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Cellular and functional aspects of the renal
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The kallikrein kinin system is a tissue-derived system with potent renal and
cardiovascular effects. Within the kidney, the components of the kallikrein
kinin system (kallikrein, kininogen, kinins, kininases, kinin receptors and
mediators/modulators) originate from or are located in discrete segments of
the nephron in highly specialized cells which determine its physiological
effects. The kallikrein system acts on the kidney in a paracrine fashion in two
anatomical microenvironments where the system regulates glomerular
function, renal hemodynamics, and salt and water excretion. Impairment of the
renal kallikrein system contributes to the development of hypertension, in
particular to the salt-sensitive hypertension, and other pathologies like
diabetes. There are several links between the vasodepressor kallikrein system
and the vasopressor renin system which are relevant to normal renal function
and to the pathophysiology of hypertension and renal diseases. Local induction
of kininase Il or angiotensin converting enzyme in the kidney could be a novel
mechanism contributing to the renal damage in hypertension and other renal
diseases. This review evaluates cellular and functional aspects of the renal
kallikrein system with emphasis placed on the cellular localization of its
components along the nephron, the links to other vasoactive systems, and the
contribution of the system to the pathogenesis of hypertension.

Key terms: angiotensin I-converting enzyme, aprotinin, bradykinin receptors,
cyclooxygenases, hypertension, kallikrein
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INTRODUCTION

Cumulative evidence substantiates the
kallikrein kinin system (KKS) as a tissue-
derived vasoactive system with potent renal
and cardiovascular effects. The renal KKS is
composed of: (i) kallikrein, the bradykinin
generating enzyme; (ii) kininogen, the
substrate; (iii) bradykinins, the effector
hormones; (iv) kininases, the metabolizing
enzymes; and (v) an unknown number of

enzyme activators and inhibitors. The final
effects of bradykinin (BK) are a result of
its local production determined by the
interaction between the active enzyme and
the substrate; its half-life determined by the
balance between production and
degradation, and finally by the presence of
BK receptors and associated transduction
signal mechanisms. The formation of BK
requires the presence of the various
components of the KKS at the same or
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closely related, accessible sites. With the
conviction that the evaluation of the renal
KKS critically depends on the precise
localization of its components within the
kidney, we have focused our studies on the
morphofunctional bases of the KKS.

Since several aspects of the KKS are
addressed by prominent authorities of the
field in this issue of Biological Research
(12, 18, 20, 40, 61, 74, 85, 98, 100), this
review will be restricted only to a few
selected cellular and functional aspects of
the kallikrein system.

As homage to one of the many
outstanding features of Dr Héctor R
Croxatto, namely his enthusiasm to recruit
students to science, in particular to the field
of vasoactive agents, this review was
written in collaboration with a group of
students currently working in our
laboratory.

RENAL KALLIKREIN

Kallikrein (EC 3.4.21.35) is a serine
protease (27-40 kDa, pl = 4) codified by the
true kallikrein gene or KLKIJ, which
message encodes a preprokallikrein and the
proenzyme becomes fully active by the
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removal of the zymogen peptide by an
unknown yet proteolytic enzyme. The active
enzyme cleaves its physiological substrate,
kininogen, to release lys-BK or BK (18).

The connecting tubule cells:
the site of origin of renal kallikrein.

The anatomical localization of kallikrein has
been a subject of much controversy for many
years since it has been described in proximal
tubules, distal convoluted tubules, glomerulj,
peripolar cells, outer medullary and papillary
ducts (reviewed in 119). Nowadays, there is
broader agreement on the localization of
renal kallikrein within the connecting tubule
cells (CNTc), product of concurrent results
obtained from microdissected nephron
segments (73, 89) and immunolocalization
(37, 117), yet the site of expression of the
kallikrein gene is still controversial (17, 25,
42, 125) (vide infra). With ultrastructural
immunohistochemistry, we demonstrated the
presence of kallikrein exclusively in the
CNTc (117). This cell type —together with the
intercalated cell (Ic)— are the components of
the connecting tubule (CNT), a novel
nephron segment located between the distal
convoluted tubule and the cortical collecting
duct (64, 65) (Fig 1). The structural features

Ic CDc

Fig 1. Cellular components of distal nephron post-macula densa. The distal convoluted tubule
contains a single type of cell (DCTc); the connecting tubule, connecting tubule cell (CNTc) and
intercalated cell (Ic); the cortical collecting duct (CCD), collecting duct cell (CDc, formerly
principal cell) and shares Ic with the connecting tubule. Altogether, connecting tubule and
collecting duct contain main components of kallikrein system (kallikrein, kininogen, kininases and
BK-B2 receptors), have similar morphology at the light microscope and can be differentiated via

specific markers (see Fig 3B). Ec, endothelial cell.
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of CNTc are a well developed biosynthetic
apparatus containing kallikrein, potassium
secretory channels in the luminal plasma
membrane (77) and abundant Na,K-ATPase
in the basal plasma membrane (60). Since
kallikrein is found in the biosynthetic
apparatus, we proposed that kallikrein is
synthesized in a unique cell type in the rat
kidney, the CNTc (117) (Fig 2). A similar
distribution is present in normal human
kidneys (118).

