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Implications of macrophage polarization in autoimmunity
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Summary

Macrophages are extremely heterogeneous and plastic cells with an impor-

tant role not only in physiological conditions, but also during inflamma-

tion (both for initiation and resolution). In the early 1990s, two different

phenotypes of macrophages were described: one of them called classically

activated (or inflammatory) macrophages (M1) and the other alternatively

activated (or wound-healing) macrophages (M2). Currently, it is known

that functional polarization of macrophages into only two groups is an

over-simplified description of macrophage heterogeneity and plasticity;

indeed, it is necessary to consider a continuum of functional states. Over-

all, the current available data indicate that macrophage polarization is a

multifactorial process in which a huge number of factors can be involved

producing different activation scenarios. Once a macrophage adopts a

phenotype, it still retains the ability to continue changing in response to

new environmental influences. The reversibility of polarization has a criti-

cal therapeutic value, especially in diseases in which an M1/M2 imbalance

plays a pathogenic role. In this review, we assess the high plasticity of

macrophages and their potential to be exploited to reduce chronic/detri-

mental inflammation. On the whole, the evidence detailed in this review

underscores macrophage polarization as a target of interest for

immunotherapy.

Keywords: autoimmunity; M1; M2; macrophage alternative activation;

macrophage polarization.

Introduction

The immune system is able to defend the body against

internal and external damages by promoting inflamma-

tory processes. In this regard, inflammation is the protec-

tive response to injury, infection and hypersensitivity.

Usually, it is a life-preserving response, evidenced by the

propensity to develop grave infections in people with

genetic deficiencies in inflammatory components.1

However, inflammation can also be potentially harmful

to the body and needs to be tightly regulated to avoid

excessive tissue damage. In fact, during several infectious

diseases, inflammation can cause more damage than the

infection itself.2

Inflammatory processes are commonly divided into dif-

ferent stages: initiation, inflammation, resolution and,

finally, tissue-integrity restoration. Along these lines,

macrophages play an important role during the initiation

and resolution phases of inflammatory processes. Conse-

quently, these cells have been classified in a simplified

manner into different and opposite functional states

(pro-inflammatory and anti-inflammatory), characterized

Abbreviations: AP1, activator protein-1; Bach1, broad complex-tramtrack-bric-a-brac domain and cap‘n’collar homolog 1; C/
EBP, CCAAT/enhancer binding protein; CREB, cAMP response element binding protein; CSF-1, colony stimulating factor 1;
EGF, epidermal growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; HIF, hypoxia-inducible factor; HO,
haem-oxygenase; IBD, inflammatory bowel disease; IFN-c, interferon-c; IL-1, interleukin-1; iNOS, inducible nitric oxide synthase;
IRF, interferon regulatory factors; IVIg, intravenous immunoglobulin; NF-jB, nuclear factor-jB; NO, nitric oxide; Nrf2, nuclear
factor erythroid 2-related factor-2; PPAR, peroxisome proliferator-activated receptor; SLE, systemic lupus erythematosus; STAT,
signal transducer and activator of transcription; TGF-b, transforming growth factor b; Th1, T helper type 1; VEGF, vascular
endothelial growth factor
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by also diametrically opposed phenotypes.3 It was sug-

gested that the restoration of homeostasis and the tissue

repair might involve macrophage differentiation by

switching gene expression towards different cell

programmes.4

Tissue-resident macrophages are versatile cells that are

present in almost all the organs of adult mammals and

contribute significantly to both the development of tissue

homeostasis and the resolution of inflammation. Based

on their origin, tissue-resident macrophages can be classi-

fied as blood monocyte-derived macrophages and local

self-renewed resident macrophages.5 In the first case,

bone marrow progenitor-derived monocytes become

macrophages by migration to tissue after receiving several

stimuli. In the second case, tissue-resident macrophages

develop from embryogenic progenitors independently of

haematopoietic stem cells and conserve their self-main-

taining ability.5,6 They probably regenerate and populate

tissues before birth and proliferate locally at steady-state

during adulthood. Evidence also suggests that the local

proliferation rate is maintained at a low level in steady-

state conditions and increases during inflammatory

scenarios or macrophage depletion.7 In addition, mono-

cyte-derived macrophage recruitment collaborates to cope

with the need to increase the number of effector cells

during inflammation.6

Tissue-resident macrophages are extremely heteroge-

neous and plastic cells; they have several names and phe-

notypes in each tissue location and could be considered

as distinct classes of macrophages according to their dif-

ferent transcriptional profile.8 Consequently, tissue-speci-

fic macrophages have been classified in several

populations with different effector function, cell marker

expression and cytokine production.6

Increasing the complexity of macrophage
heterogeneity: polarization

Macrophages are able to change their phenotype in

response to many different stimuli and this process is

known as activation.9,10 In the early 1990s a new pheno-

type of macrophage known as alternatively activated or

healing macrophage (M2) was described as differing from

the classically activated or inflammatory macrophages

(M1).11 This classification was originated from the phe-

notype change observed after in vitro stimulation with

different cytokines,12 as is schematically shown in Fig. 1.

