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RESUMEN

Durante la última década, se ha realizado una gran cantidad de esfuerzo en clasificar es-

trellas variables utilizando diferentes técnicas de aprendizaje automático. Tı́picamente, las

curvas de luz se representan como vectores de descriptores estadı́sticos los cuales se utilizan

para entrenar distintos algoritmos. Estos descriptores demandan grandes poderes de cómputo,

haciendo imposible crear formas escalables y eficientes de clasificar automáticamente estrel-

las variables. Además, las curvas de luz de diferentes catálogos no se pueden integrar y

analizar juntas de manera inmediata. Por ejemplo, al tener variaciones en la cadencia y fil-

tros, las distribuciones de caracterı́sticas se vuelven parciales y requieren costosos modelos

de calibración de datos. La gran cantidad de datos que se generarán pronto hacen necesario

desarrollar arquitecturas de aprendizaje automático escalables. Estas arquitecturas deben

ser capaces de analizar curvas de luz de diferentes catálogos sin costosas técnicas de inte-

gración. Las redes neuronales convolucionales han mostrado resultados impresionantes en

la clasificación y representación de imágenes. Son capaces de clasificar objetos en imágenes

con altos niveles de precisión. En este trabajo, presentamos un novedoso modelo de apren-

dizaje profundo para la clasificación de curvas de luz, basado principalmente en unidades

convolucionales. Nuestra arquitectura recibe como entrada las diferencias entre el tiempo y

la magnitud de las curvas de luz. Captura los patrones de clasificación esenciales indepen-

dientemente de la cadencia y el filtro, y sin la necesidad de calcular ninguna caracterı́stica

estadı́stica. Probamos nuestro método usando tres catálogos diferentes: OGLE-III; Corot; y

VVV, que difieren en filtros, cadencia y área del cielo. Mostramos que además del beneficio

de la escalabilidad, nuestro modelo obtiene niveles de precisión comparables con el estado

del arte en clasificación de estrellas variables.

Palabras Claves: curvas de luz, estrellas variables, clasificacin supervisada, redes neu-

ronales, aprendizaje profundo.
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ABSTRACT

During the last decade, a considerable amount of effort has been made to classify variable

stars using different machine learning techniques. Typically, light curves are represented as

vectors of statistical descriptors or features that are used to train various algorithms. These

features demand big computational powers that can last from hours to days, making impos-

sible to create scalable and efficient models to automatically classify variable stars. Also,

light curves from different surveys cannot be integrated and analyzed together when using

features, because of observational differences. For example, having variations in cadence

and filters, feature distributions become biased and require expensive data-calibration mod-

els. The vast amount of data that will be generated soon make necessary to develop scalable

machine learning architectures. These architectures have to be able to analyze light curves

from different sources without expensive integration techniques. Convolutional Neural Net-

works have shown impressing results in raw image classification and representation within

the machine learning literature. They can classify objects in images with high accuracy lev-

els, even when images come from different contexts, instruments, light backgrounds, objects

size, etc. In this work, we present a novel Deep Learning model for light curve classifica-

tion, mainly based on convolutional units. Our architecture receives as input the differences

between time and magnitude of light curves. It captures the essential classification patterns

regardless of cadence and filter, and without the need of computation of any statistical fea-

ture. We tested our model using three different surveys: OGLE-III; Corot; and VVV, which

differ in filters, cadence, and area of the sky. We show that besides the benefit of scalability,

our model obtains state of the art levels accuracy in light curve classification benchmarks. It

achieves +90% and +80% overall accuracy in most of the classes and subclasses respectively.

Keywords: light curves, variable stars, supervised classification, neural net, deep learning.

x



1. INTRODUCTION

Variable stars are crucial for studying and understanding the galaxy and the universe.

There has been a considerable amount of effort trying to automate the classification of vari-

able stars [Benavente et al., 2017, Bloom & Richards, 2011, Debosscher et al., 2007, Macken-

zie et al., 2016, Nun et al., 2015, Pichara et al., 2012, Pichara, Protopapas, & León, 2016,

Sarro et al., 2009]. Variable stars such as RR Lyrae, Mira, and Cepheids are important for

distant ladder measurements as shown in Bloom & Richards 2011. The feasibility to classify

variable stars is closely related to the way light curves are represented. Light curves are dis-

crete time series that show the intensity of light emitted by a celestial object over time. They

are not uniformly sampled and depends on the particular band or filter they were observed.

Moreover, the length of the light curves depends on the amount of time a variable star has

been observed along with the cadence of the observations (time between measurements).

One way to classify variable stars, is to create vectors of statistical descriptors, called fea-

tures, to represent each light curve [Bloom & Richards, 2011, Nun et al., 2015]. One of the

most popular set of statistical features is presented in Nun et al. [2015], also known as FATS

features (stands for Feature Analysis for Time Series). These vectors demand large compu-

tational resources and aim to represent the most relevant characteristics of light curves. A lot

of effort has been made to design these features, and the creation of new ones implies a lot

of time and research. The future surveys in Astronomy make infeasible to use these features.

One example of the huge amount of data is The Large Synoptic Survey Telescope (LSST)

[Abell et al., 2009, Borne et al., 2007] that will start operating on 2022. It is estimated that the

LSST will produce 15 to 30TB of data per night. New ways of treating this information have

been proposed [Gieseke et al., 2017, Mackenzie et al., 2016, Naul et al., 2017, Valenzuela

& Pichara, 2017a]. Mackenzie et al. 2016’s uses an unsupervised feature learning algorithm

to classify variable stars. Valenzuela & Pichara 2017a perform unsupervised classification

by extracting local patterns among light curves and create a ranking of similarity. To extract

such patterns they use a sliding window as done in Mackenzie et al. 2016.
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Figure 1.1. Comparison of RR Lyrae ab and Cepheid stars in OGLE-III,
VISTA and Corot Survey respectively. Difference between magnitude and
cadence is shown.

