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Normal-mode theory for cylinder arrays
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We study a set of interacting cylinders under the influence of an electromagnetic field in the long-
wavelength limit. Cylindrical harmonics are used as basis functions in order to write the electric potential in
terms of multipolar moments of the charge distribution in the cylinders. We get a normal-mode expansion
where the effects of geometry and material are separated. It is shown that for a row of identical parallel
cylinders the electromagnetic modes are distributed symmetrically about the depolarization factor 1/2, each set
coupling to different components of the external field. The amplitudes of these symmetric depolarization
factors are the same and satisfy proper sum rules.

PACS numbgs): 03.50.De, 41.20.Cv, 78.26e

[. INTRODUCTION plicit expressions for parallel cylinders, in particular for the
case of a row. In Sec. Il we treat a pair of parallel identical
Interest in the electromagnetic response of arrays of dicylinders and present numerical results for the appropriate
electric inclusions has a long history, starting with the semi-depolarization factors and oscillator strengths. Finally, in
nal work by Lord RayleigH1]. Later literature is abundant, Sec. IV we present our conclusions.
including a detailed treatment of square and hexagonal ar-
rays of parallel cylinders using Rayleigh’s methi®], and Il. THEORY
imagest3]. The.lectiomagnete resonances of artays of Ve consider an isolated infinte uncharged cylinder of
spheres have also been extensively stufed]. A very use- radlus_a and choose its Ion.g|tud|naI'aX|s as theaxis of
ful approach to treating these resonances is the spectral rec?ord"lﬁtes'l Intt_e rmst oft_r ald_ltal codordlna'(@sa) for Lhe X'.%
resentation introduced by Bergman, which separates the e?éﬁnaes' e electric potential it producegs=ta) may be writ-
fect of geometry from that of the physical properties of the
material the cylinders are made [8,7]. It has been used oc
with advantage in the past for the case of sph¢8eg] as D(p)=k. 2
well as cylinderd10]. m=—o

New techniques for producing nanocylindé¢fd] or co- ) ) ]
lumnar thin films[12] have stimulated further work on cyl- Wherek is a proportionality constant dependent on the cho-

inder arrayg13]. The usual theoretical approach is to solve S€N System units arg}, is a multipole moment of the charge
Laplace’s equation explicitly in special coordinate systemdlistribution in the cylinder, defined by the integral
appropriate for the array under consideration. In particular, a

technique based on conformal transformations has been ap- Qm:f dpn(p)p/meime. 2
plied to small clusters. Another method is to solve the

boundary value problem for a single inclusion in an external
potential and introduce the coupling among inclusions late
through their individual polarizabilities and the local field for
each ond14,5. In this work we take this approach to find
the Bergman representation for the case of parallel cylinders. O =K.\ emiym 3)
We express the effective polarizability of the system as a ext™ KelmE P

normal-mode expansion in terms of resonances and oscillatQfnerem is a positive integer. In terms of this field and the

strgngths. Our main result is that the depolarization faCt‘?%ssociated multipole excited in the cylinder, we define the
defining these resonances for a row of parallel equal Cy“n'mpolar polarizabilitya,, through

ders are symmetrically distributed about the vafeOnly

qmeima
Tl v

because there is no net charge in the cylindgs 0. We are
interested in the dielectric response of the cylinder to the
external potential

those belows are excited when the electric field is in the Am=— &mVp. (4)
plane of the cylinder axes, while those above couple to the
field component perpendicular to that plane. The potential created by the charge distribution induced in

In Sec. Il we develop the general theory and derive exthe cylinder is obtained by solving the boundary value prob-

1063-651X/2000/6@)/56887)/$15.00 PRE 62 5688 ©2000 The American Physical Society



PRE 62 NORMAL-MODE THEORY FOR CYLINDER ARRAYS 5689

lem with the external potenti@B). We then identify the cor-  ym’j’
responding induced multipolar moment by comparison with ™

relgtior_ll(l).' The resulting expression for the multipolar po- 0, if mm >0
larizability is , -
=4 (=)™ (Im[+[m’|-1)! ™ ™’ y o
E1— €& ’ ’ | mm,<
= # |m|a2m, (5) [ml!|m’|! pHn,HImI
1te (11)

wheree, is the dielectric function of the cylinder ang is | i) 5 —Fi=(p: .+ 0; ). The coupling coefficients satisfy
that of the surrounding material 1o Jd 2
: . the Hermitian relation
We next construct a normal-mode expansion for the spe-
cial case of a system of parallel cylinders. The charge distri- (Am’_j’)* —aAm (12)
bution on each depends on the local potential. It is conve- ml m

