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Normal-mode theory for cylinder arrays
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We study a set of interacting cylinders under the influence of an electromagnetic field in the long-
wavelength limit. Cylindrical harmonics are used as basis functions in order to write the electric potential in
terms of multipolar moments of the charge distribution in the cylinders. We get a normal-mode expansion
where the effects of geometry and material are separated. It is shown that for a row of identical parallel
cylinders the electromagnetic modes are distributed symmetrically about the depolarization factor 1/2, each set
coupling to different components of the external field. The amplitudes of these symmetric depolarization
factors are the same and satisfy proper sum rules.

PACS number~s!: 03.50.De, 41.20.Cv, 78.20.2e
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I. INTRODUCTION

Interest in the electromagnetic response of arrays of
electric inclusions has a long history, starting with the se
nal work by Lord Rayleigh@1#. Later literature is abundan
including a detailed treatment of square and hexagonal
rays of parallel cylinders using Rayleigh’s method@2#, and
treatment of a pair of parallel cylinders with the method
images @3#. The electromagnetic resonances of arrays
spheres have also been extensively studied@4,5#. A very use-
ful approach to treating these resonances is the spectral
resentation introduced by Bergman, which separates the
fect of geometry from that of the physical properties of t
material the cylinders are made of@6,7#. It has been used
with advantage in the past for the case of spheres@8,9# as
well as cylinders@10#.

New techniques for producing nanocylinders@11# or co-
lumnar thin films@12# have stimulated further work on cyl
inder arrays@13#. The usual theoretical approach is to sol
Laplace’s equation explicitly in special coordinate syste
appropriate for the array under consideration. In particula
technique based on conformal transformations has been
plied to small clusters. Another method is to solve t
boundary value problem for a single inclusion in an exter
potential and introduce the coupling among inclusions la
through their individual polarizabilities and the local field f
each one@14,5#. In this work we take this approach to fin
the Bergman representation for the case of parallel cylind
We express the effective polarizability of the system a
normal-mode expansion in terms of resonances and oscil
strengths. Our main result is that the depolarization fac
defining these resonances for a row of parallel equal cy
ders are symmetrically distributed about the value1

2. Only
those below1

2 are excited when the electric field is in th
plane of the cylinder axes, while those above couple to
field component perpendicular to that plane.

In Sec. II we develop the general theory and derive
PRE 621063-651X/2000/62~4!/5688~7!/$15.00
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plicit expressions for parallel cylinders, in particular for th
case of a row. In Sec. III we treat a pair of parallel identic
cylinders and present numerical results for the appropr
depolarization factors and oscillator strengths. Finally,
Sec. IV we present our conclusions.

II. THEORY

We consider an isolated infinite uncharged cylinder
radius a and choose its longitudinal axis as thez axis of
coordinates. In terms of radial coordinates~r,u! for the x-y
plane, the electric potential it produces (r.a) may be writ-
ten as

F~rW !5kc (
m52`

`
qmeimu

umur umu , ~1!

wherekc is a proportionality constant dependent on the ch
sen system units andqm is a multipole moment of the charg
distribution in the cylinder, defined by the integral

qm5E drW n~rW !r umue2 imu. ~2!

Because there is no net charge in the cylinder,q050. We are
interested in the dielectric response of the cylinder to
external potential

Fext5kcVmeimurm, ~3!

wherem is a positive integer. In terms of this field and th
associated multipole excited in the cylinder, we define
m-polar polarizabilityam through

qm52amVm . ~4!

The potential created by the charge distribution induced
the cylinder is obtained by solving the boundary value pro
5688 ©2000 The American Physical Society
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PRE 62 5689NORMAL-MODE THEORY FOR CYLINDER ARRAYS
lem with the external potential~3!. We then identify the cor-
responding induced multipolar moment by comparison w
relation ~1!. The resulting expression for the multipolar p
larizability is

am5S «12«2

«11«2
D umua2umu, ~5!

where«1 is the dielectric function of the cylinder and«2 is
that of the surrounding material.

