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The SL (3,R) theory of projective transformations of the plane is applied to the Lagrangians 
of all one-dimensional Newtonian linear systems. Noether and non-Noether equivalent 
Lagrangians, as well as the associated Noether and non-Noether constants of motion, are thus 
obtained in a completely general and systematic way. Complete unification is achieved 
by this group-theoretic approach to Lagrangians of one-dimensional linear systems. 

I. INTRODUCTION 

In this paper we are interested in the point symmetry 
properties exhibited by the Lagrangian function of one- 
dimensional linear systems. It is our aim to give a unified 
treatment of the similarity properties of such Lagrangians 
taking advantage of the fact that SL(3,R) is the maximal 
group of point symmetry transformations for aN linear 
inhomogeneous ordinary differential equations of the sec- 
ond order, in one real dependent variable.’ To this end, 
we shall use the group elements themselves2 (instead of 
the Lie algebra generators3) to uncover the symmetry 
group of the Lagrangians, and thus calculating several 
equivalent Lagrangians, for any given one-dimensional 
linear system. 

kinematics] shall be given in a forthcoming paper. Nev- 
ertheless, we wish to publish this subject separately, be- 
cause we deem it interesting by itself from the standpoint 
of classical mechanics. 

During the last years there has been a considerable 
progress in the study of symmetries and invariants in 
classical mechanics,4 which stems from different concepts 
of what is the basic formulation for studying the symme- 
tries of mechanical systems in general5 

The organization of this paper is as follows. In Sec. II 
we present a brief review of the general theory of point 
transformations in Lagrangian mechanics, and of the 
point symmetry properties of the Lagrangian function, 
which shall be needed in the sequel. Section III contains 
the applications to the SL( 3,R) theory of equivalent La- 
grangians for a one-dimensional Newtonian free particle. 
Finally, in Sec. IV, we generalize the previous formalism 
to the case of SL( 3,R)-equivalent Lagrangians for all 
one-dimensional linear Newtonian systems. Noether and 
non-Noether Lagrangians (and the associated Noether 
and non-Noether constants of motion) are thus calcu- 
lated in a systematic way. 

We wish to remark that our main interest on this 
issue stems from its usefulness in quantum kinematics.6 
In fact, in Ref. 2 we have obtained a technique for cal- 
culating the specificfinite realizations of SL(3,R) for any 
given one-dimensional linear Newtonian system, which is 
the starting point for quantizing these systems through 
their symmetry properties.6 We have been unable to find 
this technique in the current literature. 

II. GENERAL POINT-TRANSFORMATION THEORY 
FOR ONE-DIMENSIONAL LAGRANGIAN 
SYSTEMS REVISITED 

We begin this work recalling some basic notions of 
Lagrangian mechanics, which shall be needed in the se- 
quel. Our discussion is rather sketchy and deals only with 
one-dimensional systems. Here we present (without 
proof) some useful features of the transformation theory 
of Lagrangian mechanics. For details, see Ref. 7. 

Hence, as an important complement of our previous First, let us remind the important class of null La- 
work, in this paper we shall adopt SL( 3,R) as a group of 
space-time automorphisms that interconverts one admis- 

grangfans, which have the property that every conceiv- 

sible worldline of a linear system into another, in order to 
able worldline renders their action integrals stationary for 
all variations that vanish on the extremes. Therefore, null 

study the different equivalent Lagrangian functions one 
obtains from the action of the group. In this fashion, we 

Lagrangians do not yield genuine equations of motion. It 
is well known’ that a function LN(t,x,X) is a null La- 

get complete generalization and unification of a great 
amount of work, that has been previously performed on 

grangian if, and only if, it can be expressed as a total time 

the symmetry properties of Lagrangians for one-dimen- 
derivative of a function G( t,x). This concept gives rise to 

sional linear systems7 Applications of the present formal- 
the notion of g-equivalent (i.e., gauge-equivalent) La- 

ism to quantum kinematics [namely, SL(3,R) quantum 
grangians, which are those Lagrangians that are related 
by a gauge transformation of the form 
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1572 Aguirre, Friedli, and Krause: Equivalent Lagrangian formalisms 

