The plus red dots (+) show the LSBGs from the catalog
[19, 41] retrieved. The red x dots show the discarded LSBGs from
the catalog [19, 41]. The One-class SVM algorithm was run with
ν = 0.1 and γ = 10 parameters. The result of f1 is 0.9165± 0.007
and f0.5 is 0.96± 0.01.

identifying characteristics that can effectively differentiate candidate
LSBGs from false detections or false positives becomes necessary.

Indeed, as observed in Figure 5, the selected non-parametric mor-
phological features (143 LSBGs) in this chapter are well-suited for
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representing and characterizing LSBGs, as the red crosses align neatly
within the feature space, instead of being randomly scattered through-
out the phase space. This outcome suggests that the selected features
are relevant for identifying LSBGs. However, it is important to note
that the classifier is not flawless, as a small percentage (16.8%) of cat-
alog LSBGs were discarded, denoting False Negatives, as depicted in
Figure 7.

Figure 6: The surface intensity per pixel of all sources our code found is a
function of the equivalent radius in pixel units. The blue dots show
all Fornax source detections made by the detection algorithm. The
cyan dots show the predictions of candidate LSBGs made by the
One-Class SVM algorithm. The red plus (+) dots show the catalog
[19, 41], which the One-Class SVM recovered. In contrast, the red
x'dots show the LSB galaxies that the One-Class SVM classifies as
false. The One-Class SVM algorithm was run with the parameters
of ν = 0.1 and γ = 10.

There are several factors contributing to the occurrence of false neg-
atives in the classification process. The primary factor is the absence
of a perfect classifier in any model, even within the One-Class model.
This limitation is evident in the ν parameter, which inherently intro-
duces a margin of error in delineating the boundaries of the classifi-
cation space, as discussed in the previous chapter.

Another significant reason for model failures in prediction is the
availability of training data. Many galaxies from the catalog [19, 41]
had to be excluded due to contamination from small yet intensely
bright sources. These sources, which the separation algorithm strug-
gles to distinguish, are addressed in detail in the previous chapter.
Moreover, the challenge of separating galaxies becomes more pro-
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nounced when multiple mergers occur, resulting in the loss of LSBGs,
particularly those with high ellipticity.

Out of the initial pool of 590 LSBGs, only 143 LSBGs from the cata-
log [19, 41] were deemed suitable for inclusion in the training dataset
for the One-Class Support Vector Machine. Unfortunately, this lim-
ited number of examples is insufficient for the algorithm to train to
identify LSBGs effectively. Additionally, the separation of galaxies in-
troduces contamination, leading to false positives by compromising
the morphology of the sources. As depicted in the accompanying
figure, most discarded detections (false negatives) are galaxies with
high ellipticity, highlighting a bias towards spheroidal LSBGs in the
catalog.

This bias can be rectified as more LSBGs are detected and incorpo-
rated into the training dataset. Another strategy to reduce the inci-
dence of false negatives is to explore alternative features. While our
current evaluation in the chapter encompasses all the non-parametric
morphological features available, ongoing research may uncover new
features suitable for galaxy classification. For instance, we might con-
sider incorporating the Gini coefficient and M20 feature.

It is worth noting that some contemporary approaches advocate
for creating simulated or synthetic galaxies to expand the diversity of
training samples, particularly within deep learning frameworks. We
are actively considering implementing this approach in our future
work, as it can potentially refine the criteria for selecting candidate
LSBs and enhance the overall accuracy of our classification process.

Despite a small percentage of false negatives and the various chal-
lenges we encountered throughout our analysis, the overall outcome
is remarkably promising. The metrics yield a commendable f0.5 score
of 0.78± 0.01. This score attests to the robustness of our approach,
considering the complexities of the task at hand.

An additional class is usually necessary to quantify false positives
and effectively represent anomalies. However, due to the inherent
challenges in identifying LSBGs (Low Surface Brightness Galaxies)
and distinguishing between anomalies and genuine candidates, creat-
ing a binary classification model with a dedicated class for anomalies
becomes impractical. Therefore, future research should explore other
additional constraints, such as color analysis, to discard LSBG candi-
dates in a later process and refine the classification process. In this
way, the goal is to enhance the accuracy and reliability of the LSBG
detection model.

As a result, our final output is a catalog of candidate LSBGs de-
tected by the One-Class SVM algorithm. This catalog is readily acces-
sible on GitHub, along with the latest version of our code, providing
a valuable resource for further research and exploration in the field.
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Figure 7: Sample of 24 LSBGs from the catalog [19, 41], which the One-Class
SVM algorithm systematically classifies as false detection. These
detection are false negatives.
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Figure 8: A sample of candidate LSBGs identified by OneClass SVM is pre-
sented. We recovered this sample from the central core of Fornax.
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4
C O N C L U S I O N S

In conclusion, our implemented code successfully achieves the ob-
jective of automatically detecting Low Surface Brightness Galaxies
(LSBGs) within digital images with a reasonable processing speed
(5 days). We employed a comprehensive validation and testing proce-
dure to assess its performance, including accuracy, speed, and robust-
ness metrics.

Our SVM (One-Class Support Vector Machine) classifier was trained
using a dataset of 143 manually selected LSBGs (golden sample) from
sources detected in the Fornax galaxy cluster. The non-parametric
morphoflological parameters used in the classifier are: Eccentricity1
3, Chunkiness 4, P-area 5,Geodesic length 8, Straightness 9, Roundness2
20, and Roundness3 21. These seven parameters are the features re-
sulting from a feature selection process carried out with 19 features,
in which they proved to be the most relevant for classifying LSBGs
[19, 41].

Detecting LSBGs has proven challenging due to their diverse mor-
phologies and faint characteristics, which often push the limits of de-
tection. In-depth discussions about these challenges and their impli-
cations for the broader field of astronomy and cosmology are crucial.
We should explore potential strategies or improvements to address
the challenges of bright source contamination and the difficulty of
removing such contamination.

Looking ahead, we should outline specific directions for future im-
provements to the code and algorithms. Mentioning ongoing research
or developments in the field that could enhance the performance of
our detection method would provide valuable insights. Regarding the
applicability of our code to other clusters of galaxies, we should delve
into more detail about how adaptable it is for different environments.
Are there any specific considerations or adjustments needed for its
use in various galaxy clusters, and how might these adaptations af-
fect its performance?

Lastly, we should expand on the broader implications of our code
and its potential contributions to cosmological research, galaxy forma-
tion and evolution studies, and the understanding of galaxy clusters.
Exploring how detecting LSBGs can advance these science areas will
underscore the significance of our work. By addressing these areas,
we can provide a more comprehensive and detailed set of conclu-
sions that enhance the overall understanding of our research and its
significance in astronomy and cosmology.
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A
A P P E N D I X : C O D E

This appendix presents examples of sections or routines from the final
Python code called "Galaxy Mining". The complete code can be found
on Github: "https://github.com/Alevhf/Galaxy-mining-"

The code is structured in a master or guide code that calls each
subroutine. Each subroutine represents the steps to extract galaxies
and identify galaxies. The following is an example of the subroutines
of the code.

a.1 master code

Listing 3: Master_code.py

name = pd.read_csv( ’data_img. csv ’)
data = [(int(i),name_img,name_weight, ’ t i le_%s−%d’%(g,i),g) for i,

name_img,name_weight,g in name[[ ’ t i l e ’, ’name_img’, ’
name_weight ’, ’band’]].values]

for i,name_img,name_weight,tile,g in data:

subprocess.run(["mkdir",tile],check=True)
if not os.path.exists(tile):

os.makedirs(tile)

subprocess.run(["ipython","segments_slic .py",tile,g,name_img,
name_weight,">","%s/seg_%s−%d. out"%(tile,g,i)],check=True
)

for i,values in enumerate(data):

n, name, namew, tile, g = values

subprocess.run(["ipython", "galaxy_mining_nohup.py", str(tile

), str(g)],check=True)

subprocess.run(["ipython", "pre_separar_galx .py", str(tile),

str(g)],check=True)

subprocess.run(["ipython", "separar_galx .py", str(tile), str(

g)],check=True)

subprocess.run(["ipython", "tabla_img .py", str(tile), str(g)