After the M1/M2 macrophage paradigm emerged, further

support was provided for the notion that in fact there is

a continuum of intermediate phenotypes between these

two apparent opposite end phenotypes.9,13,14 A recent

study has described a human macrophage open spectrum

of activation, characterized by transcriptional clusters

associated with different stimuli.15 In this context,

researchers have usually used the term ‘polarization’ to

refer to the perturbation of macrophages with several

stimuli producing different patterns of gene and protein

expression.10

The M1/M2 paradigm emerged as homologous to the

T helper type 1 (Th1)/Th2 response profiles, in fact now

it is known that M1 and M2 macrophages can initiate

and direct the T-cell polarization in different manners.12

Hence, macrophage stimulation with Th1 cytokines [in-

terferon-c (IFN-c) or tumour necrosis factor-a (TNF-a)],
pathogen-associated molecular patterns such as

lipopolysaccharide or endogenous danger signals16 leads

to the differentiation into an M1 phenotype (classically

activated macrophages). Macrophages with this pheno-

type exert a strong cytotoxic and anti-proliferative effec-

tor activity by means of production of both reactive

oxygen species and nitric reactive species, in addition to a

Th1 pro-inflammatory response [interleukin-1 (IL-1),

IL-6, IL-12, IL-23, TNF-a].
On the other hand, IL-4/IL-13 stimulation produces

the differentiation of alternatively activated macrophages

(M2).12,17 This macrophage profile contributes to inflam-

mation resolution and wound healing by producing

Monocyte

HO-1

LPS/IFN-γ

Pro-inflammatory
macrophage

Anti-inflammatory
macrophage

IL-4/IL-13

Figure 1. M1 (pro-inflammatory)/M2 (anti-inflammatory) macro-

phage phenotypes paradigm is reviewed. Both types of macrophages

represent opposite ends of a continuum of intermediate phenotypes

and are produced after monocyte stimulation with lipopolysaccha-

ride (LPS)/interferon-c (IFN-c) (M1) or interleukin-10 (IL-10)/IL-4

(M2). Haem-oxygenase 1 (HO-1) higher expression in M2 macro-

phages is schematically represented. Characteristic M1 pro-inflam-

matory profile is beneficial for pathogens/tumour elimination but is

detrimental for the wound healing process. On the other hand, M2

anti-inflammatory profile improves chronic inflammatory diseases

and regeneration.
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angiogenesis mediators, such as transforming growth fac-

tor-b (TGF-b), vascular endothelial growth factor (VEGF)

and epidermal growth factor (EGF).2 Besides, TGF-b has

been proposed as one of the most important cytokines

involved in M2 phenotype maintenance, in part because

intracellular production inhibits nitric oxide (NO) pro-

duction in these cells.18

Polarization is a dynamic process that not only involves

the tissue microenvironment but also T-cell-derived

cytokines (amplification). The M1 macrophage phenotype

can also be stimulated without the presence of lympho-

cytes, for example by inflammatory cytokines and

microorganism-derived molecules.6,16 Moreover, another

important stimulus able to induce phenotypic changes in

macrophages is serotonin (5-hydroxytryptamine), a

monoamine neurotransmitter that plays a key role as a

regulator of inflammation by modulating the production

of cytokines by immune cells. The effect of serotonin in

inflammation is evidenced by the consequences of its

altered production during chronic inflammatory dis-

eases.19 This molecule drives macrophage-mediated

angiogenesis, modulates polarization, promotes the

expression of serotonin receptors on M2 macrophages

and accordingly, produces the alteration of macrophage

transcriptome towards a growth-promoting, anti-inflam-

matory and pro-fibrotic profile. Serotonin can be released

from platelets during inflammation to activate endothelial

cells and promotes leucocyte adhesion and recruitment.20

Hence, serotonin-dependent macrophage polarization to

an M2 phenotype can have important physiological

implications. Interestingly, metastatic carcinoid tumours

are also able to produce serotonin at serum levels that

could contribute to M2 macrophage polarization.21

Finally, another definition has proposed that M1-like

macrophages are produced after stimulation with the

growth factor granulocyte–macrophage colony-stimulating

factor 1 (GM-CSF-1) and the M2 macrophages after

stimulation with CSF-1.22 However, there is not enough

evidence to associate GM-CSF-1/CSF-1 stimulation with

M1/M2 polarization.

