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Abstract

Introduction: Inhibition of phosphatidylinositol-3-kinase (PI3K) induces apoptosis when combined with estrogen
deprivation in estrogen receptor (ER)-positive breast cancer. The aims of the present study were to identify
effective PI3K pathway inhibitor and endocrine therapy combinations, to evaluate the effect of PI3K pathway
mutations and estrogen dependency on tumor response, and to determine the relevance of PIK3CA mutation in
recurrent disease.

Methods: The PI3K catalytic subunit inhibitor BKM120, the mammalian target of rapamycin (mTOR) inhibitor
RADO01 and the dual PI3K/mTOR inhibitor BGT226 were tested against ER-positive breast cancer cell lines before
and after long-term estrogen deprivation (LTED). The impact of estradiol deprivation and the ER downregulator
fulvestrant on PI3K pathway inhibitor-induced apoptosis was assessed. PIK3CA hotspot mutation analysis was
performed in 51 recurrent or metastatic breast cancers and correlated with ER status and survival.

Results: Drug-induced apoptosis was most marked in short-term estrogen-deprived cells with PIK3CA mutation and
phosphatase and tensin homolog loss. Apoptosis was most highly induced by BGT226, followed by BKM120, and
then RADOO1. Estradiol antagonized PI3K inhibitor-induced apoptosis following short-term estrogen deprivation,
emphasizing a role for estrogen-deprivation therapy in promoting PI3K inhibitor activity in the first-line setting. ER-
positive MCF7 LTED cells exhibited relative resistance to PI3K pathway inhibition that was reversed by fulvestrant.
In contrast, T47D LTED cells exhibited ER loss and ER-independent PI3K agent sensitivity. PIK3CA mutation was
prevalent in relapsed ER-positive disease (48%) and was associated with persistent ER positivity and a late relapse
pattern.

Conclusions: Estrogen deprivation increased the apoptotic effects of PI3K and dual PI3K/mTOR inhibitors in ER-
positive disease, providing a rationale for PI3K/aromatase inhibitor combinations as first-line therapy. In LTED cells,
differential effects on ER expression may be a relevant consideration. When ER was persistently expressed,
fulvestrant strongly promoted PI3K drug activity. When ER was lost, PI3K inhibitor monotherapy was sufficient to
induce high-level apoptosis. Although tumors with PIK3CA mutation had a late recurrence pattern, these mutations
were common in metastatic disease and were most often associated with persistent ER expression. Targeting
PIK3CA mutant tumors with a PI3K pathway inhibitor and fulvestrant is therefore a feasible strategy for aromatase-
inhibitor-resistant ER-positive relapsed breast cancer.
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Introduction

Since the widespread adoption of tamoxifen, modest
improvements in patient outcomes have been observed
in estrogen receptor (ER)-positive breast cancer patients
through the introduction of aromatase inhibitors and
fulvestrant, but prognosis remains poor for many
patients [1] due to de novo or acquired endocrine ther-
apy resistance. A major biological barrier to successful
treatment of ER-positive disease is that endocrine treat-
ment induces cell cycle arrest but not high-level cell
death [2,3]. Disseminated ER-positive breast cancer cells
therefore persist, acquire endocrine therapy resistance
and cause disease progression and death. An ideal
regimen for ER-positive disease would effectively delete
ER-positive cells, thereby circumventing secondary resis-
tance and obviating the requirement for long-term
endocrine treatment with its attendant quality-of-life
detriment, chronic toxicity and expense.

Targeting the pro-survival phosphatidylinositol-3-
kinase (PI3K) signaling is intriguing in this regard.
Genes in the PI3K pathway are frequently mutated or
amplified in ER-positive breast cancer, suggesting that
hyperactivation of PI3K signaling is a key target that, if
effectively inhibited, could improve outcomes [4]. We
have already shown that estrogen deprivation in combi-
nation with PI3K inhibition by RNA interference
induces synthetic lethality and promotes cell death in
ER-positive breast cancer cell lines [5], providing a
rational for combination approaches that target the ER
and PI3K pathways simultaneously. ER-positive breast
cancers are genetically heterogeneous, however, and
cell-intrinsic factors may modulate sensitivity to this
approach. It is unclear whether mutations in PI3K path-
way proteins - especially in PIK3CA, the gene that
encodes the PI3Ka catalytic subunit - sensitize tumors
to this strategy. Furthermore, the optimal combinations
of endocrine agents and PI3K pathway inhibitors have
not been established and the strategy for patients with
estrogen deprivation (aromatase inhibitor)-resistant dis-
ease is unclear. Finally, a question has recently arisen
regarding the relevance of the common PIK3CA muta-
tion as a therapeutic target since several reports have
suggested that PIK3CA mutation is associated with a
favorable prognosis [6,7]. If this is the case, PIK3CA
mutations would be expected to be rare in advanced
disease and therefore less relevant as a therapeutic target
in this setting.

To address these issues, a panel of ER-positive breast
cancer cell lines with different PI3K pathway mutations
were tested against three different PI3K pathway inhibi-
tors, with selectivity against either the rapamycin-sensi-
tive mammalian target of rapamycin (mTOR) complex
(Everolimus/RADO001), the PI3K catalytic isoforms
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(BKM120) or both PI3K and mTOR (BGT226) in the
presence or absence of estrogen or ER downregulation
by fulvestrant. In addition, these inhibitor combinations
were retested after the development of long-term estro-
gen deprivation (LTED) resistance to model-acquired
resistance to estrogen deprivation. PIK3CA mutation
analysis was performed on tumor biopsies from recur-
rent disease and in patients with stage 4 breast cancer
to determine the prevalence of mutations in advanced
disease and to correlate mutation status with the rate of
tumor progression and death.