],check=True)

subprocess.run(["ipython", "OneClassSVM.py"],check=True) �
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a.2 pre-processing

a.2.1 Segment code

Listing 4: segments_slic.py

def segmetation(image_data,labeled,i):

astro = image_data.copy()

label_galaxy = (labeled==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=3, mode= ’ constant ’,
constant_values=np.min(cut))

return cut

def segmetation_fit(image_data,labeled,i):

astro = image_data.copy()

label_galaxy = (labeled==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=3, mode= ’ constant ’,
constant_values=np.min(cut))

return cut, x_min-3, y_min-3

def segmetation_fit_seg(image_data,labeled,i):

astro = image_data.copy()

label_galaxy = (labeled==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

cut_label = label_galaxy[x_min:x_max,y_min:y_max]

mask = np.invert(cut_label)

np.place(cut,mask=mask, vals=np.min(cut))

return cut, cut_label, x_min, y_min

import sys

import os

import subprocess

os.environ[ ’MKL_NUM_THREADS’] = ’1 ’
os.environ[ ’OPENBLAS_NUM_THREADS’] = ’1 ’
os.environ[ ’OMP_NUM_THREADS’] = ’1 ’

colors = list(map(plt.cm.jet,range(0, 256, 2)))

random.shuffle(colors)

rmap = c.ListedColormap(colors)
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tile = sys.argv[1]

g = sys.argv[2]

name_mask = sys.argv[3]

name_weight = sys.argv[4]

image_data = fits.getdata(name_mask)

image_data = np.nan_to_num(image_data, nan=0.0, posinf=0.0,

neginf=0.0)

image_weight = fits.getdata(name_weight)

image_weight = np.nan_to_num(image_weight, nan=0.0, posinf=0.0,

neginf=0.0)

weight_total = np.nansum(image_weight.ravel())

weight = image_weight/weight_total

fusion = image_data*weight

mask = image_data != 0

mask = mh.close_holes(mask)

image = fusion.copy()

image = image - np.nanmin(image)

image[np.invert(mask)] = 0

n = np.percentile(image[mask],57.5)

image = image > n

image = mh.close_holes(image)

labeled,m = mh.label(image)

img = labeled > 0

img = img.astype(np.uint8)

segments_slic = slic(img, n_segments=54, compactness=0.01, sigma

=3.0, enforce_connectivity=True, channel_axis=None, slic_zero

=True)

segments_slic[np.invert(mask)] = 0

segments_slic,_ = mh.labeled.relabel(segments_slic)

seg = np.unique(segments_slic)[1::]

np.save( ’%s/segments_slic%s_weight_new.npy’%(tile,g),
segments_slic)

for i in seg:

part_sky, part_seg, x0, y0 = segmetation_fit_seg(image_data,

segments_slic,i)

np.savez( ’%s/part_sky_%s_%d.npz’%(tile,g,i), part_sky=

part_sky, part_seg=part_seg, x0=x0, y0=y0)
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part_sky_f, part_seg, x0, y0 = segmetation_fit_seg(fusion,

segments_slic,i)

np.savez( ’%s/part_sky_%s_weight_%d.npz’%(tile,g,i), part_sky=

part_sky_f, part_seg=part_seg, x0=x0, y0=y0) �
a.3 processing

a.3.1 Galaxy mining code

Listing 5: galaxy_mining_nohup.py

def segmetation(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.nanmin(cut))

cut = np.pad(cut, pad_width=3, mode= ’ constant ’,
constant_values=np.nanmin(cut))

return cut

def segmetation_fit(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.nanmin(cut))

cut = np.pad(cut, pad_width=3, mode= ’ constant ’,
constant_values=np.nanmin(cut))

return cut, x_min-3, y_min-3

def segmetation_fit_seg(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

cut_label = label_galaxy[x_min:x_max,y_min:y_max]

mask = np.invert(cut_label)

np.place(cut,mask=mask, vals=np.nanmin(cut))

return cut, cut_label, x_min, y_min

def kernel_fit(p,l,s):

astro = p.copy()

ravel = astro[l]

thresholding = np.nanpercentile(ravel,95)

img = astro > thresholding
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img = morphology.remove_small_objects(img,min_size=13,

connectivity=2)

img = mh.close_holes(img)

labeled,n = mh.label(img)

sizes = mh.labeled.labeled_size(labeled)[1::]

if len(sizes) > 0:

kernel_sizes = np.nanpercentile(sizes,98)

Bc = disk(int(np.sqrt(kernel_sizes/np.pi)))>0

min_size = int(np.count_nonzero(Bc))

if s == None:

return Bc, min_size

else:

if s <= min_size:

Bc = disk(int(np.sqrt(s/np.pi)

-0.5))

min_size = int(np.count_nonzero(

Bc))

return Bc, min_size

else:

return Bc, min_size

else:

return disk(3)>0, 29

def sky_simple(p,Bc):

if len(p) == 0:

return 0., 0.

try:

thresholding = np.arange(np.nanmin(p),

np.nanmax(p) + np.

nanmax(p)/1000.,

np.nanmax(p)/1000.)

n_obj = []

x = []

for i in thresholding:

img = p > i

labeled,n = mh.label(img,Bc)

n_obj.append(n)

x.append(i)

x = np.array(x)

n_obj = np.array(n_obj)

return x[np.argmax(n_obj)], n_obj[np.argmax(n_obj

)]

except:

return 0., 0.

def source_part0(part_sky,part_seg,pixel_size):

result_up = part_sky.copy()

result_down = part_sky.copy()

ravel = part_sky[part_seg]

ravel = np.nan_to_num(ravel, nan=0.0, posinf=0.0, neginf

=0.0)

q3 = np.nanpercentile(ravel,98)
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q1 = np.nanpercentile(ravel,2)

percentil = part_sky.copy()

percentil[percentil>q3] = q3

percentil[percentil<q1] = q1

percentil = percentil - np.nanmin(percentil)

percentil_rescale = exposure.rescale_intensity(percentil)

percentil_rescale[np.invert(part_seg)] = np.nanmin(

percentil_rescale)

Bc, min_size = kernel_fit(percentil_rescale,part_seg,

pixel_size)

thresholding, n_max = sky_simple(percentil_rescale,Bc)

if (thresholding == 0.) & (n_max == 0.):

return 0, 0, 0, ’bad’
else:

img = percentil_rescale > thresholding

img = morphology.remove_small_objects(img,

min_size=min_size, connectivity=1)

img = mh.close_holes(img)

labeled,n = mh.label(img, Bc=Bc)

labeled_invert = np.invert(labeled != 0)

np.place(result_down,mask=labeled,vals=np.nanmin(

part_sky))

np.place(result_up,mask=labeled_invert,vals=np.

nanmin(part_sky))

img_min = min(np.nanmin(result_up[part_seg]),np.

nanmin(result_down[part_seg]))

result_up = result_up - img_min

result_down = result_down - img_min

if min_size >= 49:

return result_up, result_down, min_size,

’good’

elif min_size >= 29 or min_size < 49:

return result_up, result_down, min_size,

’moderate ’

else:

return 0, 0, 0, ’bad’

def find_ellipse(p,l,n):

point_x = []

point_y = []

mayor = []

minor = []

ang = []

for i in range(1,n+1):
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img, x_min, y_min = segmetation_fit(p,l,i)

img = (img > np.nanmin(img))

img = np.invert(mh.close_holes(img))*np.uint8(1)
_,contours, hierarchy = cv2.findContours(img,2,2)

cnt = contours[1]

(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)

point_x.append(int(x+y_min))

point_y.append(int(y+x_min))

mayor.append(ma)

minor.append(MA)

ang.append(angle)

return point_x,point_y, np.array(mayor), np.array(minor), np.

array(ang)

def find_circicle(p,l,n):

point_x = []

point_y = []

radii = []

for i in range(1,n+1):

img, x_min, y_min = segmetation_fit(p,l,i)

img = (img > np.nanmin(img))

img = np.invert(mh.close_holes(img))*np.uint8(1)
_,contours, hierarchy = cv2.findContours(img,2,2)

cnt = contours[1]