We next construct a normal-mode expansion for the s
cial case of a system of parallel cylinders. The charge dis
bution on each depends on the local potential. It is con
nient to build this potential by choosing thez axis of
coordinates along the axis of the cylinder of interest, s
cylinder j, and then adding up the contributions of all oth
cylinders. Starting with expression~1! we write the potential
close to the origin, produced by a cylinder located atrW j 8 and
having a single multipole momentqm8 j 8 ,

Fm8 j 85kc

qm8 j 8e
im8g

um8uurW 2rW j 8u
um8u

, ~6!

whereg is the angle between vectorrW 2rW j 8 and thex axis.
As shown in the Appendix, this expression can be written
terms of cylindrical harmonics. Only half of the harmoni
are present in the result, depending on the sign ofm8, and
we get

Fm8 j 85kc (
m.0

`

Vm j
m8 j 8e7 imurm, ~7!

with

Vm j
m8 j 85

~21!m8~ um8u1m21!!

um8u!m!

e6 i ~ um8u1m!u j 8

r j 8
um8u1m

qm8 j 8 ,

~8!

where the upper~lower! sign in the exponents corresponds
m8.0 (m8,0). Notice that a single multipole momen
qm8 j 8 in a cylinder located atrW j 8 produces near the origin
potential containing all the cylindrical harmonics with th
sign of indexm opposite to that ofm8. Therefore, according
to Eq. ~4!, it induces in cylinderj located at the origin the
multipoles

qm j52am jVm j
m8 j 8 , ~9!

with mm8,0. In order to include the effect of all the mult
poles in cylinderj 8 and all the cylinders affecting cylinderj,
the previous relation must be added overm8 and j 8. An
additional termVm representing the cylindrical harmon
component of a potential due to an external source could
be included. Thus, we finally write the following equatio
showing the coupling among cylinders:

qm j52am jS Vm1 (
m8 j 8

Am j
m8 j 8qm8 j 8D , ~10!

where the coupling coefficientsAm j
m8 j 8 are defined by
h

e-
i-
-

,
r

n

so

Am j
m8 j 8

5H 0, if mm8.0

~21!m8~ umu1um8u21!!

umu! um8u!
ei ~m82m!u j j 8

r j j 8
umu1um8u if mm8,0

~11!

with rW j 82rW j5(r j , j 8 ,u j , j 8). The coupling coefficients satisfy
the Hermitian relation

~Am j
m8 j 8!* 5Am8 j 8

m j . ~12!

In what follows we shall assume for simplicity that«1
5114px, «251. As may be readily verified, the multipola
polarizability am j given by Eq.~5! may be written in terms
of the susceptibilityx of the material the cylinder is made o
as

am j5
2pumuaj

2umu

2p1x21 . ~13!

Replacing in Eq.~10! we see that terms depending on t
geometry and on the material properties are separated. F
set of parallel cylinders of the same material, the coup
equations can be written as

(
m8

~x21dmm81Hm
m8!xm85 f m , ~14!

wherem represents the pair of indices (m j), and

Hm j
m8 j 852p~dmm8d j j 81umm8u1/2aj

umuaj 8
um8uAm j

m8 j 8!, ~15!

f m j522pumu1/2aj
umuVm j , ~16!

xm j5
qm j

umu1/2aj
umu . ~17!

The matrixH5$Hm j
m8 j 8% has the same Hermitian proper

as matrixA5$Am j
m8 j 8%, a useful property in solving the equa

tions numerically. If the matrixW diagonalizesH according
to

W21HW54pN, ~18!

with N5$nmdmm8%, the solutions to the linear equations a
given by

xm5 (
m8m9

Wm
m8~W21!m8

m9 f m9

x2114pnm8
. ~19!

Here thenm8 are the usual depolarization factors. The abo
expression is similar to that for spheres obtained in Refs.@8#
and@9#. Taking advantage of the diagonal term in Eq.~15!, it
is convenient to define a new Hermitian matrixB through

H52p~ I1B!, ~20!

Bm j
m8 j 85umm8u1/2aj

umuaj
um8uAm j

m8 j 8 , ~21!
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whereI is the unit matrix. Then, if$lm% are the eigenvalue
of B one gets from Eqs.~18! and ~20! the relation

lm52nm21. ~22!

From Eqs.~11! and ~21! follows the property

Bm j
m8 j 850 if mm8.0, ~23!

which can be used in order to reduce to one-half the siz
the matrix to be diagonalized. The eigenvalue problem

BZ5lZ ~24!

can be written in terms of smaller matricesb1 and b2 ,

formed by taking elementsBm j
m8 j 8 with m positive or negative,

respectively. In terms of these new matrices, Eq.~24! is split
into the two coupled equations

b1z25lz1 , ~25!

b2z15lz2 , ~26!

wherez1 andz2 are vectors formed by taking componen
Zm8 with m8 positive or negative, respectively. The eleme
of matrix b1 (b2) are obtained from the elements of matr
B,

Bm j
m8 j 85~21!m8umm8u1/2aj

umuaj 8
um8u

3
~ umu1um8u21!!

umu! um8u!
ei ~m82m!u j j 8

r j j 8
umu1um8u

~27!