Materials and methods

Pharmacological agents

BGT226, BKM120 and RADOO1 were obtained through
material transfer agreements with Novartis (Basle,
Switzerland). Fulvestrant (Sigma-Aldrich, St. Louis, MO,
USA), LY294002 (Enzo Life Sciences, Plymouth Meet-
ing, PA, USA), rapamycin (Enzo Life Sciences) and
17B-estradiol (Sigma-Aldrich) were from commercial
sources. 17B-Estradiol was dissolved in ethanol; inhibi-
tors were dissolved in dimethylsulfoxide.

Cell culture

The HCC712 cell line [8] was kindly provided by Dr Adi
Gazdar. Other cell lines were obtained from American
Type Culture Collection (Manassas, VA, USA). Experi-
ments with parental cell lines were performed with
low-passage-number cells used within 2 to 3 months fol-
lowing revival from the supplier. Cell lines were propa-
gated in RPM1 1640 containing 10% fetal bovine serum
(FBS) with antibiotic and supplements (50 pg/ml genta-
mycin, pyruvate, 10 mM Hepes and glucose to 4.5 g/l) in
a humidified 37°C incubator containing 5% carbon diox-
ide. LTED MCF7 and T47D cell line variants were pro-
duced by culturing the parental lines for >9 months in
phenol-red-free RPMI 1640 containing 5% charcoal-
stripped FBS (charcoal-stripped serum (CSS); Invitrogen,
Carlsbad, CA, USA) containing antibiotic and supple-
ments (CSS medium). Estrogen-retreated LTED sublines
(LTED-R cells) were created by treating LTED cells
growing in CSS medium with 10 nmol/l1 17B-estradiol for
at least 4 months prior to experiments. For studies using
short-term estrogen deprivation (STED) parental cell
lines, cells were maintained in CSS medium for 1 to 3
weeks prior to experimental treatments.

Protein extraction

For pharmacological treatments, cells were deprived of
serum for 3 to 4 hours, pretreated with the indicated
agents for 20 minutes, and then treated with or without
20% FBS for 15 minutes. Lysates were prepared by
extracting cells in lysis buffer as previously described [5].
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Immunoblotting

Extracted proteins were analyzed by immunoblotting as
previously described [5] using primary antibodies and
appropriate horseradish peroxidase-conjugated second-
ary antibodies (1:20,000; Jackson Immmunoresearch
Laboratories, West Grove, PA). Primary antibodies for
immunodetection included: ER (RM-9101; Fisher Scien-
tific, Fremont, CA, USA), human epidermal growth fac-
tor receptor 2 (HER2) (#A0485; Dako, Carpenteria, CA,
USA), phospho-Y1248-HER2 (#M7269; Dako), p1105
(ab1678; AbCam, Cambridge, MA, USA) and actin (sc-
1616; Santa Cruz Biotechnology, Santa Cruz, CA, USA).
Antibodies for detecting p110o (#4249), p110B (#3011),
p110y (#4252), phosphatase and tensin homolog (PTEN)
(#9559), Aktl (#2938), Akt2 (#2964), Akt3 (#¥3788),
phospho-Serd73 Akt (p-Akt) (#4060), mTOR (#2983),
S6 protein kinase 1 (#2708), phospho-Thr 389-S6 pro-
tein kinase 1 (#9206), S6 (#2217), phospho-Ser235/236
S6 (p-S6) (#4856), p44/42 mitogen-activated protein
kinase (MAPK; ERK1/2) (#4695) and phospho-Thr202/
Tyr204 p44/42 MAPK (p-ERK1/2) were from Cell Sig-
naling Technology (Danvers, MA, USA).

Cell growth assay and calculation of 50% inhibitory/lethal
concentrations

To determine the effects of estradiol and fulvestrant on
the growth of LTED cells, the cells growing in CSS
medium were plated in 96-well Optilux dishes and were
treated without or with fulvestrant (300 nmol/l) or the
indicated concentrations of 17B-estradiol on the day
after plating. The medium was replenished every 3 to 4
days and cell growth was assessed after 7 days by mea-
suring Alamar Blue reduction (555Agx/585Agy,) with a
fluorescent microplate reader. For calculation of the half
maximal inhibitory concentration (ICsp) and the 50%
lethal concentration (LCsg), cells were cultured in phe-
nol-red-free RPM1 1640 containing 5% CSS (CSS med-
ium) for at least 1 week prior to plating in 96-well
Optilux dishes (~1,000 to 3,000 cells/well per given cell
line) for drug treatment. Alternatively, cells growing in
phenol red RPMI 1640 medium containing 10% FBS
were plated in 96-well Optilux dishes and then switched
to CSS medium for at least 1 week prior to drug treat-
ment. Five dilutions of each drug were made using a 1:5
serial dilution. Treatments were performed in triplicate
and the experiments in each cell line were performed at
least twice. The effect of treatments on cell viability
were assessed 0 hours (at the time of drug addition) and
96 hours after drug exposure by measuring the Alamar
Blue reduction (555A¢,/585Ag,,) using a fluorescent
microplate reader. Cell growth was analyzed using
GraphPad Prism version 5.00 for Windows (GraphPad
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Software, San Diego, CA, USA). The fitted curves were
then used to determine the ICs, and LCs, values.