&x,x) =KL(r,x,X) + G(t,x), (2.1) 

where K is an arbitrary constant and G is a,” arbitrary 
gauge function. It follows that L (t,x,i) and L (t,x,zi) are 
g-equivalent Lagrangians if, and only if, their variational 
derivatives are proportional functions. Clearly, the set G 
= {(I&G)} of all gauge transformations is a non-Abe- 

lian group, with the following combination rule 
(I,K&‘,) (I,K&) = (I,KiK2,K1G2 + G,), where I de- 
notes the identity and indicates that the variables (t,x) 
have not been transformed. 

t’ = T(t,x), x’ = S(t,x), (2.3) 

where the functions T and S are of continuity class c” 
(with ,u > 2) in some open connected region R C { (t,x,> ) , 
and globally invertible on R. Let us also write 

Since g-equivalent Lagrangians provide the same 
equations of motion, it follows that the Lagrangian func- 
tion for a given system is only determined to within a g 
class of equivalent Lagrangians. In fact, it is well known 
that the Lagrangian function that describes a given me- 
chanical system is, in general, not unique. In this sense, 
we have to recall that there is also another concept of 
“dynamically equivalent” Lagrangians, which is not as 
trivial as g-equivalence. This is the notion of s-equivalent 
(i.e., solution-equivalent) Lagmngians.’ One says that 
two Lagrangians, L ( t,x,i) and L ( t,x$), are s-equivalent 
when the manifolds of all solutions to the Euler- 
Lagrange equations obtained from them coincide. Note 
that it is not necessary for the Euler-Lagrange equations 
obtained from both Lagrangians to be exactly the same, 
so that situations more interesting than a mere gauge 
transformation may arise. 

t = T(tl,xl), x = S(f,xy (2.4) 

to denote the corresponding inverse transformation of 
variables. Henceforth, all admissible point transforma- 
tions are assumed to meet these conditions, and all our 
considerations will have a local character, since we shall 
always assume that (t,x)ER. 

In this paper we interpret R as a coordinate patch; 
namely, Eqs. (2.3) and (2.4) will be thought of as a local 
transformation of coordinates in configuration space-time 
(rather than as an active mapping of configuration 
events). Accordingly, one can give the following defini- 
tion: given a Lagrangian L( t,x,x) and a local ditl?eomor- 
phism D [as stated in Rqs. (2.3)], then every arbitrary 
gauge transformation (I,K,G), induces a new Lagrangian 
function L’(t’,x’,zi) that is given by 

TL’(t’,x’$) = KL(t,xj) + G(t,x). (2.5) 

We refer to Eqs. (2.3) and (2.5) as a Lagrangian 
transformation.7 In this fashion, one has that the set L 
= { (D,K,G)} of all Lagrangian transformations consti- 

tutes a group under the following law of combination: 
The problem of finding the most general relation be- 

tween s-equivalent Lagrangians was solved by-Currie and 
Saletan.” It can be shown that L (&x,X) and L (t,x,i) are 
s-equivalent Lagrangians if, and only if,” 

(DIXI,GI) @2,K2,G2) = UW2,K,K2,K1G2 + GIL 

Kc 
g=*(t,x,X) g, (2.2) 

where A(t,x,zi) = (A2E/Ak2>/(A2L/ti2) is a constant of 
motion. Moreover, given L and any constant of motion 
&( t,x$), Currie and Saletan provide a way to construct 
L explicitly as a functional of L (viz., the so called fouling 
transformation of L) . One sees, therefore, that the class of 
s-equivalent Lagrangians includes the class of g-equiva- 
lent Lagrangians as a particular case. One must also note 
that these transformations of Lagrangian mechanics are 
not committed with any transformation of space-time 
variables, as are those transformations we shall discuss 
presently. 

where DID2 is the composite diffeomorphism, which one 
obtains in the usual way. This group is called the 
Lagrange group. It has the direct product structure L 
= D 8 G, where D = {D) is the group of all space-time 

diffeomorphisms and G = {(1,&G)} is the non-Abelian 
group of all gauge transformations. 

One then proves that, under a Lagrangian transfor- 
mation (D,K,G), the variational derivative 6L/6x of L 
transforms according to the equation 

SL’ 
p=KJ-lg, (2.6) 

where J = TJX - Ts#O is the Jacobian of the space- 
time diffeomorphism D given in Eqs. (2.3). Hence, the 
general covariance of the formalism of Lagrange upon 
Lagrangian transformations follows. 