nient to build this potential by choosing the axis of In what follows we shall assume for simplicity thag
coordinates along the axis of the cylinder of interest, say,:1+4WX &,=1. As may be readily verified, the multipolar
cylinderj, and then adding up the contributions of all Otherpolarizability arm; given by Eq.(5) may be written in terms

cylinders. Starting with expressidft) we write the potential of the susceptibilityy of the material the cylinder is made of,
close to the origin, produced by a cylinder locategatand as

having a single multipole momen,;- ,

2m|m|a?™

= . (13

’.,eim/'y a i A . -1
A (6) mj 27+ y 1

D=k,
| [p -y ™ - ,
Replacing in Eq.(10) we see that terms depending on the
where y is the angle between vectpr—p;, and thex axis.  geometry and on the material properties are separated. For a
As shown in the Appendix, this expression can be written inset of parallel cylinders of the same material, the coupled
terms of cylindrical harmonics. Only half of the harmonics equations can be written as

are present in the result, depending on the sigmbof and

we get 2 (X 28, +HE X, =1, (14
o "
Py jr= kcmE>O lejj,e:imaf’m- @) where u represents the pair of indicem(), and
with HI =200 S 85+ | mim |V ™alT AT, (15)
gD -y et fy=— 2| m| 2"V (16)
m) [m’[tm! plm e m'j’ -
(8) ij:|m|—1’2a}ﬂ' (17

where the uppeflower) sign in the exponents corresponds to
m’>0 (m’'<0). Notice that a single multipole moment  The matrixH={H! } has the same Hermitian property

qm’j’ ina Cylinder located aﬁjr prOduceS near the Origin a gs matnxA:{Am;J,}, a useful property in So|ving the equa-

potential containing all the cylindrical harmonics with the tions numerically. If the matris diagonalizesH according
sign of indexm opposite to that om’. Therefore, according g

to Eqg. (4), it induces in cylindej located at the origin the
multipoles W IHW =4=N, (18

Omj=— amjvm’jj’ , (9)  Wwith N={n,é,,}, the solutions to the linear equations are

given by

with mm’ <0. In order to include the effect of all the multi- ) )

poles in cylinderj’ and all the cylinders affecting cylindgr Wi (W™ 1)Z,fﬂ,,

the previous relation must be added ovef andj’. An Xu= 2 T 4w,
additional termV,, representing the cylindrical harmonic wes ”

component of a potential due to an external source could alsgere then,,, are the usual depolarization factors. The above
be included. Thus, we finally write the following equation expression is similar to that for spheres obtained in Héfs.

(19

showing the coupling among cylinders: and[9]. Taking advantage of the diagonal term in Etp), it
is convenient to define a new Hermitian matBxthrough
Qmi=— @mi| Vit > A" g |, (10) _
mj mj| Vm = mj Um’j H=2#(1+B), (20

i L ey ) rir _ 1/2 ’ rir
where the coupling coefficientsy;! are defined by Bn' =[mm| a}mla}m lA%J : (21)
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wherel is the unit matrix. Then, if\ ,} are the eigenvalues
of B one gets from Eq9.18) and (20) the relation

A,=2n,—1. (22
From Egs.(11) and(21) follows the property
BMI'=0 if mm'>0, (23
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u tbu=/, (32
where/ % =\, 6, is now diagonal. In writing the eigen-

value problem for matrixB in terms of the smaller matrilg,
0 b
b O

Zy
Z_

Zy

1 (39

which can be used in order to reduce to one-half the size df can be shown tha can be diagonalized into, according

the matrix to be diagonalized. The eigenvalue problem

BZ=\Z (24)

can be written in terms of smaller matricks and b_,

formed by taking elemean;j' with m positive or negative,

respectively. In terms of these new matrices, &4) is split

into the two coupled equations
b,z_=\z,, (25)

b_z,=\z_, (26)

to the relation

wherez, andz_ are vectors formed by taking components N Writing Eq. (14) in terms of matrixb we get

Z.» with m’ positive or negative, respectively. The elements

of matrixb, (b_) are obtained from the elements of matrix
B!

Iyt ’
By’ =(—1)”"|mm’|1’2a}m‘a}',n |

(Jm[+]m’|= 1)1 (M ~me
|m[![m’]!

