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ABSTRACT

The field of computational cardiology has steadily progressed toward reliable and ac-

curate simulations of the heart, showing great potential in clinical applications such as the

optimization of cardiac interventions and the study of pro-arrhythmic effects of drugs in hu-

mans, among others. However, the computational effort demanded by in-silico studies of the

heart remains prohibitively high, highlighting the need for novel numerical methods that can

improve the efficiency of simulations while targeting an acceptable accuracy from a phys-

iological viewpoint, a trade-off typically found in computer simulations. In this work, we

propose a semi-implicit non-conforming finite-element scheme (SI-NCFES) suitable for car-

diac electrophysiology simulations. The proposed scheme is assessed by means of numerical

simulations of electrical excitation in regular and biventricular geometries, where we show

that, based on coarse discretizations, it can predict with high accuracy the wavefront shape

and conduction velocity at a fraction of the computing time demanded by standard simula-

tions based on fine discretizations. We further show that the SI-NCFES allows for coarse dis-

cretizations of cardiac domains while being physiologically accurate for simulations of spiral

wave dynamics, which are otherwise not feasible using standard finite-element formulations,

thus improving the accuracy-efficiency trade-off of cardiac simulations of arrhythmia.

Keywords: Non-conforming Finite Elements, Computational Cardiology, Cardiac Elec-

trophysiology, Conduction Velocity, Nonlinear Finite Elements
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RESUMEN

La cardiologı́a computacional ha tenido un progreso constante en lo que se refiere a lograr

simulaciones confiables y precisas del corazón, mostrando un gran potencial en aplicaciones

clı́nicas como la optimización de intervenciones cardı́acas y el estudio del efecto pro-arritmia

de drogas en humanos, entre otras. Sin embargo, el esfuerzo computacional que los estu-

dios in-silico del corazón demandan sigue siendo un desafı́o, lo que remarca la necesidad de

nuevos métodos numéricos que puedan mejorar la eficiencia de las simulaciones pero que

mantengan una precisión aceptable. En este trabajo, proponemos un método semi-implı́cito

no-conforme de elementos finitos (SINCFES) para simulaciones de electrofisiologı́a cardı́aca.

La precisión y eficiencia del método propuesto son evaluadas en términos de simulaciones

numéricas de la excitación y propagación eléctrica en geometrı́as regulares y en un dominio

biventricular. Con estas simulaciones demostramos que SINCFES permite el uso de mallas

más gruesas que reducen el tiempo computacional en comparación con modelos de mallas

finas entregando frentes de onda y velocidades de conducción más precisas que aquellas pre-

decidas por las formulaciones tradicionales de elementos finitos con la misma malla gruesa,

mejorando la relación precisión-eficiencia de las simulaciones cardı́acas.

Keywords: elementos finitos no-conformes, cardiologı́a computacional, electrofisiologı́a

cardı́aca, velocidad de conducción, elementos finitos no-lineales.
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1. INTRODUCTION

1.1. Motivation

Since the past decades the role of mathematics has led to important advances in the

development of medical technologies and in advancing the understanding of physiological

phenomena. Today, there are several physiological systems of the human body that can be

described in mathematical terms, which allows for in-silico simulations that help scientists

from different disciplines to draw conclusions about normal and pathological processes in the

body. Several examples of physiology process described in terms of mathematical functions

can be found in Keener and Sneyd (2009a, 2009b).

In the study of the functioning of the heart, computational cardiology has made great

advances due to the improvement of biophysical models and computational tools. Currently,

it is possible to model the electrical activity of the whole heart and obtain medical conclusions

from computational simulations (Trayanova, Boyle, & Nikolov, 2018; Sahli Costabal, Yao, &

Kuhl, 2018). However, these computational tools need further development before they can

be used for health applications by medical professionals. Because of the complexity and non-

linearity of the electrophysiology equations, numerical schemes are necessary to solve them.

Finite difference, finite volume and finite elements (FE) methods have been used with this

purpose (Colli Franzone et al., 2014). The latter is the most widely used method, and is the

one we adopt in this work. When using FE, due to the nature of the equations, it is necessary

to use a small spatio-temporal discretization that results in a high computational cost. Thus,

one of the main challenges of computational cardiology is to decrease the computational

effort that these simulations take without losing their predictive capability (Sundnes et al.,

2006).

In the search of efficient numerical methods for computational cardiology, Hurtado and

Rojas Hurtado and Rojas (2018) recently proposed a novel non-conforming finite element

scheme (NCFES), and proved that this method allows for the use of coarser meshes that

translated into lower computational costs without compromising accuracy. However, they
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used an implicit, Backward Euler scheme to integrate the equations over time. Despite im-

plicit methods allow for large time steps, they are very costly in terms of computational effort,

since several linear-system solves are needed for each time step. The purpose of this work

is to develop a scheme following the same principles of using non-conforming elements but

with a more efficient time-integration scheme.There are several options to choose from when

selecting a time integration scheme (Colli Franzone et al., 2014). In our case we chose a

semi-implicit scheme which is a simpler option and has shown to significantly reduce the

computational cost (Whiteley, 2006; Pathmanathan et al., 2010).

1.2. Thesis Structure

This thesis consist of four chapters, the first one presents an introduction to the research

and the theoretical framework in which is based. The second chapter is the paper associated

to this thesis entitled ”Semi-implicit non-conforming finite-element schemes for cardiac elec-

trophysiology: a framework for mesh-coarsening heart simulations”, which has been recently

published in the journal Frontiers in Physiology. The third chapter presents the conclusions

and the fourth, the future extensions related to the present work.

1.3. Cardiac Electrophysiology

The importance of the heart is well known, as it is the organ responsible for pumping

blood through our body. The heart is composed by four chambers, two atria and two ventri-

cles. The blood enters the atria and then is pumped towards the ventricles which drive the

blood to the lungs (right side) to oxygenate it or to the circulatory system (left side). Figure

1.1 illustrates the anatomy of the heart and how the blood passes through.

At a cellular level, the heart is composed by and extracellular matrix and millions of car-

diac muscle cells, also known as cardiomyocytes, that contract and relax following a certain

2



Figure 1.1. Heart anatomy showing the four chambers and the blood flux.
Taken from Guyton and Hall (2016).

complex pattern that is controlled by electrical activation. Cardiomyocytes have the charac-

teristic of not only be contractile, but also electrically excitable, as they enable the propaga-

tion of an electric potential. The electrical activation of the heart is not homogeneous, since

it is mediated by different types of structures formed by cells with different characteristics.

Some of this structures are the atrio-ventricular node (AVN), the bundle of His or the Purk-

inje network. The cells in the AVN, for example, have a relatively small conduction which

is responsible for the delay in the activation time of the ventricles respect to the atria (Colli

Franzone et al., 2014).

At the tissue level, cells are arranged following an specific direction as shown in Figure

1.2. This direction is called the fiber axis. The fibers are embeded in sheets, in where it

is defined the sheet axis. A third direction called cross-sheet axis is defined as the cross

product of the other two (Castro, 2015). To facilitate the propagation in the fiber axis, at
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the union between two cells there are specialized structures called gap junctions that allow

a facilitated flux of ions. The fiber organization in the heart makes the tissue anisotropic

as the conduction will be faster in the direction of the fibers. It is important to note that it

is possible to distinguish three different layers across the heart walls. From the external to

the internal wall these layers are the epicardium, mid-myocardium and endocardium. This

layered structure is important for electrical conduction, since the orientation of the fibers

changes along the thickness of these layers.

Figure 1.2. Heart tissue illustration. Taken from Guyton and Hall (2016).

As briefly explained in this section, the electrical conductivity in the heart is a complex

process that presents diverse challenges. It is also known that most of the heart diseases are

the result or a cause of abnormal electrical behavior (Sundnes et al., 2006). For these reasons,

there is an important source of questions that computational cardiology can help to answer. In

the following sections a mathematical description of the physiology of the heart is presented

to develop equations that can be solved using numerical schemes.
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1.3.1. Single Cell Potential

A very important feature of cardiac cells is that they are excitable. This means that given

a certain electrical stimulus the cell will answer actively. If no stimulus is applied, then the

cell membrane maintains an internal ionic concentration that is different from the external

one. Due to the charge of the ions, this concentration difference results in a difference of the

electrical potential. This is called transmembrane potential Vm and is defined by:

Vm = φi − φe,

where φi is the potential in the intracellular space, and φe is the potential in the extracellular

space. Under resting conditions, the transmembrane potential in cardiomyocytes is about -85

mV. For a cell in resting conditions, if a stimulus with a value below a certain threshold

is applied, the cell will rapidly return to its resting condition. If the stimulus is larger than

a certain threshold value, the cell will change its membrane conductive properties, and a

flux of positive ions will enter the cell, a process that is known as depolarization. After

depolarization occurs, the transmembrane potential will return to its resting value in a process

called repolarization. In cardiac cells, unlike other excitable cells, this process is slow due

to a momentary equilibrium in the in and out flow of charges which is reflected in the so-

called plateau phase (Pullan, Cheng, & Buist, 2005). In Figure 1.3, the phases of the cardiac

potential and the interaction of the four most important ionic currents (Na+, Cl−, K+, Ca2+)

are plotted, and it is possible to observe that depolarization is a very fast process.