Because of their diversity, alternatively activated macro-

phages are further classified into the following subsets:

M2a, M2b, M2c and M2d (Table 1). This classification

was derived from the use of the following different

stimuli: IL-4/13 (M2a phenotype); immunocomplex and

Toll-receptor agonist (M2b phenotype), IL-10, TGF-b or

glucocorticoid hormones (M2c phenotype); Toll-like

receptor and adenosine A2A receptor agonists (M2d

phenotype).23,24 However, recently, new phenotypes of

macrophages were described as resulting from additional

stimuli.15 For example, haemorrhage-associated macro-

phages called Mhem (induced by haemoglobin),25 macro-

phages generated with oxidized phospholipids (Mox),26

and M4 macrophages induced by chemokine ligand 4.27

Similarly, it was shown that prostaglandin E2 also

produces polarization and has been closely associated

with other stimuli, such as corticosteroid and adeno-

sine.28

Finally, another group of macrophages known as reg-

ulatory macrophages, characterized by FoxP+ expression,

have been observed among tumour-associated macro-

phages.29 Regulatory macrophages have been suggested

to be involved in homeostasis maintenance by limiting

the inflammatory immune response and prolonged clas-

sical macrophage activation.30 Furthermore, similarly to

M2 macrophages, regulatory macrophages are thought

to limit tissue damage but without participating in

wound healing.30 Interestingly, depletion of Foxp3+ cells

reduced the frequency of M2 macrophages in kidney

tumours.29

Overall, the current available data indicate that

macrophage polarization is a multifactorial process in

which a large number of factors can be involved pro-

ducing different activation scenarios. Moreover, ‘chi-

meric’ M1–M2 macrophages with mixed phenotypic

features, such as surface and genetic markers that can

exert an impaired inflammatory function, have been

described in inflammatory conditions, as is the case of

rheumatoid arthritis.31

Despite the above described classification, few reports

have evaluated the involvement of each macrophage sub-

type either in physiological or in pathological conditions.

Although the large complexity of macrophage phenotypic

and functional features is just beginning to be elucidated,

this article will refer hereinafter only to data derived from

studies on M1 and M2 phenotypes.

Table 1. Inducers involved in macrophage subsets polarization and

the suggested role for each one are summarized23,24

Macrophage

subtype Inducers Suggested roles

M1 Interferon-c,
lipopolysaccharide

Type I immunity, Type

4 hypersensitivity,

tumour resistance

M2a Interleukin-4 (IL-4), IL-10,

IL-13, peroxisome

proliferator-

activated receptor

c agonists

Type 2 immunity,

allergy, profibrotic

M2b Immunocomplex,

Toll-like receptor

(TLR) agonists

Th2 activation,

immunoregulation

M2c Glucocorticoids,

IL-10, tumour

necrosis factor-a

Immunoregulation,

tissue repair, matrix

remodelling

M2d TLR, adenosine

A2A receptor

Angiogenesis, clearance

of apoptotic tissue
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Phenotypic differences between macrophage
subtypes

When macrophages find a tissue that is infected by

pathogens or damaged, they can initiate two different

responses: to destroy the infected tissue (inflammatory

response) or to repair the damaged tissue (regenerative

response). Hence M1/M2 phenotypes possess different

metabolic programmes able to influence the immune

response in opposite ways.32 Furthermore, the M2 or

regenerative response is considered by various authors

as the default phenotype displayed by resident

macrophages.12

Several metabolic differences are found between M1/

M2 macrophages and the most studied are those related

to arginin metabolism. For example, alternatively acti-

vated macrophages, unlike classically activated macro-

phages, exhibit an increase in the arginine pathway

producing ornithine.33 This compound is a proline pre-

cursor that enhances collagen synthesis and stimulates cell

proliferation, which is required for the repairing function

of M2 macrophages,34 and simultaneously inhibits iNOS

activity.34 Conversely, M1 macrophages are efficient pro-

ducers of cell proliferation inhibitors such as NO.35 Both,

ornithine and NO are produced by alternative methods

of arginine enzymatic cleavage and the products of each

pathway inhibit the opposite catalytic process.36

However, NO and ornithine production is not the only

difference observed between M1/M2 macrophages. They

also produce pro-inflammatory or anti-inflammatory

cytokines that stimulate very different immune

responses.23 Furthermore, macrophage phenotypes are

usually defined by the following different profiles: M2

macrophages are characterized in vitro by the production

of IL-12low IL-23low IL-10high TGF-bhigh whereas M1 phe-

notype is characterized by IL-12high IL-23high IL-10low.6,23

Along these lines, there is an extensive diversity of termi-

nology defining macrophage activation and there is little

consensus with regards to representative markers and

nomenclature.10

It is important to highlight again that there is probably

a continuum of phenotypes, where NO or ornithine

metabolism predominate, and not only a few sub-types.