(27)

[m|+[m’|
Pijr

with m>0 andm’<0 (m<0 andm’>0).

Up to here our results are valid for an arbitrary distribu-

tion of parallel cylinders. A further simplification occurs

when we treat a row of parallel cylinders with their axes on

a single plane, in which case one obtdins=b_=Db, where
matrix b is real. By taking Eqs(25) and(26), substitution of

one into the other gives two equivalent relations, which we

write as
b%z. =\?%z. , (29
wherez.. stands forz, or z_. By solving
bz=\z (29)

we get one-half of the eigenvalues of matBx the others
being just the values-\. From this finding and Eq22) we
get the result that the depolarization factagsform a set of
values symmetric about=3. Also, to be consistent with
Egs.(25) and(26), we conclude that for the eigenvaleof

matrix B,

z.=7_, (30)
whereas for eigenvalue \ of the same matrix,
z,=—-7_. (31

For the case of a row of cylinders, soluti@t®) may also
be given a simpler form. To show this we define a matrix
that diagonalize® through

U BU=L, (34)
with U andL given by
1/u u
valu —u
L 0 36
o -/ (36
(x *+2m)l 27h x.] [f, .
2ab (x Y+2m1|[x-] [f-] 37
which we solve in the form
N dy d_|[f
=l *, (39)
X_ d_ d. | f-
where
d,=3(um;u " *+um-tuY), (39
d_=%um; tu"t—um-tu?), (40)
with
m,=(x"*+2ml+27/ (41)
m_=(x"*+2m)—2u/. (42

Becausem, and m_ are diagonal, their inverses are also
diagonal, and the elements of the inverses are the inverses of
the corresponding elements of matrices andm_ .

In the case of a uniform electric field in the plane of the
cylinder axes and perpendicular to théparallel field geom-
etry), vectorsf, andf_ representing the external potential
are equal and so are the vectars andx_ . We then have

X_=(d,+d_)f, (43
with the components of vectoss. given by
ut Ut f
_ pn 21 'l
X"_% x 4mn,’ (44

where we have used the orthogonality property of matrix
and

f,=mak, (45)
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Ny =3(1+X\,). (46) (m+m’—1)! amtm™
mim’t - pmim’” 53

K = —

If, on the other hand, the electric field is in the direction

perpendicular to the plane containing the axes of the cylin- , L .
ders (perpendicular field geometryf, = —f_ and thusx, Herem andm' are positive mte.gers running from 1 k. It
——x_ . Then is easy to verify that the substitution

x_=(d, —d_)f_ (47) Zi o= (= 1) 2y (54)

brings the coupled equatiori§1) into identical sets of un-

coupled eigenvalue equations for vectafsand z,. There-

fore, keeping multipoles up to ord®f, a single eigenvalue
k= (48)  problem of dimensiorM can be obtained. Thus, the final
X “tamn_ equation for the normal modes of a pair of identical parallel
cylinders excited by a uniform electric field is

with the components of the vectoxs given by

! ’
s
-y
X, =

’
o

where
kz=\z (55
f,l:i’ﬂ'an, (49)
. with k={km'} given by Eq.(53). The normal-mode expan-
Nopr=2(1=Ny0). (50)  sion for parallel field then results in
We note that the eigenvaluas, of matrix b appear for par- cm'¢
allel external field while their negatives are present when the X 1= E _lm—l+ (56)
external field is perpendicular. It is easy to verify that expres- T x Ttamng,

sions(44) and(48) corresponding to parallel and perpendicu- .

lar geometries are related, as obtained in IRE5], a feature Wheren_, are given in terms of the eigenvaluasof the
deriving from a general property first proved by Kell@6]. =~ matrix k according to

Accordingly, the negative of Eq48) is obtained from Eq. .

(44) by substitutinge, by 1/;. Such a replacement is Ny =3(1FN\p), (57)
equivalent to writing— (x " *+4) instead ofy ! in Eq. /

(44). As we shall show in the next section, only depolariza-f,=mwaE,, and the coefficient€, are defined by

tion factors greater or smaller thgrare excited, depending

on the direction of the external field, in the case of two Cm=umu". (58)
parallel cylinders, in accordance with our resul$) and
(50). Hereu diagonalizesk and is formed by eigenvectors of the

In general, an arbitrary system Nfcylinders described in  matrixk ordered in Colur_nps. Beqauseis ortho_gonal it_can
an M-polar approximation requires arrays of dimensionbe shown that the coefficients given by relati@8) satisfy

