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CRISTÓBAL MACKENZIE KIESSLER

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

KARIM PICHARA BAKSAI

Santiago de Chile, April 2016
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ABSTRACT

The success automatic of classification of variable stars depends on the lightcurve rep-

resentation. Usually, lightcurves are represented as a vector of many descriptors designed

by astronomers called features. These descriptors are expensive in terms of computing,

require substantial research effort to develop and do not guarantee a good classification.

Today, lightcurve representation is not entirely automatic; algorithms must be designed

and manually tuned up for every survey. The amounts of data that will be generated in the

future mean astronomers must develop scalable and automated analysis pipelines. In this

work we present a feature learning algorithm designed for variable objects. Our method

works by extracting a large number of lightcurve subsequences from a given set, which are

then clustered to find common local patterns in the time series. Representatives of these

common patterns are then used to transform lightcurves of a labeled set into a new repre-

sentation that can be used to train a classifier. The proposed algorithm learns the features

from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data.

We test our method on MACHO and OGLE datasets; the results show that our classifica-

tion performance is as good and in some cases better than the performance achieved using

traditional statistical features, while the computational cost is significantly lower. With

these promising results, we believe that our method constitutes a significant step towards

the automatization of the lightcurve classification pipeline.
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RESUMEN

El éxito de la clasificación automática de estrellas variables depende en gran medida de

la representación de la curva de luz. Comúnmente, una curva de luz es representada como

un vector de descriptores estadı́sticos diseñados por astrónomos llamados caracterı́sticas.

Estas caracterı́sticas son costosas de calcular, requieren mucho tiempo de investigación

para desarrollar y no garantizan un buen rendimiento de clasificación. Hoy en dı́a la repre-

sentación de curvas de luz no es automática; los algoritmos deben ser diseñados y ajustados

para cada set de datos. La cantidad de datos astronómicos que se generará en el futuro re-

querirá de procesos de análisis automáticos y escalables. En este trabajo presentamos un al-

goritmo de aprendizaje de caracterı́sticas diseñado para objetos variables. Nuestro método

funciona a través de la extracción de un gran número de subsecuencias de curvas de luz, de

las cuales se extraen subsecuencias representantes de los patrones más comunes a través de

un algoritmo de clustering. Estos representantes son usados para transformar curvas de luz

de un conjunto etiquetado a una representación que puede ser usada con un clasificador. El

algoritmo propuesto aprende caracterı́sticas de datos etiquetados y no etiquetados, lo que

elimina el sesgo de usar solo datos etiquetados. Evaluamos nuestro método en las bases

de datos MACHO y OGLE; los resultados muestran que nuestro rendimiento de clasifi-

cación es tan bueno como y en algunos casos mejor que el rendimiento que se logra usando

las caracterı́sticas tradicionales, mientras que el costo computacional es significativamente

xiii



menor. Con estos resultados prometedores, creemos que nuestro método constituye un paso

significativo hacia la automatización de los procesos de clasificación de curvas de luz.

Palabras Claves: Astronomı́a, Estrellas Variables, Aprendizaje de Máquina, Minerı́a

de Datos
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1. INTRODUCTION

1.1. Data Analysis in Astronomy

In order to study and understand the objects that make up our universe, astronomers

must analyze ever-increasing amounts of data. Astronomical surveys, which are general

images of a region of the sky which lack a particular observation target, are producing

amounts of data that are challenging the existing algorithms astronomers use to analyze

data in terms of scalability. A as a matter of example, the MACHO survey (Alcock et al.,

1997), which observed three regions of the sky from 1992 to 1999, produced approximately

10 Terabytes of data. More recently, LSST (Matter, 2007) which is an ongoing survey

expected to conclude in 2021, is expected to produce 100 Petabytes of data. This amount

of data is equivalent to 10,000 times what was produced by MACHO, and approximately

200,000 modern PCs would be needed to store all that data.

After an astronomical survey is completed, an extensive analytical stage begins in order

to study the information obtained. From this need for extensive analysis, a particular field

of astronomy has emerged, called time domain astronomy. Time domain astronomy studies

the changes of stellar objects over time. One of the many tasks in time domain astronomy

is the classification of survey data into a set of known categories. These categories include

many different types of stars and other astronomical phenomena of interest which can be

observed, like gravitational microlensings and quasi-stellar objects. Given the amounts of

data astronomers must handle, classification of survey data by means of manual inspection

has become unfeasible. This problem has resulted in the use of many algorithms called

1



FIGURE 1.1. Lightcurve of a star. The lightcurve of an object contains the sequen-
tial measurements of its apparent brightness along different observation moments in
time. Astronomers can classify a lightcurve by manual inspection, but the amount
of data to be analyzed makes this unfeasible for a whole survey.

automatic classifiers which have been developed under a branch of artificial intelligence

called machine learning, to analyze and then classify survey data. Automatic classifiers of

survey data aren’t 100% accurate, and thus the development of new algorithms and analysis

techniques is still an open problem.

In time domain astronomy, data for a specific observation target comes in the form of

a time series called a lightcurve. The lightcurve of a given target contains the sequential

measurements of its apparent brightness along different observation moments in time. An
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example of a lightcurve is shown in Figure 1.1. Lightcurves vary a lot in length, some

lightcurves have as few as 100 observations while others have 1500 or more. Also, the time

between observations is not constant and varies greatly, which makes many analysis tasks

more difficult. The complexity of lightcurve data makes it very difficult for an automatic

classifier to achieve good performance by analysing the time series data in its raw form. A

much better performance is achieved when lightcurves are first transformed to a vector of

many descriptors which aim to summarise the information in the time series.

Automatic classification of survey data, particularly of variable stars, has received sub-

stantial attention in the research community in the last years (Debosscher et al., 2007;

Wachman et al., 2009; Kim et al., 2009; Wang et al., 2010; Richards et al., 2011; Bloom

& Richards, 2011; Kim et al., 2011; Pichara et al., 2012; Bloom et al., 2012; Pichara &

Protopapas, 2013; Kim et al., 2014; Nun et al., 2014; Masci et al., 2014; Hanif & Pro-

topapas, 2015; Neff et al., 2015; Babu & Mahabal, 2015). Achieving a good performance

with these classification methods depends strongly on the way lightcurves are represented.

Lightcurves are commonly represented as a vector of many statistical descriptors called

features, which aim to measure a particular characteristic of the lightcurve. Feature cal-

culation is intensive in computing resources, the development of new features requires a

lot of research effort and new features do not guarantee better classification performance.

The upcoming and ongoing deep-sky surveys such as Pan-STARRS (Kaiser et al., 2002),

LSST (Matter, 2007) and SkyMapper (Keller et al., 2007) are creating immense amounts

of data, which makes automatic and scalable analysis tools an important task for the astro-

nomical community. Today, lightcurve representation is not entirely automatic: algorithms

3



that extract lightcurve features are designed by astronomers and have to be manually tuned

up every time new surveys are coming.

Most of the automatic classification tools coming from the Machine Learning commu-

nity are very effective in the sense that they can produce high accuracy results and work

very fast in the classification stage (after the training phase). However, classification algo-

rithms results are highly dependent on the way the data is represented, and a lot of effort

is put in designing features to represent lightcurves. For example, Kim et al. (2011) used a

classifier called Support Vector Machine (SVM) to classify variable stars, previously defin-

ing a set of time series descriptors to be used as features in the classification model. In

a later work, Pichara et al. (2012) made an important improvement in accuracy thanks to

the inclusion of new features coming from a Continuous Auto Regressive model. Huijse

et al. (2012) made an improvement in periodic star classification by using an information

theoretic approach to estimate periodicities. Nun et al. (2014) devised a method to detect

anomalies in astronomical catalogs by using the results of a Random Forest classification

as input for a Bayesian Network.