(x,y),radius = cv2.minEnclosingCircle(cnt)

radius = int(radius)

point_x.append(int(x+y_min))

point_y.append(int(y+x_min))

radii.append(radius)

return point_x,point_y, np.array(radii)

def find_rectangle(p,l,n):

fmax = []

fmin = []

for i in range(1,n+1):

img, x_min, y_min = segmetation_fit(p,l,i)

img = img > np.nanmin(img)

img = np.invert(mh.close_holes(img))*np.uint8(1)

img = np.pad(img, pad_width=2, mode= ’ constant ’,
constant_values=1)

_,contours, hierarchy = cv2.findContours(img,2,2)

cnt = contours[1]

xy,wh,ang = cv2.minAreaRect(cnt)

fmax.append(max(wh))

fmin.append(min(wh))

return np.array(fmax), np.array(fmin)

def perimeter(p,l,n):

astro = p.copy()

per = []

for i in range(1,n+1):

cut = segmetation(astro,l,i)
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perimeter = mh.bwperim(cut>np.nanmin(cut),n=8)

labeled_per, n = mh.label(perimeter,np.ones((3,3),np.bool

))

sizes_per = mh.labeled.labeled_size(labeled_per)

per.append(sizes_per[1])

del astro

gc.collect()

return np.array(per).astype(float)

def convex_hull(p,l,n):

astro = p.copy()

area_hull = []

primeter_hull = []

for i in range(1,n+1):

cut = segmetation(astro,l,i)

convex = convex_hull_object((cut > np.nanmin(cut))*1,

neighbors=4)

labeled_hull, n = mh.label(convex, np.ones((3,3),np.bool)

)

sizes_hull = mh.labeled.labeled_size(labeled_hull)

area_hull.append(sizes_hull[1])

peri = mh.bwperim((labeled_hull>0),n=8)

labeled_per, n = mh.label(peri,np.ones((3,3),np.bool))

sizes_per = mh.labeled.labeled_size(labeled_per)

primeter_hull.append(sizes_per[1])

del astro

gc.collect()

return np.array(area_hull).astype(float), np.array(

primeter_hull).astype(float)

def optimizar(p,ravel,Bc):

sigma = np.arange(1.,4.6,0.1)

re_sigma = []

re_thresholding = []

re_n = []

window = []

SC = np.std(p.ravel())#*1.25

for i in sigma:

d = int(max(5,2*np.ceil(3*i)+1))

bilateral = cv2.bilateralFilter(p,d,SC,i)

thresholding_max, n_obj_max = sky_simple(

bilateral,Bc)

re_sigma.append(i)

re_n.append(n_obj_max)

re_thresholding.append(thresholding_max)

window.append(d)

re_n = np.array(re_n)

return(re_sigma[np.argmin(re_n)],

re_thresholding[np.argmin(re_n)],

window[np.argmin(re_n)],

SC)
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def galaxy_mining(a):

i,tile,g,name = a

f = np.load(name,allow_pickle=True)

part_sky = f[ ’part_sky ’]
part_seg = f[ ’part_seg ’]
x0 = f[ ’x0 ’]
y0 = f[ ’y0 ’]
background_img = []

astro_img = []

j = 0

pixel_size = None

while 1:

astro, background, pixel_size, rate =

source_part0(part_sky,part_seg,pixel_size)

if rate == ’good’:
astro_img.append(astro)

background_img.append(background)

part_sky = background

j = j + 1

elif rate == ’moderate ’:
astro_img.append(astro)

background_img.append(background)

break

else:

break

np.savez( ’%s/Image_astro_fragment_%s_%d_new.npz’%(tile,g,
i),astro_img = astro_img)

name = ’%s/Image_background_fragment_%s_%d_new.npz’%(tile
,g,i)

np.savez(name,background = background_img[-1], part_seg =

part_seg, x0 = x0, y0 = y0)

del part_sky, part_seg, x0, y0

del astro, background, rate

del astro_img, background_img

gc.collect()

def source_part2(part_sky,part_seg,Bc,pixel_size):

result_up = part_sky.copy()

result_down = part_sky.copy()

ravel = part_sky[part_seg]

q3 = np.nanpercentile(ravel,98)

q1 = np.nanpercentile(ravel,2)

percentil = part_sky.copy()

percentil[percentil>q3] = q3

percentil[percentil<q1] = q1

percentil = percentil - np.nanmin(percentil)

percentil_rescale = exposure.rescale_intensity(percentil)

percentil_rescale[np.invert(part_seg)] = np.nanmin(

percentil_rescale)
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re_sigma, re_thresholding, d, SC = optimizar(

percentil_rescale,ravel,Bc)

bilateral = cv2.bilateralFilter(percentil_rescale,d,SC,

re_sigma)

img = bilateral > re_thresholding

img = morphology.remove_small_objects(img, min_size=

pixel_size, connectivity=1)

img = mh.close_holes(img)

labeled,n = mh.label(img,Bc=Bc)

labeled_invert = np.invert(labeled != 0)

np.place(result_down,mask=labeled,vals=np.nanmin(

result_down))

np.place(result_up,mask=labeled_invert,vals=np.nanmin(

result_up))

result_up = result_up - np.nanmin(result_up)

return result_up, result_down

def galaxy_mining2(a):

i,tile,g,name = a

f = np.load(name,allow_pickle=True)

part_sky = f[ ’background ’]
part_seg = f[ ’part_seg ’]
x0 = f[ ’x0 ’]
y0 = f[ ’y0 ’]
background_img = []

astro_img = []

Bc = disk(3)>0

pixel_size = 29 #int(np.count_nonzero(Bc))

astro, background = source_part2(part_sky,part_seg,Bc,

pixel_size)

astro_img.append(astro)

background_img.append(background)

np.savez( ’%s/Image_astro_bilateral_%s_%d_new.npz’%(tile,g
,i),astro_img = astro_img)

def calc_chunksize(n_workers, len_iterable, factor=4):

chunksize, extra = divmod(len_iterable, n_workers * factor)

if extra:

chunksize += 1

return chunksize

tile = sys.argv[1]

g = sys.argv[2]

filename = tile+ ’/segments_slic ’+g+ ’_weight_new.npy’
print("Loading f i l e : ", filename)

segments_slic = np.load(filename)

seg = np.unique(segments_slic)[1::]
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del segments_slic

gc.collect()

data = [(int(i),tile,g, ’%s/part_sky_%s_weight_%d.npz’%(tile,g,i))
for i in seg]

cpu = round(seg[-1]/2.+0.1) #mp.cpu_count()

pool = mp.Pool(processes = cpu)

ck = calc_chunksize(cpu, len(data))

pool.imap_unordered(galaxy_mining, data, chunksize=ck)

pool.close()

pool.join()

data = [(int(i),tile,g, ’%s/Image_background_fragment_%s_%d_new.
npz’%(tile,g,i)) for i in seg]

cpu = round(seg[-1]/2.+0.1) #mp.cpu_count()

pool = mp.Pool(processes = cpu)

ck = calc_chunksize(cpu, len(data))

pool.imap_unordered(galaxy_mining2, data, chunksize=ck)

pool.close()

pool.join()

print( ’ Finalizo galaxy_mining ’) �
a.4 post-processing

a.4.1 Pre-splitting galaxies code

Listing 6: pre_separar_galx.py

def process_image_auto(s,imge):

n,_,_ = imge.shape

part = 0

for l in range(n,0,-1):

part = imge[l-1] + part

return np.array(part)

tile = sys.argv[1]

g = sys.argv[2]

segments_slic = np.load(tile+ ’/segments_slic ’+g+ ’_weight_new.npy’
)

seg = np.unique(segments_slic)[1::]

del segments_slic

dato = []
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for s in seg:

dato.append((int(s),tile,g,

’%s/Image_astro_fragment_%s_%d_new.npz’%(tile,g,
s),

’%s/Image_astro_bilateral_%s_%d_new.npz’%(tile,g
,s)))

def make_mask_total_final(a):

s,tile,g,name_img,name_bi = a

try:

img = np.load(name_img,allow_pickle=True)

img = img[ ’astro_img ’]
img_bi = np.load(name_bi,allow_pickle=True)

img_bi = img_bi[ ’astro_img ’]
except:

print( ’Missing %s or %s ’%(name_img,name_bi), flush=True)

if len(img) == 0:

print( ’Missing %s ’%(name_img), flush=True)

if len(img_bi) == 0:

print( ’Missing %s ’%(name_img), flush=True)

elif len(img) == 1:

img_bi = process_image_auto(img_bi[ ’astro_img ’])
img_total = img_bi+img

labeled,_ = mh.label(img_total)

sizes = mh.labeled.labeled_size(labeled)

labeled = mh.labeled.remove_regions(labeled, np.where(

sizes < 29))

np.savez( ’%s/full_mask_%d.npz’%(tile,s),labeled=labeled)

elif len(img_bi) == 1:

img = process_image_auto(img[ ’astro_img ’])
img_total = img_bi+img

labeled,_ = mh.label(img_total)

sizes = mh.labeled.labeled_size(labeled)

labeled = mh.labeled.remove_regions(labeled, np.where(

sizes < 29))

np.savez( ’%s/full_mask_%d.npz’%(tile,s),labeled=labeled)

elif len(img) == 1 & len(img_bi) == 1:

img_total = img_bi+img

labeled,_ = mh.label(img_total)

sizes = mh.labeled.labeled_size(labeled)

labeled = mh.labeled.remove_regions(labeled, np.where(

sizes < 29))

np.savez( ’%s/full_mask_%d.npz’%(tile,s),labeled=labeled)

else:

img = process_image_auto(img[ ’astro_img ’])
img_bi = process_image_auto(img_bi[ ’astro_img ’])
img_total = img_bi+img
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labeled,_ = mh.label(img_total)

sizes = mh.labeled.labeled_size(labeled)

labeled = mh.labeled.remove_regions(labeled, np.where(

sizes < 29))

np.savez( ’%s/full_mask_%d.npz’%(tile,s),labeled=labeled)

ncpu = round(seg[-1]/2.+0.1)

pool = mp.Pool(ncpu) #mp.cpu_count()

pool.imap_unordered(make_mask_total_final, dato, chunksize=1)

pool.close()

pool.join()

dato = []

for s in seg:

dato.append((int(s),tile,g, ’%s/Image_astro_fragment_%s_%d_new
.npz’%(tile,g,s)))

def make_seed(a):

s,tile,g,name = a

seed = 0

maxx = 0

try:

f = np.load(name,allow_pickle=True)

img = f[ ’astro_img ’]

except:

print( ’Missing %s ’%name, flush=True)

if len(img) == 0:

print( ’Missing %s ’%name, flush=True)

elif len(img) == 1:

if len(np.unique(img)) == 1:

print( ’No sources found %s ’%name, flush=True)

else:

label,_ = mh.label(img)

sizes = mh.labeled.labeled_size(label)

label = mh.labeled.remove_regions(label, sizes<=49)

label,_ = mh.labeled.relabel(label)

seed = label + seed + maxx

seed[seed==maxx] = maxx = np.max(seed)

np.savez( ’%s/seeds_mask_%d.npz’%(tile,s),seed = seed)

else:

n,_,_ = imge.shape

for i in range(n):

label,_ = mh.label(img[i])

sizes = mh.labeled.labeled_size(label)

label = mh.labeled.remove_regions(label, sizes<=49)

label,_ = mh.labeled.relabel(label)
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seed = label + seed + maxx

seed[seed==maxx] = 0

maxx = np.max(seed)

np.savez( ’%s/seeds_mask_%d.npz’%(tile,s),seed = seed)

ncpu = round(seg[-1]/2.+0.1)

pool = mp.Pool(ncpu) #mp.cpu_count()

pool.imap_unordered(make_seed, dato, chunksize=1)

pool.close()

pool.join() �
a.4.2 Splitting galaxies code

Listing 7: separar_galx.py

def f_importances(coef, names, top=-1):

imp = coef

imp, names = zip(*sorted(list(zip(imp, names))))

# Show all features

if top == -1:

top = len(names)

plt.barh(range(top), imp[::-1][0:top], align= ’ center ’)
plt.yticks(range(top), names[::-1][0:top])

plt.show()

def segmetation(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=3, mode= ’ constant ’,
constant_values=np.min(cut))

return cut

def segmetation_fit(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=5, mode= ’ constant ’,
constant_values=np.min(cut))

return cut, x_min-5, y_min-5
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def segmetation_box(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=3, mode= ’ constant ’,
constant_values=np.min(cut))

return cut, x_min-3, y_min-3, x_max-3, y_max-3

def segmetation_fit_seg(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

cut_label = label_galaxy[x_min:x_max,y_min:y_max]

mask = np.invert(cut_label)

cut[mask] = np.min(cut)

return cut, cut_label, x_min, y_min, x_max, y_max

def segmetation_box_seg(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=10, mode= ’ constant ’,
constant_values=np.min(cut))

cut_label = np.pad(label_galaxy[x_min:x_max,y_min:y_max],

pad_width=10, mode= ’ constant ’, constant_values=np.min(cut

))

return cut, cut_label, x_min-10, y_min-10

def fins_coord(img,t_coord,ex,ey):

x0 = int(t_coord[ ’min_x0 ’].values[0])
y0 = int(t_coord[ ’min_y0 ’].values[0])

xn = t_coord[ ’ Point_ellipse_x ’].values
yn = t_coord[ ’ Point_ellipse_y ’].values

x = ex - x0

y = ey - y0

catalog = []

for ig in img:

igm = ig > np.min(ig)

img = mh.close_holes(igm)

labeled,n = mh.label(igm)
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labeled = morphology.remove_small_objects(labeled,

min_size=9, connectivity=1)

labeled_holes,n = mh.labeled.relabel(labeled)

for k,l in zip(xn,yn):

for i,j in zip(x,y):

if i<=np.max(xn) and i>=0:

if j<=np.max(yn) and j>=0:

try:

if labeled[int(j),int(i)]==labeled[

int(l),int(k)] and labeled[int(j)

,int(i)]!=0.:

a = (int(i+x0),int(j+y0),int(k+x0

),int(l+y0))

catalog.append(a)

except:

a = (int(i+x0),int(j+y0),int(k+x0),

int(l+y0))

return catalog

def result_catalog(data):

s,image_name,catalog_name,tabla_name = data

name = ’ss_fornax_tile1_g_long_ALIGNi.003 ’
header = fits.getheader(name+ ’ . f i t s ’)
w = WCS(header)

Eigenthaler = pd.read_csv(catalog_name)

era = Eigenthaler[ ’_RAJ2000 ’]
edec = Eigenthaler[ ’_DEJ2000 ’]
ex,ey = w.all_world2pix(era,edec,0,ra_dec_order=True)

ex = np.array([int(i) for i in ex])

ey = np.array([int(i) for i in ey])

tabla = pd.read_csv(tabla_name)

columns = [ ’Point_x ’, ’Point_y ’, ’ Point_circicle_x ’, ’
Point_ellipse_x ’,

’ Point_circicle_y ’, ’ Point_ellipse_y ’, ’image ’, ’
segment ’, ’min_x0 ’,

’min_y0 ’, ’ Point_x_full ’, ’ Point_circicle_x_full ’
,

’ Point_ellipse_x_full ’, ’ Point_y_full ’, ’
Point_circicle_y_full ’,

’ Point_ellipse_y_full ’, ’RA’, ’Dec ’, ’RA2’, ’Dec2

’, ’RA3’, ’Dec3 ’]

t_coord = tabla[columns].iloc[tabla[ ’segment ’].values==s]

del name, header, w, era, edec, tabla, columns

gc.collect()

img = process_image(s,image_name)
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catalogo = fins_coord(img,t_coord,ex,ey)

return catalogo

def kernel_fit(p,l,s):

astro = p.copy()

ravel = astro[l]

thresholding = np.percentile(ravel,95)

img = astro > thresholding

img = morphology.remove_small_objects(img,min_size=13,

connectivity=1)

img = mh.close_holes(img)

labeled,n = mh.label(img)

sizes = mh.labeled.labeled_size(labeled)

sizes = sizes[1::]

kernel_sizes = np.percentile(sizes,98)

Bc = disk(int(np.sqrt(kernel_sizes/np.pi)))>0

min_size = int(np.count_nonzero(Bc))

if s == None:

return Bc, min_size

else:

if s <= min_size:

Bc = disk(int(np.sqrt(s/np.pi)-0.5))

min_size = int(np.count_nonzero(Bc))

return Bc, min_size

else:

return Bc, min_size

def sky_simple(p,Bc):

thresholding = np.arange(np.min(p),

np.max(p) + np.max(p)/1000,

np.max(p)/1000)

n_obj = []

x = []

for i in thresholding:

img = p > i

labeled,n = mh.label(img,Bc)

n_obj.append(n)

x.append(i)

x = np.array(x)

n_obj = np.array(n_obj)

return x[np.argmax(n_obj)], n_obj[np.argmax(n_obj)]

def find_sigma(a):

p,SC,i,Bc = a

d = int(max(5,2*np.ceil(3*i)+1))

bilateral = cv2.bilateralFilter(p,d,SC,i)

thresholding_max, n_obj_max = sky_simple(bilateral,Bc)

r = (i, n_obj_max, thresholding_max, d)

return r
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def optimizar_paral(p,ravel,Bc,ncpu):

sigma = np.arange(1.,10.1,0.1)

SC = np.std(p.ravel())#*1.25

pool = mp.Pool(ncpu) #mp.cpu_count()

data = [(p,SC,i,Bc) for i in sigma]

results = pool.map(find_sigma, data)

pool.close()

pool.join()

re_sigma = np.array([i[0] for i in results])

re_n = np.array([i[1] for i in results])

re_thresholding = np.array([i[2] for i in results])

window = np.array([i[3] for i in results])

return(re_sigma[np.argmin(re_n)],

re_thresholding[np.argmin(re_n)],

window[np.argmin(re_n)],

SC)

colors = list(map(plt.cm.jet,range(0, 256, 2)))

random.shuffle(colors)

rmap = c.ListedColormap(colors)

import multiprocessing as mp

import os

def calc_chunksize(n_workers, len_iterable, factor=4):

chunksize, extra = divmod(len_iterable, n_workers * factor)

if extra:

chunksize += 1

return chunksize

def separar_galx(o):

sss,ttt,ggg,name_galxo,name_seeds,name_mask = o

try:

seed = np.load(name_seeds,allow_pickle=True)

part = seed[ ’seed ’]
except:

print( ’Missing %s ’%name_seeds, flush=True)

try:

full_mask = np.load(name_mask,allow_pickle=True)

labeled = full_mask[ ’ labeled ’]
except:

print( ’Missing %s ’%name_mask, flush=True)

part_sky = np.load(name_galxo,allow_pickle=True)
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result_u = part_sky[ ’part_sky ’]
cuto_label = part_sky[ ’part_seg ’]
x0 = part_sky[ ’x0 ’]
y0 = part_sky[ ’y0 ’]
result_u[labeled==0] = 0

img_separada = np.zeros((result_u.shape))

num = 0

ll_s = 0

for p in np.unique(labeled)[1::]:

g, g_mask, x_min, y_min, x_max, y_max =

segmetation_fit_seg(result_u,labeled,p)

m = part[x_min:x_max,y_min:y_max]

m[np.invert(g_mask)]=0

m,_ = mh.labeled.relabel(m)

if len(np.unique(m)) == 1:

l = g_mask*1

else:

l = watershed(g_mask, m, mask=g_mask)

ll_s = l + num

ll_s[ll_s==num]=0

num = np.max(ll_s)

img_separada[x_min:x_max,y_min:y_max] = ll_s +

img_separada[x_min:x_max,y_min:y_max]

np.savez( ’%s/first_separate_mask_%s_%d.npz’%(ttt,ggg,sss),
img_separate = img_separada)

def separar_galx_morf(o):

sss,ttt,ggg,name_galxo,name_mask = o

try:

full_mask = np.load(name_mask,allow_pickle=True)

labeled = full_mask[ ’ labeled ’]
except:

print( ’Missing %s ’%name_mask, flush=True)

img_separate = np.load(name_galxo,allow_pickle=True)

result_u = img_separate[ ’ img_separate ’]
result_u[labeled==0] = 0

img_separada = np.zeros((result_u.shape))

num = 0

ll_s = 0

for p in np.unique(labeled)[1::]:

g, g_mask, x_min, y_min, x_max, y_max =

segmetation_fit_seg(result_u,labeled,p)
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distance = ndi.distance_transform_edt(g_mask)

sizes = mh.labeled.labeled_size(g_mask)

sizes = sizes[1::]

radii = 20 # np.sqrt(sizes/np.pi/100)[0]

local_maxi = mh.locmax(distance, Bc = disk(int(radii))) #

disk(int(radii/2)))

local_maxi[np.invert(g_mask)] = False

local_maxi = local_maxi*1

markers,_ = mh.label(local_maxi,Bc = disk(int(radii)))

l = watershed(g_mask, markers, mask=g_mask)

ll_s = l + num

ll_s[ll_s==num]=0

num = np.max(ll_s)

img_separada[x_min:x_max,y_min:y_max] = ll_s +

img_separada[x_min:x_max,y_min:y_max]

np.savez( ’%s/second_separate_mask_%s_%d.npz’%(ttt,ggg,sss),
img_separate = img_separada)

tile = sys.argv[1]

g = sys.argv[2]

segments_slic = np.load( ’%s/segments_slic%s_weight_new.npy’%(tile
,g))

seg = np.unique(segments_slic)[1::]

del segments_slic

gc.collect()

dato = []

for s in seg:

try:

name1 = ’%s/part_sky_%s_weight_%d.npz’%(tile,g,s)
name2 = ’%s/seeds_mask_%d.npz’%(tile,s)
name3 = ’%s/full_mask_%d.npz’%(tile,s)
dato.append((int(s),tile,g,name1,name2))

except:

print( ’Missing %s or %s ’%(name2,name3), flush=True)

cpu = round(seg[-1]/2.+0.1) #mp.cpu_count()

pool = mp.Pool(processes = cpu)

ck = calc_chunksize(cpu, len(dato))

pool.imap_unordered(separar_galx, dato, chunksize=ck)

pool.close()

pool.join()

dato = []

for s in seg:

try:
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name1 = ’%s/part_sky_%s_weight_%d.npz’%(tile,g,s)
name3 = ’%s/first_separate_mask_%s_%d.npy’%(tile,g,s)
dato.append((int(s),tile,g,name1,name3))

except:

print( ’Missing %s ’%(name3),flush=True)

cpu = round(seg[-1]/2.+0.1) #mp.cpu_count()

pool = mp.Pool(processes = cpu)

ck = calc_chunksize(cpu, len(dato))

pool.imap_unordered(separar_galx_morf, dato, chunksize=ck)

pool.close()

pool.join() �
a.4.3 Table code

Listing 8: tabla_img.py

def segmetation(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=3, mode= ’ constant ’,
constant_values=np.min(cut))

return cut

def segmetation_fit(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=5, mode= ’ constant ’,
constant_values=np.min(cut))

return cut, x_min-5, y_min-5

def segmetation_fit_seg(p,l,i):

astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

cut_label = label_galaxy[x_min:x_max,y_min:y_max]

mask = np.invert(cut_label)

np.place(cut,mask=mask, vals=np.min(cut))

return cut, cut_label, x_min, y_min

def segmetation_box_seg(p,l,i):
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astro = p.copy()

label_galaxy = (l==i)

x_min,x_max,y_min,y_max = mh.bbox(label_galaxy)

cut = astro[x_min:x_max,y_min:y_max]

mask = np.invert(label_galaxy[x_min:x_max,y_min:y_max])

np.place(cut,mask=mask, vals=np.min(cut))

cut = np.pad(cut, pad_width=10, mode= ’ constant ’,
constant_values=np.min(cut))

cut_label = np.pad(label_galaxy[x_min:x_max,y_min:y_max],

pad_width=10, mode= ’ constant ’, constant_values=np.min(cut

))

return cut, cut_label, x_min-10, y_min-10

def find_ellipse(p,l,n):

point_x = []

point_y = []

mayor = []

minor = []

ang = []

for i in range(1,n+1):

try:#1

img, x_min, y_min = segmetation_fit(p,l,i)

img,_ = mh.label(img > np.min(img))

sizes = mh.labeled.labeled_size(img)

img = mh.labeled.remove_regions(img,np.where(sizes <=

5))

img = np.invert(mh.close_holes(img))*np.uint8(1)
_,contours, hierarchy = cv2.findContours(img,2,2)

cnt = contours[1]