Either way, none of these methods can be applied immediately in new surveys. The lim-

ited overlap and depth coverage among surveys makes difficult to share data. The difference

in filter and cadence makes it even harder without any transformation to the data. Figure 1.1

shows an example of the complexity that exists among stars and surveys. Light curves have a

difference in magnitude and time, and most of the time they are not human-eye recognizable,

even by experts. Since all the magnitudes are calibrated by using statistics, it does not work

correctly because of underlying differences between surveys. Figure 1.2 shows a comparison

of statistical features of RR Lyrae ab stars using three different catalogs. To the best of our

knowledge, little efforts have been made to create invariant training sets within the datasets.
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Benavente et al. 2017 proposed an automatic survey invariant model of variable stars trans-

forming FATS statistical vectors [Nun et al., 2015] from one survey to another. As previously

mentioned, these features have the problem of being computationally infeasible. Therefore,

there is a necessity of faster techniques able to use data from different surveys.

Figure 1.2. Comparison of FATS feature in RR Lyrae ab using histogram plots
of stars using OGLE-III, Corot and Vista Surveys. Every feature is shown with
its relative importance in classification as mention in Nun et al. 2015.
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Artificial neural networks (ANNs) have been known for decades [Cybenko, 1989, Hornik,

1991], but the vast amount of data needed to train them made them infeasible in the past. The

power of current telescopes and the amount of data they generate have practically solved the

problem. The improvement in technology and the big amount of data makes ANNs feasible

for the future challenges in astronomy.

Artificial neural networks or deep neural networks create their own representation by

combining and encoding the input data using non-linear functions [LeCun et al., 2015]. De-

pending on the number of hidden layers, the capacity of extracting features improve, together

with the need for more data [LeCun et al., 2015]. Convolutional neural networks (CNNs) are

a particular type of neural network that have shown essential advantages in extracting fea-

tures from images [Krizhevsky et al., 2012]. CNNs use filters and convolutions that respond

to patterns of different spatial frequency, allowing the network to learn how to capture the

most critical underlying patterns and beat most of the classification challenges [Krizhevsky

et al., 2012]. Time series, as well as in images, have also proven to be a suitable field for

CNNs [Jiang & Liang, 2016, Zheng et al., 2014].

In this document, we propose a convolutional neural network architecture that uses raw

light curves from different surveys. Our model can encode light curves and classify between

classes and subclasses of variability. Our approach does not calculate any of the statistical

features such as the ones proposed in FATS, making our model scalable to vast amounts of

data. In addition, we present a novel data augmentation schema, specific for light curves,

used to balance the proportion of training data among different classes of variability. Data

augmentation techniques are widely used in the image community [Dieleman et al., 2015,

Gieseke et al., 2017, Krizhevsky et al., 2012].

We present an experimental analysis using three datasets: OGLE-III [Udalski, 2004],

VISTA [Minniti et al., 2010] and Corot [Baglin et al., 2002, Bordé et al., 2003]. The used

datasets differ in filters, cadence and observed sky-area. Our approach obtains comparative

results with a Random Forest (RF) classifier, the most used model for light curve classification

[Dubath et al., 2011, Gieseke et al., 2017, Long et al., 2012, Richards et al., 2011], that
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uses statistical features. Finally, we produce a catalog of variable sources by cross-matching

VISTA and OGLE-III and made it available for the community. 1.

The remainder of this document is organized as follows: Chapter 2 gives an account of

previous work on variable stars classification and convolutional neural networks. In Chapter

3 we introduce relevant background theory. Chapter 4 explains our architecture and Chapter 5

describes the datasets that are used in our experiments. Chapter 6 explains the modifications

that are made to the data and Chapter 7 gives an account of the parameters that are used in

the architecture. Chapter 8 shows our experimental analysis and Section 8.1 presents a study

of the time complexity of our model. Finally, in Chapter 9, the main conclusions and future

work directions are given.

1Datasets will be available in http://gawa.academy/profile/¡authorusername¿/. A Data Warehouse for astronomy
[Machin et al., 2018]
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2. RELATED WORK

As mention before, there has been huge efforts to classify variable stars [Huijse et al.,

2014, Mackenzie et al., 2016, Nun et al., 2014, 2015, Pichara, Protopapas, & Leon, 2016,

Richards et al., 2011, Valenzuela & Pichara, 2017b]. The main approach has been the ex-

traction of features that represent the information of light curves. Debosscher et al. 2007 was

the first one to proposing 28 different features extracted from the photometric analysis. Sarro

et al. 2009 continue his work by introducing the color information using the OGLE survey

and carrying out an extensive error analysis. Richards et al. 2011 use 32 periodic features as

well as kurtosis, skewness, standard deviation, and stetson, among others, for variable stars

classification. Pichara et al. 2012 improve quasars detection by using a boosted Random For-

est with continuous auto regressive features (CAR). Pichara & Protopapas 2013 introduce a

probabilistic graphical model to classify variable stars by using catalogs with missing data.

Kim et al. 2014 use 22 features for classifying classes and subclasses of variable stars

using random forest. Nun et al. 2015 published a library that facilitates the extraction of

features of light curves named FATS (Feature Analysis for Time Series). More than 65 fea-

tures are compiled and put together in a Python library1. Kim & Bailer-Jones 2016 publish

a library for variable stars classification among seven classes and subclasses. The library ex-

tracts sixteen features that are considered survey-invariant and uses random forest for doing

the classification process. Extracting statistical vectors has been the main approach but the

high computational cost and the research time needed, make it infeasible for future surveys.

A novel approach that differs from most of the previous papers is proposed by Mackenzie

et al. 2016. He face the light curve representation problem by designing and implementing

an unsupervised feature learning algorithm. His work uses a sliding window that moves over

the light curve and get most of the underlying patterns that represent every light curve. This

window extracts features that are as good as traditional statistics, solving the problem of high

1Information about the features and manuals of how to use them are available as well.
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computational power and removing the human from the pre-processing loop. Mackenzie et

al. 2016 work shows that automatically learning the representation of light curves is possible.

