
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

OPTIMIZATION OF SEMANTIC WEB

QUERIES USING SPARQL PATTERN

TREES

ANDRÉS IGNACIO LETELIER NAGEL

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

MARCELO ARENAS S.

Santiago de Chile, September 2013

c�MMXIII, ANDRÉS LETELIER NAGEL

c�MMXIII, ANDRÉS LETELIER NAGEL

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio

o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a su autor.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

OPTIMIZATION OF SEMANTIC WEB

QUERIES USING SPARQL PATTERN

TREES

ANDRÉS IGNACIO LETELIER NAGEL

Members of the Committee:

MARCELO ARENAS S.

JUAN L. REUTTER D.

JORGE PÉREZ R.

ANDRÉS GUESALAGA M.

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, September 2013

c�MMXIII, ANDRÉS LETELIER NAGEL

To everyone who doesn’t have a

thesis dedicated to them.

ACKNOWLEDGEMENTS

Thanks to my parents, for their constant support and for always believing in me.

Thanks to my advisor, Marcelo Arenas, for his never ending patience.

Thanks to Sebastian Skritek and Reinhard Pichler from TU Wien, for their hospitality

and for helping me with the heavy lifting.

Thanks to Jorge Pérez from Universidad de Chile, for all his support, advice and

wisdom.

Thanks to Soledad Carrión, for always having the greatest disposition to help.

Thanks to Sean Plott, for teaching me that if at first you don’t succeed, try and try

again.

Thanks to my office mates at the university, for laughing at joke in the dedication.

And many thanks to Claudia. Without her encouragement, support and prescription

pad, this thesis would have never been completed.

v

Contents

Acknowledgements . v

List of Tables . viii

List of Figures . ix

Abstract . x

Resumen . xi

Chapter 1. Introduction . 1

1.1. Background . 1

1.2. Summary of contributions . 4

1.3. Thesis outline and structure . 5

Chapter 2. Preliminaries . 6

2.1. Resource Description Framework . 6

2.2. SPARQL . 6

2.3. Well-designed patterns . 11

Chapter 3. Pattern trees . 12

3.1. Definitions . 12

3.2. Semantics of well-designed pattern trees 14

3.3. Evaluating pattern trees . 19

3.4. Transformation of QWDPTs . 20

Chapter 4. Query optimization . 27

4.1. Implementation . 27

4.2. Dataset . 28

4.3. Methodology . 29

4.4. Results and analysis . 31

vi

4.4.1. Rules R1 through R3 . 32

4.4.2. Rule R5 . 37

Chapter 5. Conclusions and future research . 42

5.1. General remarks . 42

5.2. Future research topics . 42

References . 44

APPENDIX . 48

APPENDIX A. ADDITIONAL PROOFS . 49

A.1. Proof of Proposition 3.1 . 49

A.2. Proof of Lemma 3.1 . 50

A.3. Proof of Lemma 3.2 . 51

A.4. Proof of Theorem 3.2 . 56

A.5. Proof of Theorem 3.3 . 61

vii

List of Tables

4.1 Number of queries per dataset . 29

4.2 Experimental results for DBpedia . 34

4.3 Experimental results for Linked Open Geo Data 35

4.4 Experimental results for Semantic Web Dog Food 36

4.5 Effect of applying rule R5 to queries which take more than 10 milliseconds

when evaluated over 30000 triples . 38

viii

List of Figures

4.1 Distribution of percentual improvement on evaluation for rule R5 on Top-down

engine, over “slow” queries . 38

4.2 Distribution of percentual improvement on evaluation time for rule R5 on

Jena-ARQ engine, over “slow” queries . 39

4.3 Query evaluation time improvement for all rules 40

4.4 Query evaluation time improvement for all rules except R5 41

ix

ABSTRACT

SPARQL is the standard query language for Semantic Web data. Since data on the

Web is inherently incomplete, it is crucial for users to be able to obtain partial answers

without having the query evaluation fail, and to restrict answers to those that are relevant

for them. While the filtering feature is standard in classical query languages, such as SQL

for relational databases, the optionality feature is one of the most complicated constructors

in SPARQL, and makes this language significantly different from others. Thus, common

optimization techniques for relational queries can no longer be applied directly and need

to be revised.

In this work we study optimization techniques specifically for SPARQL, focusing

primarily on the optionality and filtering features by extending the notion of pattern trees.

We mainly restrict ourselves to the fragment of well-designed SPARQL queries, which

has been previously shown to have good properties and behavior. We first extend the

definition of pattern trees to capture the class of well-designed graph patterns composed

of AND, OPT and FILTER operators. We then add an additional transformation rule

based on the FILTER operator. Finally, we propose a strategy for query optimization by

using transformation rules for pattern trees, and show their usefulness by studying their

applicability and effect over several publicly available datasets of Semantic Web data.

Keywords: SPARQL, RDF, Semantic Web, optimization, rewriting, database

models

x

RESUMEN

SPARQL es el lenguaje de consulta estándar para datos en la Web Semántica. Dado

que la información en la Web es inherentemente incompleta, es crucial para los usuarios

poder obtener respuestas parciales sin que la evaluación de la consulta fracase, y poder

restringir sus respuestas a aquellas que les parecen relevantes. Mientras que la facultad

de filtrar resultados es estándar en lenguajes de consulta clásicos, como SQL en bases de

datos relacionales, la característica de opcionalidad es uno de los operadores más comple-

jos de SPARQL, y hace a este lenguaje significativamente distinto de otros. Por lo tanto,

las técnicas habituales de optimización para consultas relacionales no se pueden aplicar

directamente, y necesitan ser revisadas.

En este trabajo estudiamos técnicas de optimización específicas para SPARQL. Nos

enfocamos principalmente en las características de opcionalidad y filtrado de SPARQL,

extendiendo la noción de pattern trees. Nos restringimos al fragmento de consultas de

SPARQL conocidas como “bien diseñadas”, que han demostrado previamente tener bue-

nas propiedades y comportamiento al evaluarse. En primer lugar, extendemos la definición

de pattern trees para capturar la clase de patrones bien diseñados compuestos por los ope-

radores AND, OPT y FILTER. Luego presentamos una nueva regla de transformación

basada en el operador FILTER. Finalmente, proponemos una estrategia para optimizar

consultas usando las reglas de transformación para pattern trees, mostrando su utilidad al

estudiar su aplicabilidad y efectividad sobre varios conjuntos de datos de Web Semántica

públicamente disponibles.

Palabras Claves: SPARQL, RDF, Web semántica, optimización, reescritura, modelos

de bases de datos

xi

Chapter 1. INTRODUCTION

1.1. Background

The term “Semantic Web” refers to a web of data that can be readable and process-

able by machines and not just by humans. While the term was coined by Tim Berners

Lee, it has largely been an initiative of the World Wide Web Consortium (W3C). In 1999,

the Resource Description Framework (RDF) was published as a W3C Recommendation,

designed as a data model for representing information about World Wide Web resources

(Lassila & Swick, 1999). Jointly with its release, the natural problem of querying RDF

data was raised, and thus the question of how to manage RDF data has been in the focus of

the Semantic Web community. This problem still remains partially unsolved, but an impor-

tant first step was the release of SPARQL as a W3C recommendation (Prud’Hommeaux &

Seaborne, 2008). With time, this has become the standard query language for RDF. Since

then, the amount of RDF data published on the Web has grown constantly, as shown by

the popularity of initiatives like the Open Linked Data project (Berners-Lee, 2006; Bizer,

Heath, & Berners-Lee, 2009), and even being adopted by the US and UK governments

in their respective Open Government Data initiatives (DATA.GOV.UK, 2013; Data.gov,

2013).

This increase in notoriety has drawn the attention of the research community, as RDF

and SPARQL offer many new and interesting problems to tackle. Several research efforts

are being directed towards understanding the fundamental properties of the language, as

well as developing new techniques to handle these problems (Pérez, Arenas, & Gutierrez,

2006; Polleres, 2007; Abadi, Marcus, Madden, & Hollenbach, 2007; Weiss, Karras, &

Bernstein, 2008; Sidirourgos, Goncalves, Kersten, Nes, & Manegold, 2008; Angles &

Gutierrez, 2008; Schmidt, Hornung, Küchlin, Lausen, & Pinkel, 2008; Pérez, Arenas, &

Gutierrez, 2009; Neumann & Weikum, 2010; Schmidt, Meier, & Lausen, 2010; Arenas &

Pérez, 2011; Letelier, Pérez, Pichler, & Skritek, 2012b, in press).

1

RDF and SPARQL will be formally introduced in Chapter 2. However, at is core, an

RDF dataset is a set of triples of the form (s, p, o). This syntax is used to describe a directed

graph with named arcs; for this reason, an RDF dataset is interchangeably referred to as

an RDF graph. SPARQL is in essence a graph pattern matching language. Its fundamental

component, the SPARQL triple pattern, is an RDF triple which can have variables instead

of labels. One could see an RDF graph as merely being a set of tuples; then, if one restricts

SPARQL to conjunctions of triple patterns (which are basically ternary atoms), then one

can see that basic SPARQL queries are essentially relational conjunctive queries. Thus,

one can connect this fragment of SPARQL to the decades of work behind conjunctive

queries.

In a classical setting there are two closely associated problems: static analysis and

optimization of queries. Static analysis refers to the study of queries without any knowl-

edge of the dataset they will be evaluated over. Problems in this area include the idea of

query containment (which means deciding whether the answers of one query will always

be contained in the answers of another query, when evaluated over the same dataset), and

equivalence (which means deciding whether two different queries will always return the

same results when evaluated over the same dataset). On the other hand, query optimiza-

tion refers to the study of how to more efficiently evaluate a given query. When evaluating

a query written in a language like SQL, the query is first parsed, that is, turned into a

parse tree representing the structure of the query in a useful way. The parse tree is then

transformed into an expression tree of relational algebra, which is termed a logical query

plan, or just query plan for short. In picking a query plan, one has opportunities to apply

many different algebraic operations, with the goal of hopefully producing the best query

plan (Garcia-Molina, Ullman, & Widom, 2009, p. 759). In reality, obtaining an optimal

query plan is unrealistic; it is more important to avoid the worst plans and find a good

plan. This is a problem which has been studied for several decades, and optimization

techniques based on query plans for relational queries are already part of the folklore of

the field (Garcia-Molina et al., 2009; Ramakrishnan & Gehrke, 2003).

2

Unfortunately, before Letelier et al. (2012b), there had been little work regarding the

static analysis and optimization of SPARQL queries. While there have been exceptions

(Serfiotis, Koffina, Christophides, & Tannen, 2005; Schmidt et al., 2010; Chekol, Euzenat,

Genevès, & Layaïda, 2011; Stocker, Seaborne, Bernstein, Kiefer, & Reynolds, 2008), most

of them focus on the previously mentioned fragment of SPARQL, taking the conjunctive

query approach. However, it is SPARQL’s ability to work with partial information which

makes it an interesting language: since data on the web is inherently incomplete, it is es-

sential for users to be able to request optional information. For example, if one were to

request the names, phone numbers and addresses of a group of people using conjunctive

queries, and one person’s phone number was unknown, then there would be no informa-

tion regarding that person. It is SPARQL’s OPT operator which enables users to request

optional information: in the previous example, if users were to ask for the names of peo-

ple, and optionally their address, and optionally their phone number, then the answer to

the query would include all known names in the dataset, along with addresses and phone

numbers whenever they are available. SPARQL also offers a filtering feature through its

FILTER operator. Through it, users can choose which results they consider relevant, and

exclude those that are not from the answer to their query.

Unfortunately, when one goes beyond the basic fragment of SPARQL, things get

considerably more complicated (Pérez et al., 2009; Arenas & Pérez, 2011). The OPT

operator has proven to be particularly complex. Furthermore, its use in practice is sub-

stantial (Gallego, Fernández, Martínez-Prieto, & de la Fuente, 2011; Picalausa & Van-

summeren, 2011), which makes its study essential. Pérez et al. (2009) showed how the

combined complexity of the evaluation problem for SPARQL (deciding whether a set of

variable mappings is part of the result set of the evaluation of a given SPARQL query

over a given dataset) rises dramatically, from PTIME-membership for the most basic frag-

ment, up to PSPACE-completeness when including the OPT feature. Nevertheless, the

same work also defined a natural and well-behaved fragment of SPARQL with OPT and

FILTER operators: the class of well-designed SPARQL queries. It was shown in Pérez

3

et al. (2009) that the combined complexity of the evaluation problem for well-designed

SPARQL queries is coNP-complete, which is much more tractable than the general case

of SPARQL queries with the OPT operator.

Letelier et al. (2012b) attacked the problem of static analysis of well-designed SPARQL

queries which include the OPT operator, focusing mostly on query containment and

equivalence. To study these problems, the authors created a new tool for SPARQL anal-

ysis: a tree representation of SPARQL queries called pattern tree. Among other things,

Letelier et al. (2012b) showed that pattern trees can be viewed as query plans for well-

designed SPARQL queries. Furthermore, that work introduced an algebra of pattern trees,

composed of four transformation rules. However, the authors excluded the FILTER oper-

ator from their analysis. In this thesis we extend the work done in Letelier et al. (2012b)

using it as our foundation, but adding the FILTER operator to capture the entire class of

well-designed SPARQL queries.

1.2. Summary of contributions

The first half of this thesis deals with extending the notion of pattern trees, previously

defined in Letelier et al. (2012b). We have modified it to include the filtering feature of

SPARQL, namely the FILTER operator. Furthermore, we have extended several proposi-

tions, lemmas and theorems along with their proofs. In particular, we have shown that pat-

tern trees are expressive enough to represent the entirety of well-designed SPARQL graph

patterns, meaning that any well-designed SPARQL graph pattern can be transformed into

a pattern tree. We show how this particular pattern tree can be constructed in polynomial

time from a given SPARQL query, and how a pattern tree can be turned into a SPARQL

graph pattern. We also define how pattern trees can be evaluated to obtain the same re-

sult set as one would obtain from evaluating an equivalent query using SPARQL’s usual

semantics.

We have also extended the algebra of pattern trees by minimally adapting the four

transformation rules presented in Letelier et al. (2012b), in such a way that they behave

4

nicely in the presence of FILTER operators, but retain their previous behavior in their

absence. Additionally, we have created a fifth transformation rule, which takes advantage

of the FILTER operator to improve query evaluation time.

For the second half of this work, we have implemented a SPARQL query engine based

on pattern trees, called the Top-down engine, along with the five transformation rules, by

using the Jena framework (Carroll et al., 2004). We have used this implementation to test

the applicability of the transformation rules for query optimization, over three publicly

available datasets containing over forty million real world queries.

In particular, we have shown massive decreases in query execution time when ap-

plying each transformation rule, and done an in-depth analysis of the effect of our new

rule.

1.3. Thesis outline and structure

In Chapter 2, we present a formalization for the Resource Description Framework

(RDF) and the SPARQL query language.

Chapter 3 formally introduces the extended version of pattern trees, well-designed

and quasi well-designed pattern trees. It then shows our extension of the existing trans-

formation rules for quasi well-designed pattern trees, and presents our new, additional

transformation rule.

Chapter 4 presents a strategy for well-designed query optimization using the transfor-

mation rules introduced in the previous chapter. The technique is tested over an extensive

dataset, and the overall effect of each transformation rule is discussed.

Finally, Chapter 5 summarizes the results of this thesis and proposes future lines of

research to further extend this work.

5

Chapter 2. PRELIMINARIES

2.1. Resource Description Framework

Assume there are three pairwise, disjoint, infinite sets U, B and L (URIs, Blank nodes

and Literals). A triple (s, p, o) 2 (U [B) ⇥U ⇥ (U [B [L) is called an RDF triple.

In this tuple, s is the subject, p the predicate and o the object. An RDF graph is a finite

set of RDF triples. For an in depth description and formalization of RDF, see the work by

Gutiérrez, Hurtado, and Mendelzon (2004).

In our work we focus only on bound RDF graphs; that is, RDF graphs that do not

contain blank nodes. We also do not make any distinctions between URIs and Literals.

Therefore, in our context, an RDF triple is a tuple in U ⇥ U ⇥ U, and an RDF graph

(or graph for short) is a finite set of RDF triples. The active domain of an RDF graph G,

denoted by dom(G) with dom(G) ✓ U is the set of uniform resource identifiers (URIs)

actually appearing in G.

2.2. SPARQL

SPARQL (Prud’Hommeaux & Seaborne, 2008) is the standard query language for

RDF. It is essentially a graph pattern matching language. A SPARQL query is of the form

H B, where B, the body of the query, is a complex RDF graph pattern expression that

may include RDF triples with variables, conjunctions, disjunctions, optional parts, and

constraints over the values of the variables. On the other hand, H , the head of the query,

is an expression that indicates how to construct the answer to the query. To produce the

answer of evaluating a query Q against a dataset D, the body of Q is matched against D

to produce a set of bindings. These are then processed with the information in the head of

Q, using classical relational operators like projection and distinct, to obtain the final result

of the query. This work only deals with the handling of the body of the query.

6

We next formalize the graph pattern matching facility of SPARQL, which forms the

core of the language. Assume the existence of an infinite set V of variables disjoint from

U. We denote variables in V by using a question mark, as in ?X . A SPARQL triple

pattern is then a tuple t 2 (U [V)⇥ (U [V)⇥ (U [V).

