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MATIAS COURDURIER

ESTEBAN SAEZ

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering



Santiago de Chile, June 2015

c© 2015, JOSÉ PINTO
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ABSTRACT

We present an efficient method to solve high-frequency scattering problems by het-

erogenous penetrable objects in two dimensions. This is achieved by extending the so-

called Local Multiple Traces Formulation, introduced recently by Hiptmair & Jerez-Hanckes,

to purely spectral discretizations employing weighted Chebyshev polynomials. Together

with regularization strategies to handle boundary integral operators singularities, matrix

entries are quickly computed via the Fast Fourier Transform. The resulting Fredholm

first-kind formulation is free from spurious resonances, and though ill-conditioned, it pos-

sesses built-in preconditioners based on Calderón-type techniques. Numerical results are

presented in order to validete obtained for different settings validate the previous claims

and greatly motivate future research in this direction.

Keywords: Boundary integral equations; spectral elements; multiple traces formu-

lation; preconditioning; high-frequency scattering.
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RESUMEN

Un método eficiente para resolver problemas de difracción en alta frecuencia para do-

minios heterogéneos es presentado. Esto se logra extendiendo la Formulación de Múltiples

Trazas Locales, introducida recientemente por Hiptmair & Jerez-Hanckes, a una dis-

cretización puramente espectral que emplea polinomios de Chebyshev con pesos. Esto

junto con estrategias para manejar las singularidades de los operadores integrales, permite

emplear la transformada rápida de Fourier para calcular las entradas de la matriz. El re-

sultado es una formulación de Fredholm de primer tipo, libre de resonancias espurias, que

aunque mal condicionada, tiene un precondicionador natural basado en la identidad de

Calderón. Resultados numéricos para diferentes configuraciones son presentados con el

objetivo de validar los puntos anteriores, y además motivan a seguir investigando en esta

lı́nea.

Keywords: Ecuaciones integrales de frontera; elementos espectrales; formulación de

múltiples trazas; precondicionamiento; difracción en alta frecuencia.
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1. INTRODUCTION

1.1. Basic Notation

Rd : The d-dimensional real space with Euclidean norm, and usual topology,

L2(Ω) : The space of class of the square integrable functions on the domain Ω ,

x : Bold variables represent vectors in Rd,

0 : Zero vector in Rd,

‖x‖ : Euclidean norm of x ∈ Rd,

‖x‖∞ : max
i=1...d

|xi|,

(a, b)V : Interior product on V between vectors a and b,.

bsc : Lower integer part of a real number s, ie. b0.28c = 0,

Ā : Closure of a set A ⊂ Rd,

B(x0, r) : Open ball centered on x0 and radius r on Rd,

Ck(Ω) : Space of k-times continuously differentiable functions on Ω,

Ck0 (Ω) : Subset of Ck(Ω) of functions with compact support on Ω ,

(V )′ : Topological dual of a vectorial space V ,

H
(1)
k : Hankel function of first kind and order k see (Abramowitz, 1988),

span{x1, . . . , xn} : Vectorial space generated by vectos x1 . . . , xn.
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1.2. Scattering Problems

The scattering problems are the ones related to the collision of waves with solid ma-

terials. In particular there are two main problems, the direct scattering problem where

a known incident wave illuminate a known solid domain so the scattered wave has to

be found, and the inverse scattering problem, were the incident and scattering wave are

known and one search for the form and proprieties of the domain.

The theory of scattering problems has been an important field of studies during the last

century with numbers of works and applications. Is important to mention that the theory

was rapidly pushed for the need of its applications, especially the radar and it usage for

the armies. Now at days its applications include design of antennas (Sadiku, 1992),the

analysis of defects on semiconductors (Niu, Luo, & Liu, 2014), radar imaging (Borden,

1999) and biomedical imaging (Ammari, 2008). In the following, we will proceed with a

more depth description of the direct scattering problem that will be the motivation of the

studies of this thesis.