Now, since the basic formalism of Lagrangian me- 
chanics is invariant under a group of transformations that 
do also affect time (besides the spatial coordinates), in 
Lagrangian theory one has to consider the conjiguration 
space-time as the fundamental differentiable manifold of 
the system.12 Hence, let us introduce a smooth transfor- 
mation of variables (t,x) + (t’,x’); say 

The previous discussion gives rise to the concept of 
“curve-equivalent” Lagrangians. Namely, two given La- 
grangians are said to be c-equivalent when there exists a 
Lagrangian transformation that transforms one Lagrang- 
ian function into the other. We note that the new coor- 
dinates (t’,x’) are moving relative to the old coordinates, 
in general, which can be tantamount to a substantial 
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change in the dynamics, so that c-equivalent Lagrangians 
are, in general, not s-equivalent. 

We finally revisit one of the main concepts of this 
subject. In particular, one says that a coordinate trans- 
formation (2.3) corresponds to a point symmetry of a 
given Lagrangian function L (t,x,i> if, and only if, there 
exists an element (I,K,(T)EG, such that TL( t’,x’,x’) 
= ~L(t,x,i) + a( t,x). Note that, according to this defi- 

nition, one has L( t,x,x) -, L( t’,x’$), so that the form of 
the function L does not change, notwithstanding the fact 
that, eventually, one may have K# 1. Let us also remark 
that the symmetry gauge function a(t,x) as well as the 
symmetry scaling constant K are no longer arbitrary. Of 
course, the set S(L) = { (Ds,~,a>} (where D, denotes 
the symmetry diffeomorphism) constitutes the point sym- 
metry group of the given Lagrangian L, upon the same 
product law already introduced for L. In most instances, 
this group S(L) is a finite Lie group, which acts locally in 
the configuration space-time through the symmetry dif- 
feomorphisms Ds that characterize L. As a matter of fact, 
one has the isomorphism S(L) - {Ds}, because for each 
Ds the corresponding gauge factor (I,K,D), is unique, and 
furthermore the one-to-one relation (Ds,~p)++Ds pre- 
serves the group structure of {Ds}. Of course, G is not a 
subgroup of S(L), since (I,K,c)BS(L) [unless K = 1 and 
cr = 01. It is a simple exercise to show the following re- 
sults: ( 1) All g-equivalent Lagrangians have essentially 
the same point symmetries; (2) if Ds is a symmetry dif- 
feomorphism of L, and D is an arbitrary diffeomorphism, 
then the conjugate diffeomorphism 0: = DDsD - ’ yields 
a point symmetry transformation for all those c-equiva- 
lent Lagrangians L’( t’,x’,X’), obtained from L by the ac- 
tion of D and an arbitrary gauge transformation; and (3) 
a necessary condition for the c-equivalence of two given 
Lagrangians is that their point symmetry groups be iso- 
morphic. This means that the action of the Lagrange 
group L on the manifold {L} of all Lagrangians is not 
transitive, for there are many examples of Lagrangians 
with nonisomorphic point symmetry groups. Of course, 
the action of L is transitive within each c-class of Lagran- 
gians; and, furthermore, each c-class is characterized by a 
well-defined Lie group, which becomes locally realized as 
the group S(L) -CDs}, for any L that belongs to the 
given c-class. However, it must be also emphasized that 
the isomorphism S( L’) -S(L) is not a sufficient condi- 
tion to ensure the c-equivalence of L’ and L. From a 
practical point of view, these features are telling us that it 
is not possible to transform a Lagrangian function into 
another (by means of a Lagrangian transformation) if 
they have essentially different point symmetry properties; 
i.e., Lagrangian transformations are neither trivial nor 
spurious.’ These results can be extended rather naturally 
to Lagrangian field theories. Their interest for the La- 
grangian theory of interactions, in general, is immediate. 

III. SL(3,R)-EQUIVALENT LAGRANGIANS 
ONE-DIMENSIONAL FREE PARTICLE 

FOR THE 

Let us now consider the standard Lagrangian of a 
free Newtonian system with one degree of freedom, i.e., 

Lo = 52, (3.1) 

under the scope of the transformation theory of Lagrang- 
ian mechanics. As we know, the maximalpoint symmetry 
group of the Euler-Lagrange equation, 

(3.2) 

becomes realized by the projective diffeomorphisms of the 
(t,x) plane: 

t’ = (q’t + 4”x + q3V(q7t + 4*x + 11, 
(3.3) 

x’= (q4t+q5x+q6)/(q7t+q8x+ l), 

where the q’s are the eight parameters of the group, pro- 
vided q1q5#0. [This group is locally isomorphic with 
SL( 3,R ). We must here recall that all one-dimensional 
linear Newtonian systems have the same point symmetry 
group, namely SL(3,R).]’ 