The behavior of the cell membrane can be represented as an electrical circuit, see Figure

1.4. The current flow for an specific ion x is governed by the difference between the trans-

membrane potential and the Nerst potential Ex of that ion. Hence, the expression for the

current through a channel Ix is

Ix = gx(Vm − Ex),

where gx is the conductance of the channels for that ion. Because the conductance usually

depends on both the transmembrane potential and the concentration levels of other ions, gx

is assumed to be a nonlinear function. Since the conductances are arranged in parallel the

5



Figure 1.3. Schematic of the cardiac action potential. Phase 0 (depolarization
or upstroke), phase 1 (peak), phase 2 (plateau), phase 3 (repolarization or
recovery) and ionic currents involved in each phase are shown. Taken from
(Colli Franzone et al., 2014).

currents through each channel can be sum linearly to obtain Iion which is the total current

flowing through the ions channels,

Iion =
∑
x

Ix.

Since the cell membrane separates charges that accumulate in the intracellular and extracel-

lular spaces, it can be idealized as a capacitor with capacitance Cm which is placed parallel

to the ionic currents. This electrical circuit representation yields to the following expression

for the transmembrane potential over time,

Cm
∂Vm

∂t
+ Iion = Iapp,

where Iapp is an externally applied current (Pullan et al., 2005; Sundnes et al., 2006; Colli

Franzone et al., 2014).
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Figure 1.4. Electrical circuit representing the flow of current across the cell
membrane.

The functions that represent each ionic current Ix change according to the ionic model

used. The first mathematical model proposed to represent the electrical cell behavior was the

Hodgkin-Huxley model (Hodgkin & Huxley, 1952) of the squid giant axon. The Hodgkin-

Huxley model separates the total ionic transmembrane current into three components: the

sodium current INa, the potassium current IK, and a leakage current IL that represent all

other ions. Based on the Hodgkin-Huxley model, several ionic models have been developed

in the past to represent the electrical behavior of the cardiac cells, both for human hearts as

well as for hearts from several animal species. These models vary both in complexity and in

if they have a biophysical basis or phenomenological basis. Biophysical models tends to be

more elaborated, and may have more than ten gating variables in order to represent each ionic

channel (Tusscher, Noble, Noble, & Panfilov, 2004). In contrast, phenomenological models

are simpler because they do not seek to represent the sub-cellular process but rather to provide

a phenomenological representation of an action potential, at a minimum computational cost.

A review on the main models used in literature can be found on Pullan et al. (2005) or on Colli

Franzone et al. (2014). In this work, we used the Aliev-Panfilov model (Aliev & Panfilov,

1996) which belongs to the phenomenological group, and is described in detail in Chapter 2.

7



1.3.2. Signal Conduction

To be able to represent the propagation of an action potential across the cell membrane,

the cell is generally modeled as a long cylindrical cable in which the transmembrane potential

only depends on the length variable and not on radial or angular variables. This is the so-

called core conductor assumption (Colli Franzone et al., 2014; Keener & Sneyd, 2009a).

The cable is assumed to be composed of isopotential membrane sections of length dx. An

electrical circuit representation of this model is presented in Figure 1.5. The axial intracellular

Figure 1.5. Equivalent circuit representation used to derive the cable equation.
The membrane is shown between the dashed lines separating the intracellular
from the extracellular space.

and extracellular current is assumed to be ohmic, i.e.,

φi(x+ dx)− φi(x) = −Ii(x)ridx,

φe(x+ dx)− φe(x) = −Ie(x)redx,

8



where ri and re are the resistances per unit length. Then, in the limit when dx → 0 we have

that

Ii(x) = − 1

ri

∂φi

∂x
, (1.1)

Ie(x) = − 1

re

∂φe

∂x
. (1.2)

From Kirchhoff’s laws, we have that the changes in the extracellular or in the intracellular

axial current are due to the transmembrane current It,

Ii(x)− Ii(x+ dx) = Itdx = Ie(x+ dx)− Ie(x). (1.3)

In the limit dx→ 0, the latter becomes

It = −∂Ii

∂x
=
∂Ie

∂x
. (1.4)

The total axial current is IT = Ii + Ie and we know that Vm = φi − φe. Combining this two

and (1.1) and (1.2) and reordering we get

− Ii =
1

ri + re

∂Vm

∂x
− re

ri + re

IT. (1.5)

Taking the partial derivative from x and using (1.4) and the fact that IT is constant we obtain:

It =
∂

∂x

(
1

ri + re

∂Vm

∂x

)
. (1.6)

We further note that the current per unit of area it can be written as

it = Cm
∂Vm

∂t
+ Iion,

and it can be expressed as current per unit volume if we multiply by the ratio between the

membrane surface area for a given length to the volume enclosed by this surface Am, i.e.,

It = Am

(
Cm

∂Vm

∂t
+ Iion

)
. (1.7)

9



From (1.6) and (1.7) we get the cable equation

Am

(
Cm

∂Vm

∂t
+ Iion

)
− σ∂

2Vm

∂x2
= 0, (1.8)

where σ is the effective conductivity, which can be shown to be (Colli Franzone et al., 2014)

σ =
σiσe

σi + σe

=
1

ρi + ρe

, (1.9)

with σi and σe the external and internal conductivities respectively. Here we use the fact that

the resistivities ρ are the resistance r multiplying a certain lenght and dividying by the area of

the cable. It is possible to extrapolate the cable equation to a multidimensional space using a

conductivity tensor σ (Castro, 2015),

Am

(
Cm

∂Vm

∂t
+ Iion

)
− div(σ∇Vm) = 0. (1.10)

For convenience, the cable equation is typically normalized (Rojas, 2017). We define the

normalized transmembrane potential φ as

φ(x, t) =
Vm(x, t)− Vr

Vp − Vr

.

Further, we divide (1.10) by AmCm to obtain

∂φ

∂t
− div(D∇φ)− f(φ, r) = 0, (1.11)

where f(φ, r) is the normalized ionic current and D is the normalized conductivity tensor,

both which can be related to their counterparts by

D =
1

AmCm

σ; f(φ, r) = −Iion(Vm(φ), r)

Cm(Vp − Vr)

As already mentioned, the term Iion is the sum of the contribution to the total current of

all ions and will depend on Vm and on the concentration levels of other ions. In mathematical

terms we write Iion = Iion(Vm, r), where r is a vector containing the state variables which

10



vary in time according to the following equation

∂r

∂t
= g(φ, r) (1.12)

1.4. Semi-Discrete Finite-Element Formulation for the Cable Model

To solve the cable equation using finite elements in a certain domain Ω ∈ R3, it is first

necessary to start from a weak formulation. To this end, we define the function spaces

S = {φ(x) ∈ H1(Ω,R)|φ(x) = φg if x ∈ ∂Ωg},

V = {ν(x) ∈ H1(Ω,R)|ν(x) = 0 if x ∈ ∂Ωg},

where S is the trial space, V is the test space, H1 is the Sobolev space and φg are the pre-

scribed potentials (Dirichlet condition) and Ωg is the Dirichlet boundary. Multiplying (1.11)

b y an arbitrary function ν ∈ V , integrating over the whole domain Ω, and using integration

by parts we arrive to the weak form:

Find φ ∈ S such that ∀ t ∈ (0, T ]∫
Ω

νφ̇ dx+

∫
∂Ωq

νq̄ ds+

∫
Ω

∇ν ·D∇φ dx−
∫

Ω

νf(φ, r) dx = 0 ∀ν ∈ V (1.13)

where q̄ = q · n̂ is the prescribed flux and Ωq is the Neumann boundary which appears

naturally in the deduction.