1.2. Contribution of this Thesis

The data representation problem arises in most fields that deal with data like time se-

ries and images since the complexity and size of the data usually make it unsuitable as

direct input to any classification algorithm. To deal with this issue, the machine learning

community propose a new way of representing data: unsupervised feature learning. This

method aims to use unlabeled data to learn a model that can be then used to transform data

4



of the same kind to a new representation suitable for classification tasks. This process of

transforming data from its raw form to another is known as encoding. The development

of unsupervised feature learning started with the objective of finding a good representation

of images that could serve as input for learning algorithms. While the goal in most works

is similar, approaches vary in nature. Olshausen et al. (1996) use sparse coding to repre-

sent an image, Bell & Sejnowski (1997) base their approach on signal analysis, Hinton &

Salakhutdinov (2006) use models based on neural networks, while Coates & Ng (2012)

follow a clustering-based method.

We build on the ideas in Coates & Ng (2012) even though their proposed method is not

well established for time series. We make substantial modifications to their approach to get

meaningful results while using lightcurve data instead of images. These modifications have

resulted in a new unsupervised learning method for lightcurves and time series in general.

Our method is based on the clustering of tens of thousands of lightcurve subsequences,

which allows us to find the most common and representative patterns in large amounts of

data. The results of the clustering step are then used to transform lightcurves of a labeled

set to a representation suitable for machine learning algorithms.

The purpose of this work is to introduce unsupervised feature learning as a strong

alternative to expert-designed features that have traditionally been used for lightcurve rep-

resentation in the context of automatic classification. The performance of classification

models trained with data from our method is as good and some cases better than classi-

fiers trained using the traditional lightcurve representation, while the computational cost is

significantly lower.
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1.3. Overview of this Thesis

This thesis is based on the paper Clustering based feature learning on variable stars

by Cristóbal Mackenzie, Karim Pichara and Pavlos Protopapas that was submitted to The

Astrophysical Journal on December of 2015 and accepted for publication on February of

2016.

The remainder of this thesis is organized as follows: Chapter 2 introduces the relevant

background theory, Chapter 3 gives an account of the previous work in feature design for

variable stars and the field of unsupervised feature learning and Chapter 4 gives a detailed

account of our methodology. Within Chapter 5, Section 5.1 presents the lightcurve catalogs

and training sets used in this work. Section 5.2 discusses some implementation details, and

we show our results in Section 5.3. We give a brief run-time analysis in Section 5.4. We

state the conclusions of our work in Chapter 6.

6



2. BACKGROUND THEORY

2.1. Time Domain Astronomy

When a sky survey is completed, an extensive analytical stage follows which aims to

analyze all the information obtained during the observation period. One of the tasks in

this analysis step is the classification of stellar objects into one of many categories that in-

clude different kinds of stars and other interesting physical phenomena that can be captured

through a telescope. What follows is a brief description of the physical phenomena behind

the differences in star brightness and other physical characteristics of interest.

2.1.1. Variable Stars

Variable stars are stars that experience fluctuations in their brightness. Studying the

variability in brightness of these stars is useful in many ways. First, it allows astronomers

to infer other physical characteristics of the star such as radius, mass, luminosity. Also, it

allows them to study stellar evolution and the distribution and size of the universe (Huijse

et al., 2014). Variable stars can be divided into two main categories depending on the

causes of the brightness variability: intrinsic variable stars and extrinsic variable stars. The

brightness of intrinsic variable stars fluctuates because of physical changes occurring inside

the star, while extrinsic variable stars show brightness fluctuations that are due to external

causes not inside the star.

One example of an intrinsic variable star are Cepheid stars, which are radially pulsat-

ing supergiant stars that expand and contract periodically changing its size, temperature and

7



FIGURE 2.1. Variable star topological classification as presented in Huijse et al.
(2014). Variable stars can be divided into two main categories depending on the
causes of the brightness variability: intrinsic variable stars and extrinsic variable
stars. The brightness of intrinsic variable stars fluctuates because of physical
changes occurring inside the star, while extrinsic variable stars show brightness
fluctuations that are due to external causes not inside the star.

brightness. One common extrinsic variable star are Eclipsing Binary stars, which are actu-

ally a system of two stars orbiting around each other with their orbital plane aligned with

the earth. The periodical mutual eclipses are seen as drops in brightness in the lightcurve.

2.1.2. Variable Non-stellar Phenomena

There are other phenomena that cause brightness fluctuations in lightcurves that are not

due to variable stars. A gravitational lensing effect, for example, is an increase in several

orders of magnitude in the observed brightness due to a massive dark object passing in

front of a light source and acting as a lens, bending the light. If the object is of planetary

size the effect is called microlensing. A transiting extrasolar planet can also be detected

as a brightness fluctuation: a planet outside our solar system orbiting a star with an orbital

plane aligned with the earth will show up as periodic drops in the brightness of that star.

8



2.2. Machine Learning Background

Machine Learning is a field in computer science which aims to develop algorithms

and models that can learn from and make predictions on data. Rather than following static

program instructions, machine learning algorithms use models which are adapted to a set

of example inputs in order to be able to make predictions on future data. The adaptation

of models to a set of input data happens during an initial stage called training, where the

parameters of the model are tuned with respect to an objective function which measures

how well a certain model performs a given task on a set of testing data. Machine learning

models can perform a variety of different tasks; some of the most popular ones are classi-

fication, regression, outlier detection, clustering and association rule extraction. The most

common task is classification, which consists of predicting to which category of a given set

a particular new datum belongs to, on the basis of a data set for which the categories are

known. Model fitting, a process commonly known as “learning” in the machine learning

community, is usually performed in one of two ways: supervised or unsupervised. What

follows is a brief description of both types of learning.

2.2.1. Supervised Learning

Supervised learning refers to the process of learning a model from data where the

desired output value is known. This desired output value can be a label or category, a

regression value, etc. The trained model can be seen as a function that learns to map from

input data to predicted output on the basis of a “training set” of (input, output) pairs.

Automatic classifiers commonly undergo a process of supervised learning while fitting

9



their models to training data. One of the most commonly used classifiers is the Support

Vector Machine (Boser et al., 1992; Cortes & Vapnik, 1995). This classifier aims to find a

hyperplane in the input data space that can separate training examples from two classes the

best possible way through the maximisation of the margin between the hyperplane and the

data at each side. New examples are classified according to which side of the hyperplane

they are. Figure 2.2 shows an illustration of the Support Vector Machine classifier.

FIGURE 2.2. Support Vector Machine classifier. This classifier aims to find a
hyperplane in the input data space that can separate training examples from two
classes the best possible way through the maximisation of the margin between the
hyperplane and the data at each side. Retrieved from http://docs.opencv
.org/2.4/ images/optimal-hyperplane.png

2.2.2. Unsupervised Learning

Unsupervised learning is another form of model learning where the model tries to find

patterns and structure data that is not associated with any desired output, called unlabeled

data. The most common form of unsupervised learning are clustering algorithms, with the

10
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most commonly widespread one being the K-Means algorithm (Hartigan, 1975; Hartigan

& Wong, 1979). K-Means clustering aims to partition the n observations into k clusters

where each observation belongs to the cluster with the nearest cluster centroid. Cluster

centroids are first chosen at random and then are iteratively calculated as the mean of the

cluster members. Figure 2.3 illustrates some steps of the K-Means learning process.