Consider a bounded penetrable object Ω in the two dimensional space. This object is

illuminated by an incident wave, and as a result, part of the wave penetrates the object and

part is scattered to the exterior medium, where it recombines with the incident wave. The

direct scattering problem is to find the scattered wave1, where the properties of the domain

Ω and the incident wave are known. The situation is illustrated on figure 1.1

The problem can be physically interpreted as an acoustic or electromagnetic one, de-

pending of the nature of the incident wave. On both cases, we write the time dependence

1Defined in the whole space as the one that penetrates inside Ω and the ones that is scattered to the exterior
medium outside of Ω
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Figure 1.1. Direct scattering problem in Ω which is composed of two do-
mains Ω = Ω1 ∪ Ω2

of the wave as:

U(x, y, t) = u(x, y)eiωt, (1.1)

where ω is the angular frequency. Then the wave equation (or Maxwell equations in case

of electromagnetic) can be reduced to the Helmholtz equation see (Jin, 2011) (Section

4.2). This means that the equation for the scattered wave is the following:

(∆ + κ2)u = 0, (1.2)

where u(x, y) denotes the amplitude of the scattered wave at a point (x, y). In general,

the quantity u is complex-valued and has to be interpreted as a phasor (Jin, 2011) (Section

1.7). Notice that the problem consists in finding u over the whole two dimensional space,

so it is not a bounded problem.

The quantity κ in equation (1.2) is called wave number. In the Electromagnetic case

can be defined as:

κ =
√
εµω, (1.3)

3



where ε, µ are the electrical parameters 2 of Ω. The wave number is not constant on the

space, but it will be assumed that it is constant outside of Ω and piecewise constant inside
3 . Moreover, if κ0 denotes the exterior wave number and (κi)i≥1 the finite values in the

interior, then it will be assumed the following for the wave numbers:

κ0 = ω, (1.4)

κi =
√
εiκ0. (1.5)

Aside of the Helmholtz equation, the scattered wave fulfills the Sommerfeld radiation con-

dition (Sommerfeld, 1949). This condition forces the scattered wave to irradiate towards

infinity, instead of coming from infinity to Ω. Mathematically, it is expressed as follows:

lim
‖x‖→∞

‖x‖
1
2

(
∂

∂‖x‖
− ik

)
u(x) = 0. (1.6)

1.3. Mathematical Tools

As previously mentioned, a mathematical background is required to correctly formu-

late the scattering problem. Later, it will be clear that these tools are not only useful to

state the problem, but also necessary for the study of the numerical scheme that will be

implemented on this thesis. In this Section, we define some basic concepts and present

classical results. None of the results are new so proofs are omitted, and they can be found

on the monographs by (Sauter & Christoph, 2010) or (Steinbach, 2008) and references

therein. Also refer to Section 1.1 for basic notation.

Let Ω denote an arbitrary open and bounded subset of Rd, and let Γ denote the bound-

ary ∂Ω that will be assumed to be compact. The open complement of Ω will be denoted

2Permittivity and Permeability.
3 Ω could be divided in finite disjoint subsets with positive area, where the wave number is constant
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Ω0 := Rd\Ω . Notions of smoothness of the physical domains are introduced in the fol-

lowing.

Definition 1.1. The domain Ω is called Lipschitz if there is a finite open cover {Gi}i∈I
and a family of mappings {Fi : B(0, 1) 7→ Gi}i∈I such that

(i) Fi is bijective ∀i ∈ I ,

(ii) Fi, F−1
i are Lipschitz maps,and

(iii) the image of the upper half of B(0, 1) by Fi is contained on Ω ∩ Gi, the lower

half is in Ωc ∩Gi and boundary of any of the halfs is in Γ ∩Gi, for all i ∈ I .

Lipschitz domains are the ones that can locally parametrized by Lipschitz functions.

In the same spirit, Ck-domain are Lipschitz domains, where the condition (ii) is switched

for:

Fi, F
−1
i are Ck(Ω) maps.

