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ABSTRACT

We present the 3–8 keV and 8–24 keV number counts of active galactic nuclei (AGNs) identified in the Nuclear
Spectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33%–39% of the X-ray
background in the 8–24 keV band, directly identifying AGNs with obscuring columns up to ~ -10 cm25 2. In the
softer 3–8 keV band the number counts are in general agreement with those measured by XMM-Newton and
Chandra over the flux range ´ -5 10 15 S(3–8 keV)/ - - -erg s cm 101 2 12 probed by NuSTAR. In the hard
8–24 keV band NuSTAR probes fluxes over the range ´ -2 10 14 S(8–24 keV)/ - - -erg s cm 101 2 12, a factor
∼100 fainter than previous measurements. The 8–24 keV number counts match predictions from AGN population
synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred
from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above
simple extrapolation with a Euclidian slope to low flux of the Swift/BAT 15–55 keV number counts measured at
higher fluxes (S(15–55 keV)  10−11 - -erg s cm1 2), reflecting the evolution of the AGN population between the
Swift/BAT local ( <z 0.1) sample and NuSTAR’s ~z 1 sample. CXB synthesis models, which account for AGN
evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of
obscured AGNs at low redshifts.

Key words: galaxies: active – galaxies: nuclei – galaxies: Seyfert – surveys – X-rays: diffuse background – X-rays:
galaxies

1. INTRODUCTION

A complete census of accreting supermassive black holes
(SMBH) throughout cosmic time is necessary to quantify the
efficiency of accretion, which is believed to drive the majority
of SMBH growth (e.g., Soltan 1982; Yu & Tremaine 2002; Di

Matteo et al. 2008, Merloni & Heinz 2008). X-ray emission is
nearly universal from the luminous active galactic nuclei
(AGNs) that signal the most rapid SMBH growth phases,
making surveys in the X-ray band particularly efficient at
identifying accreting SMBH. Unlike optical and infrared light,
X-rays are not diluted by host-galaxy emission, which is

The Astrophysical Journal, 831:185 (8pp), 2016 November 10 doi:10.3847/0004-637X/831/2/185
© 2016. The American Astronomical Society. All rights reserved.

1

http://dx.doi.org/10.3847/0004-637X/831/2/185
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/831/2/185&domain=pdf&date_stamp=2016-11-07
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/831/2/185&domain=pdf&date_stamp=2016-11-07


generally weak above ∼1 keV. X-rays are also penetrating, and
hard (10 keV) X-rays are visible through columns up to

~ -N 10 cmH
25 2. For even higher columns, AGNs can be

identified through scattered X-rays;though, the emission
becomes progressively weaker with increasing columns.

Cosmic X-ray surveys with Chandra and XMM-Newton
have provided measurements of the demographics of the AGN
population and its evolution in the 0.1–10 keV band out to
large cosmic distances (see Brandt & Alexander 2015, for a
recent review). These surveys are sufficiently complete over a
broad enough range of luminosity and redshift that many
fundamental questions regarding AGN evolution can be
addressed. In the deepest fields,>80% of the 2–10 keV cosmic
X-ray background (CXB) has been resolved into individual
objects (Hickox & Markevitch 2006; Brandt &
Alexander 2015).

At X-ray energies above 10 keV, the observational picture is
far less complete. Coded-mask instruments, such as INT-
EGRAL and Swift/BAT,have probed the demographics of hard
X-ray emitting AGNs in the very local universe, to redshifts
of z 0.1 (Tueller et al. 2008; Beckmann et al. 2009). The
fraction of the CXB resolved by these instruments at its peak
intensity (20–30 keV) is ∼1% (Krivonos et al. 2007; Ajello
et al. 2012; Vasudevan et al. 2013). Thus, until now, samples of
AGNs selected at>10 keV, which are inherently less biased by
obscuration than those at lower energy, could not be used to
probe AGN demographicsand, in particular, the evolution of
highly obscured to Compton-thick (  s ~- -N 10 cmH T

1 24 2 )
sources.