2MN. As explained above, however, the propeBf;!’ the sum rule

=0 if mm'>0 permits a reduction of the dimensionality by

a factor of one-half in systems of cylinders with their axes > Cm/= Om1- (59
lying on a single plane. In that case, according to &§), m’

we need just to diagonalize matid; of dimensionMN. The corresponding normal-mode expansion for the perpen-

lll. TWO EQUAL CYLINDERS dicular geometry may be written in terms Gf) andf, as

The simplest array is a system of twhl€2) equal and . Cm'f1
parallel cylinders. It has additional symmetries that permit a Xm1= -i> 1A
further reduction of the dimension of the eigenvalue problem m' X e
as explained below. By using the properthfz*1 wheren , is given by Eq.(57).
=(—1)m*m'Bm:1'2, the eigenvalue equation for matrixas In solving Eq.(55) numerically for a desired accuracy, a
given by Eq.(29) can be written in terms of matrices of value ofM has to be chosen appropriate to a given separation
dimensionM as follows: parametero=p/2a. A larger value ofM is required aso
approaches unity. In order to illustrate such a behavior we
show in Fig. 1 the value oM required to achieve conver-
gence in the calculation af;, as a function ofs. Conver-
gence is here defined as the valueMffor which the first
wheregq is the transpose af, with the elements of matriy  difference smaller than 1% is obtained in the results between
given by successive values. The same convergence data are valid for

n_,. We note from the figure that the dipole approximation
gm =(—1)™ Ky, (52) s sufficient at separations larger tham1.90, whereas the
quadrupole is required in the range 146€<1.90, the octu-
where pole in the range 1.250<1.40, and so on, with the multi-

(60)

0 g
g 0

Z3
Z3

Z3

. . (51
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FIG. 1. Multipolar order required for convergence as a function 0.4 )
of parametelr= p/2a for a system of two equal cylinders. .‘8’ c,
E 0.3 ¢’
pole order rapidly increase with decreasing Figure 2 ]
shows the converged depolarization factofs correspond- 3 0.24 c’
ing to m==1, as a function of separation. Note that the §
values are symmetric about 0.50 and approach this value as §°-1'
the separation goes to infinity.
Because optical properties are associated with the dipole 0.0
moment, we have also studied in detail the coefficiél‘{lf‘é 0.0 0.2 0.4 0.6 0.8 1.0

and associated depolarization factars for m=1, in rela- Depolarization factor

tion to Egs.(56) and (60). At large separation, when the (b)

dipole approximation is appropriate, we find that only the FIG. 3. Amplitudes corresponding to depolarization factors for a
first term in the normal-mode expansion is important. All thepair of equal cylinders with separation parameter 1.10 under
depolarization factors approach the valjjeand the coeffi-  uniform electric field. Caséa) is for the parallel field and and case
cient corresponding to the dipole-dipole mode approachet) for the perpendicular configuration.

unity while others exhibit a negligible contribution. At closer

separation, however, when a higher order approximation iglicular [Fig. 3(b)] geometries. For the results showM,
required, several modes have non-negligible coefficients ang 10 is enough for convergence, although one should keep in
the associated depolarization factors are different from thenind that for quantities associated with higher polar orders
value 3. In Fig. 3 we show the first six coefficien@; ° in  convergence is slower and requires a larger valu#lpfs
terms of the associated depolarization factors for a pair ofemarked earlier.

equal cylinders. We have chosen-1.10 for the cases of an ~ For an isolated cylinder the only mode excited by a per-

external field applied in the parall§Fig. 3@)] and perpen- pendicular field is the center mode=0.5. For interacting
cylinders, however, the coupling gives rise to the excitation

of other modes as well as suggested by Fig. 3. Note the
perfect symmetry in size and location abaut 0.5 of the

» axial one case with respect to the other, a result that does not hold
+ normal for the case of spheres. Owing to the fact that parallel modes

] ; are those shifted to the left of the center mode while perpen-
dicular modes are shifted to the right, in optical absorption
06 resonances are redshifted in the former case and blueshifted

1.0

in the latter. Note also that as the cylinders approach each
other not only are the resonances shifted, but also their
strength is displaced to higher order modes, making them
progressively more important. Although the results shown
are for a pair, the qualitative behavior discussed above char-
acterizes other arrays as well, since proximity effects tend to
dominate[5].