Apoptosis assay

To quantify apoptosis, cells growing in CSS medium
were treated as indicated for 4 days. For treatments
using fulvestrant, cells were pretreated with fulvestrant
for 3 days prior to treatment with estradiol or PI3K
inhibitors to ensure sufficient downregulation of the ER.
Floating and adherent cells were then collected and
labeled to detect apoptotic cells using the APO-BrdU
TUNEL Assay Kit (Invitrogen) in accordance with the
manufacturer’s instructions. For each sample, a mini-
mum of 10,000 events were acquired on a Cytomics
FC500 flow cytometer (Becton Dickinson, Fremont, CA,
USA) and data were analyzed using FlowJo software
(Tree Star, Ashland, OR, USA).

Patient samples

Human tumor samples from patients with recurrent or
metastatic breast cancer were obtained under the aus-
pices of an Institutional Review Board-approved proto-
col at the Siteman Cancer Center at Barnes-Jewish
Hospital and Washington University School of Medicine
between January 2004 and January 2009. Informed con-
sent was obtained from all patients involved. Informa-
tion on ER, progesterone receptor and HER2 at initial
and recurrent diagnosis was obtained from patient
pathological reports. Preparation of samples for tumor
DNA extraction and resequencing of PIK3CA exons 9
and 20 using genomic DNA was performed as described
previously [5].

Statistical analysis

Unless indicated otherwise, quantitative data for in vitro
studies are presented as the mean + standard deviation.
The effect of pharmacologic treatments on apoptosis
was analyzed using analysis of variance, and post-hoc
multiple comparisons were performed between specific
treatments if the overall difference reached statistical
significance (P < 0.05). The relationship between
PIK3CA mutation and other covariates was performed
using Fisher’s exact test or Student’s ¢ test as appropri-
ate. Overall survival was defined as the time from diag-
nosis to the date of death due to any cause. Survivors
were censored at the date of last contact. Disease-free
survival was only calculated in subjects with an initial
stage of I to III and was defined as the time from diag-
nosis to the first recurrence or death. The overall survi-
val and disease-free survival across mutation status were
estimated using the Kaplan-Meier product limit method
and were compared by log-rank test. All analyses were
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two-sided and significance was set at P < 0.05. Statistical )

analyses were performed using SAS software (SAS Insti- ER+ ER-
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T47D), PTEN mutation (MDA-MB-415, ZR75-1 and p1105 R
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wild-type PIK3CA and PTEN (HCC712, HCC1428,
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cancer cell lines with HER2 amplification (SK-BR-3),
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negative MDA-MB-231 cell line is wild-type for PIK3CA

and PTEN but harbors mutations in K-RAS and B-RAF. Akt2 = == ——mpwm——- -
While the PI3K p110a and p110B catalytic subunits

were present in all cell lines, the PI3K p1106 and p110y Akt 3 -

catalytic subunits were significantly expressed only in

ER-negative (SK-BR-3, HCC1806 and MDA-MB-231) p-Akt  =e—e - -

cell lines. Aktl and Akt2 were expressed in all tested
breast cancer cell lines, but Akt3 was detectable only in
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MDA-MB-231 cells [9]. Consistent with previous stu- SBKA1 M“- —
dies, high levels of p-Akt were present in cells with
PIK3CA kinase domain mutation (T47D), PTEN muta- P-SEK1 e - - emem - oy
tion (MDA-MB-415, ZR75-1 and CAMA-1), HER2
amplification (HCC1419, SK-BR-3) [9-11] and the here- SO - -
gulin-dependent MDA-MB-175 cell line. Phosphoryla-
tion of the PI3K downstream target S6 closely paralleled P-S6 == - - -
Akt phosphorylation.

These data indicate that mutations in PIK3CA and ERK 1/2 -:===-====::;'
PTEN or amplification of HER2 are associated with .
PI3K pathway activation in breast cancer. p-ERK 1/2 - . - - -
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BGT226, BKM120 and RADO0O1 inhibit PI3K pathway

signaling in breast cancer cells Figure 1 Analysis of phosphatidylinositol-3-kinase pathway
There are at least four general subcategories of PI3K signaling in breast cancer cells. Cell lines were grown to
pathway inhibitors, based upon target specificity, that are subconfluency and placed in medium containing low (0.5%) fetal

. .. . . .. bovine serum overnight prior to preparation of cell lysates. Equal
currently in clinical use or in various phases of clinical ) ;
amounts (25 ug) of extracted protein from each cell line were then

testing. These include inhibitors of PI3K catalytic subu- immunoblotted using antibodies against the indicated proteins. P-

nits; inhibitors of the Akt serine-threonine kinase; inhibi- Tyr1248 HER2 (p-HER2); p-Serd73 Akt (p-Akt); p-Thr389 S6 protein

tors of mTOR; and multi-targeted agents, which typically kinase 1 (p-S6KT); p-5er235/236 56 (p-56); p-Thr202/Tyr204 ERK (p-

have dual-specificity PI3K and mTOR kinase inhibitors ERK). ER, estrogen receptor; HER2, human epidermal growth factor

[12]. This paper focuses on three of these four classes of receptor 2; PTEN, phosphatase and tensin homolog; mTOR,
R . . - mammalian target of rapamycin.