There is, therefore, strong motivation for extending sensitive
X-ray surveys to high energy. Simple extrapolations of AGN
populations detected by Chandra and XMM-Newton to higher
energies based on average spectral properties fail to reproduce
the shape and intensity of the CXB at 30 keV (e.g., Gilli
et al. 2007). This indicates either that spectral models based on
the small samples of high-quality 0.1–100 keV measurements
used in CXB synthesis models fail to capture the true spectral
complexity of AGNs, or that an additional highly obscured
AGN population is present in the redshift range of  z0 2.
It is likely that both factors are important at some level. A
higher fraction of reflected emission than typically assumed,
which hardens the emission above 10 keV, appear to be present
in moderately obscured, < N23 log H( /cm−2) <24, AGNs(-
Ricci et al. 2011). Even at moderate redshifts, reflection
fractions are difficult to constrain with data restricted to
<10 keV (e.g., Del Moro et al. 2014). In addition, it is difficult
at low redshifts to properly measure high obscuring columns,
which can lead to large errors in estimating intrinsic AGN
luminosities (e.g., Lansbury et al. 2015). It is also challenging
to identify Compton-thick objects in the range  z0 2 with
the limited bandpass of Chandra and XMM-Newton (at z 2
these missions sample rest-frame energies above 20 keV). Thus
both to characterize highly obscured AGNs and toconstrain
their evolution at z 2 requires sensitive surveys at energies
above 10 keV.

The Nuclear Spectroscopic Telescope Array (NuSTAR), the
first focusing high-energy X-ray (3–79 keV) telescope in orbit
(Harrison et al. 2013), has been executing a series of
extragalactic surveys as part of its core program, with theaim
of measuring the demographics and properties of obscured
AGNs. Through contiguous surveys in fields with existing
multi-wavelength data combined with dedicated spectroscopic

followup of sources serendipitously identified in individual
fields, the NuSTAR extragalactic surveys have improved the
sensitivity limits in the hard, 8–24 keV band by two orders of
magnitude relative to INTEGRAL or Swift/BAT, and have
probed a wide range in redshift, out to z 2.
In this paper, we present the X-ray number counts (log N–

log S) of AGNs, including the first sensitive measurements in
the 8–24 keV band. We reach fluxes of S
(8–24 keV) ~ ´ - - -3 10 erg s cm14 1 2, a factor of 100 deeper
than previous measurements in this band. We compare the
number counts to predictions from X-ray background synthesis
models, and to extrapolations from Chandra and XMM-Newton
surveys, and compare the intensity of resolved sources to that
of the CXB. A companion paper (Aird et al. 2015a) presents
direct constraints on the >10 keV AGN X-ray luminosity
function. We adopt a flat cosmology with W =L 0.7 and
h=0.7, and quote 68.3% (i.e., 1σ equivalent) errors unless
otherwise noted.

2. OBSERVATIONS AND DATA REDUCTION

For the results in this paper, we include all components of
the NuSTAR extragalactic survey program that were completed
and analyzed prior to 2015 March. This includes coverage of
well-studied contiguous fields as well as identification and
followup of sources serendipitously detected in all NuSTAR
fields. Figure 1 shows the area as a function of depth for the
survey components included in this work. At the shallow end,
NuSTAR surveyed 1.7deg2 of the Cosmic Evolution Survey
field (COSMOS; Scoville et al. 2007) to a depth of S
(8–24 keV)= ´ - - -1.3 10 erg s cm13 1 2. The catalog and
results from this survey are presented in Civano et al. (2015;
hereafter C15). At the deep end, NuSTAR surveys have reached
depths of S(8–24 keV)= ´ - - -2.5 10 erg s cm14 1 2 in the
Extended Chandra Deep Field South (ECDFS; Lehmer
et al. 2005) over an area of 0.3deg2 and in the deep Chandra
region of the Extended Groth Strip (Goulding et al. 2012;
Nandra et al. 2015) over an area of 0.23 deg2. The ECDFS
source catalog is presented in Mullaney et al. (2015;
hereafter M15) and the EGS catalog will be presented in
J. Aird et al. (2016, in preparation). The serendipitous survey

Figure 1. Area as a function of depth in the observed 8–24 keV band for the
NuSTAR extragalactic surveys included in this work.
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adopts a similar approach used with the Chandra SEXSI
survey (Harrison et al. 2003), where fields are searched for
point sources not associated with the primary target, and
subsequent spectroscopic followup with the Keck, Palomar
200-in, Magellan, and NTT telescopes provides redshifts and
AGN classifications. Preliminary results from this survey were
published in Alexander et al. (2013), and the 30-month catalog
and results will be published in G. Lansbury et al. (2016, in
preparation).

