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ABSTRACT

Many regions of the planet are exposed to seismic risks that can have devastating con-

sequences in electric power systems. These systems’ crucial role in modern society makes

the evaluation and planning for their safe and reliable operation paramount. In this con-

text, this thesis develops a novel data-driven optimization framework to assess the power

network seismic resilience and to plan investments for improving its operational cost un-

der contingencies. Under a robust optimization scheme, an earthquake attacker-defender

model finds worst-case network contingencies based on the statistical properties of seis-

mic scenarios generated with a state-of-the-art seismic engineering method and represent-

ing the recovery process of electric power systems’ components. Additionally, data-driven

stochastic-robust optimization is employed in a two-stage seismic-resilient power network

planning model, which decides transmission line expansions and siting and sizing energy

storage systems in the first stage, while the second stage makes optimum operational deci-

sions. Further, this model leverages distributional information of multiple seismic sources

and yields a bi-level optimization structure, which has an outer stochastic programming

optimization problem that minimizes the expected objective values of the respective earth-

quake attacker-defender problem for each seismic source based on investment decisions.

Subsequently, extensive computational experiments on a 281-node representation of the

Chilean electric power system provide meaningful insights for seismic-resilient planning

and demonstrate the efficiency of the solution approach.

Keywords: Operations research in energy, Data-driven optimization, Power system re-

silience, Seismic hazard.
ix



RESUMEN

Muchas regiones del planeta están expuestas a riesgos sı́smicos que pueden tener con-

secuencias devastadoras en los sistemas de energı́a eléctrica. El papel crucial de estos

sistemas en la sociedad moderna hace que la evaluación y la planificación de su fun-

cionamiento seguro y fiable sean primordiales. En este contexto, este trabajo desarrolla

un novedoso marco de optimización basado en datos para evaluar la resiliencia sı́smica

de la red eléctrica y planificar las inversiones para mejorar su coste operativo en caso de

contingencias. Bajo un esquema de optimización robusta, un modelo atacante-defensor

de terremotos encuentra las peores contingencias de la red basándose en las propiedades

estadı́sticas de los escenarios sı́smicos generados con un método de ingenierı́a sı́smica

de última generación y representando el proceso de recuperación de los componentes de

los sistemas de energı́a eléctrica. Además, se emplea la optimización estocástica basada

en datos en un modelo de dos etapas para la planificación sı́smico-resiliente de redes

eléctricas, que decide las expansiones de las lı́neas de transmisión y la ubicación y el

tamaño de los sistemas de almacenamiento de energı́a en la primera etapa, mientras que en

la segunda etapa se toman decisiones operativas óptimas. Además, este modelo aprovecha

la información distribucional de múltiples fuentes sı́smicas y produce una estructura de

optimización de dos niveles, que tiene un problema de optimización de programación es-

tocástica externa que minimiza los valores objetivos esperados del respectivo problema

de atacante-defensor contra los terremotos para cada fuente sı́smica basada en las de-

cisiones de inversión. Posteriormente, extensos experimentos computacionales en una

representación de 281 nodos del sistema de energı́a eléctrica chileno proporcionan infor-

mación significativa para la planificación sı́smica-resiliente y demuestran la eficiencia del

enfoque de solución.

x



Palabras Clave: Investigación operativa en energı́a, Optimización basada en datos, Re-

siliencia de sistemas de potencia, Amenaza sı́smica.
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1. INTRODUCTION

Natural disasters can potentially devastate the energy supply infrastructure, resulting

in severe economic losses (Dilley, 2005; Castillo, 2014). Among high-impact and low-

probability (HILP) events, earthquakes are considered one of the gravest, given their low

predictability and damaging effects on power network systems (Y. Wang et al., 2016). For

instance, the earthquake in the Chinese Wenchuan county on May 18 of 2008 damaged

approximately 900 substations and 270 transmission lines (Eidinger, 2009). Moreover,

the 8.8 Mw earthquake in Chile that occurred on February 27 of 2010 caused an immedi-

ate blackout in the Chilean Central Interconnected System, which, at that time, provided

electricity to over 93% of the country’s population (Araneda et al., 2010). Furthermore,

on March 11, 2011, the Tohoku earthquake in Japan damaged 70 transformers, 14 power

plants, 42 transmission towers in conjunction with other facilities (Shumuta, 2011).

Many countries have their power network systems exposed to significant seismic threats,

so their seismic resilience capabilities are of concern. In this work, resilience is understood

as “the ability of a system to resist the effects of a disruptive force and to reduce perfor-

mance deviations” (Nan & Sansavini, 2017). Then, it is paramount to have a planning

framework capable of assessing the uncertain nature of such hazards to find investments

that optimizes the seismic resilience of power systems in areas prone to suffering grievous

losses caused by earthquakes. In this regard, the objective of this work is to develop a

data-driven optimization planning scheme of this kind. In what follows, we present a brief

literature survey of previous works related to this article.

1.1. Seismic modeling

A comprehensive assessment of the seismic-induced damage and recovery of power

network components must include a ground-shake intensity characterization and the eval-

uation of the fragility and restoration of vulnerable components (Espinoza et al., 2020).
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Monte Carlo Simulations are suitable to perform this type of assessment (Poulos et al.,

2017). For simulations, earthquake sources and their magnitudes’ distribution have to

be identified, as explained in Baker (2015). Then, the ground motion intensities can be

computed via a Ground Motion Prediction Model. Further, some techniques have been

developed to sample these scenarios efficiently (e.g., Jayaram & Baker (2010)). Further,

to determine a component’s functionality after an earthquake, given an intensity measure

of ground motion, independent fragility and restoration curves are used (FEMA, 2013).

1.2. Resilient operation and planning of power networks

Resilience evaluation and enhancement of power network systems performance under

components’ failure have been vastly researched (Koç et al., 2014; Babaei et al., 2020;

Yuan et al., 2014; Bagheri et al., 2019; Yan et al., 2020). On the one hand, resilient

planning models are used to prepare those systems to withstand contingencies better. On

the other hand, operational models serve to determine emergency response actions and

spot worst-case disruptions (Tapia et al., 2021). In the remainder of this section, we briefly

introduce the reader to planning and operational models of power network systems and

present some applications for resilience decision-making.

In what concerns energy policy design and investments, expansion planning models

play a crucial role in optimizing their consequences in the evolution and future perfor-

mance of power systems (Gacitua et al., 2018). Consequently, a wide variety of such

models are found in the power systems literature (Velloso et al., 2020; Maluenda et al.,

2018; Verástegui et al., 2019), including some related models of seismic-resilient planning.

Romero et al. (2013) developed a two-stage stochastic optimization modeling for expan-

sion planning to mitigate seismic risk, involving transmission lines capacity and power

generation enlargements. Lagos et al. (2019) presented another two-stage stochastic opti-

mization formulation of seismic-resilient expansion planning, which considers generation

and transmission investments and substation hardening. Nazemi et al. (2019) introduced a
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two-stage stochastic optimization model for energy storage planning for seismic resiliency

enhancement of distribution networks. P. Zhao et al. (2020) proposed a distributionally ro-

bust optimization model, based on moment information of damage contingencies, for the

planning of hardening investments for transmission lines and gas pipelines against earth-

quakes.

The economical and reliable operation of power systems is a crucial task, and the lit-

erature about these problems is wide-ranging (Q. Wang et al., 2013; Lorca & Sun, 2016;

Zhang et al., 2016; Duan et al., 2018; Zheng & Chen, 2020). Among those problems, the

optimal power flow problem is fundamental, given that it minimizes operational costs de-

ciding optimal power dispatch actions subject to several constraints imposed by engineer-

ing limits and physical laws (Frank & Rebennack, 2016). Further, when the optimal power

flow problem is embedded in a bi-level interdiction framework with a max-min structure,

characteristic of robust optimization, the problem is known as an attacker-defender model

(AD), which aims to find the worst-case realization of disruptive contingencies such as

terrorist events, hurricanes, or wildfires (Salmeron et al., 2004; Yuan et al., 2016; Tapia

et al., 2021). Motivated by this, in this work we consider a data-driven seismic set for an

attacker-defender interdiction model, which can determine the worst earthquake scenarios

out of the seismic nature under which the power network is exposed; thus, sheds light on

the vulnerabilities of the system when faced to this type of hazard.

