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III. The principle of vibration

“Nothing rest; everything moves; everything vibrates.”

The Kybalion: A study of the Hermetic Philosophy of Ancient Egypt and Greece.
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Abstract

Ph.D. in Physics

by Ariel Norambuena

During the last decade color centers in large bandgap materials have received great atten-

tion due to the large degree of control that is possible to achieve of their internal degrees

of freedom. They are leading candidates for quantum information and quantum metrology

applications. At the same time, they have allowed the scientific community to explore and

understand fundamental aspects related to the interaction between a system and its environ-

ment. In particular, the interaction of an electronic spin (the system) and vibrational degrees

of freedom (the environment) deserve special attention for the successful implementation of

systems in optoelectronic devices. Here, in this thesis we present microscopic models to the-

oretically understand the effect of phonons on the electronic and optical properties of color

centers in diamond. First, we consider a microscopic model to study the electron-phonon in-

teraction between the localized electronic states of a single negatively charged silicon-vacancy

center and lattice vibrations. Using the spin-boson model, the Kubo formula, and molecular

dynamics simulations we numerically reproduce the observed isotopic shift of the phonon

sideband in good agreement with recent experiments. Second, we develop a microscopic

model for the spin-lattice relaxation dynamics of the negatively charged nitrogen-vacancy

center in diamond in order to reproduce the temperature dependence of the longitudinal spin

relaxation rate from temperatures ranging from 10 mK to 475 K. Next, we consider a micro-

scopic model for the electron spin resonance (ESR) absorption spectrum of e ⊗ E ⊗ SU(2)

Jahn-Teller systems when an oscillating magnetic field is applied. This system is studied in

order to understand the phononic dynamical suppression of the electron spin resonance in

color centers with spin-1/2. Finally, we introduce the strain Hamiltonian of the negatively

charged silicon-vacancy center in diamond. This Hamiltonian has interesting properties for

optomechanical systems based on the strain-induced coupling between compression modes

of a diamond cantilever and individual negatively charged silicon-vacancy centers.
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xxv





Chapter 1

Introduction

Color centers in diamond are promising candidates for applications ranging from single pho-

ton sources [1–3], color markers for biological structures [4–6], spin-qubit quantum infor-

mation processing [7], quantum sensing at the atom-resolution [8, 9], and nanomechanical

resonators for cooling schemes [10–13]. All these technological applications crucially depend

on the electronic properties, optical manipulation, and the spin relaxation dynamics of color

centers in diamond. From several experiments, ab initio calculations, and theoretical mod-

els we know that the physical observables associated with the color centers are modified by

the environment, i.e., the diamond lattice. In addition, we know from recent experiments

that the lattice effects has a non-trivial temperature dependence. Therefore, a theoretical

challenge is the correct mathematical modeling of the interaction between the lattice and

color centers in order to predict and understand the measured physical observables.

In particular, color centers in diamond are stable molecules at room temperature embed-

ded in a solid-state environment composed of carbon atoms, magnetic impurities randomly

located over the lattice ( C13 , Ni14 , Si29 , NV-center, and SiV-center), and charge distribu-

tions in the diamond lattice. At the moment, three color centers have been studied in the

community: the negatively charged nitrogen-vacancy (NV−) center, the neutral charged

nitrogen-vacancy (NV0) center, and the negatively charged silicon-vacancy (SiV−) center

in diamond. Interestingly, the ground and excited states of color centers are energetically

separated from the valence and conduction band about of the order of ∼ 1 eV. Even at

500 K the charge transference from the color center to the conduction band minimum is

suppressed, which is crucially different from other interesting quantum systems (ion traps,

single atoms, superconducting qubits). As a consequence, the internal degrees of freedom of

1
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color centers in diamond can be optically manipulated with a high control and it is possible

to initialized and read-out with different experimental techniques. However, between the

initialization and the and read-out, the dynamics of the orbital states and spin degrees of

freedom are perturbed by the lattice degrees of freedom such as magnetic impurities, charge

distributions, static strain, the stress of the lattice, and phonons.

Phonons are important when we perform experiments in solid-state systems since the effect

of quantum vibrations is suppressed only at the absolute zero temperature. In consequence,

for every solid-state technology, the effect of phonons is always present, and therefore, must

be considered if it has an observable effect. In the case of color centers in diamond, the vibra-

tions of the diamond lattice introduce a dynamical effect on the molecular states. Physically,

every time that the lattice vibrates in some vibrational mode, the atoms of the color centers

collective start to oscillate with some frequency, amplitude and spatial direction. This leads

to a change in the potential seen by each atom of the color center. As a consequence, this

results in a modification of the local electronic distribution of the color center due to the

electron-ion Coulomb interaction. In addition, the spin-orbit interaction and the spin-spin

interaction leads to a change in the spin states when the electronic distribution is modi-

fied. In consequence, phonons directly modified the electronic distributions and indirectly

induces spin relaxation. Such phonon-induced effects can be experimentally observed in the

photoluminescence spectrum (phonon sideband), the spin relaxation dynamics (longitudinal

and transverse relaxation rates), the phononic dynamical suppression of the electron spin

resonance (ESR) response, among others. Therefore, in order to understand the microscopic

origin of the effect of phonons on the color centers we need to build mathematical models

based on the experimental evidence.

1.1 Description of this thesis

This thesis describes several microscopic models in order to understand and reproduce the

effect of phonons on the optical properties of color centers in diamond using as a starting

point the experimental evidence of the community. Chapter 2 presents a microscopic model

to understand the effect of phonons on the optical properties of the emission spectrum

of single negatively charged silicon-vacancy centers in diamond. Chapter 3 introduces the

spin-lattice relaxation dynamics induced by phonons for the ground triplet state of the

negatively charged nitrogen-vacancy center in diamond. Chapter 4 develop a model to
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Figure 1.1: Emission spectra of color centers in diamond. Here, we observe the PL spectrum
of the nitrogen-vacancy center and the silicon-vacancy center in diamond at room temperature
T = 300 K. The ZPL transition of each center is broadened by the interaction between the color
center and lattice phonons. At the same temperature, the width of the PSB of the SiV− center is
5 nm, while the width of the PSB of the NV− center is of the order of ∼ 100 nm. The symmetry
of each center only differs by the additional inversion symmetry of the SiV− center. Due this
additional symmetry, the SiV− center has a weak electron-phonon coupling with the environment,

and therefore, a narrow phonon sideband associated with the PL spectrum.

understand the effect of temperature on the electron spin resonance absorption spectrum of

E ⊗ e ⊗ SU(2) Jahn-Teller systems with residual electronic spin-1/2. Chapter 5 provides

a group theoretical derivation of the strain Hamiltonian of the negatively charged silicon-

vacancy center in diamond. Finally, in Chapter 6 we summarize the main results of the

thesis and we discuss some future projects.

1.2 Emission spectrum of color centers in diamond

A common problem in solid-state physics is how to determine the effect of vibrations on

the radiative transitions associated with the electronic states. In literature, it is known

that vibronic transitions are the simultaneous changes in electronic and vibrational energy

levels of a molecular system due to the absorption or emission of a single photon with a

specific energy. The problem is how to determine the intensity of each vibronic transition

when you excited the system with a pumping laser. When a molecule is excited with light

the resulting photoluminescence (PL) spectrum contains a zero-phonon line (ZPL) transition

and the phonon sideband contribution (PSB). The ZPL is associated with a purely electronic

transition where phonons are not present. On the other side, the PSB is the experimental
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evidence of the contribution of phonons. Phonons modified the shape of the PL spectrum

and the visual effect is associated with an inhomogeneously broadened. In Fig. 1.1 we can

observe the PL spectrum of the NV− center and the SiV− center in diamond. The PL

spectrum of the NV− center and SiV− center in diamond are very different from each other

although they differ in one atom in their molecular composition. The NV− center has a

broad emission ranging from 637 nm ZPL to 750 nm; meanwhile, the emission of the SiV−

has a width of few nanometers at the same room temperature [14].

In Chapter 2, we present a detailed microscopic model to study the PL spectrum of a single

SiV− center in diamond. In particular, we study the effect of the symmetry of the molecule

using group theory and we solve a molecular dynamics simulation to estimate of the electron-

phonon interaction of a single SiV− center embedded in a finite size diamond structure

composed by ∼ 3400 atoms. Our approach takes advantage of the symmetrized description of

the electronic states and the vibrational modes of the finite diamond structure. We introduce

a dynamical symmetry breaking mechanism that mixes the electronic wavefunctions of the

color center when ungerade (antisymmetrical) phonons are considered. This mechanism

emerges as a good candidate to incorporate the observed isotopic shift associated with the

sharp feature of the PSB. Our results are in good agreement with experimental data and show

the observed isotopic shift of the PSB associated with three different isotopic compositions of

the silicon atom of the color center. We also introduce the effect of temperature by using the

Kubo formula to describe the PL spectrum of an electronic system embedded in a thermal

phonon environment.

1.3 Spin-lattice relaxation dynamics of color centers

Understanding the effect of vibrations on the relaxation process of individual spins is crucial

for implementing nano systems for quantum information and quantum metrology applica-

tions. Because of the lattice degrees of freedom the dynamics of a color center is modified

by the presence of magnetic impurities, charge distributions and phonons. Figure. 1.2 shows

the main ingredients of the color center - lattice dynamics. The effect of magnetic impurities

on the spin state of a color center increases with the concentration of magnetic atoms in the

lattice ( C13 and Ni14 ) and the concentration of surrounding color centers (NV-centers and

SiV-center). Basically, the spin flip-flop processes induced by the external magnetic impuri-

ties on the internal spin states of the center induces a relaxation dynamics. This relaxation
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Figure 1.2: Color center - lattice dynamics. A single NV− center in diamond embedded in a
diamond lattice. The internal degrees of freedom of the color center is shown by the electronic and
spin degrees of freedom. The external perturbations: electric fields and lasers (red dashed arrows),
magnetic fields (blue dashed arrows), and temperature (black dashed arrows) are connected with
the corresponding internal degrees of freedom of the color center depending on the nature of the
interaction. The internal couplings are shown by black arrows and represent the internal dynamics

of the center (between electronic and spin degrees) and the color center - lattice interaction.

dynamics is associated with two characteristic relaxation times: T1 (longitudinal relaxation

time) and T2 (transverse relaxation time). Physically, both longitudinal and transverse re-

laxation times are due to fluctuating magnetic fields of the environment that induce spin

rotations of the color center.

A fundamental problem is to determine the effect of phonons and its temperature depen-

dence on the longitudinal and transverse relaxation times. We know that lattice phonons in

diamond are important for the spin-lattice relaxation dynamics of the spin degree of freedom

of color centers and that the temperature plays a fundamental role in the spin relaxation dy-

namics [15–19]. At high temperatures, 300 K < T < 500 K, the most important contribution

to the longitudinal relaxation rate 1/T1 is due to the second-order Raman scattering [20]

which leads to the observed 1/T1 ∝ T 5 temperature dependence. Between 50 K < T < 200

K the main contribution arises from Orbach-type processes [21] which can be attributed to a

strong spin-phonon interaction with a quasi-localized phonon mode with energy ~ωloc ≈ 73

meV [18] and leads to 1/T1 ∝ (exp(~ωloc/kBT ) − 1)−1. At low temperatures (below 1 K),
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when one-phonon processes are more probably that two-phonon processes, recent experi-

mental observations and ab initio calculations concluded that 1/T1 = Γ0 (1 + 3n̄(T )), where

Γ0 = 3.14 × 10−5 s−1, and n̄(T ) = (exp(~D/kBT )− 1)−1 is the mean number of phonons

at the zero-field splitting frequency D/2π = 2.87 GHz [19]. In Chapter 3, we present a

theoretical microscopic model to describe the spin-lattice relaxation of individual electronic

spins associated to negatively charged nitrogen-vacancy centers in diamond, although our

results can be extended to other spin-boson systems. In particular, starting from a general

spin-phonon Hamiltonian for a system with spin S = 1 and solving the quantum master

equation we provide a detailed description of the spin-lattice relaxation dynamics of a sin-

gle NV− center in diamond. Our results are in good agreement with recent experimental

findings and analytically describe the temperature and magnetic-field scaling of 1/T1.

1.4 Electron spin resonance absorption problem

Understanding the effect of temperature on the electron spin resonance (ESR) absorption

spectrum is of great interest in solid-state and molecular systems for quantum metrology

and information. The study of the ESR absorption spectrum is a fundamental problem from

a theoretical point of view. The modeling of an ESR response is translated into the problem

of modeling the linear response of out-of-equilibrium systems [22–24]. For a color center in

diamond, the ESR response has interesting features, namely, the interaction between the

color center with its environment. Our attention is focused on the microscopic description

of the linear response of color centers in diamond with residual spin S = 1/2. In such case,

the NV0 center and the SiV− center and can be described as a E ⊗ e ⊗ SU(2) Jahn-Teller

(JT) system with an electronic spin S = 1/2. In Chapter 4, we characterize the phononic

dynamical suppression of the electron spin resonance (ESR)response of E⊗ e⊗SU(2) Jahn-

Teller systems. We include the effect of the linear electron-phonon coupling between the

orbital and lattice degrees of freedom, the spin-orbit, and Zeeman interactions, and the linear

response of the system to oscillating magnetic fields. Using the Markovian quantum master

equation we characterize the spin-relaxation rate and the contrast of the ESR response as a

function of temperature and several other parameters of the system.



Chapter 2

Microscopic modeling of the effect of

phonons on the optical properties of

solid-state emitters

In this chapter, we introduce a microscopic model to calculate the main features associated

to the photoluminescence (PL) spectrum of the negatively charged silicon-vacancy (SiV−)

center in diamond. The model is constructed by considering the localized electronic states

of a single SiV− center, the lattice phonons in thermal equilibrium, and the electron-phonon

interaction between them to first order in the nuclear displacement. Also, we include a

molecular dynamics simulation to estimate of the electron-phonon interaction of a single

SiV− center embedded in a finite size diamond structure. The main purpose of this model is

to microscopically understand the effect of phonons, and local symmetries, on the radiative

transitions associated to the SiV− when the system is relaxed from the excited to the ground

state. Using the spin-boson model and the polaron transformation we obtain an analytical

expression for the emission spectrum in terms of the spectral density function and the bath

temperature. Using this model and the molecular dynamics simulation, we calculate the

spectral density function of a single SiV−, and in consequence, the shape and the temperature

dependence of the PL spectrum. We introduce a perturbative mechanism that mixes the

defect electronic wavefunctions. This mechanism emerges as a good candidate to incorporate

the observed isotopic shift associated with the sharp feature of the phonon sideband.

7
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2.1 Introduction

Vibrations play a crucial role in nano systems by modifying their optical line shape, prevent-

ing them from being described as simple two-level systems [25]. Several works have addressed

the electron-phonon coupling to model the effect of vibrations on the optical properties of

molecules [26], point defects [27] and inter-band optical transitions in solids [28]. This in-

teraction is characterized, in most cases phenomenologically, by a spectral density function

[29–31] that is used to describe the dissipation dynamics due to acoustic phonons in a two-

level system [29], the absorption [32] and low temperature effects on the zero-phonon line

transition [30] in quantum dots that are strongly coupled to localized vibrations. There

are few works that treat the electron-phonon interaction with microscopic models [33]. The

latter approach is particularly accurate for atomistic systems and highly demanded nowa-

days as researchers are able to engineer nanoscale devices where effectively few atoms are

involved [34]. Therefore, a deep understanding of this interaction is needed for controlling

and engineering the optical properties of such systems.

Here, we consider a microscopic model to study the electron-phonon interaction between

the electronic states of a single SiV− center in diamond and lattice vibrations. We focus

on the effect of phonons on the optical properties, i.e., the zero-phonon line (ZPL) transi-

tion and the phonon sideband associated to the emission or photoluminescence spectrum.

On Sec. 2.2 we introduce to the electronic states of the SiV− center for which the optical

emission will be calculated. Section 2.3 describes the vibrational degrees of freedom of a

finite size lattice and the electron-phonon interaction between vibrations and the electronic

states. Section 2.4 introduces the model used to calculate the emission spectrum taking into

account the symmetries of the electronic wavefunctions and vibrations. In particular, the

spectral density function and its relation to the emission spectrum is introduced. Section 2.5

discusses the role of symmetry on the defect and finally Section 2.6 takes into account these

considerations to write the spectral density function for the SiV− center.
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2.2 Negatively charged silicon-vacancy center in dia-

mond

In this section we present the bare ground and excited states from which the optical transi-

tions will take place. The SiV− center is a point defect composed of six carbon atoms and an

interstitial silicon atom. The symmetry group associated to this defect is the C3v+i group,

a subgroup of the host crystal symmetry group Td [35, 36] (an equivalent group is D3 for

which the irreducible representations a1 and a2 are swapped). In particular, the inversion

symmetry with respect to the silicon atom leads to irreducible representations (IR) of the

C3v+i group to be labeled by parity: A1g, A2g, Eg (g = gerade or even) and A1u, A2u, Eu

(u = ungerade or odd) representations [36]. The electronic structure of this defect can be

represented by one-electron hole system with electronic spin S = 1/2. In the absence of

external perturbations the relevant electronic wavefunctions associated to the electron hole

representation are

|Ψ(0)
gx,gy〉 = eC

gx,gy, (2.1)

|Ψ(0)
ux,uy〉 =

1√
1 + 2Nβ + β2

(
eC
ux,uy + βpSi

x,y

)
, (2.2)

where eC
gx,gy (gerade) and eC

ux,uy (ungerade) are sp3 linear combinations of single electron

orbitals associated to the carbon atoms [36], pSi
x,y are px,y orbitals associated to the silicon

atom (see Fig. 2.1), β is a coefficient that indicates the contribution of the latter orbitals

and it is estimated to be ≈ 0.13 by ab initio calculations, and N = 〈pSi
x,y|eC

ux,uy〉. Thanks

to inversion symmetry the excited and ground state can also be labeled by parity. The

degenerate ground states |Ψ(0)
gx 〉 and |Ψ(0)

gy 〉 belong to the two-fold IR Eg = {Egx, Egy}, re-

spectively. Meanwhile, the degenerate excited states |Ψ(0)
ux 〉 and |Ψ(0)

uy 〉 belong to the two-fold

IR Eu = {Eux, Euy}, respectively. These ground and excited states are energetically sepa-

rated by the zero-phonon line energy EZPL = 1.68 eV [37]. Therefore, the electronic structure

associated to the negatively charged SiV− is modeled by the following Hamiltonian

He =
1

2
EZPL

(
|Ψ(0)

ux 〉〈Ψ(0)
ux | − |Ψ(0)

gx 〉〈Ψ(0)
gx |
)
. (2.3)

We do not include the effect of spin-orbit interaction, neither we include the spin degree of

freedom as they are not relevant for determining the broad features of the optical lineshape.
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2.3 Electron-phonon Hamiltonian

In this section we derive a model for the electron-phonon interaction between a single SiV−

center and lattice vibrations in a finite sized crystalline structure. First, we consider a

diamond lattice composed of NLat atoms including the SiV− center at the origin. Atoms are

arranged so that the whole structure maintains the C3v+i symmetry of the point defect. We

introduce the normal coordinates that describe lattice vibrations [25]

QLat
l =

NLat∑
i=1

∑
α={x,y,z}

√
Miuiαh

Lat
iα,l, (2.4)

where Mi is the mass of the i-th ion and uiα is the displacement of the i-th ion in the α

direction (x, y or z). In this notation, ui is the ion displacement vector from its equilibrium

position R
(0)
i , and hLat

iα,l are eigenvectors that satisfy the following eigenvalue equation [25]

NLat∑
j=

∑
β={x,y,z}

Diα,jβh
Lat
jβ,l = ω2

l h
Lat
iα,l, l = 1, ..., 3NLat, (2.5)

where Diα,jβ is the dynamical matrix associated with the ion-ion potential interaction and

ωl are the frequency associated with the l-th lattice mode. The dynamical matrix is given

by [25]

Diα,jβ =
1√
MiMj

(
∂2VIon-Ion

∂uiα∂ujβ

)∣∣∣∣
R0

, (2.6)

where VIon-Ion is the ion-ion Coulomb interaction (see Appendix A.2 for further details). The

electron-phonon interaction between the electronic states associated to this point defect and

lattice vibrations can be written as

Ve-ph(r, {Q}) =

3NLat−6∑
l=1

3ND−6∑
l′=1

αl′l

(
∂Ve-Ion

∂QSiV
l′

)QLat
l , (2.7)

where ND is the number of defect atoms (ND = 7 for the SiV− center), Ve-Ion is the electron-

ion Coulomb interaction between one electron located at r and the NLat surrounding atoms,

and QSiV
l′ are the local normal coordinates of the SiV− center. The factor αl′l is given by

αl′l = 〈HSiV
l′ ,h

Lat
l 〉 =

ND∑
i=1

∑
α={x,y,z}

HSiV
iα,l′ h

Lat
iα,l, (2.8)
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where HSiV
l′ center and hLat

l are the eigenvectors associated to the vibrational modes of the

SiV− and the finite lattice structure. We assume that the electron wavefunctions are non-

zero only on the ND defect atoms, therefore it is sufficient to consider the inner sum on the

defect atoms only. In the Appendix A.1 we show a full derivation of the electron-phonon

interaction. Next, we promote the normal coordinates and the corresponding momentum

conjugate to operators as follows:

QLat
l =

√
~

2ωl

(
b̂†l + b̂l

)
, P Lat

l = i

√
~ωl
2

(
b̂†l − b̂l

)
, (2.9)

where the set of 3NLat− 6 independent boson creation b̂†l and annihilation b̂l operators obey

the commutation relation

[b̂l, b̂
†
l′ ] = δll′ . (2.10)

Note that we only quantize vibrational modes, as translational and rotational modes leave

invariant the electron-phonon interaction. Finally, by expanding the electron-phonon inter-

action in the electronic basis |i〉 = {|Ψ(0)
gx 〉, |Ψ(0)

ux 〉} the following electron-phonon Hamiltonian

is obtained:

He-ph =
∑
i,l

λi,l|i〉〈i|(b̂†l + b̂l), (2.11)

where the electron-phonon coupling constants are given by

λi,l =

√
~

2ωl

3ND−6∑
l′=1

〈HSiV
l′ ,h

Lat
l 〉γi,l′ (2.12)

γi,l′ = 〈i|
(
∂Ve-Ion

∂QSiV
l′

)∣∣∣∣
R0

|i〉. (2.13)

To evaluate γi,l′ we used symmetrized Gaussian orbitals (see Appendix A.4 for details). On

Eq.(2.11) we have only kept those terms that shift the energy of the electronic states. Other

terms such as ∑
i 6=j,l

λij,l|i〉〈j|(b̂†l + b̂l), (2.14)

are not considered. The latter terms make Hamiltonian (2.11) analytically unsolvable for

a direct diagonalization calculation [30]. Nevertheless, these terms will be considered by

means of dynamical symmetry breaking.
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2.4 Model for the emission spectrum

The fluorescence spectrum of the emitted radiation in a thermal equilibrium state is deter-

mined by the spectral intensity radiated per unit solid angle by an oscillating dipole and it

is given by [38]

dI

dΩ
=

ω4
0

8π2c3
|(n× d)× n|2 E(ω), (2.15)

E(ω) =

∫ ∞
−∞
〈σ−(t)σ+(0)〉eq e−iωt dt, (2.16)

where d is the dipole vector and n = r/|r| is the unitary vector pointing in the direction of

r. Therefore, we calculate the emission spectrum associated to the electronic transition from

the excited |e〉 to ground state |g〉 as the Fourier transform of the current-current correlation

function at thermal equilibrium by applying the Kubo formula [31, 38] Eq.(2.16), where

σ+ = |e〉〈g|, σ− = |g〉〈e|, σ±(t) = U †(t)σ±(0)U(t) and U(t) = e−iHSBt/~. The Hamiltonian

HSB, known as the spin-boson Hamiltonian [31], is given by

HSB = He +He-ph +
∑
l

~ωlb̂†l b̂l, (2.17)

where the first, second and third term are the Hamiltonians of the electronic states of the

point defect [Eq.(2.3)], the electron-phonon interaction to first order in the ion displace-

ments [Eq.(2.11)], and the phonon bath, respectively. The average 〈...〉eq is taken over

phonons, which are assumed to be in thermal equilibrium. The electron-phonon interaction

in Eq.(2.17) describes acoustic, optical and quasi-local phonon modes coupled to the elec-

tronic states of the point defect. Physically, during the emission or absorption processes, the

electronic charge changes its spatial distribution leading to a change in the potential seen by

the ions close to the charge localization. Ions will seek for new equilibrium positions, result-

ing in a relaxation process inducing lattice vibrations. In order to determine how the phonon

relaxation processes affect the optical properties we introduce the polaron transformation

[31, 39] given by

H ′ = eSHe−S, (2.18)

where

S =
∑
i,l

λi,l
~ωl
|i〉〈i|

(
b̂†l − b̂l

)
. (2.19)
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In the density operator formalism, the state of thermal equilibrium that maximizes the von

Neumann entropy S(ρ̂) = −Tr (ρ̂ ln ρ̂) is given by ρ̂eq = e−βHSB/Z, where Z = Tr
(
e−βHSB

)
is

the partition function, β = 1/kBT , T is the temperature, and kB is the Boltzmann constant.