Complex graph patterns are constructed from triple patterns by using operators AND,

OPT, UNION, and FILTER. In this work we focus on the SPARQL fragment com-

posed of the operators AND, OPT and FILTER. Formally, SPARQL graph patterns are

recursively defined as follows:

(i) a triple pattern t is a graph pattern,

(ii) if P1 and P2 are graph patterns, then (P1 AND P2) and (P1 OPT P2) are graph

patterns, and

(iii) if P is a graph pattern and R is a built-in condition, then (P FILTER R) is a

graph pattern.

A SPARQL built-in condition is constructed using elements from the set U [V

and constants, logical connectives (¬,^,_), inequality symbols (<,, >,�), the equal-

ity symbol (=), unary predicates like bound, isBlank and isURI, and other features de-

tailed in Prud’Hommeaux and Seaborne (2008). In this paper we restrict ourselves to the

fragment where the built-in condition is a Boolean combination of terms constructed by

using = and bound, that is:

(i) If ?X, ?Y 2 V and c 2 U, then bound(?X), ?X = c and ?X =?Y are built-in

conditions.

(ii) If R1 and R2 are built-in conditions, then (¬R1), (R1 ^ R2) and (R1 _ R2) are

built-in conditions.

For a triple pattern t, we write vars(t) to denote the set of variables occurring in t; for

a built-in condition R we write vars(R) for the set of variables mentioned in R, and for

7

a graph pattern P we write vars(P) for the set of variables that occur in the triples and

built-in conditions that compose P .

To define the semantics of SPARQL graph patterns, we follow closely the definitions

proposed in Pérez et al. (2009). A mapping µ is a partial function µ : V ! U. The

domain of µ, denoted by dom(µ), is the set of all variables from V for which µ is defined.

Given a triple pattern t and a mapping µ such that vars(t) ✓ dom(µ), we denote by

µ(t) the RDF triple obtained by replacing the variables in t according to µ. Given two

mappings µ1 and µ2, we say that µ1 and µ2 are compatible, denoted by µ1 ⇠ µ2, if

for every ?X 2 dom(µ1) \ dom(µ2) it holds that µ1(?X) = µ2(?X). Notice that, for

compatible mappings µ1 and µ2, we have that µ1 [µ2 is also a mapping and is such that

(µ1 [µ2)(?X) is µ1(?X) if ?X 2 dom(µ1), or µ2(?X) otherwise. Also notice that the

mapping with empty domain, denoted by µ;, is compatible with any mapping.

Before defining the semantics of SPARQL graph patterns, we define some operations

between sets of mappings that resemble relational operators over sets of tuples. Let M1

and M2 be sets of mappings. We define the join and the left-outer join between M1 and

M2 as follows:

M1 ./ M2 = {µ1 [µ2 | µ1 2M1, µ2 2M2 and µ1 ⇠ µ2}

M1 ./M2 = (M1 ./ M2) [{µ 2M1 | 8µ0 2M2 : µ 6⇠ µ0}.

Given a SPARQL built-in condition R and a partial mapping µ, we say that µ satisfies

R (shortened to µ |= R) if:

(i) R is bound(?X) and ?X 2 dom(µ),

(ii) R is ?X = c, ?X 2 dom(µ) and µ(?X) = c,

(iii) R is ?X =?Y , ?X, ?Y 2 dom(µ) and µ(?X) = µ(?Y),

(iv) R is (¬R1), R1 is a built-in condition and it is not the case that µ |= R1,

(v) R is (R1 ^R2), R1 and R2 are built-in conditions and it is the case that µ |= R1

and µ |= R2, and

8

(vi) R is (R1 _R2), R1 and R2 are built-in conditions and it is the case that µ |= R1

or µ |= R2.

We now have all the necessary prerequisites to formalize the evaluation of a SPARQL

graph pattern over an RDF graph G as a function J · KG, which given a graph pattern returns

a set of mappings. Formally, JP KG is defined recursively as follows (Pérez et al., 2009):

(i) If P is a triple pattern t, then JP KG = {µ | dom(µ) = vars(t) and µ(t) 2 G}.

(ii) If P = (P1 AND P2), then JP KG = JP1KG ./ JP2KG.

(iii) If P = (P1 OPT P2), then JP KG = JP1KG ./ JP2KG.

(iv) If P = (P1 FILTER R), then JP KG = {µ|µ 2 JP1KG and µ |= R}.

We say that two patterns P1 and P2 are equivalent, denoted by P1 ⌘ P2, if for every

RDF graph G, it holds that JP1KG = JP2KG. Notice that mappings explicitly refer to the

variable names. Hence, unlike the case of conjunctive queries, the actual names of the

variables matter, since two graph patterns containing different sets of variables can never

be equivalent. In Pérez et al. (2009), the authors show several algebraic properties for

graph patterns. In particular they show that AND is commutative and associative, which

allows us to drop parentheses from sequences of AND operators.

Note that we described the set-semantics of SPARQL, while the W3C Recommenda-

tion defines a bag-semantics for query answering (Prud’Hommeaux & Seaborne, 2008).

Nevertheless, for the fragment considered in this paper (allowing only for AND, OPT

and FILTER), both semantics coincide (Pérez et al., 2006). We have therefore restricted

ourselves only to the set-semantics of the language.

Example 2.1 (From Pérez et al. (2009)). Consider an RDF graph G storing in-

complete information about professors in a university with the following triples, and the

SPARQL graph pattern P1:

9

{ (R1, name, paul), (R1, phone, 777-3426),

(R2, name, john), (R2, email, john@acd.edu),

(R3, name, george), (R3, webPage, www.george.edu),

(R4, name, ringo), (R4, email, ringo@acd.edu),

(R4, webPage, www.starr.edu), (R4, phone, 888-4537) }

P1 =
��
(?A, name, ?N) OPT (?A, email, ?E)

�
OPT (?A,webPage, ?W)

�

Intuitively, we are trying to retrieve the name of the resources in G. Optionally, for

the resources that have an email we retrieve the email, and, optionally, for the resources

that have a Web page we retrieve the Web page. When we evaluate P1 over G we obtain

the set of mappings JP1KG = {µ1, µ2, µ3, µ4} where

µ1 = {?A! R1, ?N ! paul},

µ2 = {?A! R2, ?N ! john, ?E ! john@acd.edu},

µ3 = {?A! R3, ?N ! george, ?W ! www.george.edu},

µ4 = {?A! R4, ?N ! ringo, ?E ! ringo@acd.edu},

µ4 = {?W ! www.starr.edu}.

Also, consider now pattern P2 given by the following expression:

P2 =
�
(?A, name, ?N) OPT

�
(?A, email, ?E) OPT (?A,webPage, ?W)

��

In this case the evaluation of P2 over G is the set of mappings JP2KG = {µ1, µ2, µ3, µ4},

where

µ1 = {?A! R1, ?N ! paul},

µ2 = {?A! R2, ?N ! john, ?E ! john@acd.edu},

µ3 = {?A! R3, ?N ! george},

µ4 = {?A! R4, ?N ! ringo, ?E ! ringo@acd.edu,

?W ! www.starr.edu}.

Notice that we obtain no information for the Web page of george, since in P2 that

information is retrieved only for the resources that have an email.

Now consider the following expression:

10

P3 =
�
((?A, name, ?N) OPT (?A, phone, ?P)) FILTER ?N = paul

�

The evaluation of P3 over G is the set of mappings JP2KG = {µ1}, where

µ1 = {?A! R1, ?N ! paul, ?P ! 777-3426}.

2.3. Well-designed patterns

The patterns that mostly interests us are known as well-designed patterns (Pérez et al.,

2009). A filter expression (P FILTER R) is safe if every every variable ?X appearing in

R also appears in P . A pattern P is said to be well-designed if:

(i) every filter expression in P is safe, and

(ii) for every sub pattern P 0 = (P1 OPT P2) of P and every variable ?X occurring

in P , it holds that if ?X occurs inside P2 and outside P 0, then ?X also occurs

inside P1.

Example 2.2 (From Pérez et al. (2009)). Consider the SPARQL graph pattern

P =
�
(?X, name, john) OPT ((?Y, name,mick) OPT (?X, email, ?Z))

�

Notice how (?X, email, ?Z) is giving optional information for (?X, name, john), but

in P appears giving optional information for (?Y, name,mick). Notice how graph G from

Example 2.1 includes the triples (R2, name, john) and (R2, email, john@acd.edu), but the

evaluation of JP KG only returns the set {{?X ! R2}}, since J(?Y, name,mick)KG = ;

(as mick was in a different band), without giving information for the email of john.

Patterns P1, P2 and P3 from Example 2.1 are well-designed. Interestingly, all patterns

in this class have been shown to have several desirable properties. In particular, Pérez et al.

(2009) showed that the complexity of the evaluation problem for well-designed patterns is

much lower than for the general language. Furthermore, that work showed several rewrite

rules which were suggested to be useful for optimization procedures. This idea was taken

further in Letelier et al. (2012b), where the authors created an algebra of graph patterns by

introducing the notion of pattern trees, which is further discussed in Chapter 3.

11

Chapter 3. PATTERN TREES

This chapter is based heavily on previous work by Letelier et al. (2012b). In that paper,

most of the definitions, propositions, lemmas and theorems presented here were present,

but did not consider the existence of the FILTER operator. To maintain consistency and

to make this work easier to understand to readers familiar with these concepts, we have

expanded all of them while keeping our modified declarations as close as possible to the

original ones. Those cases where the wording was taken directly from the previous work

are appropriately marked.

3.1. Definitions

A rooted tree is defined as a tuple T = (V,E, r), where V is a set of nodes, E is

a set of edges, and r 2 V is the root of the tree. We assume trees to be unordered and

undirected. For any node n we write Tn to denote the subtree of T rooted at n, composed

by all the descendants of n in the tree. With this definition we can now redefine the tree

representation of SPARQL graph patterns by adding a FILTER label to each node.

Definition 3.1 (Pattern tree). A pattern tree T is a triple T = (T,P ,F), where T =

(V,E, r) is a rooted tree, P =
�
Pn

�
n2V is a labeling of the nodes of T such that Pn is a

nonempty set of triple patterns, and F =
�
Fn

�
n2V is a labeling of the nodes of T such

that Fn is a set of SPARQL built-in conditions for every n 2 V .

Notice how a pattern tree can be represented by a graphical tree with its nodes labeled

appropriately. In the case of nodes with an empty set of built-in conditions, we simply

omit that label. This is illustrated in Example 3.1.

Example 3.1. The following are representations of the pattern trees which intuitively

correspond to the queries introduced in Example 2.1.

12

T1: {(?A, name, ?N)}

{(?A,webPage, ?W)}{(?A, email, ?E)}

T2: {(?A, name, ?N)}

{(?A, email, ?E)}

{(?A,webPage, ?W)}

T3: {(?A, name, ?N)}, {?N = paul}

{(?A, name, ?N)}

We will now establish a syntactic relationship between pattern trees and SPARQL

graph patterns. Given a pattern tree T = ((V,E, r), (Pn)n2V , (Fn)n2V) and a node n 2 V ,

we denote by vars(Pn) the set of variables mentioned in the triples of Pn, by vars(Fn)

the set of variables mentioned in the built-in conditions of Fn, and by vars(T) the set
S

n2V (vars(Pn) [vars(Fn)). We can now redefine the transformation function TR(·, ·, ·),

which is used to transform a pattern tree into a SPARQL graph pattern.

Consider a pattern tree T = ((V,E, r), (Pn)n2V , (Fn)n2V) and a set ⌃ of ordering

functions {�n|n 2 V }, such that �n(1) is the first node in the ordering, �n(2) is the second

one, and so on. Also, given sets P = {t1, t2, . . . , tk} and F = {R1, R2, . . . , R`}, let

and(P) be the SPARQL pattern (t1 AND t2 AND . . . AND tk) and conj (F) be the

built-in condition (R1 ^ R2 ^ . . . ^ R`). Finally, let TR(P, F) = and(P) if F is empty,

or (and(P) FILTER conj (F)) otherwise. We can now define the transformation of the

sub tree of T rooted at n given the order ⌃. Assuming that n has k children in T , then

TR(T , n,⌃) is defined as the graph pattern expression
�
· · ·

��
TR(Pn, Fn) OPT TR(T , �n(1),⌃)

�
OPT TR(T , �n(2),⌃)

�

· · · OPT TR(T , �n(k),⌃)
�
,

and if n has no children, then TR(T , n,⌃) = TR(Pn, Fn). Finally, given a pattern tree

T = ((V,E, r), (Pn)n2V , (Fn)n2V) and an ordering ⌃ for T , we define TR(T ,⌃) as

TR(T , r,⌃).

13

Example 3.2. Applying TR(·, ·, ·) to the pattern trees in Example 3.1, ordering sibling

nodes from left to right, we get the following SPARQL graph patterns:

TR(T1,⌃1) =
��
(?A, name, ?N) OPT (?A, email, ?E)

�
OPT (?A,webPage, ?W)

�

TR(T2,⌃2) =
�
(?A, name, ?N) OPT

�
(?A, email, ?E) OPT (?A,webPage, ?W)

��

TR(T3,⌃3) =
�
((?A, name, ?N) FILTER ?N = paul) OPT (?A, phone, ?P)

�

Notice how TR(T1,⌃1) = P1 and TR(T2,⌃2) = P2, but TR(T3,⌃3) 6= P3. However,

since P3 is well-designed, it can easily be shown that TR(T1,⌃1) is equivalent to P3 (Pérez

et al., 2009).

3.2. Semantics of well-designed pattern trees

Having established a syntactic relationship between pattern trees and SPARQL graph

patterns, we are interested in defining the evaluation of a pattern tree over an RDF graph.

Notice that several different SPARQL patterns can be obtained from a pattern tree depend-

ing on the ordering functions used in the transformation. Thus, we cannot directly define

the evaluation of a pattern tree T by using the evaluation of an arbitrary transformation

of T .

In this section we extend the Definition of the well-designed condition for pattern

trees, which will help define the semantics of pattern trees. In particular, it will allow us to

choose an arbitrary transformation of a pattern tree in order to evaluate it. We begin with

the definition of the well-designedness condition for pattern trees. Given a pattern tree

T = ((V,E, r), (Pn)n2V , (Fn)n2V), we say that a node n is safe if vars(Fn) ✓ vars(Pn).

Notice that if this condition is not satisfied, then by the semantics of SPARQL defined in

Section 2.2 we have that, for any graph G, JPn FILTER FnKG = ;. Thus, in accordance

with the definition of well-designed SPARQL patterns given in Pérez et al. (2009), we

add this safety condition over every node in the tree to the previous definition of a well-

designed pattern tree.

14

Definition 3.2. A pattern tree T = ((V,E, r), (Pn)n2V , (Fn)n2V) is well-designed if

for every n 2 V , vars(Fn) ✓ vars(Pn), and for every variable ?X occurring in T , the set

{n 2 V |?X 2 vars(Pn)} induces a connected subtree of T .

Example 3.3. The pattern trees from Example 3.1, T1, T2 and T3, are all well-designed.

The following pattern trees are not:

T4 : {(?X, name, john)}

{(?Y, name,mick)}

{(?X, email, ?Z)}

T5 : {(?Y, name,mick)}

{(?X, email, ?Z)}{(?X, name, john)}

T6 : {(?X, name, ?N)}, {?M = john}

Tree T4 is based on the SPARQL graph pattern P from example 2.2 Note how variable

?X induces a disconnected subgraph in both T4 and T5, while using variable ?M instead

of ?N in the built-in condition in T6 makes the query not safe.

The similarity between the well-designedness condition for pattern trees and for graph

patterns makes the following proposition still hold. However, despite the wording being

the same, the proof given in Letelier et al. (2012b) no longer holds due to the extended

definitions, and is completed in Appendix A.1

PROPOSITION 3.1 (From Letelier et al. (2012b)). Let T be a well-designed pattern

tree, and ⌃ an arbitrary set of ordering functions for T . Then TR(T ,⌃) is a well-designed

graph pattern.

We now move onto the relaxation of the well-designedness condition.

Definition 3.3. A pattern tree T = ((V,E, r), (Pn)n2V , (Fn)n2V) is a quasi well-

designed pattern tree (shortened to QWDPT) if for every node n 2 V it is the case that

vars(Fn) ✓ vars(Pn), and for every pair of nodes u, v 2 V and each variable ?X 2

vars(Pu)\vars(Pv) there exists a node n that is a common ancestor of u and v in T , such

that ?X 2 vars(Pn).

15

Once again, we have merely added a safety condition in every node. The work from

Letelier et al. (2012b) depended heavily on the notion of QWDPTs to obtain several of its

results; however, since we are mostly focused on using pattern trees to rewrite queries and

not to test for containment or equivalence, this definition is mostly included for the sake

of completeness.

A QWDPT can be turned into a well-designed pattern tree by duplicating triples from

some nodes down into their descendants, so that every variable in the tree ends up inducing

a connected subtree, thus satisfying Definition 3.2.

Example 3.4. Consider the tree T4 from Example 3.3. The tree can be transformed

into a well-designed pattern tree by copying the triple (?X, name, john) into the root’s

child node:

{(?X, name, john)}

{(?Y, name,mick), (?X, name, john)}

{(?X, email, ?Z)}

However, neither T5 nor T6 can be turned into a well-designed pattern tree, since they

are not quasi well-designed.