1.3.1. Functional Spaces

Basic tools for the analysis of partial differential equations are the notions of Banach

and Hilbert spaces, in particular Lp spaces, and some key theorems such as Hahn-Banach

theorem and open mapping theorem. Those topics are assumed to be known (Rudin,

2006).

In this work, all the functional spaces are be related to the Hilbert space L2(Ω) with the

usual interior product. For Lipschitz or Ck-domains n denotes the outward normal of ∂Ω,

that is well defined and has components on L∞(Γ) (Whitney, 2012).

Definition 1.2. Let f ∈ L2(Ω) for i ∈ {1 . . . d}. A class ∂xif of measurable functions

differing only in a zero measure set, is called a weak derivative of f respect to xi if

(f, ∂xig)L2(Ω) = −(∂xif, g)L2(Ω) ,∀g ∈ C∞0 (Ω).

5



It is clear now that all the differential operators such as the gradient or divergence

can be defined on a weak form. For a vector m ∈ Πd
i=1N and f ∈ L2(Ω) the following

differential operators can be defined:

∂mf :=

f m = 0,

∂m1
x1
. . . ∂md

xd
f m 6= 0.

Definition 1.3. Let n ∈ N. The space

Hn(Ω) := {f ∈ L2(Ω) : ∂mf ∈ L2(Ω) ∀m ∈ Πd
i=1N : ‖m‖∞ ≤ n},

is called a Sobolev space on Ω. Equivalently, the Sobolev spaces can be defined as the

completion (or clausre) of C∞(Ω) with the norm:

‖f‖2
n :=

∑
α:‖α‖∞≤n

‖∂αf‖2
L2(Ω).

Of great importance are the Sobolev spaces that result of the completion of C∞0 (Ω) with

the same norm. These spaces are denoted Hn
0 (Ω) := C∞0 (Ω).

REMARK 1.1. For f ∈ H2(Ω) the definition of Sobolev spaces implies:

∂pf ∈ L2(Ω) ∂q∂pf ∈ L2(Ω) ,∀(p, q) : ‖p‖∞ = ‖q‖∞ = 1,

this means that ∂pf ∈ H1(Ω) ∀p : ‖p‖∞ = 1. The result can be generalized in the

following way, let n ∈ N, p ∈ Πd
i=1N : ‖p‖∞ ≤ n and f ∈ Hn(Ω), then

∂pf ∈ Hn−‖p‖∞(Ω). (1.7)

For the definition of Sobolev spaces of non-integer order, it is necessary to introduce

the notion of the norm of a non-integer derivative. Let l ∈ (0, 1) and f ∈ L2(Ω) define the

Sobolev − Slobodeckii norm as:

|f |2l :=

∫
Ω

∫
Ω

|f(x)− f(y)|2

‖x− y‖d+2l
dxdy.

6



For s ∈ R+, we split it as s = bsc + l, and then define the Sobolev space Hs(Ω) (resp.

Hs
0(Ω)) as the the completion of C∞(Ω) (resp. C∞0 (Ω)) with the norm:

‖f‖2
s = ‖f‖2

bsc +
∑

‖α‖∞≤bsc

|∂αf |2l .

PROPOSITION 1.1. For s ≥ 0, the Sobolev spaces Hs(Ω) are Hilbert spaces with

interior product given by:

(f, g)Hs :=
∑

‖α‖∞≤bsc

(∂αf, ∂αg)L2(Ω) +

∫
Ω

∫
Ω

(f(x)− f(y))(g(x)− g(y))

‖x− y‖d+2l
dxdy.

The Sobolev spaces defined above, are all contained in L2(Ω), this implies that theirs

duals are going to contain the dual space of L2(Ω). By the Riez theorem ((Sauter &

Christoph, 2010) theorem 2.1.17), one can identify the dual space of L2(Ω) with itself, in

the sense that for allG ∈ L2(Ω)′ there is a unique g ∈ L2(Ω) such thatG(f) = (f, g)L2(Ω).