The overall sample consists of 382 unique sources detected
in the full (3–24 keV), soft (3–8 keV), or hard (8–24 keV)
bands, of which 124 are detected in the hard band and 226 are
detected in the soft band. Figure 2 shows the distribution of
rest-frame 10–40 keV luminosity versus redshift for the sources
in our sample. Luminosities in this plot are derived from the
8–24 keV count rates (if detected in that band) assuming an
unabsorbed X-ray spectrum with a photon index G = 1.8
folded through the NuSTAR response. If the source is not
detected in the 8–24 keV band, we calculate luminosities using
the 3–24 keV or (if not detected at 3–24 keV) the 3–8 keV
count rates. The median redshift for the entire NuSTAR sample
is á ñ =z 0.76, with a median luminosity of á -Llog 10 40 keV( /erg

ñ =-s 44.371) . For comparison, we plot the distribution of
AGNs in the Swift/BAT 70-month catalog(Baumgartner
et al. 2013). For reference, the dashed line in Figure 2 shows
the location of the knee in the luminosity function as a function
of redshift from the Chandra-based study of Aird et al.
(2015b), extrapolated to the 10–40 keV band. Together, these
surveys cover a broad range of luminosity and redshift.

2.1. Contiguous Survey Fields

We have adopted uniform source detection and flux
extraction methodologies across the COSMOS, ECDFS,and
EGS survey fields. For the ECDFS and COSMOS fields, we
use the source lists and supporting data products (mosaic
images, exposure maps, and background maps in the 3–24,

3–8, and 8–24 keV energy bands) from M15 and C15,
respectively. We adopt exactly the same approach for the
analysis of the EGS field (J. Aird et al. 2016, in preparation).
We summarize the analysis approach here, and refer the reader
to the relevant catalog papers for details.
For source detection, we convolve both the mosaic images

and background maps with a 20″-radius aperture at every pixel,
and determine the probability, based on Poisson statistics, that
the total image counts are produced by a spurious fluctuation of
the background. We generate the background maps based on
the NUSKYBGD code (see Wik et al. 2014, for details). We
then identify groups of pixels in these false probability maps,
using SExtractor, where the probability is less than a set
threshold. Different thresholds are used in each field and in
each energy band based on the expected number of spurious
sources in simulations (see C15, M15 and J. Aird et al. 2016, in
preparation, for specific values used for each field). We merge
detections in multiple bands to produce the final catalogs,
which include 61 sources (3–8 keV) and 32 sources (8–24 keV)
in COSMOS, 33 sources (3–8 keV)and 19 sources (8–24 keV)
in ECDFS, and 26 sources (3–8 keV) and 13 sources (8–24
keV) in EGS. The detection thresholds are chosen to ensure the
catalogs are 99% reliable, Thus, we expect very few spurious
sources (see M15, C15).
Source confusion must be corrected for since blended

sources result in themis-estimation of source counts and
fluxes. The NuSTAR PSF is relatively large compared to
Chandra and XMM-Newton, and so source blending is
particularly important to account for when comparing number
counts from NuSTAR to these lower-energy, higher-resolution
missions. The source de-blending procedure is described in
detail in M15 and C15. To test the validity of the procedure, we
performed Monte Carlo simulations, where source fluxes were
drawn from a published number counts distribution, counts
maps were simulated, and sources were extracted and de-
blended. We then verified that the resulting number counts
distribution matches the input. The details of these simulations
are provided in Section 4 of C15.

2.2. Serendipitous Survey

The source-detection procedure for the serendipitous survey
is the same as that outlined above, and described in detail in
C15 and M15, though with a slightly different procedure for
background determination. Many of the fields have bright
central targets that contaminate a portion of the NuSTAR field
of view. We thus take the original images and convolve them
with an annular aperture of inner radius30″ and outer radius
90″. We rescale the counts within this annulus to that of a 20″
radius region based on the ratio of the aperture areas and
effective exposures. This procedure produces maps of the local
background level at every pixel based on the observed images,
and will thus include any contribution from the target object.
We then use these background maps, along with the mosaic
images, to generate false probability maps. From here, the
source detection follows that used in the contiguous fields,
using a false probability threshold of < -10 6 across all bands.
We exclude any detections within 90″ of the target position,
and also any areas occupied by large, foreground galaxies or
known sources that are associated with the target (but are not at
the aimpoint). We also exclude areas where the effective
exposure is <20% of the maximal (on-axis) exposure in a
given field. Any NuSTAR fields at Galactic latitudes < 20 are