1.3. Proposed framework and contributions

Notwithstanding recent advancements, some relevant gaps remain in the literature

regarding assessing and improving the seismic resilience of power networks. For in-

stance, existing seismic resilience assessment frameworks usually do not explicitly model

the recovery of components, and none of them accounts for the most critical potential

earthquake-induced simultaneous failures of various components. Regarding seismic-

resilient planning models, they often rely on hardening approaches, which means that
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it is possible to enhance an asset to make it indestructible or much harder to damage, po-

tentially neglecting the intrinsically fragile nature of different infrastructure types. These

planning schemes tend to be inefficient for large-scale networks because of their compu-

tational burden or overcome this difficulty by employing a small number of earthquake

scenarios, ignoring a detailed representation of the uncertainty representation of the haz-

ard. Further, no seismic-resilient planning framework has yet leveraged the distributional

information about seismic sources.

The underlying seismic-related contingency uncertainty poses notable challenges when

modeling for resilience assessment and planning for the robustness of power networks;

hence, suitable techniques for managing this problem are needed. For managing uncer-

tainty in decision-making models, the data-driven optimization paradigm has proved to

be befitting because it relies on uncertainty models formulated based on data, as they

systematically harness information from realizations of uncertain parameters for decision

processes (Ning & You, 2019).

The present thesis aims to fill the gaps previously mentioned by proposing a novel

data-driven optimization framework for seismic-resilience assessment and planning. The

main contributions of this work are summarized in the following paragraphs.

The development of a data-driven earthquake attacker-defender model, which accounts

for temporal and spatial correlation of seismic-induced damage of components. This max-

min optimization structure finds the worst simultaneous failures produced by seismic haz-

ards, an unanswered question thus far. Moreover, as the problem handles high-dimensional

random vectors composed of correlated variables, we define an uncertainty set accounting

for moment information of the data while maintaining computational tractability. In this

regard, previous solutions have been proposed (Ning & You, 2018a; Shang & You, 2018).

However, uncertainty set construction for high-dimensional data is still an open problem.

This work develops a novel polyhedral distance-based uncertainty set with the following
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characteristics: it incorporates information of the first and second moment of the empiri-

cal distribution of data, provides the means of performing dimensionality reduction with a

guarantee of explained variance percentage, has an adjustable parameter for the set’s size

which is directly obtained as a function of the covered training data samples, and includes

clustering techniques for reducing the number of points required to define the set. Further,

computational experiments confirm its efficiency. All these qualities make the uncertainty

set widely applicable.

A seismic-resilient power network planning model is proposed based on data-driven

stochastic-robust optimization (DDSRO), which decides optimum investments in energy

storage systems and transmission lines expansion. The DDSRO model yields a compu-

tationally tractable two-stage structure with stochastic programming nested in the outer

level to optimize the expected objective over adaptive robust optimization problems for

each label nested in the inner problem (Yue & You, 2016; Ning & You, 2018b). When the

uncertainty data of a process is categorically labeled, such as earthquake contingency sce-

narios of power networks according to their seismic source, the DDSRO framework can

be used as a way of leveraging the probability distribution of seismic sources while cap-

turing the structure and complexity of uncertainty data within the same source employing

uncertainty sets. Thus, the first stage decides optimum investment decisions to minimize

the weighted average over the objective of the respective earthquake attacker-defender

problem for each seismic source, where each weight corresponds to the probability of

observing an earthquake of the given seismic source. To the best of our knowledge, this

novel modeling scheme is the first to harness distributional information of multiple seismic

sources in a seismic-resilient planning model.

In extensive computational experiments, based on a 281-node representation of the

Chilean power network, we analyze the solutions and computational performance for both

the earthquake attacker-defender model and the DDSRO planning model. A methodology

for efficiently solving these large-scale optimization problems is proposed. The results
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obtained provide meaningful insights. On the one hand, the earthquake attacker-defender

model, with its adjustable-size uncertainty set, identifies worst-case contingencies for ev-

ery seismic source and different risk levels. Further, we show that planners can map these

solutions with geographical information systems, so decision-makers can easily visualize

critical parts of the power network. On the other hand, we solved the DDSRO model for

several combinations of budgets and conservativeness levels, and the results exhibit the

following characteristics under our case study conditions:

• Unfulfilled power demand diminishes with investments from 2.3% up to 10.5%

compared to the no-investment solution with other budgets for the same risk

level.

• All solutions show that investment in transmission lines is preferred over energy

storage systems.

• Different investment configurations share no obvious preferable assets. Hence,

the capacity of our framework for handling different risk levels proves to be

helpful because there are no trivial one-fits-all solutions.

• Optimum investment decisions tend to be more diversified while the risk level

increases, as a diversification index attests.

The remainder of the thesis is organized as follows. Section 2 summarizes the nomen-

clature to be used. Section 3 presents the seismic uncertainty modeling approach adopted

in this work. Section 4 develops the optimization models that constitute our seismic-

resilience power network planning framework. Section 5 defines a solution methodology

for the optimization models. Section 6 shows a Chilean case study. Finally, Section 7

presents concluding remarks and future works.
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2. NOMENCLATURE

The nomenclature of the optimization models is provided within this section.

2.1. Sets and Indexes

b ∈ B: Index and set of substations.

d ∈ D: Index and set of representative days.

i ∈ G: Index and set of power generation units.

GF ⊂ G: Set of power units excluding solar and wind technologies.

GV ⊂ G: Set of wind and solar power units.

h ∈ H: Index and set of time blocks of the representative day.

k ∈ K: Index and set of points for uncertainty modeling.

j ∈ L: Index and set of transmission lines.

LC ⊂ L: Set of transmission lines candidate to expansion.

L \ LC ⊂ L: Set of transmission lines non-candidate to expansion

q ∈ Q: Index and set of dimensions of uncertainty points.

s ∈ S: Index and set of seismic sources.

t ∈ T : Index and set of recovery stages.

2.2. Parameters

2.2.1. Operational parameters

Bj: Susceptance of line j.

Dbdh: Power demand at substation b, representative day d and time block h.

f j: Installed maximum flow capacity of line j.

H: Number of time blocks describing representative days.

θ, θ: Maximum and minimum phase angle.
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pDd : Weight of representative day d.

P f
i : Maximum power capacity of non-solar or wind units.

pH: Duration of time blocks.

P v
dhi: Maximum power that a wind or solar unit can produce according to a

representative profile.

ηcha, ηdis: Charging and discharging efficiencies of energy storage systems.

τt: Duration of recovery stage.

2.2.2. Earthquake attacker parameters

akq : Data point k at entry q.

βk: Weight of point k.

d, d: Shape parameters of an uncertainty set.

δ: Lines disconnection threshold.

∆: Size parameter of an uncertainty set (depends on external parameter γ).

µ: Centroid of an uncertainty set.

W−1: Inverse of the whitening matrix.

2.2.3. Investment parameters

clj , c
p
b: Investment costs in line expansions and energy storage systems.

ρ: Technical relation between storage and capacity of an energy storage sys-

tem.

2.3. Decision Variables

2.3.1. Operational variables

P cha
bdht: Power charged to the energy storage system.
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P dis
bdht: Power discharged to the energy storage system.

P g
dhit: Power generated by the given unit.

PLS
bdht: Load shedding at the given substation.

fdhjt: Power flow at line j.

θbdht: Voltage angle at substation b.

wbdht: Energy stored in the energy storage system at bus b.

2.3.2. Earthquake attacker variables

dkq: Distance variable for uncertain point.

ϕbt: Substation functionality derate.

ωq: Entry at dimension q for generated uncertainty point.

ζjt: Line capacity derate

zjt: Connection state of the given line.

2.3.3. Investment variables

Eb: Energy storage capacity.

Pb: Power capacity of the energy storage system.

xlj: Power flow capacity expansion of the line.
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3. SEISMIC UNCERTAINTY MODELING

The main objective of this work is to determine seismic-resilient investment plans for

the power network. Therefore, it is essential to characterize the nature of seismic risk

appropriately. To achieve an adequate representation of the seismic hazards to which the

power network is exposed, we generate an extensive set of seismic scenarios that feed

the optimization models developed in this thesis with realizations of uncertain damage

parameters. We use a simulation scheme that allows us to determine the damage condition

of the network’s components from the occurrence of an earthquake until the complete

recovery of the network. This scheme is summarized in two steps: 1) generation of seismic

scenarios and 2) computation of components’ damage and recovery through time. Section

3.1 presents step 1) of the framework, and Section 3.2 describes step 2).