We say that a pattern tree T 0 = ((V 0, E 0, r0), (P 0
n)n2V 0 , (F 0

n)n2V 0) was derived from a

pattern tree T = ((V,E, r), (Pn)n2V , (Fn)n2V) by duplicating a triple to a child, denoted

by T ,! T 0, if (V 0, E 0, r0) = (V,E, r) (that is, the underlying trees are the same), and

there exist a node u 2 V , a triple t 2 Pu, and a child v of u, such that P 0
v = Pv [{t}, and

Pn = P 0
n for all n 6= v. We denote by ,!⇤ the reflexive and transitive closure of ,!, that

is, T ,!⇤ T 0 if T = T 0 or there exists a sequence T1 ,! T2 ,! . . . ,! Tm with T1 = T

and Tm = T 0. This leads us into the next definition, taken verbatim from Letelier et al.

(2012b).

16

Definition 3.4 (From Letelier et al. (2012b)). Let T be a QWDPT. The set of SPARQL

graph patterns defined by T is defined as

SEM(T) = {TR(T 0,⌃) | ⌃ is an ordering for T 0, T ,!⇤ T 0 and T 0 is well-designed}.

To define the result of evaluating a QWDPT T over an RDF graph G, we first show

that all queries in SEM(T) are equivalent. Using this property, we then define the evalua-

tion of T to be exactly the same as that of an arbitrarily chosen query from SEM(T). Once

again, the following lemmas and theorem are taken straight from Letelier et al. (2012b),

but due to the extended definitions the proofs no longer apply, and are completed in Ap-

pendixes A.2 and A.3.

Lemma 3.1. Let T be a well-designed pattern tree, ⌃1 and ⌃2 be two arbitrary or-

derings for T , and P1 = TR(T ,⌃1) and P2 = TR(T ,⌃2) be the graph patterns obtained

by transforming T with ⌃1 and ⌃2, respectively. Then P1 ⌘ P2.

Lemma 3.2. Let T be a QWDPT, let ⌃ be an ordering for T , and let T1 and T2 be

well-designed pattern trees such that T ,!⇤ T1 and T ,!⇤ T2. If P1 = TR(T1,⌃) and

P2 = TR(T2,⌃), then P1 ⌘ P2.

Putting these two Lemmas together, we get the following result:

Theorem 3.1. Let T be a QWDPT. Then all graph patterns in SEM(T) are equivalent,

i.e., for any two graph patterns P1, P2 2 SEM(T), it holds that P1 ⌘ P2.

The proof follows directly from Lemma 3.1 and 3.2. This finally allows us to define

the semantics of a QWDPT via an arbitrary triple pattern from SEM(T).

Definition 3.5. Let T be a QWDPT and G an RDF graph. Then the evaluation of

T over G, denoted by JT KG, is defined as the set of mappings JP KG for an arbitrary

P 2 SEM(T).

17

Theorem 3.1 allows us to choose any representative in SEM(T) for a given QWDPT

T and evaluate it. In particular, if T is already well-designed, we may simply fix the order

of the child nodes of each node and evaluate this SPARQL pattern.

Given two QWDPTs T1 and T2, we say that T1 and T2 are equivalent, denoted by

T1 ⌘ T2, if for every RDF graph G it holds that JT1KG = JT2KG. Similarly, a QWDPT T

is equivalent to a SPARQL graph pattern P , denoted by T ⌘ P , if for every RDF graph G

it holds that JT KG = JP KG. Notice that Definition 3.5 plus Proposition 3.1 imply that for

every QWDPT T there exists a well-designed graph pattern P such that T ⌘ P . The last

result of this section states that the opposite also holds, and thus, QWDPTs can represent

the entire class of well-designed SPARQL graph patterns.

We end this section by extending the following proposition and its proof, which show

how to construct a well-designed pattern tree from a SPARQL graph pattern.

PROPOSITION 3.2 (From Letelier et al. (2012b)). For every well-designed graph pat-

tern P , there exists a QWDPT T such that P ⌘ T . Moreover, given a well-designed graph

pattern, an equivalent QWDPT can be constructed in polynomial time.

PROOF. In Pérez et al. (2009) it was shown that every well-designed graph pattern is

equivalent to a pattern in OPT-normal form, which is defined as follows:

A pattern P is in OPT-normal form if:

(i) P is constructed by using only the AND and FILTER operators, or

(ii) P = (P1 OPT P2), where P1 and P2 are in OPT-normal form.

Given a pattern P in OPT-normal form we describe an algorithm to construct a well-

designed pattern tree.

If P = (t1 AND t2 AND · · · AND tk FILTER R) then we create a pattern tree

with a single node and labels {t1, . . . , tk} and {R} respectively.

If P = (P1 OPT P2) then we construct a pattern tree T1 from P1, a pattern tree T2

from P2 and then construct a pattern tree T from T1 and T2, by considering T1 and T2

18

together, adding the root of T2 as a child of the root of T1, and setting the root of T1 as the

root of the obtained tree T . It is not difficult to show that the obtained pattern tree T is

well-designed and that there exists an ordering ⌃ for T such that TR(T ,⌃) = P and thus,

T ⌘ P . ⇤

3.3. Evaluating pattern trees

In this section we extend the procedural semantics for QWDPTs given in Letelier et

al. (2012b).

We say that a mapping µ1 is subsumed by µ2, denoted by µ1 v µ2, if dom(µ1) ✓

dom(µ2) and for every ?X 2 dom(µ1) it holds that µ1(?X) = µ2(?X). We write µ1 @ µ2

whenever µ1 v µ2 and µ1 6= µ2. Also, given a pattern tree T = ((V,E, r), (Pn)n2V , (Fn)n2V)

we denote by redux(T) the conjunction (AND) of the transformation through TR of all

the nodes in V . For example, if V = {n1, · · · , n`}, then

redux(T) =

✓✓
TR(Pn1 , Fn1)

◆
AND · · · AND

✓
TR(Pn`

, Fn`
)

◆◆
.

Note that this is equivalent to transforming the pattern tree into a SPARQL pattern and

changing all OPT operators to AND operators.

Lemma 3.3 (From Letelier et al. (2012b)). Let T be a QWDPT with root r, and G an

RDF graph. A mapping µ is in JT KG if and only if

(i) µ 2 Jredux(T 0)KG for a subtree T 0 of T rooted at r, and

(ii) there are no mapping ⌫ and subtree T 00 of T rooted at r, such that µ @ ⌫ and

⌫ 2 Jredux(T 00)KG.

Basically, Lemma 3.3 states that any mapping µ in the evaluation of a QWDPT T

must be maximal (with respect to v) for some subtree T 0 of T , such that it cannot be

further extended by another subtree T 00 of T . The proof given for this lemma in Letelier

19

et al. (in press) is based on Proposition 4.5 from Pérez et al. (2009), which applies to well-

designed graph patterns with FILTER. Therefore, this is the only case in which the exact

same proof applies without having to be modified.

This gives way to the following algorithm for evaluating QWDPTs, called the Top-down

evaluation. This definition is the basis for the Top-down engine used in Chapter 4.

Definition 3.6 (Top-down evaluation, from Letelier et al. (2012b)). Consider an RDF

graph G, a QWDPT T = ((V,E, r), (Pn)n2V), and a set M of mappings. For n 2 V ,

we define the evaluation of Tn (the complete subtree of T rooted at n) given M over G,

denoted by ext(M,n,G) as follows. If n is a leaf, then

ext(M,n,G) = M ./ JTR(Pn, Fn)KG,

and, otherwise, if n1, . . . , nk are the child nodes of n, then

ext(M,n,G) = M1 ./ M2 ./ · · · ./ Mk,

where Mi = (M ./ JTR(Pn, Fn)KG) ./ ext(M ./ JTR(Pn, Fn)KG, ni, G). We define the

top-down evaluation of T over G, denoted by JT KtdG , as

JT KtdG = ext({µ;}, r, G),

where µ; is the mapping with the empty domain.

Theorem 3.2 (From Letelier et al. (2012b)). Let T be a QWDPT and G an RDF

graph. Then JT KG = JT Ktd
G.

3.4. Transformation of QWDPTs

We now proceed to extend the transformation rules provided in (Letelier et al., 2012b)

for pattern trees. As noted in that paper, one of the advantages of QWDPTs is that they

allow us to define equivalence preserving transformation rules based on the structure of

20

the tree, while previous work has based these transformations on the properties of the

SPARQL operators (Pérez et al., 2009; Schmidt et al., 2010).

Before presenting the transformation rules, we need to introduce some additional no-

tation. Let T = ((V,E, r), (Pn)n2V , (Fn)n2V) be a pattern tree, and n a node in V . We

define the branch of n in T , denoted by branch(n, T), as the unique path from r to n,

given as the sequence of nodes n1, . . . , nk with n1 = r and nk = n. If it is clear from

the context, we may drop the name of the pattern tree and simply write branch(n). We

denote by Pbranch(n,T) the set of triple patterns
Sk

i=1 Pni . Given two sets P1 and P2 of

triple patterns, a homomorphism h from P1 into P2, written h : P1 ! P2, is a mapping

h : vars(P1) ! U ⇥ V s.t. for all triple patterns t 2 P1 it holds that h(t) 2 P2, where

h(t) denotes the triple obtained from t by replacing all variables ?X 2 vars(t) by h(?X)

and leaving URIs unchanged. It is further convenient to introduce the following notation

to speak about variables occurring in some Pn.

Definition 3.7. Let T = ((V,E, r),P) be a pattern tree and n, n̂ 2 V s.t. n̂ is the

parent node of n. Then the new variables at n are defined as newvars(n) = vars(Pn) \

vars(Pbranch(n̂)). For the case of the root r, we define newvars(r) as vars(Pr).

Along with the rules, we will present a running example, which is a modified version

of the one presented in Letelier et al. (in press). Consider the following well-designed

pattern tree T :

21

n1 : {(?M, poi, art-museum), (?M, rating, top)}

n2 : {(?M, location, ?L), (?H, category, hotel), (?H, location, ?L)},

{(?L = paris) _ (?L = rome)}

n3 : {(?A, location, ?L),

(?A, poi, ?P),

(?M, location, ?L)}

n4 : {(?H, nearby, ?M)}

n5 : {(?H, price, ?C)} n6 : {(?H, review, ?R)}

n7 : {(?F, location, ?L),

(?F, category, restaurant)}

Node n1 specifies that the user is searching for art museums (assigned to variable ?M)

with a good rating. Node n2 looks for hotels located near each museum, but only for those

museums located in Paris or Rome. Node n3 requests additional points of interest in the

same location as the hotel. Node n4 tells the user if the hotel is close to the museum, and

if so, requests the price and the review for the hotel in nodes n5 and n6. Finally, node n7

searches for restaurants in the same city as the hotel.

Rule R1 (deletion of redundant triples): Let n 2 V . If there exists a triple t 2 Pn s.t.

vars(t)\ vars(Fn) = ; and t 2 Pn0 for some ancestor n0 of n, then delete t from Pn, i.e.

P 0
n = Pn \ {t}. If P 0

n = ;, delete n and turn its child nodes into children of the parent of

n.
We have modified rule R1 to ensure that no node can become unsafe because of it,

and thus it cannot break the quasi well-designedness of the tree.

Example 3.5. Consider the QWDPT T . Since the triple (?M, location, ?L) in node

n3 also appears in node n2, we can safely eliminate it to obtain the following pattern tree.

22

n1 : {(?M, poi, art-museum), (?M, rating, top)}

n2 : {(?M, location, ?L), (?H, category, hotel), (?H, location, ?L)},

{(?L = paris) _ (?L = rome)}

n3 : {(?A, location, ?L),

(?A, poi, ?P)}
n4 : {(?H, nearby, ?M)}

n5 : {(?H, price, ?C)} n6 : {(?H, review, ?R)}

n7 : {(?F, location, ?L),

(?F, category, restaurant)}

Rule R2 (deletion of unproductive nodes): Let n, n̂ 2 V s.t. n̂ is the parent of n, and

let n1, . . . , nk 2 V be the children of n. If newvars(n) = ;, then merge n into each of

its children and make each ni a child of n̂. I.e. let P 0
ni

= Pni [Pn and F 0
ni

= Fni [Fn

for i = {1, . . . , k}, V 0 = V \ {n}, and E 0 = (E \ {(n̂, n), (n, n1), . . . , (n, nk)}) [

{(n̂, n1), . . . , (n̂, nk)}. If n has no child node, then applying this rule is equivalent to

deleting n.

With rule R1 we added a restriction to its use. However, we have given rule R2 a

new effect: when merging a node downwards onto its children, the built-in conditions are

passed along with the triple patterns.

Example 3.6. Consider the resulting tree from Example 3.5. Note how node n4 does

not introduce any new variables, since ?H and ?M are both present in node n2. Thus,

we can copy the contents of Pn4 into Pn5 , eliminate node n4 and make nodes n5 and n6

children of n2:

23

n1 : {(?M, poi, art-museum), (?M, rating, top)}

n2 : {(?M, location, ?L), (?H, category, hotel), (?H, location, ?L)},

{(?L = paris) _ (?L = rome)}

n3 : {(?A, location, ?L),

(?A, poi, ?P)}

n5 : {(?H, nearby, ?M),

(?H, price, ?C)}

n6 : {(?H, nearby, ?M),

(?H, review, ?R)}

n7 : {(?F, location, ?L),

(?F, category, restaurant)}

Rule R3 (homomorphism upwards): Let n, n̂ 2 V be nodes s.t. n̂ is the parent of n,

and let n1, . . . , nk 2 V be the children of n. If there exists a homomorphism h : Pn !

Pbranch(n̂) with h(?X) =?X for all variables ?X 2 vars(Pn) \ vars(Pbranch(n̂)), and

vars(Fn) \ vars(branch(n̂)) = ;, then merge n into n̂, i.e. let P 0
n̂ = Pn̂ [Pn, F 0

n̂ =

Fn̂ [Fn, V 0 = V \ {n} (remove n) and E 0 = (E \ {(n̂, n), (n, n1), . . . , (n, nk)}) [

{(n̂, n1), . . . , (n̂, nk)} (turn n’s child nodes into children of n̂).

Rule R3 has both a new restriction to its application and a new effect: since merging

the node upwards now copies its set of built-in conditions upwards, care must be taken

that this does not affect the rest of the tree.

Example 3.7. Consider node n3 in the resulting tree from Example 3.6. Now consider

the homomorphism h : {?A!?M, ?L!?L, ?P ! art-museum}, which maps each of the

triples in n3 onto a triple in n1 or n2. Also note that n3 has no built-in conditions, and so

the additional condition for rule R3 is trivially satisfied. Therefore, we can merge n3 into

n2 to obtain the following tree:

24

n1 : {(?M, poi, art-museum), (?M, rating, top)}

n2 : {(?M, location, ?L), (?H, category, hotel), (?H, location, ?L)

(?A, location, ?L), (?A, poi, ?P)}, {(?L = paris) _ (?L = rome)}

n5 : {(?H, nearby, ?M),

(?H, price, ?C)}

n6 : {(?H, nearby, ?M),

(?H, review, ?R)}

n7 : {(?F, location, ?L),

(?F, category, restaurant)}

Rule R4 (parallelization): Consider nodes n̂, n, n0 2 V s.t. n̂ is the parent of n, and

n is the parent of n0. If there exists a homomorphism h : Pn ! Pn0 [Pbranch(n̂) with

h(?X) =?X for all variables ?X 2 vars(Pn) \ vars(Pbranch(n̂)), then add Fn to Fn0 (i.e.

make F 0
n0 = Fn0 [Fn) and turn n0 from a child of n into a child of n̂, if the resulting

pattern tree is quasi well-designed. I.e. V 0 = V , E = (E \ {(n, n0)}) [{(n̂, n0)}, if T 0

is still quasi well-designed.

Our running example does not have a rule R4 application. In fact, very few real

queries do, as will be seen in Chapter 4. However, this rule has been included for the sake

of completeness. In this case, it is necessary to copy some built-in expressions to ensure

that results obtained from the descendants of n0 still get filtered appropriately.

For the fifth rule we require an additional definition.

Definition 3.8. Consider a pattern tree node n, its labeling Pn and a built-in condition

R. Let R0 = (c1 ^ · · · ^ ck) be another built-in condition in conjunctive normal form

that is equivalent to F . We define the maximum propagation of R onto n, written as

maxprop(R, n), as the set {ci|i 2 1 . . . k ^ vars(ci) ✓ vars(Pn)}.

For a set F = {R1, . . . , R`} of built-in conditions, let Mi be the maximum propaga-

tion of Ri onto n. We define the maximum propagation of F onto n as the set
S

i21...` Mi.

We can now present our new transformation rule.

25

Rule R5 (filter propagation): Let n̂, n 2 V be nodes s.t. n̂ is the parent of n. Let M be

the maximum propagation of Fn̂ onto n. Then make F 0
n = Fn [M .

Basically, rule R5 passes down as much filtering information as it can down the tree.

Ideally, this allows lower nodes in the tree to filter out partial results which would end up

being eliminated higher up in the tree after being joined with other partial results, speeding

up evaluation time.