Doing that the following inclusions hold:

Hs2(Ω) ⊂ Hs1(Ω) ⊂ L2(Ω) ⊂ (Hs1(Ω))′ ⊂ (Hs2(Ω))′,

where the action of an element of (Hs2(Ω))′ over one in Hs2(Ω) is given by the bilinear

form:

〈f, g〉, f ∈ (Hs2(Ω)) , g ∈ (Hs2(Ω))′,

named duality product, which is a continuous extension of the L2(Ω)-interior product. The

dual of Sobolev spaces are denoted with negative index:

(Hs(Ω))′ = H−s0 (Ω),

(Hs
0(Ω))′ = H−s(Ω).

When the domain is not bounded the following spaces will be needed.

7



Definition 1.4. For s > 0 and an open domain A

Hs
loc(A) := {f ∈ L2

loc(A) : f |U ∈ Hs(U) for every open and bounded U ⊂ A} (1.8)

Theorem 1.1. (Sobolev Embedding Theorem)((Sauter & Christoph, 2010) theorem

2.5.4). If Ω is Lipschitz, then for s > d/2 the spacesHs(Ω) can be continuously embedded
4 on C0(Ω). In the case in which Ω is a Ck-domain then Hs(Ω) can be continuously

embedded on Cm(Ω) for m < s− d/2, and s < k.

Finally, we define the Sobolev spaces over a manifold. 5

Definition 1.5. Let k ∈ N and k < d. A set M ⊂ Rd is called a k-dimensional

manifold if there is a finite collection of subsets {Mi}i∈I and a set of bijective continuous

maps, with continuous inverse {Fi : B(0, 1) 7→Mi}i∈I such that, ∪Mi = M .

For a manifold M a partition of the unity {φi}i∈I of C∞0 functions such that :∑
i∈I

φi = 1, φi(x) = 0 , ∀x ∈M\Mi, (1.9)

can be used to transform a function f : M 7→ R onto a function f̃ : B(0, 1) 7→ R as

f̃ :=
∑
i∈I

f̃i,

f̃i := (φi ◦ Fi)(f ◦ Fi),

and then define the Sobolev norm:

‖f‖2
Hs(M) := (

∑
i∈I

‖f̃i‖2
Hs(B(0,1)))

1/2.

With these tools, the Sobolev spaces can be defined on a manifold. In particular Sobolev

spaces on Γ will play a major role in the next Section.
4 This means that exist a continuous injective maps from Hs(Ω) on C0(Ω), or equivalently that every class
of Hs(Ω) has a C0(Ω) representative
5In this thesis we will restrict to curves.
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REMARK 1.2. For manifolds such that ∂M = ∅ 6 it can be show that

Hs(M) = Hs
0(M) s > 0.

Traditionally, for manifolds the spaceHs
0 is denoted H̃s(M), so in fact the duality relation

for manifolds is denoted.

(Hs(M))′ = H̃−s(M),

(H̃s(M))′ = H−s(M),

an equivalent definition for the spaces H̃s(M) will be given in the presentation of the

multiple trace formulation.

1.3.2. Trace operator

Functional space setting, in particular Sobolev spaces, makes possible to extend the

definition of the differential operators and formulate the partial differential equations in

spaces with suitable properties. But the scattering problem also include conditions on the

boundaries.

When the partial differential equation is considered with functions on Ck(Ω) a condi-

tion of the form f |Γ is well defined because a continuous function can be evaluated on a

zero measure set such as Γ, but when f is a class on a Sobolev space, the definition of the

restriction is not clear.

Theorem 1.2. ((Sauter & Christoph, 2010) theorem 2.6.8). Let Ω be a Lipschitz do-

main, then for all s ∈ (1/2, 3/2) exists two continuous linear operators:

γD : Hs(Ω)→ Hs−1/2(Γ),

γ0
D : Hs

loc(Ω0)→ Hs−1/2(Γ),

6 The boundary of a manifold is defined as the image of ∂B(0, 1) by a continuous extension of the functions
Fi.

9



such that if f ∈ C0(Ω), andf0 ∈ C0(Ω0) are representants of a class on the Sobolev spaces,

then

γDf = f |Γ,

γ0
Df0 = f0|Γ.