3.1. Generation of earthquake scenarios

The seismic nature of a given area can be characterized by its seismic sources and

a catalog of simulated earthquake scenarios. A seismic source can be a fault, a typically

planar surface, or an areal region where earthquakes may occur anywhere, and for which it

is possible to identify its distribution of magnitudes and source-to-site distances associated

with its earthquakes Baker (2015). To clarify what a seismic source is, we show the

example of Chilean subduction seismic sources in Figure 3.1, based on the zonation from

Poulos et al. (2019), with antecedents in Leyton et al. (2009); Martin. (1990). In our

context, these scenarios are defined by peak ground acceleration (PGA) at the location

of each fragile component of the network. To generate synthetic earthquake scenarios,

we adopt the methodology previously presented in Poulos et al. (2017). This part briefly

revisits the methodology.
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Figure 3.1. Chilean subduction seismic sources.

This methodology calibrates an earthquake recurrence model for each seismic source

capable of producing damaging ground motions, based on an exhaustive catalog of histor-

ical earthquakes. Recurrence models represent main shocks as homogeneous Poisson pro-

cesses and enable the estimation of seismic hazard as the annual frequency of exceedance

for some intensity measure threshold. For further descriptions of the calibration of these

types of models, see Poulos et al. (2019). In addition, to efficiently sample earthquakes of

high moment magnitudes, importance sampling is used, a technique for sampling random

variables through an alternate density function (Owen & Zhou, 2000).

To estimate PGA at the locations of interest, given the location and the moment magni-

tude (Mw) of an earthquake, a ground-motion prediction model (GMPM) is required, such

as the one presented in Parker et al. (2020) for subduction-type seismicity. Further, since
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power networks are spatially distributed systems, the correlations of ground motions must

be considered. For this purpose, we use the methodology developed in Goda & Atkinson

(2010).

The procedure to generate J seismic scenarios is as follows:

• Based on a recurrence model and sampling techniques, simulate magnitudes

and locations of seismic events to build a synthetic earthquake catalog. The

sample weight is indicated in a parameter αj , with
∑

j∈J α
j = 1, where J =

{1, . . . , J}. A label parameter lj for the j-th scenario shows its seismic source,

which can take a value from a given set S.

• Then, using the GMPM, compute the PGA at each fragile component’s location

for every sampled earthquake. In addition, the PGA vectors, their labels, and

their weights, are stored as a collection of the form {PGAj, αj, lj}j∈J , where

PGAj is the vector with the PGA at each site in the j-th scenario.

3.2. Component vulnerability assessment

Following the seismic risk assessment methodology developed in FEMA (2013), the

recovery process of each vulnerable component is determined through functionality recov-

ery functions for all the seismic scenarios previously obtained. In brief, this methodology

states that the available capacity of a vulnerable component in a given recovery stage is

computed as follows:

FA(e, p, t) =
n∑
i=1

FR(e, di, t)FD(e, di, p). (1a)

The available capacity is FA(e, p, t) presented in (1a), for which its arguments are: e,

the component’s infrastructure type; p, the PGA at the component’s site; and t, the recov-

ery stage of interest. Considering that after the occurrence of an earthquake, a component
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can be in one of the possible discrete damage states di for i ∈ {1, . . . , n}, the probability

of a component of being in a damage state di is FD(e, di, p), and the probability of re-

covery of a component under that damage state is FR(e, di, t). These two functions are

defined below:

FR(c, di, t) = P(R ≤ t|DS = di, CT = e) (1b)

FD(c, di, p) = P(DS = di|PGA = p, CT = e) (1c)

The equations (1a)-(1c) are defined through conditional probabilities, where four ran-

dom variables describe the conditions of the component under study: R, the recovery time
1; DS, the damage state after the earthquake; CT , the infrastructure type; and PGA, the

suffered peak ground acceleration. The equation (1b) is computed with restoration curves,

and (1c) with fragility curves. For the sake of simplicity, we omit further details. See

FEMA (2013) for further descriptions of this procedure.

The focus of this work is placed on power systems’ resilience since earthquakes can

produce widespread contingencies. Hence, the general vulnerability assessment model

presented in (1a) - (1c) provides the means for evaluating seismic impacts in power sys-

tems’ infrastructure and representing their recovery processes. Moreover, to perform this

evaluation, vulnerable components have to be identified. In this work, we model substa-

tions as vulnerable components. In contrast, all other components are considered inde-

structible. This assumption avoids some non-linear constraints in optimization models,

and recent experience of a high-impact earthquake justifies it given that circuit towers

and power plants did not place the energy supply at risk, in opposition to the substations

(Rudnick et al., 2011) 2.

1In this context, it is assumed that the decision-maker cannot control this variable.
2They observed that transmission lines resisted well to strong ground motions. In addition, while generation
units were damaged, they did not risk the connectivity of the system.
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The recovery process of the network is modeled through a set of recovery stages as

T = {1, . . . , T} (Romero et al., 2013). Then, from the seismic scenarios {PGAj, αj, lj}j∈J ,

we can compute damage scenarios with the following equation:

1− ϕjbt = FA(eb, PGA
j
b, t) ∀b ∈ B, t ∈ T , j ∈ J (2)

In equation (2), sets B, and J represent the set of substations, and the set of scenarios,

respectively. The parameter eb is the infrastructure type of the substation b (i.e., substa-

tions with anchored or unanchored parts); PGAjb is the peak ground acceleration in the

location of the substation b under the j-th seismic scenario 3. Further, the parameter ϕtbt
indicates the capacity derate of substation b in recovery stage t under the j-th scenario.

As operational models of electric power systems do not explicitly present a capacity value

for substations, the derate is imposed on the capacity values of the elements attached to

substations: generating units, transmission lines, and energy storage systems; as done by

Lagos et al. (2019).

Once each value of ϕjbt is obtained with (2), the seismic-induced damage scenarios are

stacked in a collection of the form {ϕj, αj, lj}j∈J . These scenarios are employed in the

data-driven optimization schemes developed in the next section.

3Note that estimates of local soil conditions of components may distort the PGA results significantly.
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4. OPTIMIZATION MODELS

This Section develops novel optimization models for seismic-resilient power network

planning. Section 4.1 describes the operational model for the power network under a given

seismic-induced damage scenario and fixed investment decisions. Section 4.2 develops an

earthquake attacker-defender model that yields a data-driven worst-case earthquake sce-

nario under a given investment plan, using a distance-based uncertainty set for robust

optimization, particularly suited for modeling high-dimensional uncertainty. Then, Sec-

tion 4.3 builds a data-driven stochastic robust optimization planning model, which decides

the optimal investment in transmission lines’ capacity expansion and siting and sizing of

energy storage systems incorporating information from multiple seismic sources.

4.1. Operational model

A crucial problem for power systems consists of finding optimal operational decisions

to minimize overall operating costs. The system’s operator computes the best decisions

for the economic functioning of the system by solving what is known as the optimal power

flow problem. These decisions involve some control variables (e.g., power injection in a

node), whereas state variables that depend on the control variables value (e.g., voltage an-

gles), while their relationships are defined through electrical laws and engineering limits

(Frank & Rebennack, 2016). In this work, the optimal power flow is used for modeling

the operation of the system after an earthquake, considering the damaged state of infras-

tructure and capturing notions of the recovery process of the network.