(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)

point_x.append(int(x+y_min))

point_y.append(int(y+x_min))

mayor.append(ma)

minor.append(MA)

ang.append(angle)

except:

point_x.append(int(0))

point_y.append(int(0))

mayor.append(0)

minor.append(0)

ang.append(0)

return point_x,point_y, np.array(mayor), np.array(minor), np.

array(ang)

def find_circicle(p,l,n):

point_x = []

point_y = []

radii = []

for i in range(1,n+1):

try:#2

img, x_min, y_min = segmetation_fit(p,l,i)

img,_ = mh.label(img > np.min(img))
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sizes = mh.labeled.labeled_size(img)

img = mh.labeled.remove_regions(img,np.where(sizes <=

5))

img = np.invert(mh.close_holes(img))*np.uint8(1)
_,contours, hierarchy = cv2.findContours(img,2,2)

cnt = contours[1]

(x,y),radius = cv2.minEnclosingCircle(cnt)

radius = int(radius)

point_x.append(int(x+y_min))

point_y.append(int(y+x_min))

radii.append(radius)

except:

radius = int(0)

point_x.append(int(0))

point_y.append(int(0))

radii.append(0)

return point_x,point_y, np.array(radii)

def find_rectangle(p,l,n):

fmax = []

fmin = []

for i in range(1,n+1):

try:#3

img, x_min, y_min = segmetation_fit(p,l,i)

img,_ = mh.label(img > np.min(img))

sizes = mh.labeled.labeled_size(img)

img = mh.labeled.remove_regions(img,np.where(sizes <=

5))

img = np.invert(mh.close_holes(img))*np.uint8(1)

img = np.pad(img, pad_width=2, mode= ’ constant ’,
constant_values=1)

_,contours, hierarchy = cv2.findContours(img,2,2)

cnt = contours[1]

xy,wh,ang = cv2.minAreaRect(cnt)

fmax.append(max(wh))

fmin.append(min(wh))

except:

fmax.append(0)

fmin.append(0)

return np.array(fmax), np.array(fmin)

def perimeter(p,l,n):

astro = p.copy()

per = []

for i in range(1,n+1):

try:#4

cut = segmetation(astro,l,i)

perimeter = mh.bwperim(cut>np.min(cut),n=8)

labeled_per, n = mh.label(perimeter,np.ones((3,3),np.

bool))

sizes_per = mh.labeled.labeled_size(labeled_per)

per.append(sizes_per[1])

61



except:

per.append(0)

del astro

gc.collect()

return np.array(per).astype(float)

def convex_hull(p,l,n):

astro = p.copy()

area_hull = []

primeter_hull = []

for i in range(1,n+1):

try:#5

cut = segmetation(astro,l,i)

convex = convex_hull_object((cut > np.min(cut))*1,

connectivity=1)

labeled_hull, n = mh.label(convex, np.ones((3,3),np.

bool))

sizes_hull = mh.labeled.labeled_size(labeled_hull)

area_hull.append(sizes_hull[1])

peri = mh.bwperim((labeled_hull>0),n=8)

labeled_per, n = mh.label(peri,np.ones((3,3),np.bool)

)

sizes_per = mh.labeled.labeled_size(labeled_per)

primeter_hull.append(sizes_per[1])

except:

area_hull.append(0)

primeter_hull.append(0)

del astro

gc.collect()

return np.array(area_hull).astype(float), np.array(

primeter_hull).astype(float)

def calc_chunksize(n_workers, len_iterable, factor=4):

chunksize, extra = divmod(len_iterable, n_workers * factor)

if extra:

chunksize += 1

return chunksize

def process_image_auto(s,image_name):

imge = np.load(image_name, allow_pickle=True)

n,_,_ = imge.shape

part = 0

for l in range(n,0,-1):

part = imge[l-1] + part

return np.array(part)

def shape_features_total(p,q):

astroo = q.copy()

astroo = astroo - np.min(astroo)

labeled = p.copy()

labeled = labeled.astype(int)
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astroo[labeled==0] = 0

astro = astroo

sizes = mh.labeled.labeled_size(labeled)

labeled = mh.labeled.remove_regions(labeled,np.where(sizes <=

5))

labeled,n = mh.labeled.relabel(labeled)

q[labeled==0] = 0

astro = q

index = np.unique(labeled)[1::]

point = mh.center_of_mass(astro,labeled)

point = point[1::]

point_x = point[:,1]

point_y = point[:,0]

point_cir_x, point_cir_y, radius = find_circicle(astro,

labeled,n)

point_ell_x, point_ell_y, mayor, minor, ang = find_ellipse(

astro,labeled,n)

sizes = np.array(mh.labeled.labeled_size(labeled)[1::]).

astype(float)

sizes_per = perimeter(astro,labeled,n)

sizes_hull, sizes_per_hull = convex_hull(astro,labeled,n)

radii = np.sqrt(sizes/np.pi)

radii_hull = np.sqrt(sizes_hull/np.pi)

volum_cir = 4.*np.pi*radii*radii*radii/3.

a, b = find_rectangle(astro,labeled,n)

volum_ellip = 4.*np.pi*mayor*mayor*minor/3.

e = np.sqrt(1.-(minor/mayor)**2.)

s_ellip = np.pi*(2*mayor*mayor+(minor*minor/e)*np.log((1.+e)

/(1.-e)))

chunkines = a/b

cpa = sizes_per/sizes

dp = sizes_per_hull/np.pi

bulkiness = a*b/sizes

bulkiness2 = 4*np.pi*mayor*minor/sizes

sf2 = mayor/minor/bulkiness2

convexity = sizes_per_hull/sizes_per #Roughness

Solidity = sizes/sizes_hull

circularity = 4*np.pi*sizes/sizes_per/sizes_per # Thinnes

Ratio - Sphericity

circularity2 = 4*np.pi*sizes_hull/sizes_per_hull/

sizes_per_hull

circularity3 = 4*np.pi*sizes/sizes_per_hull/sizes_per_hull #

roundness

circularity4 = sizes_per/2./np.pi/radii

circularity5 = radii/radius

roundness = 4.*sizes/np.pi/mayor/mayor

roundness2= radii_hull/mayor

roundness3= 4.*radii_hull/(2.*mayor+2.*minor)

roundness4 = dp/radius

Sphericity = (36*np.pi*volum_cir)**(1./3.)/sizes
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xlg = [0]*len(sizes)

xe = [0]*len(sizes)

straightness = [0]*len(sizes)

for s,per,k in zip(sizes,sizes_per,range(len(sizes))):

if per*per-16*s>= 0:

xlg[k] = (per+np.sqrt(per*per-16*s))/4.

xe[k] = (per-np.sqrt(per*per-16*s))/4.

straightness[k] = mayor[k]/xlg[k]

else:

xlg[k] = 0.

xe[k] = 0.

straightness[k] = 0.

M20 = []

Gini = []

brightness = []

brightnessm = []

brightness20 = []

brightness50 = []

radii50 = []

radii20 = []

for p in index:

cut, cut_label, x02, y02 = segmetation_box_seg(astro,

labeled,p)

y,x = cut.shape

point_ell_xc, point_ell_yc, mayor, minor, ang =

find_ellipse(cut,cut_label*1,1)

point_ell_xc, point_ell_yc = point_ell_xc[0],

point_ell_yc[0]

brightnesm = np.mean(cut[cut_label])

brightnesst = np.sum(cut[cut_label])

sizes_c = len(cut[cut_label])

norma = np.abs(brightnesm)*sizes_c*(sizes_c-1)

gini_array = cut[cut_label]

gini_ascending = {}

gini_ascending[ ’ gini ’] = gini_array

gini_ascending = pd.DataFrame(gini_ascending)

gini_ascending = gini_ascending.sort_values( ’ gini ’,
ascending=True)

gini = 0.