Figure 2. Rest-frame 10–40 keV X-ray luminosity versus redshift for the
objects included in this work compared to sources in the Swift/BAT 70-month
all-sky survey catalog (black triangles). The dashed line shows the location of
the knee in the luminosity function from Aird et al. (2015b) as a function of
redshift. The shaded region indicates the region of sensitivity of Swift/BAT,
and the dotted line indicates the threshold for the NuSTAR surveys.
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also excluded from our sample. Full details of the serendipitous
survey program will be provided in G. Lansbury et al. (2016, in
preparation), which will also indicate those serendipitous fields
used in this work. In total,we include 106 serendipitous
sources (3–8 keV) and 60 (8–24 keV).

3. NUMBER COUNT MEASUREMENTS

To determine the number counts (logN–log S), we adopt a
Bayesian approach (see Georgakakis et al. 2008, Lehmer et al.
2012) that assigns a range of possible fluxes to a given source
based on the Poisson distribution, which we then fold through
the differential number counts distribution. We assume that the
differential number counts are described by a single power-law
function:

⎛
⎝⎜

⎞
⎠⎟=
b

- - -

dN

dS
K

S

10 erg s cm
, 1

13 1 2
( )

where K is the normalization at = - - -S 10 erg s cm13 1 2 and β

is the slope. Folding the Poisson likelihood for each individual
source through the differential number counts given by
Equation (1) accounts for the Eddington bias, allowing for
the fact that a detection is more likely to be due to a positive
fluctuation from a source of lower flux than viceversa. We
limit the range of possible source fluxes to a factor of
threebelow the nominal flux limit29 to prevent the probability
distribution from diverging at the faintest fluxes as a result of
our assumed power-law function.

We optimize the values of the parameters describing the
power-law model for the differential number counts by
performing an unbinned maximum likelihood fit for all sources
detected in a given band (see Georgakakis et al. 2008). We also
estimate differential source number counts in a number of
fixed-width bins in flux using the N Nobs mdl method of Miyaji
et al. (2001), as expanded onin Aird et al. (2010), to account
for flux probability distributions. The binned estimate of the
differential source number counts is then given by

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=

dN

dS

dN

dS

N

N
, 2

bin mdl

obs

mdl
( )

where ⎡⎣ ⎤⎦dN

dS mdl
corresponds to the power-law model for the

differential number counts evaluated at the center of the bin,
Nmdl is the predicted number of sources in a bin (found by
folding the model through the sensitivity curve), and Nobs is the
effective observed number of sources, allowing for the
distribution of possible fluxes (thus, a single source can make
a partial contribution to multiple bins). We estimate errors
based on Poisson uncertainties in Nobs as given by Geh-
rels (1986).

Figure 3 (left) shows the resulting differential source number
densities based on the NuSTAR samples from the four survey
components combined, in the 3–8 keV band. We also compare
the NuSTAR measurements to the best-fit broken power-law
functions determined from Chandra surveys by Georgakakis
et al. (2008) and a joint analysis of XMM-Newton and Chandra
surveys by Mateos et al. (2008). We convert the Chandra
(4–7 keV) and XMM-Newton (2–10 keV) number counts to

match the 3–8 keV NuSTAR band assuming a G = 1.8 power-
law X-ray spectrum. Because the bands are largely over-
lapping, the choice of photon spectral index does not
significantly affect the results. To ease comparison between
the different results, we have scaled dN/dS by the Euclidean
slope, -S 2.5. The NuSTAR measurements constrain the slope
well over the range of - <14 log (S/ - -erg s cm1 2) < −12.5.
The best-fit values for the power-law parameters in this band
arelog = K 13.84 0.04, b = - 2.81 0.08.
The NuSTAR results generally agree with Chandra and