With regard to the various activation states of macro-

phages, a significant change in gene expression has been

reported, although there are no clear concerted markers

that characterize each functional status for these cells. A

frequently used marker to identify M2 macrophages is

Arginase-1, nevertheless the expression of this gene has

also been reported for M1 macrophages.10 Further,

expression of the mannose receptor (CD206) and scav-

enging molecules has been frequently used as an M2 mar-

ker. Taking account of these data, the recommended

criteria to identify macrophage subsets would be a

combination of markers.10 For example, some useful

markers that have been recently described in mouse that

are exclusive for M1 are CD38, G-protein-coupled recep-

tor 18 (Gpr18) and formyl peptide receptor 2 (Fpr2),

whereas for M2 macrophages they are the early growth

response protein 2 (Egr2) and c-Myc.37

In an infection context, when macrophages sense the

medium and face ‘dangerous signals’, they need to define

the most appropriate activation profile to control patho-

gen spreading. The recognition of pathogen-associated

molecule patterns in the infected tissue is critical to

accomplish this goal. In most tissues, resident and newly

recruited macrophages will be polarized towards the M1

profile. These macrophages are characterized by high pro-

duction of nitrogen/oxygen reactive products. M1 macro-

phages also produce pro-inflammatory cytokines that will

stimulate a Th1 response from T cells (IFN-c) and will

further elevate the M1 macrophage response. In the intes-

tine, the situation is slightly different because this organ

is constantly exposed to a high content of bacteria, in

consequence, M1 polarization is usually suppressed in this

organ to allow symbiosis with the normal flora.32

Once M1 macrophages clear the source danger signals

and no additional pathogens are detected, the presence of

damage-associated molecule patterns is essential to induce

the ‘repair programme’.32 Additionally, new recruited

macrophages will also adopt this default programme, to

heal wound-producing EGF, VEGF and other growth fac-

tors. Besides, signals from a wound (TGF-b and adeno-

sine) will collaborate in M2 phenotype maintenance.38

Contribution of haem-oxygenase expression to
macrophage polarization

Haem-oxygenase (HO) activity is the limiting step in

heme group catalysis into carbon monoxide, Fe2+ and

biliverdin.39 There are different isozymes of HO called

HO-1, HO-2 and HO-3; the first one is the stress-induci-

ble isoform whereas HO-2 and HO-3 are the constitutive

forms.40 HO-1 expression is associated with a cellular

response against inflammation and oxidative stress.41 In

fact, the HO-1 knockout murine model suffers chronic

inflammation and is very susceptive to experimental sep-

sis.42 In addition, monocytes isolated from patients with

systemic lupus erythematosus (SLE) showed a reduction

in HO-1 expression.43 In contrast, the up-regulation of

HO-1 (using chemical agents, food and genetic engineer-

ing) produces beneficial effects in several experimental

models of inflammation.44

Expression of HO-1 is subjected to tight regulation

dependent on the activation/inactivation of several tran-

scriptional activators, including activator protein-1 (AP1),

nuclear factor erythroid 2-related factor-2 (Nrf2), hypox-

ia-inducible factor-1 (HIF-1), nuclear factor-jB (NF-jB),
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and broad-complex tramtrack and bric-�a-brac (BTB)

domain and cap’n’collar homolog 1 (Bach1).45 The last of

these, which belongs to the basic region leucine zipper

transcription factor family, acts as a transcriptional

repressor of HO-1. In consequence, Bach-1-deficient mice

showed an over-expression of HO-1, and interestingly

macrophages isolated from these animals exhibit an M2

phenotype, suggesting that Bach-1 could be involved in

polarization.46 Also, data from different lines of research

suggest that HO-1 expression is tight connected with

IL-10 signalling. This anti-inflammatory cytokine mediat-

ing HO-1 induction thorough signal transducer and acti-

vator of transcription 3 (STAT-3) and phosphoinositide 3

kinase pathways.47 On the other hand, HO-1 and carbon

monoxide regulate IL-10 production by activation of p38

mitogen-activated protein kinase.48 This positive feedback

between IL-10 and HO-1 might amplify the anti-inflam-

matory function of macrophages.