Since every survey has different cadences and filters, research has been done to learn

how to transfer information among them. The ability to use labeled information without

an extensive work accelerates the process of bringing new labeled datasets to the commu-

nity. Long et al. 2012 propose using noise and periodicity to match distributions of features

between catalogs. Also, show that light curves with the same source and different surveys

would normally have different values for their features. Benavente et al. 2017 represent the

joint distribution of a subset of FATS features from two surveys and creates a transformation

between them by using a probabilistic graphical model with approximate inference. Even

though he use FATS for his experiments, they can be easily changed to Mackenzie et al. 2016

features, making the process even faster. Pichara, Protopapas, & León 2016 present a meta-

classification approach for variable stars. He show an interesting framework that combines

classifiers previously trained in different sets of classes and features. His approach avoids to

re-train from scratch on new classification problems. The algorithm learns the meta-classifier

by using features, but including their computational cost in the optimization of the model.

All methods mentioned above invest lots of efforts finding a way to represent light curves.

There have been several works in deep learning where the network itself is the one in charge

of learning the representation of data needed for classification. Baglin et al. 2002 use a

vanilla neural network for classifying microlensing light curves from other types of curves

such as variable stars. Belokurov et al. 2003 continue the work presenting two neural net-

works for microlensing detection. Krizhevsky et al. 2012 show the importance of CNNs for

image-feature-extraction, and use them to classify, achieving impressive results. Zeiler &

Fergus 2014 study the importance of using filters in each convolutional layer and explain

the feature extraction using the Imagenet dataset. Dieleman et al. 2015 apply galaxy mor-

phology classification using deep convolutional neural networks. Cabrera-Vives et al. 2017

use a rotation-invariant convolutional neural network to classify transients stars in the HITS

7



survey. Mahabal et al. 2017 transform light curves into a two-dimensional array and perform

classification with a convolutional neural network.

CNNs not only work on images. Many studies have been done using one-dimensional

time series. Zheng et al. 2014 use them to classify patient’s heartbeat using a multi-band con-

volutional neural network on the electrocardiograph time series. Jiang & Liang 2016 create

a decision maker for a cryptocurrency portfolio using a CNN on the daily price information

of each coin.
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3. BACKGROUND THEORY

In this chapter, we introduce the basics on both artificial neural networks and convolu-

tional neural networks, to gain the necessary insights on how our method works.

3.1. Artificial Neural Networks

Artificial neural networks (ANN) are computational models based on the structure and

functions of biological axons [Basheer & Hajmeer, 2000]. The ability for axons to transmit,

learn and forget information has been the inspiration for neural networks. ANNs are capable

of extracting complex patterns from the input data using nonlinear functions and learn from

a vast amount of observed data. ANNs have been used in different areas such as speech

recognition [Graves et al., 2013, Xiong et al., 2016, 2017], image recognition [Krizhevsky et

al., 2012, Ren et al., 2015, Szegedy et al., 2015], and language translation [Jean et al., 2014,

Sutskever et al., 2014] among others.

The basic forming unit of a neural network is the perceptron (as axon in biology). As

shown in Figure 3.1 a perceptron takes inputs and combine them producing one output. For

each of the input, it has an associative weight wi that represent the importance of that input,

and a bias b0 is added to each perceptron. The perceptron combines those inputs with their

respective weights in a linear form and then uses a non-linear activation function to produce

the output:

9



Figure 3.1. The forming basic unit the perceptron. It combines the inputs with
their respective weights and apply a non-linear function to produce the output.
A bias b0 is added to each perceptron letting it change the starting point.

Output = f

(
N∑
i=1

wi ∗ xi + b0

)
(3.1)

Where f is the activation function. Two of the most widely used activation functions are

the tanh and the sigmoid function because of their space complexity. Moreover, relu func-

tions are widely used in convolutions as they avoid saturation and are less computationally

expensive.

sigmoid(x) =
1

1 + e−x
(3.2)

tan(x) =
ex − e−x

ex + e−x
(3.3)

relu(x) = max(0, x) (3.4)

The most basic neural network is the vanilla architecture consisting of three layers: (i) the

input layer, (ii) the hidden layer and (iii) the output layer. As shown in Figure 3.2 the input

of a perceptron is the output of the previous one, except for the input layer that does not have

any input and the output layer that does not have any output. A fully connected layer is when

10



every neuron in one layer connects to every neuron in the other one. The vanilla architecture

consists of two fully connected layers.

The number of perceptrons for each layer depends on the architecture chosen and there-

fore the complexity of the model. A neural network can have hundreds, thousands or millions

of them. The experience of the team, as well as experimenting different architectures, is criti-

cal for choosing the number of layers, perceptrons for each one and the number of filters to be

used. The number of hyperparameters is mainly given by the weights in the architecture. The

input layer is where we submit our data and has as many neurons as our input does. The hid-

den layer is the one in charge of combining the inputs and creating a suitable representation.

Finally, the number of neurons in the output layer is as many classes we want to classify.

Figure 3.2. A vanilla neural network with an input, hidden and output layer.
Total number of hyperparameters 17.

Many architectures have been proposed for artificial neural networks. The vanilla archi-

tecture can be modified in the number of hidden layers and the number of perceptrons per

layer. ANNs with one hidden layer using sigmoid functions are capable of approximating any

continuous functions on a subset of Rn [Cybenko, 1989]. However, the number of neurons

needed to do this increases significantly, which could be computationally infeasible. Adding

11



more layers with fewer perceptrons can achieve same results without affecting the perfor-

mance of the net [Hornik, 1991]. More than three hidden layers are considered deep neural

networks (DNN). DNNs extract information or features combining outputs from perceptrons,

but the number of weights and data needed to train them significantly increases [LeCun et al.,

2015].