agent: RADOO1 (inhibitor against rapamycin-sensitive
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mTOR complex), BKM120 (inhibitor against PI3K cataly- MCF7, T47D, or HCC712 cell lines in the presence of
tic isoforms) and BGT226 (dual inhibitor of PI3K/ increasing dose of drug. As expected, BGT226 and
mTOR). BKM120 inhibited the phosphorylation of both Akt and

To illustrate the inhibitory activities of BGT226, S6 in all tested lines (Figure 2a,b). BGT226 treatment
BKM120 and RADOO1 on PI3K pathway signaling, the  produced almost complete inhibition of PI3K signaling
phosphorylation levels of Akt (p-Akt) and S6 (p-S6)  at low nanomolar (50 nmol/l) concentrations, indicating
were assessed by western blotting in MDA-MB-231, a similar, or greater, potency compared with that of the
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Figure 2 BGT226, BKM120 and RAD001 inhibit phosphatidylinositol-3-kinase pathway signaling in breast cancer cells. Western blots
showing effects of (a) BGT226, (b) BKM120 and (c) RADOOT dose escalation on p-Ser473 Akt (p-Akt) and p-Ser235/236 S6 (p-56) in breast cancer
cell lines. Cells were stimulated with 20% fetal bovine serum (15 minutes) in the presence of solvent (dimethylsulfoxide (DMSO), BGT226-
treatment only) or the indicated concentrations of phosphatidylinositol-3-kinase (PI3K) inhibitors. LY294002 (LY, 20 umol/l) and rapamycin

(100 nmol/l) were used as controls in the BGT226 treatment panel for total PI3K inhibition (LY) and mammalian target of rapamycin inhibition
(rapamycin). Total Akt, S6 and actin are shown as loading controls. Representative results obtained in at least two experiments per cell line per
drug treatment are shown.
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dual PI3K/mTOR inhibitor BEZ235 [5,13,14]. In con-
trast, significant inhibition of PI3K signaling following
BKM120 treatment occurred in the mid-nanomolar to
high-nanomolar concentration range (250 to 1,000
nmol/l) in most cell lines. In all cell lines, RAD001
treatment completely inhibited S6 phosphorylation at
low nanomolar (5 nmol/l) concentrations, with the para-
doxical increase in Akt phosphorylation MCE7 cells
already noted by other investigators (Figure 2c) [14-16].

These data indicate that PI3K pathway inhibitors
effectively suppressed their respective targets regardless
of individual differences in PI3K pathway mutation
status.

PIK3CA mutation sensitizes short-term estrogen-deprived

ER-positive breast cancer cells to PI3K pathway inhibitors
To extend our previous observations regarding the sen-
sitizing effect of estrogen deprivation on the apoptotic
effect of PI3K pathway inhibitors in ER-positive breast
cancer [5], a larger panel of ER-positive breast cancer
cell lines was examined that varied with respect to
PIK3CA and PTEN mutation status (Figure 3). Cells in
the panel were acutely deprived of estrogen for 1 to 3
weeks prior to treatment with BGT226, BKM120 or
RADOO1 at concentrations that were found to be suffi-
cient to abrogate pathway signaling (Figure 2a to 2c).
The MDA-MB-231 line served as a control for off-target
inhibitor effects since this line does not undergo apopto-
sis when treated with the dual PI3K/mTOR inhibitor
BEZ235 [5,17] or combined siRNA knockdown of
PIK3CA and PIK3CB [5].

Induction of apoptosis was measured by TUNEL assay
after treatment with BGT226 (50 nmol/l), BKM120
(1 pmol/l) or RADOO1 (30 nmol/l) (Figure 3a to 2c). In
the absence of estrogen, BGT226 treatment induced the
highest levels of apoptosis, followed by BKM120,
whereas RADOO1 treatment produced only a modest
increase in apoptosis in a few cell lines (Figure 3a to
2c), suggesting this class of agent may be a relatively
ineffective partner for endocrine therapy combinations.
Importantly, we observed that the induction of high
levels of apoptosis by both BGT226 and BKM120 was
restricted to PIK3CA mutant lines (MCF7, T47D and
BT-483) and the PTEN-negative MDA-MB-415 and
ZR75-1 cell lines. BGT226 treatment also produced a
significant but modest increase in apoptosis in the
HCC1428 line (wild-type PIK3CA and PTEN) and the
PIK3CB-amplified HCC712 cell line, compatible with
this agent having the broadest inhibitory activity. Sensi-
tivity to PI3K pathway inhibition and the presence of a
pathway mutation, however, were not linked in all lines
because PTEN mutant CAMA-1 cells were resistant to
BGT226 and BKM120 (Figure 3a,b) despite effective
inhibition of PI3K pathway signaling (data not shown).
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Interestingly, the absence of ERK1/2 phosphorylation
(Figure 1) in CAMA-1 argues against the activation of
the ERK pathway as a mechanism of resistance. The
effect of RADOO1 on apoptosis was modest overall, but
two of the three cell lines in which RAD001 induced
apoptosis (MCF7, BT-483) contain PIK3CA helical
domain mutations.

Taken together, these data indicate that dual PI3K/
mTOR and PI3K isoform inhibitors are likely to produce
the greatest effects in ER-positive breast cancer, particu-
larly in tumors harboring PIK3CA mutation and, possi-
bly, PTEN loss.