FIGURE 2.3. K-Means clustering algorithm. K-Means clustering aims to par-
tition the n observations into k clusters where each observation belongs to
the cluster with the nearest cluster centroid. Cluster centroids are first cho-
sen at random and then are iteratively calculated as the mean of the cluster
members. Retrieved from http://astrostatistics.psu.edu/su09/
lecturenotes/image/kmall.png

11
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2.2.3. Unsupervised Feature Learning

When input data is too complex to be successfully processed by a classifier, a pre-

processing step is usually performed called feature extraction. Feature extraction is the

process by which complex and often redundant data is transformed to a vector of man-

ageable dimensionality in which each vector value contains relevant information from the

input data, its goal is to reduce the amount of resources required to describe the data. This

process is preceded by a first step called feature engineering or feature design, where an

expert on the data’s domain constructs a set of relevant values to be calculated. The main

problems with feature engineering are two: expert knowledge is scarce and costly, and the

designed features do not necessarily guarantee a good final model.

In recent years, an alternative to feature design has emerged in the machine learning

community called unsupervised feature learning. The objective of unsupervised feature

learning is to try and learn a model that can be then used to transform data of the same

kind to a new representation suitable for learning tasks. This process of transforming data

from its raw form to another is known as encoding. This way, the effort of finding the

non-redundant characteristics of the data which can be used as features is delegated to a

model which can learn complex relationships from vast amounts of data.

Unsupervised feature learning models vary a lot in nature, one of the most basic models

is based on neural networks, called the Autoencoder. The Autoencoder is a neural network

which tries to model the identity function of the data: the parameters of the network are

iteratively adjusted so as to make the output of the network as close to the input as possible.

12



FIGURE 2.4. Autoencoder network structure. The Autoencoder is a neu-
ral network which tries to model the identity function of the data:
the parameters of the network are iteratively adjusted so as to make
the output of the network as close to the input as possible. Re-
trieved from http://ufldl.stanford.edu/wiki/images/thumb/f/
f9/Autoencoder636.png/400px-Autoencoder636.png

Figure 2.4 shows a typical Autoencoder structure, where the outer layer of the network has

the same dimensions as the input layer. The weights between the nodes are used to encode

data to its feature representation.

2.3. Theoretical Foundations for our Method

Unsupervised feature learning algorithms work by learning a model from the usually

vast amounts of unlabeled data available which can then be used to transform data to a rep-

resentation suitable for machine learning tasks. The way we model the data in our feature

learning approach is through a large set of representative local patterns that cover common

occurrences in the lightcurves. To find these patterns, we run a clustering algorithm on
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a large set of unlabeled lightcurve subsequences, and then consider the representatives of

each cluster found as a pattern to be included in our model.

When clustering any data, the measure used to evaluate the similarity between data

points is of extreme importance to the quality of the results. In the domain of time series, the

use of the standard similarity measures like Euclidean distance and LP norms, in general, is

not suitable. Astronomical lightcurves are unevenly sampled and thus, the time series under

comparison are rarely of the same length, so the Euclidean distance is not even well defined

for the comparison of this kind of data. To solve this problem, “elastic measures” that

tolerate uneven sampling and time series of different length have been proposed (Berndt

& Clifford, 1994; Chen et al., 2005). Serrà & Arcos (2014) have found the Time Warp

Edit Distance (Marteau, 2009) to be one of the most powerful and flexible for the case of

unevenly sampled time series. Given that it allows for a meaningful comparison between

any pair of time series of different length with even or uneven sampling, we use the Time

Warp Edit Distance as the similarity measure for lightcurves in our experiments. The Time

Warp Edit Distance is based on the Levenshtein Distance (Levenshtein, 1966), commonly

known as Edit Distance, which was initially defined as a measure to assess the similarity

between two strings of characters and has been adapted to work with time series.

The use of the Time Warp Edit Distance as the similarity measure for lightcurve com-

parison poses an additional challenge for our lightcurve clustering; most clustering algo-

rithms do not allow for the use of an arbitrary function to compare the input data. K-Means

for example, which has been used in previous unsupervised feature learning work, is de-

signed to work with the Euclidean distance and no other measure. Modified versions of

14



K-Means have been used to cluster lightcurves using measures like cross-correlation (Reb-

bapragada et al., 2009), but these modifications make the algorithm, at least, an order of

magnitude slower. An additional disadvantage is that the number of clusters, K, has to be

specified as input. Affinity Propagation (Frey & Dueck, 2007) is a clustering algorithm

that works with any input data as long as there is a similarity function defined for their

comparison, which is exactly our case with the TWED. This algorithm has the additional

advantage that it does not need an apriori specification of the number of clusters to find,

and it defines a representative exemplar of each clusters. We use this set of exemplars as

our lightcurve model.

What follows in this section is a detailed explanation of the Edit Distance for Time

Series, followed by a definition of the Time Warp Edit Distance, and lastly a detailed de-

scription of the Affinity Propagation clustering algorithm.

2.3.1. Edit Distance for Time Series

The Levenshtein Distance (Levenshtein, 1966), commonly known as Edit Distance,

is a distance metric used in many applications in computer science to assess the similarity

between two strings of characters. The Levenshtein Distance (LD) is defined as the smallest

number of insertions, deletions and substitutions required to change one string into another.

The ideas behind LD have been extended for time series matching. What follows is a brief

definition of the matching problem applied to time series.

Let U be the set of finite time series: U = {Xp
1 |p ∈ N}, Xp

1 is a time series with

discrete time index between 1 and p. Let xi be the i-th sample of time series X . We
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consider that xi ∈ S × T where S ⊂ R embeds the time series values and T ⊂ R embeds

the time variable. We say that xi = (mxi , txi) where mxi ∈ S and txi ∈ T , with txi > txj

whenever i > j (time stamp strictly increases in the sequence of samples). Xj
i with i < j

is the sub time series consisting of the i-th through the j-th sample (inclusive) of X. |X|

denotes the length (the number of samples) of X. Λ denotes the null sample.

An edit operation is a pair (x, y) 6= (Λ,Λ) of time series samples, written x→ y. Time

series Y results from the application of the edit operation x → y to time series X , written

X ⇒ Y via x → y, if X = σxτ and Y = σyτ for some time series (both time series are

the same except for subset x and y). We call x→ y a match operation if x 6= Λ and y 6= Λ,

a delete operation if y = Λ, an insert operation if x = Λ. Similarly to the edit distance

defined for strings, we can define δ(X, Y ) as the similarity between any two time series X

and Y of finite lengths p and q as:

δ(Xp
1 , Y

q
1 ) = min



δ(Xp−1
1 , Y q

1 ) + Γ(xp → Λ) delete

δ(Xp−1
1 , Y q−1

1 ) + Γ(xp → yq) match

δ(Xp
1 , Y

q−1
1 ) + Γ(Λ→ yq) insert

where p > 1, q > 1 and Γ is an arbitrary cost function which assigns a nonnegative real

number Γ(x→ y) to each edit operation x→ y.

It is worth pointing out that in the context of astronomical lightcurves, the notation Xp
1

corresponds to a lightcurve with p observations, xi = (mxi , txi) is the i − th observation

with mxi being its photometric magnitude and txi the observation time.
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2.3.2. Time Warp Edit Distance

Time Warp Edit Distance (TWED) is a similarity measure for time series based on the

Edit Distance for time series but aims to provide an elastic metric for time series matching

by taking the time differences into account when penalizing edit operations. TWED’s edit

operations are best understood as tools for superimposing two time series on a 2D graphical

editor. Instead of match, delete and insert operations, TWED defines the match, delete-X

and delete-Y operations:

• match: The match operation (Figure 2.5a) consists of matching a segment (xi−1, xi)

of X with a segment (yj−1, yj) of Y. In the graphical editor paradigm, the oper-

ation consists of clicking on the line which represents segment (xi−1, xi) and

dragging and dropping it onto the line which represents segment (yj−1, yj). The

cost of this operation is proportional to the sum of the distances between corre-

sponding samples of the segments: |yj − xi| and |yj−1 − xi−1|.