with m.0 andm8,0 ~m,0 andm8.0!.
Up to here our results are valid for an arbitrary distrib

tion of parallel cylinders. A further simplification occur
when we treat a row of parallel cylinders with their axes
a single plane, in which case one obtainsb15b25b, where
matrix b is real. By taking Eqs.~25! and~26!, substitution of
one into the other gives two equivalent relations, which
write as

b2z65l2z6 , ~28!

wherez6 stands forz1 or z2 . By solving

bz5lz ~29!

we get one-half of the eigenvalues of matrixB, the others
being just the values2l. From this finding and Eq.~22! we
get the result that the depolarization factorsnm form a set of
values symmetric aboutn5 1

2 . Also, to be consistent with
Eqs.~25! and~26!, we conclude that for the eigenvaluel of
matrix B,

z15z2 , ~30!

whereas for eigenvalue2l of the same matrix,

z152z2 . ~31!

For the case of a row of cylinders, solution~19! may also
be given a simpler form. To show this we define a matrixu
that diagonalizesb through
of

s

-

e

u21bu5l , ~32!

where l m
m85lmdmm8 is now diagonal. In writing the eigen

value problem for matrixB in terms of the smaller matrixb,

F0 b

b 0G Fz1

z2
G5lFz1

z2
G , ~33!

it can be shown thatB can be diagonalized intoL , according
to the relation

U21BU5L , ~34!

with U andL given by

U5
1

&
Fu u

u 2uG , ~35!

L5F l 0

0 2l
G . ~36!

In writing Eq. ~14! in terms of matrixb we get

F ~x2112p!I 2pb

2pb ~x2112p!I G Fx1

x2
G5F f 1

f 2
G , ~37!

which we solve in the form

Fx1

x2
G5Fd1 d2

d2 d1
G F f 1

f 2
G , ~38!

where

d15 1
2 ~um1

21u211um2
21u21!, ~39!

d25 1
2 ~um1

21u212um2
21u21!, ~40!

with

m15~x2112p!I12pl ~41!

m25~x2112p!I22pl . ~42!

Becausem1 and m2 are diagonal, their inverses are als
diagonal, and the elements of the inverses are the inverse
the corresponding elements of matricesm1 andm2 .

In the case of a uniform electric field in the plane of t
cylinder axes and perpendicular to them~parallel field geom-
etry!, vectorsf 1 and f 2 representing the external potenti
are equal and so are the vectorsx1 andx2 . We then have

x25~d11d2! f 1 ~43!

with the components of vectorsx2 given by

xm5(
m8

um
m8u1

m8 f 1

x2114pnm8
, ~44!

where we have used the orthogonality property of matrixu,
and

f 15paE0 , ~45!
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PRE 62 5691NORMAL-MODE THEORY FOR CYLINDER ARRAYS
nm85
1
2 ~11lm8!. ~46!

If, on the other hand, the electric field is in the directi
perpendicular to the plane containing the axes of the cy
ders~perpendicular field geometry!, f 152 f 2 and thusx1

52x2 . Then

x25~d12d2! f 2 ~47!

with the components of the vectorsx2 given by

xm5(
m8

um
m8u1

m8 f 21

x2114pn2m8
, ~48!

where

f 215 ipaE0 , ~49!

n2m85
1
2 ~12lm8!. ~50!

We note that the eigenvalueslm of matrix b appear for par-
allel external field while their negatives are present when
external field is perpendicular. It is easy to verify that expr
sions~44! and~48! corresponding to parallel and perpendic
lar geometries are related, as obtained in Ref.@15#, a feature
deriving from a general property first proved by Keller@16#.
Accordingly, the negative of Eq.~48! is obtained from Eq.
~44! by substituting«1 by 1/«1 . Such a replacement i
equivalent to writing2(x2114p) instead ofx21 in Eq.
~44!. As we shall show in the next section, only depolariz
tion factors greater or smaller than1

2 are excited, depending
on the direction of the external field, in the case of tw
parallel cylinders, in accordance with our results~46! and
~50!.

In general, an arbitrary system ofN cylinders described in
an M-polar approximation requires arrays of dimensi

2MN. As explained above, however, the propertyBm j
m8 j 8

50 if mm8.0 permits a reduction of the dimensionality b
a factor of one-half in systems of cylinders with their ax
lying on a single plane. In that case, according to Eq.~29!,
we need just to diagonalize matrixb, of dimensionMN.