XMM-Newton;though, the slope of the number counts with
flux is somewhat steeper. Below ~ - - -S 10 erg s cm14 1 2,the
NuSTAR measurements are poorly constrained, so that the
location of the break in the number counts seen by Chandra
and XMM-Newton cannot be independently confirmed. The
difference in slope of the number counts with flux between
NuSTAR and the soft X-ray telescopes is due the different
instrument responses and the corresponding uncertainties in
converting count rates to fluxes based on simple spectral
models. To verify this, we folded the population synthesis
model of Aird et al. (2015b) through the NuSTAR response
function to predict the observed count-rate distribution. We
convert the count rates to fluxes, applying our standard count
rate to flux conversion factor. We repeated this exercise
adopting the Chandra response function, applying the count
rate to flux conversion factor from Georgakakis et al. (2008).
For moderately to heavily absorbed sources ( ~N 10H

23 cm−2),
the expected count rates are more strongly suppressed using the
Chandra response (becausethe NuSTAR instrument response is
more strongly weighted to higher energies). The intrinsic fluxes
are therefore underestimated for such sources with Chandra
when a single conversion factor is assumed. We have verified
that this effect leads to aslope difference in the expected
logN–log S at ~ - -f 10 103 8keV

14 13–– erg s−1 cm−2 that
matches the discrepancy seen between the NuSTAR measure-
ments and the Chandra and XMM-Newton measurements
shown in Figure 3 (left). Figure 4 (left) shows the integral
number counts in the 3–8 keV band.
Figure 3 (right) shows the differential source number

counts in the 8–24 keV band, along with the best-fit power
law, parametrized by log = K 14.3 0.04, and b =
- 2.76 0.10. We also plot extrapolations of the Mateos
et al. (2008) Chandra+ XMM-Newton counts and the
Georgakakis et al. (2008) Chandra counts to the harder,
largely non-overlapping 8–24 keV band (dotted and solid lines
in Figure 3). The dotted line shows the extrapolation assuming
G = 1.8, which is typical of unabsorbed AGNs, and system-
atically under-predicts the NuSTAR measurements. Using a
maximum likelihood analysis, we find that a spectral photon
index of G = 1.48 (solid line) provides the best match between
the extrapolation of the Georgakakis et al. (2008) model and
the NuSTAR data, indicating that a substantial population of
absorbed and/or hard-spectrum sources is required to repro-
duce the NuSTAR measurements.

4. COMPARISON WITH THE SWIFT/BAT LOCAL AGN
SAMPLE

In combination, NuSTAR and Swift/BAT sample the hard
X-ray AGN population over a wide range in flux and redshift.
Swift/BAT has measured the number counts at fluxes
of  ´ - - -S 3 10 erg s cm12 1 2 in the 15–55 keV band for
the local ( z 0.1) AGN sample(Ajello et al. 2012). Although

29 We note that allowing for a source flux that isa factor 10 or more below the
nominal flux limit has a neglible impact on our results.
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there is a gap in the flux range probed by BAT and the
 ´ - - -S 3 10 erg s cm13 1 2 population probed by NuSTAR,

extrapolating the BAT differential number counts to fainter
fluxes indicates whether there is any evolution between the
low-redshift BAT AGN population and the higher-redshift
NuSTAR sources.

Figure 5 shows the NuSTAR 8–24 keV number counts
together with the BAT measurements from Ajello et al. (2012),
which are well described by a single power-law dN/dS with
slope b » 2.5 (bold dashed line). We have converted the BAT
15–55 keV fluxes to the 8–24 keV band assuming a photon
index of G = 1.7, the value that provides the best fit to the
average BAT AGN spectral model from Burlon et al. (2011).
The hatched region indicates the measurement uncertainties
from Ajello et al. (2012), showing that the formal error is small,
about the width of the dashed line. It is clear that the
extrapolation of the BAT counts to lower fluxes where the
counts are well-constrained by NuSTAR
( ~ - - -f 10 erg s cm13.5 1 2)significantly under-predicts the
NuSTAR measurements. This disagreement is not surprising,
since there is strong evolution in the AGN population between
the local ( ~z 0.1) BAT sample and the higher-redshifts probed
by NuSTAR.

5. COMPARISON WITH X-RAY BACKGROUND
SYNTHESIS MODELS

The existence of a population of obscured and Compton-
thick objects beyond those directly resolved below 10 keV has
long been postulated by CXB synthesis models. These models
reproduce the hard spectrum of the CXB using measured AGN
X-ray luminosity functions (XLFs), which are well constrained
(except in the very local universe) only below 10 keV, together
with models for the broadband (∼1–1000 keV) AGN spectra
and estimates of the Compton-thick AGN fraction and its
evolution (e.g., Gilli et al. 2007, Treister et al. 2009, Ueda et al.
2014). The XLF measurements, assumptions about AGN
spectral evolution, and Compton-thick fractions differ sig-
nificantly among models.