• delete-X: The delete-X operation (Figure 2.5b) consists of deleting a sample xi.

In the graphical editor paradigm, the operation consists of clicking on the point

which represents sample xi and dragging and dropping it onto the point which

represents sample xi−1. The cost associated with this delete operation is propor-

tional to the length of the vector (xi − xi−1) to which a constant penalty λ is

added.

• delete-Y: Just like the previous operation, delete-Y operation (Figure 2.5c) con-

sists of deleting a sample yi. In the graphical editor paradigm, the operation
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consists of clicking on the point which represents sample yi and dragging and

dropping it onto the point which represents sample yi−1. The cost associated

with this delete operation is proportional to the length of the vector (yi − yi−1)

to which a constant penalty λ is added.

The three edit operations are illustrated in Figure 2.5 following the idea of edit opera-

tions in a graphical editor paradigm.

a)

b)

c)

Match Operation

Delete-X Operation

Delete-Y Operation

FIGURE 2.5. Edit operations in a graphical editor. Time series X and Y are de-
picted in light blue and dark blue, respectively.

The previous operations together with the definitions of section 2.3.1 provide the basis

for the definition of TWED:

18



δλ,γ(X
p
1 , Y

q
1 ) = min



δλ,γ(X
p−1
1 , Y q

1 ) + Γx del−X

δλ,γ(X
p−1
1 , Y q−1

1 ) + Γxy match

δλ,γ(X
p
1 , Y

q−1
1 ) + Γy del− Y

where

Γx = |mxp −mxp−1|+ γ|txp − txp−1 |+ λ

Γxy = |mxp −myq |+ γ|txp − tyq |

+ |mxp−1 −myq−1|+ γ|txp−1 − tyq−1|

Γy = |myq −myq−1|+ γ|tyq − tyq−1|+ λ

It is important to note that parameter γ controls the “elasticity” of TWED: the higher

it is, the higher the penalties related to time stamp differences. Like many proposed time

series similarity measures, TWED is calculated with a simple dynamic programming algo-

rithm with running time O(pq). The recursion is initialized to δλ,γ(X i
1, Y

1
1 ) = ∞,∀i > 1;

δλ,γ(X
1
1 , Y

j
1 ) =∞,∀j > 1 and δλ,γ(X1

1 , Y
1
1 ) = 1.

To better understand TWED, consider the following example where two match oper-

ations are performed in total. Let X3
1 and Y 3

1 be two time series with three samples each,

X = {(1, 3), (3, 6), (8, 8)} and Y = {(2, 1), (5, 8), (9, 7)}. Let λ = γ = 1. We have:
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δλ,γ(X
3
1 , Y

3
1 ) = min



δλ,γ(X
2
1 , Y

3
1 ) + Γx

δλ,γ(X
2
1 , Y

2
1 ) + Γxy

δλ,γ(X
3
1 , Y

2
1 ) + Γy

where

Γx = |mx3 −mx2|+ γ|tx3 − tx2|+ λ

= |8− 6|+ 1× |8− 3|+ 1

= 8

Γxy = |mx3 −my3|+ γ|tx3 − ty3|

+ |mx2 −my2 |+ γ|tx2 − ty2|

= |8− 7|+ 1× |8− 9|

+ |6− 8|+ 1× |3− 5|

= 6

Γy = |my3 −my2 |+ γ|ty3 − ty2 |+ λ

= |7− 8|+ 1× |9− 5|+ 1

= 6
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so

δλ,γ(X
3
1 , Y

3
1 ) = min



δλ,γ(X
2
1 , Y

3
1 ) + 8 del−X

δλ,γ(X
2
1 , Y

2
1 ) + 6 match

δλ,γ(X
3
1 , Y

2
1 ) + 6 del− Y

we then calculate δλ,γ(X2
1 , Y

3
1 ), δλ,γ(X3

1 , Y
2
1 ) and δλ,γ(X2

1 , Y
2
1 ):

δλ,γ(X
2
1 , Y

2
1 ) = min



δλ,γ(X
1
1 , Y

2
1 ) + Γx del−X

δλ,γ(X
1
1 , Y

1
1 ) + Γxy match

δλ,γ(X
2
1 , Y

1
1 ) + Γy del− Y

= min



∞

0 + Γxy

∞

Γxy = |mx2 −my2|+ γ|tx2 − ty2 |

+ |mx1 −my1|+ γ|tx1 − ty1|

= |6− 8|+ 1× |3− 5|

+ |3− 1|+ 1× |1− 2|

= 7
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so

δλ,γ(X
2
1 , Y

3
1 ) = min



δλ,γ(X
1
1 , Y

3
1 ) + Γx del−X

δλ,γ(X
1
1 , Y

2
1 ) + Γxy match

δλ,γ(X
2
1 , Y

2
1 ) + Γy del− Y

= min



∞

∞

δλ,γ(X
2
1 , Y

2
1 ) + 6

= 13

δλ,γ(X
3
1 , Y

2
1 ) = min



δλ,γ(X
2
1 , Y

2
1 ) + Γx del−X

δλ,γ(X
2
1 , Y

1
1 ) + Γxy match

δλ,γ(X
3
1 , Y

1
1 ) + Γy del− Y

= min



δλ,γ(X
2
1 , Y

2
1 ) + 8

∞

∞

= 15
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and finally

δλ,γ(X
3
1 , Y

3
1 ) = min



13 + 8

7 + 6

15 + 6

= 13

The distance between X3
1 and Y 3

1 is 13. If we were to calculate the TWED between

two identical time series, the matching cost Γxy would be zero at each step. Is it easy to see

then that the TWED between two identical time series is zero since at each step the match

operation of zero cost would be chosen.

2.3.3. Affinity Propagation

Affinity Propagation (Frey & Dueck, 2007) is a clustering algorithm which aims to

find representative exemplars from its input data. This algorithm views each data point

as a node in a network, and recursively transmits real-valued messages along the edges

of the network until a satisfactory set of exemplar points emerges. The magnitude of the

transmitted messages reflects the “affinity” that one data point has for choosing another

point as its exemplar.

The algorithm input is a matrix of real-valued similarities between data points, where

s(i, k) is the similarity between the data points with indexes i and k. A higher value of

s(i, k) reflects a higher similarity. This measure is usually set to the negative Euclidean
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distance (distant points get low similarities), but the method can be applied to any arbi-

trary similarity measure. The values along the diagonal of the similarity matrix, s(k, k)

are called “preferences”, and a larger value reflects a higher likelihood of being chosen as

an exemplar during clustering. When no data point should be favoured during clustering,

like in our experiments, s(k, k) should be set to a common value for all k. Another signif-

icant advantage of this algorithm besides the aforementioned flexitility is that in contrast

to other common clustering algorithms like K-Means, Affinity Propagation doesn’t require

the number of clusters to be specified in advance. The number of clusters (number of ex-

emplars) found is affected by both the values set for preferences and the message passing

procedure. In our experiments, we set the preferences to the median similarity between

all points, which produces a moderate number of clusters (Frey & Dueck, 2007). Another

value used for the preferences is the minimum similarity, which produces a small number

of clusters.