Therefore, the expectation value can be calculated as

〈σ−(t)σ+(0)〉eq =
1

Z
Tr
(
σ′−(t)σ′+(0)e−βH

′
SB

)
. (2.20)

Under these approximations the emission spectrum can be analytically calculated as

E(ω) =

∫ ∞
−∞

e−i(ω−ωeg+∆e−∆g)t+Φ(t) dt, (2.21)

where ωeg = ωe − ωg is the bare electronic frequency transition, ∆i =
∑

l λ
2
i,l/(~2ωl) is the

polaron shift and Φ(t) contains the effect of phonons on the optical line shape and is given

by

Φ(t) =

∫ ∞
0

J0(ω)

(~ω)2

[
coth

(
β~ω

2

)
(cosωt− 1)− i sinωt

]
dω, (2.22)

and

J0(ω) =
∑
l

(λe,l − λg,l)2 δ(ω − ωl), (2.23)

is the spectral density function where λi,l is the expectation value of the electron-phonon

coupling between phonon modes l and the electronic wavefunction |i〉. If the electronic

states interact with the same strength to phonons, both coupling constants for the ground

and excited states are similar and the spectral density function is small leading to a transition

involving few phonons and resulting in a fluorescent shape that closely resembles that of a

phonon-free system. On the contrary, if these two couplings are substantially different, the

change on electronic distribution, and therefore, on the potential seen by the ions is large

and the emission spectrum is greatly modified (Fig. 2.1).

2.5 Role of inversion symmetry on the emission spec-

trum

The electron-phonon coupling constants depend crucially on the atomic configuration, the

symmetry of the point defect and the symmetry of the host material. As an example, the

fluorescent of the nitrogen-vacancy center (NV-center) and SiV− center in diamond are very
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Figure 2.1: Schematic representation of the potential energy diagram. The two parabolas
represent the phononic potential of the ground egx and excited eux states of the SiV− including
vibrational levels. Structure of the SiV− in diamond: six carbon atoms (dark gray) and the
interstitial silicon atom (green) embedded in a diamond lattice (light gray) . The molecular orbital
representation of the electronic states egx and eux are represented by red (blue) for the positive

(negative) sign of the electronic wavefunction.

different from each other although they differ in one atom in their molecular composition.

The NV-center has a broad emission ranging from 637 nm zero-phonon line (ZPL) to 750 nm;

meanwhile the emission of the SiV− has a width of few nanometers at the same temperature

[14]. The symmetry of the point defect is determined by the atomic configuration [40]. In the

case of the NV-center, the nitrogen atom is substitutional and its atomic configuration does

not remain the same under inversion, i.e., parity is not a good description for wavefunctions

and vibrations [41]. On the contrary, in the SiV−, the silicon atom is interstitial between

two vacancies and its configuration remains the same under inversion [35], i.e., electronic

wavefunctions and vibrations can be described by parity. As the coupling constants λi,l are

the integration of three functions, its expectation value will be zero if the total product is

odd. The lack of inversion symmetry in the NV-center allows in principle the contribution

from all vibrational modes. Whereas the coupling constants λe,l and λg,l for the SiV− can

be very similar due to inversion symmetry. Indeed, in the SiV− the ground state is a gerade

(even) linear combination of dangling bond atomic orbitals meanwhile the excited state is an

ungerade (odd) function of these orbitals. These wavefunctions might differ only by a phase

leading to a very similar electronic distribution, a small change upon electronic transitions
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Figure 2.2: Numerical phonon dispersion curves for diamond. Red lines and black circles
correspond to the numerical calculations using the force-constant model to second order nearest-
neighbor interactions and experimental neutron-scattering data extracted from [44]. The phonon
frequencies are plotted as a function of the reduced phonon wave-vector between some symmetry

points in the First Brillouin Zone.

in the trapping potential seen by the ions, and therefore a very small phonon contribution

to the spectral density function J0(ω).

2.6 Spectral density function and the emission spec-

trum

A quantitative analysis of the phonon modes can be performed by considering a macro

molecule composed of N ∼ 103 atoms where the defect is placed at its center as described in

Appendix A.3. The vibrational modes are calculated using a force-constant model to second

order nearest-neighbor interaction [42, 43] in order to better resemble the real phonon disper-

sion relation of diamond [44] (see Fig. 2.2). Using only a first order nearest-neighbor model

does not give an accurate description of the high density areas for the acoustic bands from

which arouses the main contribution to the spectral density function. In Appendix A.2 and

A.3 we show the numerical methodology implemented to obtain the vibrational properties

of the macromolecule. Vibrational modes of even parity (a1g, a2g and eg phonons) contribute

to the spectral density function J0(ω) associated to the transition |Ψ(0)
ux 〉 −→ |Ψ(0)

gx 〉 [see

Fig. 2.3.(a)] with the breathing mode of symmetry a1g being the strongest contribution.

This peak also contains contributions from eg phonon modes which contribute to the width
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of the peak. So far the motion of the silicon atom does not play a role if we consider phonon

modes with even symmetry. However, recently an isotopic shift of the phonon sideband was

observed for different silicon isotopes [45]: as the mass of the silicon atom increases, the

distance between the ZPL and the phonon sideband decreases suggesting that a local vibra-

tional mode primarily composed of the silicon atom is involved. Such mode is necessarily

of character u (odd), and for symmetry reasons it should not contribute to the coupling

constants λe,l and λg,l if the electronic states given in Eqs.(2.1) and (2.2) are used. This

indicates that inversion symmetry is broken and it is no longer a good description of the

wavefunctions. Inversion symmetry can be broken by vibrations of character u, which can

dynamically mix both ground and excited states. External electric fields can also break

inversion symmetry. Global strain does not mix ground and excited states as it only mix the

states among each manifold [36]. In addition, ab initio calculations support that inversion

symmetry is not broken if vibrations are not included. In this scenario, the new electronic

wavefunctions can be described by

|Ψg〉 =
√

1− ε2|Ψ(0)
g 〉 − εe+iθ|Ψ(0)

e 〉, (2.24)

|Ψe〉 =
√

1− ε2|Ψ(0)
e 〉+ εe−iθ|Ψ(0)

g 〉, (2.25)

where ε is a mixing parameter, θ is an arbitrary phase, and |Ψ(0)
g 〉, |Ψ(0)

e 〉 are the electronic

wavefunctions given in Eqs.(2.1) and (2.2). A similar argument can be given by means of

the Herzberg-Teller effect which can also show a dynamical symmetry breaking [46–48]. The

spectral density function J(ω) =
∑

l

(
λΨe,l − λΨg ,l

)2
δ(ω − ωl) can be explicitly calculated

in order to incorporate the effect of the dynamical symmetry breaking given by the mixing

of the ground and excited states of the SiV− center. Using group theoretical arguments,

averaging over the phase θ and evaluating in the small mixing limit (|ε| � 1) we find that

(see Appendix A.6)

J(ω) = J0(ω) + 8ε2Jeg(ω), (2.26)

where J0(ω) is given by Eq. (B.27) and

Jeg =
∑
l

(λeg,l)
2 δ(ω − ωl), λeg,l = 〈Ψ(0)

g |H
(l)
e-ph|Ψ

(0)
e 〉, (2.27)

is the spectral density function that incorporates the contribution of phonon modes with

odd symmetry. See Appendix A.6 for a derivation of the spectral density function Jeg(ω).

Fig. 2.3(b) shows Jeg(ω) where a strong peak associated to an a1u quasi-local phonon mode
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(a2u in D3 symmetry) is observed with a frequency of ω28 = 63.19 meV, ω29 = 62.66 meV

and ω30 = 62.16 meV for isotopes Si28 , Si29 and Si30 , respectively. The ratio between these

energies is approximately ω28/ω29 ≈ 1.01 and ω28/ω30 ≈ 1.02 and has a good agreement

with experimental values (ω28/ω29 = 1.016 and ω28/ω30 = 1.036 [45]). However, the exact

value for the energy of this a1u quasi-local phonon mode can be better estimated with more

precise methods. The prominent sharp feature of Jeg(ω) has also contributions from eu and

a2u modes where eu modes contribute approximately twice as much as the a2u modes. The

frequency of the quasi-local phonon mode a1u has a strong dependence on the silicon mass.

In this mode, the silicon atom moves along the symmetry axis. In addition, we observe that

Jeg(ω) is considerably larger that J0(ω) and strongly depends on the silicon contribution to

the electronic wavefunction (see Eq.(2.2)). Only a small mixing parameter is sufficient to

make Jeg(ω) the largest contribution to the spectral density function given in Eq.(2.26).

This microscopic procedure allows to numerically calculate the contribution of acoustic,

optical and quasi-local phonon modes to the spectral density function. However, a large

number of atoms is required to have a better estimate of the mode density and of the

emission spectrum. Alternatively, known models of the spectral density function can be fitted

to simplify the effect of phonons. Bulk phonons have been modelled with a spectral density

function of the form [29] JBulk(ω) = 2αω1−s
c ωse−ω/ωc , where α is the dissipation strength, ωc

is a cut-off frequency and s is a dimensionless parameter characterizing the regimes: sub-

ohmic (s < 1), ohmic (s = 1) and super-ohmic (s > 1). At low frequencies the contribution

from acoustic phonon modes to the SiV− can be modeled as J(ω) ∝ ω3 which implies a

super-ohmic regime (s = 3) [33]. For quasi-local phonons JLoc1(ω) = J0
π

1
2

Γ

(ω−ωb)2+( 1
2

Γ)
2 [49],

where J0 is the coupling strength, Γ is a characteristic width and ωb is the frequency of

the phonon. In the numerical estimation at least two localized contributions JLoc1(ω) and

JLoc2(ω) are recognised at 63.19 meV and around 45.5 meV, respectively. We fit Jeg(ω) to

a spectral density function of the form Jeg(ω) = JBulk(ω) + JLoc1(ω) + JLoc2(ω) [50]. We

found, however, that JLoc2(ω) is best fit to a Gaussian function as it is probably composed

of multiple quasi-local phonon modes. The emission spectrum associated with Jeg(ω) is

shown on Fig. 2.4 and has good agreement with the observed isotopic shift [45]. The largest

contribution to the phonon sideband at 766 nm is due to the main peak in Jeg(ω) at 63.19

meV and it is associated to an a1u quasi-local mode as previously discussed (see Fig. 2.3(b)).

Changing the isotopic mass indeed shifts the distance between the ZPL and this feature on

the phonon sideband confirming previous observations [45]. A second contribution to the

sideband is observed at 755 nm and is associated with a peak in Jeg(ω) at 45.5 meV and
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Figure 2.3: Numerical spectral functions J0(ω) and Jeg(ω) for the SiV− in diamond. (a)
Spectral function J0(ω), where the blue bar graph and the green line are the numerical estimation
and the fit spectral function obtained from simulations. The strongest contribution is given by
an a1g phonon mode (breathing mode) at around ω0 = 37 meV. (b) Spectral function Jeg(ω),
where the blue bar graph and the green line are the numerical estimation and the fit spectral
function, respectively. The strongest contribution is given by an a1u quasi-local phonon mode at
around ω1 = 63.19 meV. A second contribution of the Jeg(ω) spectral function is given at around

ω2 = 45.5 meV.

does not have a dependence on the silicon mass. Other peaks in the observed experimental

phonon sideband [51] can be associated to other features in the spectral density function

J0(ω) and Jeg(ω). A peak at 796 nm (with no dependence on the silicon mass) [45] might

correspond to the highest phonon frequency of the acoustic band of highest sound speed,

close to the L symmetry point of the measured dispersion relation [43, 52].

Our second nearest-neighbor model over estimate mode frequencies at higher frequencies and

locates this points at 136.5 meV, frequency at which there seems to be a contribution on the

spectral function Jeg(ω) (see Fig. 2.3(b)). A similar argument applies for a contribution at

87 meV in the observed phonon sideband corresponding to a 103.4 meV feature in Jeg(ω).
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Figure 2.4: Numerical emission spectra of the SiV− in diamond. The blue and red curves
represent the numerical emission spectrum obtained for T = 4 K and T = 296 K, respectively. The
ZPL at 736 nm and the prominent sharp feature of the phonon sideband at 766 nm are reproduced.

The peak at 766 nm its associated with the a1u quasi-local phonon mode.

The model also allows to calculate temperature effects. As an example, we have plot the

emission spectrum at 4K and 297 K (see Fig. 2.4). Finally, we remark that the isotopic shift

is not possible to explain with phonons that transform evenly under inversion. Therefore, a

dynamical symmetry breaking is needed, which can be caused by non-inversion preserving

perturbations such as external electric fields or odd vibrational modes.

Further improvements of the current numerical estimations can be performed by increasing

the number of atoms around the defect for which the defect electronic wavefunctions are

non-zero.

2.7 Conclusions

In summary we have presented a microscopic model for estimating the emission spectrum of

the SiV− using the Kubo formula and the spin-boson model. In addition we have considered

effects to second-order on the spectral density function via dynamical symmetry breaking.
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This spectral density function is estimated using a force-constant model for describing the

vibrational modes and symmetrized electronic wavefunctions constructed using group theo-

retical arguments. This approach allows us to gain detailed insight on the microscopic origin

and the role of symmetries on the emission spectra and the spectral density function, ap-

proach which is crucially different from, but validates, phenomenological models presented

in previous works [29–31]. These results might be useful for understanding and engineering

the optical properties of colour centers in solids by extending the analysis to other deep and

shallow centers coupled to phonons and subject to instabilities such as dynamic Jahn-Teller

effects and external perturbations such as electric fields or strain.



Chapter 3

Spin-lattice relaxation of individual

solid-state spins

In this chapter, we present a theoretical microscopic model to describe the spin-lattice relax-

ation of individual electronic spins associated to negatively charged nitrogen-vacancy centers

in diamond, although our results can be extended to other spin-boson systems. Starting from

a general spin-lattice interaction Hamiltonian, we provide a detailed description and solu-

tion of the quantum master equation of an electronic spin-one system coupled to a phononic

bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon pro-

cesses below 1 K where our results agree with recent experimental findings and analytically

describe the temperature and magnetic-field scaling. At higher temperatures, linear and

second-order terms in the interaction Hamiltonian are considered and the temperature scal-

ing is discussed for acoustic and quasi-localized phonons when appropriate. Our results,

in addition to confirming a T 5 temperature dependence of the longitudinal relaxation rate

at higher temperatures, in agreement with experimental observations, provide a theoretical

background for modeling the spin-lattice relaxation at a wide range of temperatures where

different temperature scalings might be expected.

3.1 Introduction

The negatively charged nitrogen-vacancy (NV−) center in diamond is a promising solid-state

system with remarkable applications in quantum sensing with atomic-scale spatial resolution

21
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[8, 9], fluorescent marking of biological structures [4–6], single photon sources [53], and

quantum communications [7]. However, most of these quantum-based applications crucially

depend on the longitudinal (1/T1) and transverse (1/T2) spin relaxation rates associated

with the ground state spin degree of freedom [18].

From experiments and theory, we know that lattice phonons in diamond are important for

the spin-lattice relaxation dynamics of the spin degree of freedom of the NV− center, and

that the temperature plays a fundamental role in this relaxation process [15–19]. Phonons

can be understood as collective quantum vibrational excitations that propagate through the

lattice and directly interact with the orbital states of the point defect. The intensity of

this interaction depends on the electron-phonon coupling between the defect and all possible

phonon modes in the lattice (acoustic, optical and quasi-localized phonon modes) [48, 54,

55]. Theoretical and numerical studies show that the strain field of the diamond lattice

and perturbative corrections given by the spin-orbit and spin-spin interactions introduce

interesting spin-phonon dynamics between the ground state spin degree of freedom of the

NV− center and lattice phonons [56, 57].

Several theoretical works have addressed the problem of finding the relaxation rate by con-

sidering the interaction between the spin degree of freedom with two-phonon Raman [20, 58]

and Orbach-type [21] processes. In general, the problem of estimating the thermal depen-

dence of each relaxation process is translated into the problem of calculating the transition

rates predicted by the Fermi golden rule for different phonon processes [19–21, 58, 59]. Using

this reasoning, it is reported that the second-order Raman process induced by a linear spin-

phonon interaction leads to 1/T1 ∝ T 5 [20], while the first-order Raman process induced by

a quadratic spin-phonon interaction leads to 1/T1 ∝ T 7 [58], where T is the environment

temperature.

The ground triplet state of the NV− center in diamond has a natural zero-field splitting

D/2π = 2.87 GHz originated from the dipole-dipole interaction between electronic spins

[60, 61]. This energy gap is low compared to typical optical phonon energies ωph/2π ∼
15-40 THz and sets a characteristic thermal gap associated with the spin system Tgap =

~D/kB ≈ 0.14 K. Experimental observations at high temperatures, from 300 K to 475

K, have shown that different samples with different NV− center concentrations present a

dominant two-phonon Raman process that leads to (1/T1)Raman ∝ T 5 [17, 18]. At low

temperatures, between 4 K and 100 K, the relaxation rate is dominated by Orbach and

spin-bath interactions. The former is associated with a quasi-localized phonon mode with
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energy ωloc ≈ 73 meV [18, 62] and contributes with a temperature dependence relaxation

rate (1/T1)Orbach ∝ (exp(~ωloc/kBT ) − 1)−1. This, closely matches the numerical vibra-

tional resonance predicted by ab initio studies [54]. Meanwhile, it is observed that dipole-

dipole interactions between neighboring spins lead to a constant sample-dependent relax-

ation rate which dominates at this temperature range [18]. In contrast, at lower temper-

atures (below 1 K) recent experimental observations and ab initio calculations concluded

that the longitudinal relaxation rate is dominated by single-phonon processes, and is given

by (1/T1) ∝ Γ0 (1 + 3n̄(T )), where Γ0 = 3.14× 10−5 s−1, and n̄(T ) = (exp(~D/kBT )− 1)−1

is the mean number of phonons at the zero-field splitting frequency [19]. However, a micro-

scopic model that predicts the temperature dependence of the longitudinal relaxation rate

for a wide range of temperatures, to the best of our knowledge, is still missing.

Here, we present a microscopic model for the spin-lattice relaxation dynamics associated

with the ground state of the NV− center in diamond. In our model, we introduce a general

spin-phonon Hamiltonian to describe the spin relaxation dynamics using the quantum master

equation associated with the electronic spin degree of freedom under the effect of a phononic

bath. We focus on the estimation of the longitudinal relaxation rate by evaluating the

rate of the Fermi golden rule transitions to first and second-order considering the effect

of acoustic and quasi-localized phonons. In Sec. 3.2, we give the Hamiltonian of the whole

system and introduce the spin-phonon interaction between the triplet state of the spin degree

of freedom and lattice vibrations, by considering one-phonon and two-phonon interactions.

Section 3.3 introduces the phonon relaxation rates for one-phonon and two-phonon processes,

by using the Fermi golden rule, the Debye approximation, and a model for strong interactions

with quasi-localized phonon modes. In Sec. 3.4 we introduce the quantum master equation

associated with the spin-lattice relaxation dynamics of the ground state and include the role

of a stochastic magnetic noise. Finally, in Section 3.5 we discuss the longitudinal relaxation

rate at low and high-temperature regimes and the role of a static magnetic field on the

relaxation rate for low temperatures.

3.2 Spin degree of freedom and phonons

We consider a system composed of a single NV− center in diamond interacting with lattice

phonons. In this scenario, local vibrations induce a mixing between orbital states of the

defect by means of the electron-phonon interaction. This phonon-induced mixing effect
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generates an effective interaction between the spin degree of freedom and lattice phonons.

In order to model the spin-phonon relaxation dynamics, we use the following Hamiltonian

Ĥ = ĤNV + Ĥs-ph + Ĥph, (3.1)

where the first, second and third terms represent the ground state spin Hamiltonian of the

NV− center, the interaction Hamiltonian between the spin state and lattice phonons, and

the phonon bath, respectively.

The NV− center is composed of a substitutional nitrogen atom next to a vacancy in a

diamond lattice. The symmetry of the center is captured by including the three carbon

atoms adjacent to the vacancy [63]. The atomic configuration of this point defect is associated

with the C3v symmetry group. The electronic structure of this point defect is modeled as a

two electron-hole system with electronic spin S = 1. In this representation, the electronic

wavefunctions of the excited and ground state are linear combinations of two-electron wave

functions [64], where the single-electron orbitals of the NV− center can be written in terms

of the carbon and nitrogen dangling bonds [35, 65]. In the absence of external perturbations,

such as lattice distortions or electromagnetic fields, the orbital excited states |X〉 and |Y 〉
are degenerate due to the C3v symmetry and belong to the irreducible representation E.

Meanwhile, the orbital ground state |A2〉 belongs to the irreducible representation A2.

In the presence of a static magnetic field B0 along the z axis, the spin Hamiltonian of the

NV− center is given by (~ = 1)

ĤNV = DS2
z + γsB0Sz, (3.2)

where S = (Sx, Sy, Sz) are the Pauli matrices for S = 1 (dimensionless), D/2π = 2.87

GHz is the zero-field splitting constant, and γs/2π ≈ 2.8 MHz/G is the gyromagnetic ratio.

Figure. 3.1 shows the energy diagram of the system, including the orbital states, spin degrees

of freedom and the atomic configuration of the NV− center.

Quantum systems with spin S = 1 are traditionally called non-Kramers systems [66, 67].

Interestingly, there is a non-trivial connection between the spin number and the temperature

dependence of the relaxation rate [20, 21, 65]. Therefore, in order to obtain the correct

temperature dependence of the spin relaxation rate of the ground triplet state of the NV−

center we consider the most general spin-phonon interaction Hamiltonian for spin S = 1
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Figure 3.1: The energy levels and the atomic structure of the NV− center are shown. Here, |X〉
and |Y 〉 are the orbital degenerate excited states, and |A2〉 is the orbital ground state. The zero-
phonon line energy is given by E0 = 1.945 eV. The spin triplet states are represented by |ms = 0〉
and |ms = ±1〉. Such spin states are separated by the zero-field splitting constant D/2π = 2.87
GHz and the static magnetic field which we have assumed is aligned along the symmetry axis of
the center. Phonons are represented by a continuous band that interacts with the ground state and

its transitions are represented by the labels (1), (2), and (3).

systems given by [66]

Ĥs-ph = EzS
2
z + Ex

(
S2
x − S2

y

)
+ Ey (SxSy + SySx)

+Ex′ (SxSz + SzSx) + Ey′ (SySz + SzSy) , (3.3)

where the operators Ez, Ex, Ey, Ex′ and Ey′ have units of energy. In addition, the operators

Ex, Ex′ , Ey, and Ey′ belong to the irreducible representation E, while the operator Ez is

characterized by the irreducible representation A1 [66]. Physically, the Ei operators can be

derived from perturbative corrections of the spin-spin and spin-orbit interactions due to the

effect of the strain field [57]. These operators are proportional to the nuclear displacements,

and therefore, can be quantized using phonon modes [57]. In order to introduce these

quantized vibrations, we expand the Ei operators in terms of lattice phonon-mode operators

classified by each symmetry, including the linear and the quadratic terms, as the following

Ei =
∑
k∈E

λk,ix̂k +
∑

k⊗k′∈E

λkk′,ix̂kx̂k′ , i 6= z (3.4)

Ez =
∑
k∈A1

λk,zx̂k +
∑

k⊗k′∈A1

λkk′,zx̂kx̂k′ . (3.5)
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Here, λk,i and λkk′,i are the linear and quadratic spin-phonon coupling constants, respectively.