On the other hand, it can be shown that the maximal 
point symmetry group S(L,) of the standard Lagrangian 
(3.1) is given by the following six-parameter subgroup of 
projective transformations: 

t’ = (qlt + q3V(q7t + 11, 
(3.4) 

x’ = (q4t + q5x + qV(q’t + l), 

with the associated symmetry gauge transformation 
(I,K,D) being given by 

(q5j2 
K= 

4’ - q34’ ’ 
(3.5) 

a(t,x) = [ (q4 - 4%‘) - q5q7x12 
2q7(q3q7 - q1 > (q’t + 1) + Oo9 

where a0 is a constant. (One easily adjusts a0 so that cr be 
well defined at q’ = 0.) Indeed, it is a straightforward 
matter to verify that these Lagrange transformations [i.e., 
Eqs. (3.4) and (3.5)] are such that 

&[ f( $)‘]=K[ fi”]+b(t,X), (3.6) 

and that every Lagrangian transformation that satisfies 
this equation is of the form stated in Eqs. (3.4) and (3.5). 
[It can be shown also that S(Lo) is committed with the 
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1574 Aguirre, Friedli, and Krause: Equivalent Lagrangian formalisms 

restriction &‘/ax = 0, when imposed on the point sym- 
metries of Eq. (3.2).] 

Hence, the interesting question arises as to the c- 
equivalent Lagrangians that are induced by the elements 
of the fullpoint symmetry group of the equation of motion, 
according to their projective realizations (3.3). In order 

to tackle this question we better avoid arbitrary gauge 
transformations at this stage, since these would only ren- 
der the forms of the outcoming Lagrangians less intelli- 
gible. After some manipulations we get the following set 
of (eight-parameter-dependent) Lagrangians for the de- 
scription of a one-dimensional free particle: 

I 

1 (q5 - q6q8>X + (q4q8 - $4’) (x - ti) + (q4 - q6q7) I2 
Lq= xq’t+ q8x + 1)2[@-q3q8)i + (4’q8 -42q’m-- ti> + (q’ -q3q7)l (3.7) 

(up to an arbitrary gauge transformation). The reader 
can verify that the Euler-Lagrange equation deduced 
from L, yields precisely the equation of motion f = 0, as 
it must be. Thus in Eq. (3.7) we have a family of c- 
equivalent Lagrangians, which are also s-equivalent. 

Since L,(t,x,X) is a formidable Lagrangian function, 
in order to study g-equivalence we better consider sepa- 
rately the monoparametric subgroups of the projective 
group. Hence from Eq. (3.7) we obtain the set of eight 
monoparametric s-equivalent Lagrangians presented in 
Table I. They all correspond to a (one-dimensional) free 
particle system. We see (cf. Table I) that the Lagrangians 
L,, L3, L4, L,, Lg, and L7 are g-equivalent with Lo, so that 
they have the same point symmetries. On the other hand, 
it can be shown that L2 and Ls are not g-equivalent La- 
grangians, neither are they g-equivalent with Lo; so these 
are essentially new Lagrangians. However, it is easy to 
obtain 

SL2 
yF&- = &(X)ji 

and 

(3.8) 

TABLE 1. Set of monoparametric s-equivalent Lagrangians induced by 
SL(3,R) for a one-dimensional free particle. LO denotes the standard 
Lagrangian ; 1. 