Data points exchange two different kinds of messages during clustering: “responsibil-

ity” r(i, k) and “availability” a(i, k). The first reflects the accumulated evidence for how

good point k is to serve as an exemplar to point i, while the second reflects how appropriate

it would be for point i to choose point k as its exemplar. The availabilities are initialized to

zero: a(i, k) = 0. The responsibilities are then computed using the following update rule:

r(i, k)← s(i, k)− max
k′s.t.k′ 6=k

{a(i, k′) + s(i, k′)}
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This update rule should be seen as a competition between all candidate exemplars for own-

ership of a data point. The availability update rule, on the other hand, gathers evidence

from data points as to wether a candidate exemplar would be a good exemplar:

a(i, k)← min{0, r(k, k) +
∑

i′s.t.i′ 6={i,k}

max{0, r(i′, k)}

The availability a(i, k) is set to the self-responsibility r(k, k) plus the sum of the positive

responsibilities candidate exemplar k receives from other points. Only the positive portions

of incoming responsibilities are added, because it is only necessary for a good exemplar to

explain some data points well (positive responsibilities), regardless of how how poorly

it explains other data points (negative responsibilities). The “self-availability” a(k, k), is

updated with the following rule:

a(k, k)←
∑

i′s.t.i′ 6=k

max{0, r(i, k)}

This message reflects accumulated evidence that point k is an exemplar based on the posi-

tive responsibilities sent to candidate exemplar k from other points.

At any moment during affinity propagation, availabilities and responsibilities can be

combined to identify exemplars. For point i, the value of k that maximizes a(i, k) + r(i, k)

either identifies point i as an exemplar if k = i, or identifies the data point that is the

exemplar for point i. The message-passing procedure may be terminated after a fixed

number of iterations, after changes in the messages fall below a threshold, or after the

local decisions stay constant for some number of iterations.
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3. RELATED WORK

Automatic classification of lightcurves is currently performed by first transforming

each lightcurve to a vector of many statistical descriptors, commonly called features, and

then by training a learning algorithm. These features try to capture characteristics related to

variability and periodicity, amongst others. Debosscher et al. (2007) represented lighcurves

as a vector of 28 parameters derived mainly from periodicity analysis. Kim et al. (2009)

introduced the Anderson-Darling test in their method to de-trend lightcurves, which tests

whether a given lightcurve can be said to be drawn from a Normal distribution. This test

has been included as a lightcurve feature in later work. Richards et al. (2011) introduced

features that measure aspects like kurtosis, skewness, amplitude, deviation from the mean

magnitude, linear slope and many features extracted from periodicity analysis using the

Lomb-Scargle periodogram. Kim et al. (2011) designed features to measure variability and

dispersion and introduced the use of two photometric bands for some calculations. Pichara

et al. (2012) proposed the use of the continuous auto-regressive model to strengthen the

analysis of irregularly sampled lightcurves. Huijse et al. (2012) estimated periodicities

with an algorithm based on information theory. Kim et al. (2014) introduced more features

that relate variability and quartile analysis. Nun et al. (2015) designed a library that aims to

facilitate feature extraction for astromonical lightcurves which includes a compendium of

features utilised throughout the recent literature. The design of all features for lightcurve

representation that exist today has been the result of many years of research effort.
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The tremendous amount of effort required to design new features has driven the focus

of many research communities tackling other classification problems away from feature de-

sign and towards an unsupervised feature learning approach. Unsupervised feature learning

models first emerged in the computer vision community as an effort to find a compact vec-

tor representation of images (Olshausen et al., 1996). Many of the models have since been

adapted to work with time series data like speech, music, stock prices and sensor read-

ings. The results are varied with some unsupervised learning approaches clearly improving

the state-of-the-art performance on benchmark datasets. Sparse Coding (Olshausen et al.,

1996; Lee et al., 2006), a methodology that aims to learn a set of over-complete basis which

can be used to represent data efficiently, was used by Grosse et al. (2007) for audio clas-

sification. Another common model that has been employed to solve time series problems

is the Restricted Boltzmann Machine (Hinton & Salakhutdinov, 2006; Hinton et al., 2006;

Larochelle & Bengio, 2008). The Restricted Boltzmann Machine (RBM) is a model that

learns a distribution over its input data and is represented by an undirected bipartite graph.

The weight matrix W , which describes the connections between nodes in the graph can be

used to transform data to lower dimensional representation. This model has been used with

success as a replacement for Gaussian mixtures in the discretization step required for Hid-

den Markov Models for audio classification (Mohamed et al., 2012; G. E. Dahl et al., 2012).

Jaitly & Hinton (2011) used raw speech data as input for an RBM with success. Some vari-

ations of the RBM like the mean-covariance RBM (Ranzato & Hinton, 2010; Krizhevsky

et al., 2010) also have been used to improve on audio classification benchmarks (G. Dahl

et al., 2010).
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Other somewhat less popular unsupervised feature learning models that have been used

with success in time series problems are the Recurrent Neural Network (Hüsken & Stagge,

2003), the Autoencoder (Poultney et al., 2006; Hinton & Salakhutdinov, 2006; Bengio,

2009) and clustering approaches (Coates & Ng, 2012). The Recurrent Neural Network

(RNN) is essentially a neural network in which the outputs are connected back to the in-

puts. It has been used with success in replacing both the Gaussian mixture and the Hidden

Markov Model in the traditional audio classification pipeline (Graves et al., 2013). The Au-

toencoder (AE) is a neural network that tries to model the identity function of its input data.

The weights in the network are adjusted during training to make the network’s output as

close as possible to its input. Längkvist & Loutfi (2012) use a modified version of the AE to

perform unsupervised feature learning on sensor data, outperforming the best classification

results obtained with expert-designed features. In clustering-based unsupervised feature

learning, data is transformed into a new representation as a function of both the data and

the most common data patterns found during clustering. Nam (2012) employ a clustering

based approach in combination with other models to perform music classification.

Due to the complexity of time series data, most of the works listed above still tackle

unsupervised feature learning with the aid of some form of pre-processing which requires

both computational time and domain expertise. Raw time series data has been used with

success in a limited number of problems, most notably by Jaitly & Hinton (2011). The pre-

viously mentioned models, on the other hand, are not designed to deal with the kind of time

series that are common in astronomical surveys. Lightcurves are not sampled uniformly,

so they have different number of observations for a fixed time frame. These characteristics
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of the data make it unsuitable as input for neural network based models like the RBM and

the AE, sparse coding, and most models that assume that the input is a vector of a fixed

size. Sensor data, digital sound, and stock prices do not have this problem, since they are

sampled uniformly. Given the massive amounts of astronomical data to be collected in fu-

ture surveys, the development of an automated pipeline for raw data analysis with minimal

pre-processing is a priority.
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4. METHOD DESCRIPTION

Our method draws from what was proposed in Coates & Ng (2012) for the domain of

images, with substantial modifications to make our new algorithm work well with lightcurves.

As Keogh & Lin (2005) demonstrated, time series subsequence clustering with K-Means

and Euclidean distance will very seldom produce meaningful results. Furthermore, the Eu-

clidean distance is not well defined for the comparison of two lightcurves since the two

time-series will rarely have the same length because they are not evenly sampled. To over-

come this problem, we employ the Time Warp Edit Distance (section 2.3.2) together with

an appropriate clustering algorithm that works well with any similarity measure for its data,

Affinity Propagation (section 2.3.3).

Our algorithm consists of three main steps. In the first step, we randomly sample

subsequences from lightcurves to form a large set of lightcurve fragments. The second step

consists of clustering these fragments with the Affinity Propagation algorithm and the Time

Warp Edit Distance similarity measure, both described in detail in sections 2.3.3 and 2.3.2

respectively. The third step consists of using the representative exemplars, found during

clustering, to encode a training set of labeled lightcurves to a new representation for the

classification tasks. Figure 4.4 provides an illustrated overview of the process.
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4.1. Lightcurve Subsequence Sampling

To get the data that we want to cluster, we randomly sample N subsequences of

lightcurves from a given dataset by extracting all the observations in a given time win-

dow, tw. The idea behind sampling small time windows and not using the whole lightcurve

is to force our model to capture local patterns in the data. This procedure is illustrated in

Figure 4.1.