The weak form can be discretized using a finite element approach. Let us consider a

discretization Ωh of the domain Ω which is composed by elements domains Ωe such that

Ωh = ∪Nel
e=1Ωe where Nel is the number of elements. Now, we define

Sh ⊂ S; Vh ⊂ V ; (1.14)

11



and approximate φ and ν with the functions φh ∈ S and νh ∈ V . Following a traditional

finite element scheme, these functions are defined by

νh(x) =

Ndofs∑
A=1

NA(x)νA; φh(x) =

Ndofs∑
A=1

NA(x)φA;

where Ndofs is the number of degrees of freedom present in the discretized domain, φA and

νA are the nodal values of the respective fields and NA(x) are basis functions. Using the

definition of νh(x) into (1.13), we get∫
Ω

NAφ̇
hdx+

∫
Ω

∇NA ·D∇φhdx−
∫

Ω

NAf(φh, rh)dx

+

∫
∂Ωq

NAq̄ ds = 0 A = 1, ...,Ndofs. (1.15)

This last equation is known are the semi-discrete finite element formulation of the problem,

where the time domain is still continuous.

1.5. Temporal Integration Schemes

In this section we will present three temporal discretization schemes for the semi-discrete

equations (1.15): the Forward Euler (explicit) scheme, the Backward Euler (implicit) scheme,

and the semi-implicit scheme. The first two methods are members of the generalized trape-

zoidal family of methods and are widely used in electrophysiology (Colli Franzone et al.,

2014). The integration in time of the evolution of the state variables (1.12) will also depend

on the scheme adopted. We partition the time interval into [0, . . . , tn, tn+1, . . . , T ] intervals,

and approximate the time-dependent coefficients �(tn) ≈ �n. For a generic time interval

[tn, tn+1] we define ∆t := tn+1 − tn. All the variables with sub-index n are assumed to be

known. The time derivatives are replaced by the finite-difference approximation

�̇(tn+1) ≈ �n+1 −�n

∆t
. (1.16)
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1.5.1. Forward Euler Scheme

Using a Forward-Euler scheme, equations (1.12) and (1.15) are discretized in time as∫
Ω

NA

φhn+1 − φhn
∆t

dx+

∫
Ω

∇NA ·D∇φhndx−
∫

Ω

NAf(φhn, r
h
n)dx+

∫
∂Ωq

NAq̄ ds = 0, (1.17)

rhn+1 − rhn
∆t

= g(φhn, r
h
n), (1.18)

where we notice that we can express φhn+1 in terms of φhn and rn. Using a finite-element

approximation for φh it is possible to rewrite 1.17 in matrix terms

M
φn+1 − φn

∆t
+ Kφn − F(φn, rn) = 0,

whereφ = [φ1, ..., φNnodes
] is a vector with the nodal values of the normalized transmembrane

potential, M, K are the mass and stiffness matrices, respectively, and F is the nodal force

vector. The entries for the matrix are given by:

MAB =

∫
Ω

NANB KAB =

∫
Ω

∇NA ·D∇NB

FA =

∫
Ω

NAf(φhn, r
h
n)dx−

∫
∂Ωq

NAq̄ ds

Then, the update for φn+1 is simply

φn+1 = φn −∆tM−1(Kφn − F(φn, rn)) (1.19)

rn+1 = rn + ∆tg(φn, rn) (1.20)

This method has the advantage of being very simple to implement, together with having a

low computational cost, as no iterations is needed to find φn+1. In particular, it is possible to

compute M and K only once, and then reuse them in each time step. The main deficiency of

this method is that it is conditionally stable, i.e., the time step size is controlled by the mesh

size, as the following stability inequality must hold:

∆t <
2

λhmax
,
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where λhmax is the maximum eigenvalue of the matrix M−1K. This condition forces the use of

very small time-step sizes, which can make simulations very expensive from a computational

standpoint (Hughes, 2012).

1.5.2. Backward Euler Scheme

Using a Backward-Euler scheme, we define the following residuals using equations (1.12)

and (1.15)

Rφ
A(φh, rh) =

∫
Ω

NA
φh − φhn

∆t
dx+

∫
Ω

∇NA ·D∇φhdx

−
∫

Ω

NAf(φh, rh)dx+

∫
∂Ωq

NAq̄ ds = 0 (1.21)

Rr(φh, rh) = rh − rhn −∆tg(φh, rh) = 0 (1.22)

where the sub-index n + 1 is intentionally omited for convenience. Since the non-linear

terms f(φ, r) and g(φ, r) depend on φh and rh, it is not possible to directly solve for them.

Therefore, it is necessary to use a numerical scheme to solve this set of non-linear equations.

One common alternative is to use the Newton’s method. To this end, we first solve (1.22), as

it does not involve spatial gradients. The tangent matrix is given by

DRr =
∂Rr

∂r
= 1−∆t

∂g

∂r
(φh, rh)

Then, given a initial value for r, we start updating the value r ← r − (DRr)−1Rr until a

certain criteria on the residual norm is met. The converged value is denoted as r∗(φh). We

now turn to the residual for φh, the tangent matrix is:

DRφ
AB =

∂Rφ
A

∂φB
=

∫
Ω

1

∆t
NANBdx+

∫
Ω

∇NA ·D∇NBdx−
∫

Ω

NANBDf(φh, rh)dx

where

Df =
df(φh, r∗(φ))

dφ
=

{
∂f

∂φ
+
∂f

∂r

dr∗

dφ

} ∣∣∣∣
φh,r∗

14



and dr∗
dφ can be obtained using (1.22),

dr∗

dφ
= −(DRr)−1

(
∂g

∂φ

) ∣∣∣∣
φh,r∗

Thus, the update for φ is,

φ← φ−DRφ−1Rφ

this iteration is performed until a convergence criteria over the norm of Rφ is met (Hurtado,

Castro, & Gizzi, 2016). The principal advantage of this method is that it provides a larger

stability region for the time-step size (Hurtado & Henao, 2014). The main disadvantage of

the Backward-Euler method is its complexity and the computational effort that demands the

solution of the resulting set of non-linear equations that need to be solved at each time step.

1.5.3. Semi-implicit Scheme

In this method, the diffusion terms are evaluated at the current time step tn+1, and the

ionic terms at the previous time step tn (Whiteley, 2006). Thus, the semi-discrete equations

(1.15) turn into∫
Ω

NA

φhn+1 − φhn
∆t

dx+

∫
Ω

∇NA ·D∇φhn+1dx−
∫

Ω

NAf(φhn, r
h
n)dx,

+

∫
∂Ωq

NAq̄ ds = 0, (1.23)

rhn+1 − rhn
∆t

= g(φhn, r
h
n). (1.24)

We readily notice the advantage of this method: the ionic functions f(φ, r), g(φ, r) are

evaluated at the previous time step where all information is known, and therefore the update

of the gating variables results in a straightforward evaluation. Using the matrix approach

shown in the Forward Euler scheme we further get,

M
φn+1 − φn

∆t
+ Kφn+1 − F(φn, rn) = 0
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The equation for r (1.24) is the same than in that found for the case of the Forward-Euler

scheme. Then, the updates for φ and r are:

φn+1 = φn −
(

M
∆t

+ K
)−1

(Kφn − F(φn, rn)), (1.25)

rn+1 = rn + ∆tg(φn, rn). (1.26)

One advantage of this method is that the stability condition does not depend on the mesh size,

which allows for time-step sizes larger than those allowed by the explicit schemes.
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2. SEMI-IMPLICIT NON-CONFORMING FINITE-ELEMENT SCHEMES FOR

CARDIAC ELECTROPHYSIOLOGY

2.1. Introduction

Computer simulations of the electrical activity of the heart have increasingly gained atten-

tion in the medical community, as they have steadily shown potential in the study of cardiac

diseases and in the design of novel cardiac therapies. Current models of the human heart are

able to represent the complex three-dimensional anatomical structure of the heart chambers,

incorporating key functional features such as the Purkinje network and the cardiomyocyte

orientation (Vadakkumpadan et al., 2009). Such advanced representation of the heart has

enabled novel in-silico studies of undesired pro-arrhythmic effects of drugs in patients (Sahli

Costabal et al., 2018), potentially reducing the number of subjects needed in a clinical trial by

aiding the experiment design. Computational models of the heart have also shown promise in

assisting the design of effective therapies for terminating atrial fibrillation (Trayanova et al.,

2018). While these examples can only confirm the tremendous relevance of computational

models in advancing the field of cardiology, they share the fundamental challenge of being

highly demanding in terms of wall-clock time needed in computer simulations.