With regards to the regulation of HO-1 expression,

haem is the best known inducer of the activity of this

enzyme. Furthermore, it has been shown that haem treat-

ment not only increases HO-1 expression and activity,

but also the ratio of M2/M1 macrophages, in a rat model

of spontaneous hypertension.49 Additionally, some studies

have suggested that HO-1 expression could be considered

as another M2 macrophage marker, due to the difference

in intracellular redox status observed between IFN-c and

IL-4 induction.50,51 Furthermore, HO-1 is preferentially

expressed in M2 macrophages52 and the products of this

enzymatic activity are involved in the modulation of sev-

eral immunological events.50 For example, the induction

of HO-1 is able to modulate cytokine production, surface

receptor expression, maturation and polarization.53

Finally, it has been observed that apoptotic cells recog-

nized by macrophages produce a switch toward M2 phe-

notype, and HO-1 induction is closely involved in this

process.54

Macrophage polarization is a dynamic process

Polarization change is observed in different tissues as a

snapshot. Hence, one very important question is whether

the overall phenotype change observed is the result of

macrophage plasticity, or is the consequence of waves of

macrophages that arrive at the location and change the

M1/M2 population ratio (Fig. 2). Although the answer

to this question remains under discussion, it is clear that

a large fraction of the functional patterns displayed by

macrophages is the consequence of the enormous number

of potential agents (and their combination) present in

variant and complex environments.

Once a macrophage acquired a functional polarization,

it still retains the ability to continue changing in response

to new environmental stimulation.55 However, these cells

can retain some differential markers, in fact differences

between monocyte-derived and tissue-derived M2 macro-

phages have been described. Briefly, monocyte-derived

macrophages are CD206+ CXCR1+ unlike tissue-derived

macrophages, and probably reflect different physiological

roles.56 In consequence, inflammation resolution and

inflammatory macrophage clearance could follow three

pathways not mutually excluding: emigration,57 apopto-

sis32 or polarization.55

The reversibility of polarization, also called functional

adaptability, has a critical therapeutic value, especially in

such diseases where M1/M2 imbalance has a pathogenic

role, e.g. autoimmune diseases.58 Otherwise, M1 and M2

phenotype stability in vivo is still unclear and requires

further research. There is limited information relative to

the transcription factors and epigenetic mechanisms

implicated in the polarization response to diverse envi-

ronmental inputs. Nevertheless, there are key transcrip-

tion factors clearly associated with macrophage

polarization as STAT family, peroxisome proliferator-acti-

vated receptor (PPAR), cAMP response element binding

protein (CREB)-CCAAT/enhancer binding protein

(C/EBP), hypoxia-inducible factors (HIF), NF-jB and

IFN regulatory factors (IRF).15,59 Below, we briefly

describe some of the most important involved factors.

Activity of STAT-1 is essential for macrophage polar-

ization towards M1 profile in the presence of IFN-c and,

on the other hand, several genes associated with M2

macrophage phenotype (Arg1, cd206 and Ym1) are regu-

lated by STAT-6 activity in the presence of IL-4/IL-13.60

Not surprisingly, these two regulatory pathways (STAT-1

and STAT-6) are mutually exclusive and might be a

potential target for immunotherapy. Another factor

required for M2 polarization is PPAR-c,61 which is also

inducible by IL-4/IL-13. Accordingly, a cross-talk with

STAT-6 has been described62 and in this context, M2

polarization could involve both STAT-6 and PPAR-c
activity. Additionally, C/EBPb regulates many M2-related

genes and CREB-C/EBPb activity is required for wound

healing, an M2 macrophage function.17

In addition, NF-jB activity is required for lipopolysac-

charide-mediated polarization to M1 phenotype. The

NF-jB and AP1 pathways are overlapped in M1 macro-

phages, suggesting a cooperative transcription factor

activity.63 Similarly, IRF5 is recruited to promote the

expression of M1-related genes and, at the same time,

inhibits M2 gene-related expression.64 Other IRFs

(IRF3 and IRF4) were also involved in macrophage

polarization.63

Furthermore, HIFs are implicated in macrophage polar-

ization, particularly HIF-1a is related with Th1 cytokines

and HIF-2a expression is stimulated in macrophage alter-

native activation. HIF-2a induces Arg-1 expression and

consequently increases ornithine abundance, limiting NO

production.36,65 Kr€uppel-like factor 4 cooperates with

STAT-6 and promotes M2 macrophage polarization.66 To
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review, mutual regulation of M1 and M2 genes seem to