FIGURE 4.1. Lightcurve subsequence sampling. We sample a subsequence of the
lightcurve by extracting all the observations in a given time window (translucent
red), tw.
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4.2. Affinity Propagation Clustering

After collectingN lightcurve fragments from our data, we run the Affinity Propagation

clustering algorithm with the set of fragments extracted in the first step as input data to find

a set of representative lightcurve subsequences. This process is illustrated in Figure 4.2.

The affinity measure used during clustering is the negative TWED: −δλ,γ(Xp
1 , Y

q
1 ), where

Xp
1 and Y q

1 are two lightcurve fragments. We use the negative TWED since that way a

greater distance means a lesser degree of similarity. After the clustering is completed,

we have a set of K representative exemplars from the data, which capture common local

patterns occurring in the time series.

4.3. New Representation

With theK exemplars found during the clustering step, we use a feature mapping func-

tion f to map any lightcurve fragment to a new feature space. The idea is to encode any

lightcurve fragment as a K-dimensional vector where each index of the vector will repre-

sent a degree of similarity between the lightcurve fragment and each of the K exemplars.

Our choice of f is:

fk = max{0, µ(δλ,γ)− δλ,γ(Xp
1 , c

(k))}

where Xp
1 is a lightcurve fragment with p observations, c(k) is the k-th exemplar, µ(δλ,γ)

is the average TWED between the fragment and all the other exemplars. This means that

the value of any given index of the vector will be 0 if the distance to that exemplar is above

average, and a positive value when the distance is below the average. This value is larger
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FIGURE 4.2. Lightcurve clustering. The lightcurve subsequences (represented by
the colored dots) are grouped into clusters according to their affinity measure,
which in this case is the negative TWED.

when the fragment is more similar to the exemplar. It is expected that roughly half the

values in any given vector will be zero, which is a favorable condition for our classification

procedure, detailed in section 4.4.

Given this feature mapping function, we can now encode a complete lightcurve in our

new representation by applying f to sequential fragments of the lightcurve. Specifically,

given time step ts and the time window tw, the adjacent fragments are obtained by getting

all the time series data in one window and then moving the time window by ts, sliding the

window across the whole lightcurve. It is worth noting ts is usually much smaller than tw,
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FIGURE 4.3. Sliding window process. The sliding window (translucent red) ex-
tracts a subsequence of the lightcurve at each step, which is encoded as a K-
dimensional vector by our encoding function f . The window moves sequentially
along the time-axis, extracting and encoding one subsequence at each step.

so the extracted fragments overlap significantly. We extract adjacent fragments from each

lightcurve until the sliding window reaches the end of the observations; this means that the

number of fragments extracted is variable and depends on the length of the lightcurve. If

M is the number of fragments extracted from a lightcurve, the final representation is of

dimensions RM×K . This process is illustrated in Figure 4.3.

This intermediate representation of a lightcurve is too large for use as direct input to

any classification algorithm. To reduce the dimensionality of data while maintaining the

maximum amount of information, it is a common practice to perform a procedure called
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feature pooling (Boureau et al., 2010). Pooling works by aggregating features extracted

from a group of adjacent lightcurve fragments. Encoded fragments from windows that

are adjacent or relatively close are also very similar, so finding a way to aggregate those

features makes sense to reduce the dimensionality of data. In our experiments, we divide

the final representation into four equal sized regions and aggregate the features inside each

one. For each of the K features, we take the maximum value in each region, a procedure

that is called max-pooling.

The final pooled representation of a complete lightcurve is a vector of size 4 × K,

significantly smaller than the representation of size M × K, which is obtained after the

sliding window step. The number of regions over which to pool the data represents a

trade-off between information preservation and dimensionality of the final representation.

We chose four as the number of pools that would allow our representation to preserve the

maximum amount of information while still maintaining a manageable dimensionality for

the classification stage. Empirically, we found 4 to work better in the classification task.

4.4. Classification

The final training set is composed of all of the lightcurves encoded in our new repre-

sentation together with their original labels. We use this dataset to train a linear Support

Vector Machine (SVM) classifier (Boser et al., 1992; Cortes & Vapnik, 1995). The Support

Vector Machine is a classifier that tries to fit hyperplanes to data to separate classes. For an

overview and discussion see Kim et al. (2012) and references therein.
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... ... ... ...

1.- Lightcurve Subsequence Sampling
MACHO ID Data

1.3320.215

1.3567.1310

2.4668.11

2.5508.2727

2.24669.8

109.20635.2121

... ...

2.- Clustering 3.- Encoding
MACHO ID Data Class

1.3320.215 1

2.4668.11 2

2.5508.2727 3

... ... ...

MACHO ID Data Class

1.3320.215 1

2.4668.11 2

2.5508.2727 3

... ... ...

X1,1    X1,2    X1,3    X1,4    X1,5    X1,6      …      X1,4K

X2,1    X2,2    X2,3    X2,4    X2,5    X2,6      …      X2,4K

X3,1    X3,2    X3,3    X3,4    X3,5    X3,6      …      X3,4K

FIGURE 4.4. Method overview illustration: In the first step, we draw random sub-
sequences from lightcurves to form a large set of lightcurve fragments. The second
step consists of clustering these fragments with the Affinity Propagation algorithm.
The third step consists of using the representative exemplars found during cluster-
ing to encode a training set of labeled lightcurves to a new representation more
suitable for automatic classification tasks.
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5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1. Data

The photometric data used in our experiments belongs to two different catalogs, MA-

CHO and OGLE.

5.1.1. MACHO Catalog

The Massive Compact Halo Object (MACHO) is a survey which observed the sky

starting in July 1992 and ending in 1999 to detect microlensing events produced by Milky

Way halo objects. Several tens of millions of stars where observed in the Large Magellanic

Cloud (LMC), Small Magellanic Cloud (SMC) and Galactic bulge (Alcock et al., 1997).

5.1.2. OGLE-III Catalog of Variable Stars

The Optical Gravitational Lensing Experiment (OGLE) is a wide-field sky survey orig-

inally designed to search for microlensing events (Paczynski, 1986). The brightness of

more than 200 million stars in the Magellanic Clouds and the Galactic bulge is regularly

monitored in the time scale of years. A by-product of these observations is an enourmous

database of photometric measurements. The OGLE-III Catalog of Variable Stars (Udalski

et al., 2008) corresponds to the photometric data collected during the third phase of this

survey which began in 2001.
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5.1.3. Training Sets

For our encoding and classification experiments we used subsets of both MACHO and

OGLE surveys, corresponding to sets of labeled photometric data. The MACHO training

set is composed of 4835 labeled observations (Kim et al., 2011). The OGLE training is

composed of 5358 labeled variable objects from the OGLE-III Catalog of Variable Stars

(Udalski et al., 2008), the per-class composition of both training sets is detailed in tables

5.1 and 5.2. The OGLE training set was chosen as a subset of the most represented variable

star classes in the catalog with the objective of creating a training set of comparable size to

the MACHO dataset.

TABLE 5.1. MACHO Training Set Composition

Class Number of Objects

1 Non Variable 3613

2 Quasar 17

3 Be Star 55

4 Cepheid 103

5 RR Lyrae 551

6 Eclipsing Binary 42

7 MicroLensing 173

8 Long Period Variable 281
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TABLE 5.2. OGLE-III Training Set Composition.

Class Number of Objects

1 Cepheid 992

2 Type 2 Cepheid 476

3 RR Lyrae 971

4 Eclipsing Binary 982

5 Delta Scuti 980

6 Long Period Variable 957

5.2. Implementation

Our implementation uses minimal pre-processing: all lightcurves are adjusted to have

zero mean and unit variance. To make our method robust to noise in the data, we discard

the observations with high noise. More specifically, we remove all observations with errors

bigger than three times the mean error of the lightcurve. Moreover, in the MACHO and

OGLE datasets, the photometric errors are almost uniform across all measurements with

the exception of few outliers that we remove. This means errors should not affect our result.