Example 3.8. Consider the label in Fn2 and node n7 in pattern tree T from Exam-

ple 3.7. We can copy Fn2 into node n7 to obtain our final well-designed pattern tree:

n1 : {(?M, poi, art-museum), (?M, rating, top)}

n2 : {(?M, location, ?L), (?H, category, hotel), (?H, location, ?L)

(?A, location, ?L), (?A, poi, ?P), {(?L = paris) _ (?L = rome)}

n5 : {(?H, nearby, ?M),

(?H, price, ?C)}

n6 : {(?H, nearby, ?M),

(?H, review, ?R)}

n7 : {(?F, location, ?L),

(?F, category, restaurant)},

{(?L = paris) _ (?L = rome)}

Having presented the final rule, we can now introduce the following theorem.

Theorem 3.3. Let T be a QWDPT and T 0 the pattern tree that results from applying

either rule R1, or R2, or R3, or R4, or R5 to T . Then T 0 is a QWDPT such that T ⌘ T 0.

The proof for Theorem 3.3 is given in Appendix A.5, where the correctness of each

rule is proven separately. This theorem allows us to freely transform any given QWDPT

by applying rules R1 through R5 in any arbitrary order, which leads us into Chapter 4.

26

Chapter 4. QUERY OPTIMIZATION

We have thus far added the FILTER operator to the pattern tree structure and shown

that QWDPTs still behave as one would intuitively expect (meaning that theorems and

lemmas still hold). We now study the potential of these rules for query optimization.

Note that in this section we are working with real world SPARQL queries. There are

a few syntactical differences between these and the mathematical constructs that we’ve

used in the previous sections; for example, the real world version of the graph pattern

“(?S, ?P, ?O) AND (?O, ?P, ?S)” would be “{?S ?P ?O . ?O ?P ?S}”. Care

must be taken when going from one to the other, but in general the conversion is relatively

straightforward.

4.1. Implementation

In Letelier et al. (2012b) and Letelier, Pérez, Pichler, and Skritek (2012a), the authors

created a Java implementation of pattern trees, the Top-down evaluation algorithm, and

the transformation rules R1 to R4 over the Jena framework and its ARQ main query en-

gine (Apache Jena, 2013). We have updated this implementation to use Jena 2.10 and to

include the FILTER operator on the Top-down evaluation, based on Definition 3.6, and

transformation rules R1 through R4, as well as added rule R5.

The Jena-ARQ main query is a fairly modern and mainstream iterator based engine

that has no cache. This makes it extremely useful for testing, as it prevents multiple run

times of the same query from varying wildly as caches get warmed up, which makes iso-

lating variables and repeating tests very easy and ensures consistent results. Also, unlike

Virtuoso, 4-store and other engines, Jena-ARQ doesn’t stop returning results after any

given time or result limit is hit. Both Virtuoso and 4-store fail silently whenever this hap-

pens, thus making query evaluation times seem shorter than they really are. This makes

them unsuitable for testing purposes.

27

On the other hand, the Top-down query engine is based on Jena-ARQ’s reference en-

gine. Instead of quickly returning an iterator and calculating new results as requested,

it follows strictly the mathematical definitions of operators, completely calculating sets

before doing operations on them, and thus returning the entire result set at once. It is

designed to be correct, not efficient. Because of this, comparisons between both query

engines are unfair, but nevertheless might be interesting. Furthermore, since rule appli-

cations were designed with the top down evaluation in mind, this engine should show the

most improvement when evaluating rewritten queries.

4.2. Dataset

The USEWOD 2013 Data Challenge (Berendt, Hollink, Luczak-Rösch, Möller, &

Vallet, 2013) provides a large dataset of several years worth of server logs from DBpedia,1

Semantic Web Dog Food2 (SWDF), Linked Open Geo Data3 and Bio2RDF.4

In all, the logs contain almost 45 million query requests. Out of these, approximately

5 million are not valid SPARQL queries. For our test case, we require SELECT queries

that contain at least one OPT operator, no UNION operator, no sub queries, and projection

only on the top level (the SELECT statement). We call these queries usable.

Out of all the usable queries, we can only work on those that are well-designed. Out

of these, we extract those over which we can apply at least one rule based transformation.

We call these queries transformable. Finally, since these are real query logs, there are

many identical queries, or queries that differ only in the parameters given to the LIMIT

and OFFSET operators. This is due to the fact that most real world query engines limit the

number of results they return, so users wanting to get the full result set must spread their

operation over many queries. Therefore, we consider these queries identical and eliminate

repeated queries.

1
http://www.dbpedia.org/

2
http://data.semanticweb.org/

3
http://linkedgeodata.org/About

4
http://bio2rdf.org/

28

http://www.dbpedia.org/
http://data.semanticweb.org/
http://linkedgeodata.org/About
http://bio2rdf.org/

Bio2RDF DBpedia LGD SWDF

Total 192,057 28,929,586 1,929,671 13,891,099
Valid 192,008 24,263,214 1,519,725 13,675,469
Usable 0 2,625,104 435,771 300,135
Well-designed 0 1,587,554 45,346 261,985
Transformable 0 23,454 14,025 30,050
Unique queries 0 6,690 151 117

TABLE 4.1. Number of queries per dataset

Each step eliminates a considerable portion of the available set of queries. The appli-

cability of rules varies greatly over different datasets, leaving very few test cases in all of

them except for DBpedia. The number of queries after each step is summarized in Table

4.1. We have therefore chosen DBpedia as our main test dataset, leaving us with 6,695

queries which can be transformed and compared. However, for the sake of completeness,

we have also run the queries from Linked Open Geo Data and Semantic Web Dog Food.

4.3. Methodology

We first extract the graph pattern part of the query and construct its canonical pattern

tree. We then exhaustively try to apply rules R1, R2, R3, R4 and R5 in that order. Finally,

we run four tests: the original query over the Jena-ARQ engine, the rewritten query over

the Jena-ARQ engine, the original query’s tree pattern over the Top-down engine, and the

modified tree pattern over the Top-down engine.

For the dataset, we have loaded the complete English version of DBpedia 3.8,5 SWDF6

and LGD7 onto an instance of Virtuoso, which constitutes approximately 600 million

unique triples. Ideally we would run each query over the entire dataset, but memory

constraints make this impractical. To work around this, we take advantage of SPARQL’s

CONSTRUCT operator in order to create a smaller, tractable dataset.

5
http://downloads.dbpedia.org/3.8/en/

6
http://data.semanticweb.org/dumps/

7
http://downloads.linkedgeodata.org/releases/

29

http://downloads.dbpedia.org/3.8/en/
http://data.semanticweb.org/dumps/
http://downloads.linkedgeodata.org/releases/

Given a SPARQL SELECT query Q, we refer by graphPattern(Q) to the graph

pattern of Q. Given a graph pattern P , we refer by triples(P) to the set of all triple patterns

mentioned in P . We can then use a number n and Algorithm 1 to build a CONSTRUCT

query which, when evaluated over a large database D, generates a second database DQ.

Intuitively, DQ includes only those triples in D that are useful for answering Q, in the

sense that if we were to remove them from D there would be at least one less result in

JQKD.

Assuming that n is large enough and that Q is well-designed, evaluating Q over DQ

will create the same results as when evaluating Q over D. As long as n is larger than

the number of triples in Q and that JQKD is not empty, then JQKDQ will include at least

one result. Also note that since DQ ✓ D and Q is well-designed, JQKDQ ✓ JQKD.

Finally, note that the inclusion of the LIMIT statement keeps the size of DQ manageable,

while including the pattern ?S ?P ?O in the template of the CONSTRUCT query and

the UNION statement ensures that DQ is large enough to make the calculation of JQKDQ

nontrivial for most queries.

Algorithm 1: Construct(Q, size)
Input: Q: query, size: number
P graphPattern(Q);
out “CONSTRUCT{”;
foreach t in triples(P) do

out append(out, t) ;
end
out append(out, “?S ?P ?O }");
out append(out, “WHERE { {”) ;
out append(out, P);
out append(out, “} UNION { ?S ?P ?O } } LIMIT ”);
out append(out, size);
return out ;

Thus, our testing for each unique, useful and transformable query Q proceeds as fol-

lows:

(i) Parse the query Q;

30

(ii) using Virtuoso, evaluate Construct(Q, 10000) over DBpedia, LGD or SWDF to

create database DQ;

(iii) generate Q’s canonical pattern tree, T , by transforming the body of Q as shown

in Proposition 3.2;

(iv) exhaustively apply every possible transformation rule to T to create T 0;

(v) create a query Q0 by transforming T 0 into a SPARQL query and applying all

result modifiers from the head of Q;

(vi) evaluate Q and Q0 over DQ using Jena’s ARQ main query engine;

(vii) evaluate T and T 0 over DQ using the Top-down evaluation from Letelier et al.

(2012b).

The queries were run on an Amazon EC2 general purpose m3.xlarge instance. The

machine has 15 GB of RAM and a 64-bit, 4-core processor with 13 ECU units,8 with one

EC2 Compute Unit being the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or

2007 Xeon processor.9 For each evaluation there was a time limit of 120,000 milliseconds.

Query execution time was measured by reading the system clock before and after the

execution. Additionally, to ensure that all results are actually generated, the program

iterates through the entire result set before considering each evaluation completed.

4.4. Results and analysis

Tables 4.2, 4.3 and 4.4 summarize the average running time of all queries before and

after transformations are applied for both query engines, separated by rule application. It

also shows how many queries had to be halted after being allowed to run for two minutes

of real time.

8
http://aws.amazon.com/ec2/instance-types/#instance-details

9
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why

_did_you_introduce_it

31

http://aws.amazon.com/ec2/instance-types/#instance-details
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it

4.4.1. Rules R1 through R3

The first thing one might notice with regards to rule applicability is how seldom are

two separate rules applicable. This makes the possibly interesting comparison of which

rules have the strongest effect on query execution time over a single query, statistically

insignificant. Worse, rule R4 is never applied, thus giving no information over its use.

However, the fact that rule R4 simply shifts nodes around without actually reducing the

number of nodes, triples or OPT operators suggests that this rule is not the best suited for

query optimization.

Rule R1 has very few applications, even when considering its use in conjunction with

other queries. This is to be expected, since the repetition of triples within sub-nodes should

be a fairly evident mistake from the query designer.

Rule R2 provides by far the strongest improvement, stemming from the fact that the

rule eliminates an entire node, which includes its triples and an OPT operator. In the

Top-down engine, this is so extreme that it even beats the Jena-ARQ main engine after

optimization. This makes this rule the most likely explanation for the strong reduction

in time whenever both R1 and R2 are applied. Unfortunately the rule is only applicable

in around 1% of those queries where rule applications are possible, which makes these

transformations a rare but worthwhile find.

Rule R3 also provides a marked increase in both engines. While the increase might

not appear too great in the Jena-ARQ case, note that the number of queries that hit the

time limit is reduced from 12 to 0, showing that the average time hides the usefulness of

the rule in making difficult queries tractable and how much better Jena-ARQ is at handling

inner joins than left joins.

It is interesting as well that, despite the exhaustive search for homomorphisms within

each query, their fairly small size makes rule application very fast in practice, especially

when compared to the average gain in query execution time. Rule R3, which has the slow-

est transformation time at 0.4 milliseconds, is marginal when compared to the provided

32

improvement in both engines. The opposite side of this is rule R5, which when consider-

ing transformation time ends up improving very little in the Top-down engine and actually

being worse over Jena-ARQ.

Overall, the strategy offers a considerable improvement in query execution time even

after factoring in transformation times, as shown in Figures 4.3 and 4.4, and it is therefore

a sound query optimization technique.

33

To
p-

do
w

n
Je

na
-A

R
Q

O
rig

in
al

qu
er

y
M

od
ifi

ed
qu

er
y

O
rig

in
al

qu
er

y
M

od
ifi

ed
qu

er
y

R
ul

es
C

ou
nt

Tr
an

sf
or

m
tim

e
(m

s)
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d

R
1

4
0

12
.2

5
0

0.
75

0
7.

75
0

1
0

R
1R

2
5

0.
4

32
75

6.
6

1
25

24
8.

8
1

26
49

0.
6

1
24

85
5.

6
1

R
1R

3
1

0
12

9
0

57
37

0
21

0
11

4
0

R
1R

5
1

0
1

0
1

0
2

0
1

0
R

2
63

0.
12

69
84

24
29

.0
6

0
7.

66
66

7
0

27
7.

07
9

0
8.

34
92

1
0

R
3

24
9

0.
40

56
22

64
27

.3
2

14
35

92
.8

7
2

13
1.

94
8

12
12

7.
34

1
0

R
4

0
—

—
—

—
—

—
—

—
—

R
5

63
67

0.
19

99
37

3.
41

22
8

1
3.

31
52

2
0

0.
47

46
35

1
0.

46
48

97
0

C
om

bi
ne

d
66

90
0.

20
68

76
28

9.
85

4
16

15
6.

68
2

3
27

.7
78

8
14

23
.8

55
2

1

TA
B

L
E

4.
2.

Ex
pe

rim
en

ta
lr

es
ul

ts
fo

rD
B

pe
di

a

34

To
p-

do
w

n
Je

na
-A

R
Q

O
rig

in
al

qu
er

y
M

od
ifi

ed
qu

er
y

O
rig

in
al

qu
er

y
M

od
ifi

ed
qu

er
y

R
ul

es
C

ou
nt

Tr
an

sf
or

m
tim

e
(m

s)
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d

R
1

0
—

—
—

—
—

—
—

—
—

R
2

0
—

—
—

—
—

—
—

—
—

R
3

15
1

0.
54

96
69

17
59

6.
9

0
62

.4
57

0
45

.6
29

1
0

16
.0

39
7

0
R

4
0

—
—

—
—

—
—

—
—

—
R

5
0

—
—

—
—

—
—

—
—

—

C
om

bi
ne

d
15

1
0.

54
96

69
17

59
6.

9
0

62
.4

57
0

45
.6

29
1

0
16

.0
39

7
0

TA
B

L
E

4.
3.

Ex
pe

rim
en

ta
lr

es
ul

ts
fo

rL
in

ke
d

O
pe

n
G

eo
D

at
a

35

To
p-

do
w

n
Je

na
-A

R
Q

O
rig

in
al

qu
er

y
M

od
ifi

ed
qu

er
y

O
rig

in
al

qu
er

y
M

od
ifi

ed
qu

er
y

R
ul

es
C

ou
nt

Tr
an

sf
or

m
tim

e
(m

s)
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d
Ti

m
e

(m
s)

#
H

al
te

d

R
1

5
0.

2
26

.8
0

9.
4

0
11

0
4.

6
0

R
1R

2
4

0
24

89
2

0
68

.7
5

0
78

7.
5

0
21

0
R

1R
3

5
0.

4
1

0
1

0
2

0
1.

4
0

R
2

5
0.

2
15

54
6.

8
0

31
.4

0
96

.8
0

15
.8

0
R

3
26

0.
15

38
46

23
54

2.
3

5
16

31
3.

8
0

21
.1

15
4

0
14

.9
23

1
0

R
4

0
—

—
—

—
—

—
—

—
—

R
5

72
1.

66
66

7
88

3.
72

2
0

87
6.

79
2

0
18

0
27

.6
38

9
0

C
om

bi
ne

d
11

7
1.

07
56

3
71

69
.8

8
0

40
98

.9
2

0
46

.5
88

2
0

21
.6

05
0

TA
B

L
E

4.
4.

Ex
pe

rim
en

ta
lr

es
ul

ts
fo

rS
em

an
tic

W
eb

D
og

Fo
od

36

4.4.2. Rule R5

Despite being the most applicable, Rule R5 appears at first to be somewhat of a disap-

pointment. On DBpedia its overall average effect is barely noticeable, while on SWDF it

varies greatly between query engines, being a considerable improvement on the Top-down

engine, but damaging query evaluation time on Jena-ARQ. This is to be expected to some

extent in Jena-ARQ due to its iterator based approach: pruned partial mappings on the left

side of an OPT operator should also prune results inside it when looking for compatible

mappings. This means that in some cases, adding FILTER expressions to the text only

results in having to iterate an additional time over a given dataset, which might have a

significant cost in time. However, since the Top-down engine evaluates basic graph pat-

terns before left joining, filtering results between these operations ought to greatly reduce

the number of compatibility tests required, and thus evaluation time. Therefore, we have

further studied this particular case.

One would expect a “difficult” query to have a greater optimization potential than an

“easy” one. However, query execution time is extremely short for DBpedia, taking less

than 4 milliseconds on the Top-down engine and less than 0.5 milliseconds on Jena-ARQ

on average. This suggests that the actual effect of the rule is hidden by a very high number

of very fast queries. In fact, out of the 6,440 queries for which rule R5 is applicable, only

97 take more than 10 milliseconds on the Top-down engine and 66 on Jena-ARQ meaning

that relatively few intermediate results are involved, and thus not many mappings can be

pruned by pushing FILTER operators down the pattern tree.

To make our results more significant, we ran the same queries with rule R5 applica-

tions with a much larger database of 30,000 triples, in order to see more queries taking

more than 10 milliseconds. This resulted in 124 queries on the Top-down engine and 104

on Jena-ARQ.