III. TWO EQUAL CYLINDERS

The simplest array is a system of two (N52) equal and
parallel cylinders. It has additional symmetries that perm
further reduction of the dimension of the eigenvalue probl

as explained below. By using the propertyBm,2
m8,1

5(21)m1m8Bm,1
m8,2 , the eigenvalue equation for matrixb as

given by Eq. ~29! can be written in terms of matrices o
dimensionM as follows:

F0 g

ḡ 0G Fz1

z2
G5lFz1

z2
G , ~51!

whereḡ is the transpose ofg, with the elements of matrixg
given by

gm
m85~21!m811km

m8 , ~52!

where
-

e
-

-

a

km
m852Amm8

~m1m821!!

m!m8!

am1m8

rm1m8
. ~53!

Herem andm8 are positive integers running from 1 toM. It
is easy to verify that the substitution

zm,25~21!m11zm,1 ~54!

brings the coupled equations~51! into identical sets of un-
coupled eigenvalue equations for vectorsz1 and z2 . There-
fore, keeping multipoles up to orderM, a single eigenvalue
problem of dimensionM can be obtained. Thus, the fina
equation for the normal modes of a pair of identical para
cylinders excited by a uniform electric field is

kz5lz ~55!

with k5$km
m8% given by Eq.~53!. The normal-mode expan

sion for parallel field then results in

xm,15(
m8

Cm
m8 f 1

x2114pnm8
1 , ~56!

where nm8
1 are given in terms of the eigenvaluesl of the

matrix k according to

nm8
6

5 1
2 ~16lm8!, ~57!

f 15paE0 , and the coefficientsCm
m8 are defined by

Cm
m85um

m8u1
m8 . ~58!

Hereu diagonalizesk and is formed by eigenvectors of th
matrix k ordered in columns. Becauseu is orthogonal it can
be shown that the coefficients given by relation~58! satisfy
the sum rule

(
m8

Cm
m85dm,1 . ~59!

The corresponding normal-mode expansion for the perp

dicular geometry may be written in terms ofCm
m8 and f 1 as

xm,152 i(
m8

Cm
m8 f 1

x2114pnm8
2 , ~60!

wherenm8
2 is given by Eq.~57!.

In solving Eq.~55! numerically for a desired accuracy,
value ofM has to be chosen appropriate to a given separa
parameters5r/2a. A larger value ofM is required ass
approaches unity. In order to illustrate such a behavior
show in Fig. 1 the value ofM required to achieve conver
gence in the calculation ofn1 , as a function ofs. Conver-
gence is here defined as the value ofM for which the first
difference smaller than 1% is obtained in the results betw
successive values. The same convergence data are vali
n21 . We note from the figure that the dipole approximati
is sufficient at separations larger thans51.90, whereas the
quadrupole is required in the range 1.40<s,1.90, the octu-
pole in the range 1.25<s,1.40, and so on, with the multi
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5692 PRE 62R. ROJAS, F. CLARO, AND C. R. PROETTO
pole order rapidly increase with decreasings. Figure 2
shows the converged depolarization factorsnm correspond-
ing to m561, as a function of separation. Note that t
values are symmetric about 0.50 and approach this valu
the separation goes to infinity.

Because optical properties are associated with the di

moment, we have also studied in detail the coefficientsC1
m8

and associated depolarization factorsnm8
6 for m51, in rela-

tion to Eqs. ~56! and ~60!. At large separation, when th
dipole approximation is appropriate, we find that only t
first term in the normal-mode expansion is important. All t
depolarization factors approach the value1

2, and the coeffi-
cient corresponding to the dipole-dipole mode approac
unity while others exhibit a negligible contribution. At clos
separation, however, when a higher order approximatio
required, several modes have non-negligible coefficients
the associated depolarization factors are different from
value 1

2. In Fig. 3 we show the first six coefficientsC1
126 in

terms of the associated depolarization factors for a pai
equal cylinders. We have chosens51.10 for the cases of an
external field applied in the parallel@Fig. 3~a!# and perpen-

FIG. 1. Multipolar order required for convergence as a funct
of parameters5r/2a for a system of two equal cylinders.

FIG. 2. Depolarization factors corresponding to dipole mod
(m561) as a function of parameters for a pair of equal cylinders.
as

le

s

is
nd
e

f

dicular @Fig. 3~b!# geometries. For the results shown,M
510 is enough for convergence, although one should kee
mind that for quantities associated with higher polar ord
convergence is slower and requires a larger value ofM, as
remarked earlier.