The operator γD is called interior Dirichlet trace7, this is in agreement with the con-

dition u|Γ = g that is called Dirichlet condition. Also, the flux or Neumann trace can be

defined on the Sobolev spaces as:

γNf = (n, γD∇f)Rd ,

γ0
Nf0 = (−n, γ0

D∇f0)Rd ,

where the interior (resp. exterior) Neumann trace is defined on H2(Ω) (resp. H2
loc(Ω0)),

but it can be extended to a continuous linear operator between the following spaces:

γN : H1(Ω) → H−1/2(Γ),

γ0
N : H1

loc(Ω0) → H−1/2(Γ).

With the notion of traces, the whole scattering problem can be formulated on Sobolev

spaces. Now the attention goes to the numerical method to solve it. Most of the numerical

methods make use of the integration by parts formulas, this can also be done in Sobolev

spaces, due to the density of the space C∞(Ω). For seek completeness we present one

result.

PROPOSITION 1.2. ((Sauter & Christoph, 2010) theorem 2.7.3). Let Ω be a Lipschitz

domain and f ∈ [H1(Ω)]d then:∫
Ω

div(f)dx =

∫
Γ

n · γDfdSx. (1.10)

7γ0d is called exterior Dirichlet trace

10



1.3.3. Boundary element method

In this Section, we introduce the Boundary element method (shortened BEM) . The

BEM, also called method of moments in some engineering literature, is a method to dis-

cretize partial differential equations similar to finite elements or finite differences. The

main difference is that in BEM only degrees of freedom on the boundaries of the domains

are defined, leading to much smaller linear systems. This characteristic make BEM suit-

able for problems where the domain is unbounded, but the boundary is finite. For example,

in the direct scattering problem the domain is Ω∪Ω0 unbounded, but the boundary is only

Γ.

The BEM is going to be introduced with a practical example, very similar to the scat-

tering problem. Consider the problem to find u : R2 7→ R such that:

(−∆− κ2
1)u(x, y) = 0 (x, y) ∈ Ω, (1.11)

(−∆− κ2
0)u(x, y) = 0 (x, y) ∈ Ω0, (1.12)

γDu(x, y) = γ0
Du(x, y) = gD(x, y) (x, y) ∈ Γ, (1.13)

+radiation condition, (1.14)

where the domain Ω is assumed to be at least Lipschitz. Notice that this problem is un-

bounded because u has to be defined on Ω0 . The key point for BEM is the representation

theorem, it states that a function that fulfills the equations (1.11) and (1.12) can be recon-

structed from its values at the boundary. Before present the theorem some tools are de-

fined. To simplify the notation, the following auxiliary variables are introduced Ω1 := Ω,

γ1
D := γD and γ1

N := γN .

Definition 1.6. For κ ∈ C, let Gκ : R2 × R2 → R given by

Gκ(x, y) = − i
4
H

(1)
0 (κ‖x− y‖), (1.15)
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is called the fundamental solution of the Helmholtz equation. Define the single layer and

double layer potentials as

(Sif)(x) =

∫
Γ

Gκi(x, y)f(y)dSy x /∈ Γ Single layer potential, (1.16)

(Dif)(x) =

∫
Γ

γiNGκi(x, y)f(y)dSy x /∈ Γ Double layer potential. (1.17)

Theorem 1.3. ((Hiptmair & Jerez-Hanckes, 2012) theorem 2). The function u solves

equations (1.11) , (1.12) and (1.14) if and only if it can be represented as:

u|Ωi
= (Diγ

i
Du)|Ωi

− (Siγ
i
Nu)|Ωi

i ∈ {0, 1}. (1.18)

The next step is to obtain an equation that only involves the traces of u. For this

the idea is to take traces at both sides of 1.18. This is not trivial because Gκ(x, y) has a

logarithmic singularity on x = y and thus the potentials are not defined on Γ. Then we

need assure the regularity of the potential in order to the trace be well defined.