Remarkably, the kallikrein-containing
cells establish a close and extensive
anatomical contact with the afferent arteriole
of the juxtaglomerular apparatus (118) (Figs
3A and 4). This anatomical relationship
between tubular and vascular structures
containing kallikrein and renin, observed in
rat and human kidneys (4, 105), calls for a
physiological function and is consistent with
a paracrine function of the KKS in the
regulation of renal and glomerular
hemodynamics, and renin release (119). It is

Na,K-ATPase

———--

Fig 2. Intracellular processing pathway of kallikrein in
connecting tubule cell. Left side, ultrastructural features:
smooth luminal surface bearing K* secretory channels
(ROMK); well developed Golgi apparatus and trans Golgi
network around lower part of nucleus; vesicles with
electron lucent content near to Golgi and close to plasma
membrane; basal plasma membrane, with abundant Na,K-
ATPase, forms prominent basal infoldings containing rod-
shaped elongated mitochondria, in close contact with
fenestrated endothelium from capillaries. The presence of
ROMK in apical membrane and of Na,K-ATPase in
basolateral membrane confers to this cell type a prominent
role in K* secretion. Right side, subcellular distribution of
kallikrein and hypothetical intracellular processing
pathway: rough endoplasmic reticulum (RER), Golgi
complex and trans Golgi network, and secretory vesicles
(sv) trafficking to luminal and basal plasma membranes.
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interesting to note that both renin and
kallikrein systems are linked up at several
levels, as will be discussed later.

In contrast to the kallikrein localization
restricted to the CNTc, in situ hybridization
methods have shown the presence of
kallikrein mRNA at the vascular pole of the
glomeruli and, to a lesser degree, in the
distal tubular cells of rat kidneys (125),
whereas kallikrein mRNA has been shown
in distal tubules, collecting ducts, loops of
Henle and juxtaglomerular cells of human
kidneys (17). Given this discrepancy, we
re-examined kallikrein gene (KLK/)
expression and renal kallikrein localization
in rat kidney by using in situ hybridization
and immunohistochemistry. With gene-
specific oligonucleotides and cRNA rKLK/
probes and antibodies, we demonstrated
rKLK] gene expression and renal kallikrein
localization exclusively in the CNT, and
lack of both gene expression and enzyme
localization in glomeruli, loops of Henle,
collecting ducts or arterioles (115).
Therefore, kallikrein mRNA reported
previously on other nephron segments or
glomeruli may represent cross-hybrid-
ization with another member of the
kallikrein gene family.

Intracellular distribution, polarity
and sorting of kallikrein.

The intracellular distribution, sorting and
polarity of the secretory pathway of
kallikrein concern with important cell
biology issues, since they deal with “how”
and “from where” the enzyme exits from
the CNTc. Although these issues are of
obvious importance to understand the
regulation of the enzyme, they have
received little attention in the past.

Based on the ultrastructural subcellular
distribution of kallikrein, we hypothesized
that the enzyme is sorted to both the apical
and basolateral poles of the CNTc, where
could exit the cell and/or remain as a
membrane-bound enzyme. This hypothesis
was in agreement with the enzymatic
activity observed in subcellular fractions
(11, 123, 126), as well as with the results of
studies on isolated perfused kidneys
showing kallikrein in both urinary and
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Fig 3. Cellular distribution of components of kallikrein system and mediators in the kidney. A. Axial section of radial cortical artery
(R). afferent arteriole (AA), corresponding glomerulus (G) and proximal tubule (P) at urinary pole of glomerulus. Connecting tubule
immunostained for kallikrein (asterisks) establishes close contact with AA. B. Cellular characteristics of distal nephron and differential
distribution of cell markers. Four cell types marked with arabic numbers: 1, DCT cell containing Na,K-ATPase in basal portion; 2, Ic
devoid of NA,K-ATPase and kallikrein; 3, CD cell with Na,K-ATPase in basal portion but smaller in size than DCT cell; 4, CNTc with
kallikrein in cytoplasm and apical pole, and Na,K-ATPase in basal portion; in addition, CNTc contains ROMK in luminal membrane
(inset). Note that different cell types are intermingled in this segment of the nephron, making it difficult to differentiate them without
cell markers. C. Distribution of exogenous aprotinin in kidney. Aprotinin concentrated in endocytotic pathway of proximal tubules
(asterisks) and in connecting tubule cells (arrows), the latter distribution partially explaining the renal effects of aprotinin, whereas the
former one suggests metabolism in proximal tubules. D. ACE in kidney. ACE distributed in apical pole of proximal tubule cells, and
also induced in tubule interstitial space in hypertensive kidneys (arrow in inset). E-F. Cellular distribution of BK-B2 receptor (E) and of
bradykinin antagonist HOE-140 (F). BK-B2 receptors concentrated in collecting duct (E), mainly in luminal pole of cells (arrow in
inset). HOE-140 (injected in vivo) displays similar distribution in collecting ducts (F), but its cellular distribution is heterogeneous:
present at luminal pole (single arrow) in some collecting cells, while in intracellular space in other collecting cells, suggesting
internalization of the antagonist. Within the cell, HOE-140 remains for up to 4 h, indicating sequestration of the molecule, an
observation which may account for long-lasting effect of the antagonist in vivo. G-H. Distribution of COX-2 in postnatal (G) and adult
(H) kidneys. Cyclooxygenase-2 present exclusively in TAL segment of young and adult rats, but more abundant in postnatal period (G)
than in adult stage (H), a difference suggesting an important role of COX-2 in postnatal development.
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Fig 4. Scheme of nephron pointing to a novel tubulo-
vascular relationship relevant to the function of kallikrein
system. Anatomical relation between connecting tubule
and juxtaglomerular apparatus, compatible with
observations in human and rats showing that connecting
tubule consistently establishes close contact with afferent
arteriole, thus providing anatomical bases for interaction
between kallikrein and renin systems, and to contribution
of kallikrein system to glomerular function and renal
hemodynamics. The other nephron microenvironment
related to excretory function of kallikrein system is CNT-
CCD, which provides suppoit for role of the system in
sodium and water excretion. AA, afferent arteriole; EA,
efferent arteriole; G, glomerulus; PT, proximal tubule;
TAL, thick ascending limb of Henle’s loop; DCT, distal
convoluted tubule; CNT, connecting tubule; CCD, cortical
collecting duct; MCD, medullary collecting duct; COX-1,
cyclooxygenase 1; COX-2, cyclooxygenase 2; B2, type 2
bradykinin receptor. Along the nephron, main localization
of kallikrein (CNT), kininogen (CCD), BK-B2 receptors
(AA, CCD, MCD), kininase II/ACE (PT), COX-1 (G,
CCD, MCD), COX-2 (TAL), their functional implications
being discussed in the text.

venous effluents (10, 78, 94, 113), and in the
renal lymph (90). The hypothesis has been
confirmed recently in Madin Darby canine
kidney (MDCK) distal tubule cells (1), a
well established model for studying the
polarity and sorting of secretion. Abe et al
(1) described the synthesis of prokallikrein
in MDCK cells transfected with rat
kallikrein cDNA and its secretion into both
the apical and basolateral poles in a 4:1
ratio. Although extrapolation to secretion in
vivo should be done cautiously, this
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secretory ratio suggests that a considerable
amount of kallikrein could be thus released
to the interstitial space and circulation.