The operational model computes the minimum operational cost under certain invest-

ment decisions x and a given vector of damage ξ, where x = (E,P ,xl) and ξ =

(ϕ, ζ, z). The operation horizon consists of several recovery stages, where a set of repre-

sentative days define the operational conditions (i.e., maximum renewable generation and

demand) for each stage and where each representative day has a set of chronologically
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ordered time points. Hence, we consider the following linear formulation for the system’s

operation, which chooses the optimal operation decisions y = (P cha,P dis,P g,P LS,f ,θ,w),

Q(x, ξ) = min
y

∑
t∈T

τt

(∑
d∈D

pDd

(∑
h∈H

L(ydht)

H

))
(3a)

s.t.
{

0 ≤ P g
dhit ≤ P f

i (1− ϕb(i)t) ∀i ∈ GF (3b)

0 ≤ P g
dhit ≤ P v

dhi(1− ϕb(i)t) ∀i ∈ GV (3c)

0 ≤ PLS
bdht ≤ Dbdh ∀b ∈ B (3d)

fdhjt ≥ −(1− ζjt)fj ∀j ∈ L \ LC (3e)

fdhjt ≤ (1− ζjt)fj ∀j ∈ L \ LC (3f)

fdhjt ≥ −(1− ζjt)(fj + xlj) ∀j ∈ LC (3g)

fdhjt ≤ (1− ζjt)(fj + xlj) ∀j ∈ LC (3h)

fdhjt ≥ −(1− zjt)fj ∀j ∈ L \ LC (3i)

fdhjt ≤ (1− zjt)fj ∀j ∈ L \ LC (3j)

fdhjt ≥ −(1− zjt)(fj + xlj) ∀j ∈ LC (3k)

fdhjt ≤ (1− zjt)(fj + xlj) ∀j ∈ LC (3l)

Mzjt ≥ Bj(θb−(j),h,d,t − θb+(j),h,d,t)− fdhjt ∀j ∈ L (3m)

−Mzjt ≤ Bj(θb−(j),h,d,t − θb+(j),h,d,t)− fdhjt ∀j ∈ L (3n)

θ ≤ θbdht ≤ θ ∀b ∈ B (3o)

0 ≤ wbdht ≤ Eb(1− ϕbt) ∀b ∈ B (3p)

0 ≤ P cha
bdht ≤ Pb(1− ϕbt) ∀b ∈ B (3q)

0 ≤ P dis
bdht ≤ Pb(1− ϕbt) ∀b ∈ B (3r)

Dbdh − PLS
bdht =

∑
i∈G(b)

P g
dhit + P dis

bdht − P cha
bdht (3s)
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+
∑

j|b+(j)=b

fdhjt −
∑

j|b−(j)=b

fdhjt ∀b ∈ B
}
,

∀d ∈ D, h ∈ H, t ∈ T{
wbdht = wb,d,h−1,t + pH

(
P cha
b,d,h−1,tη

cha −
P dis
b,d,h−1,t

ηdis

)
(3t)

∀h ∈ H \ {1}

wb,d,h=1,t = wb,d,h=H,t + pH

(
P cha
b,d,h=H,tη

cha −
P dis
b,d,h=H,t

ηdis

)}
, (3u)

∀b ∈ B, d ∈ D, t ∈ T

The objective function (3a) is linear over the operational variables and accounts for

the operational cost over the evaluation’s horizon. The loss function L(·) is chosen by

the decision-maker. Parameter pDd represents the weight of the representative day d, H

corresponds to the number of time points in each day, and τt is the time length in hours of

the recovery stage t. Constraint (3b) establishes the minimum and maximum generation

capacity for non-renewable units and (3c) for renewable units (with a given maximum

generation profile). The inequalities (3d) limit the minimum and maximum load shedding

up to the node demand level and the minimum as zero. Constraints (3e)-(3h) limit power

flow considering partial damage, and (3i)-(3l) limit power flow considering the binary state

that determines whether a line is connected or not. Equations (3m)-(3n) relate power flow

variables with angle variables when such lines are connected, using a Big-M formulation
1. Constraints (3o)-(3r) model the allowable range for voltage angles, energy storage,

charging power, and discharging power. Load balance is ensured through (3s). Finally, (3t)

imposes energy balance for energy storage systems for each time point except the first one,

while (3u) relates the last time point storage level with the first one, under the assumption

1In this case, the Big-M formulation means that if variable zjt takes the value of 0, the right-hand side of the
constraints is equal to 0. If zjt is equal to 1, the constant M is sufficiently large that the constraints become
redundant. Thus, this formulation only relates voltage angles with flow variables if the condition zjt = 0 is
fulfilled.
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that those systems are perfectly optimized for each given day of operation (Gan et al.,

2019). Note that the modeling scheme of the optimal power flow is done through the DC

approximation, usually adopted in the literature of performance assessment and planning

power networks under seismic risk (Romero et al., 2013; Espinoza et al., 2020; P. Zhao et

al., 2020).

4.2. The earthquake attacker-defender problem

In this part, we employ the previous operational model to build the earthquake attacker-

defender problem, which represents the uncertain nature of vector ξ under a fixed invest-

ment decision x. The purpose of the earthquake attacker-defender problem is to find the

realization of ξ which results in the highest optimal system’s cost within the operational

horizon.

The earthquake attacker-defender problem can be represented as the following bi-level

optimization problem:

max
ξ∈U

Q(x, ξ) (4)

The max-min problem (4) considers the worst-case realization of the uncertain param-

eters and the adaptive actions of the system. The objective function of (4) is a vectorial

compact form of (3a). Random parameters ξ are chosen from U , and consequently, this

type of set is known as uncertainty sets (Bertsimas & Sim, 2004). Moreover, the set

Y(x, ξ) is defined by operational restrictions (3b)-(3u).

The uncertainty set U alluded in (4) is defined as the intersection of the uncertainty

set with structural constraints, namely UPH , and the data-driven distance-based uncer-

tainty set that contains data about substations’ damage, termed UDD; i.e., U = {ξ : ξ ∈

UDD, ξ ∈ UPH}. In the coming sections, we cover the definitions of UPH and UDD.
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4.2.1. Structural constraints’ uncertainty set

To represent the substations’ damage, some physical constraints must be incorporated.

First of all, each substation has a damage indicator which is bounded between 0 and 1.

Moreover, substations maintain their level of damage or reduce it over successive recovery

stages. These two aspects are expressed as follows:

0 ≤ ϕbt ≤ 1 ∀b ∈ B, t ∈ T (5a)

ϕbt ≤ ϕb,t−1 ∀b ∈ B, t ∈ T \ {0} (5b)

where, (5a) bounds damage levels, and (5b) imposes recovery considerations.

Based on the substations’ damage indicators, we model the transmission lines’ damage

states as follows. For any given line, its maximum power flow capacity is derated depend-

ing on the damage indicators of the two connecting substations, through the following

equation:

ζjt = 1−
(
1− ϕb−(j)t

)(
1− ϕb+(j)t

)
∀j ∈ L, t ∈ T .

However, due to the bilinear nature of the above expression, we use McCormick convex

envelopes (Mccormick, 1976), replacing the above expression with the following linear

relaxation:

ζjt ≥ ϕb+(j)t ∀j ∈ L, t ∈ T (5c)

ζjt ≥ ϕb−(j)t ∀j ∈ L, t ∈ T (5d)

ζjt ≤ ϕb−(j)t + ϕb+(j)t ∀j ∈ L, t ∈ T (5e)

ζjt ≤ 1 ∀j ∈ L, t ∈ T (5f)
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Note that the use of a linear relaxation through the above expressions yields a con-

servative approach for the overall attacked-defender model, in the sense that the feasible

space for the attacker is enlarged.

Further, our model considers the possibility of completely disconnecting any given

transmission line, changing the topology of the power network, for any line whose damage

state surpasses a given threshold. This is expressed through the equations below:

δ + zjt ≥ ζjt ∀j ∈ L, t ∈ T (5g)

ζjt ≥ δzjt ∀j ∈ L, t ∈ T (5h)

zjt ∈ {0, 1} ∀j ∈ L, t ∈ T (5i)

Whereby, the structural constraints’ uncertainty set is:

UPH =
{

ξ
∣∣∣ (5a)− (5i)

}
(5j)

4.2.2. Data-driven distance-based uncertainty set

We propose a novel methodology to construct an uncertainty set directly based on data

samples. This methodology is used to incorporate the information of substations’ damage

scenarios. The procedure for constructing the polyhedral uncertainty set is summarized in

the next steps:

• Step 1. Gather J weighted data samples {ϕj, αj}Jj=1, whereϕj is j-th data point

and αj is the point’s weight.

The uncertainty data points are stacked into a data matrix X = [ϕ1, . . . ,ϕJ ] ∈

Rm×J . Each column represents a data point in m-dimensional space, totaling a

number of J columns. In addition, we define the vector α = [α1, . . . , αJ ]> ∈

RJ , which contains the normalized weights of samples, i.e., α>1 = 1. Note that

α could be given by αj = 1/J ∀j.
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• Step 2. Obtain the mean vector µ, the centered-to-zero data matrix X̂ , and the

unbiased covariance matrix Σ.