To train artificial neural networks we find the weights that minimize a loss function. For

classification purpose, one of the most use loss functions is the categorical cross-entropy for

unbalanced datasets [De Boer et al., 2005]. Initially, weights are chosen at random and are

updated between epochs. We compare the desired output with the actual one and pursue

to minimize the loss function using backpropagation with any form of Stochastic Gradient

Descent (SGD) [Ruder, 2016]. Then we update each weight using the inverse of the gradient

and a learning rate as shown in Werbos 1990.

Training artificial neural networks with backpropagation can be slow. Many methods

have been proposed based on stochastic gradient descent (SGD) [Ruder, 2016]. The massive

astronomical datasets make training infeasible in practice, and mini-batches are used to speed

up [LeCun et al., 1998]. A training epoch corresponds to a pass of the entire dataset, and

usually, many epochs are needed to achieve good results. The way weights are updated can

change as well. One of the most widely use optimizers is Adam optimizer as describe in

Kingma & Ba 2014. It relies on the first moment (mean) and second moment (variance) of

the gradient to update the learning rates. Ruder 2016 present an overview of the different

gradient descent optimizers and the advantages and disadvantages for each one.
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Figure 3.3. Step by step of a convolution process. A sliding window and a
moving step are applied to the data and given as an input to the next layer.

3.2. Convolutional Neural Nets

Convolutional neural networks (CNN) are a type of deep neural network widely used in

images [Krizhevsky et al., 2012, LeCun et al., 2015]. It consists of an input and output layer

as well as several hidden layers different from fully connected ones.

A convolutional layer is a particular type of hidden layer used in CNNs. Convolutional

layers are in charge of extracting information using a sliding window. As shown in Figure

3.3 the window obtains local patterns from the input and combines them linearly with its

weights (dotted line). Then apply a nonlinear function and pass it to the next layer. The

sliding window moves and extracts local information using different inputs but with the same

weights. The idea is to specialize this window to extract specific information from local

data updating its weights. The size of the window, as well as the moving step, are chosen
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before running the architecture. Each window corresponds to a specific filter. The number of

windows is chosen beforehand. The number of filters can be seen as the number of features

we would like to extract. Convolutions are widely used because of their capacity of obtaining

features with their translation invariant characteristic using shared weights [Krizhevsky et al.,

2012]. Zeiler & Fergus 2014 study the importance of using filters inside each convolutional

layer and show the activation process of using different filters on the Imagenet dataset.

After applying convolutional layers, a fully connected layer is used to mix the information

extracted by the convolutional layers. Fully-connected hidden layers are added to create more

complex representations. Finally, the output layer has as many nodes as classes we need.
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4. METHOD DESCRIPTION

Figure 4.1. The Convolutional Network Architecture for multi-survey.

We propose an architecture that can classify variable stars using different surveys. We

now explain each layer of our architecture, depicted in Figure 4.1.

Our architecture transforms each light curve to a matrix representation using the differ-

ence between points. We use two convolutional layers for extracting the local patterns and

turn them into a flat layer. Two fully connected layers are used, and an output layer is plugged
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at the end to perform the classification. In the following sections, we describe and give in-

sights on each of the layers.

4.1. Pre-processing

In this phase, light curves are transformed into a matrix. Having a balanced dataset is

critical for our purpose of multi-survey classification. Therefore, we use NMax as the maxi-

mum number of stars we can extract per class and survey. Section 6.3 explains in detail the

selection of the light curves for the database.

We transform each of these light curves in a matrix representation of size 2×N where 2

corresponds to the number of channels (time and magnitude) and N to the number of points

used per light curve. Figure 4.2 shows an example of a light curve in a matrix representation.

To compare light curves between catalogs a reshape to the matrix must be made. Light

curves differ in magnitude and time and for comparing them the difference between observa-

tions was used. A matrix of size M × 2×N was created where M , 2 and N corresponds to

the number of light curves, channels, and numbers of observations used. Figure 4.2 shows an

example of the transformation of a light curve. Section 6.1 explains in detail this part of the

process.
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Figure 4.2. Each light curve is transformed using a matrix with two channels,
time and magnitude. For every channel, the maximum number of points is N .
Each light curve is transformed using the difference between points and a new
matrix is created with two channels.

4.2. First Convolution

We apply a convolutional layer to each of the channels in separate branches with shared

weights. We use a shared convolutional layer to preserve the objective of integrating datasets

with different cadences. Shared layers mean that each of the filters is the same on every

tower. The number of filters is given by S1. We chose 64 filters, to match the number of
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features presented in Nun et al. 2015. The convolution combines our points linearly, creating

new ones as follows:

TFi,j
= f(

sw∗i+tw−1∑
k=sw∗i

wk,j ∗ tk + bj) (4.1)

MFi,j
= f(

sw∗i+tw−1∑
k=sw∗i

wk,j ∗mk + bj) (4.2)

where TFi,j
, MFi,j

are the time and magnitude after applying the j filter and tk and mk are

the time and magnitudes of the light curves. tw is the size of the sliding window and sw the

stride value used.

Our convolution does not use a max-pooling layer as done in Jiang & Liang 2016. We

avoid max-pooling because of the low cadence of Vista Survey and the detriment of losing

information. The step function sw was set to 2 or 12 days (considering OGLE cadence of

6 days as average) and the sliding window tw was set to 42 points or 250 days as done in

Mackenzie et al. 2016, Valenzuela & Pichara 2017a.