The operator x̂k is given by x̂k = b̂k + b̂†k where b̂k and b̂†k are the boson annihilation and

creation operators, respectively satisfying [b̂k, b̂
†
k′ ] = δk,k′ . The linear term given in Eqs. (3.4)

and (3.5) has the same symmetry as the corresponding Ei operators, and phonons with

these symmetry are considered in the summation. In the quadratic term we are considering

combinations of phonons such that the product belongs to the irreducible representation E

or A1. As a consequence of the multiplication rules A2 ⊗A2 = A1 and A2 ⊗E = E, phonon

modes with A2 symmetry only contribute to the quadratic term. Therefore, the most general

spin-phonon Hamiltonian for a system with spin S = 1, is given by

Ĥs-ph =
∑
i

[∑
k∈Γi

λk,ix̂k +
∑

k⊗k′∈Γi

λkk′,ix̂kx̂k′

]
F̂i(S),

(3.6)

where i = x, y, x′, y′, z is the spin label, Γx,y,x′,y′ = E and Γz = A1 are the irreducible

representations of the C3v point group. The spin functions are given by F̂x(S) = S2
x −

S2
y , F̂y(S) = SxSy + SySx, F̂x′(S) = SxSz + SzSx, F̂y′(S) = SySz + SzSy, and F̂z(S) = S2

z .

Using the spin basis that diagonalizes the spin Hamiltonian given in Eq. (3.2), i.e., |ms = 1〉 =

(1, 0, 0), |ms = 0〉 = (0, 1, 0), and |ms = −1〉 = (0, 0, 1) we explicitly obtain

F̂x(S) =


0 0 1

0 0 0

1 0 0

 , F̂x′(S) =
1√
2


0 1 0

1 0 −1

0 −1 0

 , (3.7)

F̂y(S) =


0 0 −i
0 0 0

i 0 0

 , F̂y′(S) =
1√
2


0 −i 0

i 0 i

0 −i 0

 , (3.8)

F̂z(S) =


1 0 0

0 0 0

0 0 1

 . (3.9)

We observe that only the terms F̂x(S) and F̂y(S) induce spin transitions between the states

ms = +1 and ms = −1, where the selection rule is ∆ms = ±2. On the other hand, the

terms F̂x′(S) and F̂y′(S) induce spin transitions between ms = ±1 and ms = 0, in this case

the selection rule is ∆ms = ±1.
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Finally, the phonon Hamiltonian can be written as

Ĥph =
∑
k

~ωkb̂†kb̂k, (3.10)

where ωk is the frequency of each vibrational mode of the lattice (including the color center),

and the summation takes into account the contribution of all phonon modes of the diamond

lattice. In the next section, we will introduce the phonon-induced spin relaxation rates and

the temperature dependence associated to the spin-phonon Hamiltonian given in Eq. (3.6)

by considering the effect of acoustic and quasi-localized phonons in thermal equilibrium. We

will show that the dimension and the symmetry of the lattice play a fundamental role in the

temperature dependence of the longitudinal relaxation rate for two-phonon processes.

3.3 Fermi Golden rule and phonon-induced spin relax-

ation rates

In order to formally introduce the phonon-induced relaxation rates, we use the Fermi golden

rule to first and second order by using the spin-phonon Hamiltonian given in Eq. (3.6).

Using this procedure, it is possible to model first and second-order Raman-like processes, as

well as direct absorption and emission associated with one-phonon processes. In particular,

the energies associated with the spin transitions in the ground state of the NV− center are

given by ω1 = 2γsB0, ω2 = D + γsB0, and ω3 = D − γsB0. For typical magnitudes of

the static magnetic field B0 ∼ 0 − 2000 G and taking into account the zero field splitting

constant D/2π = 2.87 GHz, we obtain that ω1 ∼ 0 − 11.2 GHz, ω2,3 ∼ 2.87 − 8.47 GHz.

These are the typical energies of acoustic phonons which belong to the linear branch of the

phonon dispersion relation for diamond [44]. Acoustic phonons in diamond have energies of

the order of ωacous ∼ 0 − 10 THz. Therefore, the main fraction of acoustic phonons satisfy

the frequency condition ωacous � ωi.

For the case of Raman-like processes the frequency condition is ωph,1 − ωph,2 = ωi (i =

1, 2, 3). Due to the condition ωacous � ωi we assume in our model that the most significant

contribution to two-phonon processes comes from acoustic phonons that satisfy ωph,1 � ωi

and ωph,2 � ωi. On the other hand, high energy phonons in diamond, with frequencies

of the order of ωph ∼ 15 − 40 THz, can be included by considering the strong interaction
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with quasi-localized phonons. Therefore, in what follows we will consider the contribution

of acoustic and quasi-localized phonons.

3.3.1 One-phonon processes: acoustic phonons

In the case of one-phonon processes, we need to distinguish between the absorption and

the emission of a particular phonon mode with frequency ωk, which must be resonant with

a transition between the spin energy levels of the NV− center in diamond. In order to

introduce the temperature, we assume a phonon environment in thermal equilibrium, i.e.,

phonons that satisfy the Bose-Einstein distribution. Thus, we have 〈b̂†kb̂k〉 = n(ωk) and

〈b̂kb̂†k〉 = 1 +n(ωk), where n(ωk) = [exp (~ωk/kBT )− 1]−1 is the mean number of phonons at

thermal equilibrium with kB and ~ being the Boltzmann and Planck constant, respectively.

For one-phonon processes the absorption and emission transition rates associated with the

spin transition |ms〉 → |m′s〉 are given by the first order Fermi golden rule as

Γ
ms→m′s
abs =

2π

~2

∑
k

∣∣∣〈m′s, nk − 1
∣∣∣Ĥs-ph,

∣∣∣ms, nk〉
∣∣∣2 δ(ωm′s,ms − ωk), (3.11)

Γms→m
′
s

em =
2π

~2

∑
k

∣∣∣〈m′s, nk + 1
∣∣∣Ĥs-ph

∣∣∣ms, nk〉
∣∣∣2 δ(ωm′s,ms − ωk), (3.12)

where ωm′s,ms = ωm′s − ωms is the frequency difference between the spin sub-levels, and |nk〉
is the number of phonons in the mode k (Fock state). Using the spin-phonon Hamiltonian

given in Eq. (3.6), the spin relaxation rates associated with one-phonon processes are given

by

Γ1,1-ph
abs =

2π

~2
n(ω1)J1(ω1), Γ1,1-ph

em =
2π

~2
(n(ω1) + 1) J1(ω1), (3.13)

Γ2,1-ph
abs =

π

~2
n(ω2)J2(ω2), Γ2,1-ph

em =
π

~2
(n(ω2) + 1) J2(ω2), (3.14)

where the superscript “1” and “2” represent the spin transitions |ms = −1〉 ↔ |ms = 1〉
and |ms = 0〉 ↔ |ms = +1〉, respectively. Here, J1(ω) and J2(ω) are the spectral density

functions

J1(ω) =
∑
k∈E

(
λ2
k,x + λ2

k,y

)
δ(ω − ωk), (3.15)

J2(ω) =
∑
k∈E

(
λ2
k,x′ + λ2

k,y′

)
δ(ω − ωk), (3.16)
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where λk,i are the linear spin-phonon coupling constants, ωk are the phonon frequencies, and

both summations consider the contribution of E phonons. For the transition |ms = 0〉 ↔
|ms = −1〉 the gap frequency ω3 = D − γsB0 can be positive or negative depending on the

strength of the external magnetic field B0. For ω3 > 0 the absorption and emission relaxation

rates are given by

Γ3,1-ph
abs =

π

~2
n(ω3)J2(ω3), (3.17)

Γ3,1-ph
em =

π

~2
(n(ω3) + 1)J2(ω3), (3.18)

where the superscript “3” represents the spin transition |ms = 0〉 ↔ |ms = −1〉. In this case,

the spin state |ms = 0〉 is the lowest spin energy level and the absorption is defined by the

transition |ms = 0〉 → |ms = −1〉. In the opposite case, i.e., when ω3 < 0, the relaxation

rates can be written as the following

Γ3,1-ph
abs =

π

~2
n(|ω3|)J2(|ω3|), (3.19)

Γ3,1-ph
em =

π

~2
(n(|ω3|) + 1)J2(|ω3|). (3.20)

In this case the spin state |ms = −1〉 is the lowest spin energy level, and the absorption is

defined by the transition |ms = −1〉 → |ms = 0〉. Figure 3.2 shows the phonon-induced spin

relaxation rates associated with the ground triplet state of the NV− center as a function

of the external magnetic field B0. The absorption and emission relaxation rates associated

with the transitions |ms = 0〉 ↔ |ms = −1〉 are shown only for the case ω3 < 0. The total

phonon-induced spin relaxation rate associated with one-phonon processes is defined as the

sum of the absorption and emission transition rates of each process, and is given by

Γ1-ph =
3∑
i=1

(
Γi,1-ph

abs + Γi,1-ph
em

)
=

3∑
i=1

Ai coth

(
~ωi

2kBT

)
. (3.21)

This total phonon-induced spin relaxation rate will be relevant for the general solution as-

sociated with the populations of the spin states and the observable 〈Sz(t)〉 (see Section 3.5

and Eqs. (3.72) and (3.75)). In addition, this transition rate, i.e., the sum of absorption and

emission of all the transitions, is the rate that limits the coherence time T2 [68]. The param-

eters Ai depend on the value of the spectral density function at the resonant frequencies,

i.e., A1 = 2πJ1(ω1), A2 = πJ2(ω2), and A3 = πJ2(|ω3|).
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In the limit of continuous frequency, i.e., ωk → ω, we can introduce the following scaling for

the linear spin-phonon coupling constants [69]:

λk,i → λi(ω) = λ0i

(
ω

ωD

)ν
, 0 ≤ ω ≤ ωD, (3.22)

where λi(ω) is the one-phonon coupling constant for acoustic phonons, λ0i = λi(ωD) is the

strength of the one-phonon coupling constant at the Debye frequency ωD = (3/(4πn))1/3 vs,

where n is the atom density, and vs is the speed of sound. For the diamond lattice the Debye

frequency is given by ωD/2π = 38.76 THz [70]. The parameter ν is a phenomenological

parameter that models the strength of the coupling for acoustic phonons and depends on

the symmetry of the lattice. In the absence or presence of cubic symmetry we have ν = 1/2

or ν = 3/2, respectively [69]. For the NV− center in diamond we use the value ν = 1/2,

because of the presence of the color center with C3v symmetry that breaks the symmetry of

the whole system (lattice and point defect).

We introduce the density of states for acoustic phonons with E symmetry in a three-

dimensional lattice, with a dispersion ωk = vs|k| in the Debye approximation (ω ≤ ωD =

vskD):

F(ω) =
∑
k∈E

δ(ω − ωk)→ Ω

∫
d3k

(2π)3
δ(ω − vsk)

=
Ω

(2π)3

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ kD

0

dk k2δ(ω − vsk)

=
Ωω2

2π2v3
s

Θ(ωD − ω), (3.23)

where we have taken the continuum limit of the sum, Ω is the volume of a unit cell, vs =

1.2 × 104 m/s is the speed of sound in a diamond lattice, and ωD = vskD is the Debye

frequency for the diamond lattice. The frequency domain is truncated in the upper limit

to the Debye frequency by the Heaviside function Θ(ωD − ω). In the limit of continuous
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frequency, the spectral density functions can be written as

J1(ω) =
∑
k∈E

[
λ2
x(ωk) + λ2

y(ωk)
]
δ(ω − ωk)

→ Ω

∫
d3k

(2π)3

[
λ2
x(ωk) + λ2

y(ωk)
]
δ(ω − ωk)

=
[
λ2
x(ω) + λ2

y(ω)
]

Ω

∫
d3k

(2π)3
δ(ω − ωk)

= [λ2
x(ω) + λ2

y(ω)]F(ω). (3.24)

Similar manipulations lead to J2(ω) = [λ2
x′(ω) + λ2

y′(ω)]F(ω). As a result, the parameters

Ai are given by

A1 =
Ω
(
λ2

0x + λ2
0y

)
πv3

sωD
(2γsB0)3 , (3.25)

A2 =
Ω
(
λ2

0x′ + λ2
0y′

)
2πv3

sωD
(D + γsB0)3 , (3.26)

A3 =
Ω
(
λ2

0x′ + λ2
0y′

)
2πv3

sωD
(D − γsB0)3 . (3.27)

Therefore, the available number of phonons in the lattice, the density of phonon states, and

the spin-phonon coupling constants will determine the intensity of each transition rate. In

this context, the temperature is the control parameter in the laboratory that, at a quantum

level, introduces available phonons that collectively act as a source of relaxation. At zero

magnetic field, we have A1 = 0 and A2 = A3. In the high-temperature regime, kBT � ~ωi,
the one-phonon spin relaxation rates scales linearly with the temperature, i.e., Γi,1-ph ∝ T .

In the opposite case, when kBT � ~ωi, the one-phonon spin relaxation rates scales as a

constant.

In the next section we introduce the second-order corrections to the Fermi golden rule using

both linear and bi-linear terms in the spin-phonon interaction Hamiltonian.
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Figure 3.2: The solid black lines are the energy levels of the ground triplet state of the NV−

center in diamond as a function of the external magnetic field along the z axis. For a given
absorption and emission transition between two spin states |ms〉, we observe three different spin
relaxation processes represented by colored arrows (1=red, 2=green and 3=blue). The one-phonon
relaxation rates Γi,1-phabs and Γi,1-phem are the absorption and emission spin relaxation rates for one-

phonon processes.

3.3.2 Two-phonon processes: acoustic phonons

The second-order transition rate associated with the spin transition |ms〉 → |m′s〉 is defined

as

Γms→m′s =
∑
k,k′

∑
l,l′

Γm
′
s,nl,nl′

ms,nk,nk′
, ms,m

′
s = 0,±1, (3.28)

where the sum is over all possible initial and final two-phonon modes, with |i〉 = |ms, nk, nk′〉
and |f〉 = |m′s, nl, nl′〉 being the initial and final states, respectively. The transition rate

inside the sum in Eq. (3.28) is given by the Fermi golden rule formula to second-order

Γm
′
s,nl,nl′

ms,nk,nk′
=

2π

~2

∣∣∣∣∣∣V m′s,nl,nl′
ms,nk,nk′

+
∑

m′′s=0,±1

∑
p,p′

V
m′′s ,np,np′

m′s,nl,nl′
V
ms,nk,nk′
m′′s ,np,np′

Ems,nk,nk′ − Em′′s ,np,np′

∣∣∣∣∣∣
2

×δ(ωm′s,ms + nlωl + nl′ωl′ − nkωk − nk′ωk′),

(3.29)
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where V j
i = 〈i| Ĥs-ph |j〉, |m′′s〉 is the spin state of the intermediate state, and |np〉,|n′p〉 are the

intermediate phonon states. The resonant frequencies of the system, i.e., ω1 ∼ 0− 11.2 GHz

and ω2,3 ∼ 2.87−8.47 GHz are very low compared to the frequency of the acoustic phonons in

diamond ωacous ∼ 0−10 THz. Therefore, to second-order we assume that the most significant

contribution comes from phonons that satisfy the frequency condition ωk,k′ � ωms,m′′s .

We introduce four different types of two-phonon processes: two-phonon direct transition

(Direct), Stokes transition (Stokes), anti-Stokes transition (anti-Stokes), and spontaneous

emission followed by absorption (Spont), see Fig. 3.3. The direct two-phonon transition is

characterized by the frequency condition ωk + ωk′ = ωm′s,ms and its absorption and emission

relaxation rates are given by

Γabs, Direct
ms→m′s =

∑
k,k′

Γm
′
s,nk−1,nk′−1

ms,nk,nk′
, (3.30)

Γem, Direct
m′s→ms =

∑
k,k′

Γ
ms,nk+1,nk′+1
m′s,nk,nk′

. (3.31)

On the other hand, we have the Stokes and Anti-Stokes transitions which are characterized

by the frequency condition ωk − ωk′ = ωm′s,ms and are given by

ΓStokes
ms→m′s =

∑
k,k′

Γm
′
s,nk−1,nk′+1

ms,nk,nk′
, (3.32)

ΓAnti-Stokes
m′s→ms =

∑
k,k′

Γ
ms,nk−1,nk′+1
m′s,nk,nk′

. (3.33)

For the spontaneous emission followed by absorption process we define

Γabs, Spont
ms→m′s =

∑
k,k′

Γm
′
s,nk+1,nk′−1

ms,nk,nk′
, (3.34)

Γem, Spont
m′s→ms =

∑
k,k′

Γ
ms,nk+1,nk′−1
m′s,nk,nk′

. (3.35)

For acoustic phonon modes, i.e., phonons with a linear dispersion relation ωk = v|k|, we

can use the Debye model in order to represent two-phonon processes. In order to study the

spin-relaxation rate as a function of the dimension of the system, we introduce the density
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of phonon states for a d-dimensional lattice generalizing Eq. (3.23)

F (d)(ω) = Ω

∫
ddk

(2π)d
δ(ω − vs|k|)

=
Ω

(2π)d

∫
dΩ̂d

∫ kD

0

dk kd−1δ(ω − vsk)

= D0

(
ω

ωD

)d−1

Θ(ωD − ω). (3.36)

Here, we have used d-dimensional spherical coordinates with measure ddk = dΩ̂ddkk
d−1,

with Ω̂d the solid angle in d-dimensions and ωD = vskD the Debye frequency for the

diamond lattice. In the last line, we defined the positive normalization constant D0 =

ΩΩ̂dω
d−1
D /((2π)dvds ) > 0, for d = 1, 2, 3 the dimension of the lattice. We can introduce the

following scaling for the quadratic spin-phonon coupling constant for the acoustic phonon

modes in the limit of continuous frequency [69]

λkk′,i → λi(ω, ω
′) = λ00i

(
ω

ωD

)ν (
ω′

ωD

)ν
, (3.37)

where λi(ω, ω
′) is the two-phonon coupling constant for acoustic phonons, λ00i = λi(ωD, ωD)

is the strength of the two-phonon coupling constant at the Debye frequency ωD, and ν > 0

is a phenomenological factor that models the spin-phonon coupling in the acoustic regime.

Using the second-order Fermi golden rule given in Eq. (B.1) and only considering acoustic

phonons, we obtain the following absorption and emission transition rates

Γabs
ms→m′s = Γabs, Direct

ms→m′s + ΓStokes
ms→m′s + Γabs,Spont

ms→m′s , (3.38)

Γem
ms→m′s = Γem, Direct

ms→m′s + ΓAnti-Stokes
ms→m′s + Γem,Spont

ms→m′s , (3.39)

where each transition rate is defined as

Γprocess
ms→m′s = aprocess

ms,m′s
(xD)T 4ν+2d−3 + bprocess

ms,m′s
(xD)T 4ν+2d−2

+ cprocess
ms,m′s

(xD)T 4ν+2d−1, (3.40)

where process = {Direct, Stokes, Anti-Stokes, Spont}, xD = ~ωD/kBT is a dimensionless

parameter, T is the temperature, and the coefficients aprocess
ms,m′s

, bprocess
ms,m′s

, and cprocess
ms,m′s

are given

in Appendix B.1. Using ν = 1/2 and d = 3, we obtain the following total two-phonon spin
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Figure 3.3: The red arrows represent the absorption and emission of two phonons between two
different spin states |ms〉 and |m′s〉. The direct two-phonon process is associated to the energy
condition ωk + ωk′ = ωm′

s,ms
, where ωm′

s,ms
= ωm′

s
− ωms

is the frequency gap. The Stokes
scattering is associated to the energy condition ωk − ωk′ = ωm′

s,ms
.

relaxation rate

Γ2-ph =
∑

ms 6=m′s

(
Γabs
ms→m′s + Γem

ms→m′s

)
= A5T

5 + A6T
6 + A7T

7. (3.41)

This total spin relaxation rate will be relevant for the general solution associated with the

physical observable 〈Sz(t)〉 (see Section 3.5 and Eq. (3.75)). In Table 3.1, we have shown the

different temperature dependence of the spin relaxation rate associated with two-phonon

processes in the acoustic limit. We observe that the symmetry of the lattice ν and the

dimension of the system d determine the temperature response of the spin-lattice relaxation

dynamics of the system at high temperatures.

In summary, by only considering the contribution of acoustic phonons to first and second-

order, we see three different temperature scalings of the form (T s, T s+1, T s+2), where s =

4ν + 2d− 3. We observe 1/T1 ∝ T s for a linear second-order Raman-like scattering, 1/T1 ∝
T s+2 for a quadratic first-order Raman-like scattering, and 1/T1 ∝ T s+1 for the mixed term

between the linear and quadratic contributions to second order.
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Table 3.1: The table shows the expected temperature dependence of linear and bi-linear spin-
phonon interactions considered to first and second order. The bi-linear term to second order is
zero. When both linear and bi-linear terms are considered a mixed term appears only to second-
order. Last column indicates the temperature scaling for a three-dimensional, non-cubic lattice.

Hamiltonian First-order Second-order
d = 3
ν = 1/2

Ĥ =
∑
k,i

λkix̂k coth

(
~ω
kBT

)
T 4ν+2d−3 T 5

Ĥ =
∑
k,k′,i

λkk′,ix̂kx̂k′ T 4ν+2d−1 0 T 7

Mixed term 0 T 4ν+2d−2 T 6

3.3.3 Two-phonon processes: quasi-localized phonons

Quasi-localized phonons, or vibrational resonances between a single-color-center and lattice

vibrations, are good candidates for dissipative processes due to the strong electron-phonon

coupling. The NV− center has a strong electron-phonon coupling associated with vibrational

resonances, with a continuum of vibrational modes centered at ωres = 65 meV, and a full

width at half-maximum of about ∆ = 32 meV as regularly observed in the phonon-sideband

of the NV fluorescence spectrum under optical excitation [54]. Because of the small zero-

field splitting constant induced by spin-spin interaction (D/2π = 2.87 GHz or ~D = 0.012

meV), we have ωres � D, and therefore, these high-energy phonons can only be present

in a two-phonon process associated with the condition ωk − ωk′ = ωi (ωk ≈ ωk′). Strong

interactions with high energy phonons can be introduced in Orbach-type processes [15]. It is

shown experimentally that different NV− center samples have an activation energy of 73 meV

[18], which is close to the vibrational resonance frequency ωres = 65 meV. In our formalism,

quasi-localized phonons can be phenomenologically modeled by a Lorentzian spectral density

function of the form [49, 55]

JLoc(ω) =
JLoc

π

1
2
∆

(ω − ωloc)
2 +

(
1
2
∆
)2 , 0 < ω < ωmax. (3.42)

In this equation, JLoc is the coupling strength, ∆ is a characteristic bandwidth, ~ωmax = 168

meV is the maximum phonon energy in a diamond lattice [71], and ωloc is the frequency of

the localized phonon mode. As a simpler model we can consider the interaction with only

one quasi-localized phonon mode (∆→ 0)

λk,i = λi,locδ(ω − ωloc), (3.43)
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where λi,loc is the coupling strength. Using the above equation and calculating the second-

order transition rate induced by the linear spin-phonon interaction, we can obtain the fol-

lowing relaxation rate associated with quasi-localized phonons

Γloc = A4 (1 + n(ωloc))n(ωloc)

≈ A4

e~ωloc/kBT − 1
, (3.44)

where A4 is a constant of units of frequency. The approximation (1 + n(ωloc))n(ωloc) ≈
n(ωloc) is valid for temperatures below T = 300 K. For such temperatures, the mean number

of phonons is low, n(ωloc) ≈ 0.1, therefore we can write (1 + n)n ≈ n+O(n2).

In the next section we derive the spin-lattice relaxation dynamics using the quantum master

equation.

3.4 Spin-lattice relaxation dynamics

In this section, we present the general equation associated with the spin-lattice relaxation

dynamics of the ground triplet state of the NV− center. We use the Markovian quantum

master equation [38] for the reduced density operator ρ̂(t) = Trph (ρ̂NV+ph). We assume that

the initial state at time t0 is given by the uncorrelated state ρ̂NV+ph(t0) = ρ̂NV(t0)⊗ ρ̂ph(t0)

(Born approximation), and that the phonon bath is in thermal equilibrium. In the weak-

coupling limit, and using the spin-phonon Hamiltonian given in Eq. (3.6), we obtain

˙̂ρ =
1

i~
[ĤNV, ρ̂] + L1-phρ̂+ L2-phρ̂+ Lmagρ̂, (3.45)

where the first term in Eq. (3.45) describes the free dynamics induced by the NV− center

Hamiltonian [Eq. (3.2)]. The second and third terms are given by

L1-phρ̂ =
3∑
i=1

[
Γi,1-ph

abs D[Li+]ρ̂+ Γi,1-ph
em D[Li−]ρ̂

]
, (3.46)

L2-phρ̂ =
3∑
i=1

[
Γi,2-ph

abs D[Li+]ρ̂+ Γi,2-ph
em D[Li−]ρ̂

]
, (3.47)

which describe the dissipative spin-lattice dynamics induced by one-phonon and two-phonon

processes, with the index i = 1, 2, 3 representing the spin transitions of the system (see
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Fig. 3.1). In Eqs. (3.46) and (3.47) we have defined the Lindblad super-operator D[Ô]ρ̂ =

Ôρ̂Ô† − 1
2
{Ô†Ô, ρ̂} and the spin operators

L1
+ = |ms = 1〉 〈ms = −1| =

(
L1
−
)†
, (3.48)

L2
+ = |ms = 1〉 〈ms = 0| =

(
L2
−
)†
, (3.49)

L3
+ = |ms = −1〉 〈ms = 0| =

(
L3
−
)†
. (3.50)

The last term in Eq. (3.45) is an extra term that describes a phenomenological dynamics

induced by magnetic impurities, and is given by

Lmagρ̂ = −1

4
Γmag

∑
i=x,y,z

[Si, [Si, ρ̂(t)]] , (3.51)

where Γmag is the magnetic relaxation rate induced by an isotropic magnetic noise [72], and

Si are the Pauli matrices for S = 1. From previous works, it is expected that the param-

eter Γmag will proportionally depend on the concentration of neighboring NV− centers [18]

and temperature. Therefore, Γmag is a sample-dependent parameter that models magnetic

impurities. The exact temperature dependence of Γmag is beyond the scope of this work,

but we expect it to change as temperature reaches Tgap = ~D/kB ≈ 0.14 K. In addition,

in this work we neglect the effect of electric field fluctuations (see Apeendix B.3 for further

details). This is relevant for experiments that involve optical illumination and read-out of

the electronic states [68].