Like the secretion, the activation of
kallikrein appears to be polarized, since the
venous outflow of isolated kidneys contains
90% of prokallikrein, whereas the urine
contains only 40% of prokallikrein,
suggesting a differential activation of the
enzyme (10, 94). In any event, kallikrein
exiting the cell through the luminal or basal
side would be critically located to act on
tubular or interstitial kininogen generating
BK, which in turn is able to influence renal
function via nitric oxide (NO) and
arachidonic acid metabolites (105).

Other important issue not yet elucidated
for renal kallikrein is whether its secretion
follows the constitutive or the regulated
pathway. Proteins secreted constitutively
are released in a continuous fashion
commensurate to the rate of synthesis and
turnover, whereas the regulated proteins are
packaged in a concentrated form into
secretory granules and are released only
upon stimulation of that particular cell. The
most prominent morphological elements of
the latter pathway are the secretory
granules themselves, and both CNTc
(containing kallikrein) and collecting duct
cells (containing kininogen) lack the
classical secretory electron-dense granules,
suggesting that the secretion of kallikrein
and kininogen in the kidney is constitutive.
This observation raises an apparent
contradiction with the multiple factors
known to regulate the release of kallikrein
(vide infra). However, the commonly
referred to as ‘“constitutive” pathway is
tightly regulated and can be modulated by
extracellular stimuli (63). Finally,
kallikrein has been characterized as a
membrane-bound enzyme, since it is found
in purified membrane fractions and
detergents are required for its solubilization
(126), but its anchorage to the membrane
remains largely unknown.

Some of the points previously
mentioned illustrate the fact that, despite
the enormous progress made in the
molecular genetics and functional aspects
of kallikrein, there still exist large gaps in
the basic cell biology of this enzyme.
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Regulation of renal kallikrein: role of
potassium and therapeutic potential.

Renal kallikrein is regulated by sodium and
potassium balance, and by hormones like
adrenocortical steroids, insulin, catechol-
amines and thyroid hormone (6), as
reviewed in this issue by Margolius (74),
Clements (18) and Katori (61).

Among the many factors involved in the
regulation of kallikrein, the role of dietary
potassium has been underestimated,
receiving lesser attention than the others.
This factor deserves serious consideration
not only because it seems to be a key
regulator of kallikrein, but also for its
therapeutical implications.

As mentioned before, the presence of
potassium secretory channels (ROMK) at
the luminal plasma membrane (77) and
abundant Na,K-ATPase in the basal plasma
membrane (60) (Fig 3 B) of the CNTc —the
cell of origin of kallikrein— confer to this
cell type a prominent role in the secretion
of potassium by the distal nephron (62, 65).
Consistent with this, high potassium intake
stimulates CNTc, producing an overall cell
hypertrophy including its biosynthetic-
secretory apparatus resulting in increased
excretion of kallikrein and potassium (48,
116). Under this condition, the CNTc size
correlates with the excretion of kallikrein
and potassium, and a positive correlation is
also observed between the urinary
excretion of kallikrein and potassium (116).
A similar stimulating effect of high
potassium has been observed in renal
cortical slices and isolated perfused
kidneys (6). In humans, kallikrein excretion
varies directly with potassium intake (51).
Moreover, the analysis of the association of
urinary potassium with urinary kallikrein
within statistically inferred kallikrein
genotypes of 769 individuals in 58 Utah
pedigrees demonstrated a significant
statistical interaction between urinary
potassium and the inferred major gene for
kallikrein (53).

In a clinical study, Valdés et al (110)
supplemented potassium intake to a group
of low-kallikrein untreated hypertensive
patients in a crossover, double-blind,
randomized fashion. Together with the
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increase in urinary potassium, a significant
increase in kallikrein excretion and
decreases in systolic, diastolic and mean
blood pressures were observed. Again, this
study revealed a positive correlation
between urinary excretions of kallikrein
and potassium (110). The stimulating effect
of potassium on renal kallikrein contributes
to explain some of its beneficial effects on
blood pressure (68, 109).

The therapeutical implications in the
management of hypertensive patients, in
particular in salt-sensitive ones (vide infra),
are of obvious importance. Partial
substitution of sodium salts by potassium
salts in the diet would have the double
benefit of reducing sodium intake and
stimulating kallikrein. This dietary change
on salt intake is along with current
recommendations of non-pharmacological
management of hypertension, and has
already proven to reduce blood pressure and
decrease the number of deaths from both
stroke and ischemic heart disease in large
scale population studies in Finland (59).

We do not know yet the mechanism
underlying the effect of potassium on
kallikrein, but probably the interaction of
several hormonal regulators results in the
observed effect. Since both renal kallikrein
and potassium excretion are under
multihormonal regulation (6, 36), the
activity of Na,K-ATPase represents
perhaps the common link. It is well
established that an increase in Na,K-
ATPase activity mediates the secretion of
potassium by CNTc during chronic
potassium load, and the factors reported to
regulate renal kallikrein show a remarkable
similar pattern to those that regulate Na,K-
ATPase activity. Thus, both Na,K-ATPase
activity and renal kallikrein have been
shown to be regulated by sodium and
potassium diet, mineralocorticoids,
glucocorticoids and insulin (6, 57).