For our lightcurve subsequence sampling step (Section 4.1) we sampled from thousands of

unlabeled lightcurves. The parameters we used in our experiments are detailed in Table 5.3.

The code for our experiments is available at https://github.com/cmackenziek/

tsfl.
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We used the Affinity Propagation and SVM implementations available in the scikit-

learn machine learning library (Pedregosa et al., 2011). We also used the numpy, scipy

and pandas libraries for data manipulation and efficient numerical computation (Walt et al.,

2011; McKinney, 2010).
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TABLE 5.3. Relevant parameter values.

Name Symbol Value Comments
Time Window tw 250 days We used 250 days to capture local patterns in the time series while allowing

patterns from lightcurves with longer periodicities to be also captured (see
Figure 5.1). We also considered using the Autocorrelation function length
(Kim et al., 2011) but the values of this feature for each class were too differ-
ent to choose a good common value for all the data.

Time Step ts 10 days Encoding will work best with as much overlap as possible between the ad-
jacent lightcurve subsequences during the sliding window process (Section
4.3). Any redundant data will be eliminated through pooling, while no rele-
vant patterns will be missed.

Number of Samples N 20,000 The number of samples affects significantly the performance of the clustering
step. We minimised the number of samples subject to still maintaining good
classification performance. We consider 20,000 to be a sufficiently large num-
ber of samples while still maintaining computational time within reasonable
bounds and allowing us to maintain our classification performance.

TWED Elasticity Cost γ 1e-5 We chose a relatively low penalty for this parameter to allow for higher “elas-
ticity” when comparing lightcurve subsequences, in comparison to the values
used in Marteau (2009).

TWED Deletion Cost λ 0.5 We chose a mid-point penalty for this parameter so as not to bias the TWED
towards matching operations when comparing lightcurve subsequences, in
comparison to the values used in Marteau (2009).

Number of Pooling Regions - 4 The number of regions over which to pool the data represents a trade-off be-
tween information preservation and dimensionality of the final representation.
We chose 4 as the number of pools that would allow our representation to pre-
serve the maximum amount of information while still maintaining a manage-
able dimensionality for the classification stage, which is the most common
number used throughout the literature (Boureau et al., 2010; Coates & Ng,
2012). Empirically, we found 4 to work better in the classification stage.
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5.3. Experimental Results

In this section, we present the results obtained in our experiments. First, we present the

results of the clustering step of our method, which we hope will help the reader gain a qual-

itative intuition of the inner workings of our algorithm. Then, we present the classification

results on all the training sets described in section 5.1 using two different classifiers and

two methods of lightcurve representation: the classical expert-designed time series features

and our learned features. Finally, we present an analysis of the classification relevance in

terms of both types of features.

5.3.1. Clustering Results

Given that clustering aims to find groups of similar data, one would expect that clus-

tering lightcurve subsequences would group similar patterns in the photometric data. Our

results show that this is indeed the case. To show the results of the lightcurve subsequence

clustering step described in section 4.2, we provide plots of some of the learned exemplars

together with some other lightcurve subsequences that are members of the same clusters.

We can see some of the results in Figure 5.1: cluster exemplars are plotted in red to-

gether with some members of their respective clusters plotted in blue. We can see that

the algorithm captures groups of similar subsequences together. Lightcurve subsequences

are grouped by important traits like variability and periodicity. This information is usu-

ally estimated with traditional features; our model can automatically group the lightcurve

fragments without previously defining what the important criteria are. This previous fact

explains how the final encoding step will output relevant data that allows classifiers to
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FIGURE 5.1. Cluster exemplars with members. Exemplars are lightcurve subse-
quences chosen by the clustering algorithm as the best representatives of their clus-
ters. Each of the six plots shows an exemplar (plotted in blue) together with three
other cluster members (plotted in red). We can appreciate how the clustering algo-
rithm successfully groups similar lightcurve subsequences together.
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TABLE 5.4. Classification F-Score on the MACHO training set.

Class SVM with LF RF with TSF SVM with TSF
1 Non Variable 0.991 0.991 0.875
2 Quasar 0.296 0.533 0.217
3 Be Star 0.717 0.788 0.625
4 Cepheid 0.871 0.917 0.936
5 RR Lyrae 0.953 0.969 0.797
6 Eclipsing Binary 0.780 0.763 0.725
7 MicroLensing 0.980 0.974 0.468
8 Long Period Variable 0.975 0.947 0.802

Weighted Average 0.975 0.978 0.807

TABLE 5.5. Classification F-Score on the OGLE-III training set.

Class SVM with LF RF with TSF SVM with TSF
1 Cepheid 0.835 0.737 0.555
2 Type 2 Cepheid 0.651 0.567 0.467
3 RR Lyrae 0.749 0.868 0.649
4 Eclipsing Binary 0.862 0.602 0.458
5 Delta Scuti 0.817 0.656 0.656
6 Long Period Variable 0.821 0.648 0.407

Weighted Average 0.821 0.696 0.696

distinguish correctly between lightcurves of different classes: subsequences that exhibit

different local photometric patterns will be encoded differently since they will be similar

to a different subset of exemplars.

5.3.2. Training Set Classification Results

To evaluate the classification performance of a classifier trained on our learned fea-

tures, we must obtain a benchmark with which to compare it. The logical benchmark for

this task is the classification performance of a classifier using traditional time series fea-

tures as input on the same training sets. Classifier performance is measured with a 10-fold

stratified cross-validation F-Score on each of the lightcurve classes of a given training set
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(or test set). Since the data produced by our feature learning method is high dimensional

and relatively sparse (each vector will have many zeroes by design, because of our encod-

ing function f ), we use a Support Vector Machine (Cortes & Vapnik, 1995) with a linear

kernel as the classifier. To build the time series features training sets, we applied the FATS

Library (Nun et al., 2015) which has an exhaustive collection of time series features used

throughout the literature. Traditionally, the classifier of choice for lightcurve datasets with

time series features has been the Random Forest classifier (Breiman, 2001); hence, we de-

cided to compare our SVM with learned features against a Random Forest with the time

series features. We also compared our SVM trained on learned features against an SVM

trained on time series features. Tables 5.4 and 5.5 show the results for each training set.

The acronym TSF refers to Time Series Features, which are expert-designed features avail-

able in the FATS Library and LF refers to Learned Features, which are the features we

learn with our method. The SVM classifier performs as well as the Random Forest on the

MACHO training set on many classes. Quasars are the only class where the SVM does not

achieve comparable performance. We believe this to be due to the relatively low frequency

of Quasars in the whole training set, which is known to affect SVM classification perfor-

mance. On the OGLE-III training set SVM trained on learned features achieved superior

results, only performing worst in one class. The first column details the variability class;

the second column shows the result of an SVM classifier on 10-fold cross-validation with a

linear SVM of both training sets. The learned features achieve a better overall classification

performance than the time series features. All weighted averages are calculated using the

relative frequency of each class of variable stars in the whole training set.
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5.3.3. MACHO Field 77 Classification Results

TABLE 5.6. Number of candidates per class on MACHO field 77.

Class Number of candidates

Non Variable 382,306

Quasar 176

Be Star 975

Cepheid 1,459

RR Lyrae 13,544

Eclipsing Binary 85,099

MicroLensing 26,231

Long Period Variable 1,486

In order to discover new variable star candidates, we classified 511,276 lightcurves

from field 77 of the MACHO catalog. We found 128,970 variable star candidates, the

per-class classification details are shown on Table 5.6. We cross-matched our variable star

candidates with the SIMBAD Astronomical Database (Wenger et al., 2000) to filter out

known candidates and found that 15,907 were already known and thus 113,873 are new.