Now, we study the longitudinal relaxation rate at low and high temperatures. In the low-

temperature limit we also investigate the effect of magnetic field on the longitudinal relax-

ation rate.

3.5 Discussion

3.5.1 Low-temperature limit

In this section we discuss the low-temperature limit (below 1 K) associated to the spin-lattice

relaxation dynamics of the ground state of the NV− center in diamond. For low temperatures,

only one-phonon processes contribute to the transition rates. Therefore, we can deduce the

spin-lattice dynamics from the quantum master equation by setting L2-phρ̂ = 0. From
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Eq. (3.45) we can find the dynamics of the spin populations p1 = 〈ms = 1| ρ̂ |ms = 1〉, p2 =

〈ms = 0| ρ̂ |ms = 0〉, and p3 = 〈ms = −1| ρ̂ |ms = −1〉. For an arbitrary magnetic field B0

along the z axis, using Γmag = 0, and considering only one-phonon processes, the equations

at low temperatures are given by

dp1

dt
= − (γ+− + Ω+0) p1 + Ω0+p2 + γ−+p3, (3.52)

dp2

dt
= − (Ω0+ + Ω0−) p2 + Ω+0p1 + Ω−0p3, (3.53)

dp3

dt
= − (Ω0− + γ−+) p3 + γ+−p1 + Ω0−p2, (3.54)

where the direct relaxation rates between the spin states are given by γ+− = A1(1 + n1),

γ−+ = A1n1, Ω+0 = A2(1 + n2), Ω0+ = A2n2, Ω−0 = A3(1 + n3), and Ω0− = A3n3 (see

Fig. 3.4), where ni = [exp(~ωi/kBT )− 1]−1 the mean number of phonons at thermal equi-

librium. Here, ω1 = 2γsB0, ω2 = D+ γsB0, and ω3 = D− γsB0 are the resonant frequencies

associated with the spin energy levels. The Ai parameters are defined in Eqs. (3.25)-(3.27)

and are estimated as a function of the magnetic field B0 in the next section [see Eqs. (3.64)-

(3.66)]. For experiments in quantum information processing and magnetometry these direct

relaxation rates plays a fundamental role.

In the following we obtain the longitudinal relaxation rate for the physical observables 〈S2
z (t)〉

and 〈Sz(t)〉 at different magnetic field regimes. However, this model can be used to determine

any other physical observable, for instance, direct relaxation rates between spin states and

their magnetic field and temperature dependence.

3.5.1.1 Zero magnetic field

At zero magnetic field (B0 = 0) and neglecting the effect of strain, the spin states |ms = 1〉
and |ms = −1〉 are degenerate (see Fig. 3.1). As a consequence, the emission and absorption

rates associated with the spin transitions |ms = 0〉 ↔ |ms = 1〉 and |ms = 0〉 ↔ |ms = −1〉
are equal.

Therefore, the system can be modeled as a simple two-level system with the degenerate

excited states described by |ms = ±1〉. In addition, the transition rate between |ms = ±1〉
vanishes if we neglect the effect of electric field fluctuations [68]. In such scenario, the

absorption and emission rates are given by Γabs = Γ0n̄ and Γem = Γ0(n̄ + 1), respectively,

where n̄ = [exp(~D/kBT )− 1]−1 is the mean number of phonons at the zero-field splitting



Ph.D Thesis Ariel Norambuena 40

Figure 3.4: Direct relaxation rates induced by one-phonon processes. The spin populations
associated with the spin states |ms = 0,±1〉 are modified by the absorption (γ−+,Ω0−,Ω0+) and
emission rates (γ+−,Ω−0,Ω+0). For magnetic fields γsB0 > D (B0 > 1000 G), the state |ms = −1〉

is the lowest energy state and the role of Ω0− and Ω−0 are exchanged.

frequency D/2π = 2.87 GHz. The parameter Γ0 is obtained from Eqs. (3.26) and (3.27) for

B0 = 0 and is given by

Γ0 =
ΩD3(λ2

0x′ + λ2
0y′)

2πv3
sωD

. (3.55)

From Eqs. (3.52)-(3.54), we obtain

dp1

dt
= Γ0(1 + n̄)p1 + Γ0n̄p2, (3.56)

dp2

dt
= −2Γ0n̄p2 + Γ0(1 + n̄)p1 + Γ0(1 + n̄)p3, (3.57)

dp3

dt
= Γ0(1 + n̄)p1 + Γ0n̄p3. (3.58)

Using 〈S2
z (t)〉 = p1(t) + p3(t) and p1(t) + p2(t) + p3(t) = 1 we obtain

d〈S2
z (t)〉
dt

= −Γ0(1 + 3n̄)〈S2
z (t)〉+ 2Γ0n̄, (3.59)

dp2

dt
= −Γ0(1 + 3n̄)p2(t) + Γ0(1 + n̄). (3.60)
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Using arbitrary initial conditions pi(0) = pi0 (i = 1, 2, 3), we have

〈S2
z (t)〉 = 〈S2

z (T )〉st −
(
〈S2

z (T )〉st − p10 − p30

)
e−Γ0(1+3n̄)t,

p2(t) = (p2(T ))st − ((p2(T ))st − p20) e−Γ0(1+3n̄)t, (3.61)

where the steady states are given by

〈S2
z (T )〉st =

2

e~D/kBT + 2
, (3.62)

(p2(T ))st =
e~D/kBT

e~D/kBT + 2
. (3.63)

Therefore, the phonon-induced spin relaxation rate associated with 〈S2
z (t)〉 and p2(t) (ground

state population) are given by Γ0(1+3n̄), where Γ0 = 3.14×10−5 s−1 [19]. This is consistent

with the longitudinal relaxation rate recently measured and estimated by ab initio methods

in Ref. [19] (see Fig. 3.2(a)). Using Eq. (3.55) and assuming λ0x′ ≈ λ0y′ ≈ λ0x ≈ λ0y, we

estimate λ0x′ to be approximately 3.97 meV. With this approximation for the λ0 factors and

combining Eqs. (3.25)-(3.27) with Eq. (3.55), we can estimate the following magnetic field

dependence for the one-phonon spin relaxation rates

A1 ≈ 2Γ0

(
2γsB0

D

)3

, (3.64)

A2 ≈ Γ0

[
(D + γsB0)

D

]3

, (3.65)

A3 ≈ Γ0

[
(D − γsB0)

D

]3

. (3.66)

Note that 〈Sz(t)〉 is zero as the states |ms = +1〉 and |ms = −1〉 are degenerate at zero

magnetic field. In the next section we introduce the effect of low magnetic field on the

longitudinal relaxation rate associated with 〈Sz(t)〉.
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Figure 3.5: (a) Relaxation rate of 〈S2
z (t)〉 at zero magnetic field. The symbols represent experi-

mental spin relaxation rates measured at low temperatures (below 1 K) for different NV-samples
[19]. The dotted lines represent the theoretical fit given by 1/T1 = Γ0(1 + 3n̄) + Γmag. We observe
that at low temperatures, the relevant contribution comes from the emission of a phonon and the
magnetic noise induced by the environment. (b) Two-dimensional parameter plot of the longitu-
dinal relaxation rate of 〈Sz(t)〉 in logarithm scale at magnetic fields ranging from 0 to 1500 G,

temperature ranging from 10 mK to 1 K, and Γmag = 0.

3.5.1.2 Low magnetic field

We define the limit of low magnetic fields when γsB0 � D so that n(D + γsB0) ≈ n(D −
γsB0) ≈ n̄. By considering one-phonon processes, we obtain the following set of equations

d〈S2
z (t)〉
dt

= −Γ0(1 + 3n̄)〈S2
z (t)〉+ 3εΓ0(1 + n̄)〈Sz(t)〉

+2Γ0n̄, (3.67)

d〈Sz(t)〉
dt

= − [ΓBnB + 3εΓ0(1 + 3n̄)] 〈S2
z (t)〉+ 6εΓ0n̄

− [ΓB(1 + 2nB) + Γ0(1 + n̄)] 〈Sz(t)〉, (3.68)

where ε = γsB0/D � 1 is a pertubative dimensionless parameter, ΓB ≈ Γ0(2γsB0/D)3, and

nB = [exp(2~γsB0/kBT )− 1]−1 is the mean number of phonons at the resonant frequency

ω1 = 2γsB0. In addition, the mean number of phonons satisfies nB � n̄ due to the condition

γsB0 � D.

At low magnetic fields, the longitudinal relaxation rate associated with 〈Sz(t)〉 is given by

1

T1

≈ 2Γ0(1 + 2n̄) + ΓB(1 + 2nB). (3.69)
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The steady states satisfy the relation

〈S2
z (T )〉st
〈Sz(T )〉st

=
Γ0(1 + n̄) + ΓB(1 + 2nB)

nBΓB
. (3.70)

In the next section we obtain the longitudinal relaxation rate associated with 〈Sz(t)〉 for

arbitrary values of the magnetic field B0.

3.5.1.3 Arbitrary magnetic field values

At non-zero magnetic fields, the spin states |ms = −1〉 and |ms = 1〉 are split due to the Zee-

man interaction (see Fig. 3.1). This implies that the system can be modeled as a dissipative

three-level system consisting of the spin states |ms = 0〉 and |ms = ±1〉. From Eqs. (B.40)-

(B.41), the dynamics for the longitudinal spin component is given by

d2〈Sz(t)〉
dt2

+
1

T1

d〈Sz(t)〉
dt

+ ω2〈Sz(t)〉 = A0, (3.71)

where the parameters are given by

1

T1

= A1(1 + 2n1) + A2(1 + 2n2) + A3(1 + 2n3), (3.72)

ω2 =
1

2

{
A1[A3(1 + n3)− A2(1 + n2)]− A2

2n2(3 + n2)

−A2
3n3(3 + n3) + A2A3(2 + n2 + n3 + 4n2n3)

}
,

A0 =
1

2

[
2A1(A2 + A3) + A2

2(1 + n2)2 + 2A2A3(n2 − n3)− A2
3(1 + n3)2

]
. (3.73)

We observe that the relaxation rate 1/T1 is given by the total one-phonon spin relaxation

rate given in Eq. (3.21). The general solution is that of a driven damped harmonic oscillator,

where the longitudinal relaxation rate is given by

1

T1

≈ Γ0

D3
ω3

1(1 + 2n1) +
Γ0

D3

[
ω3

2(1 + 2n2) + ω3
3(1 + 2n3)

]
, (3.74)

where ω1 = 2γsB0, ω2 = D + γsB0, and ω3 = D − γsB0. In this approximation we have

assumed that λ2
0x′ + λ2

0y′ ≈ λ2
0x + λ2

0y (see Eqs. (3.25)-(3.27)). At low magnetic fields,

γsB0 � D, we recover the previous result given in Eq. (3.69). Figure. 3.5(b) shows the

expected longitudinal relaxation rate at low temperatures for magnetic fields ranging from 0

to 1500 G. As the magnetic field increases, the longitudinal relaxation rate increases as well.



Ph.D Thesis Ariel Norambuena 44

3.5.2 High-temperature limit

In this section, we consider higher temperatures for which the relaxation rate is dominated by

quasi-localized phonons and two-phonon processes, usually for temperatures higher than 100

K. By solving the quantum master equation we obtain that the longitudinal spin relaxation

rate of 〈Sz(t)〉 is approximately given by (see Appendix B.2)

1

T1

≈ Γmag + Γ1-ph + Γloc + Γ2-ph,

= Γmag +
3∑
i=1

Ai coth

(
~ωi
kBT

)
+

A4

e~ωloc/kBT − 1
+ A5T

5 + A6T
6 + A7T

7. (3.75)

In the above equation, ω1 = 2γsB0, ω2 = D + γsB0, and ω3 = D − γsB0 are the resonant

frequencies of the ground triplet states of the NV− center in diamond in the presence of the

static magnetic field B0 along the z axis, and T is the temperature. Similar formulas for the

longitudinal relaxation rate were obtained phenomenologically in order to fit the experimen-

tal data for different NV− center samples [15, 18]. However, our work formally incorporates

the phonon-induced spin relaxation rates by including the contribution of stochastic magnetic

noise, direct one-phonon processes, strong interactions with quasi-localized phonon modes,

and the effect of the acoustic phonons to first and second order. This is crucially different

from previous works [15, 17–19], but validates, both high and low-temperature experimental

observations in which electric field fluctuations is not present (see Fig 3.6). Our model can

be useful to understand the temperature dependence of the longitudinal spin relaxation rate

of other color centers in diamond. For instance, the observed T 7 temperature dependence of

the neutral silicon-vacancy color center in diamond at high temperatures [73].

Using experimental data from Refs. [18, 19], we can fit our free parameter Γmag in order

to model the magnetic noise induced by magnetic impurities in samples with different NV−

concentrations. On the other hand, we consider that the Ai parameters, which are related

to the spin-phonon coupling constants, are not sample-dependent. The A1, A2, and A3

parameters can be found by fitting to the experimental data at low temperature (below 1

K) [19] as described in Section 3.5.1 The parameters A4, A5, A6, A7, and ωloc can be found

by fitting to the experimental data for temperatures ranging from 4 K to 475 K [18].

Figure 3.6 shows the temperature dependence of the longitudinal relaxation rate for different

samples at high temperatures. For the two-phonon processes we obtain A4 = 1.96(5)× 10−3

s−1, A5 = 2.06(5)× 10−11 s−1 K−5, A6 = 9.11(2)× 10−16 s−1 K−6, A7 = 2.55(3)× 10−20 s−1
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Figure 3.6: The symbols represent experimental spin relaxation rates measured for different NV−

samples in the temperature regime 4-475 K [15, 17, 18]. The dotted lines are the theoretical fit of the
longitudinal spin relaxation rate 1/T1 given in Eq. (3.75) for different values of the magnetic noise
Γmag. The temperature at which the contribution from quasi-localized phonons and second-order

phonon processes dominates is sample dependent.

K−7, and ωloc = 73(5) meV. We observe a good agreement of our results with the experiments

performed at high temperatures [15, 17, 18]. The largest contribution at high temperatures,

300 K < T < 500 K, is due to the second-order scattering (see Table I and Fig. 4.3) usually

known as the second-order Raman scattering [20] which leads to the observed 1/T1 ∝ T 5

temperature dependence [15, 17, 18] due to the linear spin-phonon coupling to second-order.

Between 50 K < T < 200 K the main contribution arises from Orbach-type processes [21]

which can be attributed to a strong spin-phonon interaction with a quasi-localized phonon

mode with energy ≈ 73 meV [18]. On the other hand, the magnetic noise rate Γmag is

dominant in samples with a high NV concentration (red, green and black dashed curves in

Fig. 3.6). Therefore, the effect of one-phonon processes (emission and absorption) can be

neglected if the magnetic noise is larger than the one-phonon spin relaxation rates. We note

that we are not considering other sources of relaxation such as fluctuating electric fields, in

which case a relaxation with an inverse magnetic field dependence is expected [68].
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3.6 Conclusions

In summary, we have presented a microscopic model for estimating the effect of temperature

on the longitudinal relaxation rate 1/T1 of NV− centers in diamond. In this model, we in-

troduced a general spin-phonon interaction between the ground-state spin degree of freedom

and lattice vibrations. We estimated the value of the phonon-induced spin relaxation rates

by applying the Fermi golden rule to first and second order. The microscopic spin-lattice

relaxation dynamics was derived from the quantum master equation for the reduced spin

density operator. In the relaxation dynamics, we included the effect of a phononic bath in

thermal equilibrium and dilute magnetic impurities phenomenologically modeled. Acoustic

and quasi-localized phonons were included in the phonon processes in order to model a more

general temperature dependence of the longitudinal relaxation rate.

At low temperatures, we provided a set of microscopic equations in order to study the spin-

lattice relaxation dynamics induced by one-phonon processes. In this limit and considering

zero magnetic fields, B0 = 0, we analytically obtained the relaxation rate 1/T1 = Γ0(1 + 3n̄)

associated with 〈S2
z (t)〉, where Γ0 depends on microscopic constants. This relaxation rate is

in agreement with recent experiments and ab initio calculations [18], as well as theoretical

calculations [74]. In addition, for low magnetic fields, γsB0 � D, we obtained the relaxation

rate 1/T1 = 2Γ0(1 + 2n̄) + ΓB(1 + 2nB) associated with 〈Sz(t)〉, where ΓB scales as B3
0 .

At high temperatures, we have modeled multiple two-phonon processes where the fitted

relaxation rate associated to 〈Sz(t)〉 is in agreement with experimental observations [15, 17,

18]. We included both linear and bi-linear lattice interactions that lead to several different

temperature scaling in a spin-boson model. In particular, for NV-centers in diamond the

dominant temperature scaling is T 5 for temperatures larger than 200 K. Moreover, our

model will be useful to evaluate the contribution of second-order phonon processes that give

different temperature scaling (T s, T s+1, T s+2) for other spin-boson systems. The power of

the temperature s = 4ν + 2d− 3 depends on the dimension of the system and the symmetry

of the lattice, where d = 3 and ν = 1/2 for the NV− center.



Chapter 4

Phononic dynamical suppression of

the electron spin resonance of

E ⊗ e⊗ SU(2) Jahn-Teller systems

In this chapter, we characterize the phononic dynamical suppression of the electron spin

resonance (ESR) response of E ⊗ e ⊗ SU(2) Jahn-Teller systems with residual electronic

spin-1/2. We take into account the linear electron-phonon coupling between the orbital and

lattice degrees of freedom, the spin-orbit, and Zeeman interactions, and the linear response of

the system to oscillating magnetic fields. Using the Markovian quantum master equation we

characterize the spin-relaxation rate and the contrast of the ESR response as a function of

temperature and several other parameters of the system. The presented model provides

an analytical explanation for the absence of ESR contrast on spin-1/2 systems at high

temperatures such as the neutral nitrogen-vacancy and negatively charged silicon-vacancy

color centers in diamond, as well as for characterizing new systems.

4.1 Introduction

Since its discovery [75] and for more than seventy years, electron paramagnetic resonance

(EPR) or electron spin resonance (ESR) has been extensively used to study molecular sys-

tems [76], quantum dots [77], metal complexes [78], organic radicals [79] or defects in solid-

state systems [80]. Commonly, ESR consists of applying a constant frequency microwave

47
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field and a magnetic field is swept across spin-flip resonance transitions. Crucial informa-

tion has been obtained in several biochemical problems [81], on Hyperfine interactions with

high resolution [82], on magnetic ions in metals [83], to name a few. The ESR absorption

spectrum and the dispersion lines contain important information about the system and ef-

fects such as anisotropy of gyromagnetic factors [84], Ham reduction factors [85, 86], spin

relaxation rates [87] can be obtained from the analysis of the ESR absorption spectrum.

Unfortunately, in many systems were a paramagnetic behaviour is expected, no ESR ab-

sorption is detected. Specially on those systems that are strongly coupled to vibrations,

the ESR response is not observed for a wide range of temperatures. Although many works

have been devoted to phenomenologically describe the ESR response, still few of them deal

with microscopic aspects of the electron-phonon coupling. Several authors have addressed

the problem of modeling the ESR linear response out-of-equilibrium systems [22–24]. His-

torically, the linear response theory associated with irreversible processes was introduced in

order to give a more satisfactory description of the magnetic resonance phenomenon [24].

However, temperature effects on the linear response are still an open problem in complex

solid-state systems. In particular, the thermal activation of environment-assisted dissipative

processes due to electron-phonon, spin-spin, and spin-orbit interactions.

In this work we focus on a theoretical description for spin 1/2 systems that present degenerate

orbital states that can couple to vibrations. Such system can be, for example, the neutral

nitrogen-vacancy centre and the negatively charged silicon-vacancy centre in diamond. In

both cases, the ground state configuration consists of a double degenerate orbital state with a

single electron, therefore having an electronic spin 1/2. In addition, both systems can vibrate

in two degenerate modes. In this scenario, and given a non-zero electron-phonon coupling,

the electron and the lattice can exchange orbital angular momentum. From a theoretical

point of view, these systems belong to a class of systems that can be described as a E ⊗ e
Jahn-Teller (JT) system with an electronic spin S = 1/2. Therefore, as a first theoretical

step, it is instructive to model the linear response of a E ⊗ e ⊗ SU(2) JT system, i.e., a

system composed by two orbital degenerates E-states, two degenerate e-phonon modes, and

an internal electronic spin S = 1/2.

We consider the Zeeman effect induced by an arbitrary static magnetic field, the spin-orbit

coupling, and the electron-phonon interaction between the orbital states and the lattice

phonons. Using this model we obtain an analytical solution for the ESR absorption spectrum

when an oscillating magnetic field along the x axis is applied. We focus the attention on
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the derivation of the linear response function by solving the Markovian dynamics associated

to physical observables. In addition, we include the effect of acoustic phonons in order to

model temperature effects on the ESR absorption spectrum by means of the one-phonon

processes. In Sec. 4.2, we introduce the Hamiltonian associated to the E ⊗ e ⊗ SU(2) JT

system. Section 4.3 introduces the eigenstates associated with the spin and orbital degrees

of freedom. In that section, we introduce the quantization of e-phonons. In Section 4.4

we use the linear response theory and the Markovian quantum master equation for physical

observables in order to find the ESR absorption spectrum. In Section 4.6 we discuss the limit

of high spin-orbit coupling and the effect of temperature on the ESR absorption spectrum.

4.2 Hamiltonian of the system

Consider a E⊗e⊗SU(2) system with a doubly degenerate orbital E-states |X〉 and |Y 〉 cou-

pled to e-phonon modes and a residual electronic spin S = 1/2 with states |↑〉 = |ms = 1/2〉
and |↓〉 = |ms = −1/2〉. We take into account that orbital and spin degrees of freedom are

coupled via spin-orbit interaction, and a linear electron-phonon interaction between the or-

bital states and e-phonon modes. Including a strong static magnetic field ~B in an arbitrary

direction and a weak oscillating magnetic field ~B(t) aligned with the x-axis, the Hamiltonian

is given by

Ĥ = Ĥ0 + Ĥph + Ĥe-ph + V̂ (t), (4.1)

where

Ĥ0 = Ĥe + Ĥso + Ĥz, (4.2)

is the Hamiltonian associated with the orbital and spin degrees of freedom. The first term

in Eq. (4.2) is the electronic Hamiltonian (~ = 1)

Ĥe = E0 (1e ⊗ 1s) , (4.3)

where E0 is the energy of the degenerate states |X〉 and |Y 〉. Here, 1e = |X〉 〈X| + |Y 〉 〈Y |
and 1s = |↑〉 〈↑| + |↓〉 〈↓| are the identity operators for the orbital and spin sub-spaces,

respectively. The second term in Eq. (4.2) describes the spin-orbit interaction (~ = 1)

Ĥso = −λ(~L · ~S) = −1

2
λ (σ̂y ⊗ ŝz) , (4.4)
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where λ > 0 is the spin-orbit coupling, ~L is the orbital angular momentum operator, and

~S = 1
2
(ŝx, ŝy, ŝz) is the spin vector operator for S = 1/2 (~ = 1). The spin Pauli matrices

are defined as

ŝx = |↑〉 〈↓|+ |↓〉 〈↑| , (4.5)

ŝy = −i |↑〉 〈↓|+ i |↓〉 〈↑| , (4.6)

ŝz = |↑〉 〈↑| − |↓〉 〈↓| , (4.7)

and satisfy the commutation relation [ŝi, ŝj] = 2iεijkŝk. On the other hand, the operators

for the orbital states are given by

σ̂x = |X〉 〈Y |+ |Y 〉 〈X| , (4.8)

σ̂y = −i |X〉 〈Y |+ i |Y 〉 〈X| , (4.9)

σ̂z = |X〉 〈X| − |Y 〉 〈Y | , (4.10)

which satisfy the relation [σ̂i, σ̂j] = 2iεijkσ̂k. The third term in Eq. (4.2) is the Zeeman

Hamiltonian associated with the static magnetic field ~B = (Bx, By, Bz)

Ĥz =
(
γs~S + γL~L

)
· ~B

=
1

2

[
γs
∑
i=x,y,z

(1e ⊗ ŝi) + γL (σ̂y ⊗ 1s)

]
, (4.11)

where γs = µBgs/~ and γL = µBgL/~ are the spin and orbital gyromagnetic constants,

respectively, being µB the Bohr magneton and ~ the Planck constant. Here, gs ≈ 2 and

gL = 1 are the Landé g-factors. The second term in Eq. (4.1) is the phonon Hamiltonian

associated with the e-phonon modes, and is given by [88]

Ĥph =
∑
k

[
1

2µ

(
P̂ 2
k,x + P̂ 2

k,y

)
+

1

2
ω2
k

(
Q̂2
k,x + Q̂2

k,y

)]
, (4.12)

where µ is the reduced mass and ωk is the phonon frequencies of the k phonon mode.