Neural control of kallikrein

The information about the neural contro! of
kallikrein is limited, its secretion seeming to
be under sympathetic inhibition. Albertini et
al (2), with evidence obtained from renal
nerve stimulation, central B-adrenoceptor
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blockade and peripheral sympathectomy in
rats, concluded that normal sympathetic tone
in the kidney modulates the release of
kallikrein in an inhibitory manner. Further
studies in vitro have disclosed that the
adrenergic control of kallikrein release is
mediated by [,-adrenergic inhibitory
mechanisms (46).

KALLIKREIN INHIBITORS

The activity of a potent proteolytic enzyme
as kallikrein must be closely regulated by a
balance between activators of the
proenzyme and inhibitors of the active
enzyme. Little information exists about
endogenous inhibitors of the KKS, yet
there is emerging information about
kallistatin —a newly identified serine
proteinase inhibitor (serpin)-— which binds
to kallikrein and inhibits its enzymatic
activity in vitro (17). To inhibit the
kallikrein system, the most widely used
agent has been aprotinin. This polypeptide,
of bovine origin, is an effective inhibitor of
kallikrein (and of other serine proteases) in
vivo and in vitro, and has been used to
study the possible actions of the KKS in
various physiological and pathological
conditions (23, 41). The administration of
aprotinin affects, at the glomerular level,
the glomerular filtration rate and renal
plasma flow, the tubulo-glomerular
feedback mechanism, renin secretion and
proteinuria, whereas at the tubular level, it
affects the excretion of kinins, sodium,
potassium, water and prostaglandins (15,
82, 99). Despite the large number of studies
using exogenous aprotinin, very little
information was available on its cellular
distribution in the kidney (58). We have
recently demonstrated the cellular and
subcellular distribution of aprotinin in the
rat kidney, the polypeptide displaying a
restricted distribution to proximal,
connecting and some collecting tubules
(120) (Fig 3C). In proximal tubules,
aprotinin is present in the endocytotic
pathway, where it might undergo
intracellular metabolism. In connecting
tubule cells, aprotinin is observed co-
localized with kallikrein, providing an
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anatomical base for an explanation of some
of the effects of aprotinin over renal
function. In collecting ducts, aprotinin is
present in the basal portion of the cells, the
functional meaning of this localization
being largely unknown (120).

KININOGENS

Kininogens exert their function by
interacting with proteinases as substrate for
kallikrein, binding to coagulation
proenzymes and assembling them on the
contact phase (98), and inhibiting cysteine
proteinases by forming inactive enzyme-
inhibitor complexes (81). There are two
forms of kininogen: the high molecular
weight (HMW, 88-114 kDa) and the low
molecular weight (LMW, 50-68 kDa). In
humans, LMW kininogen is cleaved by
tissue kallikrein. In rats, two LMW
kininogens have been characterized, one of
them being considered to correspond to the
human LMW kininogen, and the other —the
T-kininogen~— as an acute-phase protein and
not a substrate for kallikrein (6).
Kininogens, which are abundant in plasma,
are derived entirely from the liver; yet
kininogen has been demonstrated in the
kidney, located at the distal and collecting
tubules (91), and —close to kallikrein— in
the principal cells of the collecting duct in
transition segments between connecting
and cortical collecting tubules (39).
Furthermore, the presence of kininogen
mRNA in the human distal nephron
indicates that kininogen is synthesized in
the kidney (50). Although kininogen 1s
present in urine (91) and renal lymph (90),
additional studies are required to elucidate
the mechanism of secretion of renal
kininogen by the collecting tubules and its
relative contribution to the circulating and
urinary kininogens.

Regardless of whether kininogen
originates from the blood stream or also in
part from the kidney, the interstitial
generation of kinins is possible at the
basolateral membrane of the CNTc or in
the interstitium, as demonstrated by direct
measurement with microdialysis technique
(106). Moreover, interstitial kinins and
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mediators (prostaglandin E, and cGMP) are
under the regulation of physiological
stimuli such as sodium diet (104). Once
kinins are formed within the lumen or in
the interstitium, structures further
downstream (preglomerular arterioles,
medullary circulation and collecting ducts)
would be the targets of kinins in a
paracrine fashion. Locally generated kinins
can regulate glomerular filtration and
hemodynamics (55), without affecting
distal tubular excretory function, or can
regulate papillary blood flow and sodium
excretion (75), without affecting cortical
blood flow. These examples support the
local actions of kinins on discrete
anatomical microenvironments like those
composed by the CNT-juxtaglomerular
apparatus (Figs 3A and 4) or the connecting
tubule-collecting duct (CNT-CD) (Figs 3E-
F and 4). For a full description of the
paracrine actions of the kallikrein system
on these renal microenvironments, see Vio
et al (119). :

KININASES

Once BK is generated, several peptidases
participate in its metabolism. Among them
are kininase I, kininase II/angiotensin
converting enzyme (ACE), neutral
endopeptidase 24.11 (NEP), endopeptidase
24.15 and aminopeptidase P. The most
active metabolizing kinin enzymes in the
kidney seems to be kininase II/ACE and
NEP. Both are present in the kidney in the
brush border of proximal convoluted
tubules and also in urine (26, 28). In
addition, kininase II is extensively found in
endothelial cells, where NEP is almost
absent. The main BK products by the
action of kininases are: BK-(1-7), formed
by the action of either NEP or kintnase II;
BK-(1-5), formed by further hydrolysis by
kininase II or EP 24.15; and des-Arg®-BK,
formed by the action of kininase I.