Figure 5 compares the NuSTAR counts to three different
CXB synthesis models: the model from Gilli et al. (2007;
dashed line with circles), the model of Ueda et al. (2014), and
an an updated version of the Ballantyne et al. (2011) model.
The details of the Gilli et al. (2007) and Ueda et al. (2014)
models are documented in the relevant publications. The
updated Ballantyne model differs from Ballantyne et al. (2011)
in that it uses the new Ueda et al. (2014) luminosity function, a
better spectral model from Ballantyne (2014), the Burlon et al.
(2011) NH distribution, and the redshift evolution and obscured
fraction from Ueda et al. (2014). Other aspects, including the
normalization of the Compton-thick fraction are the same as in
Ballantyne et al. (2011). We include this model because it fits
the CXB spectrum even after including the effects of blazers.
All three models are in good agreement with the measured

NuSTAR counts. However, all of the models lie significantly
above the Swift/BAT measurements at
 - - -S 10 erg s cm11.5 1 2. The discrepancy between the BAT

measurements and the models cannot be accounted for by
uncertainties in the spectral shape; a spectral index of G = 2.1
when converting to the 8–24 keV band is required to make the
Swift/BAT 15–55 keV measurements agree with the model
predictions. This is significantly softer than the average
measured spectral shape, even for unobscured AGNs, and
can thus be ruled out. Therefore, this discrepancy appears to be
due to evolution in the hard XLF, absorption distribution, or
spectral properties of AGNs between the very local Swift/BAT
sample and the more distant ( ~z 0.5 1– ) NuSTAR sample that
is not fully accounted for in these population synthesis models
(see also Aird et al. 2015b).

6. SUMMARY AND CONCLUSIONS

We have presented measurements of the number counts of
AGN with NuSTAR in two bands, from 3–8 keV and 8–24 keV.
The data span a broad range in flux, with good constraints
covering -10 14 S(8–24 keV; - -erg s cm1 2)  -10 13. The
3–8 keV differential source number densities are in agreement
with measurements from Chandra and XMM-Newton;though,

Figure 3. Left panel: the differential number counts for the observed 3–8 keV band. The data points (black squares) show measurements from the combined NuSTAR
survey fields, where error bars are 1σ equivalent (i.e., 68.3% confidence level), and the black dashed line shows the best-fit power law. The solid line shows the bestfit
to the number counts as measured by Chandra (Georgakakis et al. 2008), and the dotted–dashed line shows the best fit from a combined analysis of XMM-Newton
and Chandra data (Mateos et al. 2008). Right panel: the differential log N–log S in the 8–24 keV band (black squares). The solid blue line and dotted–dashed lines
show the Chandra (4–7 keV) and XMM-Newton measurements extrapolated to the 8–24 keV band using a photon power-law index of G = 1.48. The blue dotted line
shows the Chandra measurements using a steeper (G = 1.9) power law for the spectral extrapolation.
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the slope measured by NuSTAR is somewhat steeper. The slope
difference results from the fact that the NuSTAR effective area
curve is weighted to significantly higher energies compared to
XMM-Newton and Chandra, which results in the observed
discrepancy when using a simple counts to flux conversion
factor.

In the 8–24 keV band, we present the first direct measure-
ment of the AGN number counts that includes data above
∼10 keV and reaches down to flux levels ~ ´ -3 10 14

- -erg s cm1 2. In order to match the NuSTAR number counts,
the flux measurements from Chandra and XMM-Newton must
be extrapolated to higher energy using a spectrum with photon
index G = 1.48. This photon index is significantly harder than
the Γ=1.7–1.9 that characterizes the unobscured AGN

populationand is also significantly harder than the average
spectral index that characterizes the Swift/BAT AGN sample.
The NuSTAR number counts are in good agreement with