The linear momentum and position operators satisfy the fundamental commutation relation

[Qk,i, Pk′,j] = i~δijδk,k′ . The linear electron-phonon interaction between the orbital states
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Figure 4.1: Schematic representation for our E⊗e⊗SU(2) JT system perturbed by an oscillating
magnetic field. The dashed box enclosed the usual E⊗ e JT system which is coupled with the spin
states via the spin-orbit coupling constant λ. The static magnetic field interacts with the orbital

and spin degrees of freedom, while the oscillating magnetic field perturbs the spin states.

and e-phonon modes is given by [88, 89]

Ĥe-ph =
∑
k

[
Fk(Q̂k,xσ̂z − Q̂k,yσ̂x)

]
⊗ 1s, (4.13)

where

Fk = 〈X|
(
∂V ({Q}, r)

∂Qk,x

)∣∣∣∣
{Q0}
|X〉 , (4.14)

is the linear vibronic coupling constant for each phonon mode k [88]. Here, V ({Q}, r) is the

Coulomb interaction between the electronic distribution and the nuclei located at the set of

coordinates {Q}, and {Q0} determines the nuclear equilibrium positions of the system.

Finally, the perturbation associated with the weak oscillating magnetic field ~B(t) = B1 cosωt

is given by the following Hamiltonian

V̂ (t) =
1

2
B1γs (1e ⊗ ŝx) cosωt. (4.15)

In our model, the condition of weak oscillating magnetic field means that |B1| � ‖ ~B‖, and

therefore, we solve the dynamics of the system in this particular limit. Figure 4.1 shows an
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schematic representation for our E⊗e⊗SU(2) JT system including the e-phonon modes, the

orbital E-states, the spin degree of freedom, the static and the oscillating magnetic fields.

4.3 Electron-spin states and quantization of phonons

In this section we introduce the eigenvalues and eigenstates of Hamiltonian Ĥ0 given in

Eq. (4.2). Furthermore, we formally introduce the quantized form of the electron-phonon

Hamiltonian given in Eq. (4.13) using the eigenstates of Ĥ0 and the quantization of e-

phonons. Writing the magnetic field in spherical coordinates, i.e., ~B = (B cosφ sin θ,

B sinφ sin θ, B cos θ), we find that the eigenvalues of Ĥ0 are

E1 = E0 −
1

2
(γLB cos θ +

√
γ2
sB

2 + 2γsλB cos θ + λ2), (4.16)

E2 = E0 +
1

2
(γLB cos θ −

√
γ2
sB

2 − 2γsλB cos θ + λ2), (4.17)

E3 = E0 +
1

2
(γLB cos θ +

√
γ2
sB

2 − 2γsλB cos θ + λ2), (4.18)

E4 = E0 −
1

2
(γLB cos θ −

√
γ2
sB

2 + 2γsλB cos θ + λ2). (4.19)

where B = ‖ ~B‖ is the magnitude of the static magnetic field, θ = cos−1 (Bz/B) is the polar

angle, being Bz the z component of the magnetic field along the symmetry axis of the system.

The eigenstates of Ĥ0 can be written as

|i〉 =
4∑
j=1

Mij|ϕj〉, i = 1, 2, 3, 4, (4.20)

where |ϕ1〉 = |X, ↑〉, |ϕ2〉 = |X, ↓〉, |ϕ3〉 = |Y, ↑〉, and |ϕ4〉 = |Y, ↓〉 are product states that

describes the orbital and spin states of the system when the interaction between them in not

present. Because of Zeeman effect and spin-orbit coupling the matrix elements Mij given in

Eq. (4.20) depend on the magnetic field components and the spin-orbit coupling constant λ.

The matrix representation of Mij is given by

M =


iα+/N+ i/N+ α+/N+ 1/N+

iβ+/M+ i/M+ β+/M+ 1/M+

iβ−/M− −i/M− −β−/M− 1/M−

iα−/N− −i/N− −α−/N− 1/N−

 , (4.21)
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A B

C D

E F

Magnetic field

Figure 4.2: Energy diagram of the eigenstates of Ĥ0 as a function of the polar angle θ and the
magnitude of the magnetic field ~B = (B cosφ sin θ,B sinφ sin θ,B cos θ). The filled coloured areas
represent the possible values of the energies Ei for a range of the polar angle θ. The energies are
plotted for (a) values between 0 ≤ θ ≤ π/2 and (b) values between π/2 ≤ θ ≤ π. The transitions
between the states |i〉 induced by phonons and the oscillating magnetic field are illustrated with

black arrows and the capital letters A, B, C, D, E, and F.

where α± = e−iφ(λ±γsB cos θ−∆±)/(γsB sin θ), β± = e−iφ(λ±γsB cos θ+∆±)/(γsB sin θ),

N± =
√

2 + 2|α±|2, M± =
√

2 + 2|β±|2, and ∆± =
√
γ2
sB

2 ± 2γsλB cos θ + λ2). The exact

solution for the eigenstates |i〉 given in Eq. (4.20) is valid for arbitrary magnetic fields, except

at the singularity point B = 0.

At zero magnetic field, ~B = ~0, we have that {|1〉, |2〉} is the ground state with energy

E0 − λ/2, while {|3〉, |4〉} is the excited state with energy E0 + λ/2. At non-zero magnetic

fields, ~B 6= ~0, the ground and excited states are splitted according to Eqs. (4.16)-(4.19).

Interestingly, we can observe that the energy levels Ei of the Hamiltonian Ĥ0 only depends

on the magnitude B and the polar angle θ. Figure 4.2 shows the eigenvalues Ei as a function

of the magnitude of the external magnetic field and the polar angle.

Now, we introduce the quantization of the e-phonon modes as follow

Q̂k,x = q0,k

(
âk + â†k

)
, Q̂k,y = q0,k

(
b̂k + b̂†k

)
, (4.22)

where q0,k =
√

~/2µωk is the mechanical size of the zero-point oscillation, ~ is the Planck

constant. Here, âk (bk) and â†k (b̂†k) are the boson annihilation and creation operators,

respectively satisfying [âk, â
†
k′ ] = δk,k′ and [b̂k, b̂

†
k′ ] = δk,k′ . The boson operators â and b̂
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commutes between them because they are associated with independent coordinates. Using

the eigenstates of Ĥ0 the linear electron-phonon Hamiltonian can be written as

Ĥe-ph =
∑
i,j,k

[
λaij,k(âk + â†k)− λ

b
ij,k(b̂k + b̂†k)

]
|i〉 〈j| , (4.23)

where |i〉 , |j〉 are the eigenstates of Ĥ0 (i, j = 1, 2, 3, 4.), λaij,k and λbij,k are the electron-

phonon coupling constants given by

λaij,k = Fk

√
~

2µωk
αaij, λbij,k = Fk

√
~

2µωk
αbij, (4.24)

where αaij =
(
AiA

∗
j +BiB

∗
j + CiC

∗
j +DiD

∗
j

)
and αbij =

(
AiC

∗
j + A∗jCi +BiD

∗
j +B∗jDi

)
are

the mixing parameters, Fk is the vibronic coupling constant given in Eq. (4.14), µ is the

reduced mass, ωk are the phonon frequencies, and Ai = (M−1)1,i, Bi = (M−1)2,i, Ci =

(M−1)3,i, Di = (M−1)4,i are the column elements of the inverse of the matrix M defined in

Eq. (4.21).

Similarly, in the basis spawned by the eigenstates of Ĥ0 the perturbation associated with

the oscillating magnetic field can be written as

V̂ (t) =
∑
i,j

gij |i〉 〈j| cosωt = Â cosωt, i, j = 1, 2, 3, 4, (4.25)

where |i〉 are the eigenstates of Ĥ0, ω is the frequency of the external perturbation, and

Â =
∑
i,j

gij |i〉 〈j| , i, j = 1, 2, 3, 4, (4.26)

is the perturbed observable when the oscillating magnetic field aligned with the x axis is

applied. The coupling constants associated with the oscillating magnetic field are given by

gij =
1

2
γsB1

(
AiB

∗
j + A∗jBi + CiD

∗
j + C∗jDi

)
. (4.27)

The couplings constants gij physically describe the probability amplitudes associated with

the transitions |i〉 → |j〉 when the perturbation is activated, i.e., gij = 〈i| Â |j〉. From

Eq. (4.27) we can observe that gji = g∗ij and gii ∈ R. In addition, these coupling constants

depends on the matrix elements of M (Eq. (4.21)), and therefore, has a non-trivial depen-

dence in terms of the magnitude of the static magnetic field B and its orientation θ, as well
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as, of the value of the spin-orbit coupling constant λ.

For static magnetic fields aligned with the z axis the eigenstates of the system are given by

|1〉 = |e−, ↓〉, |2〉 = |e+, ↑〉, |3〉 = |e+, ↓〉, and |4〉 = |e−, ↑〉, where |e±〉 = (|X〉± i |Y 〉)/
√

2 are

the eigenvectors of the angular momentum operator L̂z = ~σ̂y. In this basis, the perturbation

can be written as V̂ (t) = (B1γs)/2(Ŝ+ + Ŝ−) cosωt, where Ŝ+ = |2〉 〈3| + |4〉 〈1| and Ŝ− =

|3〉 〈2| + |1〉 〈4| are the spin raising and lowering operators, respectively. Therefore, for

magnetic fields of the form B̂ = Bz ẑ the allowed transitions induced by the oscillating

magnetic field are |1〉 ↔ |4〉 and |2〉 ↔ |3〉 only. If the static magnetic field has an arbitrary

direction we can induce all possible transitions between the eigenstates |i〉 of the system

when the oscillating magnetic field is applied. This is crucially different from the allowed

transitions for static magnetic fields aligned with the z axis.

In the next Section we introduce to the ESR absorption spectrum by calculating the dy-

namical susceptibility of the system. In addition, we introduce to the Markovian quantum

master equation in order to analytically solve the linear response of our e ⊗ E ⊗ SU(2) JT

system.

4.4 Linear response theory and lattice effects

Now, we evaluate the ESR absorption spectrum using the linear response theory. Physically,

the oscillating magnetic field drives the system from its equilibrium state. The response

of the system can be theoretically described using the linear response theory [31, 90]. In

particular, we use the Kubo formula in the weak coupling limit, i.e., when |B1| � ‖ ~B‖.
First, we introduce the dynamical susceptibility χ(ω) as follow [90]

χ(ω) =

∫ ∞
0

eiωτR(t) dt = χ′(ω) + iχ′′(ω), (4.28)

where χ′(ω) and χ′′(ω) are the real and imaginary parts of the dynamical susceptibility. The

function R(τ) is known as the linear response function and is defined as [90]

R(t) = iΘ(t)
〈[
Â(t), Â(0)

]〉
, (4.29)
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where Θ(t) is the Heaviside function and the operator Â(τ) is (~ = 1)

Â(t) = e−iĤtottÂeiĤtott, Â =
∑
i,j

gij |i〉 〈j| , (4.30)

where Ĥtot = Ĥ0 + Ĥph + Ĥe-ph is the total Hamiltonian of our e ⊗ E ⊗ SU(2) JT system.

The average given in Eq. (4.29) is a thermal average given by 〈Ô〉 = Tr(Ôe−βĤtot)/Z, where

Z = Tr(e−βĤtot) is the partition function, β = 1/(kBT ), kB is the Boltzmann constant and

T is the temperature. Temperature plays a fundamental role in solid-state system because

of the activation of different dissipative processes. In our case, the presence of e-phonons

and its interaction with the orbital states introduces a relaxation dynamics between the

eigenstates of the system. Such phonon-induced relaxation rates will be described in the

next section by means of the Fermi golden rule transitions.

During the relaxation dynamics of the orbital and spin states, phonons and magnetic im-

purities are important. In the first case, the phonon-induced relaxation dynamics can be

formally introduced using the quantized version of the electron-phonon Hamiltonian given

in Eq. (4.23). On the other hand, we phenomenologically introduce the effect of magnetic

impurities. A more detailed description of the effect of magnetic impurities needs to consider

the interaction between the spin degree of freedom and a spin bath. In this work, we intro-

duce the spin bath as a dissipatice term in the quantum master equation by considering an

stochastic noise. Using these approximations, the time evolution of the perturbed physical

observable Â(t) can be found by solving the following Markovian quantum master equation

(~ = 1) [91]
d

dt
Â(t) = i[Ĥ0, Â(t)] + LphÂ(t) + LmagÂ(t), (4.31)

where the first term describes the free dynamics induced by Hamiltonian Ĥ0 [Eq. (4.2)], while

the last two terms describes the dissipative dynamics induced by phonons and magnetic

impurities. The Lindblad superoperator associated with phonons is given by

LphÂ(t) =
∑
i 6=j

ΓijD[π̂ij]Â(t), i, j = 1, 2, 3, 4, (4.32)

where π̂ij = |i〉 〈j| is an operator, being |i〉 and |j〉 the eigenstates of Ĥ0. Here, Γij is the one-

phonon relaxation rate associated with the transition |i〉 → |j〉 (with i 6= j). The operator

D[Ô]Â is defined as

D[Ô]Â = 2ÔÂÔ† − 1

2
{Ô†Ô, Â}, (4.33)
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where {B̂, Ĉ} = B̂Ĉ+ĈB̂ is the anti-commutator. The phenomenological dynamics induced

by magnetic impurities is modeled using the the following Lindblad superoperator [72]

LmagÂ(t) = −1

4
Γmag

[
3Â(t)−

∑
i=x,y,z

(1e ⊗ ŝi) Â(t)

]
, (4.34)

where Γmag is the magnetic relaxation rate induced by an isotropic white magnetic noise,

1e = |X〉 〈X| + |Y 〉 〈Y | is the identity operator for the orbital states, and ŝi are the spin

operators given in Eqs. (4.5)-(4.7).

Now, we define the ESR absorption spectrum I(ω) as follow

I(ω) ≡ χ′′(ω) = Im

(∫ ∞
0

eiωtR(t) dt

)
, (4.35)

where R(t) is the linear response function of the system given in Eq. (4.29). By solving

Eq. (4.31) for the operator Â(t) =
∑

ij gij |i〉 〈j| and using this result to calculate the linear

response function R(t) we can obtain the following absorption spectrum

I(ω) =
∑
i 6=j

|gij|2f(ω, ωij,Γ
tot
ij ), (4.36)

where i, j = 1, 2, 3, 4, and the parameters are given by

Γtot
ij =

∑
k 6=i,j

(Γki + Γkj) , ωij = Ei − Ej, (4.37)

where Γij are the one-phonon relaxation rates associated with the transitions |i〉 → |j〉, and

Ei are the energy levels of Hamiltonian Ĥ0 (see Eqs (4.16)-(4.19)). The function f(ω, ω0,Γ)

is given by

f(ω, ω0,Γ) =

[
Γ/2

(ω − ω0)2 + (Γ/2)2
− Γ/2

(ω + ω0)2 + (Γ/2)2

]
, (4.38)

and consists of two Lorentzian functions centered at the resonant frequencies ω = ±ω0 with

a full width at high maximum equal to Γ. In Appendix C.1 we carefully derive the analytic

expression for the absorption spectrum I(ω).
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Figure 4.3: (a) A single E ⊗ SU(2) system embedded in a lattice and interacting with a static

magnetic field ~B = (B cosφ sin θ,B sinφ sin θ,B cos θ) and perturbed by an oscillating magnetic

field ~B1(t) = B1 sin(ωt)x̂. (b) Lattice effects represented by propagating phonons in the lattice and
magnetic impurities randomly located. (c) Emission and absorption relaxation rates induced by
phonons between two arbitrary eigenstates |i〉 and |j〉 of the Hamiltonian Ĥ0. (d) Energy levels of

our E ⊗ SU(2) systems and all possible transitions.

4.5 Phonon relaxation rates

In this section, we introduce to the temperature dependence of the one-phonon relaxation

rates Γij introduced in Eq. (4.32). From the absorption spectrum obtained in Eq. (4.36) we

know that the phonon relaxation rates determines to great extent the shape of the spectrum.

In fact, the peaks of the absorption spectrum at the resonant frequencies of the system are

broadened and reduced if the phonon relaxation rates increase, and conversely. Therefore,

the temperature dependence of the phonon relaxation rates Γij is crucial for understanding

the effect of temperature on the ESR absorption spectrum.

Using the Fermi golden rule to first-order in the interaction Hamiltonian Ĥe-ph given in

Eq. (4.23) we can find the absorption and emission relaxation rates associated with the

transition |i〉 → |j〉. When Ei < Ej, the transition |i〉 → |j〉 is associated with the following
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absorption relaxation rate

Γabs
ij =

2π

~2

∑
k

∣∣∣〈j, nk − 1| Ĥe-ph |i, nk〉
∣∣∣2 δ(ωji − ωk), (4.39)

where ωji = (Ej − Ei)/~ > 0 is the resonant frequency and |nk〉 is number of phonons in

mode k (Fock state) and Ei is the energy of state |i〉. When Ei > Ej, the transition |i〉 → |j〉
is associated with the following emission relaxation rate

Γem
ij =

2π

~2

∑
k

∣∣∣〈j, nk + 1| Ĥe-ph |i, nk〉
∣∣∣2 δ(ωij − ωk), (4.40)

where ωij = (Ei − Ej)/~ > 0. By solving the expectation values 〈j, nk − 1| Ĥe-ph |i, nk〉
and 〈j, nk + 1| Ĥe-ph |i, nk〉 using the quantized electron-phonon Hamiltonian and assuming

phonons in thermal equilibrium, we obtain

Γabs
ij =

2π

~2
Jij(ωji)n(ωji), ωi < ωj, (4.41)

Γem
ij =

2π

~2
Jij(ωij)[n(ωij) + 1], ωi > ωj, (4.42)

where ωij = (ωi − ωj)/~, n(ω) = (exp(~ω/kBT )− 1)−1 is the mean number of phonons at

thermal equilibrium. The function Jij(ω) is know as the phonon spectral density function,

and is given by

Jij(ω) =
∑
k

[(
λaij,k

)2
+
(
λbij,k

)2
]
δ(ω − ωk), ω > 0, (4.43)

where λa,bij,k are the electron-phonon coupling constants introduced in Eq. (4.24). The phonon

spectral density function plays a fundamental role in system interacting with a phonon bath.

In the limit of continuous phonon modes, the frequency of each vibrational mode can be

mapped into a continuous frequency, i.e., ωk −→ ω. In this limit and considering the effect

of acoustic phonons we can introduce the following representation of the electron-phonon

coupling constants given in Eq. (4.24)

λa,bij,k −→ λa,bij (ω) = λa,bij,0

(
ω

ωD

)1/2

, 0 ≤ ω ≤ ωD, (4.44)

where ωD is the Debye frequency and λa,bij,0 is the value of the electron-phonon coupling

constants at the Debye frequency, i.e., λa,bij,0 = λa,bij (ωD). We introduce the density of phonon
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states D(ω) for acoustic phonons as follow

D(ω) =
Ωω2

D

2π2v3
s

(
ω

ωD

)2

, 0 ≤ ω ≤ ωD, (4.45)

where Ω is the volume of the unit cell and vs is the speed of sound. Using Eq. (4.44) and

(4.45) into Eqs. (4.41) and (4.42) we have

Γabs
ij =

Ω

π~2v3
sωD

[(
λaij,0

)2
+
(
λbij,0

)2
]
ω3
jin(ωji), (4.46)

Γem
ij =

Ω

π~2v3
sωD

[(
λaij,0

)2
+
(
λbij,0

)2
]
ω3
ij[n(ωij) + 1]. (4.47)

The value of the coupling constants λaij,0 can be obtained or estimated using Eq. (4.24). We

define F (ωph) as the linear vibronic coupling constant at the phonon frequency ωph. Here,

ωph is an acoustic phonon frequency. Following this argument, in the continuous limit we

have λa,bij (ωph) = F (ωph)
√

~/(2µωph)αa,bij (see Eq. (4.24)). From the relation λa,bij (ωph) =

λa,bij,0 (ωph/ωD)1/2 = F (ωph)
√

~/(2µωph)αa,bij we finally deduce the following expressions

Γabs
ij =

EJTΩ

π~v3
s

(∣∣αaij∣∣2 +
∣∣αbij∣∣2)ω3

jin(ωji), (4.48)

Γem
ij =

EJTΩ

π~v3
s

(∣∣αaij∣∣2 +
∣∣αbij∣∣2)ω3

ji (n(ωij) + 1) , (4.49)

where EJT = (F/ωph)2/(2µ) is the JT energy of the system when the quadratic electron-

phonon interaction is neglected [89]. The phonon absorption and emission relaxation rates

given in Eqs. (4.48) and (4.49) include all the relevant physical parameters of the system.

First, the JT energy EJT depend on the value of the linear vibronic coupling constant

and the reduced mass of the system. Second, the mixing parameters αa,bij introduced in

Eq. (4.24) depend on the overlap between the spin and orbital states induced by the external

magnetic field and the spin-orbit coupling. Third, the resonant frequencies of the system

ωij = (Ei − Ej)/~ depend on the eigenstates Ei of Hamiltonian Ĥ0, and therefore, depend

on the magnitude of the static magnetic field, the polar angle and the value of the spin-

orbit coupling constant. Finally, the value of the mean number of phonons at the resonant

frequencies, n(ωij) = (exp(~ωij/kBT )− 1)−1, introduce the temperature dependence of the

phonon relaxation rates. Finally, the parameters Ω and vs depends on the volume of the

unit cell and the bulk properties of the lattice, respectively.

In the next section, we describe the main features of the ESR absorption spectrum. We note
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that this model can be used to describe the colour centres SiV− and NV0 in diamond. These

colour centres are particular cases of E ⊗ e⊗ SU(2) Jahn-Teller systems.

4.6 Discussion

In this section we analyse two important features of the ESR absorption spectrum associated

with our E ⊗ e⊗ SU(2) JT system (SiV− center): the maximum intensity Imax and the full

width at half maximum (FWHM) for the transition |1〉 → |4〉, although our results can be

used to analyse an arbitrary transition |i〉 → |j〉 (for i, j = 1, 2, 3, 4). Here, the eigenstates

|i〉 are defined in Eq. (4.20) and its eigenvalues are given by Eqs. (4.16)-(4.19). We introduce

the effect of temperature T , the magnitude of the static magnetic field B, the polar angle

θ, and the spin-orbit coupling constant λ using of the phonon relaxation rates Γij defined in

Eqs. (4.48) and (4.49).

We use the values Ω = a3 with a = 3.57× 10−10 m and vs = 1.2× 104 m/s in what folllows

[89]. In addition, from ab initio calculations of the dynamic JT effect in NV− centers in

diamond we know that the linear vibronic coupling is approximately F = −0.74 eV/Å for

the phonon energy ~ωph = 71 meV and that the JT energy is EJT = 25 meV [89]. We use

these value as a reference to estimate the linear vibronic coupling constant of SiV− centers

in diamond [92]. The spin-orbit coupling constant for individual SiV− centers in diamond is

approximately given by λ ≈ 50 GHz [33, 36].