In recent years, enormous progress has
been achieved in the study of the molecular
properties and genetic structure of kininase
II/ACE, reviewed in this issue by
Costerousse et al (20). This enzyme is
anchored to the plasma membrane by a C-
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terminal hydrophobic segment and exists in
two isoforms: somatic and germinal. The
somatic ACE form, a 170 kDa glycoprotein,
is expressed in vascular endothelial cells
and at the brush border of renal proximal
convoluted tubule, jejunal villus and
epididymal duct epithelia. In situ hybri-
dization studies have documented the
presence of somatic ACE mRNA in renal
tubule epithelium, jejunal enterocytes and
epididymal epithelium, demonstrating an
inverse correlation between the levels of
ACE mRNA and the enzyme it encodes in a
given epithelium. Low mRNA levels
together with high levels of the enzyme in
the kidney indirectly suggest that ACE is a
stable membrane protein with a low
turnover rate (102).

In addition to the somatic ACE form, a
smaller isoform (90 kDa), or germinal form
has been detected in the testis, being
expressed uniquely in germinal cells with a
precise stage-specific pattern, from round
spermatids to spermatozoa. The signifi-
cance of the ultraselective expression of
germinal ACE and of its specific messenger
RNA at a very precise stage of spermato-
genesis remains uncertain, but its
importance has been highlighted by the
finding that male homozygous mice ACE -/-
mouse (ACE knock out) display signifi-
cantly reduced fertility (30).

The molecular cloning of human
endothelial enzyme revealed two very
similar domains, each of which bears a
functional active site. These two active
sites display highly similar kinetic
parameters for the natural substrates,
except that the carboxyl-terminal active
site —but not the amino-terminal site— is
activated by chloride (56). Among its
natural substrates, BK is the one for
which the enzyme displays the most
favorable kinetic parameters. Indeed, the
K., (Michaelis constant) is 88 times lower
for BK than for angiotensin I (0.18 uM vs
16 uM), and the k. /K, is 24 times
higher for BK than for angiotensin I,
indicating that BK is the preferred
substrate for the enzyme (56). This
finding is specially relevant, owing to the
similar levels of angiotensin I and BK
found in renal tissue (13).
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CONTRIBUTION OF BRADYKININ TO THE
EFFECT OF CONVERTING ENZYME INHIBITORS
AND OTHER LINKS WITH THE RENIN SYSTEM

Angiotensin I-converting enzyme inhibitors
(CEl) are used to prevent the vasocon-
strictor and fibrogenic influence of the
activated renin-angiotensin system;
however, they were discovered by Ferreira
(31) as BK potentiator peptides in snake
venoms. Current data support the proposal
that the effects of CEI are due to both
inhibition of angiotensin II formation and
reduced BK degradation. The exact extent
to which inhibition of angiotensin II
formation and BK degradation contribute to
the effects of CEI is still under study.
Accumulating evidence indicates that some
of the cardiovascular and renal effects of
CEI are due to reduced BK degradation,
with resultant increased local BK levels,
and thus they should be considered as
“bradykinin potentiating agents” (7, 45).
Renal effects of BK upon stimulation of B2
receptors are mediated by intrarenal
prostaglandin E, and NO generation, as
demonstrated by Siragy et al (105). The
prevention of BK degradation BK by CEI’s
increases two-fold the renal levels of BK
and decreases BK-(1-7), indicating that
ACE/kininase II plays an important role in
BK metabolism, and that increased BK
mediates —in part— the renal effects of ACE
inhibition (14). In addition, the existence of
a local KKS in the vascular wall (85)
provides support for locally generated
kinins contributing to the acute vasodilator
actions of ACE inhibitors.

It is interesting to note that both renin
and kallikrein systems are linked at several
levels: they share the common enzyme
ACE/kininase II (20, 27), BK influences
renin secretion (49), and kallikrein converts
prorenin to renin in vitro (101). Furthermore,
recent data suggest that —during sodium
depletion— the renin-angiotensin system
tonically stimulates renal BK production
and ¢cGMP formation via a non-ATI
angiotensin receptor (107). The most
unexpected recent finding, in regard to the
links between kallikrein and renin systems,
is the discovery that a novel hormone of the
renin system (angiotensin 1-7) is both a
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substrate and inhibitor for ACE, and is also
a vasodilator agent acting via a kinin-
mediated release of NO, as reviewed in this
issue by Brosnihan ef al (12).

The kallikrein system is likely to play an
important role in counterbalancing the
renal effects of the renin-angiotensin
system. An impairment of the KKS, as
observed in the Bk2r-/- mice or in the BN-
Ka mutant rats (vide infra), results in an
increased sensitivity to angiotensin II (70,
72). Thus, an impaired KKS could
contribute to increase blood pressure levels
by leaving the activity of vasoconstrictor
agents unbalanced. The postnatal develop-
ment represents another situation of
imbalance between kallikrein and renin
systems; thus, the increasing values of
kallikrein observed during the renal
postnatal maturation (111), together with
the decreasing values of renin occurring in
the same period (47), may contribute to
explain the decline of vascular resistance
and the increase in blood flow which
occurs in the kidney after birth.

BRADYKININ RECEPTORS AND MEDIATORS

Two types of BK receptors has been
identified so far: B1 and B2. They have
different structure, regulation and are
activated by different agonists: des-Arg9-
BK for Bl, and BK and lys-BK for B2
(93). The BK-B1 type of receptor is
expressed in smooth muscle cells and lung
fibroblasts in pathological states in
response to a variety of inflammatory
stimuli and it is regulated by the
transcription nuclear factor kappaB (NF-
kappaB) (84, 97).