Figure 5.2 shows examples of our new candidates: the first two lightcurves were classified

as Cepheid while the third was classified as an Eclipsing Binary. Our table of candidates is

available for download at https://www.dropbox.com/s/fpsktd8aflelp7q/

field77results filtered.csv?dl=0. We will upload the catalog of our candi-

dates to SIMBAD.
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5.3.4. Feature Importance

A very important aspect of a successful classification model is representing the data

with relevant features that help the model distinguish between the different labeled data.

With this in mind, it would be interesting to analyze how each of the features in a dataset

contribute to the final classification task. We performed a feature importance analysis on

our learned features and time series features, using the hyperplane coefficients of an SVM

with a linear kernel. The general idea behind using the hyperplane coefficients of an SVM

is that the importance of a feature in separating between classes is proportional to the

magnitude of its corresponding coefficient. A feature that completely separates the classes

will have a coefficient of -1 or 1 while a completely irrelevant feature will have a coefficient

of 0). A more detailed explanation of the theory behind this analysis can be found in

(Guyon et al., 2002) who used SVM coefficients for gene subset selection.

Since our classification problems are multi-class, we get one separating hyperplane

for each class. We defined the relative feature importance, i, as the sum of the absolute

values of each of the feature’s coefficients in each hyperplane, divided by the sum of the

importance of all features:

ik =

∑N
j=1 |w

j
k|∑F

k=1

∑N
j=1 |w

j
k|

where wjk is the coefficient with index k of hyperplane j, N is the number of classes and

F the number of features. We can visualize at a high level how the two types of features

contribute to classification by looking at Figure 5.3 which plots the cumulative sum of the

relative feature importances versus the percentage of features being added. A feature set
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that has lots of features that don not contribute much to classification (i.e. rarely get used

by the SVM to separate between classes) would result in a plot where the cumulative sum

reaches 1 with a low percentage of the features. On the other hand, a feature set where most

of the features are relevant to the classification task for at least some of the classes would

result in a plot where the cumulative sum reaches 1 with a high percentage of the features.

This is the case of Figure 5.3, where it is evident that a great percentage of the time series

features don’t contribute much to classification.

Another way of analyzing the contribution of learned features to classification is look-

ing at each of the features relative importance in each of the hyperplanes that are learned in

each class during the SVM training (a multi-class SVM learns one hyperplane to separate

each class from all of the rest). We can see in Figure 5.4 that the contribution of learned

features to classification is complex and that their contribution is different for each class:

most of the features have very different relative importance values for each class. Time

Series features, on the other hand, rely heavily on a few features for classification: a clear

example of this is the red color of one feature for classes 5 and 6 in the top right heatmap,

while the other features look mostly dark blue (the lowest relative importance value).

5.4. Computational Run Time Analysis

To address the scalability requirements of future astronomical surveys, it is important

that analysis algorithms run within manageable time frames and scale well with an increase

in the volume of input data. Table 5.7 shows approximate the run times for each of our

method steps described in Chapter 4. The two main algorithms on which we rely are
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Affinity Propagation and the Time Warp Edit Distance. The algorithmic complexity for

Affinity Propagation is O(N2) where N is the number of points (lightcurve subsequences)

being clustered and the complexity of TWED is O(pq) where p and q are the number of

samples in each of the time series under comparison.

TABLE 5.7. Computational run time details.

Step Run Time

Sampling (Sec. 4.1) 5 minutes

Clustering (Sec. 4.2) 10 minutes

Encoding (Sec. 4.3) 1.5 - 3 hours

Total 1.75 - 3.25 hours

Our method is also significantly faster in transforming a lightcurve from its time se-

ries to its encoded vector representation. If we compare against calculating the time series

features we used for comparison in our experiments, we find that the speed gain is al-

most an order of magnitude. One might argue that this is not a fair comparison since our

method depends on the execution of previous steps, namely sampling and clustering, but

that overhead is a constant cost that doesn’t increase with the number of lightcurves to be

transformed.

TABLE 5.8. Average encoding time.

Training Set LF TSF

MACHO 1.95 s 12.94 s

OGLE-III 0.86 s 7.70 s

49



FIGURE 5.2. New variable star candidate examples. The lightcurves in the plots
have been folded since they correspond to periodic stars. The first two lightcurves
were classified as Cepheid while the third was classified as an Eclipsing Binary.
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FIGURE 5.3. Relative importance cumulative sum. A feature set which has lots
of features that don’t contribute much to classification (i.e. rarely get used by the
SVM to separate between classes) would result in a plot where the cumulative sum
reaches 1 with a lower percentage of features than a feature set where most of the
features are relevant to the classification task for at least some of the classes.
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FIGURE 5.4. Relative importance per class. The two heatmaps show the relative
importance of each feature of both training sets constructed with the MACHO and
OGLE data. We can see in the figure that the contribution of each learned fea-
ture to classification is complex while the contribution of designed features is in
many cases minimal and classification with these features is largely based on the
contribution of a few of the best features.
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6. CONCLUSIONS

The imminent data deluge in astronomy poses scalability challenges for data analy-

sis. The research community must develop scalable and flexible algorithms which prescind

from manual intervention in the face of new input data. One task for which this is partic-

ularly pressing is the classification of observed targets in astronomical surveys, since the

amount of data to be classified has made manual inspection an infeasible solution. Auto-

matic classifiers are the solution to this challenge, but good performance of these algorithms

requires first representing lightcurves as a vector of suitable dimensionality. Lightcurves

have traditionally been represented as a vector of statistical descriptors designed by as-

tronomers called features, but these descriptors are slow to calculate, demand too much

research effort to develop and do not guarantee a good classification performance.

In this work, we have introduced a new way of modeling and representing lightcurve

data as input for automatic classifiers. The method does not assume previous knowledge

about the lightcurves or use any expert knowledge. This fact together with the possibility of

leveraging the vast amount of information available in unlabeled data constitutes a big step

towards a more automatic, flexible and powerful classification pipeline. Our method works

by extracting a large number of lightcurve subsequences from a given set of photometric

data, which are then clustered to find common local patterns in the time series. Representa-

tives of these common patterns, called exemplars, are then used to transform lightcurves of

a labeled set into a new representation that can then be used to train an automatic classifier.
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Our results show that this representation is as suitable for classification purposes than

the traditional time series feature-based representation. Classifiers trained with our features

perform as well as ones trained with expert designed features, while the computational cost

of our method is significantly lower. With our method we were able to find 113,873 new

variable star candidates. Our hope is that the research community will hold feature learn-

ing methods as a valid alternative to lightcurve representation in future work since we have

shown them to be a strong competitor to the expert designed time series features. Our im-

plementation code is readily available for others to download and build upon: users should

try and adjust the parameters mentioned in Table 5.3 to suit their particular application.

While our method does not deal directly with errors in the photometric observations,

the use of clustering makes our method robust regarding noise without specifically having

to model errors. The intuition behind this is that the clustering stage finds common oc-

curring patterns in the whole dataset of fragments. Lightcurve subsequences significantly

affected by random noise are not likely to be similar to many other subsequences, and thus

will not be chosen as exemplars. The use of our method with highly noisy data would

probably require the utilization of a similarity measure, which considers errors in its mea-

surements. This could be done by comparing the distributions of the two subsequences,

such as χ2 measure, the mutual information criteria or simply by adding a penalty term that

depends on the errors. The first two methods are computationally very expensive and not

appropriate for the type of applications we are considering. The latter is an ad-hoc mea-

sure and not statistically motivated and it requires an extra optimization procedure (extra

coefficient in TWED’s operations) that will also impact the computational cost. Significant
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further research would be needed to develop a fast approximated optimization process that

is outside the scope of this work.

Acknowledgments

This work is supported by Vicerrectorı́a de Investigación (VRI) from Pontificia Univer-
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