4.3. Second Convolution

After applying one convolution, we employ another one to mix and create more complex

features. Jiang & Liang 2016 showed that using two convolutions achieves better results. As

in the preceding section, our second convolution is done by linearly combining the time and

magnitude of the previous layer:

TFi,j
= f(

∑
k∈S1

sw∗i+tw−1∑
p=sw∗i

wp,k,j ∗ TFp,k
+ bj) (4.3)

MFi,j
= f(

∑
k∈S1

sw∗i+tw−1∑
p=sw∗i

wp,k,j ∗MFp,k
+ bj) (4.4)

where TFi,j
and MFi,j

are the time and magnitude after applying the second convolution and

TFp,k
and MFp,k

are the time and magnitudes of the first convolution.
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As the first convolution, the number of filters is given by S2, and it was established to be

half of the filters used in the first convolution.

4.4. Flatten Layer

After extracting the local patterns, we transform the last convolution into a flatten layer

as in Jiang & Liang 2016, Zheng et al. 2014. Our layer combines its patterns afterwards with

a hidden layer in a fully connected way.

4.5. Hidden Layer

We use a hidden layer to combine our extracted patterns, and the number of cells is given

by ncells. After several experiments, we realize that 128 cells generate the best results. We

perform many experiments using sigmoid, relu and tanh activating functions. We obtain

the best results using tanh activation, as most of the deep learning literature suggests [LeCun

et al., 1998].

4.6. Softmax Layer

In the output layer, there is one node per each of the possible variability classes. We

test two different amount of classes: one for 4 classes of variable stars and the other for 9

subclasses. We use a softmax function to shrink the output to the [0, 1] range. We can

interpret the numbers from the output nodes as the probability that the light curve belongs to

the class represented by that node.

Finally, we minimize the average across training using categorical cross entropy. We use

categorical cross entropy as our loss function as we obtained best results and the datasets use

are unbalanced.
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5. DATA

We apply our method to variable star classification using three different surveys: ”The

Optical Gravitational Lensing Experiment” (OGLE) [Udalski, 2004], ”The Vista Variable

in the Via Lactea” (VVV) [Minniti et al., 2010] and ”Convection, Rotation and planetary

Transit” (CoRot) [Baglin et al., 2002, Bordé et al., 2003]. We select these surveys because

of their difference in cadence and filters. In the following sections, we explain each of these

surveys in detail.

5.1. OGLE-III

The Optical Gravitational Lensing Experiment III (OGLE-III) corresponds to the third

phase of the project [Udalski, 2004]. Its primary purpose was to detect microlensing events

and transiting planets in four fields: the galactic bulge, the large and small Magellanic clouds

and the constellation of Carina.

For our experiment, we use 451.972 labeled light curves. The cadence is approximately

six days and in the experiments is considered our survey with medium cadence. The band

used by the survey is infrared and visible. We discard the visible band because of the low

number of observations per star compared to the infrared band. The class distribution is

shown in Table 5.1.

5.2. The Vista Variable in the Vı́a Láctea

The Visible and Infrared Survey Telescope (Vista) started working in February 2010

[Minniti et al., 2010]. Its mission was to map the Milky Way bulge and a disk area of the

center of the Galaxy.

To obtain labeled light curves from Vista, we cross-match the Vista catalog with OGLE-

III. We found 246.474 stars in total. The cadence of the observations are approximately every
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Table 5.1. Class distribution of OGLE-III labeled set.

Class name Abbreviation Num. of Stars
Classical Cepheids CEP 8.031
RR Lyrae RRLyr 44.262
Long Period Variables LPV 343.816
Eclipsing Binaries ECL 55.863

Subclass Name Abbreviation Num. of Stars
First-Overtone 10
Classical Cepheid CEP10 2.886
Fundamental-Mode F
Classical Cepheid CEPF 4.490
RR Lyrae ab RRab 31.418
RR Lyrae c RRc 10.131
Mira Mira 8.561
Semi-Regular Variables SRV 46.602
Small Amplitude Red Giants OSARGs 288.653
Contact Eclipsing Binary EC 51.729
Semi-Detached
Eclipsing Binary nonEC 4.134

eighteen days and is considered our survey with low cadence. The band used by the survey

is mainly kps, and the class distribution of the labeled subset is shown in Table 5.2.

5.3. CoRoT

The Convection, Rotation and planetary Transits (CoRoT) is a telescope launched in De-

cember 2016 [Baglin et al., 2002, Bordé et al., 2003]. Its main purpose is to continuously

observe the milky way for periods up to 6 months and search for extrasolar planets using

transit photometry. One of the main advantages is the high cadence that can be more than a

100 observations per object per day.

Because of its early stage, just a few instances have been labeled. For our experiments,

we use 1311 labeled light curves. The cadence of the observations are approximately every

sixty per day and in the experiments is considered our survey with a high cadence. This

catalog does not use any specific filter but the observations per object are in red, blue and
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Table 5.2. Class distribution of VVV labelled set.

Class name Abbreviation Num. of Stars
Classical Cepheids CEP 36
RR Lyrae RRLyr 15.228
Long Period Variables LPV 228.606
Eclipsing Binaries ECL 2.604

Subclass Name Abbreviation Num. of Stars
First-Overtone 10
Classical Cepheid CEP10 5
Fundamental-Mode F
Classical Cepheid CEPF 23
RR Lyrae ab RRab 10.567
RR Lyrae c RRc 4.579
Mira Mira 8.445
Semi-Regular Variables SRV 37.366
Small Amplitude Red Giants OSARGs 182.795
Contact Eclipsing Binary EC 1.818
Semi-Detached
Eclipsing Binary nonEC 786

Table 5.3. Class distribution of CoRoT labelled set.

Class name Abbreviation Num. of Stars
Classical Cepheids CEP 125
RR Lyrae RRLyr 509
Long Period Variables LPV 109
Eclipsing Binaries ECL 568

Subclass Name Abbreviation Num. of Stars
RR Lyrae ab RRab 28
RR Lyrae c RRc 481

green bands and for the experiments, we used the white band combining this three. The class

distribution is shown in Table 5.3
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6. EXTRACTION OF DATA

In this chapter, we explain in detail how to pre-process the data to produce our inputs.

Given that we are integrating several surveys that contain light curves with different bands

and number of observations, we have to pre-process the data to get a survey-invariant model.