Most of the vascular and epithelial
effects of BK are mediated through the B2
type receptor. The genomic structure of the
rat B2 receptor codifies for a predicted
protein sequence of 366 aminoacids (41.7
kDa), homologous to members of the seven
transmembrane G protein-coupled receptors
family. Its mRNA is present in the kidney,
heart, lung, brain, uterus and vas deferens
(76). For a detailed description of the
localization of B2 receptors, see Figueroa
and Miiller-Esterl (40). With antibodies
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directed against specific aminoacidic
domains of the B2 receptor, this was
described as widely distributed in rat kidney
structures, namely, straight portions of
proximal tubules, distal straight tubules,
connecting tubules, collecting ducts and in
smooth muscle cells of cortical radial arteries
and afferent arterioles. Furthermore, in
tubular cells, the B2 receptor was observed in
the basal infoldings and luminal membranes
(38). More recently, with a novel approach
to the identification of receptors, we infused
in vivo the B2 antagonist HOE-140 and
followed the time-course of its cellular
distribution in the kidney with specific
antibodies against HOE-140. The specific
binding to the B2 receptor was then
visualized by its co-localization with
antibodies against intracellular and
extracellular domains of the B2 receptor
(121). In this study, the B2 receptors were
observed with a more restricted localization,
mainly to the luminal plasma membranes of
distal tubules and collecting ducts. The
antagonist HOE-140 was present along the
endocytotic pathway of proximal tubules,
which are devoid of B2 receptors;
consequently, this localization corresponds
to a site of renal metabolism of the
antagonist. In addition, HOE-140 was
observed along distal tubules and collecting
duct of the medulla and papilla, in cells
containing the B2 receptor, and was absent
in intercalated cells lacking B2 receptors,
indicating the binding of the antagonist to
the receptor. Although HOE-140 was
located in the luminal plasma membranes of
many cells, the antagonist was observed
intracellularly in other cells, suggesting
internalization of the antagonist. This was
not an artifact due to the thickness of the
tissue section (7 pm), since it was confirmed
in thin (0.5 um) sections. Interestingly, it
has also been reported that angiotensin 1I
and angiotensin II antagonists —saralasin and
Dup753- are internalized with the AT,
receptor (19). The sequestration of the
antagonist is consistent with the long lasting
effect of HOE-140. Furthermore, this
internalization of HOE-140 is dependent on
microtubules, since it is decreased by
pretreatment with taxol or colchicine (Nazal
& Vio, unpublished).
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The regulation and function of B2
receptors are currently being studied in
cells expressing the receptor. Recent
studies are representative examples. One of
them demonstrated that BK action in
mesangial cells results in tyrosine
phosphorylation of cellular proteins,
suggesting a role for tubulin and mitogen-
activated protein kinase (MAPK) in the
signaling cascade of BK leading to altered
mesangial function, alteration that could be
relevant to those observed in diabetes (54).
The other study, in human keratinocytes,
on the stimulatory effect of BK on
phosphorylation of proteins at tyrosine
residues, suggests that MAP kinase, actin,
paxillin and the epidermal growth factor
(EGF) receptor were the most likely
candidates for BK-induced tyrosine
phosphorylation. These effects in
keratinocytes might be associated with
events related to mitosis, adhesion and
variation in cell shape (100). Furthermore,
in an elegant work to elucidate the
desensitization of B2 receptor, Pizard et al
(87) transfected Chinese hamster ovary
(CHO-K1) cells with the human BK-B2
receptor cDNA, and established a cell line
that expressed stably and at high density a
receptor exhibiting B2 receptor properties,
in terms of coupling to cell signaling,
desensitization and internalization. In
these cells, equilibrium kinetic analysis
and studies of the effects of receptor
occupancy by agonists or antagonists on
the kinetics of BK-receptor complex
dissociation revealed features typical of
negative cooperative binding, suggesting
that this phenomenon can participate in
the desensitization process.

Mechanisms of action of bradykinin:
nitric oxide vs eicosanoids

The BK receptor is coupled to G protein
and the interaction of BK with its receptor
leads to the activation of two signaling
enzyme systems, namely, phospholipase C
and phospholipase A2 (6). Activation of
phospholipase C by BK, with activation of
the phosphoinositide second-messenger
system, leads to NO production, which then
activates the soluble guanylate cyclase
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generating ¢cGMP. Following activation of
phospholipase A2, arachidonic acid is
released and becomes a substrate for the
three enzymatic pathways of arachidonic
acid metabolism: the cyclooxygenase
pathway, leading to formation of
prostaglandins (PGs) and thromboxanes;
the lipooxygenase pathway, leading the
formation of leukotrienes; and the
cytochrome P-450-mediated oxygenation of
arachidonic acid, leading to formation of
epoxyeicosatrienoic acids (EETs) and
hydroxyeicosatetraenoic acid (HETE)
isomers. The arachidonic acid metabolites
exert biological actions on renal cells when
they are released locally in discrete
anatomic microenvironments along the
nephron, in a paracrine fashion.

The relative contribution of NO vs
arachidonic acid products to the renal
effects of BK waits for further work to be
understood. Intrarenal infusions of BK
significantly increase renal blood flow,
diuresis, natriuresis and kaliuresis, being
these BK effects abolished by the inhibition
of NO synthesis, whereas the adminis-
tration of a precursor of NO (L-Arg)
prevents the inhibitory effect of NO
synthesis on the renal vasodilator and
excretory responses to BK (67). While this
work suggests that the renal vasodilator and
excretory responses to BK are largely
dependent on NO, studies in isolated
kidneys have shown that —although the
inhibition of NO generation reduced the
vasodilator responses to BK— arachidonic
acid metabolites derived from cyclooxy-
genase and cytochrome P450 pathways
account for up to 70% of the vasodilator
effect of BK (43). Both mediators of BK
actions are also able to interact; in fact, NO
directly activates cyclooxygenase to cause
an increase in the enzymatic activity (96).