L, = J?/2q’ = (4’) - ‘L,, 
&=z?/2(1 +qSi.), 
L,=&?=& 

L4 = 1G + q4j2 = Lo + -$$(x + ;q4t, I, 

L, = f(qs,” = (qyL,, 
L,+L& 

’ L,=q 
I 
yp’] =4--$[2(f~q,r)], 

2 
L* = 2(1-t$x)[l+$(x-k)]’ 

(3.9) 

where AZ= (1 +q%)-” and As=[1 +q8(x-t3i)]-3 
are two non-Noether constants of motion. 13*14 

IV. SL(3,R)-EQUIVALENT LAGRANGIANS FOR ALL 
ONE-DIMENSIONAL LINEAR SYSTEMS 

We are now ready to generalize these results to any 
given one-dimensional Newtonian linear system. It can be 
shown that the most general diffeomorphism that lo- 
cally reduces any given one-dimensional linear sys- 
tem, 2 + f2(t)X + f,(t)x = fo(t), into a free particle X’ 
= 0, is given by the eight-parameter transformations 

t’ = Pit) + 42X^(t,x) + $l/[qG) + qQ(t,x) + 11, 
(4.1) 

x’ = 1q4h + q53t,x) + q6]/[q%) + q8X^(t,x) + 11, 
(4.2) 

where one defines the functions ? and x^, by means of the 
well-known Arnold transformation;‘5 i.e., 

at) = u1(t)/u,(t), x^(t,x): = [x- up(t)]/u2(t). 
(4.3) 

Here u,(t) denotes a particular solution of the original 
inhomogeneous equation while u i (t) and u2 (t) are two 
linearly independent solutions of the corresponding ho- 
mogeneous equation. 

Hence, these diffeomorphisms [Eqs. (4.1)-( 4.3)] al- 
low one to transform the standard Lagrangian Lo = $;” 
into a family of c-equivalent eight-parameter Lagrangians 
L,(t,x,X), for any given one-dimensional linear system. 
To this end, one uses the following Lagrangian transfor- 
mation [cf. Eq. (3.6)]: 
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g [ ;( gq2] =Lq(qlx,i), (4.4) 

where, for the sake of simplicity, we have omitted the 

arbitrary gauge transformation. [In general, we could 
write KL,(t,x,i) + G(t,x) in the right-hand member 
(RHM) of Eq. (4.4), indeed.] After a direct calculation, 
one gets 

L,= 
[(q4-q6q’)? + (q5-q6q8)i + (q4q8-q5q’)( k-zi,]’ 

2(qT+q%+ 1)2[(q’-q3q’) T + (#-q3q8)xh + (q1q8-$q’)( Z-X)] 

[also see Eq. (3.7)]. 
First, it is important to note that Eq. (4.5) yields 

(4.5) 

64 TA2(d 
*a . 

-= 
6X u2[ (q’ - q3q7) 7 + (8 - $q8) x^ + (q’q8 - $q’( ?x^-F~)]3 

(22- S), (4.6) 

where 

A(q): = 
d d q3 
6 q5 q6 
4’ q8 1 

#09 (4.7) 

so that the induced equation of motion is given by 

A *- *- * 
tLX=o. (4.8) 

Taking into account Eqs. (4.3), it is easy to check 
that this equation of motion corresponds precisely 
to 2 + f2(t)i + fi(t)x = fo(t). Hence all Lagrangians 
Lq( t,x,X) of the form given in Eq. (4.5) are s equivalent. 

Second, it is also interesting to mention here that we 
can obtain the standard Lagrangian, namely 

&,x,X) = f[i’ -fi(t)x2 + 2fo(f)xlexp( Jf,(tMt), 

(4.9) 

of the general linear system by means of a suitable gauge 
transformation; namely, 

L(t,x,d = KJ,(t,x,X) + d,ct,x,, (4.10) 

where L, denotes the Lagrangian 

L,(t,x,i) = iZ(t,x)/2 ?(t), (4.11) 

with K, = - 1, and the gauge function G, being defined 
a8 

I 

G, = f (x - up)2 2 + xzi 
PI (Sf2 dt) 

exp 

-- ’ j (zii - fi@exp( s f2 dt)dt. 2 (4.12) 

The Lagrangian function L, corresponds to the choice 
q1 = q5 = 1 and 2 = q3 = q4 = q6 = q’= q8 = 0 in Eq 

(4.5); and thus it is obtained fry Lo = 3;’ by means of 
the Arnold diffeomorphism t+t(t), x+x^( t,x) [cf. Eq. 
(4.311. 