6.1. Time & Magnitude Difference

The difference between instruments, cadences and bands between surveys create a bias

in the variability patterns of light curves [Benavente et al., 2017, Long et al., 2012]. We use

as an input the difference between the time and magnitude with the previous measurements.

This removes the extinction, distance and survey specific biases. Moreover, it acts as a nor-

malization method. It enables the network to learn patterns directly from the observations

without the need to pre-processing any of the data or extinction correction.

6.2. Light Curve padding

The difference in cadence among OGLE-III, Vista, and Corot catalogs create a big vari-

ance in the number of observations per light curve. To overcome this problem, we impose a

minimum number of observations and use a zero padding to complete the light curves that

cannot reach that minimum. This is inspired by the padding procedure done in deep learning

for image analysis. To define such limit, we tried many different values and notice that clas-

sification results do not change significantly within a range of 500 and 1500 observations. We

fixed the limit at 500 points per light curve because that amount preserves the classification

accuracy and keeps most of the light curves suitable for our analysis.
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6.3. A Light curve data augmentation model

Figure 6.1. Example of a new light curve using a burning parameter of 2 and
a step parameter of 1.

Hensman & Masko 2015 studied the impact of unbalanced datasets in convolutional neu-

ral networks and proved that for better classification performance the dataset should be class-

balanced. Since the datasets used in this paper are unbalanced, data augmentation techniques

have to be applied [Krizhevsky et al., 2012].

To balance the dataset, we propose a novel data augmentation technique based on light

curve replicates. As mention before in Chapter 4, the number of stars per class and survey is

given by NMax. If the number of light curves per class and survey is larger than this param-

eter, the replication process does not take place. Otherwise, the light curves are replicated

until they reach that limit. Each class is replicated using two light curve parameters: burning

and step. The burning parameter indicates how many points we have to discard in the light

curve. The step parameter tells every how many points we should take samples. The burning

parameter goes up every time the light curve has been replicated making the starting point
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different for each new data of a specific class and survey. Figure 6.1 shows an example of the

replication of a light curve. Is important to note for surveys with high and medium cadences

such as Corot and OGLE-III, the loss is not critical as many observations are available. In

cases of low cadence catalogs, such as Vista, the loss of observations is significantly reduced

depending on the step parameter. To keep a minimum observation loss, the step parameter

is set to a random number between 0 and 2. The maximum replication of a light curve is 5.
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7. PARAMETER INITIALIZATION

As in most of deep learning solutions, our architecture needs the set up of several initial

parameters. In this chapter, we explain the model design and how to set up its parameters.

7.1. Parameters

As previously noted, surveys have different optics and observation strategies which im-

pact the depth at which they can observe. This impacts the number of variable stars detected

and cataloged. In our case, OGLE has been operating longer and observes large portions of

the sky while VVV goes deeper but in a smaller area, and Corot has great time resolution

but is considerably shallower. The combined catalog is dominated by OGLE stars and the

subclasses are highly unbalanced, being the LPV class the majority of them.

In order to train with a more balanced dataset, we used a limit of 8.000 stars per class

and survey. We tried different values and set it to 8.000 as most of the classes and subclasses

of VISTA and OGLE survey possess that amount as shown in Chapter 5. Finally, after sev-

eral experiments, the batch size was set to 256 for the speed and efficiency in training our

algorithm. Table 7.1 shows a summary of the parameters of our architecture.

7.2. Layers

We use two convolutional layers as done in Jiang & Liang 2016. In the imaging literature,

several works show that one convolutional layer is not enough to learn a suitable representa-

tion, and commonly they use two convolutions [Gieseke et al., 2017, Jiang & Liang, 2016,

Zheng et al., 2014].

We try using only one convolution and performance was critically reduced. Three convo-

lutions are also utilized, producing results as good as using two, but the time for training the

net and the number of parameters increase significantly.

26



A window size tw was used for the convolution process and set to 42 observations or 250

days in average as done in Mackenzie et al. 2016, Valenzuela & Pichara 2017a. Finally, a

stride value sw was used and set to 2 or 12 days in average as done in Mackenzie et al. 2016,

Valenzuela & Pichara 2017a.

7.3. Activation functions

In convolutional layers we used relu activation function as they are capable of extracting

the important information .

relu(x) = max(0, x)) (7.1)

For hidden layers, except for convolutional, we used tanh functions because of better results,

there widely used and better gradients they provide [LeCun et al., 1998].

7.4. Dropout

Dropout is a regularization technique which randomly drops units in the training phase

[Srivastava et al., 2014]. Srivastava et al. 2014 prove the importance of dropout in neural

networks to prevent overfitting. We used a dropout of 0.5 as suggested in the mentioned

work in the two fully connected parts of our architecture. One between the flattening layer

and hidden layer, the other between the hidden layer and the output layer. Dropout increases

the generalization of the network, therefore the performance.
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Table 7.1. Parameters used for the proposed architecture

Parameter name Abbreviation Value
Global Parameters
Stars per survey and class NMax 8000
Number of Points
Per Light Curve N 500
Batch Size - 256
Architecture
Filters for first convolution S1 64
Filters for second convolution S2 32
Window size tw 42
Stride Value sw 2
Perceptrons in the hidden layer ncells 128
Dropout - 0.5
Data Augmentation Parameters
Burning burning [1,5]
Step step [0,2]
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8. RESULTS

Our experiments are mainly intended to evaluate the classification accuracy of the datasets

described in Chapter 5 as well as the time taken for training the model. We test our model

using classes and subclasses and compare it with a Random Forest classifier (RF) [Breiman,

2001], still the most used model for light curve classification [Dubath et al., 2011, Gieseke

et al., 2017, Long et al., 2012, Richards et al., 2011]. Our experiments show that unlike RF,

our model is scalable as it works with raw magnitudes and time and can be trained iteratively

as new light curves arrive. RF needs the extraction of features that takes days or even weeks

for training the model. In classification accuracy, our model achieves better results in ECL

classes and subclasses and comparable results in LPV and RR Lyrae. RF produces better

results in OGLE-III dataset.