37

Top-down Jena-ARQ
Number of queries 124 104
Average time for unmodified queries (ms) 1140.27 58.2692
Average time for modified queries (ms) 1113.94 44.3654
Average time improvement (ms) 26.3226 13.9038
Total percentual improvement 2.30846% 23.8614%
Number of queries which improve 101 80
Percentage of queries which improve 81.4516% 76.9231%

TABLE 4.5. Effect of applying rule R5 to queries which take more than 10 mil-
liseconds when evaluated over 30000 triples

0

10

20

30

40

50

60

70

-80 -60 -40 -20 0 20 40 60 80 100

#
of

qu
er

ie
s

Percentual improvement in query time
� original�modified

original ⇤ 100
�

FIGURE 4.1. Distribution of percentual improvement on evaluation for rule R5
on Top-down engine, over “slow” queries

For these queries, we have much better results, which are illustrated in Figures 4.1

and 4.2, which show the distribution of percentual improvement in query execution time.

A brief summary of results is shown in table 4.5.

There is a noticeable improvement now over the Jena-ARQ query engine. Notice how

most queries now show at least some improvement, with many of them showing an almost

100% decrease in execution time. Unfortunately, in the relatively few cases where the

transformation impacts negatively, there is a sharp increase in time, which partly negates

38

0

10

20

30

40

50

60

70

80

-350 -300 -250 -200 -150 -100 -50 0 50 100

#
of

qu
er

ie
s

Percentual improvement in query time
� original�modified

original ⇤ 100
�

FIGURE 4.2. Distribution of percentual improvement on evaluation time for rule
R5 on Jena-ARQ engine, over “slow” queries

the overall effect of the transformation. This is particularly illustrated in Figure 4.2, where

one query quadruples in execution time. All of this suggests that while blindly applying

rule R5 does indeed improve average execution times for slower queries, the change in

query time heavily depends on the query.

One possible solution to this problem could be to estimate the size of the result set

of each node before and after applying the transformation. Much work has been done

in this area (Markl et al., 2005; Ioannidis & Poosala, 1995; Quilitz & Leser, 2008), and

mature query engines like IBM’s DB2, Informix, Microsoft SQL Server, Oracle 8, and

Sybase Ase all use several techniques to estimate query characteristics, such as result size

and cost (Ramakrishnan & Gehrke, 2003, p. 485). In fact, this technique has already

been well studied and applied on the relational equivalent of the FILTER operator, the

WHERE clause. It has been shown how one can model the effect of the WHERE clause

on the result size by associating a reduction factor with each term, which is the ratio of

the expected result size of the input considering only the selection represented by the

term. The actual size of the result can be estimated as the input size times the product

39

0

100

200

300

400

500

600

700

800

Top-down Jena-ARQ

Ti
m

e
(m

s)

Query engine

Original
Modified

FIGURE 4.3. Query evaluation time improvement for all rules

of the reduction factors for all the terms in the where clause. This estimate reflects the

simplifying but useful assumption that the conditions tested by each term are statistically

independent (Ramakrishnan & Gehrke, 2003, p. 485).

These techniques can be easily applied to our case: if one could reliably estimate the

number of partial mappings pruned by pushing each FILTER operator down the query,

and it would be fairly simple to decide whether to apply rule R5 or not. However, this is

beyond the scope of this thesis, and is merely proposed as future work.

40

0

2000

4000

6000

8000

10000

12000

Top-down Jena-ARQ

Ti
m

e
(m

s)

Query engine

Original
Modified

FIGURE 4.4. Query evaluation time improvement for all rules except R5

41

Chapter 5. CONCLUSIONS AND FUTURE RESEARCH

5.1. General remarks

In this work we have extended the notion of pattern trees (Letelier et al., 2012b) to

support queries which include the filtering feature of SPARQL, showing ways to build,

evaluate and transform them in a way that is fully compatible with previous work. Along

with this, we have presented a successful strategy for optimizing well-designed SPARQL

graph patterns, demonstrating how well pattern tree transformation rules work as a logical

query plan optimizer. Furthermore, we have implemented our results over the Jena plat-

form, allowing us to handle massive sets of query logs programmatically. To complement

this, we have developed a technique which allows us to extract a relevant subset of an

RDF graph for a given SPARQL query, which makes testing possible under strict mem-

ory constraints. Finally, we have proposed a strategy to apply the new FILTER based

transformation rule selectively, to improve its optimization potential.

5.2. Future research topics

There are several goals towards which this work might be extended.

Possibly the most immediate line of work would be to study how to combine the use of

rule R5 with algorithms that predict its effectiveness, to decide when it is worth applying.

This is most likely a direct application of previous work directed towards the WHERE

clause of relational databases, and thus should not be difficult to adapt to our work.

Another interesting idea would be to combine the work done here, to add the FILTER

operator, with the one done in Letelier et al. (in press) to include the use of projection. This

would further increase the expressive power of QWDPTs, thus capturing a larger fragment

of SPARQL for which we are currently unequipped to deal with.

Finally, as part of our future work, we would like to study the main problem from

Letelier et al. (2012b), of query containment and equivalence in the presence of FILTER

42

operators, as this is both an interesting problem and the foundation for future query opti-

mization techniques.

43

References

Abadi, D. J., Marcus, A., Madden, S., & Hollenbach, K. J. (2007). Scalable semantic
web data management using vertical partitioning. In VLDB (p. 411-422).

Angles, R., & Gutierrez, C. (2008). The expressive power of SPARQL. In ISWC
(p. 114-129).

Apache Jena. (2013). http://jena.apache.org/.

Arenas, M., & Pérez, J. (2011). Querying semantic web data with SPARQL. In PODS
(p. 305-316).

Berendt, B., Hollink, L., Luczak-Rösch, M., Möller, K. H., & Vallet, D. (2013).
USEWOD2013 – 3rd International Workshop on Usage Analysis and the Web of
Data. In 10th ESWC – semantics and big data, Montpellier, France.

Berners-Lee, T. (2006). Linked data – design issues.
http://www.w3.org/DesignIssues/LinkedData.html.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data - the story so far. Inter-
national Journal of Semantic Web and Information Systems, 5(3), 1-22.

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson,
K. (2004). Jena: implementing the semantic web recommendations. In S. I. Feld-
man, M. Uretsky, M. Najork, & C. E. Wills (Eds.), WWW (alternate track papers &
posters) (p. 74-83). ACM.

Chekol, M., Euzenat, J., Genevès, P., & Layaïda, N. (2011). PSPARQL query con-
tainment. In DBPL.

Data.gov. (2013). http://www.data.gov.

Data.gov.uk. (2013). http://data.gov.uk.

44

Gallego, M. A., Fernández, J. D., Martínez-Prieto, M. A., & de la Fuente, P. (2011).
An empirical study of real-world SPARQL queries. CoRR, abs/1103.5043.

Garcia-Molina, H., Ullman, J. D., & Widom, J. (2009). Database systems - the com-
plete book (2. ed.). Pearson Education.

Gutiérrez, C., Hurtado, C. A., & Mendelzon, A. O. (2004). Foundations of semantic
web databases. In C. Beeri & A. Deutsch (Eds.), PODS (p. 95-106). ACM.

Ioannidis, Y. E., & Poosala, V. (1995, May). Balancing histogram optimality and
practicality for query result size estimation. SIGMOD Rec., 24(2), 233–244. doi:
10.1145/568271.223841

Lassila, O., & Swick, R. (1999). Resource description framework (RDF) model and
syntax. W3C Recommendation. http://www.w3.org/TR/PR-rdf-syntax.

Letelier, A., Pérez, J., Pichler, R., & Skritek, S. (2012a). SPAM: A SPARQL Analysis
and Manipulation Tool. PVLDB, 5(12), 1958-1961.

Letelier, A., Pérez, J., Pichler, R., & Skritek, S. (2012b). Static analysis and opti-
mization of semantic web queries. In M. Benedikt, M. Krötzsch, & M. Lenzerini
(Eds.), PODS (p. 89-100). ACM.

Letelier, A., Pérez, J., Pichler, R., & Skritek, S. (in press). Static analysis and opti-
mization of semantic web queries. In TODS.

Markl, V., Megiddo, N., Kutsch, M., Tran, T. M., Haas, P. J., & Srivastava, U.
(2005). Consistently estimating the selectivity of conjuncts of predicates. In VLDB
(p. 373-384).

Neumann, T., & Weikum, G. (2010). The RDF-3X engine for scalable management
of RDF data. VLDB J., 19(1), 91-113.

Pérez, J., Arenas, M., & Gutierrez, C. (2006). Semantics and complexity of
SPARQL. In ISWC (p. 30-43).

45

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Semantics and complexity of
SPARQL. TODS, 34(3).

Picalausa, F., & Vansummeren, S. (2011). What are real SPARQL queries like? In
SWIM (p. 7).

Polleres, A. (2007). From SPARQL to rules (and back). In WWW (pp. 787–796).

Prud’Hommeaux, E., & Seaborne, A. (2008). SPARQL query language for RDF.
W3C Recommendation.

Quilitz, B., & Leser, U. (2008). Querying distributed rdf data sources with SPARQL.
In S. Bechhofer, M. Hauswirth, J. Hoffmann, & M. Koubarakis (Eds.), ESWC (Vol.
5021, p. 524-538). Springer.

Ramakrishnan, R., & Gehrke, J. (2003). Database management systems (3. ed.).
McGraw-Hill.

Schmidt, M., Hornung, T., Küchlin, N., Lausen, G., & Pinkel, C. (2008). An exper-
imental comparison of rdf data management approaches in a SPARQL benchmark
scenario. In International semantic web conference (p. 82-97).

Schmidt, M., Meier, M., & Lausen, G. (2010). Foundations of sparql query opti-
mization. In Proceedings of the 13th international conference on database theory
(pp. 4–33). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/1804669.1804675 doi: 10.1145/1804669.1804675

Serfiotis, G., Koffina, I., Christophides, V., & Tannen, V. (2005). Containment and
minimization of RDF/S query patterns. In International semantic web conference
(p. 607-623).

Sidirourgos, L., Goncalves, R., Kersten, M. L., Nes, N., & Manegold, S. (2008).
Column-store support for RDF data management: not all swans are white. PVLDB,
1(2), 1553-1563.

46

http://doi.acm.org/10.1145/1804669.1804675
http://doi.acm.org/10.1145/1804669.1804675

Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., & Reynolds, D. (2008).
SPARQL basic graph pattern optimization using selectivity estimation. In J. Huai
et al. (Eds.), WWW (p. 595-604). ACM.

Weiss, C., Karras, P., & Bernstein, A. (2008). Hexastore: sextuple indexing for se-
mantic web data management. PVLDB, 1(1), 1008-1019.

47

APPENDIX

48

APPENDIX A. ADDITIONAL PROOFS

A.1. Proof of Proposition 3.1

PROOF. Let T = ((V,E, r), (Pn)n2V , (Fn)n2V) be a well-designed pattern tree, ⌃ an

arbitrary order of T , and P be the graph pattern TR(T ,⌃). We next show that if P is not

a well-designed graph pattern, then T is not a well-designed pattern tree. Suppose that P

is not well-designed. We have two possibilities:

• there exists a subpattern P 0 = (P1 OPT P2) of P , and a variable ?X which

occurs in P2 and outside P 0 in P , but does not occur in P1. Notice that in the

definition of TR, every OPT operator is included when transforming a partic-

ular node n 2 V and one of its children. Thus assume that the OPT operator

in subpattern P 0 = (P1 OPT P2) is created when transforming node n and its

children. Then if {n1, . . . , nk} are the children of n, by following the definition

of TR we know that there exists a value i 2 {1, . . . , k} such that

P1 =

✓
· · ·

✓✓✓✓
TR(Pn, Fn)

◆
OPT TR(T , �n(1),⌃)

◆
OPT TR(T , �n(2),⌃)

◆

· · ·
◆

OPT TR(T , �n(i� 1),⌃)

◆
,

(A.1)

and

P2 = TR(T , �n(i),⌃) (A.2)

Notice that since ?X appears in P2, then we know that ?X appears in the subtree

rooted at �n(i). Moreover, since ?X does not appear in P1, we have that ?X

does not appear in Pn (and also it does not appear in any of the subtrees rooted

at �n(1), . . . , �n(i � 1)). Finally, the fact that ?X also appears “outside” P 0,

implies that there exists a node v with v 6= n and that is not in the subtree

rooted at �n(i), such that ?X appears in Pv. This is enough to conclude that T

49

violates the connected condition in Definition 3.2 for variable ?X , and thus T

is not a well-designed pattern tree.

• there exists a subpattern P 0 = (P1 FILTER R) of P and a variable ?X that oc-

curs inside R but not in P1. From the definition of TR, every FILTER operator

is created when evaluating some node n 2 V . Assume that P 0 is created when

transforming node n and its children. Thus, by following the definition of TR,

we know that TR(T , n,⌃) introduced the subpattern (and(Pn) FILTER conj (Fn)),

with the variable ?X occurring inside Fn but not in Pn. Since vars(Fn) 6✓

vars(Pn), T violates the safety condition in Definition 3.2, and thus it is not a

well-designed pattern tree.

This completes our proof. ⇤

A.2. Proof of Lemma 3.1

PROOF. This lemma is a direct consequence of Proposition 3.1 and the soundness of

the following rewrite rule for well-designed patterns:

((P1 OPT P2) OPT P3) �! ((P1 OPT P3) OPT P2). (A.3)

It was proven in (Pérez et al., 2006) that if P is a well-designed graph pattern, and P 0 is

obtained from P by applying the above rule to some subpattern of P , then P 0 is also well-

designed and P ⌘ P 0. Thus assume that ⌃1 = {�1
n | n 2 V } and ⌃2 = {�2

n | n 2 V } are

arbitrary orderings for T = ((V,E, r), (Pn)n2V , (Fn)n2V)), and let n be a node in T with

set of children {n1, . . . , nk}. Rule (A.3) ensures that, by applying the rule to subpatterns

of the form

��
P 0
1 OPT TR(T , �1

n(i),⌃1)
�
OPT TR(T , �1

n(j),⌃1)
�
,

50

we can go from pattern

TR(T , n,⌃1) =

✓
· · ·

✓✓✓
TR(Pn, Fn) OPT TR(T , �1

n(1),⌃1)

◆

OPT TR(T , �1
n(2),⌃1)

◆
· · ·

◆
OPT TR(T , �1

n(k),⌃1)

◆
,

to pattern

TR(T , n,⌃2) =

✓
· · ·

✓✓✓
TR(Pn, Fn) OPT TR(T , �2

n(1),⌃2)

◆

OPT TR(T , �2
n(2),⌃2)

◆
· · ·

◆
OPT TR(T , �2

n(k),⌃2)

◆
,

thus proving the lemma. ⇤

A.3. Proof of Lemma 3.2

In proving this lemma we make use of the following claim:

CLAIM A.1. Consider the graph pattern

P =

✓�
(t1 AND t2 AND · · · AND tk AND t⇤) FILTER R

�
OPT

�
t⇤ AND Q

�◆

with t, t1, . . . tk triple patterns, R and Q an arbitrary graph pattern, and assume that

vars(R) ✓
S

1ik vars(ti). Then P is equivalent to the graph pattern

P 0 =

✓�
(t1 AND t2 AND · · · AND tk AND t⇤

�
FILTER R) OPT Q

◆

PROOF. First, it is easy to see that P is well-designed. It was proven in (Pérez et al.,

2006) that a pattern of the form
�
(P1 OPT P2) FILTER R

�
which is well-designed is

equivalent to
�
(P1 FILTER R) OPT P2

�
. We can use this property to transform P and

P 0 into
��
(t1 AND t2 AND · · · AND tk AND t⇤) OPT (t⇤ AND Q)

�
FILTER R

�

and
��
t1 AND t2 AND · · · AND tk AND t⇤) OPT (Q)

�
FILTER R

�
respectively.

51

Thus, the problem is reduced to proving that

�
(t1 AND t2 AND · · · AND tk AND t⇤) OPT (t⇤ AND Q)

�

is equivalent to

�
(t1 AND t2 AND · · · AND tk AND t⇤) OPT (Q)

�
,

which follows easily from the definitions of AND and OPT. ⇤

Thus, we can now proceed proving lemma 3.2.

PROOF. In order to prove the lemma, we show the following property. Let T1 and

T2 be well-designed pattern trees such that T1 ,!⇤ T2, and let P1 = TR(T1,⌃) and

P2 = TR(T2,⌃). We claim that P1 ⌘ P2. Since the well-designed property is in-

variant under ,!⇤, it is enough to show that the property holds whenever T1 ,! T2

(that is, T2 is obtained in a single step from T1). Thus assume that T1 ,! T2. Then

T1 = ((V,E, r), (P 1
n)n2V , (F

1
n)n2V) and T2 = ((V,E, r), (P 2

n)n2V , (F
2
n)n2V), and there

exists a node u, a triple t 2 P 1
u , and a child v of u such that P 2

v = P 1
v [{t} and

R2
v = R1

v, and for every n 6= v it holds that P 2
n = P 1

n and R2
n = R1

n. We next show

that TR(T1, u,⌃) ⌘ TR(T2, u,⌃), which by the construction of TR(T1,⌃) and TR(T2,⌃),

implies that TR(T1,⌃) ⌘ TR(T2,⌃).