Depolarization factor of mode
o
o

o
(=]

08 12 16 20 24
Separation ¢

FIG. 2. Depolarization factors corresponding to dipole modes We have described a system of interacting dielectric cyl-
(m=*1) as a function of parameterfor a pair of equal cylinders. inders excited by a uniform external electric field in terms of

IV. CONCLUSIONS
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multipoles of the charge distributions. We have obtained gartially supported by the CONICETArgenting under
set of linear equations for the coupled resonances and muGrant No. PIP 0473/98 and the ANPCyArgenting under
tipoles, where dielectric properties are separated from th&rant No. PICT97 03-00121-02152.

geometry. Our description is similar to a previous one used

for spheres, and is an alternative to that proposed recently in APPENDIX: MATHEMATICAL IDENTITIES

Ref. [10]. Our main result for a row of parallel cylinders is o N o ]

that the electromagnetic modes have depolarization factors 1he following identities are required in order to write Eq.

symmetric abouh= %, according to the relation (6) in terms of cylindrical harmonics. Assumimg>0,
_1 9 J m 1 *ima
n.=2(1= D). 61 <5ii@> In == = (- 2(m- D
This expression is similar to E¢3.18 of Ref.[7], obtained PP PP (A1)
by considering just the main term of the interaction between
two identical grains. Also, as pointed out in Sec. I, it is

|5_5j| a k=m

consistent with Keller’'s theorem and provides the appropri- d L d ml 1 13 (k—=1)! pm

ate relationship that allows one to get the perpendicular re- X! W n (k—m)! pJ-R
sponse from the parallel response by simply replaeingy . '

1/e, and changing the sign of the resulting effective polariz- X el (TkFmog=ikd —(A2)
ability.

W)é have also shown that modes witk: £ are excited by Form=1, Eq.(Al) is satisfied by taking the first derivatives
an electric field along a perpendicular line joining the cylin-Of the function If5—g| directly, while Eq.(A2) requires
der axegthose withn>% have zero amplitudewhile those evaluation of the first derivative of the right hand side of
with n>1 are excited when the field is perpendicular to the

plane containing these axes. A similar result is also given for 1 1 1 K

the case of identical grains in R¢¥], Eq.(3.20, where it is IN——=—=I—+ >, _(ﬂ (e'k(0=0) 4 o= k(0= 0))
shown that the amplitude corresponding to one of the sym- 16—l pj k=1 2k p;

metric eigenvalues is zero. Our work shows that amplitudes (A3)

corresponding to symmetric eigenvalues depend on the ori- . . . . . .
entation of the external field, one of the amplitudes bein%ain identity found in Refl17]. After this is done, the identi

zero just for the parallel or the perpendicular geometries. | e?g'g‘)’(‘/ ggg‘nﬂ?&ti?{?g:ﬂmlg(ijrlljﬁllg?i.rst identity can be
relation(61) the \ are the eigenvalues of the interaction ma- . P ima ; ) y
written ase'™* by using a new indexn that can now be

trix and depend on geometry only. Furthermore, the ampli-_" "~ . .
tudes of the electromagnetic modes are determined just ositive or negative. Comparing Ed#1) and(A2) one then

eigenvectors of the interaction matrix, independent of the btains
direction of the external field, so that amplitudes correspond-
ing to a pair of symmetric depolarization factors are the gime (—1)m2lm-1 (k—1)1 pk~Imi
same. These are exact results. oM 12 2 K
S . —pi m(—1) ]! 2 k—|m|)! -
We have also studied in detail a system of two equal g p" [2(m[ =) o (k=|mi) Pi
cylinders by solving the linear equations numerically, show- X g S(m(—k+|m])ogi s(mke; (A4)

ing that at edge to edge separation less than about a diameter,
multipoles higher than the dipole must be taken into accounivhere the functiors(m) represents the sign af. Replacing

in the calculations. the indexk by k+|m’|, Eq. (A4) can be written as
ACKNOWLEDGMENTS ; %
gima (—1)m (k+|m[—1)! pX
This work was supported by the Fondo Nacional de In- p—p ™ = (m—1)1 & Ki KT
. P . e ] . P—Pj P k=0 ! pJ
vestigacim Cientfica y Tecnolgica (Chile) under Grant No.
1990425, Ctedra Presidencial en Ciencias, the Diréncite x @ ikbg=ilkt|m))6; (A5)

Investigacim of the Universidad Tenica Federico Santa
Maria, and Fundacio Andes/Vita/Antorchas. C.R.P. was where the uppetiower sign corresponds tm>0 (m<0).
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