Fifty-nine features were extracted for each of the surveys using FATS library, computed

over 500 observations per light curve. We use the extracted features to train the RF. We

perform 10-fold stratified cross-validation on each run. The stratification was done by class

and survey to keep the same proportions of classes per survey in the training and testing sets.

We perform data augmentation on each of the steps of the cross-validation within the

training set. A 20% validation set was used in our model to control the number of epochs

during the training process.

8.1. Computational Run Time

As mentioned before, the LSST will start working on 2022 generating approximately

15TB per night. The vast amount of data arriving in the future will demand scalable algo-

rithms. We measure the execution time for each of the classification algorithms, considering

the feature extraction (needed just for the RF) and the training iterations. In Table 8.1 we can

see that because of the feature extraction needed in RF, that model takes way more time in

overall. RF is faster than CNN in the training phase because the CNN needs several epochs,
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Table 8.1. Approximately time of extraction of features and training the algorithms.

Method Extraction Training Total
of Features Algorithm Run Time

RF 10 days 36 min 10.02 days
Clases CNN 30 min 50 min 1.33 hrs
SubClases CNN 30 min 91.8 min 2.03 hrs

in this case, 500 epochs are needed, where each one takes 6 and 11 seconds to run for classes

and subclasses respectively.

Our proposed architecture and RF are trained using a computer with 128 GB RAM and

a GeForce GTX 1080 Ti GPU. Our algorithm is developed using Keras [Chollet et al., 2015]

framework that runs on top of Tensorflow [Abadi et al., 2015] library. We use the scikit-learn

[Pedregosa et al., 2011] implementation of RF.

We can see that our method is significantly faster as it works with raw magnitudes and

time and requires only a couple of minutes of pre-processing. A fundamental characteristic

that new algorithms must have is the ability to be incremental, in other words, to be able to

deal with new data points without the need of retraining. Moreover, the cost should increase

at most in linear time, if not, after few iterations of new arrivals the algorithm would be

overwhelmed. Our algorithm scales sub-linearly with new training data points (because it

uses mini batches of data in the optimization), while RF scales at least O(nlogn) (considering

the orders of time needed in the most expensive feature). As new data arrives, our architecture

is capable of training itself with the new data just in seconds instead of re-training the entire

algorithm as RF must do.

8.2. Results with general classes of variability.

We test our model using four general classes: (i) Cepheids (CEP), (ii) Long Period Vari-

ables (LPV), (iii) RR Lyrae (RRlyr) and (iv) Eclipsing Binaries (ECL). The distribution of

classes and subclasses per survey are shown in Tables 5.1, 5.2 and 5.3. Figure 8.2 and 8.3
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Table 8.2. Accuracy per class with the total amount of stars use for each one
(in parenthesis).

Class CNN RF
ECL-OGLE 0.98 ± 0.01 (8000) 0.95 ± 0.01 (8.000)
ECL-VVV 0.92 ± 0.02 (2.604) 0.30 ± 0.06 (1.184)
ECL-Corot 0.00 ± 0.00 (1.126) 0.94 ± 0.03 (1.123)
LPV-OGLE 0.99 ± 0.00 (8.000) 0.99 ± 0.01 (8.000)
LPV-VVV 0.94 ± 0.01 (8.000) 0.98 ± 0.01 (7.596)
LPV-Corot 0.92 ± 0.11 (109) 0.02 ± 0.04 (101)
RRLyr-OGLE 0.94 ± 0.01 (8.000) 0.98 ± 0.01 (8.000)
RRLyr-VVV 0.94 ± 0.01 (8.000) 0.97 ± 0.01 (7.344)
RRLyr-Corot 0.00 ± 0.00 (509) 0.21 ± 0.05 (496)
CEP-OGLE 0.90 ± 0.03 (8.000) 0.94 ± 0.01 (7.374)
CEP-VVV 0.00 ± 0.00 (36) 0.00 ± 0.00 (23)
CEP-Corot 0.90 ± 0.08 (125) 0.31 ± 0.11 (121)

show the results of using our convolutional architecture and RF respectively. Table 8.2 sum-

marize the accuracy per class of both approaches.

Figure 8.1. Accuracy of the training model using a 10-fold stratified cross
validation with classes.
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As it can be seen, RF achieves 96.5% of accuracy in OGLE-III dataset as it has more

labeled data than the others surveys. In VVV RF obtains 97% of accuracy in some of the

classes that have more labeled data (LPV and RRlyr), but not in stars with few labeled ex-

amples (ECL and CEP). In Corot, RF achieves 94% of accuracy only in ECL stars, mainly

because of the high cadence of Corot that make it infeasible to extract features correctly, es-

pecially those related to periodicity. RF results show that FATS features of some light curves

(LPV and RRlyr) can classify accurately between different surveys. That is not a surprise

mainly because period features are less sensitive to changes in cadence.

Our proposed architecture achieves comparable classification accuracy in OGLE-III but

with much less training time. As shown in Figure 8.1 our model produces approximately

an accuracy of 97% in the validation set. Each of the colors represents one training of the

10-fold stratified cross-validation. As shown in Table 8.2, OGLE-III dataset achieves 95%

of accuracy in average in all of its classes. VVV survey achieves 93.7% of accuracy in most

of its classes, except for CEP stars, which are less than 40 light curves. Comparing it to RF

performance, it achieves better performance in VVV as it has 92% of accuracy on each of the

classes, except for CEP. In Corot, CNN and RF achieve comparable results.
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Figure 8.2. Confusion matrix per class and survey for the convolutional neural
network. Empty cells correspond to 0%.
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Figure 8.3. Confusion matrix per class and survey using Random Forest al-
gorithm. Empty cells correspond to 0%.