for i,f in enumerate(gini_ascending.gini.values):

gini = gini + (2*(i+1)-sizes_c-1)*np.abs(f)

ginif = float(gini)/float(norma)

fi = []

xl = []

yl = []

for i in range(x):

for j in range(y):
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if cut[int(j),int(i)] != 0:

fi.append(cut[int(j),int(i)])

xl.append(i)

yl.append(j)

m20table = {}

m20table[ ’ f ’] = fi

m20table[ ’x ’] = xl

m20table[ ’y ’] = yl

m20table = pd.DataFrame(m20table)

m20table = m20table.sort_values( ’ f ’, ascending=False)

brightness_50 = m20table[ ’ f ’].iloc[m20table[ ’ f ’].values>
np.percentile(m20table[ ’ f ’].values,50)].values

sizes_50 = len(cut[cut > min(brightness_50)])

brightness_50_sum = np.sum(cut[cut > min(brightness_50)])

radii_50 = np.sqrt(sizes_50/np.pi)

brightness_20 = m20table[ ’ f ’].iloc[m20table[ ’ f ’].values>
np.percentile(m20table[ ’ f ’].values,20)].values

sizes_20 = len(cut[cut > min(brightness_20)])

brightness_20_sum = np.sum(cut[cut > min(brightness_20)])

radii_20 = np.sqrt(sizes_20/np.pi)

M_total = 0

for s in range(len(m20table)):

M_total =(M_total+

m20table[ ’ f ’].values[s]*((m20table[ ’x ’].
values[s]-point_ell_xc)**2+

(m20table[ ’y ’].
values[s]-

point_ell_yc)

**2))

M_20 = 0

m20table20 = m20table.iloc[m20table[ ’ f ’].values>np.
percentile(m20table[ ’ f ’].values,20)]

for s in range(len(m20table20)):

M_20 =(M_20+

m20table20[ ’ f ’].values[s]*((m20table20[ ’x ’].
values[s]-point_ell_xc)**2+

(m20table20[ ’y ’].
values[s]-

point_ell_yc)**2)

)

M_20t = np.log10(M_20/M_total)

Gini.append(ginif)

M20.append(M_20t)

brightness.append(brightnesst)

brightnessm.append(brightnesm)

brightness20.append(brightness_20_sum)

brightness50.append(brightness_50_sum)
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radii50.append(radii_50)

radii20.append(radii_20)

brightness = np.array(brightness)

sb = brightness/sizes

sb_cir = brightness/4./np.pi/radii/radii

sb_ellip = brightness/s_ellip

dic = { ’Label ’ : index,

’Point_x ’ : point_x,

’Point_y ’ : point_y,

’ Point_circicle_x ’ : point_cir_x,

’ Point_ellipse_x ’ : point_ell_x,

’ Point_circicle_y ’ : point_cir_y,

’ Point_ellipse_y ’ : point_ell_y,

’ radii ’ : radii,

’area ’ : sizes,

’area_convex ’ : sizes_hull,

’P ’ : sizes_per,

’P_convex ’ : sizes_per_hull,

’ intensity1 ’ : brightness,

’ surface_intensity ’ : sb,

’ surface_intensity_cir ’ : sb_cir,

’ surface_intensity_ellip ’ : sb_ellip,

’volume_cir ’ : volum_cir,

’volume_ellip ’ : volum_ellip,

’Gini ’ : Gini,

’M20’ : M20,

’ eccentricity1 ’ : e,

’chunkines ’ : chunkines,

’P−area ’ : cpa,

’ surface_factor2 ’ : sf2,

’geodesic_length ’ : xlg,

’ fiber_thickness ’ : xe,

’ straightness ’ : straightness,

’bulkiness1 ’ : bulkiness,

’bulkiness2 ’ : bulkiness2,

’roughness1 ’ : convexity,

’ solidity ’ : Solidity,

’ circularity1 ’ : circularity,

’ circularity2 ’ : circularity2,

’ circularity3 ’ : circularity3,

’ circularity4 ’ : circularity4,

’ circularity5 ’ : circularity5,

’roundness1 ’ : roundness,

’roundness2 ’ : roundness2,

’roundness3 ’ : roundness3,

’roundness4 ’ : roundness4,

’ Sphericity_cir ’ : Sphericity,

’brightness ’ : brightness,

’brightnessm ’ : brightnessm,

’brightness20 ’ : brightness20,

’brightness50 ’ : brightness50,
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’ radii20 ’ : radii20,

’ radii50 ’ : radii50}

return pd.DataFrame(dic)

def tabla_new_total(a):

s,tile,g,name,nameo = a

img_separate = np.load(name,allow_pickle=True)

ll = img_separate[ ’ img_separate ’]
part_sky = np.load(nameo,allow_pickle=True)

imgo_total = part_sky[ ’part_sky ’]
cuto_label = part_sky[ ’part_seg ’]
x0 = part_sky[ ’x0 ’]
y0 = part_sky[ ’y0 ’]
table_total = shape_features_total(ll,imgo_total)

result = [0]*len(table_total)

table_total[ ’ class ’] = result

label = [str(0)]*len(table_total)

table_total[ ’image ’] = label

ss = [str(s)]*len(table_total)

table_total[ ’segment ’] = ss

min_x0 = [y0]*len(table_total)

table_total[ ’min_x0 ’] = min_x0

min_y0 = [x0]*len(table_total)

table_total[ ’min_y0 ’] = min_y0

table_total[ ’ Point_x_full ’] = table_total[ ’Point_x ’] + y0

table_total[ ’ Point_circicle_x_full ’] = table_total[ ’
Point_circicle_x ’] + y0

table_total[ ’ Point_ellipse_x_full ’] = table_total[ ’
Point_ellipse_x ’] + y0

table_total[ ’ Point_y_full ’] = table_total[ ’Point_y ’] + x0

table_total[ ’ Point_circicle_y_full ’] = table_total[ ’
Point_circicle_y ’] + x0

table_total[ ’ Point_ellipse_y_full ’] = table_total[ ’
Point_ellipse_y ’] + x0

table_total.to_csv( ’%s/Segment_table_%s_%d. csv ’%(tile,g,s),
index = None)

print( ’Finished %s/Segment_table_%s_%d. csv ’%(tile,g,s),flush=
True)

tile = sys.argv[1]

g = sys.argv[2]

segments_slic = np.load( ’%s/segments_slic%s_weight_new.npy’%(tile
,g))

seg = np.unique(segments_slic)[1::]

del segments_slic

gc.collect()

dato = []

for s in seg:
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name1 = ’%s/second_separate_mask_%s_%d.npz’%(tile,g,s)
name2 = ’%s/part_sky_%s_%d.npz’%(tile,g,s)
try:

dato.append((int(s),tile,g,name1,name2))

except:

print( ’Missing %s ’%name1,flush=True)

ncpu = round(seg[-1]/2.+0.1)

pool = mp.Pool(ncpu) #mp.cpu_count()

pool.imap_unordered(tabla_new_total, dato, chunksize=1)

pool.close()

pool.join() �
a.4.4 Catalog creation

Listing 9: catalog.py

name = ’ss_fornax_tile1_g_long_ALIGNi.003 ’
header = fits.getheader(name+ ’ . f i t s ’)
w = WCS(header)

gc.collect()

catalog_name = ’Catalogos/Galaxies/Eigenthaler2018 . f i t ’

Eigenthaler = Table.read(catalog_name)

Eigenthaler = Eigenthaler.to_pandas()

#print(Eigenthaler)

era = Eigenthaler[ ’_RAJ2000 ’]
edec = Eigenthaler[ ’_DEJ2000 ’]
ex0,ey0 = w.all_world2pix(era,edec,0,ra_dec_order=True)

del name, header, w, era, edec

gc.collect()

coord = pd.DataFrame(data=np.c_[ex0, ey0], columns=[ ’ex0 ’, ’ey0 ’
])

coord = coord.dropna()

ex0 = np.array([int(i) for i in coord.ex0.values])

ey0 = np.array([int(i) for i in coord.ey0.values])

co = []

x = ’morf ’
for s in range(1,54):

try:

t_coord = pd.read_csv( ’ t1/Tabla_final_tile1g%d_morf_new.
csv ’%s)

img_total, cuto_label, y0, x0 = np.load( ’part_skyo%d.npy’
%s,allow_pickle=True)

ex = ex0 - x0
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ey = ey0 - y0

labeled_total = np.load( ’mask_Image_astro_separada_morf_g
%d_new.npy’%s,allow_pickle=True)

sizes = mh.labeled.labeled_size(labeled_total)

labeled_total = mh.labeled.remove_regions(labeled_total,

np.where(sizes <= 5))

labeled_total,n = mh.labeled.relabel(labeled_total)