lead to different functional outcomes.59

Finally, microRNAs (miRNAs) have emerged as critical

regulators of macrophage polarization and in this regard,

three mRNAs (miRNA-124, miRNA-155 and miRNA-

223) have been strongly related. Briefly, over-expression

of miRNA-124 attenuates M1 profile, miRNA-155 pro-

motes it and miRNA-223 depletion also produces M1

polarization. Regulation of miRNA is an important mech-

anism that changes the macrophage functional profile by

targeting several genes without changing gene

transcription.67

Unbalanced M1/M2 phenotypes: Implications for
autoimmunity

As previously mentioned, many diseases are associated

with an altered balance of M1/M2 macrophage pheno-

types.58 For example, in cancer, M1 macrophages pro-

mote the attack against tumour and the presence of M2

macrophage infiltrating has long been associated with a

poor prognosis.68 In this regard, an M1/M2 ratio reduc-

tion is considered as a disfavoured situation for protective

cancer immunity. On the other hand, in chronic inflam-

mation, oxidation products of M1 macrophages (reactive

oxygen species) can result in cancer or malfunction. For

example, smoking produces M1 chronic activation, dam-

age in the tissue and, in consequence, a continuous cycle

of M2 healing. Because of the limited wounding capacity

of tissue, the imperfect healing produces a decline in lung

function69 and similar effects were observed in chronic

inflammation in bowel.70

Finally, due to the importance of functional profiles of

macrophages, many pathogens and even tumours have

developed new strategies to avoid pro-inflammatory

macrophage activation. For example, some bacteria are

capable to reduce the M1/M2 ratio by stimulating TGF-b
or IL-10 production68,71 and tumours can produce sero-

tonin contributing to M2 polarization.21

Several autoimmune diseases are associated with an

increased M1/M2 ratio. However it remains unknown

whether macrophage polarization (M1/M2 imbalance) is

the outcome of other pathogenic processes or the driving

force that triggers diseases. Although this is a difficult

issue to address, some researchers have proposed that

macrophages contribute to defining whether a Th1 or

Th2 immune response is established.12 Nevertheless, the

complex scenario during immune responses probably

involves multiple relevant players that are beyond the

scope of this review. It is likely that a reduced frequency

of anti-inflammatory M2 macrophages or a prolonged

activation of M1 macrophages could be implicated in the

development of detrimental inflammation and autoim-

munity. Additionally, it is known that the deleterious

effects of reactive oxygen species produced by M1 macro-

phages can play an important role by inducing the cycle

of damage and healing during an autoimmune process.72

It is well known that there is a sex prevalence of

autoimmune diseases, in which females are generally

more affected than males.73 Although the cause of the sex

bias remains unclear, in females with asthma a higher

severity has been related to M2 macrophage abundance.74

Accordingly, it is known that progesterone and estrogen

contribute to M2 macrophage activation whereas testos-

terone inhibits this process.75 Hence, these results suggest

that the M1/M2 ratio might play a role in the sex bias

shown by autoimmune diseases. SLE,76 inflammatory

bowel diseases (IBD),77 Sj€ogren syndrome,78 autoimmune

Blood

Tissue

M1
macrophage

M2
macrophage

M1
macrophage

M2
macrophage

Pathogen elimination Wound healing

(a) (b)

Figure 2. Snapshot of polarization observed in tissues may be the result of new monocyte-derived macrophages arrival and/or polarization of

pre-existing tissue-resident macrophages towards another profile. Different stimuli as pathogens or wounds are the forces driving this process.

The respective increase of pro-inflammatory M1 (a) or anti-inflammatory M2 phenotype (b) is represented in the figure as the result of both

contributions.
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myocarditis79 and autoimmune neuritis,80 among others,

are some examples of autoimmune diseases associated

with an M1/M2 imbalance.