Mathematical models of the heart require the computer implementation of spatio-temporal

discretization techniques in order to obtain a sequence of numerical representations of the

physiological fields under study. Two fundamental aspects directly responsible for the com-

putation time (CT) in a heart simulation are the ionic model used to account for subcellular

electrochemical mechanisms, and the level of spatio-temporal discretization in terms of time-

step size and mesh size (Sundnes et al., 2006). The choice of the mesh size typically faces

a well-known trade-off problem of accuracy versus efficiency, as decreasing the mesh size

in a simulation results in more accurate numerical approximations, at the cost of increasing

the number of degrees of freedom (DOFs), which drives the CT. Indeed, current simulations

of the heart typically employ mesh sizes in the range of tens to hundreds of micrometers
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for domains with lengths in the order of centimeters, which ultimately translates into large

systems of equations with several millions of DOFs that need to be solved at each time step.

Such high dimensionality renders the solution of heart simulations extremely challenging for

personal computers, and calls for improving their implementation in high-performance com-

puting (HPC) platforms (Vazquez et al., 2011; S. Niederer, Mitchell, Smith, & Plank, 2011).

In the particular case of cardiac electrophysiology simulations, a common criterion to se-

lect the mesh size is the ability of the numerical simulation to recover an accurate conduction

velocity (CV) and wavefront shape (Pathmanathan et al., 2010; Krishnamoorthi, Sarkar, &

Klug, 2013; Dupraz, Filippi, Gizzi, Quarteroni, & Ruiz-Baier, 2015). It has been shown that

both the wavefront shape and the CV suffer from a strong dependence on the spatial dis-

cretization, which for the case of finite-element (FE) discretization using linear basis func-

tions results in a significant loss of accuracy for the case of mesh sizes > 0.1 mm (Pezzuto,

Hake, & Sundness, 2016). In order to achieve larger mesh sizes, higher-order FE formu-

lations have been proposed, which show that FE Lagrange basis functions of order 2 and

3 result in accurate CV for coarser meshes (Arthurs, Bishop, & Kay, 2012; Pezzuto et al.,

2016). It should be noted, however, that higher-order FE schemes based on Lagrange basis

functions necessarily increase the total number of DOFs in simulations when compared to

linear-element formulations, as well as they require an additional computational effort for

quadrature procedures, as higher-order basis functions demand the use of more quadrature-

point evaluations (Cantwell, Yakovlev, Kirby, Peters, & Sherwin, 2014). Recently, (Hurtado

& Rojas, 2018) introduced a non-conforming finite-element scheme (NCFES) for the spa-

tial discretization of the monodomain equation of cardiac electrophysiology that allows for

the use of coarse meshes without significant loss of accuracy measured in terms of CV and

wavefront shape. More specifically, hexahedral trilinear elements (Q1) were enhanced with

non-conforming basis functions of degree 2 to create a non-conforming element (Q1NC) that

is capable of representing a second-order polynomial within the element domain, a concept

widely employed in the context of solid mechanics FE simulations (Wilson, Taylor, Doherty,

& Ghaboussi, 1973; Taylor, Beresford, & Wilson, 1976). Further, they showed that the DOFs
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associated to the non-conforming basis functions can be solved at the element level, and

therefore the number of global DOFs of the Q1NC scheme equals that of a standard Q1 FE

scheme. As a result, Q1NC simulations delivered a CV and wavefront shape similar to that

of second-order Lagrange formulations (Q2) at the computational cost in the order of a Q1

formulation.

During the development of the NCFES for cardiac electrophysiology, a fully-implicit (FI)

backward-Euler time-stepping method was considered (Hurtado & Rojas, 2018). While FI

schemes have important advantages in delivering a larger time-step stability region in car-

diac simulations (Ying, Rose, & Henriquez, 2008; Hurtado & Henao, 2014), they require the

solution of a large system of non-linear equations at each time step that can be very costly

in computational terms, and may not be well-suited to parallel-computing platforms when

compared to other numerical schemes. To improve the computational efficiency, the semi-

implicit integration method has been proposed in the literature for solving the semi-discrete

equations resulting from standard FE discretizations, showing a relevant decrease in the CT

of cardiac simulations, as well as being amenable to HPC platforms (Whiteley, 2006; Path-

manathan et al., 2010). Consequently, the scientific question that motivates this work is: Can

we further improve the efficiency-accuracy trade-off in cardiac simulations by combining

non-conforming FE spatial discretizations with semi-implicit time-integration schemes? To

answer such question, in the following we develop the numerical framework and present an

algorithm for the implementation of a semi-implicit non-conforming FE scheme to solve the

monodomain electrophysiology equations, and investigate the numerical consequences and

potential contributions to cardiac simulations.
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2.2. Methods

2.2.1. Monodomain model of cardiac electrophysiology

Let Ω ∈ R3 be the heart domain where electrical impulses travel during the time interval

[0, T ], and Vm : Ω× [0, T ]→ R be the transmembrane potential. A local statement of current

balance yields the monodomain equation (Pullan et al., 2005)

Am

(
Cm

∂Vm

∂t
+ Iion(Vm, r)

)
− div(σ∇Vm) = 0, in Ω× (0, T ], (2.1)

where Am, Cm are the surface-to-volume ratio and membrane capacitance, respectively, σ is

the conductivity tensor, Iion is the ionic current depending on the transmembrane potential

Vm, and r : Ω × (0, T ] → Rm is a vector field of state variables that include gating vari-

ables and ion concentrations. For convenience, we consider the normalized transmembrane

potential field

φ(x, t) =
Vm(x, t)− Vr

Vp − Vr

,

where Vp and Vr are the peak and resting voltages, respectively. Based on this normalization,

we obtain the non-dimensional monodomain equation,

∂φ

∂t
− div(D∇φ)− f(φ, r) = 0 in Ω× (0, T ], (2.2)

where D = 1
AmCm

σ is the normalized conductivity tensor, and f(φ, r) = − Iion(Vm(φ),r)
Cm(Vp−Vr) is

the normalized ionic current. The time evolution of state variables is governed by kinetic

equations of the form
∂r

∂t
= g(φ, r) in Ω× (0, T ]. (2.3)

The expressions for f(φ, r) and g(φ, r) will depend on the choice of ionic model representing

the transmembrane ionic current in a single cell. Equations (2.2) and (2.3) are complemented

with Dirichlet and Neumann boundary conditions,

φ = φ̄, on ∂Ωφ × (0, T ], (2.4)

q · n = q̄, on ∂Ωq × (0, T ], (2.5)
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respectively, as well as initial conditions

φ(x, 0) = φ0(x), x ∈ Ω,

r(x, 0) = r0(x), x ∈ Ω.

To state the weak form of the cardiac electrophysiology problem, we consider trial spaces

Sφ,Sr and test spaces Vφ,Vr defined as

Sφ = {φ ∈ L2((0, T ];H1(Ω,R)) : φ = φ̄ on ∂Ωφ × (0, T ]} (2.6)

Sr = {r ∈ L2((0, T ];L2(Ω,Rm))} (2.7)

Vφ = {ν ∈ H1(Ω,R) : ν = 0 on ∂Ωφ} (2.8)

Vr = {η ∈ L2(Ω,Rm)} (2.9)

Multiplying (2.2) and (2.3) by appropriate test functions, integrating over Ω and applying the

divergence theorem yields the weak equations, and the statement of the weak formulation

reads: ∀ t ∈ (0, T ], find (φ, r) ∈ Sφ × Sr such that

Gφ[(φ, r), (ν,η)] :=

∫
Ω

ν
∂φ

∂t
dx+

∫
Ω

∇ν · D∇φ dx

−
∫

Ω

νf(φ, r) dx+

∫
∂Ωq

νq̄ ds = 0, ∀ ν ∈ Vφ (2.10)

Gr[(φ, r), (ν,η)] :=

∫
Ω

η

{
∂r

∂t
− g(φ, r)

}
dx = 0, ∀ η ∈ Vr (2.11)

2.2.2. Spatial discretization using a non-conforming finite-element scheme

A Galerkin finite-element scheme to solve the weak formulation of the monodomain

problem can be stated as follows. Let Ωh = ∪Nel
e=1Ωe be a domain discretization where Nel is

the number of elements, and all elements comply with the condition Ωi∩Ωj = ∅ for i 6= j. We

construct finite-dimensional subspaces Sφh ⊂ Sφ, Srh ⊂ Sr and Vφh ⊂ Vφ, Vrh ⊂ Vr, to solve

the following FE problem (Göktepe & Kuhl, 2009; Hurtado & Kuhl, 2014): ∀ t ∈ (0, T ],
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find (φh, rh) ∈ Sφh × Srh such that

Gφ[(φh, rh), (νh,ηh)] = 0, ∀νh ∈ Vφh

Gr[(φh, rh), (νh,ηh)] = 0, ∀ηh ∈ Vr.