PROPOSITION 1.3. ((Sauter & Christoph, 2010) theorem 3.1.16). For s ∈ (−1/2, 1/2)

and i ∈ {0, 1}the following operators are linear and continuous:

Si : H−1/2+s(Γ)→ H1+s
loc (R2), (1.19)

Di : H1/2+s(Γ)→ H1+s
loc (R2\Γ). (1.20)

Now the original problem is to find u ∈ H1
loc(Ω1 ∪ Ω0) that fulfills (1.11)-(1.14) then

due to theorem 1.2 the traces will have the following regularity:

γiDu ∈ H1/2(Γ), (1.21)

γiNu ∈ H−1/2(Γ). (1.22)
12



By the previous proposition and the regularity of the traces, the potentials have range on

H1+s
loc (R2\Γ). Then by the theorem 1.2 the traces of the Single layer and Double layer

potentials are well defined and give rise to the so called boundary integral operators.

Definition 1.7. For i ∈ {0, 1} the boundary integral operators Vi, Ki, K
′
i,Wi are

defined as:

Vi := γiDSi, (1.23)

Ki := γiDDi −
1

2
Id, (1.24)

K ′i := γiNSi +
1

2
Id, (1.25)

Wi := −γiNDi. (1.26)

Taking traces at both sides of (1.18) the following equations are obtained.

γiDu = (Ki +
1

2
Id)γiDu− ViγiNu, (1.27)

γiNu = −(Wi)γ
i
Du− (K ′i −

1

2
Id)γiNu. (1.28)

Notice that these equations are relations between the traces of u. If one of these equa-

tions is solved, the function can be reconstructed in every point of the space using the

representation formula (1.18). Also, notice that the differential equation problem has been

transformed into a integral equation problem. The boundary element method consists in

discretizing (1.27) or (1.28) as in the finite element method. For example, since the Dirich-

let trace is known by condition (1.13), replacing its value on (1.27) yields to the following

equation for the Neumann trace:

Viγ
i
Nu = (Ki −

1

2
Id)gD. (1.29)

Consider now, a sequence of finite dimensional spaces {Vn}∞n=1 such that ∪nVn is dense

on H−1/2(Γ) and for every n ∈ N, an approximation of the Neumann trace can be written
13



in terms of {enj }nj=1 a basis of Vn as:

un =
n∑
j=1

αnj e
n
j . (1.30)

The coefficients αnj can be obtained using a Galerkin variational scheme. This means, that

instead of imposing equation (1.29) as elements of H1/2(Γ), they have to be equal when

tested with any element of the dual space8 H̃−1/2(Γ) (the same that H−1/2(Γ) because Γ

is a closed curve). At the continuous level give rise to the following equation:

〈ViγiNu, φ〉 = 〈(Ki −
1

2
Id)gD, φ〉 ,∀φ ∈ H−1/2(Γ). (1.31)

At the discrete level, γiNu is changed for the approximation un, and the elements of the

base of Vn are used as test 9. Then we get the following square linear system:

n∑
j=1

αnj 〈Vienj , enk〉 = 〈(Ki −
1

2
Id)gD, e

n
k〉 ∀k ∈ {1 . . . n}. (1.32)

REMARK 1.3. We mention a few relevant points on BEM.

(i) Notice that un is an approximation of the interior or exterior Neumann trace

depending of the value of i ∈ {0, 1} in (1.32).

(ii) If each space Vn is chosen such that Vn ⊂ L2(Γ) ,then the duality products on

(1.32) are reduced to internal products on L2(Γ).

(iii) Many difficulties related to BEM are not clear from this presentation. For ex-

ample, the computation of the boundary integral operators implies computing

integrals of singular functions. Also, the linear system that arise of the dis-

cretization of (1.27) or (1.28) involes a dense matrix. There exist techniques to

tackle these difficulties (Bebendorf, 2008) but this topic is out of the scope of this

introduction.