As a complementary approach for measuring relative
drug sensitivity, the IC5 and LCso values were calcu-
lated for all three inhibitors in the cell line panel under
estrogen-deprived conditions (Table 1). Consistent with
TUNEL assay results, LCso values in the low nanomolar
per liter range were obtained in the PTEN-negative
MDA-MB-415 and ZR75-1 lines and in the three
PIK3CA mutant (MCF7, T47D, BT-483) cell lines. The
LCso values for BKM120 were higher than for BGT226,
which is consistent with the higher concentration of
BKM120 needed to inhibit PI3K signaling in cell lines
(Figure 2b). As expected, BKM120-sensitive cell lines
identified by TUNEL generally exhibited lower LCsq
values. Although the LCs, value for RADOO1 was
attained in HCC1428 cells, we did not observe any
induction of apoptosis by TUNEL assay (Figure 3c).
Regardless, the data for IC5y and LCsy were mostly con-
sistent with results obtained from TUNEL assays.

Estradiol inhibits BGT226 and BKM120 treatment-induced
apoptosis but in a cell-line-dependent manner

We have previously shown that estradiol significantly
suppressed the induction of apoptosis by inhibition of
p110a and p110B by RNA interference or treatment with
the dual PI3K/mTOR inhibitor BEZ235 in ER-positive
MCF7, T47D and HCC712 cells [5]. To determine
whether estradiol broadly inhibits apoptosis induced by
other PI3K inhibitors and in other ER-positive cell lines,
the effect of BGT226 was compared in the presence and
absence of estradiol. While estradiol suppressed BGT226-
induced apoptosis in STED MCF7 and T47D cells, estradiol
had no effect on PI3K inhibitor-induced apoptosis in BT-
483, MDA-MB-415 and ZR75-1 cells (Figure 4a). Treat-
ment with estradiol induced proliferation in these lines,
however, suggesting that the ER was functional ([5] and
data not shown). Dose escalation of BGT226 (Figure 4b)
and BKM120 (Figure 4c) in MCF7 and T47D cells demon-
strated that inhibition of cell death by estradiol was
progressively lost at higher PI3K inhibitor concentrations.
The modest increase in apoptosis with RAD001 treatment
in STED MCF?7 cells (Figure 3c) was also suppressed by
estradiol (data not shown).
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Overall, these data suggest estradiol-induced resistance
is a shared characteristic across all three classes of PI3K
pathway inhibitors tested, but there is marked heteroge-
neity in the inhibitory effect of estradiol across ER-posi-
tive breast cancer cell lines.

BGT226, BKM120 and RADO0O1 inhibit PI3K pathway
signaling despite long-term estrogen deprivation

To model the effects of PI3K pathway inhibition in aro-
matase-inhibitor-resistant breast cancer cells, variants of
the MCF7 and T47D lines were generated through

LTED by over 9 months of culture in low-estrogen con-
ditions (Figure 5a). ER upregulation and increased phos-
phorylation of Akt, S6 and the MAPK/ERKs (p-ERK)
was observed in MCF7 LTED cells compared with the
parental line. In the T47D LTED line, S6 and ERK phos-
phorylation, but not p-Akt, was higher than in parental
T47D cells, and ER expression was downregulated to
undetectable levels.

Both LTED lines were subsequently retreated with estra-
diol (10 nmol/l) for at least 4 months to determine
whether estradiol re-exposure could reverse the signaling
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Table 1 Determination of LC5¢ and IC5, values for BGT226, BKM120 and RAD0O1 in breast cancer cells

Cell line ER status Genotype BGT226 (nmol/l) BKM120 (nmol/l) RADOO1 (nmol/l)
LCso ICso LCso ICso LCso ICso
MCF7 Positive PIK3CA E545K 7.5 35 3,981 248 >625 >625
T47D Positive PIK3CA H1047R 10 2.7 316 128 >625 15
HCC712 Positive PIK3CB amp 549 >625 >10,000 347 >625 >625
MCF7 LTED Positive PIK3CA E545K 398 1.18 2,691 70.7 >625 <1
MCF7 LTED-R Positive PIK3CA E545K 617 5.1 >10,000 4,926 >625 >625
T47D LTED Negative® PIK3CA H1047R 19 2.3 630 243 >625 <1
BT-483 Positive PIK3CA E542K 25 7.05 >10,000 >10,000 >625 <1
MDA-MB-415 Positive PTEN mut 28.1 <1 1,584 1,294 >625 >625
CAMA-1 Positive PTEN mut 275 46.2 >10,000 >10,000 >625 <1
ZR75-1 Positive PTEN mut 1.3 <1 363 207 >625 <1
HCC1428 Positive PIK3CA/PTEN wt 501 >625 1,258 1,138 3.1 <1
MDA-MB-175 Positive PIK3CA/PTEN wt >625 <1 5011 >10,000 >625 <1
MDA-MB-231 Negative K-Ras, B-Raf mut >625 <1 >10,000 1,237 >625 >625

Cell lines growing under estrogen-deprived conditions in CSS medium were incubated with solvent control or increasing concentrations of the indicated
compounds and cell viability was assessed at 0 hours (time of drug addition) and at 96 hours after treatment. PIK3CA, PIK3CB and PTEN mutation information has
been published previously [5,22] or was obtained from the Sanger website [31]. ER, estrogen receptor; ICso, half maximal inhibitory concentration; LCso, 50%
lethal concentration; mut, mutant; wt, wild-type. “ER was not detectable by western blot.