A traditional discretization FE scheme is the hexahedral isoparametric finite-element space,

Vφh :=
{
νh ∈ C0(Ωh,R) : νh|Ωe ∈ Qk(Ωe), e = 1, . . . , Nel

}
whereQk(Ωe) represents the space of isoparametric functions resulting from n-tensor product

of 1-D Lagrange polynomials of order k, which are defined over the standard (isoparametric)

domain Ω̂ = [−1, 1]n and mapping to a hexahedral element. We expand an element νh ∈ Vφh
as

νh(x) =

Ndofs∑
A=1

NA(x)νA,

where {NA}a=1,Ndofs
are the basis functions, Ndofs is the number of element nodes with un-

known degrees of freedom, and {νA}a=1,Ndofs
are the nodal coefficients. Using the same

element basis functions, we expand the trial functions as

φh(x, t) =

Ndofs∑
A=1

NA(x)uA(t) + uBC(x, t), (2.12)

where {uA(t)}A=1,Ndofs
correspond to the nodal values of the transmembrane potential field,

and uBC ∈ Sφ is a function that satisfies the boundary conditions (2.4), i.e. uBC = φ̄ in

∂Ωφ × (0, T ]. For simplicity, and without loss of generality, in the following we assume that

uBC = 0. To construct the elements of Vrh, we write

ηh(x) =

Nel∑
e=1

Nq∑
q=1

M e
q (x)ηeq, (2.13)

where M e
q is a characteristic function defined by

M e
q (x) =

1,x ∈ Ωe,q

0,x /∈ Ωe,q

(2.14)
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and Ωe,q ⊂ Ωe is the subdomain containing the q−quadrature point xq, and is such that⋃Nq
q=1 Ωe,q = Ωe and Ωe,q ∩ Ωe,q′ = ∅ whenever q 6= q′. Analogously, we expand an element

rh ∈ Srh as

rh(x, t) =

Nel∑
e=1

Nq∑
q=1

M e
q (x)req(t), (2.15)

where req : (0, T ] → Rm represents the time evolution of the state variables at the q-

quadrature point.

In this work, we consider a non-conforming spatial-discretization scheme for the monodomain

equations (Hurtado & Rojas, 2018). To this end, we rewrite the residuals as

Gφ[(φ, r), (ν,η)] =

Nel∑
e=1

{∫
Ωe

ν
∂φ

∂t
dx+

∫
Ωe

∇ν · D∇φ dx

−
∫

Ωe

νf(φ, r) dx+

∫
∂Ωe,q

νq̄ ds

}
, (2.16)

Gr[(φ, r), (ν,η)] =

Nel∑
e=1

{∫
Ωe

η

{
∂r

∂t
− g(φ, r)

}
dx
}
, (2.17)

and note that in such form, integrability of the trial and test functions and their weak deriva-

tives is required only at the element level. We enhance the polynomial basis of Vφh at the

element level by adding polynomial terms not included in Qk(Ωe). To this end, we consider

the non-conforming space

Eφh :=
{
βh : βh|Ωe ∈ Pk+m(Ωe)\Qk(Ωe)

}
where m ∈ Z+ and Pk+m(Ωe) is the space of polynomial functions of degree k + m defined

on the standard domain Ω̂. We then consider enhanced test functions νh which we expand as

νh(x) =

Ndofs∑
A=1

NA(x)νA +

Nel∑
e=1

Nnc∑
c=1

W e
c (x)βec (2.18)

where βec ∈ R are coefficients, W e
c are non-conforming element basis functions, and it holds

thatW e
c = 0,x /∈ Ωe. Analogously, we enhance Sφh with the time-dependent non-conforming
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space Fφh , and expand the enhanced trial functions as

φh(x, t) = uh(x, t) + αh(x, t) (2.19)

where

uh(x, t) :=

Ndofs∑
B=1

NB(x)uB(t) (2.20)

αh(x, t) :=

Nel∑
e=1

Nnc∑
d=1

W e
d (x)αed(t). (2.21)

and αed : (0, T ] → R is a time-dependent coefficient that scales the non-conforming ba-

sis functions W e
d . Substitution of approximations (2.18),(2.19),(2.13) and (2.15) into the

residuals (2.16) and (2.17) yields the following semi-discrete problem: ∀ t ∈ (0, T ], find

(uh, αh, rh) ∈ Sφh ×F
φ
h × Srh such that∫

Ω

NA{u̇h + α̇h}dx+

∫
Ω

∇NA · D∇{uh + αh}dx−
∫

Ω

NAf(uh + αh, rh)dx

+

∫
∂Ωq

NAq̄ ds = 0, A = 1, . . . , Ndofs, (2.22)∫
Ωe
W e
c {u̇h + α̇h}dx+

∫
Ωe
∇W e

c · D∇{uh + αh} dx

−
∫

Ωe
W e
c f(uh + αh, rh)dx = 0, e = 1, . . . , Nel; c = 1, . . . , Nnc, (2.23)∫

Ωe
M e

q {ṙh − g(uh + αh, rh)}dx = 0, e = 1, . . . , Nel; q = 1, ..., Nq (2.24)

2.2.3. Semi-implicit temporal discretization

To integrate (2.22), (2.23) and (2.24) in time, we consider partitioning the time interval

into [0, . . . , tn, tn+1, . . . , T ], and approximate the time-dependent coefficients �(tn) ≈ �n.

For a generic time interval [tn, tn+1] we define ∆t := tn+1 − tn. We further group the
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expansion coefficients into vectors, and write

un = [un,1, . . . , un,Ndofs
]T , αen = [αen,1, . . . , α

e
n,Nnc

]T , ren = [ren,1, . . . , r
e
n,Nq

]T

(2.25)

Following a semi-implicit (SI) time-integration approach (Whiteley, 2006), time derivatives

are replaced by the finite-difference approximation

�̇(tn+1) ≈ �n+1 −�n

∆t
. (2.26)

Diffusive terms in (2.22) and (2.23) are evaluated at t = tn+1 and the reaction terms are

evaluated at t = tn. Evolution equations (2.24) were integrated using an explicit Forward-

Euler scheme. As a result, the incremental time update for t = tn+1 reads:

Given un, {αen, ren}e=1,...,Nel
, find un+1, {αen+1, r

e
n+1}e=1,...,Nel

such that

Ndofs∑
B=1

{∫
Ω

NANB

∆t
+

∫
Ω

∇NA · D∇NB

}
un+1,B

+

Nel∑
e=1

Nnc∑
d=1

{∫
Ω

NAW
e
d

∆t
+

∫
Ω

∇NA · D∇W e
d

}
αen+1,d

−
{∫

Ω

NA

∆t
{uhn + αhn}+

∫
Ω

NAf(uhn + αhn, r
h
n)

}
= 0, A = 1, . . . , Ndofs, (2.27)

Nen∑
b=1

{∫
Ωe

W e
cN

e
b

∆t
+

∫
Ωe
∇W e

c · D∇N e
b

}
︸ ︷︷ ︸

=:Lecb

uen+1,b

+
Nnc∑
d=1

{∫
Ωe

W e
cW

e
d

∆t
+

∫
Ωe
∇W e

c · D∇W e
d

}
︸ ︷︷ ︸

=:Ke
αcd

αen+1,d

−
{∫

Ωe

W e
c

∆t
{uhn + αhn}+

∫
Ωe
W e
c f(uhn + αhn, r

h
n)

}
︸ ︷︷ ︸

=:peαc

= 0

e = 1, . . . , Nel; c = 1, . . . , Nnc (2.28)
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∫
Ωe
M e

q

{
Nq∑
s=1

M e
s

ren+1,s − ren,s
∆t

− g(uhn + αhn, r
h
n)

}
dx = 0,

e = 1, . . . , Nel; q = 1, ..., Nq, (2.29)

where N e
b := NB

∣∣∣
Ωe

is the restriction of the basis function to the local element domain,

and ueb is the corresponding nodal value, where lowercase letters indicate the local degree of

freedom b corresponding to its global counterpart B. At this point, we note that (2.28) can be

written in matrix form as

Leuen+1 +Ke
αα

e
n+1 − peα(uen,α

e
n, r

e
n) = 0,

for e = 1, . . . , Nel, from where we define the time update for the element non-conforming

coefficient vector as

αe,∗n+1(uen+1;uen,α
e
n, r

e
n) := {Ke

α}
−1 peα(uen,α

e
n, r

e
n)− {Ke

α}
−1Leuen+1 (2.30)

which is computed exclusively using element-level variables, given the element vector uen+1.