Thus, assume that u has k children. Then since v is a child of u we know that there

exists an index i 2 {1, . . . , k} such that �u(i) = v, and then

TR(T1, u,⌃) =

✓
· · ·

✓✓
TR(P 1

u , F
1
u) OPT TR(T1, �u(1),⌃)

◆
· · ·

◆

OPT TR(T1, �u(i),⌃)

◆
· · ·

◆
OPT TR(T1, �u(k),⌃)

◆

52

and

TR(T2, u,⌃) =

✓
· · ·

✓✓
TR(P 2

u , F
2
u) OPT TR(T2, �u(1),⌃)

◆
· · ·

◆

OPT TR(T2, �u(i),⌃)

◆
· · ·

◆
OPT TR(T2, �u(k),⌃)

◆
.

By rule (A.3), and since both patterns are well-designed, we know that the patterns above

are equivalent to

✓
· · ·

✓✓
TR(P 1

u , F
1
u) OPT TR(T1, �u(i),⌃)

◆
OPT TR(T1, �u(1),⌃)

◆
· · ·

◆

OPT TR(T1, �u(k),⌃)

◆

and

✓
· · ·

✓✓
TR(P 2

u , F
2
u) OPT TR(T2, �u(i),⌃)

◆
OPT TR(T2, �u(1),⌃)

◆
· · ·

◆

OPT TR(T2, �u(k),⌃)

◆
,

respectively. Moreover, since T1 and T2 differ only in the label Pv of node v = �u(i),

we have that for every j 2 {1, . . . , k} such that j 6= i, it holds that TR(T1, �u(j),⌃) =

TR(T2, �u(j),⌃). Thus, in order to prove that TR(T1, u,⌃) ⌘ TR(T2, u,⌃) it is enough to

show that (recall that v = �u(i))
✓

TR(P 1
u , F

1
u) OPT TR(T1, v,⌃)

◆
⌘

✓
TR(P 2

u , F
2
u) OPT TR(T2, v,⌃)

◆
. (A.4)

We next show that Property (A.4) holds. Assume that v has ` children. Then the right-hand

side of (A.4) can be written as

✓
TR(P 2

u , F
2
u) OPT

✓
· · ·

✓
TR(P 2

v , F
2
v) OPT TR(T2, �v(1),⌃)

◆

· · · OPT TR(T2, �v(`),⌃)

◆◆
. (A.5)

53

Now, recall that P 2
u = P 1

u and that P 2
v = P 1

v [{t}. Moreover, for all the children of v we

have that T1 and T2 coincide. Thus we have that (A.5) can be written as

✓
TR(P 1

u , F
1
u) OPT

✓
· · ·

✓�
t AND TR(P 1

v , F
1
v)
�
OPT TR(T1, �v(1),⌃)

◆

· · · OPT TR(T1, �v(`),⌃)

◆◆
. (A.6)

We now make use of the following property proved in (Pérez et al., 2006). If the graph

patterns R = ((R1 AND R2) OPT R3) and R0 = (R1 AND (R2 OPT R3)) are well-

designed with R1, R2, and R3 arbitrary patterns, then R ⌘ R0. We want to apply this

equivalence rule to expression (A.6). For this we first argue that the pattern
✓
t AND

✓
TR(P 1

v , F
1
v) OPT TR(T1, �v(1),⌃)

◆◆
(A.7)

is well-designed. To show this, since we know from hypothesis that TR(P 1
v , F

1
v) is safe,

we only need to prove that if there is a variable ?X that occurs in TR(T1, �v(1),⌃) and

also in t, then this variable should occur in TR(P 1
v , F

1
v). Recall that t is a triple in P 1

u and

that u is the father of v. Moreover, if ?X occurs in TR(T1, �v(1),⌃) then we know that

there is a descendant w of v such that ?X occurs in P 1
w. Thus we have that ?X occurs

in P 1
u , and in P 1

w for a descendant w of v, and then, since u is the father of v and T1 is

a well-designed pattern tree, we obtain that ?X occurs in P 1
v . This ensures that (A.7) is

well-designed. It is also easy to see that
✓�

t AND TR(P 1
v , F

1
v)
�
OPT TR(T1, �v(1),⌃)

◆

is well-designed, since T2 is well-designed. Thus we can apply the mentioned rule to

obtain the (A.6) is equivalent to

✓
TR(P 1

u , F
1
u) OPT

✓
· · ·

✓
t AND

✓
(and(P 1

v) FILTER R1
v)

OPT TR(T1, �v(1),⌃)

◆�
· · · OPT TR(T1, �v(`),⌃)

◆◆
.

54

We can apply exactly the same argument to show that the last pattern is equivalent to

✓
TR(P 1

u , F
1
u) OPT

✓
· · ·

✓
t AND

✓✓
TR(P 1

v , F
1
v) OPT TR(T1, �v(1),⌃)

◆

OPT TR(T1, �v(2),⌃)

◆�
· · · OPT TR(T1, �v(`),⌃)

◆◆
.

If we keep applying the same transformation we reach the pattern

✓
TR(P 1

u , F
1
u) OPT


t AND

✓
· · ·

✓
TR(P 1

v , F
1
v) OPT TR(T1, �v(1),⌃)

◆
· · ·

OPT TR(T1, �v(`),⌃)

◆�◆
. (A.8)

Now, notice that t 2 P 1
u and thus t is one of the triple patterns that occur in TR(P 1

u , F
1
u).

Thus we can apply Claim A.1 to expression (A.8) and obtain

✓
TR(P 1

u , F
1
u) OPT

✓
· · ·

✓
TR(P 1

v , F
1
v) OPT TR(T1, �v(1),⌃)

◆

· · · OPT TR(T1, �v(`),⌃)

◆◆
,

which is exactly ✓
TR(P 1

u , F
1
u) OPT TR(T1, v,⌃)

◆
,

and thus completing the proof that (A.4) holds. This proves that TR(T1, u,⌃) ⌘ TR(T2, u,⌃),

which in turns implies that TR(T1,⌃) ⌘ TR(T2,⌃).

So far we have shown that if T1 and T2 are well-designed pattern trees such that

T1 ,!⇤ T2, then TR(T1,⌃) ⌘ TR(T2,⌃). Next we show that this implies that Lemma 3.2

holds.

Let T be a quasi well-designed pattern tree, and assume that T1 and T2 are well-

designed pattern trees such that T ,!⇤ T1 and T ,!⇤ T2. We need to prove that TR(T1,⌃) ⌘

TR(T2,⌃). In order to show this consider the pattern T ⇤ that is the maximum element such

that T ,!⇤ T ⇤. That is, T ⇤ is such that for every other tree T 0 such that T ,!⇤ T 0 it holds

that T 0 ,!⇤ T ⇤. It is straightforward to show that T ⇤ exists and is unique. Moreover, it

55

is also easy to see that since T is quasi well-designed, then T ⇤ is well-designed. Thus

we have that T1 ,!⇤ T ⇤ and since T1 and T ⇤ are well-designed from the property that we

proved in the previous paragraph, we obtain that TR(T1,⌃) ⌘ TR(T ⇤,⌃). Similarly, we

can show that TR(T2,⌃) ⌘ TR(T ⇤,⌃), and thus TR(T1,⌃) ⌘ TR(T2,⌃). This completes

the proof of Lemma 3.2. ⇤

A.4. Proof of Theorem 3.2

PROOF. In order to prove this theorem we require the following claim:

Claim 1: Let P1 and P2 be sets of triple patterns, and F1 and F2 be sets of built-in con-

ditions, such that vars(F1) ✓ vars(P1) and vars(F2) ✓ vars(P2). Then, for any dataset

G,

JTR(P1, F1)KG ./ JTR(P2, F2)KG = JTR(P1 [P2, F1 [F2)KG.

Proof of Claim 1: Given a mapping µ and a set of built-in conditions F , we write µ |= F

to say that, for every built-in condition R 2 F , µ |= R. If F is empty, then this property

trivially holds.

)) Let µ 2 JTR(P1, F1)KG ./ JTR(P2, F2)KG. Then µ = µ1 [µ2, with µ1 ⇠ µ2, µ1 2

JP1KG, µ2 2 JP2KG, µ1 |= F1 and µ2 |= F2. Since µ1 ⇠ µ2, then both mappings coincide

in their valuations for all variables in dom(µ1)\dom(µ2). Furthermore, since vars(F1) ✓

dom(µ1), then it is also the case that (µ1 [µ2) |= F1. If this was not the case, then

there would be a variable ?X 2 dom(µ2) and a built-in condition R 2 F1 with ?X

mentioned in R, such that µ2(?X) maps to some value that makes R false; however, since

vars(R) ✓ vars(µ1) then ?X 2 vars(µ1), and since µ1 ⇠ µ2, then µ1(?X) = µ2(?X),

and thus µ1 6|= R, which contradicts our hypothesis. By using the same argument, we have

that (µ1 [µ2) |= F2, and then (µ1 [µ2) |= F1 [F2. Therefore, we have that µ |= F1 [F2,

and thus JTR(P1 [P2, F1 [F2)KG.

() Let µ 2 JTR(P1 [P2, F1 [F2)KG. Then µ = µ1 [µ2, with µ1 ⇠ µ2, µ1 2 JP1KG,

µ2 2 JP2KG and (µ1 [µ2) |= F1 [F2. This means that, in particular, (µ1 [µ2) |= F1.

56

Furthermore, since vars(F1) ✓ dom(µ1), then we have that µ1 |= F1, and therefore µ1 2

JTR(P1, F1)KG. By using the same argument, µ2 |= F2, and then µ2 2 JTR(P2, F2)KG.

Thus, since µ = µ1 [µ2, we have shown that µ 2 JTR(P1, F1)KG ./ JTR(P2, F2)KG.

This proves the claim.

Let T = ((V,E, r), (Pn)n2V , (Fn)n2V) be a quasi well-designed pattern tree. We

denote by Tn the subtree of T rooted at node n. From now on in this proof, whenever we

say that a pattern tree T1 is a subtree of a pattern tree T2 we assume that both trees coincide

in its root node and that all the labels in T1 are the same as the labels of T2 (for the nodes

that are composing the subtree T1).

Now let G be an RDF graph. We next show that for every node n 2 V the following

property holds. Let M be a set of mappings, and assume that there is a set of triple

patterns PM and a set of built-in conditions FM , such that vars(Fm) ✓ vars(PM) and

M = JTR(PM , FM)KG. Moreover, assume that if ?X is a variable that occurs in two

different descendants of n but not in Pn, then ?X 2 dom(µ) for every µ 2 M (and thus

?X occurs in PM). Finally, we denote by T PM ,FM
n the pattern tree obtained from Tn by

adding all triples in PM to the triple pattern label of n (the root of Tn), and all the built-in

conditions in FM to the label of built-in conditions of n (that is, the new labels of the root

are Pn [PM and Fn [FM) . We claim that

ext(M,n,G) = JT PM ,FM
n KG

We show this by induction in the tree Tn. If n is a leaf node, then Tn is composed of a

single node labeled Pn and Fn, and then ext(M,n,G) = M ./ JTR(Pn, Fn)KG. On the

other hand JT PM ,FM
n K = JTR(Pn [PM , Fn [FM)KG. By applying Claim 1, then this is

equal to JTR(PM , FM)KG ./ JTR(Pn, Fn)KG = M ./ JTR(Pn, Fn)KG, and then the property

57

holds. Assume now that n has n1, . . . , nk as children. Then in this case we have that

ext(M,n,G) =
�
(M ./ JTR(Pn, Fn)KG) ./ ext(M ./ JTR(Pn, Fn)KG), n1, G)

�

./ · · · ./
�
(M ./ JTR(Pn, Fn)KG) ./ ext(M ./ JTR(Pn, Fn)KG), nk, G)

�
.

Assume that M 0 = M ./ JTR(Pn, Fn)KG. It is not difficult to see that for every ni, if

?X occurs in two different descendants u and v of ni but not in Pni , then ?X 2 dom(µ)

for every µ 2 M 0. This is because u and v are also descendants of n, and thus vari-

able ?X is either in Pn or in dom(µ) for every µ 2 M . Moreover, we have that M 0 =

JTR(PM [Pn, FM [Fn)KG. Thus we can apply the induction hypothesis, and then we

have that ext(M ./ JTR(Pn, Fn)KG, ni, G) = JT PM[Pn,FM[Fn
ni

KG, and thus, we can write

ext(M,n,G) as

ext(M,n,G) =
�
JTR(PM [Pn, FM [Fn)KG ./ JT PM[Pn,FM[Fn

n1
KG
�
./

· · · ./
�
JPM [PnKG ./ JT PM[Pn

nk
KG
�
.

Thus, in order to prove what we need, it is enough to show that

JT PM ,FM
n KG =

�
JTR(PM [Pn, FM [Fn)KG ./ JT PM[Pn,FM[Fn

n1
KG
�
./

· · · ./
�
JTR(PM [Pn, FM [Fn)KG ./ JT PM[Pn,FM[Fn

nk
KG
�
. (A.9)

Before proving this we observe that, although Tn can be a pattern which is not quasi

well-designed, the properties of M ensures that T PM
n is quasi well-designed. Similarly

T PM[Pn,FM[Fn
ni

is quasi well-designed for every i 2 {1, . . . , k}. We now prove (A.9). Thus

assume that µ 2 JT PM ,FM
n KG. Then since T PM ,FM

n is quasi well-designed, by Lemma 3.3

we know that there exists a subtree T 0 of T PM ,FM
n such that µ 2 JT 0KG, and µ is maximal,

i.e. there is no other subtree T 00 such that µ is strictly subsumed by a mapping in JT 00KG.

Consider a maximal such subtree T 0 for µ. First notice that T 0 is composed of the root

of T PM ,FM
n plus (possibly empty) subtrees of the Tni’s as children of the root of T PM ,FM

n .

58

Thus, assume that T 0 is composed of the root of T PM ,FM
n plus trees T 0

1 , T 0
2 ,. . . ,T 0

k as chil-

dren, where every T 0
i is either empty (in which case nothing is added as a child to the

root of T PM ,FM
n), or T 0

i is a subtree of Tni . Since µ 2 JT 0KG and the root of T 0 contains

Pn [PM and Fn [FM as labels, we know that there exists a mapping µ0 such that µ0 v µ

and µn 2 JTR(Pn [PM , Fn [FM)KG. Notice that this mapping µ0 is unique (and has as

domain, exactly the variables mentioned in Pn [PM). We next prove some properties of

the trees T 0
i depending on whether they are empty or not.

• Given that µ 2 JT 0KG, we have that for every i 2 {1, . . . , k}, if T 0
i is not

empty then there exists a mapping µ0
i such that µ0

i v µ and µ0
i 2 JT 0

i KG. For

every nonempty T 0
i consider the pattern (T 0

i)
PM[Pn,FM[Fn constructed similarly

as T PM[Pn,FM[Fn
ni

. Then by the construction of T 0, we know that there ex-

ists a mapping µ0 [µ0
i 2 JT 0

i)
PM[Pn,FM[FnK, with µ0 the portion of µ such

that µ0 2 JTR(PM [Pn, FM [Fn)KG. Notice that µ0 [µ0
i v µ. We claim

that µ0 [µ0
i 2 JT PM[Pn,FM[Fn

ni
KG. On the contrary, assume that µ0 [µ0

i /2

JT PM[Pn,FM[Fn
ni

KG. Since µ0 [µ0
i 2 J(T 0

i)
PM[Pn , FM [FnK, (T 0

i)
PM[Pn,FM[Fn

is a subtree of T PM[Pn,FM[Fn
ni

, and T PM[Pn,FM[Fn
ni

is quasi well-designed, by

Lemma 3.3 we know that there exists a subtree T 00
i of T PM[Pn,FM[Fn

ni
and a

mapping ⌫i such that µ0 [µ0
i @ ⌫i and ⌫i 2 JT 00

i K. Since µ0 [µ0
i @ ⌫i we

know that there exists a variable ?Y 2 dom(⌫i) such that ?Y /2 dom(µ0 [µ0
i).

Moreover for every such variable ?Y that is in dom(⌫i) but not in dom(µ0[µ0
i),

we have that ?Y does not occur in any other branch of T PM ,FM
n since T PM ,FM

n

is quasi well-designed. In particular, ?Y does not occur in any Tnj for j 6= i,

and then we have that ?Y /2 dom(µ). Moreover, since µ0 [µ0
i v µ and all

the variables that are in dom(⌫i) but not in dom(µ0 [µ0
i) are not in dom(µ),

we have that µ and ⌫i are compatibles, and then µ @ µ [⌫i. Furthermore,

since ⌫i 2 JT 00
i K, we have that there exists a subtree T 00 of T PM ,FM

n such that

µ @ µ [⌫i 2 JT 00K. This is a contradiction with the maximality of µ.

59

• Now assume that T 0
i is empty. We show next that there is no mapping ⌫i com-

patible with µ such that ⌫i 2 JT PM[Pn,FM[Fn
ni

KG. On the contrary, assume that

there is a mapping ⌫i compatible with µ such that ⌫i 2 JT PM[Pn,FM[Fn
ni

KG.