8.3. Results with subclasses of variability

We test our model using nine types of subclasses: (i) First-Overtone 10 Classical Cepheid

(Cep10), (ii) Fundamental-Mode F Classical Cepheid (CepF), (iii) RR Lyrae ab (RRab),

(iv) RR Lyrae c (RRc), (v) Mira, (vi) Semi-Regular Variables (SRV), (vii) Small Amplitude
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Red Giants (OSARGs), (viii) Eclipsing Binaries (EC) and (ix) Eclipsing Binaries Semi-De-

tached (nonEC). The distribution of classes per survey are shown in Tables 5.1, 5.2 and 5.3.

Figure 8.5 and 8.6 show the results of using our neural network architecture and Random

Forest respectively. Table 8.3 summarize the accuracy per subclass of both approaches.

Figure 8.4. Accuracy of the training model using a 10-fold stratified cross
validation with subclasses.

As shown in Figure 8.6, RF achieves accuracies higher than 80% in most of the subclasses

in OGLE-III. However, in the VVV survey, 80% is obtained only in RRab and RRc stars. In

Corot’s catalog, we have 73% of accuracy in RRc stars, despite the small number of light

curves.

In Figure 8.4 we can see that our model achieves approximately an accuracy of 85% in

the validation set. In OGLE-III dataset, nonEC and Mira stars achieve a 98% of accuracy,

and 91.7% in EC, SRV, and Osarg stars. VVV survey achieves 76% of accuracy in RRab and

RRc stars, and 94% in Mira stars. However, Osarg and SRV are confused in a 81.3% and

93.2% with Mira type respectively, which indicates a clear overfitting of LPV stars. None of

the models can correctly classify VVV Cepheids, mainly because of the low number of light

curves (28 light curves in total). With EC and nonEC classes from VVV we achieve better
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Table 8.3. Accuracy per subclass with the total amount of stars use for each
one (in parenthesis).

Subclass CNN RF
EC-OGLE 0.93 ± 0.01 (8.000) 0.90 ± 0.01 (8.000)
EC-VVV 0.69 ± 0.04 (1.818) 0.20 ± 0.05 (799)
nonEC-OGLE 0.98 ± 0.01 (4.134) 0.87 ± 0.02 (4.134)
nonEC-VVV 0.51 ± 0.04 (786) 0.03 ± 0.03 (385)
Mira-OGLE 0.98 ± 0.01 (8.000) 0.98 ± 0.01 (8.000)
Mira-VVV 0.94 ± 0.01 (8.000) 0.30 ± 0.02 (4.688)
SRV-OGLE 0.92 ± 0.02 (8.000) 0.93 ± 0.01 (8.000)
SRV-VVV 0.00 ± 0.00 (8.000) 0.67 ± 0.02 (7.575)
Osarg-OGLE 0.90 ± 0.01 (8.000) 0.90 ± 0.01 (8.000)
Osarg-VVV 0.00 ± 0.00 (8.000) 0.71 ± 0.01 (7.595)
RRab-OGLE 0.72 ± 0.03 (8.000) 0.97 ± 0.01 (8.000)
RRab-VVV 0.77 ± 0.02 (8.000) 0.88 ± 0.02 (7.384)
RRab-Corot 0.11 ± 0.15 (28) 0.21 ± 0.26 (24)
RRc-OGLE 0.86 ± 0.02 (8.000) 0.97 ± 0.01 (8.000)
RRc-VVV 0.75 ± 0.03 (4.579) 0.84 ± 0.02 (4.071)
RRc-Corot 0.01 ± 0.01 (481) 0.73 ± 0.05 (472)
CEP10-OGLE 0.84 ± 0.03 (2.886) 0.86 ± 0.03 (2.886)
CEP10-VVV 0.00 ± 0.00 (5) 0.00 ± 0.00 (5)
CEPF-OGLE 0.72 ± 0.02 (4.490) 0.90 ± 0.02 (4.488)
CEPF-VVV 0.00 ± 0.00 (23) 0.00 ± 0.00 (18)

results than RF. Finally, the accuracy achieved in Corot is the lowest, mainly because of the

few amount of light curves used (28 RRab and 481 RRc stars).
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Figure 8.5. Confusion matrix per class and survey for the convolutional neural
network. Empty cells correspond to 0.
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Figure 8.6. Confusion matrix per class and survey using Random Forest al-
gorithm. Empty cells correspond to 0.
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9. CONCLUSION

In this work, we have presented a CNN architecture to classify variable stars, tested on

light curves integrated from various surveys. The proposed model can learn from the se-

quence of differences between magnitude and time, automatically discovering patterns across

light curves even with odd cadences and bands. We show that multi-survey classification is

possible with just one architecture and we believe it deserves further attention soon. The

proposed model is comparable to RF in classification accuracy but much better in scalability.

Also, our approach can correctly classify most of the classes and subclasses of variability.

Feature description such as FATS are a reasonable way to represent light curves, but the vast

amount of time and effort needed to extract them make it infeasible for huge databases.

Like most of deep learning approaches, our model is capable of learning its light curve

representation, allowing astronomers to use the raw time series as inputs.

As future work, oversampling techniques should be studied, given that we observe that

our model is sensitive to unbalanced training sets. Also, more complex architectures must

be developed to improve classification accuracy. New approaches able to deal with few

light curves in some classes are needed. For example, simulation models based on astro-

physics would be a significant contribution especially for the most unrepresented subclasses

of variability. With simulation models, deep learning architectures could be significantly

improved, given that usually their performance is directly related to the number of training

cases, even with simulated instances. In the same direction, it would be interesting to pro-

duce larger training sets by integrating a higher number of surveys. Our code implementation

is done in Python, available for download at https://github.com/C-Aguirre017/

DeepMultiSurveyClassificationOfVariableStars. We also published the cat-

alogs with the cross-matched training sets used in this work.
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