To update the gating-variable field, we note from (2.14) that (2.29) can be solved point-wise

at each quadrature point xq inside an element, and thus is equivalent to writing

req,n+1 − req,n
∆t

− g(uhn(xq) + αhn(xq), r
e
q,n) = 0, e = 1, . . . , Nel; q = 1, ..., Nq,

from which the (explicit) time update for the gating variables can be solved at the quadrature-

point level as

re,∗q,n+1(uen,α
e
n, r

e
n) := req,n + ∆t g(uhn(xq) + αhn(xq), r

e
q,n). (2.31)

We now turn to residual (2.27), and note that it can be constructed by assembling element-

level nodal contributions defined by
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Ru,e
a :=

Nen∑
b=1

{∫
Ωe

NaNb

∆t
+

∫
Ωe
∇Na · D∇Nb

}
︸ ︷︷ ︸

:=Ke
uab

uen+1,b

+
Nen∑
b=1

{∫
Ωe

NaWd

∆t
+

∫
Ωe
∇Na · D∇Wd

}
︸ ︷︷ ︸

LeTad

αen+1,d

−
{∫

Ωe

Na

∆t
{uhn + αhn}+

∫
Ωe
Naf(uhn + αhn, r

h
n)

}
︸ ︷︷ ︸

:=peua

, (2.32)

which can also be written in matrix form at the element level as

Ru,e = Ke
uu

e
n+1 +LeTαen+1 − peu(uen,αen, ren). (2.33)

Substituting update (2.30) into (2.33), we obtain an element residual that only depends on

uen+1 that reads

Ru,e =
(
Ke

u −LeT {Ke
α}
−1Le

)︸ ︷︷ ︸
Ae

uen+1 +LeT {Ke
α}
−1 peα(uen,α

e
n, r

e
n)− peu(uen,αen, ren)︸ ︷︷ ︸

ben(uen,α
e
n,r

e
n)

(2.34)

As a consequence, solving residual (2.27) is equivalent to solving the matrix linear system

Aun+1 + bn = 0 (2.35)

where A and bn are the global matrix and vector assembled from element contributions

defined in (2.34). We note that (2.35) defines the time update for the global potential vector

u∗n+1(un, {αen, ren}e=1,...,Nel
) := −A−1bn (2.36)

We remark that matrix A does not depend on the coefficient vectors, and therefore will take

the same values for all time steps. Thus, it can be computed on a initialization stage, inverted

and stored for later use in updating the potential vector. For the sake of clarity, the steps for

the solving the semi-implicit scheme are summarized in Algorithm 1.
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/* initialization */
u0 = 0
r0 = rinit
αe = 0
A = 0
for e = 1 to Nel do

ComputeKe
α,Ke

u and Le (Eq. (2.28), Eq. (2.32)) and store
ComputeAe (Eq. (2.34)) and assemble contribution toA

end
ComputeA−1 and store
/* time integration loop */
for n = 0 to Nsteps do

for e = 1 to Nel do
Compute be(uen,α

e
n, r

e
n) (Eq. (2.34)) and assemble contribution to bn

end
Update un+1 = u∗n+1(un, {αen, ren}e=1,...,Nel

) = −A−1bn
for e = 1 to Nel do

Update αen+1 = αe,∗n+1(uen+1;uen,α
e
n, r

e
n) (see Eq. 2.30)

for q = 1 to Nq do
Update req,n+1 = re,∗q,n+1(uen,α

e
n, r

e
n) (see Eq. 2.31)

end
end

end
Algorithm 1: Solution algorithm

2.2.4. The Q1NC element

We materialize the non-conforming scheme defined in the previous section using incompatible-

modes basis functions (Wilson et al., 1973; Taylor et al., 1976), which enhance Q1 elements.

We recall that the isoparametric basis functions for Q1 3D (solid) elements are

N̂1 =
1

8
(1− ξ1)(1− ξ2)(1− ξ3), N̂2 =

1

8
(1 + ξ1)(1− ξ2)(1− ξ3),

N̂3 =
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3), N̂4 =

1

8
(1− ξ1)(1 + ξ2)(1− ξ3),

N̂5 =
1

8
(1− ξ1)(1− ξ2)(1 + ξ3), N̂6 =

1

8
(1 + ξ1)(1− ξ2)(1 + ξ3),

N̂7 =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3), N̂8 =

1

8
(1− ξ1)(1 + ξ2)(1 + ξ3),

28



where (ξ1, ξ2, ξ3) ∈ Ω̂ := [−1, 1]3, and

N e
a = N̂a ◦ x̂−1

with

x̂ =
8∑

a=1

N̂ax
e
a,

where xea is the vector with nodal coordinates. Incompatible modes enhance the Q1(Ωe)

element basis by adding basis functions {M e
c }c=1,2,3, with M e

c = M̂c ◦ x̂−1, where

M̂1 = 1− (ξ1)2, M̂2 = 1− (ξ2)2, M̂3 = 1− (ξ3)2

for (ξ1, ξ2, ξ3) ∈ Ω̂. Table 2.1 details the number of DOFs used for the 3D elements con-

sidered in this work. Integrals have been approximated using Gaussian quadrature on the

standard domain. Table 2.1 reports the quadrature rules employed in the numerical integra-

tion of Q1, Q1NC and Q2 element implementations.

Table 2.1. Element DOFs and quadrature rules employed in numerical inte-
gration of residuals and tangents. Nomenclature: DOFs = degrees of freedom,
NC = incompatible mode (internal variable)

Element DOFs Quadrature rule
Q1 8 DOFs 2× 2× 2 = 8-point

Q1NC 8 DOFs + 3 IMs 2× 2× 2 = 8-point
Q2 27 DOFs 3× 3× 3 = 27-point

2.2.5. The modified Aliev-Panfilov model for transmembrane ionic current

All simulations considered the modified Aliev-Panfilov model, which accounts for physi-

ological voltage upstroke slopes and conduction velocities (Aliev & Panfilov, 1996; Hurtado
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et al., 2016), whose expressions are described below for completeness:

f(φ, r) = c1φ(φ− α)(1− φ)− c2rφ (2.37)

g(φ, r) =

(
γ +

µ1r

µ2 + φ

)
(−r − c2φ(φ− b− 1)) (2.38)

where c1, c2, α, γ, µ1, µ2 and b are constants, whose values are included in Table (2.2), and

are the same employed by Hurtado and Rojas (2018). To account for a steady-state regime,

initial values of the recovery value where set to r = 0.1146.

Table 2.2. Parameter values for the modified Aliev-Panfilov model.

α c1 c2 µ1 µ2 b γ Vr[mV] Vp[mV]
0.05 52 8 0.1 0.3 0.25 0.002 -85 15

2.3. Results

Finite-element simulations using Q1, Q2 and Q1NC element formulations were imple-

mented for the FI and SI time-integration schemes described in the previous section in an

enhanced version of FEAP (Taylor, 2014).

2.3.1. Plane-wave tests on CV and CT

A 3D cardiac rod with a total length of 25 mm was discretized using regular hexahedral el-

ements with a uniform element size, with the exception of elements adjacent to the boundary

where the size was at times smaller to fit the geometry. To study the effect of the element size,

simulations were carried out with mesh sizes ranging from h = 2 mm to h = 0.0156 mm. A

zero-flux boundary condition was assumed for all boundary surfaces, with exception of the

left end of the rod which was stimulated with a normalized external current of 20 mV/ms,

which corresponds to 28000µA/cm3, for 2 ms to elicit a plane traveling wave along the di-

rection of the rod. A time-step size of 0.001 ms was set for all simulations, which is small
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when compared to standard cardiac simulations using the selected ionic model (Hurtado et

al., 2016). Such small time-step size is chosen to minimize the contribution of the temporal

discretization error to the overall numerical error. To compute the CV, we tracked the voltage

evolution on x1 = 18 mm and x2 = 22 mm and recorded the activation time, which is defined

as the time when the φ > 0.5 for the first time at a certain point. Then, the CV was calculated

as the difference between x2 and x1 divided by the difference in the activation time. The re-

sults for the CV for different element sizes are shown in Figure 2.1(a). All formulations con-

verged to a CV = 36.9 cm/s as the mesh size approached h = 0.0156 mm. CV monotonically

decreased as mesh size was decreased for Q1 and Q2 formulations. The computational effort

of simulations in terms of CT is reported in figure 2.1(b). We observe that the computational

demand of simulations monotonically increases as the mesh size decreases, independently

of the element formulation. We do observe, however, that the FI time-integration scheme

always results in higher CT than the SI scheme for all element formulations considered.