#labeled_total = labeled_total.astype(int)

img_total[labeled_total==0]=0

yn,xn = img_total.shape

for i,j in zip(ex,ey):

if (i >= 0) and (i < xn) and (j >= 0) and (j < yn):

q = labeled_total[j,i]

m = t_coord[ ’Label ’].iloc[t_coord[ ’Label ’].values
==q].values

if (q != 0) & (len(m)>0):

m = t_coord[ ’Label ’].iloc[t_coord[ ’Label ’].
values==q].values[0]

co.append((i,j,i+x0,j+y0,q,m,s))

print(i,j,i+x0,j+y0,q,m,s)

except:

print(s)

co = np.array(co)

co = pd.DataFrame(np.c_[co], columns=[ ’ex ’, ’ey ’, ’x ’, ’y ’, ’ s_t ’, ’
Label ’, ’segment ’])

co = co.sort_values( ’ s_t ’)

co.to_csv( ’Tabla_co_Eigenthaler2018_mask_morf_new . csv ’, index =

None) �
a.5 results

Listing 10: Master_code.py

def one_table(i,tile,g):

segments_slic = np.load( ’%s/segments_slic%s_weight_new.npy’%(
tile,g))

seg = np.unique(segments_slic)[1::]

del segments_slic

gc.collect()

tabla_morf2 = {}

for s in seg:

try:

tabla_morf2[ ’ tabla%d’%s] = pd.read_csv( ’%s/
Segment_table_%s_%d. csv ’%(tile,g,int(s)))
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except:

name = ’%s/Segment_table_%s_%d. csv ’%(tile,g,int(s))
print( ’Missing %s ’%name,flush=True)

tabla_morf2 = pd.concat(tabla_morf2, ignore_index=True, sort=

False)

tabla_morf2[ ’mu_mean’] = tabla_morf2[ ’brightnessm ’]/
tabla_morf2[ ’ radii ’]

tabla_morf2[ ’mu_total ’] = tabla_morf2[ ’brightness ’]/
tabla_morf2[ ’ radii ’]

tabla_morf2[ ’mu_20’] = tabla_morf2[ ’brightness20 ’]/
tabla_morf2[ ’ radii20 ’]

tabla_morf2[ ’mu_50’] = tabla_morf2[ ’brightness50 ’]/
tabla_morf2[ ’ radii50 ’]

tabla_morf2[ ’ t i l e ’] = [i]*len(tabla_morf2)

return(tabla_morf2)

name = pd.read_csv( ’data_img. csv ’)
data = [(int(i), ’ t i le_%s−%d’%(g,i),g) for i,g in name[[ ’ t i l e ’, ’

band’]].values]

tabla = {}

for i,tile,g in data:

tabla[ ’%d’%i] = one_table(i,tile,g)

tabla_morf = pd.concat(tabla, ignore_index=True, sort=False)

tabla_morf = tabla_morf.replace([np.inf, -np.inf], np.nan,

inplace=False)

tabla_morf = tabla_morf.drop([ ’Gini ’, ’M20’, ’ Sphericity_cir ’, ’
brightness ’, ’brightnessm ’, ’ radii20 ’, ’ radii50 ’, ’mu_total ’,
’mu_total ’, ’ circularity4 ’, ’ fiber_thickness ’], axis=1)

tabla_morf = tabla_morf.dropna()

lsb_select = pd.read_csv( ’ tabla_lsb_select . csv ’)
lsb_select[ ’ t i l e ’] = [1]*len(lsb_select)

lsb_tiles_select = pd.read_csv( ’ tiles_co . csv ’)
lsb_tiles_select = pd.merge(lsb_tiles, lsb_tiles_select, on=[ ’

Label ’, ’segment ’, ’ t i l e ’])
tabla_morfs = pd.merge(tabla_morf, lsb_select, on=[ ’Label ’, ’

segment ’, ’ t i l e ’])

col_id = [ ’Label ’,
’Point_x ’,
’Point_y ’,
’ Point_circicle_x ’,
’ Point_ellipse_x ’,
’ Point_circicle_y ’,
’ Point_ellipse_y ’,
’area ’,
’area_convex ’,
’P ’,
’P_convex ’,
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’ intensity1 ’,
’ surface_intensity ’,
’ surface_intensity_cir ’,
’ surface_intensity_ellip ’,
’volume_cir ’,
’volume_ellip ’,
’ Point_x_full ’,
’ Point_y_full ’,
’ Point_circicle_x_full ’,
’ Point_circicle_y_full ’,
’ Point_ellipse_x_full ’,
’ Point_ellipse_y_full ’,
’ class ’,
’image ’,
’segment ’,
’min_x0 ’, ’min_y0 ’, ’ t i l e ’]

col_names = tabla_morf.columns.values

col_names = col_names.tolist()

for i in col_id:

col_names.remove(i)

col_good = col_names.copy()

col_mal = [ ’mu_20’, ’mu_50’, ’brightness20 ’, ’brightness50 ’, ’ radii ’
]

for i in col_mal:

col_good.remove(i)

col = col_good.copy()

col.remove( ’ circularity1 ’)
col.remove( ’ circularity4 ’)
col.remove( ’ fiber_thickness ’)
col.remove( ’roundness1 ’)

lsb_max = np.max(tabla_morfs[[ ’mu_20’, ’mu_50’, ’mu_mean’]+col])
lsb_min = np.min(tabla_morfs[[ ’mu_20’, ’mu_50’, ’mu_mean’]+col])

tabla_selec_lsb = tabla_morf.copy()

tabla_selec_lsb0 = tabla_morf0.copy()

for c in [ ’mu_20’, ’mu_50’, ’mu_mean’]+col:
mask0 = (tabla_morf0[c] <= lsb_max[c]) & (tabla_morf0[c] >=

lsb_min[c])

tabla_morf0 = tabla_selec_lsb0.loc[mask0]

mask = (tabla_morf[c] <= lsb_max[c]) & (tabla_morf[c] >=

lsb_min[c])

tabla_morf = tabla_selec_lsb.loc[mask]

mmx = MinMaxScaler()
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tabla_morf_mmx = mm.fit_transform(tabla_morf[col])

tabla_morf_mmx = pd.DataFrame(tabla_morf_mmx,columns=col)

for i in col_id+col_mal:

tabla_morf_mmx[i] = tabla_morf[i].values

col = [ ’ eccentricity1 ’, ’chunkines ’, ’P−area ’, ’geodesic_length ’, ’
straightness ’, ’roundness2 ’, ’roundness3 ’, ’roundness4 ’]

test = tabla_morf_mmx

knn_from_joblib = joblib.load( ’OneClassSVM. pkl ’)
train_scores = knn_from_joblib.predict(test[col])

test[ ’ class ’] = train_scores

test_result = test.iloc[test[ ’ class ’].values==1]

name = pd.read_csv( ’data_img. csv ’)
data = [(int(i),name_img,name_weight, ’ t i le_%s−%d’%(g,i),g) for i,

name_img,name_weight,g in name[[ ’ t i l e ’, ’name_img’, ’
name_weight ’, ’band’]].values]

catalog = {}

for i,name_img,name_weight,tile,g in data:

header1 = fits.getheader(name_img)

w1 = WCS(header1)

catalog01 = test_result.iloc[test_result[ ’ t i l e ’].values==i]
a = catalog01[[ ’ Point_x_full ’, ’ Point_y_full ’]].values
ex1 = a[:,0]

ey1 = a[:,1]

ra1, dec1 = w1.all_pix2world(ex1, ey1,0,ra_dec_order=True)

dic1 = { ’RA_J2000 ’ : ra1, ’DE_J2000 ’ : dec1}

catalog[ ’%d’%i] = pd.DataFrame(dic1)

catalog_final = pd.concat(catalog, ignore_index=True, sort=False)

catalog_final.to_csv( ’ Final_resulting_catalog . csv ’, index = None) �
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B
A P P E N D I X : C ATA L O G

The Catalog, resulting from the Galaxy-mining-code, is uploaded on
Github: https://github.com/Alevhf/LSB_candidates
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