The mean vector of the sample is

µ = Xα (6a)

We compute the centered-to-zero data matrix, termed X̂

X̂ = X − µ1> (6b)

Then, the unbiased weighted covariance matrix is obtained through the next

equality (GSL, 2007):

Σ =

∑J
j=1 α

j(∑J
j=1 α

j
)2
−
∑J

j=1 α
j2

(
J∑
j=1

αjX̂
j>

X̂
j

)
(6c)

where X̂
j

is the j-th column of X̂ .

• Step 3. Calculate the principal components of the covariance matrix using sin-

gular value decomposition.

The singular value decomposition of the covariance matrix Σ gives us the eigen-

values and the eigenvectors associated with it. The decomposition Σ = V ΛV >

is constituted by the information contained in Λ, which is the diagonal matrix

diag{λ1, . . . , λm} where λi ∀i ∈ {1, . . . ,m} are the eigenvalues, and V is the

square matrix with the respective eigenvectors V = [v1, . . . ,vm] ∈ Rm×m. For

this work, we assume, with no loss of generality, that λ1 ≥ λ2 ≥ . . . ≥ λm.

• Step 4. Apply whitening to each centered sample point.

It is desirable to apply a linear rescaling to the centered-to-zero data matrix

to eliminate cross-correlations and attain a unit variance over each dimension;

hence, the resulting covariance matrix corresponds to the identity matrix. The

identity covariance matrix is obtained through a whitening transformation (Bishop

et al., 1995). The resulting rescaled data matrix is then said to be isotropic
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(Brubaker & Vempala, 2008). Moreover, one can decide to represent the data in

a q-dimensional subspace (where q ≤ m), defined by a principal subspace, and

the quality of the q-dimensional approximation is computed as the proportion

of the total variance of the original data set that is accounted for, calculated as∑q
i=1 λi/

∑m
i=1 λi (Jolliffe & Cadima, 2016). Note that dimensionality reduc-

tion could be wanted to lighten the computational burden of treating the robust

problem.

Let Λ−1/2q the diagonal matrix diag{λ−1/21 , . . . , λ
−1/2
q } be the q × q the diagonal

matrix with the first (largest) q eigenvalues in a decreasing order, V q the m ×

q matrix resulting from retaining the corresponding eigenvectors, and W =

Λ−1/2q V >q . Then, the whitened zero-centered samples are:

Y = WX̂ (6d)

where Y ∈ Rq×J is a lower-dimensional and rescaled representation of the

original data, which has an identity covariance matrix and a zero mean vector.

• Step 5. Compute the two shape parameters d and d.

We want to construct a polyhedron with adjustable size, depending on the level

of conservatism of the decision-maker. For this regard, we propose a set of this

form: {
y ∈ Rq

∣∣∣ J∑
j=1

αj‖Y j − y‖1 ≤ φ
}

(6e)

where Y j denotes the j-th column of the matrix Y . To properly choose the

value of φ, two shape parameters are used, namely d and d (for which d ≥ d).

Then, φ results from a linear combination between them, i.e, φ = d(1−∆)+∆d,

with ∆ ≥ 0. These parameters are defined bellow:

d =
J∑
j=1

αj‖Y j‖1 (6f)
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d = max
i=1,...,J

J∑
j=1

αj‖Y j − Y i‖1 (6g)

so, if ∆ = 0 the size of the polyhedron is the minimum size that fulfills the con-

dition that the centroid is included, and ∆ = 1 yields the smallest size definable

by the set which includes all data samples.

• Step 6 (Optional). Aggregation of whitened samples through clustering.

If the number J is too large we suggest reducing the total points that define the

uncertainty set using some clustering algorithm. We recommend the usage of the

K-means++ algorithm (Arthur & Vassilvitskii, 2007), which has been experi-

mentally shown that outperforms the most widely used partitional clustering al-

gorithm termed K-means algorithm (Celebi et al., 2013), and it is implemented

in scikit-learn package in Python language (Pedregosa et al., 2011). The result-

ing K centers are stacked in a matrixA = [a1, . . . , aK ] ∈ Rq×K , and a vector β

of weights is associated to them accordingly, given β = [β1, . . . , βK ]> ∈ RK ,

where β>1 = 1.

• Step 7. Define the data-driven distance-based polyhedron.

The polyhedron based in K q-dimensional points is as follows,

UDD


ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
k∈K

∑
q∈Q

βkdkq ≤ d(1−∆) + ∆d

dkq ≥ ωq − akq , k ∈ K, q ∈ Q

dkq ≥ akq − ωq, k ∈ K, q ∈ Q

ϕ = W−1ω + µ


(6h)

whereW−1 = V qΛ
1/2
q ,K = {1, . . . , K},Q = {1, . . . , q}, andω = [ω1, . . . , ωq]

>.

Note that ‖ω − a‖1 has been replaced by an equivalent linear formulation, in-

troducing auxiliary variables dkq.

• Step 8. Choose polyhedron’s size with γ value.
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The value of ∆ is chosen according to the total weight included from the N

whitened q-dimensional samples Y in the polyhedron. Let ψj =
∑

k∈K β
k‖ak−

yj‖1, for j ∈ {1, . . . , J}. Then we compute ∆j = (ψj − d)/(d − d) ∀j ∈

{1, . . . , J}. Without loss of generality, we assume that the original samples are

ordered such that ∆1 ≤ ∆2 ≤ . . . ≤ ∆J . By construction, the weight included

from samplesY in a polyhedron with size parameter ∆j is
∑j

i=1 αi. Hence, for a

given value of confidence γ, ∆ is set to ∆j∗ , where j∗ = argminj∈{1,...,J}{
∑j

i=1 αi :∑j
i=1 αi ≥ γ}.

4.3. Data-driven stochastic-robust power network planning model

We propose a two-stage power network planning model that determines the optimum

investment decisions for a given budget to improve the power system’s resilience under

an uncertain seismic hazard. Two types of investments are considered: 1) transmission

lines’ capacity expansion and 2) siting and sizing energy storage systems. Further, we

incorporate information about the multiple earthquake sources to which the power sys-

tem is exposed to make data-driven decisions. This is achieved by adopting a data-driven

stochastic-robust optimization scheme (DDSRO) (Yue & You, 2016; Ning & You, 2018b).

The DDSRO scheme leverages the probability distribution of seismic sources while cap-

turing complex uncertainty data structures within the same source employing uncertainty

sets. Hence, the first stage decides investment decisions to minimize the expected value of

objectives of the earthquake attacker-defender problem over the seismic source variable.

In this way, the proposed model is defined in compact form as follows:

min
x∈X

ES
[

max
ξ∈US

Q(x, ξ)
]
, (7)

where x represents investment decisions and X its associated feasible space. Also, S

is a random variable defined over the set of seismic sources, i.e., P(S ∈ S) = 1, with

S = {1, . . . , C}. The uncertainty set corresponding to the seismic source S is US . In
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addition, the investment decisions and constraints x = (E,P ,xl) and X are defined as:

X =
{
x

∣∣∣ ∑
j∈LC

cljx
l
j +
∑
b∈B

cpbPb = I (8a)

Pb =
Eb
ρ
∀b ∈ B (8b)

xlj ≥ 0 ∀j ∈ LC (8c)

Eb ≥ 0 ∀b ∈ B
}
. (8d)

Here, (8a) is a resiliency budget constraint (Romero et al., 2013; Lagos et al., 2019),

(8b) defines the technical relation between power and storage capacities for energy storage

systems (Dvorkin et al., 2017), and (8c)-(8d) are non-negativity constraints.

4.3.1. Seismic sources uncertainty modeling

Through maximum likelihood estimation, one can derive the probability of different la-

bels from labeled uncertainty data (Ning & You, 2018b). From a collection of J weighted

labeled damage samples {ϕj, αj, lj}J , with J = {1, . . . , J}, we obtain the probability of

each seismic sources as

ps =
∑
j∈J

αjI(lj = s), (9)

where ps is the probability assigned to seismic source s, lj is the label of the j-th data

point, and I(·) is an indicator function, i.e., I(lj = s) is 1 if lj = s holds and 0 if not.