To facilitate the analysis of the accuracy-efficiency trade-off of the different schemes stud-

ied, Figure 2.2 shows the CT versus the error in CV for the Q1, Q2 and Q1NC formulations

for both the implicit and semi-implicit time updates. Since we seek to minimize two objective

functions, namely the CT and the CV error, the Pareto frontier, defined as the set of choices

that are Pareto-efficient, is included in each subfigure. The subset of the Pareto-efficient cases

that correspond to the Q1NC formulation are {1.2, 1.5}[mm] and {1.0, 1.2, 1.5, 2.0}[mm] for

the FI and SI cases, respectively.

2.3.2. Benchmark simulations on a cardiac cuboid

We studied the behavior of the SINCFES using as a second test case the benchmark study

on a cardiac cuboid developed by (S. A. Niederer et al., 2011), and adapted to the case of the

Aliev-Panfilov model by (Hurtado et al., 2016). To this end, we consider a cuboid domain

with dimensions of 20× 7× 3 mm with cardiac fibers oriented in the longest axis direction.

A subdomain with dimensions 1.5× 1.5× 1.5 mm located at one of the corners of the cuboid
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Figure 2.1. CV tests for plane-waves propagating on a 3D bar for FI and SI
schemes on different element formulations. (a) Convergence study of CV as
a function of the mesh size h. (b) Computational effort in terms of CT as a
function of h.
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Figure 2.2. Accuracy-efficiency analysis: Computation time vs. conduction-
velocity error for the different spatial discretization schemes using (a) fully-
implicit time integration, and (b) semi-implicit time integration. Dashed gray
line displays the Pareto frontier, which encompasses optimal cases. Subopti-
mal combinations are shown in transparent color.
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was stimulated with an electrical current density of 50, 000µA/cm3 for 2 ms. The normal-

ized longitudinal and transversal conductivities were 0.0952 mm2/ms and 0.0126 mm2/ms,

respectively. Figure 2.3(a) shows the activation map and isochrones obtained on a plane that

contains opposite corners in the diagonal, as defined in (S. A. Niederer et al., 2011), for a fine

(Baseline) and coarse discretization using Q1 elements, and for the same coarse discretiza-

tion using Q1NC elements. We note that the Q1NC case with mesh size h = 0.8 mm resulted

in an activation map and isochrones similar to the baseline case, defined as a Q1 model with

mesh size h = 0.1 mm. In contrast, the activation map delivered by the Q1 coarse-mesh

case with mesh size h = 0.8 mm largely differed from the baseline case, delivering a less

curved wave-front profile. Figure 2.3 displays the activation time values along the diagonal

of the cuboid for the three cases under study. We observe that the Q1NC case closely follows

the baseline case, whereas the Q1 coarse-mesh case resulted in shorter activation times at all

locations along the diagonal. As a reference, the CT for the Baseline (Q1 fine), Q1NC and

Q1 cases were 122,341 s, 344 s and 184 s, respectively, which is equivalent to a CT ratio of

665 : 2 : 1.
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Figure 2.3. Numerical simulations on cuboid benchmark test (a) Meshes and
activation maps, and (b) Activation time profile along the cuboid diagonal.
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2.3.3. Biventricular human heart simulations

To study the potential of the Q1NC-SI formulation in whole-heart cardiac simulations,

we modeled the propagation of an action potential on an idealized human biventricular do-

main stimulated at the atrio-ventricular node. The heart biventricular geometry was gen-

erated from two truncated ellipsoids (Streeter & Hanna, 1973), and later discretized using

non-regular hexahedral elements. For the baseline case, a size-varying mesh with average

characteristic length of 0.48 mm was employed. A coarse mesh with average element length

of 1.0 mm was also considered for two additional cases with Q1 and Q1NC element formula-

tions, see left column of Figure 2.4 for a representation of the biventricular meshes. All three

cases considered the same initial boundary conditions and time step size of 0.001 ms. The

transmembrane potential distribution at different time instants during ventricular activation

is depicted in Figure 2.4. We clearly observe that, as time elapses, the action-potential wave

front of the Q1NC case is very similar to the Baseline case, whereas the Q1 case results in

a wave front that propagates faster than the other two models due to the artificially high CV.

The last column in Figure 2.4 shows the activation maps, where we observe that isochrones

for the Baseline and Q1NC cases are very similar, and they both differ from the Q1 case.

Biventricular simulations were ran in a HPC cluster with 128 GB of RAM memory using 32

processors using the parallel implementation of the code FEAP (Taylor, 2014). The CT for

the baseline, the Q1NC and the Q1 simulation were 1805, 452 and 154 minutes respectively,

which is equivalent to a CT ratio of 18 : 3 : 1.

2.3.4. Spiral wave simulations

To assess the performance of the proposed non-conforming scheme in the simulation

of spiral waves, we considered a 50 mm × 50 mm cardiac domain excited by means of

an S1-S2 stimulation protocol. To this end, we first applied a surface stimulus (S1) of

12 mV/(ms mm2) for 2 ms on the border defined by x = 0 to create a plane wave. After

280 ms, we applied a second stimulus (S2) of 15 mV/(ms mm3) in the quadrant x < 25, y <

25 mm for 5 ms, which resulted in the formation of a spiral wave (Sahli Costabal, Concha,
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Figure 2.4. Numerical simulations on human biventricular idealized geome-
tries. The Q1NC model displays a propagating wave similar to the baseline
case during the ventricular activation sequence, whereas the Q1 model hastens
the electrical stimulation ahead of the baseline case.

Hurtado, & Kuhl, 2017). This S1-S2 model was solved using three numerical models: a

fine mesh with element size h = 0.1 mm using Q1 elements (Baseline), a coarse mesh with

element size h = 1 mm using Q1 elements (Q1), and a coarse mesh with h = 1 mm using

the proposed non-conforming element formulation (Q1NC). In all cases, we considered a

semi-implicit time update with time-step size ∆t = 0.005 ms. Figure 2.5 shows the distribu-

tion of the transmembrane potential of the three models under study for several time instants.

We note that at early times (t = 110 ms) the Q1 case displays a wave front that advanced

considerably faster than the baseline and Q1NC cases. At t = 400 ms a spiral wave formed

in the Baseline and Q1NC cases, whereas for the Q1 case a curved wave front propagated

in the outward direction but did not create a spiral. At a later instant (t = 600 ms), a spiral

was steadily rotating in the Baseline and Q1NC cases, constantly reexciting tissue, whereas
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in the Q1 case cardiac tissue was found under complete rest, and no electrical activity was

observed.

Figure 2.5. Spiral generation simulation in a 2D slab. Due to the faster CV
the Q1 element is incapable of generate the spiral wave.

2.4. Discussion

In this work we have studied the features and advantages of a novel SINCFES in the solu-

tion of the monodomain model of cardiac electrophysiology. From plane-wave CV tests we

note that the FI and SI schemes yield similar results for the conduction velocity for the time-

step size employed, see Figure 2.1(a). This is expected, as the time-step size considered here

is small compared to standard values employed in numerical simulations (Krishnamoorthi et

al., 2013). Interestingly, we observe that in the case of mesh sizes h < 0.6 mm, the Q1, Q2

and Q1NC element formulations delivered very similar results in terms of CV error. For the
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cases where h > 0.6 mm, the CV error incurred by the Q1 formulation grows at a much faster

rate than the Q2 and Q1NC formulations. An interesting result that deserves further study is

the convergence trend of the Q1NC formulation, as it is not monotonically convergent in the

whole range of mesh sizes studied, and it reverts the sign of the CV error in a bounded interval

of mesh sizes. A similar convergence trend has been reported in the literature for standard FE

discretizations, in the context of mass-lumping techniques (Pezzuto et al., 2016), which sug-

gest as future work a more detailed study of the effect of NC spatial discretization schemes

on the stiffness and mass matrices that govern the dynamics of the problem. To better ana-

lyze the accuracy-efficiency trade-off for each scheme, we constructed CT vs CV-error plots,

where the Pareto frontier has been identified. We conclude that the SINCFES delivers Pareto-

optimal results for cases with mesh size in the range of {1.0, 1.2, 1.5, 2.0}[mm]. For smaller

mesh sizes, traditional Q1 formulations deliver better combinations of CT and CV-error than

Q1NC and Q2. It is interesting to note that, in general, Q2 elements are less efficient than

the Q1 and Q1NC elements from a Pareto-optimality viewpoint for the whole range of mesh

sizes studied. We also note that these conclusions are particular to a plane-wave propagation

case, where anisotropy of conductivity and curvature of propagating wavefronts are absent.