effects associated with LTED. In the resulting MCF7 rever-
tant subline (MCF7 LTED-R), ER expression and levels of
p-Akt, p-S6 and p-ERKs were downregulated to similar
levels observed in the parental MCF?7 cells, indicating that
prolonged estradiol re-exposure reversed the effects of
LTED on these proteins. In contrast, while S6 and ERK
phosphorylation were downregulated by estradiol in T47D
LTED-R cells, ER expression levels were not restored - at
least not to a level detectable by western blot. The effect of
the three PI3K pathway inhibitors on signal transduction
demonstrated that the dose-response relationships for all
three agents were similar to those observed in the parental
MCEF?7 and T47D cell lines (Figure 5b). The sensitivity of
the LTED lines to estradiol and fulvestrant was also deter-
mined. As expected, proliferation of MCF7 LTED and
T47D LTED cells was not enhanced by increasing concen-
trations of estradiol (Figure 5c¢,d). Indeed the MCF7 LTED
model was paradoxically inhibited by estradiol because 10
nmol/l treatment for >10 days inhibited growth and
induced cell death [18,19] (data not shown). Treatment of
estrogen-deprived MCF7 LTED with the ER-selective inhi-
bitor fulvestrant [20] inhibited the growth of cells, demon-
strating that ER remains functionally important for the
growth of these cells despite the absence of supplemental
estradiol. In contrast, treatment with estradiol or fulves-
trant did not have significant effects on the growth of ER-
negative T47D LTED cells (Figure 5d).

Long-term estrogen-deprived cells are resistant to the
induction of apoptosis by low-dose PI3K pathway
inhibitors

To determine the effect of LTED on PI3K drug sensitiv-
ity, we compared the ability of BGT226 and BKM120 to

induce apoptosis in STED and LTED cell line pairs. In
comparison with MCF7 and T47D STED cells, higher
drug concentrations were required for both BGT226
(Figure 6a) and BKM120 (Figure 6b) to induce signifi-
cant apoptosis under LTED conditions. The LCs, values
for BGT226 in both LTED lines, and for BKM120 in
T47D LTED cells, were consistent with resistance to
apoptosis measured by TUNEL (Table 1). At the highest
doses of BKM120 and BGT226 tested, however, T47D
LTED cells were more sensitive than STED T47D cells;
this pattern was not replicated in MCF7 LTED cells,
where resistance to BGT226 persisted at all of the doses
tested.

Despite resistance to the proliferative effects of estra-
diol, acute treatment with estradiol suppressed apoptosis
induced by BGT226 and BKM120 treatment in MCF7
LTED cells -indicating that the survival effects of estra-
diol were decoupled from mitogenic effects (Figure 6c¢).
In contrast, estradiol did not suppress BGT226-induced
or BKM120-induced apoptosis in ER-negative T47D
LTED cells.

Treatment with fulvestrant sensitizes MCF7 LTED cells to
PI3K inhibition

To model options for patients with disease progression
on aromatase inhibitor treatment, the effect of fulves-
trant was studied in LTED lines. Fulvestrant alone did
not promote apoptosis in STED cells or LTED cells
(Figure 7a,b); fulvestrant strongly potentiated apoptosis
when combined with BGT226, BKM120 and RAD001
treatment in MCF7 LTED cells, however, confirming
that ligand-independent ER activity promoted PI3K inhi-
bitor resistance (Figure 7a). In contrast, treatment with
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fulvestrant did not promote apoptosis in the ER-negative
T47D LTED cells with any of the three agents tested.

Taken together, these data suggest that fulvestrant
may sensitize cells to the therapeutic effects of PI3K
inhibitors under circumstances where resistance to
estrogen deprivation is associated with ligand-indepen-
dent ER activity.

Prolonged retreatment with estradiol re-sensitizes MCF7
LTED cells to PI3K inhibition

As an alternative to fulvestrant, breast cancer patients
with advanced ER-positive aromatase-inhibitor-resistant
disease can be treated with low-dose estradiol to induce
tumor regression and, in some instances, resensitize the
patients’ tumor to estrogen deprivation therapy with an
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aromatase inhibitor [21]. The MCF7 LTED line provides
an in vitro parallel of these clinical findings because,
when these cells are re-exposed to estradiol, cell growth
slows dramatically, followed by a period of recovery dur-
ing which cell growth once again becomes estrogen
dependent (MCF7 LTED-R) (data not shown).

To determine whether MCF7 LTED-R cells also
recovered sensitivity to PI3K inhibition, the effects of
BGT226, BKM120 and RADO0O1 treatment were com-
pared between MCF7 LTED-R cells and MCF7 LTED
cells (Figure 7¢,d). Consistent with partial recovery of
sensitivity to PI3K inhibition, lower doses of BGT226
were able to induce apoptosis in estrogen-deprived
MCF7 LTED-R cells in comparison with MCF7 LTED
cells (Figure 7c). In contrast, the levels of cell death
with BKM120 (1 pmol/l) were similar in all three MCF7
cell line variants (Figure 7d) and sensitivity to RAD001
was lost in MCF7 LTED-R cells despite reintroduction
of estrogen deprivation.

PIK3CA mutations are common in relapsed ER-positive
breast cancer

The in vitro studies described above suggested that a
combination of fulvestrant and a PI3K pathway inhibitor
may be an effective approach for aromatase-inhibitor-
resistant advanced breast cancer, particularly in PI3KCA
mutant cases that are persistently ER-positive at relapse.
Since PIK3CA mutation has been reported to be asso-
ciated with a more favorable prognosis [7], however, it
was unclear how many patients with ER-positive
PIK3CA mutant breast cancer would present with
advanced disease. Fresh-frozen research biopsies were
therefore obtained from 51 patients with recurrent
or metastatic disease for PIK3CA mutation testing
(Table 2). Their median age at initial cancer diagnosis
was 53.4 (32.3 to 79.9) years. The median follow-up was
51.7 (0.9 to 256.7) months. Forty-three out of the
51 (84.3%) patients were deceased at the time of analy-
sis. At initial diagnosis, 32 tumors were ER-positive,
17 tumors were ER-negative, and two tumors were of
unknown status. Five out of the 32 ER-positive tumors
changed to ER-negative status at recurrence.