From the J weighted and labeled data samples, we separate labeled data {ϕis, α̂is}i∈Js
∀s ∈ S , with Js = {j ∈ J : lj = s}, where α̂is = αi/

∑
j∈Js α

j ∀i ∈ Js. Note

that
∑

i∈Js α̂
i
s = 1 ∀s ∈ S . Then, for each seismic source s, we define a data-driven
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distance-based uncertainty set UDDs over the collection {ϕis, α̂is}i∈Js , following the pro-

cedure presented in (4.2.2). Therefore, the uncertainty set used for each seismic source

s ∈ S is defined as Us = UDDs ∩ UPH , with UPH previously shown in (4.2.1).
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5. SOLUTION METHOD

The structure of the DDSRO problem (7) yields a convenient reformulation making

use of a few auxiliary variables:

min
x∈X ,ϑ

∑
s∈S

psϑs (10a)

s.t. ϑs ≥ Q(x, ξ) ∀ξ ∈ Us, s ∈ S. (10b)

The variables ϑs represent the worst-case second-stage cost for each seismic source.

Constraint (10b) ensures that each objective value of the seismic source s is that of the

worst realization of the uncertain vector ξ within the uncertainty set Us.

The formulation presented in (10a)-(10b) considers an infinite number of constraints,

because there are infinite points ξ contained in each uncertainty set Us ∀s ∈ S, which are

all bounded mixed integer polyhedral sets. To solve this problem, we adopt the column-

and-constraint generation algorithm (CCG), an effective solution for dealing with prob-

lems of this structure (L. Zhao & Zeng, 2012; Zeng & Zhao, 2013).

5.1. Column and constraint generation method

Bounded mixed-integer sets defined by linear constraints have a finite number of ex-

treme points (L. Zhao & Zeng, 2012). Then, let Ext
[
Us
]
⊂ Us ∀s ∈ S be the sets

containing every extreme point of their respective uncertainty set. The problem presented

in (10a)-(10b) is equivalent to solving the following problem:

min
x∈X ,ϑ

∑
s∈S

psϑs (11a)

s.t. ϑs ≥ Q(x, ξ) ∀ξ ∈ Ext
[
Us
]
, s ∈ S (11b)
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We define Rs ⊂ Ext
[
Us
]
∀s ∈ S , a subset containing a partial enumeration of the

extreme points. Then, a valid relaxation of the problem (11a)-(11b) is:

min
x∈X ,ϑ

∑
s∈S

psϑs (12a)

s.t. ϑs ≥ Q(x, ξ) ∀ξ ∈ Rs,∀s ∈ S (12b)

The CCG algorithm consists of the iterative addition of non-trivial scenarios to the

subsets Rs ∀s ∈ S , until the optimal solution of the relaxed problem remains invariant.

To add scenarios to eachRs, the earthquake attacker-defender problem (4) must be solved

for each seismic source s under a given first stage solution x:

Fs(x) = max
ξ∈Us

min
y∈Y(x,ξ)

e>y ∀s ∈ S (13)

The CCG algorithm for the DDSRO problem, presented in Algorithm 1, converges in

a finite number of iterations for bounded mixed integer sets with linear constraints given

by Us ∀s ∈ S and polyhedral Y(x, ξ), as it is in this case (L. Zhao & Zeng, 2012).

In the next section, we discuss a solution method for the earthquake attacker-defender

problem (13).

Algorithm 1 Column and Constraint Generation Method

1: Set r ← 0,Rs ← ∅ ∀s ∈ S
2: repeat
3: (x,ϑ)← optimal solution of the master problem (12a)-(12b)
4: for s in S do
5: Evaluate Fs(x) : ξs,r+1 ← optimal solution of (13)
6: Rs ← Rs ∪ {ξs,r+1}
7: end for
8: r ← r + 1
9: until

∑
s∈S psFs(x) ≤

∑
s∈S psϑs

10: return (x,ϑ)
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5.2. Alternating direction method

The inner level problem of the earthquake attacker-defender model (13) is a linear

minimization problem which is feasible for any possible attack, in fact, problem (3a)-(3u)

always admits the solution given by P LS = D and all other operational variables set to 0.

Thus, through strong duality, an equivalent linear maximization problem can be obtained.

A compact formulation of the problem for a given s seismic source and a fixed investment

decision x is as follows:

max
ξ,π

ξ>E(x)π + f(x)>π (14a)

s.t. ξ ∈ US (14b)

π ∈ P , (14c)

where E(x) and f(x) are a matrix and a vector of the corresponding dimensions and

with entries defined by affine functions over the investment decision x. The π variables

and the polyhedral set P represent the dual variables and dual constraints of the inner

minimization problem, respectively. Note that the objective function (14a) is bilinear in

variables π and ξ, and the constraints of these two types of variables are disjoint. See

Appendix A for a detailed formulation of this problem.

To solve the problem (14a)-(14c), we propose the adoption of an iterative method for

disjoint bilinear programs named the alternating direction (AD) method which approxi-

mately solves the problem (Konno, 1976; Sun & Lorca, 2015; Lorca & Sun, 2017). This

algorithm optimizes over π with ξ fixed, to then fix the computed π to optimize over ξ,

and alternates until convergence. The formal definition of the method is presented in Al-

gorithm 2. Note that in this case, optimizing over ξ accounts for solving a mixed-integer

linear optimization problem and optimizing over π accounts for solving a linear optimiza-

tion problem.
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Algorithm 2 Alternating Direction Method
1: Choose an initial ξ
2: repeat
3: π ← arg maxπ∈P{ξ

>E(x)π + f(x)>π} with objective ν
4: ξ ← arg maxξ∈U{ξ

>E(x)π + f(x)>π} with objective ν ′

5: until ν = ν
′ or tolerance criterion is met.

6: return (ν, ξ)
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6. CASE STUDY: CHILEAN ELECTRIC POWER SYSTEM

This Section presents exhaustive computational experiments to clarify how the earth-

quake attacker-defender model can provide meaningful insights about the seismic risk

under which the power network is exposed and the support that the data-driven robust op-

timization planning model can contribute to making investments that enhance the seismic

resilience of the power network.

We set all computational experiments on the Chilean power network representation

employed by the system operator, consisting of 281 buses, 365 transmission lines, 362

conventional power units, 192 solar power units and 49 wind power units. Moreover, we

employed the renewable generation and load profiles from Verástegui et al. (2019). In

addition, the loss function in (3a) was defined as L(ydht) =
∑

b∈B P
LS
bdht, so the overall

objective of the operational model is to minimize the total load shedding over the operation

horizon, as previously done in (Lagos et al., 2019). The investment costs in batteries

and transmission line expansions are based on the information provided by the Chilean

Ministry of Energy (MinEnergia, 2020), as well as the set of candidate transmission lines,

which are the ones that operate in the voltage range between 220 kV and 500 kV.

Concerning seismic risk, a collection of 20000 seismic-induced damage scenarios

were considered in this study, simulating earthquakes of 5 Mw (moment magnitude) or

higher. The peak ground acceleration vectors, their seismic source, and their weight were

obtained using the Chilean seismic recurrence model developed in Poulos et al. (2019)

and the ground motion prediction model of Parker et al. (2020). Further, the number of

seismic sources 1 considered is seven, as shown in Figure 3.1. These sources are consti-

tuted of three subduction interface zones (zones 1–3), and four subduction intraslab zones

(zones 4–7) Poulos et al. (2017). Then, the available capacity of all substations at different

recovery stages was determined using the technical specifications for anchored substations

1The definition of seismic source is presented in Section 3.1.



32

(or those with high seismic performance) provided in FEMA (2013). Furthermore, in the

optimization models, we considered a one-month operation horizon, divided into recovery

stages based on the discretized restoration process description for substations shown in

FEMA (2013). The details of these stages are covered in each experiment.

Uncertainty sets were built using dimensionality reduction, with the minimum dimen-

sions which explained 90% or more of the data variance. Clustering was performed onto

the whitened data samples, and we defined the number of clusters as one order of mag-

nitude less than the original number of data points for each set (dividing by 10). For the

damage threshold that implies disconnection of transmission lines (see Section 4.2.1), we

fixed δ = 70.1%, which is slightly higher than the capacity derate of substations with

extensive damage (70%), as shown in FEMA (2013). Thus, a line is connected if its

capacity derate is less or equal than the one caused by extensive damage in one of its

connecting substations and the other with no damage. It is disconnected if its derate is

greater than the threshold. Furthermore, we chose three risk values for the test cases, with

γ ∈ {95.0%, 97, 5%, 99.0%}, as explained in Step 8 of Section 4.2.2.