We further studied the performance of Q1NC elements using a benchmark problem on a

cuboid cardiac domain (S. A. Niederer et al., 2011). Our simulations showed that the Q1NC

formulation on a coarse mesh (h = 0.8 mm) can result in activation maps that are similar to

those obtained on fine meshes using Q1 (h = 0.1 mm) , adequately capturing the anisotropic

conduction of the propagating waves, see Figure 2.3(a). An analysis of the activation-time

profile along the cuboid diagonal shows that the Q1NC scheme delivers an accurate conduc-

tion velocity, which is comparable to Q1 meshes with mesh sizes that are 8 times smaller,

see 2.3(b). This result confirms the ability of Q1NC elements to capture the propagation of

electrical waves in anisotropic media with good accuracy at significantly reduced CTs. In

contrast, Q1 coarse-mesh simulations resulted in markedly higher conduction velocity pro-

files, and did poorly in capturing the anisotropic propagation of wavefronts when compared

to the Q1NC formulation.
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Numerical simulations on a biventricular domain showed that our non-conforming scheme

can be effectively used in unstructured meshes of idealized anatomical geometries of the

heart, see Figure 2.4. Similarly to the cardiac rod case, a coarse mesh using Q1NC elements

performs much better than a simulation using standard Q1 elements on the same discretiza-

tion level, as it predicts more accurately the wavefront propagation pattern, when compared

to the baseline case. This conclusion is also reached from observing the resulting activation

maps, where the spatial distribution and curved shape of isochrones in the Q1NC and base-

line are similar, whereas the Q1 formulation delivers an isochrone distribution with lower

activation-time values. We note here that this study considered an idealized and smooth

geometrical representation of the ventricles of the human heart, useful for numerical verifica-

tion purposes. It is important to note that such idealized domain does not include important

anatomical structures such as the intricate endocardial surface, papillary muscles, and Purk-

inje network, that are currently included in advanced heart models (Ponnaluri et al., 2016;

Sahli Costabal, Hurtado, & Kuhl, 2016). Future work should focus in understanding how

non-conforming formulations can handle such fine-scale anatomical details and structures.

The performance of the SINCFES was studied in the simulation of spiral waves. Remark-

ably, a very coarse mesh using Q1NC elements is capable to correctly produce, and sustain in

time, a spiral wave, whereas a standard Q1 formulation using the same mesh size results in no

activation of cardiac tissue. The ability of SINCFES to reproduce spiral wave formation and

dynamics is a key result of this work, as it shows that the method is physically more accurate

than standard FE formulations for coarse discretizations. This result can be explained by the

reduced dependance of the CV on the mesh size, and highlights the potential of the SINCFES

in the simulation of cardiac arrhythmias, the main clinical focus of cardiac electrophysiology

simulations. While spiral patterns and dynamics obtained with the Q1NC formulation are

very similar to the baseline results, a time delay is observed for the former, which resulted in

differences in the spatial distribution of the transmembrane voltage, see last column of Figure

2.5. Such delay, which can ultimately be attributed to differences in the local CV, has also

been observed in studies employing very high-order space-time formulations (Coudière &
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Turpault, 2017), confirming that state-of-the-art simulations of spirals using standard values

of mesh size and time step are also affected by this time delay. Despite this persistent nu-

merical error, we believe that the focus of future studies should be in recovering the overall

dynamical features of spirals, i.e spiral tip trajectories (Fenton & Karma, 1998; Gizzi et al.,

2013).

We close by noting that while whole-heart simulations reported in the literature predom-

inantly employ tetrahedral discretizations, effective methods for generating patient-specific

hexahedral meshes are currently available (Lamata et al., 2011). Further, hexahedral meshes

have gained great attention in the context of cardiac simulations, as the numerical perfor-

mance of hexahedral elements is superior to tetrahedral elements when solving mechanics

of the heart, particularly under the assumption of incompressible and quasi-incompressible

regimes (Hadjicharalambous, Lee, Smith, & Nordsletten, 2014). As a conclusion, a natu-

ral continuation of this work is the application of non-conforming schemes in the solution

of electromechanical models of the heart (Nash & Panfilov, 2004). One important reason

for mesh-coarsening FE models of the heart is to reduce the number of DOFs, which in the

case of electromechanical cardiac models is much larger than in pure electrophysiological

simulations, as displacement, fiber stretch/stress variables, and the non-linearity of tissue

constitutive models drastically increase the dimensionality and computational effort needed

to solve the governing equations (Göktepe & Kuhl, 2010; Hurtado, Castro, & Madrid, 2017).
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3. CONCLUSIONS

In this thesis we have developed a non-conforming semi-implicit finite element scheme

(SINCFES) for the numerical solution of the electrophysiology equations that model the elec-

trical activity of the heart. Through numerical simulations, we have shown that the proposed

method captures the cardiac electrical frontwave better than traditional low-order Lagrange

finite elements without increasing the computational cost. In particular, we demonstrated

the capabilities of the proposed method by performing 3D plane wave simulations, were the

conduction velocity was monitored. We found that the proposed method is Pareto-optimal

for mesh sizes larger than 1.0 mm. In a more demanding simulation a slab of anisotropic

cardiac tissue was stimulated and the activation times were recorded. The non-conforming

method captures better the curvature of the wave and a accurate conduction velocity along

the diagonal of the cuboid than the traditional Q1.

The SINCFES was also tested in a simplified biventricular domain in an effort to predict

the performance of the method in a realistic geometry. As expected, the Q1NC element re-

produces better the wavefront than the Q1 element for a coarser mesh when compared to a

baseline computed with finer elements. Finally, we performed a 2D simulation of a cardiac

spiral and contrast the performance of the traditional Q1 element with the Q1NC element in a

coarse mesh. For the same excitation protocol, the Q1NC success to capture the formation of

a spiral wave that is similar to the baseline case. in constrast, simulations using Q1 element

with the same mesh size do not capture the formation of spiral waves.
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4. FUTURE WORK

The present work opens the door to several questions and research opportunities. We

have demonstrated that Q1NC elements allow us to use coarser meshes without considerably

increasing the computational cost and without losing accuracy. Therefore, most of the future

work is focused on evaluating the performance of the method in physiological phenomena.

For example, in this work we study the ability of the Q1NC to reproduce a simple spiral

wave, which is a simplification of arrhythmias in the heart. Future efforts should extend these

results by studying how the SINCFES behaves in the simulation of different arrhythmogenic

cases, such as those described in Fenton and Karma (1998). In particular, a relevant study

is the assessment of the SINCFES in capturing the evolution of spiral-wave tips, which have

been related to the nature of cardiac pathologies.

Another avenue to future research is the study of how important electrophysiological

quantities other than the transmembrane potential are captured in simulations with biophys-

ical ionic models solved using the SINCFES. Two such electrophysiological parameters are

the action-potential duration (APD) and the repolarization time (RT) (Fenton & Karma,

1998). These two are important to account for the physiological accuracy of a simulation,

and will display very different behavior depending on the electrophysiology model selected

for the ionic transmembrane current. We note here that the model employed in this work,

the Aliev-Panfilov model, represents a convenient phenomenological model that only has

two variables, but it fails to captures important electrophysiological features (Tusscher et al.,

2004). Future developments of the SINCFES should include the use of biophysical models

of ionic transmembrane current, as well as the use of more realistic geometries of the heart

chambers.

In this work we have considered the enhancement of linear finite-element formulations

using non-conforming modes. A natural question is how higher-order elements can benefit
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from the non-conforming approach. For example, an immediate extension is the develop-

ment of Q2 non-conforming elements, which enrich second-order Lagrange elements with

third order basis functions. The use of traditional higher-order finite-element formulations

has been explored in the past, displaying interesting properties and benefits from a computa-

tional point of view (Arthurs et al., 2012; Vincent et al., 2015).

To close, we think that the most important future work, and where we believe that the

SINCFES can contribute the most, is to apply the SINCFES to the numerical solution of

cardiac electromechanical models that simulate both the electrical propagation and mechani-

cal contraction of the cardiac tissue simultaneously. This problems are computationally very

challenging, as the transmembrane potential field is complemented with the displacement

field, increasing the dimension of the mathematical formulation, and at the same time in-

creasing the computational complexity, as more degrees of freedom are needed in each node

to solve for this multi-field problem.
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