predictions from population synthesis models that explain the
hard spectrum of the CXB using different assumptions about
obscuration, the Compton-thick sample, and the spectra shape
of AGN in the hard X-ray band (see Figure 5). This directly
confirms the existence of a population of AGNs with harder
spectra than those typically measured below 10 keV. The
spectral hardness could be due either to increased reflection or
near Compton-thick absorption. The updated Ballantyne
model, for example, uses an AGN spectral model with a
strong Compton reflection component with a relative normal-
ization component of R=1.7. Our measurements of the rest-
frame 10–40 keV XLF Aird et al. (2015a) also indicate that a
significant population of AGNswith hard X-ray spectra is
required to reconcile our NuSTAR data with prior, lower-energy
XLF measurements. To what extent this results from obscura-
tion versus higher levels of reflection will be determined by
thespectral analysis of NuSTAR sources in the survey fields
(A. Del Moro et al. 2016, in preparation, L. Zappacosta et al.
2016, in preparation), and from spectral modeling of high
quality data from local AGN samples (M. Baloković et al.
2016, in preparation).
The NuSTAR 8–24 keV number counts lie significantly

above a direct extrapolation with flux of the number counts at
brighter fluxes, sampled by the Swift/BAT survey in the
15–55 keV band (Figure 5). This discrepancy is not surprising
given the known evolution of the AGN population between the
low redshift Swift/BAT AGNs and the higher-redshift NuSTAR
sample It is interesting that the BAT data are in tension with
CXB synthesis models (see Figure 5), which are in good
agreement with the NuSTAR measurements. The most natural
explanation for the difference is an evolution in the hard XLF,
absorption distribution, or spectral properties of AGNs between
the very local objects seen by BAT and the more distant
( ~z 0.5 1– ) NuSTAR sample that is not accounted for in the
current population synthesis models.
Table 1 provides CXB fluxes measured by hard X-ray

instruments in the 20–50 keV and 8–24 keV bands. To convert

Figure 4. Integral number counts for the 3–8 keV (left) and 8–24 (right) observed bands. The gray shaded region shows the 68.3% confidence region on the integrated
number counts based on the Poisson error in the number of sources weighted by the survey area as a function of flux. The blue line on the left plot shows a comparison
to Chandra counts extrapolated from 4–7 keV.

Figure 5. NuSTAR 8–24 keV number counts compared to Swift/BAT (bold
dashed line;Ajello et al. 2012). The hatched region indicates the uncertainty in
the overall fit from Ajello et al. (2012). We convert the BAT 15–55 keV band
to the 8–24 keV band using a power law with photon index G = 1.7 (the best-
fit to the average BAT AGN spectrum in the 15–55 keV band). The dashed line
with triangles shows predictions from the CXB synthesis model of
Ballantyne2011 updated to use the Ueda2014 luminosity function. The
dashed line with crosses shows the population synthesis model from Ueda et al.
(2014). The dashed line with circles shows predictions from the CXB model
from Gilli et al. (2007). The plotted errors are 1σ.
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the intensities to the 8–24 keV band for those instruments that
do not cover this energy range (BeppoSAX, INTEGRAL, Swift/
BAT), we used Equation (5) of Ajello et al. (2008), which
parametrizes the CXB spectrum between 2 keV and 2MeV
based on a fit to available data. The NuSTAR extragalactic
surveys have reached depths of S(8–24 keV) » ´ -3 10 14

- -erg s cm1 2. Comparing to the total integrated flux of the
CXB as measured by collimated and coded aperture instru-
ments shown in Table 1, this corresponds to a resolved fraction
of 33%–40% in the 8–24 keV band (Figure 6), with an
additional statistical uncertainty of 5%. Even for the highest
measured CXB flux from Churazov et al. (2007) NuSTAR still
resolves 33%, which is a significant advance compared to the
1%–2% resolved to-date by coded-mask instruments above
10 keV (Krivonos et al. 2007; Vasudevan et al. 2013).

The resolved fraction of the CXB we measure is in good
agreement with pre-launch predictions based on CXB synthesis
models (Ballantyne et al. 2011). At the current depth, the
NuSTAR surveys do not probe the break in the number counts
distribution expected, based on extrapolations from Chandra
and XMM-Newton, to occur at S
(8–24 keV)∼10−14 - -erg s cm1 2. Reaching these depths will
be challenging becausethe deep fields are currently back-
ground dominated, such that sensitivity improves only as the
square root of observing time improves. However, additional
exposure in the ECDFS is planned, along with expansion of the
deep surveys to cover the CANDELS/UDS field(Grogin et al.
2011; Koekmoer et al. 2011), and continuation of the
serendipitous survey, which will better constrain the slope of
the number counts distribution above the break and improve
spectral constraints on the resolved AGN population.
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