The models and algorithms developed in this work were programmed in the Julia v1.5

language, using the embedded package JuMP for mathematical optimization with Gurobi

solver v9.0. We set an optimality gap of 1% for all cases and a convergence tolerance

of 3% for the alternating direction algorithm, with an initial solution given by ξ = 1 2.

We executed all experiments in a Dell PowerEdge R360 server with an Intel Xeon CPU

E5-2630 v4 processor running at 2.20GHz, with 64 GB of RAM.

In what follows, Section 6.1 analyses the impact of earthquakes from different seismic

sources using the developed attacker-defender model. Then, Section 6.2 proposes various

investment plans based on the DDSRO model’s solutions, depending on the disposable

2In this thesis, we chose the optimality gap and the convergence tolerance for the sake of computational
tractability.
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budget and the degree of conservativeness of the decision-maker, for enhancing power

network seismic resilience.

6.1. Identification and analysis of critical earthquakes

In this experimental setup, we considered three recovery stages for the one-month

operation horizon. The first recovery stage lasts for 3 days and considers the available

capacities of components immediately after an earthquake. The other two stages consider

3 days and 7 days of recovery, which last fir 4 days and 23 days, respectively. In addition,

we used 4 representative days of 24 hours to model the behavior of each stage.

The objective values of the earthquake attacker-defender model solutions for each seis-

mic source under different values of γ are presented in Figure 6.1, considering no prior

investments in the network. As expected, the objective values obtained are non-decreasing

in γ due to the enlargement that this parameter causes in the uncertainty sets. Further, we

note that the objective values vary strongly depending on the seismic source. For instance,

Zone 4 and Zone 6 produce almost no load shedding after an earthquake generated by

these sources. Moreover, the source that produces the largest load shedding is not al-

ways the same. For γ = 95.0%, Zone 5 causes the worst load shedding value, while for

γ = 97.5% and γ = 99.0% the most damaging seismic source is Zone 7. Furthermore,

the last three bars in the figure show the expected value of the worst-case costs from the

earthquake attacker-defender model under the random variable that determines the seismic

source. Hence, it helps to understand the overall risk to which the network is subjected.
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Figure 6.1. Objective values for seismic sources and their weighted average

To explore what the attacker-level solutions look like, we show in Figure 6.2 examples

of the damage of substations and transmission lines three days after the occurrence of an

earthquake in seismic source Zone 7 3, for two values of γ. This figure provides valu-

able insights into the vulnerabilities of the given network configuration. The attacker level

builds optimized seismic attacks based on the earthquake data employed by the model, ac-

counting for the temporal and spatial correlation of the substations’ capacity derates, so we

can describe the worst possible earthquakes generated in each seismic zone for different

levels of probability mass included (defined by γ) through this data-driven optimization

scheme. Therefore, the earthquake attacker-defender model delivers helpful comprehen-

sion for decision-making of seismic-resilient planning by leveraging the data at hand.

3Another example can be found in Appendix E.
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Figure 6.2. Maps of damage three days after the occurrence of an
earthquake

originated from seismic source Zone 7: a) γ = 95%, and b) γ = 99%

Regarding the computational tractability of the earthquake attacker-defender model,

Table 6.1 presents the minimum, maximum and average running time over the seven seis-

mic sources until convergence of Algorithm 2, under the different γ values. We can see
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that the running times do not vary significantly, and the problem is solved within minutes,

which is very efficient for its practical application by decision makers.

Table 6.1. Running time in minutes.

γ 95.0% 97.5% 99.0%

Min 3.3 4.1 3.3

Max 7.9 11.7 6.9

Avg 5.3 7.4 5.0

6.2. Planning against critical earthquakes

For the experiments of this section, we used two recovery stages during the month of

operation. The first recovery stage lasts for 7 days and considers the damage states imme-

diately after the earthquake, and the second recovery stage considers 7 days of recovery

and ends 23 days after. We modeled the load and renewable generation profiles through a

single representative day composed of 6 ordered blocks of 4 hours each.

This part analyzes the DDSRO model’s solutions and computational performance for

three values of γ and two different resilience budgets of 50 and 100 million USD.

Table 6.2. Investment results for the DDSRO model.

γ 95.0% 97.5% 99.0%
I 50 100 50 100 50 100
Load shedding (GWh) 494.4 494.2 707.1 698.9 887.4 873.5
L.S. reduction (%) 2.3 2.4 9.4 10.5 8.4 9.8
Expanded lines 15 19 14 19 16 23
Batteries installed 0 1 0 0 0 0
Invested in lines (%) 100 88.9 100 100 100 100
ENC 6.0 7.4 6.0 9.4 9.8 12.9
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In Table 6.2 we present a summary of various relevant features of the investment so-

lutions. First, we confirm that the expected value of load shedding increases with γ and

decreases with a larger resilience budget. Then, we note that the reduction in the expected

load shedding for different investment configurations compared to the power network with

no investment is significant, especially for γ = 97.5% and γ = 99.0%. Moreover, The

first 50 million USD proves to be proportionally more beneficial than investing 100 mil-

lion USD. Therefore, the optimized seismic-resilient investment proves to be of benefit

regarding the improvement of energy supply. In addition, the model decides to invest al-

most the totality of the resilience budget in transmission lines, as reported in the number

of expanded lines, batteries installed, and the percentage of the budget invested in lines.

Thus, under this analysis, current battery energy storage systems are not cost-effective

concerning seismic resilience.

Moreover, we used a diversification index to analyze the diversification degree of the

investments: the index termed effective number of constituents or simply ENC (Carli et al.,

2014). In our context, the ENC index is defined in eq. (15). The ENC reaches a minimum

of 1 if the investment decision considers investments in only one network component, and

a maximum equal to |LC |+ |B| when the investment decision assigns an equal percentage

of the budget to every component in which the the model can invest.

ENC =
I2∑

j∈LC
(
cljx

l
j

)2
+
∑

b∈B
(
cpbPb

)2 (15)

The ENC reported in Table 6.2 show that the diversification degree of the investment

is consistently non-decreasing in the budget and γ. Hence, more diversified investments,

i.e., investments distributed equitably and in many assets, are desirable when the power

network faces higher levels of seismic-induced component damage and when the decision-

maker has a larger resilience budget.
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Figure 6.3. Investment solution for a 100 MMUSD budget and γ = 99.0%.

To further explore the DDSRO solutions, we summarized the first five most signifi-

cant investments made under each investment scheme in Table 6.3, in descending order of

magnitude for the two resilience budgets given a fixed value of γ. For the complete names

and locations of these components, see Table B.1 in the Appendix. First, we note that the

optimizer invests in L5 when the resilience budget is 50 MMUSD, despite the value of

γ, while there is no common investment among the five most extensive investments for

the 100 MMUSD case. Further, we see that L2, L3, and L5 appear three or more times

between the five largest investments, so we can expect that these transmission lines sig-

nificantly impact the resilience of the Chilean power system. An interesting fact to notice
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is that, as presented in Table B.1, 13 of the 17 components presented here are located

in the far north macro-zone of Chile, under the definition of macro-zones in (MinEner-

gia, 2020), so based on our analysis the best investment opportunities for enhancing the

seismic resilience are found there. Furthermore, a closer look at an investment solution,

as shown in Figure 6.3, allows to observe that the model invests most of the budget in a

specific zone 4. These results present evidence that there are no one-fits-all solutions for

enhancing the power system’s seismic resilience and ratifying the value of using a flexible

optimization framework since the optimal investments that minimize the load shedding

change according to the level of risk to which the system is exposed.

Table 6.3. First five largest investments

γ I Investments

95.0%
50 L1, L2, L3, L4, L5

100 L6, L7, L8, B1, L3

97.5%
50 L9, L2, L5, L10, L11

100 L9, L10, L2, L3, L4

99.0%
50 L12, L5, L13, L14, L15

100 L6, L13, L5, L16, L12

Regarding computational tractability, the running time and the number of master iter-

ations until convergence of Algorithm 1 for the DDSRO model are shown in Table 6.4.

We can observe that the running time increases with the allowed budget and the value of

γ. It is important to remark here that with each master iteration, the algorithm adds one

seismic-induced damage scenario for each seismic source considered, which in our study

case means a total of seven scenarios. These addition of scenarios are computationally ex-

pensive and explains why running time varies widely depending on the number of master

4This solution shows that model prefers investments in the most economical macro-zone to make transmis-
sion lines expansions, as noted in the Table D.1
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iterations, as seen in the cases when four such iterations are needed. However, the running

time presented, which varies between 15 an 92 minutes for a large real-world power sys-

tem, shows an exceptional efficiency of the proposed approach, given that this model is to

be employed in planning studies.