CYCLOOXYGENASES IN THE KIDNEY:
COX-1VS COX-2

Prostaglandins are synthesized by the
prostaglandin G/H synthase or cyclooxy-
genase (COX). Until recently, it was
believed that the cyclooxygenase was a
single enzyme responsible for the genera-

315

tion of prostaglandins; however, a second
form of the enzyme was identified that is
induced by pro-inflammatory cytokines and
growth factors, and is specifically
associated with cells and tissues involved
in inflammation (66). The current
hypothesis about the role of constitutive vs
induced COX isozymes is that —under
normal homeostatic conditions— COX-1 is
the constitutive enzyme present in most cells
and tissues, whose activity accounts for the
continuous production of physiologically
important prostaglandins, while COX-2 is
induced at the site of inflammation and
produces pro-inflammatory prostaglandins.
This hypothesis has been challenged
recently by the demonstration of a
constitutive, glucocorticoid-insensitive
COX-2 in a subset of cells of the thick
ascending limb (TAL) of Henle’s loop of
normal kidneys (112). This pool of
constitutive COX-2 observed in TAL does
not coexist with COX-1 in the kidney,
since the latter is present in arterial
vascular endothelial cells, medullary and
cortical collecting ducts, and medullary
interstitial cells (108). The physiological
role for COX-2 in TAL is still unknown,
but an obvious function is the generation of
prostaglandins, in particular PGE,. Cortical
and medullary TAL cells synthesize PGE,
and contain PGE, receptors (9, 29). In this
segment, PGE, inhibits NaCl reabsorption,
effect that is mediated via inhibition of
Na,K-ATPase activity (122). It should be
stressed that the TAL segment has a crucial
role in salt and water homeostasis, because
it reabsorbs an important fraction of the
NaCt filtered load, participates in the
generation of hyperosmolarity in the
medullary interstitium -required for the
operation of the countercurrent mechanism-—,
and is the target of furosemide, the
prototype of the most potent class of
diuretics. Since this segment of the nephron
is so far devoid of BK receptors, PGE,
production here should be independent of
BK, and one candidate for its hormonal
regulation is angiotensin II (32, 33).
Evidence for a very important role of
COX-2 in kidney development has emerged
from mice with COX-2 gene disruption
(24, 79). They develop severe renal
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abnormalities weeks after birth; such
abnormalities are not detectable at birth and
were evident only with the increasing age,
suggesting an important role of COX-2
during renal postnatal development,.
Concordant with this, we have observed high
amounts of COX-2 present in TAL cells
during early postnatal development, with a
progressive decline to adult levels after
weaning (Figs 4E-F) (92). The presence of
this constitutive COX-2 in normal animals —
also observed in humans (86)- may have
important therapeutical consequences, since
COX-2 selective inhibitors were designed to
spare the kidney (and gastrointestinal tract),
assuming that the enzyme was absent in the
normal kidney and was only induced in
pathological conditions. Since that
assumption has proven to be incorrect, the
therapeutical indications of selective COX-2
inhibitors require a re-evaluation, to asses
whether they are sufficiently renal sparing to
warrant its use in patients requiring long term
therapy.

PATHOPHYSIOLOGY OF THE
KALLIKREIN SYSTEM

Pathophysiological aspects of the kallikrein
system in diabetes, renal and cardiovascular
diseases are reviewed in this issue by
Margolius (74), Costerousse (20) and Katori
(61). We will briefly comment the alterations
of the KKS in salt-sensitive hypertension and
the local induction of ACE as a pathogenic
mechanism of the progression of
hypertension and renal diseases.

Salt-sensitive hypertension: a case of
impairment of the kallikrein system.

As discussed before, one of the main
functions of the kallikrein system is related
to sodium excretion. Consistent with this, it
can be hypothesized that a deficiency (or
inhibition) of any main component of the
system would result in an impairment of
sodium handling and hypertension.

As reviewed in this issue by Katorit (61),
the Brown Norway Katholiek (BN-Ka) rats
—due to a point mutation of alanine!63 to
threonine in the common chain of
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kininogens— are unable to secrete kininogens
from the liver, resulting in negligible levels
of HMW and LMW kininogens in blood
stream and almost undetectable urinary
levels of kinins (22). The BN-Ka rats have
normal blood pressure, despite the
impairment of the kallikrein system, as long
as they are fed with a low (0.3%) sodium
diet (71). However, after administration of
2% NaCl in the diet, BN-Ka rats excrete less
sodium and water than BN-Ki (normal) rats
and develop hypertension. Supplementation
of LMW kininogen during 2% NaCl
ingestion restored the kinin level in urine,
increased urinary volume and sodium
excretion, and restored blood pressure to
normal levels (71).

The blood pressure response to chronic
salt loading has been also evaluated in a rat
strain inbred for low urinary kallikrein
excretion. Low-kallikrein rats showed
higher systolic blood pressure values than
control rats (130 vs 114 mm Hg) on normal
sodium diet, and their blood pressure
further increases after high sodium diet
(153 vs 112 mm Hg). Moreover, chronic
infusion of kallikrein to low-kallikrein rats
prevents the hypertensive effect of high
sodium diet, indicating that the deficiency
in kallikrein can account for the salt-
sensitivity to hypertension (69).

Additional evidence originates from
mutant mice with disruption of the gene
encoding for the bradykinin-B2 receptor
(B2-KO). The B2-KO mice placed on a
long-term high sodium diet develop higher
blood pressure, reduced renal blood flow
and increased renal vascular resistance, as
compared to wild type mice (3). Other
study directed to characterize the
cardiovascular phenotype of the B2-KO
(70) described —under basal conditions—
higher blood pressure and heart weight in
Bk2r-/- than in the wild-type Bk2r+/+.
Chronic blockade of B2-receptors or
inhibition of nitric oxide synthase (NOS)
increased blood pressure of Bk2r+/+ to the
levels of Bk2r-/- mice. Again, long-term
high sodium diet increases blood pressure
of Bk2r-/- and Bk2r+/- mice, whereas it
was ineffective in Bk2r+/+ animals.