Given that T PM[Pn,FM[Fn
ni

is quasi well-designed from Lemma 3.3 we obtain

that there exists a subtree T 0
i of T PM[Pn,FM[Fn

ni
such that ⌫i 2 JT 0

i KG. Recall

that T PM[Pn,FM[Fn
ni

is constructed from Tni by adding PM [Pn and FM [Fn

to the labels of the root. Thus, we have that ⌫i = ⌫ 0
i [⌫ 00

i such that ⌫ 0
i 2

JPM [Pn, FM [FnKG and ⌫ 00
i 2 JT 00

i K where T 00
i is the tree obtained from T 0

i

deleting PM [Pn and FM [Fn from its root. Then T 00
i is a subtree of Tni . Con-

sider now the tree T 00 obtained from T 0 by adding T 00
i as a child to the root of

T 0. Then we have that T 00 is a subtree of T PM
n and that µ[⌫i 2 JT 00KG. Thus, if

µ[⌫i 6= µ we obtain a contradiction with the maximality of µ, and if µ[⌫i = µ

we obtain a contradiction with the maximality of T 0. Thus, we have shown that

there is no mapping ⌫i compatible with µ such that ⌫i 2 JT PM[Pn,FM[Fn
ni

KG.

Let µ0 the portion of µ such that µ0 2 JTR(PM [Pn, FM [Fn)KG. Summarizing we have

shown that:

• for every T 0
i which is not empty, there exists a portion of µ, say µ0

i such that

µ0[µ0
i 2 JT PM[Pn,FM[Fn

ni
KG, and thus µ0[µ0

i 2
�
JTR(PM [Pn, FM [Fn)KG ./

JT PM[Pn,FM[Fn
ni

KG
�
, and

• for every T 0
i which is empty, we have that µ is not compatible with any mapping

in JT PM[Pn,FM[Fn
ni

KG, implying that µ0 is not compatible with any mapping in

JT PM[Pn,FM[Fn
ni

KG, and thus µ0 2 JTR(PM[Pn, FM[Fn)KG ./JT PM[Pn,FM[Fn
nk

KG.

From this we obtain that µ can be written as µ = µ1[µ2[· · ·[µk such that µi 2 JTR(PM[

Pn, FM [Fn)KG ./ JT PM[Pn,FM[Fn
nk

KG, which implies that µ is in
�
JTR(PM [Pn, FM [

Fn)KG ./JT PM[Pn,FM[Fn
n1

KG
�
./ · · · ./

�
JTR(PM [Pn, FM [Fn)KG ./JT PM[Pn,FM[Fn

nk
KG
�
.

For the opposite direction, if we assume that µ is in
�
JTR(PM [Pn, FM [Fn)KG ./

JT PM[Pn,FM[Fn
n1

KG
�
./ · · · ./

�
JTR(PM [Pn, , FM [Fn)KG ./ JT PM[Pn,FM[Fn

nk
KG
�
, then

60

µ = µ1 [· · ·µk with µi 2 JTR(PM [Pn, FM [Fn)KG ./ JT PM[Pn,FM[Fn
ni

KG. By using

an argument similar to the one used in the previous case, and using the fact that every

T PM[Pn,FM[Fn
ni

is quasi well-designed and Lemma 3.3, it is not difficult to conclude that µ

is in JT PM
n KG.

To conclude the proof of the Theorem, just observe that for the pattern tree T =

((V,E, r), (Pn)n2V , (Fn)n2V) the set JT Ktd
G is defined as ext({µ;}, r, G), which by the

property shown before (and since T is quasi well-designed) is equal to JT ;
r KG = JT KG.

This completes the proof of the theorem. ⇤

A.5. Proof of Theorem 3.3

PROOF. Before stating the proofs, we make a short note on the notation. In the fol-

lowing, we always use T = ((V,E, r),P ,F) with P = (Pn)n2V and F = (Fn)nn 2 V

to denote the QWDPT before the rule application, and T 0 = ((V 0, E 0, r),P 0,F 0) with

P 0 = (P 0
n)n2V 0 to denote the result of the rule application. We will prove the correctness

of each rule separately.

(R1) Assume that triple t was deleted from Pn for some node n 2 V , because t occurs

also in Pn̂ of some ancestor n̂ of n. Note that V 0 and V can differ at most by n, and this

only in the case that Pn = {t}. First of all it is easy to see that T 0 is quasi well-designed

if T is. If n was a common ancestor of two nodes sharing some variable in vars(t), then

also n̂ is a common ancestor of those two nodes. Additionally, the deletion of t from n

cannot break the safeness of the node because of the definition of rule R1.

Hence it only remains to show that T ⌘ T 0. Towards this goal, we will show that for

every subtree T1 of T , there exists a subtree T 0
1 of T 0 s.t. redux(T1) ⌘ redux(T 0

1), and

vice versa. From this and Lemma 3.3, the desired result follows easily.

)) Let T1 = ((V1, E1, r),P1,F1) be a subtree of T . Now if n 2 V1 but n /2 V 0, let

V 0
1 = V1 \ {n}, otherwise let V 0

1 = V1. Then define T 0
1 = T 0[V 0

1], where T 0 = (V 0, E 0, r),

and finally T 0
1 = (T 0

1, (P
0
n)n2V 0

1
). We distinguish two cases.

61

• If n /2 V1, it follows immediately that redux(T1) = redux(T 0
1), as actually

T1 = T 0
1 , and therefore redux(T1) ⌘ redux(T 0

1).

• If n 2 V1, note that independent of n 2 V 0 or n /2 V 0, the only triple pattern

by which T1 and T 0
1 may differ is t. However, since n 2 V1, also n̂ 2 V1,

and therefore by definition also n̂ 2 V 0
1 . Since t 2 Pn̂ it follows that t is still

contained in redux(T 0
1), hence redux(T 0

1) ⌘ redux(T1) holds.

This concludes the case.

() Let T 0
1 = ((V 0

1 , E
0
1, r),P 0

1,F 0
1) be a subtree of T 0. We distinguish two cases (whether

n 2 V 0 or not), and for each of these cases we consider again two possibilities:

• n 2 V 0: Then we distinguish the case that n 2 V 0
1 from the case n /2 V 0

1 . If

n /2 V 0
1 , then obviously T 0

1 is a subtree of T as well, and we just define T1 = T 0
1 ,

and the required redux(T1) ⌘ redux(T 0
1) follows trivially.

In the case that n 2 V 0
1 , then define T1 as T1 = ((V 0

1 , E
0
1, r), (Pn)n2V 0

1
, (Fn)n2V 0

1
).

Note that Pn0 = P 0
n0 for all n0 2 V = V 0 except for n, and Fn0 = F 0

n0 for all

n0 2 V = V 0. And for n, Pn = P 0
n [{t}. Hence redux(T 0

1) = redux(T1)

follows immediately, since t is already contained in Pn̂, and n̂ 2 V 0
1 whenever

n 2 V 0
1 . This concludes the case.

• n /2 V 0: In this case we have to distinguish if some child n0 of n (in T) is in

V 0
1 , or not. In the latter case, i.e. if no such n0 2 V 0

1 , then T 0
1 is also a subtree of

T , and we are done. Now assume that some child n0 is in V 0
2 . Then we define

the subtree T1 = (T1, (Pn)n2V (T1), (Fn)n2F (T1)) where T1 = T [V 0
1 [{n}] (with

T = (V,E, r)). Since n̂ 2 V 0
1 whenever n0 2 V 0

1 , we know that t already occurs

in redux(T 0
1). Hence we get that redux(T1) ⌘ redux(T 0

1), which concludes the

proof.

We thus have shown that for every subtree T1 of T there exists a subtree T 0
1 of T 0 s.t.

redux(T1) ⌘ redux(T 0
1), and that also for every subtree T 0

1 of T 0 there exists a subtree T1

of T s.t. redux(T1) ⌘ redux(T 0
1).

62

To see that this implies T ⌘ T 0, consider an arbitrary RDF graph G and let µ 2 JT KG.

By Lemma 3.3, there exists a subtree T1 of T s.t. µ 2 JT1KG, and no mapping ⌫ and subtree

T2 of T s.t. µ @ ⌫ and ⌫ 2 Jredux(T2)KG. We have just shown above that in this case there

also exists a subtree T 0
1 of T 0 with redux(T 0

1) ⌘ redux(T1). Hence µ 2 Jredux(T 0
1)KG.

Further, if there would exist some ⌫ 0 and subtree T 0
2 of T s.t. µ @ ⌫ and ⌫ 2 Jredux(T 0

2)KG,

this would lead to a contradiction of µ being a solution to T : By the above result, there

would also exist a corresponding subtree T2 of T with redux(T 0
2) ⌘ redux(T2). Hence by

Lemma 3.3, this implies that µ /2 JT KG.

The case for µ 2 JT 0KG is shown analogously.

(R2) Assume that node n 2 V was merged into all its children n1, . . . , nk because of

newvars(n) = ;. Then V 0 = V \ {n}. First of all it is easy to see that T 0 is quasi

well-designed if T is: If n was a common ancestor of two nodes sharing some variable

?X 2 vars(Pn), then there must exist some ancestor n̂ of n s.t. ?X 2 vars(Pn̂), since

newvars(n) = ;. Hence n̂ still is a common ancestor of those two nodes. Furthermore,

for each child ni of n we have that vars(F 0
ni
) = vars(Fni) [vars(Fn), and vars(P 0

ni
) =

vars(Pni)[vars(Pn). Since vars(Fni) ✓ vars(Pni), it follows that vars(F 0
ni
) ✓ vars(P 0

ni
).

It therefore remains to show that T1 ⌘ T2. Towards this goal, we make use of the

following claims:

• Claim 1: Let G be an arbitrary RDF graph. If µ is a variable binding s.t. there

exists a subtree T1 of T with µ 2 Jredux(T1)KG, then there also exists a subtree

T 0
1 of T 0 s.t. µ 2 Jredux(T 0

1)KG.

• Claim 2: Let G be an arbitrary RDF graph. If µ is a variable binding s.t. there

exists a subtree T 0
1 of T 0 with µ 2 Jredux(T 0

1)KG, then there also exists a subtree

T1 of T s.t. µ 2 Jredux(T1)KG.

From these claims, the desired result follows immediately: Given some µ 2 JT KG for

some arbitrary RDF graph G, we know by Lemma 3.3 that there exists a subtree T1 of T

s.t. µ 2 Jredux(T1)KG, and that there does not exist a mapping ⌫ and subtree T2 of T s.t.

63

µ @ ⌫ and ⌫ 2 Jredux(T2)KG. We further know because of Claim 1 that there also exists a

subtree T 0
1 of T 0, s.t. µ 2 Jredux(T 0

1)KG. On the other hand, if there would exist a mapping

⌫ with µ @ ⌫ and a subtree T 0
2 of T 0 s.t. ⌫ 2 Jredux(T 0

2)KG, then by Claim 2 we know

that there would also exist a corresponding subtree T2 of T s.t. ⌫ 2 Jredux(T2)KG. This

however would be a contradiction to the assumption that µ 2 JT KG. Hence properties (1)

and (2) of Lemma 3.3 also hold for µ w.r.t. T 0, which proves that µ 2 JT 0KG.

The case that for every µ 2 JT 0KG also µ 2 JT KG holds is shown by using the

symmetric arguments. Hence it only remains to prove the two claims:

Proof of Claim 1: Let µ be the mapping mentioned in the claim and T1 be a subtree of

T s.t. µ 2 Jredux(T1)KG. Let n be the node merged into its children by R2. Then consider

T 0
1 as subtree of T 0 defined as follows:

• Assume n /2 V1. Then T 0
1 = T1. Obviously T 0

1 is a valid subtree of T 0, and also

redux(T1) = redux(T 0
1). Hence the desired result follows immediately.

• Assume n 2 V1 but no child n0 of n is contained in V1. Then, denoting with

T 0 the tree T 0 = (V 0, E 0, r) and with V 0
1 the set V 0

1 = V1 \ {n}, let T 0
1 =

(T 0[V 0
1], (P

0
n)n2V 0

1
). Then

S
n2V 0

1
P 0
n ✓

S
n2V1

Pn, while
S

n2V 0
1
vars(P 0

n) =
S

n2V1
vars(Pn). Hence µ 2 Jredux(T 0

1)KG holds.

• Assume n 2 V1 and at least one child n0 of n is also contained in V1. We define

T 0
1 as in the previous case, i.e. denote with T 0 the tree T 0 = (V 0, E 0, r) and let

V 0
1 = V1 \ {n}. Then define T 0

1 as T 0
1 = (T 0[V 0

1], (P
0
n)n2V 0

1
). Again it holds that

redux(T1) = redux(T 0
1), since all triples t 2 Pn are contained in P 0

n0 for every

child n0 of n. Hence redux(T1) = redux(T 0
1) follows from the assumption that

at least one such child is contained in T 0
1 .

So we finally have shown that in all three cases there exists a subtree T 0
1 of T 0 with

redux(T 0
1) = redux(T1). From this, the desired result follows again immediately.

Proof of Claim 2: Let µ be the mapping mentioned in the claim and T 0
1 be a subtree

of T 0 s.t. µ 2 Jredux(T 0
1)KG. Further let n 2 V be the node merged with its children by

64

R2, and denote with n1, . . . , nk the children of n in V . Then consider T1 as subtree of T

defined as follows:

• If no ni 2 V 0
1 (for i 2 {1, . . . , k}), then define T1 as T1 = T 0

1 . Obviously this

is a valid subtree of T , and redux(T1) = redux(T 0
1) trivially holds. Hence the

desired result follows immediately.

• If ni 2 V 0
1 for some i 2 {1, . . . , k}, then let T = (V,E, r) and V1 = V 0

1 [{n}.

Define T1 as T1 = (T [V1], (Pn)n2V1). Again, redux(T 0
1) = redux(T1): Note that

Pn ✓ P 0
n0
i

holds for every i 2 {1, . . . , k}. In fact, P 0
ni

= Pni [Pn, while for all

nodes n̄ 2 V with n̄ 6= ni it holds that Pn̄ = P 0
n̄. Hence redux(T 0

1) = redux(T1)

holds again, which proves the case.

We have shown that in both cases there exists a subtree T1 of T with redux(T1) =

redux(T 0
1), from which the desired result follows immediately. Hence this concludes the

proof.

(R3) Assume that node n 2 V was merged into its parent n̂ due to some homomorphism

h : Pn ! Pbranch(n̂,T), with h(?X) =?X for all ?X 2 vars(Pn) \ vars(Pbranch(n̂,T)). Note

that V 0 = V \ {n}, Pn0 = P 0
n0 for all n0 2 V \ {n, n̂}, and P 0

n̂ = Pn [Pn̂. Furthermore,

note that since vars(Fn) [vars(branch(n̂, T)) = ;, then every variable ?X appearing in

Fn must not appear in any descendant n0 of n̂ which is not n or a descendant of n, since

?X would not appear in any common ancestor of n and n0. Therefore, the addition of Fn

to Fn̂ does not change the evaluation of T . Thus, we can proceed with the proof as if

Fn = ;.

First of all it is easy to see that T 0 is quasi well-designed if T is. If n was the common

ancestor for two nodes sharing some variable, then n̂ is now an ancestor of both of these

nodes, and Pn ✓ P 0
n̂. Hence it only remains to show that T ⌘ T 0. This proof is based on

the crucial property underlying R3:

• Claim 1: Let T be as defined above, and G an arbitrary RDF graph. Let µ be a

mapping such that there exists a subtree T1 = ((V1, E1, r), (Pn)n2V1 , (Fn)n2V1)

65

of T with µ 2 Jredux(T1)KG. Then the following holds: If n̂ 2 V1, then there

exists a subtree T2 = ((V2, E2, r), (Pn)n2V2 , (Fn)n2V2) of T with n̂, n 2 V2 s.t.

either

– µ 2 Jredux(T2)KG (i.e. µ(Pn) ✓ G already holds) or

– there exists an assignment ⌫ with µ v ⌫ s.t. ⌫ 2 Jredux(T2)KG.

Using this claim, we show two claims similar to those already used to prove the correctness

of R2:

• Claim 2: Let G be an arbitrary RDF graph. If µ 2 JT KG then there exists a

subtree T 0
1 of T 0 s.t. µ 2 Jredux(T 0

1)KG.

• Claim 3: Let G be an arbitrary RDF graph. If µ 2 JT 0KG, then there exists a

subtree T1 of T s.t. µ 2 Jredux(T1)KG.

Combining Claim 2 and Claim 3 allows us to conclude the following: Let µ 2 JT KG for

an arbitrary RDF graph G. Then we know from Lemma 3.3 that there exists some subtree

T1 of T s.t. µ 2 Jredux(T1)KG, and that there does not exist a mapping ⌫ with µ @ ⌫ s.t.

we can find a subtree T2 of T s.t. ⌫ 2 Jredux(T2)KG. Now from Claim 1 we know that

there also exists a subtree T 0
1 of T 0 s.t. µ 2 Jredux(T 0

1)KG. Hence if µ is no solution to

T 0, then (by Lemma 3.3) this can only be because there exists some ⌫ with µ @ ⌫ s.t. for

some subtree T 0
2 of T 0 it holds that ⌫ 2 Jredux(T 0

2)KG. However, then by Claim 3 there

must also exist a corresponding subtree T2 of T s.t. ⌫ 2 Jredux(T2)KG. This contradicts

the assumption that µ is a solution to T , and therefore proves the case, i.e. that µ is also a

solution to T 0.