PIK3CA mutation analysis was performed on the 27
ER-positive and 24 ER-negative recurrent specimens.
We included both ER-positive and ER-negative cases to
interrogate the relationship between PIK3CA mutation
and ER status in the recurrent disease population. A
PIK3CA mutation was identified in 16 of the 51 tumors
(31.4%; eight in the helical domain, eight in the kinase
domain), a prevalence similar to that observed in studies
that examined primary breast cancer tissue [6,7,22].
PIK3CA mutation was strongly associated with ER posi-
tivity (P = 0.0076). Among the 27 ER-positive tumors,
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Table 2 Clinical characteristics of the 51 recurrent or
metastatic breast cancers

Characteristic at initial diagnosis Number of patients %

Total 51 100
Median age (years) 534 (3210 79)
Median follow-up time (months) 51.7 (0.9 to 256)
Stage
[tolll 34 67
\% 17 33
Estrogen receptor
Positive 32 63
Negative 17 33
Missing 2 4
Human epidermal growth factor receptor 2
Positive 15 29
Negative 33 65
Missing 3 6
PIK3CA mutation 16 31

13 (48%) were PIK3CA mutant. In contrast, only three
of the 24 ER-negative tumors were PIK3CA mutant. ER
expression was maintained in 13 out of 14 cases with
PIK3CA mutation (Table 3). Consistent with previous
reports [7], PIK3CA mutation was associated with a
later relapse pattern (disease-free survival P = 0.02, Fig-
ure 8a), with a trend for patients with PIK3CA mutant
disease exhibiting a lower mortality rate (overall survival
P = 0.06, Figure 8b). In an analysis restricted to patients
with initially ER-positive disease, PIK3CA mutant cases
still relapsed later than nonmutant cases (disease-free
survival P = 0.02, Figure 8c). Survival after relapse in
persistently ER-positive tumors (a potentially important
endpoint for drug approval), however, was not different
between PIK3CA wild-type and mutant cases, although
the very small sample size meant that only very large
effects could have been detected (Figure 8d).

Table 3 PIK3CA correlation analysis

PIK3CA mutant PIK3CA wild-type n P value
ER at diagnosis
Positive 14 18 32 0.0082
Negative 1 16 17
HER2 at diagnosis
Positive 2 13 15 017
Negative 12 21 33
ER at recurrence
Positive 13 14 27 00076
Negative 3 21 24
HER2 at recurrence
Positive 1 11 12079
Negative 14 24 38

ER, estrogen receptor; HER2, human epidermal growth factor receptor 2.
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Discussion

The primary aim of the present study was to assess the
case for combined targeting of ER and PI3K pathway
inhibition by examining an extended panel of ER-posi-
tive breast cancer cell lines using clinical grade PI3K
and ER pathway inhibitors. Conclusions focused on the
induction of apoptosis because the ability of PI3K inhi-
bitors to induce cell death, rather than inhibit cell pro-
liferation, is considered to be the best predictor of
in vivo anti-tumor response [17]. The dual PI3K/mTOR
inhibitor BGT226 generally produced the highest levels
of apoptosis when combined with estrogen deprivation
in sensitive cells, followed by the PI3K isoform selective
inhibitor BKM120. In contrast, the level of apoptosis
induced by the mTOR-selective inhibitor RAD001 in
estrogen-deprived cells was modest by comparison, even

in the most sensitive cells. Poor induction of apoptosis
by RADOO01 in estrogen-deprived ER-positive cells is
consistent with the results of a randomized phase 2 trial
(NCT00107016) that evaluated the efficacy of the aro-
matase inhibitor letrozole and RADO00O1 as neoadjuvant
treatment for ER-positive breast cancer. Despite greater
inhibition of tumor proliferation, the pathological com-
plete response rate was not increased by RAD001 over
that observed using letrozole alone - suggesting no clini-
cally significant increase in cell death was achieved [23].
Our data suggest that if tolerable at active doses, direct
inhibitors of PI3K might be more effective in this
setting.

The sensitizing effect of PIK3CA mutation to the dual
PI3K/mTOR inhibitor BEZ235 and to a selective Akt
inhibitor in breast cancer cells has already been reported
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[9,17]. These studies included few PIK3CA wild-type
ER-positive HER2-negative cells, however, and it was
not clear how PIK3CA mutation impacts PI3K inhibitor
sensitivity in the setting of estrogen deprivation. Our
data support the conclusion that PIK3CA mutation con-
fers sensitivity to PI3K pathway inhibitors in the setting
of new agents in clinical development and that this dif-
ferential effect is maintained under estrogen-deprived
conditions. However, the impact of estradiol on PI3K
pathway inhibitor activity in PIK3CA mutant cells was
not uniform. Estradiol suppressed apoptosis induced by
BGT226 in MCF7 and T47D cells but not in BT-483
cells. The identification of additional biomarkers will
probably therefore be necessary to fully predict the effi-
cacy of PI3K/endocrine combination therapy in PIK3CA
mutant ER-positive tumors. Consistent with previous
reports, the effect of PTEN mutation on the sensitivity
of ER-positive cells to PI3K inhibitors also appears com-
plex [9,17]. Whereas the PTEN-negative MDA-MB-415
and ZR75-1 lines were sensitive to both BGT226 and
BKM120, the CAMA-1 line, which is PTEN mutant but
does express low amounts of PTEN, was resistant to
both inhibitors. The reasons for the inconsistent effects
of PTEN deficiency on PI3K pathway inhibitor sensitiv-
ity in ER-positive cells will also require further study.