Further evidence was obtained from
Dahl salt-sensitive and salt resistant rats.
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Thus, human kallikrein gene delivered to
Dahl salt-sensitive (Dahl-SS) rats fed to a
high-sodium diet has a protective effect on
salt-induced hypertension, renal damage
and cardiac hypertrophy (16). These rats
express human kallikrein in several tissues
(heart, kidney, lung, liver, adrenal gland)
and, following gene injection, they respond
with diuresis and increased urinary levels
of sodium, kinins and cGMP. This response
and the reduced blood pressure are
consistent with activation of the KKS.
Mukai et al (80) found that Dahl salt-
resistant (SR/Jr), whose blood pressure is
not increased when fed with a high salt
diet, had significantly high blood pressure
when concomitantly treated with BK-B2
antagonist HOE-140, suggesting that kinin
activation of BK-B2 receptors contributes
to mechanisms conferring resistance to
increase blood pressure on exposure to a
high sodium diet.

An animal model with targeted
disruption of the kallikrein gene, not
available yet, will be useful to further
explore the hypothesis discussed above. In
the meantime, it is known that BN-Ki
(normal, non-mutant) rats under kallikrein
inhibition with aprotinin develop
hypertension when placed on a long-term
sodium diet (71). Thus, the experimental
evidence available so far supports the
hypothesis stating that an impairment of the
kallikrein system contributes to salt-
sensitive hypertension.

Several clinical studies have also
addressed the issue of salt-sensitivity to
blood pressure in normotensive (8) and
hypertensive patients (34, 35), in relation to
kallikrein. Urinary excretion of active
kallikrein is significantly lower in salt-
sensitive than in salt-resistant patients.
Also, plasma atrial natriuretic peptide
levels are higher in salt-sensitive than in
salt-resistant hypertensive patients, and a
significant correlation between urinary
kallikrein and plasma atrial natriuretic
peptide is observed in salt-sensitive
hypertensive patients (34). Moreover, when
active and inactive urinary kallikrein
excretion rates were evaluated, it was
observed that the active/total kallikrein
ratio decreased in salt-sensitive patients,
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suggesting an impairment of inactive to
active kallikrein conversion during NaCl
loading as a new mechanism in human salt-
sensitive hypertension (5).

As mentioned before, the therapeutical
implications in the management of
hypertensive patients, in particular in salt-
sensitive subjects, are of obvious
importance. Low sodium diet would
prevent the development of hypertension in
low-kallikrein patients, and the partial
substitution of sodium by potassium intake
would stimulate the kallikrein system.

Local induction of angiotensin I
converting enzyme as a pathogenic
mechanisms in hypertension.

Induction of ACE gene expression occurs
normally in somatic and germinal cells
during their differentiation and maturation
process, as well as in tissue sites during
pathological processes. Thus, local
induction of ACE occurs in the heart during
remodeling, in macrophages of the
activated cardiac interstitium and in the
hypertensive aorta (20).

The presence of ACE in the activated
cardiac interstitium contributes to fibrous
tissue formation through local generation
of angiotensin II or BK degradation. The
contribution of angiotensin II to fibrosis in
the heart and kidney has been well
established (95, 124); however, the role of
BK has been underestimated. Cardiac
fibrosis after myocardial infarction and in
chronic hypertension involves increased
synthesis and deposition of collagen within
the myocardium. Angiotensin-converting
enzyme inhibitors limit hypertrophy and
fibrosis; their mechanism of action remains
controversial, although kinins have been
assumed to play a role. Recently, a BK-
induced reduction in collagen type I and I1I
gene expression —mediated via prostacyclin
PGI,— has been demonstrated in cardiac
fibroblasts (44). This study supports the
argument that stabilization of endogenous
kinins enhances prostacyclin production
and results in attenuation of collagen gene
expression, and modulation of collagen
synthesis and deposition within the
myocardium.
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As in the cardiovascular system, we
(114) have recently demonstrated a
widespread induction of ACE occurring
concomitantly in tubular epithelial,
vascular endothelial and interstitial cells in
the hypertensive (contralateral) kidney of
Goldblatt hypertensive rats (Fig 3D). This
increased ACE in the hypertensive kidney
may contribute to the local elevated levels
of angiotensin II, which in turn contribute
to the abnormal hemodynamic and tubular
reabsorptive function described in this
model (83, 88). The defective sodium
handling by the contralateral kidney in the
2K1C renovascular hypertensive rat model
has been well documented, and can be a
consequence of intrarenal changes in
angiotensin II and kinins levels. Thus,
elevated levels of angiotensin II promote
sodium retention (83, 88), whereas
increased kinin degradation would decrease
sodium excretion (103, 127), resulting in
both cases in a sodium excretory defect.
Furthermore, CEI treatment promotes
sodium excretion and restores normal
sodium handling in this contralateral
kidney (52, 88). The increased angiotensin
II content observed in the contralateral
kidney of renovascular hypertension, in the
face of decreased local renin, may be due at
least in part to the increased availability of
ACE in the renal circulation interstitium
and tubules. The presence of ACE in renal
interstitial fibrous tissue provides support
for its contribution to fibrous tissue
formation, through local generation of
angiotensin II or BK degradation (103,
127). The observation of ACE induction in
vessels, tubules and interstitium of the
hypertensive rat kidney could be extended
in the future to other types of renal
diseases, and may provide a pathological
basis for the putative deleterious effect of
ACE in the diseased kidneys, and the
beneficial effect of ACE inhibitors.

CONCLUDING REMARKS

We dedicate this review to Prof Héctor R
Croxatto, since he called the attention
about kallikrein deficiency as a possible
pathogenic factor in hypertension in 1970
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(21). He has witnessed since then the
enormous progress in studies about the
cellular origin, molecular biology, target
tissues and actions of components of the
kallikrein kinin system —and related systems—
in health and disease. In addition to the
kidney, local generation and paracrine actions
of BK have been proposed in other tissues,
such as the heart and vessels, pituitary, brain,
colon, reproductive tract, efc.

Don Héctor has made many contributions
—and will continue to do so— to the broad
field of peptide hormones, but —equally
important to his scientific contributions— he
has also transmitted to many us his
enthusiasm and devotion to science.
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