4.6.1 Absorption spectrum

Figure. 4.4 shows the ESR absorption spectrum I(δ) as a function of detuning frequency

δ = ω − ωij, where ωij = (Ei − Ej)/~ is the resonant frequency of the transition |i〉 → |j〉,
and ω is the frequency of the oscillating magnetic field. We can observe the ESR response

for the transition |1〉 → |4〉 (Fig. 4.4(a)) for Γmag = 3 MHz, B = 50 G, θ = π/4, and

φ = π/4. When temperature increases from 10 mK to 10 K the ESR absorption spectrum is

broadened and suppressed by the presence of phonons (Fig. 4.4(b)). We call this phenomenon

as the phononic dynamical suppression of the ESR response. Phonons are the responsible of

this effect due to the phonon-induced relaxation processes described in the quantum master

equation Eq. (4.31) and the phonon relaxation rates given in Eqs. (4.48) and (4.49).
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(a) (b)

Figure 4.4: Theoretical absorption spectrum. The ESR signal I(δ) is plotted as a function
of the detuning δ = ω − ωij for the transition |1〉 → |4〉. We use the values B = 50 G, λ = 50
GHz, θ = π/4, φ = π/4. The full width at high maximum is given by the relaxation rate Γtot

14 =
Γmag+

∑
k 6=1,4(Γk1+Γk4), where Γmag = 3 MHz is the magnetic relaxation rate phenomenologically

introduced in Eq. (4.34). The inset plot in (b) shows the maximum value of the ESR absorption
spectrum in comparison with its value at zero temperature Imax(ω)/Imax(T = 0).

The phononic dynamical suppression of the ESR response depends on the FWHM and the

maximum intensity of the signal. The observed FWHM is given by the relaxation rates

Γtot
14 = Γmag +

∑
k 6=1,4(Γk1 +Γk4). The contribution of the magnetic noise introduce a constant

FWHM, while phonon introduces the temperature dependence due to the absorption and

emission processes. On the other hand, we compare the maximum value of the ESR response

Imax respect its value at zero temperature Imax(T = 0). From the inset of Fig. 4.4(b) we

observe that the ratio Imax(ω)/Imax(T = 0) decreases when the temperature increases. This

effect is due to the dynamic Jahn-Teller effect induced by linear electron-phonon coupling. At

higher temperatures the mean number of phonons increases, as a result, the phonon-induced

relaxation rates also increases (see Eqs. (4.48) and (4.49)). At very low temperatures (T <

100 mK), when phonons are frozen, the effect of the magnetic noise Γmag plays a fundamental

role since determines the FWHM. Therefore, when the temperature increases the absorption

signal is broadened and reduced by relaxation processes induced by the dynamic Jahn-Teller

effect leading to a suppression of the ESR signal.

4.6.2 Phonon relaxation rate

The relevant phonon relaxation rates for the absorption spectrum are given by the parame-

ters Γtot
ij introduced in Eq. (4.37) which determines the FWHM and the maximum value of
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(a) (b)

Figure 4.5: Two dimensional plot of the expected relaxation rate Γ2 for the transition
|1〉 → |2〉.(a) Two-dimensional parameter plot of the relaxation rate Γ2 in logarithm scale at
temperatures ranging from 1 mK to 10 K, magnetic fields ranging from 10−2 G to 2λ/γs G, where
λ = 50 GHz. (b) Two-dimensional parameter plot of the relaxation rate Γ2 in logarithm scale at
temperature ranging from 1 mK to 10 K and linear vibronic coupling parameter F ranging from
10−1 × F ? to 10 × F ?, where F ? = −0.74 eV/Å is the reference value extracted from the NV−

center [89].

the observed signal at the resonant frequencies ωij. For the transition |1〉 → |2〉 the rate Γtot
ij

it is experimentally defined as Γ2 = Γ1/2+Γmag. In our case Γ1 is determined by the phonon

relaxation rates. Figure. 4.5(a) shows the expected relaxation rate Γ2 at temperatures rang-

ing from 1 mK to 10 K and linear vibronic coupling constant ranging from 10−1 × F ? to

10×F ?, where F ? = −0.74 eV/Å is the reference value extracted from the NV− center [89].

We observe a qualitative change in Γ2 for temperatures above 0.1K. In addition, if we in-

crease the value of the linear vibronic coupling constant F the intensity of Γ2 also increases.

In Fig. 4.5(b) shows the expected relaxation rate Γ2 at temperatures ranging from 1 mK to

10 K and magnetic fields from 10−2 G to 2λ/γs ≈ 5679G. As the magnetic field increases,

the longitudinal relaxation rate increases as well. Interestingly, we observe a magnetic field

resonance near B ∼ 103 G.

4.7 Conclusions

We have presented a model to describe the dynamic Jahn-Teller effect on doubly degenerated

orbital systems with a single electron and its effect on the electronic spin resonance response

as a function of temperature. An analytical explanation for the absence of contrast in the

ESR response at high temperatures is presented confirming qualitative expectations for this
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effect [93, 94]. Interestingly, and confirmed by recent experiments [95, 96], the contrast of

ESR is recovered at temperatures of the order of tens-hundreds of mK where the relaxation

due to phonons is suppressed. The contrast of the ESR response and the relaxation rate is

analyzed as a function of temperature and of several system parameters such as spin-orbit,

electron-phonon coupling and strength and orientation of the magnetic field relative to the

symmetry axis of the system. The model can be used to characterize new spin-1/2 systems

at low temperatures for metrology and quantum information applications.



Chapter 5

Optomechanical systems with color

centers in diamond

In this chapter, we introduce the strain-induced Hamiltonian of a single SiV− center embed-

ded at the end of a diamond cantilever. This system is very interesting for optomechanical

applications related to cooling schemes of the low-frequency mode associated with the bend-

ing motion of a cantilever. The theoretical approach used to derive the strain Hamiltonian

takes advantage of the symmetrized molecular orbitals of the system and the symmetry de-

composition of the strain tensor into the symmetries of the color center. This is required in

order to understand how the local distortions of the lattice induce transitions between the or-

bital and spin states of color centers. We introduce the ground and excited states associated

with the orbital degree of freedom of the SiV− center in the electron-hole representation. In

addition, we include the spin degree of freedom associated with the spin S = 1/2 associated

with the SiV− center in diamond. The interaction between the orbital and spin states is

introduced via the spin-orbit coupling Hamiltonian of the system. Finally, we use the basis

spawned by the eigenstates of the spin-orbit Hamiltonian in order to mathematically describe

the strain-induced Hamiltonian of the system.

5.1 Introduction

Cooling a mechanical resonator mode close to the ground states is a difficult task in quantum

mechanical systems. Interestingly, several theoretical ideas based on the strain-induced

65
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Figure 5.1: Optomechanical system with a single color center. Single SiV− center at the
end of a diamond cantilever with a large l, width w, and thickness t. The catilever has a character-
istic bending mode with frequency ωb which is approximately given by ωb ≈

√
Et2/(12ρ(1.88/l)2 ≈

2π × 480 kHz for l ≈ 25 µm [12], where E and ρ are the Young modulus and the density of the
diamond lattice. The compression modes of the diamond cantilever directly interacts with the SiV−

center in diamond via the strain-induced Hamiltonian.

interaction between color centers and nano-mechanical resonators has been explored in the

last years [10–13]. The physical principle is simple, the vibrational mode of the resonator can

be coupled to the internal degrees of freedom of the color center by means of some interaction

(spin-phonon or electron-phonon interactions). The excitation of the internal states of the

color center is accompanied by the absorption or emission of particular vibrational quanta.

This extra energy is then dissipated at some rate Γ into the phonon bath. By using controlled

microwave fields is possible to engineering the absorption of the vibrational mode of the

resonator. This processes can be iterate several times in order to remove more and more

vibrational quanta. As a result, the mechanical resonator is cooled to the ground state.

Figure. 5.1 shows a single SiV− center embedded at the end of a diamond cantilever. A

relevant question in this optomechanical system is how to model the coupling between the

color center and the compression modes. The compression modes are important since they

are related distortions of the molecular structure of the color center. In order to answer

this question, we will introduce the microscopic derivation of the strain Hamiltonian for the

silicon-vacancy center. In the next section, we carefully introduced to the strain-induced

Hamiltonian for color centers in diamond. In particular, we develop a group theoretical

approach that takes advantage of the symmetries associated with the molecular structure of

the color center.
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5.2 Microscopic strain Hamiltonian

In this section we introduce the strain Hamiltonian of a single SiV− center in diamond using

elements of elasticity and group theory. We introduce the mechanical distortions of the

diamond lattice when ions are displacements around its equilibrium positions. For a finite

lattice composed by N ions we can define R
(0)
ni as the equilibrium position associated with

the “i” cartesian coordinate of the n-th ion. If ion are displacement in a small quantity given

by δRni, we obtain that ion positions can be written as

Rni = R
(0)
ni + δRni, (5.1)

where n = 1, ..., N and i = x, y, z are the atom and coordinates labels, respectively. The

validity of small displacements is considered in terms of the lattice constant for the Diamond

lattice a = 3.57 Å at 300 K, i.e., |δRni| � a for all ions. The SiV− center in diamond can

be modeled as a one-electron hole system [36]. We define Ve-ion(r, {R}) as the electron-ion

potential energy consistent with this one-electron description. If the electron is located at

the position r and the positions of the ions are given by {R} = R1, ...,RN , to first order in

the ion displacements we obtain

Ve-ion(r, {R}) = Ve-ion(r, {R(0)
n }) +

N∑
n=1

∑
i=x,y,z

∂Ve-ion(r, {R})
∂Rni

∣∣∣∣
0

δRni +O (δRni)
2 . (5.2)

The first term in the above expansion is related with the constant energy when all ions are in

equilibrium. The second terms in Eq. (5.2) is the first correction due to small displacements

of ions. The constant term can be neglected if we are interested in the electronic transitions

of the system. Using the chain rule is possible to write

∂Ve-ion(r, {R})
∂Rni

∣∣∣∣
0

=
∑

j=x,y,z

∂Ve-ion(r, {R})
∂ (δRnj)

∣∣∣∣
0

∂ (δRnj)

∂ (Rni)

∣∣∣∣
0

. (5.3)

Now, we assume that ∂ (δRnj) /∂ (Rni)|0 doesn’t depend on the index n. Using the last

approximation we can write

Ve-ion(r, {R}) ≈
∑

i,j=x,y,z

[
N∑
n=1

∂Ve-ion(r, {R})
∂ (δRnj)

∣∣∣∣
0

δRni

]
∂ (δRj)

∂Ri

∣∣∣∣
0

=
∑

i,j=x,y,z

Vijγij, (5.4)
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where γij = ∂ (δRj) /∂Ri defines a relative change of the shape of the system, which is

usually known as the strain. In what follows we use γ̂ij as a short notation for the strain

tensor, where i, j = x, y, z or 1, 2, 3. The tensor γ̂ij can be decomposed as follow

γ̂ij =
1

2
(γ̂ij + γ̂ji) +

1

2
(γ̂ij − γ̂ji) = ε̂ij + âij. (5.5)

The first and second terms in the above equation are the symmetric and antisymmetric parts

of the strain tensor. The antisymmetric part, âij, describes rotations of the whole system,

and therefore leave invariant the electron-ion potential Ve-ion(r, δ{R}). In order to describe

the effect of strain on the electronic structure of the SiV− center in diamond we only consider

the symmetric part given by ε̂ij. Therefore, γ̂ij can be considered as a symmetric tensor.

Using the symmetric part the strain tensor into Eq. (5.4) we obtain

Ve-ion(r, {R}) =
∑

i,j=x,y,z

Vij γ̂ij, γ̂ij = γ̂ji, (5.6)

where γ̂ij is the symmetric strain tensor and has the following matrix representation

γ̂ =


γxx γxy γxz

γyx γyy γyz

γzx γzy γzz

 . (5.7)

In order to find the strain Hamiltonian, we expand the symmetric part of the strain given in

Eq. (5.6) in some complete and orthonormal electronic basis |α〉, and we obtain the following

strain Hamiltonian

Ĥstrain =
∑
i,j,α,β

〈α | Vij | β〉γ̂ij | α〉〈β | . (5.8)

In the next section we introduce the electronic ground and excited excites of the SiV− center

in diamond.
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5.3 Strain-induced Hamiltonian for the SiV− center in

diamond

For the SiV− center in diamond we can expand the strain Hamiltonian in the following

two-fold degenerate basis

| e〉 = {eux, euy}, excited state (5.9)

| g〉 = {egx, egy}, ground state. (5.10)

In order to consider the symmetry properties of these excited and ground states it is conve-

nient to expand the strain tensor into irreducible representations of the symmetry group of

the SiV− center. The symmetry group associated with the SiV− center is the C3v+i group.

The strain Hamiltonian can be symmetrically expanded as follow

Hstrain =
∑
r,α,β

〈α|Vr |β〉 γ̂r |α〉 〈β| , α, β = {eux, euy, egx, egy}, (5.11)

where γ̂r is the symmetric strain tensor associated with irreducible representation of the

group C3v+i. The C3v+i group has irreducible representations labelled by r = {A1g, A2g,

Eg, A1u, A2u, Eu} (see character table (5.1)). In this notation, the symmetry groups C3v+i

and D3 are isomorphic, i.e C3v+i ' D3d (but the irreducible representations A1 and A2 are

swapped).

Physically, local strain or local distortions in the SiV− structure generates a collective dis-

placement of the defect atoms. This leads to a change in the potential seen by the each atom

and results in a modification of the electronic distribution of the defect via electron-ion inter-

action. To first order in the ion displacements and in the Born-Oppenheimer approximation,

this local distortion effect can be modeled by the strain Hamiltonian

Ĥstrain =
∑
i,j,α,β

|α〉 〈α| |Vij |β〉 〈β| γ̂ij. (5.12)

Here, |α〉 is the electronic basis and Vij are couplings that involve the electron-ion Coulomb

interaction [41]. For the SiV− center the matrix associated to the strain tensor can be

expressed in terms of matrices that transform according to the irreducible representations of

the C3v+i group. This mathematical decomposition can be achieved by projecting the matrix
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Table 5.1: Character table of the group C3v+i. The first column are the irreducible representa-
tions of the Cev+i group (A1g, A2g, Eg, A1u, A2u, Eu). The index g and u denote the german word
“gerade” (symmetric) and “ungerade” (antysimmetric) representations. The first row is a list of the
symmetry operations of the group C3v ordered by the classes of the group (E, 2C3, 3C2, i, 2S6, 3σ).

E 2C3 3C2 i 2S6 3σ linear quadratic
A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 -1 1 1 -1 Rz

Eg 2 -1 0 2 -1 0 (Rx, Ry) (x2 − y2, xy), (xz, yz)

A1u 1 1 1 -1 -1 -1
A2u 1 1 -1 -1 -1 1 z

Eu 2 -1 0 -2 1 0 (x, y)

given in Eq. (5.7) in each irreducible representation by applying the following formula [40, 41]

γ̂r =
lr
h

∑
g∈C3v+i

χr(g)R†(g) γ̂ R(g), γ̂ =


γ̂xx γ̂xy γ̂xz

γ̂xy γ̂yy γ̂yz

γ̂xz γ̂yz γ̂zz

 , (5.13)

where γ̂r is the projection of the strain tensor into the irreducible representation r. Here, lr

is the dimension of the r-th irreducible representation, h is the order of the group (number

of elements), χr(g) is the character of the group element g in the irreducible representation

r, and R(g) is the matrix representation of the group element g (see Character Table (5.1)).

Using the formula given in Eq. (5.13) we can find that the strain tensor can be decomposed

as

γ̂ = γ̂A1g + γ̂Eg , (5.14)

where

γ̂A1g =


1
2

(γxx + γyy) 0 0

0 1
2

(γxx + γyy) 0

0 0 γzz

 , (5.15)

γ̂Eg =


1
2

(γxx − γyy) γxy γxz

γxy
1
2

(γyy − γxx) γyz

γxz γyz 0

 . (5.16)

See Supporting Material D.1 for further details of the algorithm and code used for the

symmetric decomposition. Due to the inversion symmetry of the SiV− center, the orbital

degrees of freedom of the states within the ground and excited subspaces are characterized
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by parity [40]. As a consequence, the expectation values of the form 〈α|Viz|α〉 (i = x, y, z)

vanish in both ground and excited subspaces. Therefore, in the electronic basis spawned by

{|egx〉 , |egy〉}, the strain Hamiltonian can be written as [92]

Ĥstrain =

[
δ 0

0 δ

]
+

[
α β

β −α

]
, (5.17)

with δ = λ0 (γ̂xx + γ̂yy), α = λ1 (γ̂xx − γ̂yy) and β = λ2γ̂xy. Here, λ0, λ1, and λ2 are coupling

constants. The first term of the strain Hamiltonian is the energy shift induced by symmetry

local distortions and can be neglected. Now, the spin-orbit Hamiltonian of the SiV− center

is given by [36] (see Supplemental Material)

ĤSO = −λSOL̂zŜz = −λSO

2

(
0 i

−i 0

)
⊗

(
1 0

0 −1

)
= −λSO

2


0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0

 , (5.18)

where λSO > 0 is the spin-orbit coupling constant. The eigenstates of the above Hamiltonian

are given by |1〉 = |e−, ↓〉, |2〉 = |e+, ↑〉, |3〉 = |e+, ↓〉, and |4〉 = |e−, ↑〉, where |e±〉 =

(|ex〉± i |ey〉)/
√

2 are the eigenstates of L̂z. Finally, if we write the strain Hamiltonian using

the basis spawned by the eigenstates of the spin-orbit coupling we obtain

Ĥstrain =

(
0 α− iβ

α + iβ 0

)
⊗

(
1 0

0 1

)
= g1 (γ̂xx − γ̂yy)

(
L̂− + L̂+

)
−ig2γ̂xy

(
L̂− − L̂+

)
,

(5.19)

where L̂+ = |3〉 〈1|+ |2〉 〈4| = L̂†− are the raising (L̂+) and lowering (L̂−) orbital momentum

operators of the ground state, and g1,2 are the strength of the couplings to the strain field.

This strain-induced Hamiltonian was used in the following work [12]. We observe that the

electron and the lattice can exchange orbital angular momentum via the strain-induced

Hamiltonian.

5.4 Conclusions

We have presented a microscopic approach to the problem of modeling the strain-induced

interaction between the SiV− center in diamond and the distortions of the lattice. We take
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advantage of the symmetrized orbital states of the color center as well as the symmetric

decomposition of the strain tensor. Group theoretical arguments are presented in order to

find the symmetric form of the final strain-induced Hamiltonian. This approach can be

used to characterize new strain-induced Hamiltonians of solid-state systems with different

symmetries.



Chapter 6

Conclusions and outlook

The goal of this thesis was to study the effect of phonons on the optical, electronic and spin

properties of color centers in diamond. We started our analysis with a theoretical description

of the effect of phonons on the photoluminescence spectrum of negatively charged silicon-

vacancy centers in diamond. The main motivation of this project was to understand the

crucial difference between the observed PL spectra of the NV− center and SiV− center at

the same temperature. As we discussed in Chapter 2, the NV-center has a broad emission

ranging from 637 nm zero-phonon line (ZPL) to 750 nm; meanwhile, the emission of the SiV−

has a width of few nanometers at the same temperature [14]. Motivated by this experimental

evidence, our fundamental question was to understand the role of symmetry on the optical

features of color centers in diamond. In terms of symmetry, the only difference between the

NV− center and the SiV− center is the additional inversion of the SiV-center. On the other

hand, from the old theory described in the Frank-Condon principle [97] used in molecular

spectroscopy, we knew that the electron-phonon interaction will determine the shape of the

PL spectrum, in particular, the phonon sideband contribution.

The problem of finding the PL spectrum is translated into the problem of estimating the

electron-phonon coupling constants for a single SiV− center embedded in a finite diamond

lattice. As a first step, we developed a Hamiltonian description for the system based on the

spin-boson model formalism. In Sections 2.2 and 2.3 we described both Hamiltonians associ-

ated with the SiV− center and the linear electron-phonon interaction (see Appendix A.1 for

further details). Using the spin-boson model and the polaron transformation we developed

a model for calculating the emission spectrum of the system. In Section 2.4 we showed that

the emission spectrum crucially depends on the phonon spectral density function J(ω) of

73
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the system (see Eq. (B.27)). In order to calculate the phonon spectral density function, we

elaborated a numerical method to estimate the electron-phonon coupling constants between

a single SiV− center and the lattice vibrations of a finite-sized crystalline structure. The

vibrational properties of the whole system (diamond lattice and the individual SiV-center)

were estimated using a force-constant model based on a second nearest-neighbor interaction

model (see Appendix A.2). On the other hand, we implement Gaussian orbitals to describe

the single sp3 orbitals of each atom of the SiV− center. From our molecular dynamic simula-

tions we reproduced the phonon dispersion relation of a diamond lattice in a good agreement

with previous experimental observations (see Fig. 2.2).

In addition, we classified all vibrational modes using the irreducible representations of the

C3v+i group associated with the SiV− center (a1g, a2g, eg, a1u, a2u, eu phonon modes). In

the absence of ungerade (antisymmetric) perturbations on the electronic states only gerade

(symmetric) modes contribute to the emission spectrum, by simple symmetry considerations

(see Section 2.6). However, the observed isotopic shift of the phonon sideband suggests a

strong electron-phonon interaction with a quasi-localized phonon mode with odd symmetry.

To incorporate the contribution of antisymmetric phonon modes we developed the dynamical

symmetry breaking mechanism in Section 2.6 and Appendix A.6. This dynamical effect is

consistent with the Herzberg-Teller effect which also shows a dynamical symmetry breaking

[46–48]. Using our numerical model we find a strong peak in the PL spectrum associated

to an a1u quasi-local phonon mode with a frequency of ω28 = 63.19 meV, ω29 = 62.66 meV

and ω30 = 62.16 meV for the isotopes Si28 , Si29 and Si30 , respectively. The ratio between

these energies is approximately ω28/ω29 ≈ 1.01 and ω28/ω30 ≈ 1.02 in good agreement with

experimental values (ω28/ω29 = 1.016 and ω28/ω30 = 1.036 [45]). We remark that the isotopic

shift of the phonon sideband is not possible to explain with phonons that transform evenly

under inversion. Therefore, a dynamical symmetry breaking is needed, which can be caused

by non-inversion preserving perturbations such as external electric fields or odd vibrational

modes. As a general conclusion of this project, we recall that our results might be useful for

understanding the microscopic origin of the effect of phonons on solid-state emitters, but our

analysis must consider the effect or other interactions such as Jahn-Teller effect and strain.

In Chapter 3 we introduced a full theoretical description of the role of phonons on the spin-

lattice relaxation dynamics of individual NV− centers in diamond. The motivation of this

project was to really understand the phonon-induced spin relaxation rates and its temper-

ature dependence for a wide range of temperature (from 1 mK to 475 K). To address this

complex theoretical problem we introduced a general spin-phonon Hamiltonian for the NV−



Ph.D Thesis Ariel Norambuena 75

center in diamond. Incredibly, a very recent work [98] confirmed the same Hamiltonian

structure of our spin-phonon Hamiltonian introduced in Section 3.2. Moreover, we intro-

duced both linear and quadratic interaction terms in the spin-phonon Hamiltonian. This is

necessary to fully describe two-phonon processes and deduce all possible temperature scaling

for the longitudinal relaxation rate. Using the Fermi golden to first and second order we

analytically derived the phonon-induced relaxation rates as a function of temperature and

arbitrary magnetic fields aligned with the symmetry axis of the NV− center. In Section 3.3

we introduced one- and two-phonon processes with great detail, but the discussion is focused

in terms of the contribution of acoustic and quasi-localized phonon modes. We neglected the

contribution of optical phonon modes due to the low probability of populated high energy

phonons at the experimental temperatures used in experiments. However, it is an interest-

ing open question how optical phonons modified the temperature dependence of the spin

relaxation rates. The role of optical phonons is beyond the scope of this work.

The spin-lattice relaxation dynamics of the spin degree of freedom is derived from the Marko-

vian quantum master equation of a single NV− center coupled to lattice vibrations. Here,

the environment is modeled as a phonon bath in thermal equilibrium. The statistical de-

scription of phonons is an interesting way to introduce temperature effects. Basically, we

use the Bose-Einstein distribution for the mean number of phonons. We phenomenologically

introduced the effect of magnetic impurities by adding a Lindbadian operator associated

with a stochastic magnetic noise [72]. This is a crucial point in our theoretical description

since a real quantum mechanical model of the effect of magnetic impurities is still an open

question in the NV-community. In fact, a full quantum description should consider the spin

flip-flop processes between the NV− center and the surrounding magnetic impurities ( C13 ,

Ni14 , Si29 and other NV centers). The latter interaction is the microscopic origin of this

fluctuating magnetic field that induced relaxation on the color center. The contribution of

phonons is not a mystery, but a good theoretical description is needed in order to eventually

describe more complex relaxation processes. Following this point of view, we think that this

project is a very good starting point to really understand the relaxation dynamics of color

centers in diamond for future applications in metrology and quantum communication. To

study the effect of temperature and magnetic field on the longitudinal relaxation rate we

separate the discussion into two important limits: low and high temperatures.