Systemic lupus erythematosus

Macrophages play an important role during SLE patho-

genesis, shown by the observed amelioration of disease

after their depletion.81 Moreover, numerous studies have

suggested that the M1 phenotype is implied in SLE

pathogenesis,76 whereas some researchers have proposed

that M2 macrophages (in addition to M1 macrophages),

might be involved in SLE pathogenesis.82

Differential macrophage phenotypes are involved in

kidney injury and repair. M1 macrophages are recruited

into kidneys early after injury, promoting a pro-inflam-

matory environment that enables apoptotic cell clearance

and removal of damaged cells. On the other hand, M2

macrophages contribute to suppress the inflammatory

response and their presence correlates with cell prolifera-

tion and repair. Interestingly, macrophages stimulated

with IFN-c polarized towards an M2 phenotype at the

onset of kidney repair.83

As mentioned above, the clearance of apoptotic and dam-

aged cells is an important task that is required to return to

steady-state conditions. Hence, macrophages from PPARc-
deficient mice showed deficiency in phagocytosis and did

not exhibit an anti-inflammatory profile after apoptotic cell

feed. Hence these animals produced auto-antibodies and

developed glomerulonephritis resembling SLE.84

M1/M2 macrophage balance has an important role in

lupus, as shown by the improvement of the clinical score

after M2 macrophage transference.85 Accordingly, in

another lupus animal model (NZB/W F1 mice) treated

with cyclophosphamide, remission has been associated

with the presence of M2 macrophages, particularly the

M2b subtype.86 Alternatively, the importance of M2c

macrophages in lupus treatment was suggested due to

their efficiency in apoptotic cell clearance and their up-

regulation by glucocorticoid.87 Finally, IRF5, a well-

known risk factor associated with SLE predisposition is

interestingly also a factor that promotes an M1 profile.88

Autoimmune neuritis

A similar association among M1/M2 imbalance with

pathogenesis is observed in experimental autoimmune

neuritis, an animal model that resembles neuropathies

such as Guillain–Barr�e syndrome. In this model, M1

macrophages are associated with the induction phase,

whereas M2 macrophages secrete beneficial mediators in

lesions. In contrast, animals with experimental autoim-

mune neuritis that are treated with dimethyl fumarate

have an improved clinical score together with an increase

in HO-1 expression and M2 macrophage frequency in

sciatic nerves.80 It should be noted that experimental

autoimmune neuritis, which has an acute presentation,

represents an interesting model for the study of sponta-

neous remission.

Inflammatory bowel diseases

An increased M1/M2 ratio is reported in colitis, along

with IL-23, TNF-a and IL-10 reduction. Correspondingly,

the transference of M2 macrophages reduces colitis and

increases IL-10 production.89 In the same way, in an ani-

mal model of IBD, attenuated symptoms were observed

after OH-1 over-expression. Interestingly, intraperitoneal

macrophages isolated from these mice had an M2 profile

and more importantly, the transference of these macro-

phages to another IBD mouse ameliorated the chronic

inflammation.46 Moreover, M2 macrophages had the

potential to influence other cell responses, like the

increase of invariant regulatory T cell and Th17 genera-

tion observed after M2 macrophage adoptive transference

in an experimental model of colitis.90

M1 macrophages have been directly implicated in the

disruption of the epithelial barrier mediating epithelial cell

apoptosis and in the deregulation of tight junctions.91 M2

polarized macrophages have been suggested as a possible

collaborator in IBD immunotherapy for the re-establish-

ment of mucosal tolerance and repair of injured mucosa.90

Diabetes and obesity

Obesity has been associated with an inflammatory envi-

ronment and macrophages are considered the main

source of pro-inflammatory cytokines in adipose tissue.

Indeed, macrophage depletion improves glucose metabo-

lism and also insulin sensitivity in diet-induced obese

mice.92 Additionally, fat mice showed an increase in adi-

pose tissue macrophages with M1 phenotype compared

with lean animals.93 In this regards, adiponectin (a pro-

tein usually down-regulated in obesity condition) has also

been involved in macrophage polarization towards an

anti-inflammatory profile.94

According to numerous reports, the inflammatory pro-

cess associated with obesity may be involved in insulin-

resistance acquisition. To clarify, insulin resistance is a

feature shared by obesity and type 2 diabetes; however, in

diabetes, b-cell dysfunction and hyperglycemia are also

observed. Pro-inflammatory macrophages (M1 profile

like), were detected in the pancreas (islet-resident macro-

phages) of an animal model of type 2 diabetes, indicating

a change in M1/M2 subset ratio. Additionally, at late

stage, the M2 profile predominated in macrophages, con-

sistent with a TGF-b signature and excessive fibrosis.95

Interestingly, chemical HO-1 induction improved diabetes

condition in association with M2 macrophage recruit-

ment in a diabetes experimental model.96
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M2 macrophages have a beneficial role regulating nutri-

ent homeostasis and their deficiency leads to diet-induced

obesity, insulin resistance and glucose intolerance.97 In

agreement, the treatment with agonists of PPARc sig-

nalling ameliorated diabetes and reduced M1 macrophage

in visceral adipose tissues.98

Rheumatoid arthritis

Disequilibrium of inflammatory and anti-inflammatory

macrophages (M1/M2) in synovial tissue has an impor-

tant role in the pathogenesis of arthritis.99 This imbalance

contributes with pro-inflammatory cytokines and join

destruction to acute and chronic rheumatoid arthritis.