For an isolated cylinder the only mode excited by a p
pendicular field is the center moden50.5. For interacting
cylinders, however, the coupling gives rise to the excitat
of other modes as well as suggested by Fig. 3. Note
perfect symmetry in size and location aboutn50.5 of the
one case with respect to the other, a result that does not
for the case of spheres. Owing to the fact that parallel mo
are those shifted to the left of the center mode while perp
dicular modes are shifted to the right, in optical absorpt
resonances are redshifted in the former case and bluesh
in the latter. Note also that as the cylinders approach e
other not only are the resonances shifted, but also t
strength is displaced to higher order modes, making th
progressively more important. Although the results sho
are for a pair, the qualitative behavior discussed above c
acterizes other arrays as well, since proximity effects tend
dominate@5#.

IV. CONCLUSIONS

We have described a system of interacting dielectric c
inders excited by a uniform external electric field in terms

s

FIG. 3. Amplitudes corresponding to depolarization factors fo
pair of equal cylinders with separation parameters51.10 under
uniform electric field. Case~a! is for the parallel field and and cas
~b! for the perpendicular configuration.
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PRE 62 5693NORMAL-MODE THEORY FOR CYLINDER ARRAYS
multipoles of the charge distributions. We have obtaine
set of linear equations for the coupled resonances and
tipoles, where dielectric properties are separated from
geometry. Our description is similar to a previous one u
for spheres, and is an alternative to that proposed recent
Ref. @10#. Our main result for a row of parallel cylinders
that the electromagnetic modes have depolarization fac
symmetric aboutn5 1

2 , according to the relation

n65 1
2 ~16ulu!. ~61!

This expression is similar to Eq.~3.18! of Ref. @7#, obtained
by considering just the main term of the interaction betwe
two identical grains. Also, as pointed out in Sec. II, it
consistent with Keller’s theorem and provides the appro
ate relationship that allows one to get the perpendicular
sponse from the parallel response by simply replacing«1 by
1/«1 and changing the sign of the resulting effective polar
ability.

We have also shown that modes withn, 1
2 are excited by

an electric field along a perpendicular line joining the cyl
der axes~those withn. 1

2 have zero amplitude!, while those
with n. 1

2 are excited when the field is perpendicular to t
plane containing these axes. A similar result is also given
the case of identical grains in Ref.@7#, Eq. ~3.20!, where it is
shown that the amplitude corresponding to one of the s
metric eigenvalues is zero. Our work shows that amplitu
corresponding to symmetric eigenvalues depend on the
entation of the external field, one of the amplitudes be
zero just for the parallel or the perpendicular geometries
relation~61! thel are the eigenvalues of the interaction m
trix and depend on geometry only. Furthermore, the am
tudes of the electromagnetic modes are determined jus
eigenvectors of the interaction matrix, independent of
direction of the external field, so that amplitudes correspo
ing to a pair of symmetric depolarization factors are t
same. These are exact results.

We have also studied in detail a system of two eq
cylinders by solving the linear equations numerically, sho
ing that at edge to edge separation less than about a diam
multipoles higher than the dipole must be taken into acco
in the calculations.
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APPENDIX: MATHEMATICAL IDENTITIES

The following identities are required in order to write E
~6! in terms of cylindrical harmonics. Assumingm.0,

S ]

]x
6 i

]

]yD m

ln
1

urW 2rW j u
5~21!m@2~m21!#!!

e6 ima

urW 2rW j um ,

~A1!

S ]

]x
6 i

]

]yD m

ln
1

urW 2rW j u
52m21 (

k>m

~k21!!

~k2m!!

rk2m

r j
k

3e6 i ~2k1m!ue6 iku j . ~A2!

For m51, Eq.~A1! is satisfied by taking the first derivative
of the function lnurW2rW ju directly, while Eq. ~A2! requires
evaluation of the first derivative of the right hand side of

ln
1

urW 2rW j u
5 ln

1

r j
1 (

k51

`
1

2k S r

r j
D k

~eik~u2u j !1e2 ik~u2u j !!,

~A3!

an identity found in Ref.@17#. After this is done, the identi-
ties follow from mathematical induction.

The exponential functione6 ima in the first identity can be
written aseima by using a new indexm that can now be
positive or negative. Comparing Eqs.~A1! and~A2! one then
obtains

eima

urW 2rW j u umu 5
~21!m2umu21

@2~ umu21!#!! (
k>umu

~k21!!

~k2umu!!
rk2umu

r j
k

3ei s~m!~2k1umu!uei s~m!ku j , ~A4!

where the functions(m) represents the sign ofm. Replacing
the indexk by k1um8u, Eq. ~A4! can be written as

eima

urW 2rW j u umu 5
~21!m

~ umu21!! (
k50

`
~k1umu21!!

k!

rk

r j
k1umu

3e7 ikue6 i ~k1umu!u j , ~A5!

where the upper~lower! sign corresponds tom.0 (m,0).
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