At low temperatures, we derived a set of microscopic equations (Eqs. (B.40)-(B.41))in order

to study the spin-lattice relaxation dynamics induced by one-phonon processes. In this limit

only one-phonon processes are relevant. Therefore, two-phonon processes can be neglected in



Ph.D Thesis Ariel Norambuena 76

the quantum master equation. At zero magnetic fields we analytically obtained the relaxation

rate 1/T1 = Γ0(1+3n̄), where n̄(T ) = (exp(~D/kBT )− 1)−1 is the mean number of phonons

at the zero-field splitting frequency D/(2π) = 2.87 GHz, and Γ0 is constant determined by

microscopic parameters. Our theoretical result is exactly the same relaxation rate predicted

by experiments and ab initio calculations [19], as well as theoretical calculations [74]. In

addition, for low magnetic fields, γsB0 � D, we obtained the relaxation rate 1/T1 = 2Γ0(1+

2n̄) + ΓB(1 + 2nB) associated with 〈Sz(t)〉, where ΓB scales as B3
0 .

At high temperatures, we derived an expression for the longitudinal relaxation rate (Eq. 3.75)

that consider the effect of one and two-phonon processes. In particular, the relaxation

rate 1/T1 associated with 〈Sz(t)〉 is in agreement with experimental observations [15, 17,

18]. We included both linear and bi-linear lattice interactions that lead to several different

temperature scaling in a general spin-boson model for a system with spin S = 1. Our

model reproduces the observed temperature scaling T 5 at high temperatures as well as

the main features for temperatures ranging from 4 K to 475 K. We think that our model

can be used to understand the observed T 7 temperature dependence of the neutral silicon-

vacancy color center in diamond at high temperatures [73]. Finally, we recall that our

model will be useful to evaluate the contribution of second-order phonon processes that give

different temperature scaling (T s, T s+1, T s+2) for other spin-boson systems. The power of

the temperature s = 4ν + 2d − 3 depends on the dimension of the system (1 ≤ d ≤ 3) and

the symmetry of the lattice (parameter ν).

In Chapter 4 we have presented a theoretical explanation for the absence of contrast in the

ESR response at high temperatures confirming qualitative expectations for this effect [93, 94].

A model is presented to describe the dynamic Jahn-Teller effect on doubly degenerated

orbital systems with a single electron spin-1/2. We consider the linear electron-phonon

coupling between the orbital and lattice degrees of freedom, the spin-orbit, and Zeeman

interactions, and the linear response of the system to oscillating magnetic fields (Eq. (4.1)).

We analyzed the linear response of the system using the dynamical susceptibility in the limit

of a weak oscillating magnetic field. In addition, we used the Markovian quantum master

equation to solve the dynamics of the orbital and spin degrees of freedom when phonons are

in thermal equilibrium. The spin relaxation rates of the quantum master equation and the

contrast of the ESR response are modeled as a function of temperature and several other

parameters of the system. Such parameters are the magnitude of the static magnetic field,

the orientation of the magnetic field with the symmetry axis of the system, the value of

the spin-orbit coupling constant, the linear vibronic coupling constant associated with the
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Jahn-Teller effect, and the temperature. Interestingly, and confirmed by recent experiments

[95, 96], the contrast of ESR is recovered at temperatures of the order of tens-hundreds of

mK where the relaxation due to phonons is suppressed.

The physical explanation of the absence of contrast in the ESR response is related with

the coupling between the orbital states and phonons. When the system is driven from its

equilibrium state due to the oscillating magnetic field, the relaxation dynamics of the orbital

states is modified by the Jahn-Teller interaction described in Section 4.3. As a consequence

of this electron-phonon coupling and the spin-orbit interaction, we observed that the spin

exhibited a relaxation dynamics also. Obviously, the effect of phonons on the relaxation

dynamics increases at higher temperatures. At higher temperatures the mean number of

phonons increases, as a result, the phonon-induced relaxation rates also increases. In our

model, when the temperature increases the absorption signal is broadened and reduced by

relaxation processes induced by the dynamic Jahn-Teller effect leading to a suppression of

the ESR signal. This is the microscopic origin of the phononic dynamical suppression of the

electron spin resonance of E ⊗ e ⊗ SU(2) Jahn-Teller systems. We think that this model

can be used to characterize new spin-1/2 systems at low temperatures for metrology and

quantum information applications.

In Chapter 5 we have presented a microscopic and group theoretical approach to the problem

of modeling the strain Hamiltonian of a single SiV−. The main motivation of this work was

to understand the strain-induced coupling of a single SiV− center embedded at the end of

a diamond cantilever. This system has interesting features for cooling schemes if the SiV−

center is coupled to a magnetic tip and controlled by two lasers. In particular, the cooling of

the bending mode of the cantilever can be achieved using this system [12]. In our theoretical

description, we take advantage of the symmetrized orbital states of the color center as well

as the symmetric decomposition of the strain tensor into irreducible representations of the

group C3v+i.

We have seen that the electronic, optical, and spin properties of color centers are modified

by phonons. Many of these effects are related to the electron-phonon coupling, Jahn-Teller

effect or strain-induced interactions. Such interactions depend on the symmetry of the color

center and the electronic distribution (localized or delocalized). The community has been

started to explore new physical properties at low temperatures, where the role of vibrations

can be studied with a great detail. Finally, a big challenge is the microscopic modeling of

the magnetic field fluctuations of the environment. A detailed description of the relaxation
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processes is required for future applications in quantum sensing and quantum information

processing.



Appendix A

Supporting Material for Chapter 2

A.1 Electron-phonon interaction

In this section we present a more detailed derivation of the electron-phonon interaction used

to model the optical properties of the SiV− center. Using the normal coordinates QLat
l

defined in Eq. (2.4) the electron-phonon interaction can be expanded as follow

Ve-ph(r, {Q}) = V0 +

3NLat−6∑
l=1

(
∂Ve-Ion

∂QLat
l

)
QLat
l + . . . , (A.1)

where only the 3NLat − 6 vibrational modes are considered, as translational and rotational

modes leave invariant the electron-phonon interaction [25]. As we will focus on deep cen-

ters, i.e., center whose electronic wave functions decay quickly with distance [99], it will

be convenient to define local vibrational modes involving only those atoms on which the

electronic wave functions are considered to be non-zero. These modes can be obtained from

group theoretical considerations [25, 40] or by numerically solving a small molecular system

considering only the atoms related with the defect structure using a force-constant model

[100] or ab initio calculations. These defect normal coordinates are defined as

QSiV
l′ =

ND∑
i=1

∑
α={x,y,z}

√
Miuiαh

SiV
iα,l′ , (A.2)
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where ND is the number of atoms of the defect (ND < NLat), uiα is the displacement of the

i−th ion in the α direction from its equilibrium position, and hSiV
iα,l′ are the eigenvectors l′

associated to the defect molecular vibrations of the i−th ion in the α direction. The local

normal coordinates of the defect can be written as a linear combination of the lattice normal

modes given in Eq. (2.4)

QSiV
l′ =

3NLat−6∑
l=1

αl′lQ
Lat
l , (A.3)

where the parameter αl′l is given by Eq. (2.8). HSiV
l′ and hLat

l are vectors with the same

dimensionality and whose components are given by

HSiV
l′ =



hSiV
1x,l′

hSiV
1y,l′

hSiV
1z,l′

...

hSiV
NDz,l′

0
...

0


, hLat

l =



hLat
1x,l

hLat
1y,l

hLat
1z,l
...

hLat
NDz,l

hLat
ND+1x,l

...

hLat
NLatz,l


(A.4)

where HSiV
iα,l′ are obtained from group theoretical arguments and HLat

iα,l′ are numerically ob-

tained by solving the eigenvalue equation (2.5). Therefore, using the chain rule and neglecting

the constant term V0 on Eq. (A.1) we recover electron-phonon interaction given in Eq. (2.7).

A.2 Force constant model to second order nearest-neighbor

In this section we present the force constant model used to numerically solve the vibrational

modes associated to the eigenvalue equation given in Eq. (2.5). Using the general valence

force field for diamond [42], we can extract the vibrational dynamics of the system using

the following expression for the ion-ion interaction including up to second nearest-neighbor

interactions

VIon-Ion =
∑
ks∈K

Vks , K = {kr, krr, krθ, kθ, kθθ}, (A.5)
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where the contributions to the ion-ion potential interaction are given by

Vkr =
1

2
kr
∑
〈ij〉

(δuij)
2 , (A.6)

Vkrr = krr
∑
〈ij〉,〈kj〉

(δuij) (δukj) , (A.7)

Vkrθ = bkrθ
∑
〈ijk〉

(δuij) (δθijk) , (A.8)

Vkθ =
1

2
b2kθ

∑
〈ijk〉

(δθijk)
2 , (A.9)

Vkθθ =
1

2
b2kθθ

∑
〈ijk〉,〈ljm〉

(δθijk) (δθljm) , (A.10)

where Vkr is the potential energy associated with the bond-stretching of the first nearest

neighbor 〈ij〉, Vkrr is the potential energy associated with bond-stretching of the bond-pair

〈ij〉 and 〈kj〉 that share the atom j, Vkrθ is the potential energy associated with the bond-

stretching of the first nearest-neighbor 〈ij〉 that shares a bond with the bond-bending angle

θijk, Vkθ is the potential energy associated with the bond-bending angle θijk such that i and k

are nearest-neighbor of j, and Vkθθ is the potential energy associated with the bond-bending

of the angles θijk and θljm when no bond is shared. The parameter b = 1.95 Å for the point

defect and b = 1.54 Å for the bulk diamond. These interaction depends on the geometrical

distortions of the lattice

δuij = |ui − uj|, ûij = (ui − uj)/δuij, (A.11)

δθijk = cos−1(ûij · ûkj), (A.12)

and the elastic constants kr, krr, krθ, kθ, kθθ. These elastic constants are obtained from litera-

ture in the case of bulk-diamond [42, 43] and from ab initio simulations for the SiV− center.

In order to obtain the elastic constants kSiV
r , kSiV

rr , k
SiV
rθ , k

SiV
θ and kSiV

θθ for this point defect we

fit the energy variations for each displacement mode u as follow

δE = E0 +
1

2
δu> ·D · δu, (A.13)

where D is the dynamical matrix of the whole system [Eq. (2.5)]. We can calculate this

variation from ab initio calculations by considering the same displacement mode u. Using

the density functional theory (DFT) and the projector-augmented wave (PAW) [101, 102]
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Figure A.1: Potential energy variation. Red points represent ab initio calculations of the
energy variation of a supper cell with 64 atoms in which one carbon atom of the SiV-center is
displacement toward the silicon atom (see SiV-center mode). The blue dashed line represent our

second order nearest-neighbor model fitting.

method implemented in the Vienna ab-initio simulation package (VASP) [103–105]. We can

use a plane-wave energy cutoff of 400 eV in all our calculations. The exchange and correlation

energy was described within the generalized gradient approximation (GGA) in the Perdew-

Burke-Ernzerhof functional [106, 107]. The Monkhorst-Pack scheme was employed for the

Brillouin-zone (BZ) integrations [108] with a mesh 8× 8× 8, which corresponds a set of 60

special k-points in the irreducible BZ.

In order to considerer the SiV-center as a defect, we employed a 2 × 2 × 2 supercell of

the diamond cubic unit cell with a total of 64 atoms. Furthermore, in the calculation

of equilibrium electronic structure, the geometry was relaxed until the forces over each

component of atoms position were smaller than 2 × 10−4 eV/
◦
A. Figure A.1 shows the

potential energy calculated from ab initio and the resulting fit using the elastic constants

kSiV
r , kSiV

rr , kSiV
rθ , kSiV

θ and kSiV
θθ as fitting parameters. Similar fittings can be performed for the

rest of the molecular distortions. From the above methodology we find the following elastic
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Figure A.2: Types of interactions present in a second nearest neighbor model for
phonons. The five elastic constant kr, krr, krθ, kθ, kθθ are obtained from literature in the case of

bulk-diamond and from ab initio simulations for the defect.

constants for the SiV− center

kSiV

r = 45 N/m = 2.8087 eV/Å
2
, (A.14)

kSiV

rr = 17.7 N/m = 1.1047 eV/Å
2
, (A.15)

kSiV

rθ = 37.5 N/m = 2.3406 eV/Å
2
, (A.16)

kSiV

θθ = 3.5 N/m = 0.2091 eV/Å
2
, (A.17)

kSiV

θ = 47.23 N/m = 2.9479 eV/Å
2
. (A.18)

Figure A.2 shows the molecular distortions associated with the different types of interactions

introduced in the second-order nearest-neighbor interation model.

A.3 Numerical methodology for the molecular vibra-

tions

In this appendix, we describe how to calculate the second order nearest-neighbor interactions

for the molecular vibrations of a single defect embedded in a finite diamond lattice. First

at all, given the primitive basis vector of the diamond lattice {a1, a2, a3}, we can construct

all the atomic positions Ri (i = 1, ..., NLat) for a finite lattice with a sphere shape with a

characteristic radius RMax such as |Ri| ≤ RMax∀ i. In this lattice, the single defect is located

at the center of the structure, which is defined as the origin of our coordinate system (R = 0).

Once the finite lattice is constructed, we proceed to generate the dynamical matrix D of the
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whole system (see Eq. (2.6)), pictorially

D =


DSiV DI

DBulkDI

 , (A.19)

where DSiV, DBulk and DI are the dynamical matrix associated with the SiV− center, bulk

lattice and defect-bulk interaction, respectively. For the SiV− center, the dynamical matrix

is defined as,

DDefect

iα,jβ =
1√
MiMj

∂2V Defect
Ion-Ion

∂uiα∂ujβ

∣∣∣∣
eq

if i, j ≤ ND ∀ α, β, (A.20)

where ND is the number of atoms of the defect. The internal potential interaction of the

defect V SiV
Ion-Ion is defined as

V SiV

Ion-Ion =
∑
ks

V SiV

ks , ks ∈ {kSiV

r , kSiV

rr , k
SiV

rθ , k
SiV

θ , kSiV

θθ }, (A.21)

where the elastic constants kSiV
r , kSiV

rr , k
SiV
rθ , k

SiV
θ , kSiV

θθ are given in Eqs. (A.14)-(A.18). The

potential V SiV
ks

is given by Eqs. (A.6)-(A.10). For the bulk lattice, the dynamical matrix is

defined as

DBulk

iα,jβ =
1√
MiMj

∂2V Bulk
Ion-Ion

∂uiα∂ujβ

∣∣∣∣
eq

if i, j > ND ∀ α, β. (A.22)

Analogously to the potential for the defect case given in Eq. (A.21), the bulk-potential

V Bulk
Ion-Ion is calculated using the second-nearest neighbor model, but using some different bulk-

elastic constants kBulk
r , kBulk

rr , kBulk
rθ , kBulk

θ , kBulk
θθ given in [42]. Finally, we numerically solve the

eigenvalue equation given in Eq. (2.5). In our approximation we assume for simplicity that

the dynamical matrix associated with the atoms between the defect and the bulk is equal

to the dynamical matrix of the bulk. Even with this aproximations, we obtain an accurate

phononic dispersion relation in comparison with ab initio calculations. In Figure A.3 we

show the ordered phonon frequencies for a periodic diamond lattice using the force-constant

model to second nearest-neighbor interaction and an ab initio calculation of a super cell with

63 atoms with one SiV-center.
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ab Initio

force constant model

Figure A.3: Comparison between the phonon frequencies using the force-constant
model and ab initio calculations.

A.4 Electron-phonon coupling constants and Gaussian

orbitals

The electron-phonon coupling constants given in Eqs. (2.12)-(2.13) can be numerically solved

by estimating the following integral

〈i|
(
∂Ve-Ion

∂uiα

)∣∣∣∣
R0

|j〉 =

∫
R3

ϕ∗i (r)

(
∂Ve-Ion

∂uiα

)∣∣∣∣
R0

ϕj(r) dr, (A.23)

where the electron-Ion potential is modeled by a screening Coulomb potential given by

Ve-Ion = −
ND∑
i=1

keZie
2

εD|r−Ri|
, Ri = R

(0)
i + ui, (A.24)

where ke = 1/(4πε0) is the Coulomb constant, εD = 10 is the diamond dielectric constant,

and the effective charge Zi = 3.25, 4.15 for carbon and silicon atoms, respectively. The

electronic wavefunctions ϕi(r) are approximated by symmetrized Gaussian orbitals in order

to numerically solve the integral given in Eq. (B.56). In this approximation, the single atomic

orbitals for the carbon and silicon atoms are written as linear combinations of the following
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Gaussian orbitals,

sa =

(
2a

π

)3/4

exp
(
−a|r− ra|2

)
, (A.25)

pak =
√

4π

(
2a

π

)3/4

ek · (r− ra) exp
(
−a|r− ra|2

)
, (A.26)

where ek = {x̂, ŷ, ẑ} for k = {x, y, z}. The integral (B.56) can be numerically solved using

spherical coordinates (r, θ, φ) and the seed integral is given by∫
R3

1

r
exp

(
−a|r−A|2

)
exp

(
−b|r−B|2

)
dr = S

erf(
√
c u)

u
,

(A.27)

where

S =

(
2
√
ab

a+ b

)3/2

exp

(
− ab

a+ b
|A−B|2

)
, (A.28)

c = a+ b, u =
a|A|+ b|B|

a+ b
, (A.29)

erf(x) =
2√
π

x∫
0

e−t
2

dt. (A.30)

Note that integrals involving p-orbitals can be obtained by taking the derivative of equation

(A.27) with respect to some of the components of the ion positions A or B. The exponential

decay constants of the Gaussian orbitals given in Eqs. (A.25) and (A.26) are determined

by minimizing the error on the radial probability distribution with respect to the radial

probability distribution of the Slater orbitals. We obtain a = 1.7105 Å−2 for the carbon

atoms and a = 2.9879 Å−2 for the silicon atom.

A.5 Silicon contribution to the electronic and phonon

calculations

In this section we describe the effect of a small change in the silicon mass on the phonon

frequency of localized phonon modes with a predominant oscillation of the silicon atom. In
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𝛿𝐷= 

3𝑁𝐿𝑎𝑡 − 3𝑁𝐷

𝐷𝐵𝑢𝑙𝑘

3
𝑁
𝐿
𝑎
𝑡
−
3
𝑁
𝐷

3𝑁𝐷

3

𝐷𝐷𝑒𝑓𝑒𝑐𝑡 𝐷𝐼

𝐷𝐼

3

3𝑁𝐷

Figure A.4: Silicon contribution to the dynamical matrix. The dynamical matrix is a
matrix with 3NLat × 3NLat elements and the elements that contains a silicon contribution are

marked by the pink regions of the matrix DDefect (A.20) and the interaction matrix DI (A.19).

addition, we show some numerical results in order to confirming the contribution of 2s-like

atomic orbitals in the ground state configuration of the SiV− center when phonons are not

present. Finally, we compare our predicted phonon frequencies with ab initio calculations.

There are three stable silicon isotopes in the diamond lattice ( Si28 , Si29 , and Si30 ), and they

differ each other by a small amount of mass. A small change in the silicon mass can be

represent by the following transformation

MSi −→MSi + δMSi, (A.31)

where MSi is the silicon mass and δMSi is a small mass, i.e., δMSi � MSi. Under the mass

transformation introduced in Eq. (A.31) the dynamical matrix Diα,jβ defined in Eq. (2.6)

transform as

Diα,jβ −→ Diα,jβ + δDiα,jβ, (A.32)

where δDiα,jβ has the matrix structure shown in Fig. A.4, and is mathematically given by

δDiα,jβ = −δMSi

MSi

Diα,jβ, i, j = 1, α, β = x, y, z, (A.33)

where i, j = 1 are de indices for the Silicon atom in our numerical simulations. Now we

evaluate the effect of the mass transformation introduced in Eq. (A.31) on a finite sized

lattice composed of NLat atoms. First, the eigenvalue equation from which we calculate the
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ab Initio

second nearest-neighbors model

28𝑀si
29𝑀si

30𝑀si

Figure A.5: Phonon frequencies of the three stable silicon isotopes.

phonon frequencies of system can be written as

D · hl = ω2
l hl, (A.34)

where D, hl and ω2
l are the dynamical matrix, eigenvectors, and eigenvalues, respectively.

From perturbation theory we can obtain the following transformations on the eigenvalues

and eigenvectors when the dynamical matrix transform as D+ δD

ω2
l −→ ω2

l + h>l · δD · h0l (A.35)

hl −→ hl +
∑
m 6=l

(
h>m · δD · hl
ω2
l − ω2

m

)
hm. (A.36)

Let be hloc
l a localized vibrational mode with a large oscillation of the silicon atom, the

eigenvector representation is given by

hloc
l =



h1,x

h1,y

h1,z

0
...

0


, dim

(
hloc
l

)
= 3NLat. (A.37)

If the mass of the silicon atom increases from MSi to MSi + δMSi the phonon frequency of
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silicon contribution 
to the ground state

≈ orbital 2s with 
some distorsion

Figure A.6: Silicon contribution to the ground state electronic state of the SiV− center
in diamond.

the localized phonon changes as the following

ω2
l −→ ω2

l +
(
hloc
l

)> · δD · hloc
l . (A.38)

Using the relation given in Eq. (A.33) and the eigenvalue equation we deduce that

δD · hloc
l = −δMSi

MSi

(
D · hloc

l

)
= −δMSi

MSi

(
ω2
l h

loc
l

)
. (A.39)

Therefore, the frequency of a localized phonon mode with a large vibration of the silicon

atom transform as

ωloc
l −→ ωloc

l

√(
1− δMSi

MSi

)
. (A.40)

This result show that the phonon frequency a localized phonon mode with large vibration

of the silicon atom decreases in energy if the mass of the silicon atom increases in a small

factor δMSi. This is the physical origin of the isotopic shift described in Section 2.6 and

observed in Fig. 2.3.

From ab initio calculations we observe that the frequency of the phonon modes for the three

stable isotopes M28
Si , M29

Si and M30
Si are very similar with the calculations performed in

a periodic diamond lattice (see Fig. A.5). For the periodic diamond lattice we used the

force constant model described in Appendix A.2. Morevoer, from ab initio simulations we

can observe the silicon contribution to the electronic distribution for the ground state. The

SiV− center in diamond has a slightly distorted 2s−orbital, but preserving the inversion

symmetry of the defect (see Figure A.6). Therefore, ab initio calculations support the fact

that inversion symmetry is not broken if vibrations are not considered.
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A.6 Dynamical symmetry breaking and spectral den-

sity function

In this section we derive the modified spectral density function due to dynamical symme-

try breaking. Let V (t) = Vue
−iωpht be a periodic time-dependent operator which perturbs

the localized electronic degree of freedom of SiV− center. Using time dependent pertur-

bation theory we can define the electronic wavefunctions given in Eqs. (2.24)-(2.25). As a

consequence of the mixing effect induced by this external perturbation the effective electron-

phonon coupling must be calculated as follows

λΦe,l − λΦg ,l = f(ε) [λe,l − λg,l] + g(ε)λe,g,l, (A.41)

where

f(ε) = 1− 2ε2, g(ε) = 4ε
√

1− ε2 cos θ. (A.42)

The coupling constants λg,l, λe,l, and λeg,l are the electron-phonon coupling constants as-

sociated to the unperturbed electronic states |Ψ(0)
g 〉 and |Ψ(0)

e 〉, respectively. Here θ is an

arbitrary phase and ε is a mixing parameter approximately given by

ε ≈ 〈e|Vu|g〉
~ (ωeg − ωph)

, (A.43)

where Vu is the intensity of the periodic perturbation perturbation, ~ωeg is the electronic gap

between the excited and ground states, and ~ωph is the energy of the phonon mode. For the

SiV− center ~ωeg = 1.68 eV and Vu � ~ωeg, therefore we expect that |ε| � 1. By symmetry

considerations only phonons with character odd or even contribute to the effective coupling

constants λe,l − λg,l or λe,g,l, respectively. As a consequence of both symmetry constraints

we deduce that (λe,l − λg,l)λe,g,l = 0 for each lattice mode l. Finally, taking the limit |ε| � 1

and averaging over the phase the spectral density function is

J(ω) =
∑
l

(
λφe,l − λφg ,l

)2
δ(ω − ωl) = J0(ω) + 8ε2Jeg(ω), (A.44)

and we recover the spectral density function given in Eq. (2.26).