Next, we tackle the problem of g equivalence. Let us 
then consider the six-parameter diffeomorphisms corre- 
sponding to the restriction 

(4.13) 

in Eqs. (4.1) and (4.2). These diffeomorphisms induce 
the following subset of s-equivalent Lagrangians: 

L;N)=LqIqLqLO 

= [(q4-q6q’) P +q+ -q5q’( k;$,]’ 

2(q’ - q3q’>( 1 + q’t)2 ; 

(4.14) 

Of course, in particular, the g-equivalent Lagrangians E 
and L, belong to this family. Moreover, by a direct cal- 
culation it can be shown that 

L;N’(t,x,i) = K&(t,x,i) + +q(t,x), (4.15) 

where 
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K; = (q5)2/(q1 - q3q7) (4.16) 

and 

(q4/q’) (45 + k742, if q’ = 0, 

G;(t,x) = [ (q4 - 4%‘) - 4547c12 
- 2q7(q1 - q3q7) (1 + q’t> ’ 

if 4’20. 

(4.17) 

So we see that {LbN’} constitutes a family of g-equivalent 
Lagrangians. Conversely, if any two given Lagrangians of 
the form stated in Eq. (4.5) are g-equivalent, one neces- 
sarily has 2 = q8 = 0. This means that the set {LhN’} is 
the maximal class of g-equivalent Lagrangians for the 
one-dimensional Newtonian linear system. 

We like to mention here an important fact concerning 
this issue. The maximalpoint symmetry group of the stan- 
dard Lagrangian given in Eq. (4.9)) as obtained by means 
of the Noether criterion of point symmetry of a given 
Lagrangian is given precisely by the six-parameter group 
of transformations one obtains from Eqs. (4.1) and (4.2) 
when one sets 2 = q8 = 0 into those equations. Hence the 
case 4’ = q8 = 0 defines the Noetherpoint symmetry group 
of the standard Lagrangian (4.9). We shall further dis- 
cuss this matter elsewhere. 

From the previous results we conclude that the nec- 
essary and sufficient condition for two given Lagrangians 
of the form (4.5) to be not g-equivalent is that one of 
them, at least, corresponds to q2#0 or 4’20. Thus, if we 
define the Lagrangians 

Lp(t,x,x) = L&,x,X) ~$#ovq+09 (4.18) 

we have the following classification: 

CL,) = {L;~$J{L~)), {L;N)}n{LF)J = 4. 
(4.19) 

In this way, the point symmetry group SL(3,R) of the 
equation of motion induces a new class of Lagrangians, 
which are not g-equivalent to LhN). This class is generated 
by two basic non-Noether Lagrangians, i.e., 

La= xh2/2( 1 +q+, (4.20) 

and 

“2 
A 

L8 = 
2(1 +qQ2[ T +q*( Z-Z)] * 

(4.21) 

Finally, in view of the s-equivalence, and taking into ac- 
count Eq. (2.2)) we search for those constants of motion 
Ao( t,x,a, such that 

% 6x=A,(t,x,x) 2. (4.22) 

It is easy to conclude that these are given by 

A,(t,x,$ = A2(q) f3[ (ql - q3q7) 3 + (42 - q3q8) x^ 

+ (q1q8-8qT)( CC??)I --. (4.23) 

This equation shows neatly that the only nontrivial con- 
stants of motion are precisely the non-Noether constants: 

A2(t,X,X)=[1+92(Xh/r]-3 (4.24) 

and 

&(t,x,i) = [1+q+?:/;)]-3. (4.25) 

For instance, for a forced harmonic oscillator 

ii + w2x = f. sin Rt, (4.26) 

one obtains the following non-Noether Lagrangians: 

[i + wx tan ot + [fe/( a2 - w2) ] (s1 cos fit + 0 sin Rt tan c&)-j2 
L2 = 2w[ 1 + ${x sin ot + (.+/a)cos wt + [fd(fP - 02)](sin fit sin wt + (n/w)cos fit cos wt))] ’ (4.27) 

[.i++xtanwt+ [fd(n*-~*)](ncosnt+osinnttanot)]* 
” = 241 + $(x + [ fd(fk* - 02)]sin fU)sec ~r]~[l + $(x cos tit - (l/w)i sin or) + [ fd(fP - o*)](sin lit cos of - (Wo)cos at sin ot)] ’ 

(4.28) 

I 

and the corresponding non-Noether constants of motion 
are obtained from 

and 

k2 =x sin wt + (l/w)X cos wt +fo/(f12 - 02) /~=xcoswt- (l/o)zisinwt+ [fd(fi2-w2)] 

X(sin !2t sin cot + (a/w)cos S2t cos wt) (4.29) X (sin Rt cos wt - (fl/w)cos fit sin cot), (4.30) 
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TABLE II. L2 Lagrangians for some one-dimensional linear systems and their associated non-Noether constants of motion A2 = ( 1 + #k2) - 3. 