Systemic sclerosis

Systemic sclerosis is an autoimmune disease characterized

by skin and internal organ fibrosis.100 Several studies have

associated the fibrotic profile of M2 macrophages with the

pathogenesis of this disease.101 Alternatively, activated

macrophages are especially abundant in the blood and skin

of patients with systemic sclerosis and it has been sug-

gested that they are potentially the major source for fibro-

sis-inducing cytokines implicated in tissue malfunction.102

Macrophage polarization and intravenous
immunoglobulin

Intravenous immunoglobulin (IVIg) is a product derived

from the plasma of thousands of healthy donors, widely

used in inflammatory conditions because of its regulatory

properties. Numerous reports have shown that IVIg pos-

sesses a potent immunomodulatory effect that is benefi-

cial in autoimmune diseases.103 Although the molecular

and cellular basis of IVIg immunomodulatory action

remains unknown, some evidence indicates that it can

induce polarization in macrophages. IVIg treatment pro-

duces M2 to M1 polarization (but not the reverse effect)

in tumour-associated macrophages, as shown by the

marked transcription switch. In consequence, it was pos-

tulated that the IVIg effect is dependent on the activa-

tion/polarization state of macrophages (Fig. 1). The most

direct link between immunoglobulin and macrophage

polarization seems to be Fc receptors. Macrophages

express several Fc receptors for IgG and the evidence sug-

gested that M1 polarization could be mediated by FcɣRIII
(CD16), FcɣRIV and the FcRc-chain.104

Although macrophage polarization driven by IVIg has

only been described in tumour-associated macrophages, it

is possible that the immunomodulatory effect of IVIg,

observed in several autoimmune diseases, follows a simi-

lar pattern. Immunoglobulin has a critical role in the reg-

ulation of macrophage performance, mainly by Fc

receptor interaction. In the same way, the IVIg effect has

been observed to be dependent on FccRII and mediated

by C-type lectin SIGN-R1 or DC-SIGN in human

(CD209), which functions like a receptor of sialic acid-

rich IgG.105 CD209 is present in marginal zone macro-

phages and has been described in alternatively activate

macrophages and hypoxia.106 Accordingly, it is known

that galactose-type C-type lectin expression is increased

after IL-4/IL-13 stimulation.107

In the same way as HO-1 induction, IVIg treatment

triggers an anti-inflammatory context and produces

autoimmune disease amelioration. However, recently it

has been reported that the immunomodulatory effect of

IVIg is not mediated by the HO-1 pathway, at least in an

EAE model.108 The immunomodulatory effect associated

with IVIg treatment could depend on the microenviron-

ment and different receptors in each cell type. A better

understanding of IVIg mechanisms of action involved

should be useful to improve the treatment in multiple

autoimmune diseases.

Future perspectives

Currently, there are new and interesting strategies to

change the M1/M2 ratio using different agents. For exam-

ple, FccRI receptor (CD64), which is up-regulated in

macrophages from chronic inflammation sites was recently

targeted with monoclonal antibodies, demonstrating a clin-

ical potential.109 Taking into account the importance of a

correctly balanced M1/M2 ratio in cancer and several

autoimmune diseases, new therapies seek to selectively

mark and deplete specific macrophage subpopulations. In

this regard, new drugs have been developed with selective

intracellular activation that enable cell fluorescence tracking

and additional ablation of M1 macrophage in vivo.110

Beneficial effects of adoptive polarized macrophage

transference therapy are currently under evaluation, nev-

ertheless a significant amelioration has been observed in

several and varied animal models.46,111 Another promising

strategy directed to modulate macrophage polarization

and plasticity in autoimmune diseases is the treatment

with miRNA-based therapies.67 The high plasticity of

macrophages allows them to change their effector func-

tion and, in consequence, they could potentially be

manipulated to reduce chronic inflammation (Fig. 1).

Finally, functional polarization of macrophages into

two groups (M1 and M2) is a simplified description of

macrophage heterogeneity and plasticity used in this

review, where indeed it is necessary to consider a contin-

uum of functional states. On the whole, the evidence

detailed in this review highlights M1 and M2 macro-

phages as important targets for immunotherapy.
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