Estradiol is thought to prevent apoptosis through
plasma-membrane-initiated or nongenomic signaling by
the ER through activation of the PI3K and MAPK path-
ways [24,25]. Consistent with these reports, our results
indicate that transduction of the estradiol survival signal
increases PI3K inhibitor dose requirements in some ER-
positive breast cancer cells (for example, MCF7 and
T47D cells) but not others (BT-483, MDA-MB-415 and
ZR75-1 cells). Interestingly, our results also show that
the anti-apoptotic activity of estradiol is preserved in
breast cancer cells that do not require estradiol for pro-
liferation as a consequence of prolonged estrogen depri-
vation (Figure 6). The decoupling of the proliferative
and anti-apoptotic effects of estrogen suggests that con-
tinuing estrogen deprivation in progressing patients and
adding a PI3K inhibitor might be a strategy worth
testing.

The optimal endocrine combination with PI3K inhibi-
tion in cells resistant to estrogen deprivation is a critical
consideration since the overwhelming majority of
patients with advanced breast cancer have already been
treated with an aromatase inhibitor in the adjuvant set-
ting. Treatment options include an anti-estrogen (such
as the ER downregulator fulvestrant) [26] or therapy
with low-dose estradiol [21]. We modeled these second-
line approaches in contrasting LTED cell lines, one
where ER expression was maintained and one where it
was lost, in order to reflect the clinical observation that
upon disease progression ER is downregulated in a
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proportion of cases [27,28]. Both LTED lines were
found to be relatively resistant to PI3K inhibitors com-
pared with the parental lines, consistent with reports that
acquiring the ability to grow in the absence of estrogen is
associated with increased PI3K and MAPK signaling [29].
The use of fulvestrant efficiently sensitized MCF7 LTED
cells to both BKM120 and BGT226, however, consistent
with a key role for ligand-independent ER activity in PI3K
inhibitor resistance. The use of estradiol to revert the
LTED phenotype, followed by re-institution of estrogen
deprivation, is a viable alternative strategy; however, the
restoration of sensitivity to PI3K inhibition with this
approach appeared less profound than with fulvestrant
treatment.

Taken together our data provide a rationale for com-
bining estrogen deprivation with PI3K inhibitors for the
treatment of PIK3CA mutant estrogen-dependent, ER-
positive tumors and for the combination of fulvestrant
with PI3K inhibitors in patients with ER-positive, aro-
matase-inhibitor-resistant disease. However, further stu-
dies will be necessary to effectively translate these
preclinical data into the clinical setting. These studies
could include additional preclinical modeling in PIK3CA
wild-type estrogen-deprivation-resistant tumor lines to
determine whether PIK3CA mutation is necessary in
endocrine-resistant tumors to confer PI3K inhibitor sen-
sitivity. In addition, incorporating biomarker (PIK3CA
mutation, Ki67 tumor cell proliferation and cell death
markers) analysis in early-phase PI3K inhibitor trials
may aid in identifying patients most likely to benefit
from these therapeutic agents.

To address the prevalence of the target population for
a fulvestrant/PI3K inhibitor trial for second-line treat-
ment of ER-positive PIK3CA mutant relapsed disease,
we analyzed 51 advanced disease biopsies from both ER-
positive and ER-negative cases for PIK3CA mutation and
correlated findings with the clinical trajectory of the
patients. While patients with ER-positive PIK3CA
mutant tumors tended to relapse later than patients
with ER-negative or ER-positive PIK3CA wild-type
tumors, the PIK3CA mutation prevalence in ER-positive
relapsed disease was high (approximately 50%). These
findings are consistent with those recently reported by
Dupont Jensen and colleagues on an analysis of 104
paired primary and metastatic breast tumors [30]. In
this study, PIK3CA mutation was detected in 53% of the
metastatic tumors and 45% of the primary tumors, indi-
cating an apparent net gain in PIK3CA mutation in
metastatic disease that was thought to be due to hetero-
geneity in the primary tumor. The high prevalence of
PIK3CA mutation in metastatic or recurrent breast can-
cer suggests that PI3K-pathway-targeted therapeutics
will be clinically relevant in this setting. These data also
indicate that analysis of the recurrent disease will be
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necessary for selection of patients based upon tumor
PIK3CA mutation status.

Conclusions

Estrogen-dependent, ER-positive breast cancers with
PIK3CA mutation and, possibly, PTEN loss will be most
responsive to PI3K isoform inhibitors in combination
with estrogen deprivation therapy. By increasing tumor
cell death, these combinations may be sufficient to eradi-
cate ER-positive cells - thereby preventing acquired endo-
crine resistance. When estrogen derivation resistance and
relapse does occur in PIK3CA mutant ER-positive cells,
fulvestrant combined with PI3K inhibition may be an
effective salvage approach - and screening of relapse
biopsies for PIK3CA mutation confirms that a population
of patients who meet these criteria is easy to identify.
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