Linear System Lagrangian L2 Constant of Motion k2 

x -I- 0*x = 0 
(X + ox tan ot)* 

20[ 1 + $(x sin WI + ( 1/0)X cos or)] 
xsinor+ (l/w)icoswr 

.2+2/Li+o*x=o 
n = (02 -p)‘/* 

[nxtanflt+ (i+h)12 
2fk[ 1 + g{x sin fit + (l/n) (i + k)cos QtP’l 2” [x sin fit + (l/n) (i + k~)cos Ib]d’ 

i+t -‘,-r-2x=o (~+X)*/2[2r+q%i+X)] gi + r- ‘x) 

respectively, with 
As = ( 1 + q*k,) - ‘. 

AZ= (1 +&r3 and 

In Tables II and III we present the non-Noether La- 
grangians L2 and L8, and their corresponding constants 
of motion, for some miscellaneous linear systems. 

CONCLUDING REMARKS 

In this paper, the maximal point symmetry group of 
the equations of motion for a given class of mechanical 
systems (namely, one-dimensional linear Newtonian sys- 
tems) has been used for obtaining systematically a family 
of equivalent Lagrangians for the description of these sys- 
tems. The interest of this group-theoretic approach to the 
“inverse problem of the calculus of variations” stems 
from its systematic generality. In fact, once the maximal 
point symmetry group of a system is known to be an 
r-dimensional Lie group (which is the case, indeed, for all 
systems considered in ordinary Lagrangian mechanics) 
the method of Lagrange transformations introduced in 
this paper can be applied to obtain a set of r-equivalent 
(Noether and non-Noether) monoparametric Lagrang- 

ian functions for the given system. It is clear that by 
applying this same approach (i.e., by means of the point 
symmetries of the Euler-Lagrange equations and the use 
of Lagrange transformations) one can generalize our re- 
sults to either nonlinear or multidimensional Lagrangian 
systems. 

Of course, the nonlinear case can be faintly distress- 
ing since, as it is well known, differential equations of 
order higher than unity only exceptionally admit contin- 
uous groups of point symmetry transformations, and non- 
linear differential equations, in general, exhibit some pe- 
culiar subsidiary constraints between symmetry and 
nonlinearity, which may produce a strong reduction in 
the number of essential parameters of the group. l6 (In- 
deed, there are instances such that the only point sym- 
metry admitted by a nonlinear differential equation is the 
identity.) Plainly, this behavior reduces the number of 
admissible monoparametric equivalent Lagrangian func- 
tions for such systems. 

Nevertheless, the interest of our results for the pro- 
gram of quantization in general (whether canonical, geo- 

TABLE III. L8 Lagrangians for some one-dimensional linear systems and their associated non-Noether constants of motion As = ( 1 + q8k8)3. 

Linear System Lagrangian L, Constant of Motion k8 

p= -g (i+gt)2 

2[1 +$(x+&]*[l +qyx-ri-$+)I 
x - ti - -gt’ 

i+LJ;= -g 

.?+co*x=0 

(X + g/rl)*t+’ 
-U[l +$(x+ (g/.L)r)l2[1+ ($/A)(X+Izx+&Y+g/~)l 

(X + ox tan or)* 

20[1 +qs~secot]~[l +q8(xcosmr- (l/o)xsinot)] 
x cos cot - (1/0)X sin tit 

~$2k.i+o*x=o 
Q = (02 - /p)“2 

[ Qx tan Qi + X + kx)]*.P’ 
2fI[ 1 + q’xPsec iIr]*[ 1 + q8{x cos ar - (l/Q) (.? + /Ix)sin nr)$‘] [x cos Rt - (l/n) (i + kx)sin nf]d’ 

i+t -‘,+-t-5=0 (fi +x)2 

4r( 1 + $rx)*[ 1 + $9(X - ri) I 
fr(x - ri) 
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metric, kinematic, or otherwise) should be stressed, be- 
cause every point transformation yields a canonical 
transformation, and to every Lagrangian there corre- 
sponds a particular Hamiltonian. This subject will be 
studied elsewhere. 
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