The proof in the other direction (i.e. showing that every solution µ to T 0 is also a so-

lution to T) works by the symmetric arguments. Hence to finish the proof it only remains

to show the correctness of the Claims.

Proof of Claim 1: Consider T , T1, G, and µ as defined in the Claim. Further assume

that n̂ 2 V1. We distinguish two cases:

66

• newvars(n) = ;. We show that then µ(Pn) ✓ G already holds, i.e. T2 =

((V2, E2, r), (Pn)n2V2 , (Fn)n2V2), where V2 = V1[{n} and E2 = E1[{(n̂, n)}.

To see that this indeed holds, recall that h(?X) =?X for all ?X 2 vars(Pn) \

vars(Pbranch(n̂,T)). Since newvars(n) = ;we have vars(Pn)\vars(Pbranch(n̂,T)) =

vars(Pn), hence for all t 2 Pn it is the case that h(t) = t. Since further

h(t) 2 Pbranch(n̂,T) by definition of h and for all s 2 Pbranch(n̂,T) we have

µ(s) 2 G by assumption, it follows immediately that µ(h(t)) = µ(t) 2 G

for all t 2 Pn. This finishes the case.

• newvars(n) 6= ;. Obviously, if n 2 V1 the claim is already satisfied, hence the

only interesting case is n /2 V1. Since µ 2 Jredux(T1)KG, if n /2 V1 then µ

cannot be defined on newvars(n). Hence to prove the claim we show that there

exists an extension ⌫ of µ to all variables ?X 2 newvars(n) s.t. ⌫(Pn0) ✓ G

for all n0 2 V1 [{n}. I.e. T2 = ((V2, E2, r), (Pn)n2V2) with V2 = V1 [{n}

and E2 = E1 [{(n̂, n)} is a QWDPT s.t. ⌫ 2 Jredux(T2)KG as promised in the

claim.

Towards this goal, define ⌫ as ⌫(?X) = µ(h(?X)) for all variables ?X 2

vars(Pn), and ⌫(?X) = µ(?X) for all variables ?X 2 dom(µ) \ vars(Pn).

Then ⌫ is obviously well defined. Further, ⌫ is a proper extension of µ: For

all ?X 2 vars(Pn) \ dom(µ) it must be the case that also ?X 2 vars(Pn) \

vars(Pbranch(n̂,T)) because T is quasi well-designed. Hence h(?X) =?X for

all those variables ?X , and therefore the two definitions of ⌫ agree on those

variables.

It only remains to show that ⌫(Pn) ✓ G holds. First note that h(t) 2 Pbranch(n̂,T)

holds for all t 2 Pn. Next, for all s 2 Pbranch(n̂,T) we have that µ(s) 2 G. As a

consequence, µ(h(t)) 2 G holds for all t 2 Pn, and therefore ⌫(t) = µ(h(t)) ✓

G for all t 2 Pn. This proves the claim.

Proof of Claim 2: Let µ 2 JT KG. Then we know from Lemma 3.3 that there exists a

subtree T1 of T s.t. µ 2 Jredux(T1)KG. Let T1 = ((V1, E1, r),P1). By combining property

67

(2) of Lemma 3.3 with Claim 1, we also know that we can choose T1 in such a way that

either n̂ 2 V1 and n 2 V1 or n̂ /2 V1 and n /2 V1. Hence we distinguish two cases:

• n̂ /2 V1. Then just define T 0
1 as T 0

1 = T1. Obviously T 0
1 is a valid subtree of T 0.

Then trivially redux(T 0
1) = redux(T1), and the desired result follows.

• n̂, n 2 V1. Then define V 0
1 = V1 \ {n}, and let T 0 be T 0 = (V 0, E 0, r). We

define T 0
1 as (T 0[V 0

1], (P
0
n)n2V 0

1
). Hence, V1 and V 0

1 differ only by n. However,

Pn ✓ P 0
n̂, and because Pn0 = P 0

n0 for all n0 2 V1 with n0 6= n and n0 6= n̂, it

follows immediately that redux(T1) = redux(T 0
1). From this, the desired result

follows immediately.

Proof of Claim 3: Let µ 2 JT 0KG. Then by Lemma 3.3 there exists a subtree T 0
1 of T 0

s.t. µ 2 Jµ(T 0
1)KG. Let T 0

1 = ((V 0
1 , E

0
1, r),P 0

1). Then we distinguish two cases:

• n̂ /2 V 0
1 . Then obviously T1 defined as T1 = T 0

1 is also a subtree of T , and

redux(T1) = redux(T 0
1).

• n̂ 2 V 0
1 . Then let V1 = V 0

1 [{n} and denote with T the tree T = (V,E, r).

Now define T1 = (T [V1], (Pn)n2V1). Note that P 0
n̂ = Pn̂[Pn, and P 0

n0 = Pn0 for

all n0 2 V with n0 6= n and n0 6= n̂. Hence, it again follows that redux(T1) =

redux(T 0
1), which proves the case, and therefore finishes the proof.

(R4) For n̂, n, n̄ 2 V let n̂ be the parent of n, and n the parent of n̄, s.t n̄ was transformed

into a child of n̂ by one application of R4. Let h : Pn ! Pbranch(n̂,T)[Pn̄ be the homomor-

phism that allows to apply R4. Finally, note that V 0 = V , F 0 = F and P 0 = P . First of all

T 0 is quasi well-designed because of the definition of R4 that only allows its application if

the result is quasi well-designed. Hence it only remains to show that T ⌘ T 0. This proof

is based on the following crucial property underlying R4:

• Claim 1: Let T 0 be as defined above. Then for every RDF graph G and every

mapping µ s.t. there exists a subtree T 0
1 of T 0 with µ 2 Jredux(T 0)KG, the

following holds: If n̄ 2 V (T 0
1) and n /2 V (T 0

1), then there exists a mapping ⌫

68

with µ v ⌫ and a subtree T 0
2 = ((V 0

2 , E
0
2, r), (P

0
n)n2V 0

2
) of T 0 s.t. n 2 V 0

2 , T 0
1 is a

subtree of T 0
2 , and ⌫ 2 Jredux(T 0

2)KG.

Note that the above claim includes the case that ⌫ = µ, e.g. if vars(Pn)\vars(Pbranch(n̄,T 0)) =

;. Also, the above claim implies (together with Lemma 3.3) that there cannot exist a so-

lution µ 2 JT 0KG s.t. µ(Pbranch(n̄,T 0)) ✓ G, but µ(Pbranch(n,T 0)) * G. Using this property,

we can show the same claims as in the proof for the correctness of R3:

• Claim 2: Let G be an arbitrary RDF graph. If µ 2 JT KG then there exists a

subtree T 0
1 of T 0 s.t. µ 2 Jredux(T 0

1)KG.

• Claim 3: Let G be an arbitrary RDF graph. If µ 2 JT 0KG, then there exists a

subtree T1 of T s.t. µ 2 Jredux(T1)KG.

Again, these results imply that T ⌘ T 0. For an arbitrary RDF graph G, consider µ 2

JT KG. Then by Lemma 3.3 there exists a subtree T1 of T s.t. µ 2 Jredux(T1)KG. Hence

by Claim 2 there exists a corresponding subtree T 0
1 of T 0, s.t. µ 2 Jredux(T 0

1)KG. Fur-

ther, if there would exist some mapping ⌫ with µ @ ⌫ and a subtree T 0
2 of T 0 s.t. ⌫ 2

Jredux(T 0
2)KG, then by Claim 3 there would also exist a corresponding subtree T2 of T .

However, this gives a contradiction to the assumption that µ is a solution to T . Hence

such a ⌫ cannot exist, and therefore (by Lemma 3.3), µ is also a solution to T 0. The case

for µ 2 JT 0KG is shown by the symmetric arguments. Hence it only remains to prove the

correctness of the three Claims.

Proof of Claim 1: Let T 0 be as defined in the claim, let G be an arbitrary RDF graph,

and T 0
1 = ((V 0

1 , E
0
1, r), (P

0
n)n2V 0

1
) a subtree of T 0 s.t. µ 2 Jredux(T 0

1)KG holds. Now

assume that n̄ 2 V 0
1 and n /2 V 0

1 . Then we define ⌫ as follows: For all ?X 2 vars(Pn), let

⌫(?X) = µ(h(?X)), and for all ?X 2 dom(µ) let ⌫(?X) = µ(?X). First of all, note that

⌫ is well-defined, since for ?X 2 dom(µ)\vars(Pn), due to T 0 being quasi well-designed

and the definition of R4, it holds that h(?X) =?X , hence ⌫(?X) = µ(h(?X)) = µ(?X).

Further, it obviously holds for all n0 2 V 0
1 that ⌫(Pn0) ✓ G. To see that this also holds for

Pn, just note that h(t) 2 Pbranch(n̄,T) for all t 2 Pn. Thus µ(h(t)) 2 G holds. Hence for

69

T 0
2 = ((V 0

1 [{n}, E 0
1[{(n̂, n)}, r), (P 0

n0)n02V 0
1[{n}) it holds that ⌫ 2 Jredux(T 0

2)KG, which

proves the claim.

Proof of Claim 2: Let µ 2 JT KG. Then by Lemma 3.3 there exists a subtree T1

of T s.t. µ 2 Jredux(T1)KG. Let T1 = ((V1, E1, r), (Pn)n2V1). Denote with T 0 the tree

T 0 = (V 0, E 0, r). Then it is easy to check that T 0
1 = T 0[V1] is indeed a connected subtree

of T 0. Hence we get T 0
1 = (T 0

1, (P
0
n)n2V1), and trivially redux(T1) = redux(T 0

1), which

proves the claim.

Proof of Claim 3: Let µ 2 JT 0KG. Then by Lemma 3.3 there exists a subtree T 0
1 of T 0

s.t. µ 2 Jredux(T 0
1)KG. Let T 0

1 = ((V 0
1 , E

0
1, r), (P

0
n)n2V1). We already discussed above that

it follows immediately from Claim 1 and Lemma 3.3 that whenever n̄ 2 V 0
1 , then also n 2

V 0
1 , as otherwise µ cannot be a valid solution to T 0, since Claim 1 implies an immediate

contradiction to Lemma 3.3. As a result, denoting with T the tree T = (V,E, r), the

induced graph T [V 0
1] is always a connected subtree of T . Using this, we can define T1 as

T1 = (T [V 0
1], (Pn)n2V 0

1
). Hence redux(T1) = redux(T 0

1) trivially holds, from which also

µ 2 Jredux(T1)KG follows trivially. This proves the claim.

(R5) Before starting the proof, consider the following claim:

Claim 1: Let F be a set of built-in conditions, n a pattern tree node, µ a mapping such that

µ |= conj (F) and M = maxprop(F, n). Then µ |= maxprop(F, n).

Proof of Claim 1: Remember that for a built-in condition R, maxprop(R, n) is con-

structed from an equivalent clause R0 in conjunctive normal form. Assume that µ |= F

but µ 6|= maxprop(F, n). Therefore, there exists some built-in condition R 2 F for which

its equivalent built-in condition R0 contains a clause c such that µ 6|= c. Then µ 6|= R0,

and since R0 is equivalent to R, µ 6|= R. But since R 2 F , we have that µ 6|= conj (F).

Therefore, we have arrived at a contradiction, thus proving the claim.

For n, n̄ 2 V let n be the parent of n̄, and assume that M = maxprop(Fn, n̄) was

copied onto n̄ by applying rule R5.

70

First, assume that M is not empty, since otherwise T 0 = T and the proof would be

trivial. Note that T and T 0 differ at most by Fn, and that the resulting subtree is quasi

well-designed, since the rule application ensures that node n̄0 is safe.

Let Tn be the subtree of T rooted at n, and T 0
n0 be the subtree of T 0 rooted at n0. Since

the semantics of QWDPTs is well defined (by Theorem 3.2), we only need to show that

Tn ⌘ T 0
n0 .

Consider orderings ⌃ and ⌃0 for Tn and T 0
n0 , which make �n(1) = n̄ and �n0(1) = n̄0,

and coincide in the ordering of every other node. Therefore, if n has k children, we have

TR(Tn, n,⌃) =

✓
· · ·

✓✓
TR(Pn, Fn) OPT TR(Tn, n̄,⌃)

◆
· · ·

◆

OPT TR(Tn, �n(i),⌃)

◆
· · ·

◆
OPT TR(Tn, �n(k),⌃)

◆

and

TR(T 0
n0 , n0,⌃0) =

✓
· · ·

✓✓
TR(Pn0 , Fn0) OPT TR(T 0

n0 , n̄0,⌃0)

◆
· · ·

◆

OPT TR(T 0
n0 , �n0(i),⌃0)

◆
· · ·

◆
OPT TR(T 0

n0 , �n0(k),⌃0)

◆
.

Now, let

P1 =
�

TR(Pn, Fn) OPT TR(Tn, n̄,⌃)
�

P2 =
�

TR(Pn0 , Fn0) OPT TR(T 0
n0 , n̄0,⌃0)

�
.

Since Tn and T 0
n0 only differ on Fn and F 0

n, we can reduce the problem to showing that

P1 ⌘ P2. Notice that since Pn = Pn0 , Fn = Fn0 , Fn is not empty and ⌃ coincides with ⌃0

for every node, then

P1 =
�
(Pn FILTER conj (Fn)) OPT TR(Tn, n̄,⌃)

�

P2 =
�
(Pn FILTER conj (Fn)) OPT TR(T 0

n0 , n̄0,⌃)
�
.

71

Therefore, consider a graph G. We will show that a mapping µ is in JP1KG if and only

if µ is in JP2KG.

)) Since µ 2 JP1KG, then either µ 2 J(Pn FILTER conj (Fn)KG ./ JTR(Tn, n̄,⌃)KG, or

µ 2 J(Pn FILTER conj (Fn)KG with no compatible mapping in JTR(Tn, n̄,⌃)KG.

In the first case we have that µ = µ1 [µ2, with µ1 2 J(Pn FILTER Fn)KG and µ2 2

JTR(Tn, n̄,⌃)KG. Since µ |= conj (Fn), we know from Claim 1 that µ |= maxprop(Fn, n̄).

In particular, since maxprop(Fn, n̄) mentions only the variables in vars(n̄), we know that

µ2 |= maxprop(Fn, n̄). Then, µ2 2 J(TR(Tn, n̄,⌃) FILTER conj (maxprop(Fn, n))KG,

and therefore,

µ 2 J(Pn FILTER conj (Fn)KG ./ J(TR(Tn, n̄,⌃) FILTER conj (maxprop(Fn, n))KG.

From here it is easy to show that (TR(Tn, n̄,⌃) FILTER conj (maxprop(Fn, n)) is equiv-

alent to TR(T 0
n0 , n̄0,⌃) by applying rewrite rule 7 from Proposition 4.10 shown in Pérez et

al. (2009), thus proving that µ 2 P2.

In the second case, we have that µ 2 J(Pn FILTER conj (Fn)KG, and there is no

compatible mapping µ2 2 J(TR(Tn, n̄,⌃)KG. Since n̄0 only has more built-in conditions

than n̄, by the semantics of the FILTER operator we have that there is no mapping µ0
2 2

J(TR(T 0
n0 , n̄0,⌃)KG which is compatible with µ, and therefore, µ 2 P2.

() Since µ 2 JP2KG, then either µ 2 J(Pn FILTER conj (Fn)KG ./ JTR(T 0
n0 , n̄0,⌃)KG,

or µ 2 J(Pn FILTER conj (Fn)KG with no compatible mapping in JTR(T 0
n0 , n̄0,⌃)KG.

In the first case we have that µ = µ1 [µ2, with µ1 2 J(Pn FILTER conj (Fn)KG and

µ2 2 JTR(T 0
n0 , n̄0,⌃)KG. Since

TR(T 0
n0 , n̄0,⌃) ⌘ (TR(Tn, n̄,⌃) FILTER conj (maxprop(Fn, n))

we have that µ2 is also in TR(Tn, n̄,⌃), and therefore µ 2 P1.

The second case is exactly the same as the one shown before in the opposite direction,

and therefore we are done.

72

Thus, we have proven that P1 ⌘ P2, and from here we can retrace back to arrive at

T ⌘ T 0. ⇤

73

	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Resumen
	Chapter 1. Introduction
	1.1. Background
	1.2. Summary of contributions
	1.3. Thesis outline and structure
	Chapter 2. Preliminaries
	2.1. Resource Description Framework
	2.2. SPARQL
	2.3. Well-designed patterns

	Chapter 3. Pattern trees
	3.1. Definitions
	3.2. Semantics of well-designed pattern trees
	3.3. Evaluating pattern trees
	3.4. Transformation of QWDPTs

	Chapter 4. Query optimization
	4.1. Implementation
	4.2. Dataset
	4.3. Methodology
	4.4. Results and analysis
	4.4.1. Rules R1 through R3
	4.4.2. Rule R5

	Chapter 5. Conclusions and future research
	5.1. General remarks
	5.2. Future research topics

	References

	APPENDIX
	APPENDIX A. ADDITIONAL PROOFS
	A.1. Proof of Proposition 3.1
	A.2. Proof of Lemma 3.1
	A.3. Proof of Lemma 3.2
	A.4. Proof of Theorem 3.2
	A.5. Proof of Theorem 3.3