Appendix B

Supporting Material for Chapter 3

B.1 Fermi golden rule

In this section we derive the analytic form of the second-order phonon-induced spin relaxation

rates introduced in Sec. III. b. To second order in time-dependent perturbation theory the

transition rate between an initial |i〉 and final state |f〉 is given by

Γi→f =
2π

~

∣∣∣∣∣Vfi +
∑
m

VfmVmi
Ei − Em

∣∣∣∣∣
2

δ(Ei − Ef ), (B.1)

where Vij = 〈i| Ĥs-ph |j〉, with Ĥs-ph being the perturbation. In Eq. (B.1) the sum over m

denotes all possible intermediate states |m〉 for which VfmVmi 6= 0. Here, Ei, Ef , and Em are

the energies of the initial, final, and intermediate states, respectively. For the Stokes transi-

tion the initial and final states are given by |i〉 = |ms, nk, nk′〉 and |f〉 = |m′s, nk − 1, nk′ + 1〉.
Let us write the spin-phonon Hamiltonian given in Eq. (3.6) as Ĥs-ph = V (1) + V (2) with

V (1) =
∑

i

∑
k∈Γi

λk,i(b̂k + b̂†k)F̂i(S) and V (2) =
∑

i

∑
k⊗k′∈Γi

λkk′,i(b̂k + b̂†k)(b̂k′ + b̂†k′)F̂i(S) be-

ing the linear and quadratic spin-phonon interactions, respectively. It is straightforward to

verify that V
(2)
fmV

(2)
mi = V

(1)
fmV

(2)
mi = V

(2)
fmV

(1)
mi = 0 for every intermediate state |m〉 with initial

and final states for Stokes transition, i.e., |i〉 = |ms, nk, nk′〉 and |f〉 = |m′s, nk − 1, nk′ + 1〉.
In other words, the contribution of the quadratic term V (2) is zero to second order. This

implies that lower order perturbation theory combined with higher order phonon coupling

wins over higher order perturbatin theory with lower order coupling [59]. Similar arguments

can be applied to the other two-phonon processes.
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The non-zero contributions to the transition rate can be obtained if we expand the phonon

part of the summation for the intermediate states |np, np′〉 = {|nk − 1, nk′〉 , |nk, nk′ + 1〉},
we obtain

Γm
′
s,nk−1,nk′+1

ms,nk,nk′
=

2π

~

∣∣∣∣∣∣
∑
i

g
m′s,ms
i λkk′,i +

1

~
∑
m′′s

∑
i,j

λk′,iλk,j

(
g
m′s,m

′′
s

i g
m′′s ,ms
j

ωk
−
g
m′′s ,ms
i g

m′s,m
′′
s

j

ωk′

)∣∣∣∣∣∣
2

×nk(nk′ + 1)δ(ωm′s,ms − ωk + ωk′), (B.2)

where g
ms,m′s
i = 〈ms| F̂i(S) |m′s〉, and the summation over i and j is over x, y, x′, y′, z. Here,

we have used the approximation ωk,k′ � ωms,m′′s . By taking the continuous limit and using

the density of phonon states given in Eq. (3.36) we obtain

aStokes
ms,m′s

(xD) =
2πD2

0

~3ω4ν+2d−2
D

∫ xD

0

n(x)(n(x− xm′s,ms) + 1)x2ν+d−1(x− xm′s,ms)
2ν+d−1

×

∣∣∣∣∣∣
∑
m′′s

∑
i,j

λ0iλ0j

(
g
m′s,m

′′
s

i g
m′′s ,ms
j

x
−
g
m′′s ,ms
i g

m′s,m
′′
s

j

(x− xm′s,ms)

)∣∣∣∣∣∣
2

dx, (B.3)

bStokes
ms,m′s

(xD) =
2πD2

0

~2ω4ν+2d−2
D

∫ xD

0

n(x)(n(x− xm′s,ms) + 1)x2ν+d−1(x− xm′s,ms)
2ν+d−1

×2Re

∑
m′′s

∑
i,i′,j′

λ00iλ0i′λ0j′

(
g
m′s,m

′′
s

i′ g
m′′s ,ms
j′

x
−
g
m′′s ,ms
i′ g

m′s,m
′′
s

j′

(x− xm′s,ms)

) dx,(B.4)

cStokes
ms,m′s

(xD) =
2πD2

0

∣∣∣∑i g
m′s,ms
i λ00i

∣∣∣2
~ω4ν+2d−2

D

∫ xD

0

n(x)(n(x− xm′s,ms) + 1)x2ν+d−1

(x− xm′s,ms)
2ν+d−1 dx. (B.5)

where for a three dimensional lattice D0 = Ωω2
D/(2πv

3
s), ωD is the Debye frequency, d is the

dimension of the lattice, ν is the scaling of the spin-phonon coupling for acoustic phonons [see

Eq. (3.22)]. Here, xD = ~D/(kBT ), xm′s,ms = ~ωm′s,ms/(kBT ), in which ωm′s,ms = ωm′s − ωms ,
kB is the Boltzmann constant, ~ is the Planck constant, and T is the temperature. Similar

formulas can be obtained for the other processes (Direct, Anti-Stokes and Spontaneous

emission).
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B.2 Quantum master equation

In this section we solve the quantum master equation for the ground state spin degree of

freedom of the NV− center in diamond. By solving the quantum master equation given in

Eq. (3.45), for the spin populations p1 = 〈ms = 1| ρ̂ |ms = 1〉, p2 = 〈ms = 0| ρ̂ |ms = 0〉, and

p3 = 〈ms = −1| ρ̂ |ms = −1〉, we obtain

ṗ1 = −Γ′1p1 + Γ′2p2 + Γ3p3, (B.6)

ṗ2 = −Γ′4p2 + Γ′5p1 + Γ′6p3,

ṗ3 = −Γ′7p3 + Γ8p1 + Γ′9p2, (B.7)

where Γ′i = Γi + Γmag/2, and the phonon-induced spin relaxation rates are given by

Γ1 = Γ1,1-ph
em + Γ1,2-ph

em + Γ2,1-ph
em + Γ2,2-ph

em , (B.8)

Γ2 = Γ2,1-ph
abs + Γ2,2-ph

abs , (B.9)

Γ3 = Γ1,1-ph
abs + Γ1,2-ph

abs , (B.10)

Γ4 = Γ2,1-ph
abs + Γ2,2-ph

abs + Γ3,1-ph
abs + Γ3,2-ph

abs , (B.11)

Γ5 = Γ2,1-ph
em + Γ2,2-ph

em , (B.12)

Γ6 = Γ3,1-ph
em + Γ3,2-ph

em , (B.13)

Γ7 = Γ1,1-ph
abs + Γ1,2-ph

abs + Γ3,1-ph
em + Γ3,2-ph

em , (B.14)

Γ8 = Γ1,1-ph
em + Γ1,2-ph

em , (B.15)

Γ9 = Γ3,1-ph
abs + Γ3,2-ph

abs . (B.16)

where Γ1 = Γ5 + Γ8, Γ4 = Γ2 + Γ9, and Γ7 = Γ3 + Γ6, which implies that ṗ1 + ṗ2 + ṗ3 = 0,

and therefore, Tr(ρ̂) = 1. The analytic solution for the populations pi(t) are determined by

the following general solution 
p1(t)

p2(t)

p3(t)

 =
3∑
i=1

Civie
λit, (B.17)
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where vi and λi are the eigenvectors and eigenvalues associated to the set of coupled linear

equations of motions given by Eqs. (B.6)-(B.7). The eigenvalues are given by

λ1 = −1

2

[
Γmag + Γph +

√
∆
]
, (B.18)

λ2 = −1

2

[
Γmag + Γph −

√
∆
]
, (B.19)

λ3 = 0, (B.20)

where

Γph = Γ1 + Γ2 + Γ7 =
3∑
i=1

(
Γiabs + Γiems

)
, (B.21)

is the total phonon-induced spin relaxation rate, and

∆ = Γ2
mag + 2Γmag(Γ9 − Γ8) + Γ2

2 + Γ2
3 + (Γ1 − Γ6 − Γ9)2

−2Γ2(Γ7 − Γ5 + Γ8 − Γ9 − Γmag)

−2Γ3(Γ5 − Γ6 − Γ8 + Γ9 + Γmag). (B.22)

If we consider the initial condition ρ00(0) = 1 (ground state) and considering that 〈Sz(t)〉 → 0

when t→∞ , we finally obtain

〈Sz(t)〉 = e−(Γmag+Γph)t sinh(∆t) ∝ e−t/T1 . (B.23)

Therefore, by assuming that (2Γmag + Γph) /2 > ∆, we can recover the longitudinal relaxation

rate given in Eq. (3.75).

B.3 Electric field fluctuations induced spin relaxation

In order to model the effect of an electric noise on the spin transitions |ms = 1〉 ↔ |ms = −1〉
we introduce the following Hamiltonian for the NV− center in diamond (~ = 1)

Ĥ = DS2
z + Ex(t)

(
S2
x − S2

y

)
+ Ey(t) (SxSy + SySx) + γBSz, (B.24)

where D/2π = 2.87 GHz is the zero-field splitting constant, Ex(t) and Ey(t) are the compo-

nents of the electric field fluctuations, B is an static field aligned with the symmetry axis of

the NV− center, γs/2π ≈ 2.8 MHZ/G is the gyromagnetic ratio, and Sx, Sy, Sz are the Pauli
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matrices for spin S = 1. We assume stationary stochastic processes for the components of

the electric field fluctuations Ex(t) and Ey(t)

〈Ei(t)〉 = 0, (B.25)

〈Ei(ω)Ej(ω
′)〉 = S(ω)δ(ω + ω′), i, j = x, y. (B.26)

where the spectral function is given by a Lorentzian function as the following

S(ω) =
∆2τc

π (1 + (ωτc)2)
, (B.27)

where τc is the correlation time and ∆2 is the power of the electric field fluctuations∫ ∞
−∞

S(ω) dω = ∆2. (B.28)

Here, we have assumed an isotropic noise for the components of the electric field.

By considering that the wavefunction can be written as a linear combination of the spin

states |ms = 0,±1〉 we can write

|Ψ(t)〉 = c+(t) |ms = +1〉+ c0(t) |ms = 0〉+ c−(t) |ms = −1〉 , (B.29)

from the Schrödinger equation i~d|Ψ(t)〉
dt

= Ĥ |Ψ(t)〉 we obtain (~ = 1)

ċ+ = −i (D + γB) c+ − iE−c−, (B.30)

ċ0 = 0, (B.31)

ċ− = −i (D − γB) c− − iE+c+. (B.32)

where E±(t) = Ex(t)± iEy(t). If we introduce the new variables (capital letters)

C+(t) = ei(D+γB)tc+(t), C−(t) = ei(D−γB)tc−(t), (B.33)

we obtain the following set of equations

Ċ+ = −iE−e2iγBtC−, (B.34)

Ċ− = −iE+e
−2iγBtC+. (B.35)
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For pure states, the density matrix elements are given by

ρ11 = 〈ms = +1| ρ(t) |ms = +1〉 = C+(t)C∗+(t), (B.36)

ρ33 = 〈ms = −1| ρ(t) |ms = −1〉 = C−(t)C∗−(t), (B.37)

ρ13 = 〈ms = +1| ρ(t) |ms = −1〉 = e−2iγBtC+(t)C∗−(t), (B.38)

ρ31 = 〈ms = −1| ρ(t) |ms = +1〉 = e2iγBtC−(t)C∗+(t), (B.39)

from which it follows that

ρ̇11 = −iE−(t)ρ31 + iE+(t)ρ13, (B.40)

ρ̇33 = −iE+(t)ρ13 + iE−(t)ρ31, (B.41)

ρ̇13 = −2iγBρ13 + iE−(t) (ρ11 − ρ33) , (B.42)

ρ̇31 = 2iγBρ31 − iE+(t) (ρ11 − ρ33) . (B.43)

By formal integration of Eqs. (B.42) and (B.43) and considering ρ13(0) = 0 we obtain

ρ13(t) = i

∫ t

0

E−(t1)e−2iγB(t−t1) (ρ11(t1)− ρ33(t1)) dt1, ρ31(t) = ρ∗13(t), (B.44)

replacing in Eq. (B.40) we get

ρ̇11 = −
∫ t

0

E+(t)E−(t1)e−2iγB(t−t1) (ρ11(t1)− ρ33(t1)) dt1 + c.c. (B.45)

In the Markov approximation for the limit t� τc we have

ρ̇11 ≈ − (ρ11(t)− ρ33(t))

∫ t

0

E+(t)E−(t1)e−2iγB(t−t1) dt1 + c.c. (B.46)

If we define

γ(t) =

∫ t

0

E+(t)E−(t1)e−2iγB(t−t1) dt1, (B.47)

we get the following set of linear equations

ρ̇11 = −Γ(t)ρ11 + Γ(t)ρ33, (B.48)

ρ̇33 = Γ(t)ρ11 − Γ(t)ρ33, (B.49)

(B.50)
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where Γ(t) = γ(t) + γ∗(t). The above system of linear equations can be written as

~̇ρ = L(t)~ρ(t), ~ρ(0) = ~ρ0, (B.51)

where

~ρ(t) =

(
ρ11

ρ33

)
, L(t) =

(
−Γ(t) Γ(t)

Γ(t) −Γ(t)

)
(B.52)

The formal solution of Eq. (B.51) is given by

~ρ(t) = exp

(∫ t

0

L(t2) dt2

)
~ρ0, (B.53)

Since the electric field fluctuations are very small we can expand the exponential to first

order. Taking the average we obtain

〈~ρ(t)〉 ≈
(

1 +

∫ t

0

〈L(t2)〉 dt2
)
~ρ0. (B.54)

The elements of the above integral are given by∫ t

0

〈Γ(t2)〉 dt2 =

∫ t

0

〈γ(t2)〉 dt2 + c.c. (B.55)

Using Eq. (B.47) we get∫ t

0

〈γ(t2)〉 dt2 =

∫ t

0

dt2

∫ t2

0

dt1〈E+(t2)E−(t1)〉e−2iγB(t2−t1), (B.56)

From Eq. (B.26) we can write

〈E+(t2)E−(t1)〉 =
1

π

∫ ∞
−∞

∫ ∞
−∞
〈Ex(ω)Ex(ω

′)〉eiωt2eiω′t1 dωdω′, (B.57)

=
1

π

∫ +∞

−∞
eiω(t2−t1)S(ω) dω, (B.58)

=
∆2τc
π2

∫ +∞

−∞

eiω(t2−t1)

1 + (ωτc)2
dω (B.59)

=
∆2

π
e−|t2−t1|/τc . (B.60)

In order to solve the integral in Eq. (B.56) we introduce the new variables τ = t2 − t1 and

T = (t1 + t2)/2. Because of the short correlation time and shape of the correlation function
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[see Eq. (B.60)] we can extend the limits of the integral over τ from −∞ to +∞∫ t

0

〈γ(t2)〉 dt2 ≈
∆2

π

∫ t

0

dT

∫ +∞

−∞
dτe−|τ |/τce−2iγBτ =

∆2t

π
S(2γB), (B.61)

where S(ω) is the spectral function given in Eq. (B.27). Therefore, the relaxation rate

induced by electric field fluctuations between |ms = −1〉 ↔ |ms = +1〉 is determined by the

spectral function S(ω), and is given by

γ =

∫ t

0

〈γ(t2)〉+ c.c. =
2∆2

π
S(2γB). (B.62)



Appendix C

Supporting Material for Chapter 4

C.1 Linear response function and absorption spectrum

The operator Â =
∑

ij gij |i〉 〈j| can be written as

Â =
∑
i

giiπ̂i +
∑
i 6=j

gijπ̂ij, (C.1)

where π̂i = |i〉 〈i| is an projector operator and π̂ij = |i〉 〈j| (i 6= j). We obtain the following

sets of equations for the projector operators

˙̂π1 =

(
Γ21 +

1

2
Γmag

)
π̂2 −

(
Γ21 + Γ31 + Γ41 +

1

2
Γmag

)
π̂1

+Γ31π̂3 + Γ41π̂4, (C.2)

˙̂π2 =

(
Γ12 +

1

2
Γmag

)
π̂1 −

(
Γ12 + Γ32 + Γ42 +

1

2
Γmag

)
π̂2

+Γ32π̂3 + Γ42π̂4, (C.3)

˙̂π3 =

(
Γ43 +

1

2
Γmag

)
π̂4 −

(
Γ13 + Γ23 + Γ43 +

1

2
Γmag

)
π̂3

+Γ13π̂1 + Γ23π̂2, (C.4)

˙̂π4 =

(
Γ34 +

1

2
Γmag

)
π̂3 −

(
Γ14 + Γ24 + Γ34 +

1

2
Γmag

)
π̂4

+Γ14π̂1 + Γ24π̂2. (C.5)
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By writing the above set of equations in a matrix form, we obtain

d~̂Π

dt
= G~̂Π, ~̂Π =


π̂1(t)

π̂2(t)

π̂3(t)

π̂4(t)

 , (C.6)

where G is the matrix associated with the linear set of differential equations, and given by

G = −Γmag

2

(
A 0

0 A

)
+Ddiag +Doff-diag, (C.7)

where

A =

(
1 −1

1 −1

)
, (C.8)

Ddiag =


Γ1 0 0 0

0 Γ2 0 0

0 0 Γ3 0

0 0 0 Γ4

 , (C.9)

D off-diag =


0 Γ21 Γ31 Γ41

Γ12 0 Γ32 Γ42

Γ13 Γ23 0 Γ43

Γ14 Γ24 Γ34 0

 . (C.10)

By solving the eigenvalue equation

G~vi = λi~vi, (C.11)

the general solution for each projector is given by

π̂i(t) =
∑
j

Cije
iλitπ̂j, (C.12)

where λi are the eigenvalues of G and Cij = Cj(~uj · êi) are the elements of the eigenvectors

~vk multiply by a factor Cj ∈ C, being êi the vector basis for R4, i.e., ê1 = (1, 0, 0, 0),

ê2 = (0, 1, 0, 0), ê3 = (0, 0, 1, 0), and ê4 = (0, 0, 0, 1). The operators π̂ij satisfy the following

equations

˙̂πij = γijπ̂ij, π̂ij(t) = eγijtπ̂ij, (C.13)
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where we have neglected the effect of the magnetic relaxation rate Γmag and we consider that

π̂ij(0) = π̂ij. The relaxation rates Γtot
ij are given by

γij = −1

2

∑
k 6=i,j

(Γki + Γkj) + i(Ei − Ej), (C.14)

where Γij are the one-phonon relaxation rates given in Eq. (4.32) and Ei are the energy

levels of the Hamiltonian Ĥ0. By replacing the solution for π̂i(t) and π̂ij(t) we obtain

Â(t) =
∑
i,j

giiCije
λjtπ̂j +

∑
i 6=j

gije
γijtπ̂ij, (C.15)

using the initial condition Â(0) =
∑

ij gij|i〉〈j| and the orthogonality 〈i|j〉 = δij, we obtain

〈Â(t)Â(0)〉 =
∑
i

|gii|2eλit +
∑
i 6=j

|gij|2eγijt, (C.16)

where we have used the properties gji = g∗ij and gii ∈ R. The linear response function for

t ≥ 0 is given by

R(t) = 2Im

(∑
i

|gii|2eλit +
∑
i 6=j

|gij|2eγijt
)
,

=
∑
i 6=j

|gij|2e−2Γtot
ij t sin(ωijt). (C.17)

The imaginary part of λi is zero, therefore, the only contribution to the absorption spectrum

comes from the term eγijt. By written γij = −2Γtot
ij + iωij and using the linear response

function given in Eq. (C.17) we can recover the absorption spectrum shown in Eq. (??) if

we solve the integral given in Eq. (4.28).





Appendix D

Supporting Material for Chapter 5

D.1 Matlab Code: Strain Decomposition for the SiV−

center

1 function StrainSiV

2

3 syms a b c d e f

4 assume(a,'real')

5 assume(b,'real')

6 assume(c,'real')

7 assume(d,'real')

8 assume(e,'real')

9 assume(f,'real')

10

11 % Strain matrix (real and symmetric)

12 epsilon = [a b c; b d e; c e f];

13

14 % Matrix representation of the elements of the C {3v+i} group

15 R{1} = [1 0 0; 0 1 0; 0 0 1]; % E

16 R{2} = [−1/2 −1/2*sqrt(3) 0; +1/2*sqrt(3) −1/2 0; 0 0 1]; % C13

17 R{3} = [−1/2 +1/2*sqrt(3) 0; −1/2*sqrt(3) −1/2 0; 0 0 1]; % C23

18 R{4} = [+1/2 +1/2*sqrt(3) 0; +1/2*sqrt(3) −1/2 0; 0 0 −1]; % C2

19 R{5} = [+1/2 −1/2*sqrt(3) 0; −1/2*sqrt(3) −1/2 0; 0 0 −1]; % C2'

20 R{6} = [−1 0 0; 0 1 0; 0 0 −1]; % C2''

21 R{7} = [−1 0 0; 0 −1 0; 0 0 −1]; % i
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22 R{8} = [+1/2 +1/2*sqrt(3) 0; −1/2*sqrt(3) +1/2 0; 0 0 −1]; % S16

23 R{9} = [+1/2 −1/2*sqrt(3) 0; +1/2*sqrt(3) +1/2 0; 0 0 −1]; % S56

24 R{10} = [−1/2 −1/2*sqrt(3) 0; −1/2*sqrt(3) +1/2 0; 0 0 1]; % sd

25 R{11} = [−1/2 +1/2*sqrt(3) 0; +1/2*sqrt(3) +1/2 0; 0 0 1]; % sd'

26 R{12} = [1 0 0; 0 −1 0; 0 0 1]; % Sd''

27 h = 12;

28

29 % Character vector associated to the Irreducible Representations for each

30 % element of the group C {3v+i}
31 GammaA1g = [1 1 1 1 1 1 1 1 1 1 1 1];

32 GammaA2g = [1 1 1 −1 −1 −1 1 1 1 −1 −1 −1];
33 GammaEg = [2 −1 −1 0 0 0 2 −1 −1 0 0 0];

34 GammaA1u = [1 1 1 1 1 1 −1 −1 −1 −1 −1 −1];
35 GammaA2u = [1 1 1 −1 −1 −1 −1 −1 −1 1 1 1];

36 GammaEu = [2 −1 −1 0 0 0 −2 1 1 0 0 0];

37

38 % order of each Irreducible Representation

39 lA1g = 1; lA2g = 1; lEg = 2;

40 lA1u = 1; lA2u = 1; lEu = 2;

41

42 % Initial strain matrices associated to the Irreducible

43 % Representation decomposition

44 epsilonA1g = zeros(3,3); epsilonA2g = zeros(3,3);epsilonEg = zeros(3,3);

45 epsilonA1u = zeros(3,3); epsilonA2u = zeros(3,3);epsilonEu = zeros(3,3);

46

47 % Numerical projective operator formula

48 for g=1:h

49 epsilonA1g = epsilonA1g + lA1g/h*(GammaA1g(g)*R{g}'*epsilon*R{g});
50 epsilonA2g = epsilonA2g + lA2g/h*(GammaA2g(g)*R{g}'*epsilon*R{g});
51 epsilonEg = epsilonEg + lEg/h*(GammaEg(g)*R{g}'*epsilon*R{g});
52

53 epsilonA1u = epsilonA1u + lA1u/h*(GammaA1u(g)*R{g}'*epsilon*R{g});
54 epsilonA2u = epsilonA2u + lA2u/h*(GammaA2u(g)*R{g}'*epsilon*R{g});
55 epsilonEu = epsilonEu + lEu/h*(GammaEu(g)*R{g}'*epsilon*R{g});
56 end

57

58 % Simplify

59 epsilonA1g = simplify(epsilonA1g);

60 epsilonA2g = simplify(epsilonA2g);

61 epsilonEg = simplify(epsilonEg);

62

63 epsilonA1u = simplify(epsilonA1u);
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64 epsilonA2u = simplify(epsilonA2u);

65 epsilonEu = simplify(epsilonEu);

66

67 % Final decomposition of the strain matrix into irreducible representations

68

69 epsilonA1g

70 epsilonA2g

71 epsilonEg

72

73 epsilonA1u

74 epsilonA2u

75 epsilonEu

76

77

78 % Check properties

79 M = epsilonA1g + epsilonA2g + epsilonEg + ...

80 epsilonA1u + epsilonA2u + epsilonEu;

81

82 % This difference must be equal to zero

83 ZERO = M−epsilon
84

85

86 end
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