Table 6.4. Computational performance of the DDSRO model.

γ 95.0% 97.5% 99.0%

I 50 100 50 100 50 100

Running time (min) 15.4 19.3 19.0 21.2 56.2 91.8

Master iterations 3 3 3 3 4 4
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7. CONCLUSIONS

We have developed a data-driven optimization framework for seismic-resilient power

network planning. First, the proposed earthquake attacker-defender model harnesses a

novel uncertainty set for high-dimensional uncertain parameters to unveil the worst-case

network contingencies under different risk levels, using a sequential representation of the

evolution of the system response and restoration after the hazard interdiction. Further,

the DDSRO investment planning model includes multiple earthquake attacker-defender

problems in its inner levels while accounting for distributional information for seismic

sources and choosing optimal transmission lines capacity expansion and siting and sizing

energy storage systems to enhance the power network seismic resilience. These problems

are efficiently solved using the proposed solution method. Computational experiments

on a 281-node representation of the Chilean power system show the effectiveness of the

proposed framework.

Computational experiments on a 281-node representation of the Chilean power system

showed the effectiveness of the proposed framework. On the one hand, The earthquake

attacker-defender model identified worst-case contingencies for each seismic source con-

sidered and different risk levels. Further, we showed that mapping these solutions with

geographical information systems helps visualize critical parts of the power network eas-

ily. On the other hand, we solved the DDSRO model for several combinations of budgets

and conservativeness levels, which provided meaningful insights: 1) unfulfilled power de-

mand can be significantly reduced with seismic-resilient planning, 2) investments in trans-

mission lines are preferred over energy storage systems under the case study, 3) different

investment configurations share no obvious preferable assets, and 4) optimum investment

decisions tend to be more diversified while the risk level increases.

There are valuable future research opportunities in at least four areas. The first corre-

sponds to refining the data on structural fragility, local site conditions, and recovery times
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for each vulnerable component of the network. A second opportunity is seen in incor-

porating the component repair and recovery problem into the system operator’s decision

process. The third line of research should respond to the impacts of investments in new

technologies, such as storage and power generation with hydrogen or the construction of

concentrated solar power plants. Finally, it is desirable to improve the solution method-

ology to make it more efficient, especially in solving the data-driven stochastic-robust

problem through the column and constraint generation algorithm, due to the significant

sensibility of the execution time to the number of master iterations.
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A. DUAL OPERATIONAL PROBLEM

When the loss function in (3a) is defined asL(ydht) =
∑

i∈GF C
g
i P

g
dhit+

∑
b∈B C

LS
b PLS

bdht,

the dual problem of model (3a)-(3u) is as follows:

max
π

{∑
t∈T

∑
d∈D

∑
h∈H

{∑
i∈GF
−P g

i (1− ϕb(i),t)π1
dhit

+
∑
i∈GV
−P g

dhi(1− ϕb(i),t)π
2
dhit

+
∑
j∈LC
−(fj + xlj)

(
(1− ζjt)(π4

dhjt + π5
dhjt) + (1− zjt)(π6

dhjt + π7
dhjt)

)
+
∑

j∈L\LC
−fj

(
(1− ζjt)(π4

dhjt + π5
dhjt) + (1− zjt)(π6

dhjt + π7
dhjt)

)
+
∑
j∈L

−Mzjt(π
8
dhjt + π9

dhjt)

+
∑
b∈B

(
−Dbdh(π

3
bdht + π12

bdht) + θπ10
bdht − θπ11

bdht

)
+
∑
b∈B

(1− ϕbt)
(
− Ebπ13

bdht − Pb(π14
bdht + π15

bdht)
)}}

s.t.
{
π1
dhit + π12

b(i),d,h,t + Cg
i τt

pDd
H
≥ 0 ∀i ∈ GF

π2
dhit + π12

b(i),d,h,t ≥ 0 ∀i ∈ GV

π3
bdht + π12

bdht + CLS
b τt

pDd
H
≥ 0 ∀b ∈ B

− π4
dhjt + π5

dhjt − π6
dhjt + π7

dhjt − π8
dhjt + π9

dhjt − π12
b+(j),d,h,t

+ π12
b−(j),d,h,t = 0 ∀j ∈ L

}
, ∀d ∈ D, h ∈ H, t ∈ T{ ∑

j|b+(j)=b

Bj(π
8
dhjt − π9

dhjt) +
∑

j|b−(j)=b

Bj(π
9
dhjt − π8

dhjt)

− π10
bdht + π11

bdht = 0 ∀h ∈ H
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− π12
b,d,h−1,t + π14

b,d,h−1,t − pHηchaπ16
bdht ≥ 0 ∀h ∈ H \ {1}

− π12
b,d,h=H,t + π14

b,d,h=H,t − pHηchaπ17
bdt ≥ 0

π12
b,d,h−1,t + π15

b,d,h−1,t +
pH

ηdis
π16
bdht ≥ 0 ∀h ∈ H \ {1}

π12
b,d,h=H,t + π15

b,d,h=H,t +
pH

ηdis
π17
bdt ≥ 0

π13
b,d,h−1,t + π16

b,d,h−1,t − π16
bdht ≥ 0 ∀h ∈ H \ {1, 2}

π13
b,d,h=1,t − π16

b,d,h=2,t + π17
bdt ≥ 0

π13
b,d,h=H,t + π16

b,d,h=H,t − π17
bdt ≥ 0

}
, ∀b ∈ B, d ∈ D, t ∈ T

π1,π2,π3,π4,π5,π6,π7,π8,π9,π10,π11,π13,π14,π15 ≥ 0

B. NETWORK COMPONENTS

The nomenclature and the macro-zone of each component mentioned in this work are

presented in Table B.1. Macro-zones are defined as in MinEnergia (2020), namely: Far

north, Near north, Center, South.
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Table B.1. Network components nomenclature and location

Lines

Compact name Line Macro-zone

L1 Charrua220 - Concepcion154 Center

L2 Ohiggins220 BP2 - Farellon220 Far north

L3 LVilos220 - DonaCarmen220 Near north

L4 Parinacota220 - Condores220 Far north

L5 Farellon220 - Chimborazo220 Far north

L6 Ohiggins220 BP2 - Puri220 Far north

L7 Miraje220 - Atacama220 BP2 Far north

L8 LVilos220 - Nogales220 Near north

L9 Laberinto220 - NvaZaldivar220 Far north

L10 SanLuis220 - ASanta220 Center

L11 NvaZaldivar220 - Sulfuros220 Far north

L12 Crucero220 - Tocopilla220 BP2 Far north

L13 Palestina220 - Domeyko220 Far north

L14 Ohiggins220 BP1 - Palestina220 Far north

L15 Encuentro220 - Collahuasi220 Far north

L16 Kapatur220 BP1 - Laberinto220 Far north

Storage systems

Compact name Attachment substation Macro-zone

B1 Tamarugal066 Far north

C. WEIGHTS OF SEISMIC SOURCES

The weights of seismic sources used in Section 6 are provided in the following table.
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Table C.1. Seismic sources’ weights.

Zone Weight

Zone 1 0.131607

Zone 2 0.224456

Zone 3 0.058417

Zone 4 0.094556

Zone 5 0.337124

Zone 6 0.088668

Zone 7 0.065171

D. EXPANSION COSTS OF TRANSMISSION LINES

The costs of transmission lines expansion used in Section 6, based on the information

provided by MinEnergia (2020), are as shown in the following table.

Macro-zone 220 kV (250 MW) 500 kV (1500 MW)

Far north 173 452

Near north 226 590

Center 366 956

South 375 981

Table D.1. Expansion costs of transmission lines.

The reference cost for 220 kV lines for the near north, the center, and the south, was

estimated based on the expansion cost relationship between the 500 kV and 220 kV lines

in the large north.
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E. MORE EXAMPLES OF ATTACKER-DEFENDER SOLUTIONS

Here we present another example of a solution identified by the attacker-defender

model.

Figure E.1. Maps of damage three days after the occurrence of an
earthquake originated from seismic source Zone 2: a) γ = 95%, and b)

γ = 99%