8This two conditions are equivalent due to Hahn-Banach Theorem.
9They take the role of φ on (1.31).
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(iv) In order to establish that in fact there is convergence un → γ0
Nu or un → γ1

Nu

as well as the existence and uniqueness of the solutions un.

This finish the presentation of boundary element method, the next subSection intro-

duces a method for solving linear systems that is commonly used for BEM, but is mostly

independent of the previous subSections.

1.4. Linear system solver

Let A ∈ Rn×n be an invertible matrix and b ∈ Rn. The focus of this Section is to

present some tools to find the solution x ∈ Rn of the linear system

Ax = b. (1.33)

The main reference for this topic is (Saad, 2003).

1.4.1. Generalized Minimum Residual Method

Let {K}nm=1 be a sequence of subspaces of Rn such that dim(Km) = m. The Gen-

eralized Minimum Residual Method (shortened GMRES) is an iterative method that, in

each step constructs an approximation xm ∈ Km of the solution x of (1.33), such that the

norm of the residual b−Axm is minimized. Before introduce more details of the method,

a basic result on Hilbert spaces is recalled.

Theorem 1.4. ((Saad, 2003) theorem 1.38). Let H be a Hilbert space with interior

product (, )H and S a subspace of H . Then for x ∈ H and xs ∈ S the following affirma-

tions are equivalent:

(i)

min
s∈S
‖x− s‖ = ‖x− xs‖, (1.34)
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(ii)

(x− xs, s)H = 0 ,∀s ∈ S, (1.35)

and the solution xs is unique.

If the theorem 1.4 is applied to find min ‖b−Av‖ = minu∈AKm ‖b−u‖, the equivalent

condition is:

(b− Axm,u)Rn = 0 ,∀u ∈ AKm. (1.36)

The direct method to solve (1.36) would be to use a base for the space Km and get a

m×m linear system. Obviously, this is not optimum, since implies to solve another linear

system. There are other techniques to solve (1.36) most of them are based on obtaining

an orthonormal base of Km and then the problem can be solved easily, the technique used

will depend of the implementation of the GMRES.

The space Km is defined for a initial vector x0 and residual r0 := b− Ax0 as :

Km = span{r0, Ar0, . . . A
m−1r0}. (1.37)

The advantage of GMRES over a direct solver is that it requires less arithmetic operations

per iteration and thus can solve much bigger systems. Also, the GMRES performance

can be boosted with the inclusion of some hierarchical matrix techniques (Bebendorf,

2008). In comparison to others iterative solvers, the main advantage is that GMRES can

be applied to any matrix A, it does not relay on a special structure such as Hermitian

matrix or positive defined. On the down side, GMRES can have a very slow convergence,

and in some basic implementations, requires a large amount of memory if convergence

is not fast10. Some implementations use a restart, which means that have a fixed limit of

number of vectors to store and when reached it restart subspaces with the new K0 given

by the last solution found, however this can broke the entire convergence of the method.

10Because it has to store the basis of the entire Km.
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It is well known that the GMRES produces a sequence of monotonic decreasing residu-

als that converge to the solution of the linear system, but it is not clear how fast it converges

for a general matrix A.

In particular cases there are results like the following:

PROPOSITION 1.4. ((Saad, 2003) Section 6.11.4). If A is positive definite and rn :=

b− Axm then

‖rm‖ ≤
(

1− λ2
min(1/2(AT + A))

λmax(ATA)

)m/2
‖r0‖, (1.38)

where λmax denotes the maximum eigenvalue and λmin is the minimum.

The previous result and also numerical experiments has shown that the convergence

of GMRES is determined by the spectral properties of the matrix A. Even if the prop-

erties imply a slow convergence, the linear system can be changed for other one that is

equivalent, but has better behavior, which is the topic of the next Section.

1.4.2. Preconditioners

As stated before, the performance of GMRES depends of spectral properties of the

matrix A. In fact, the performance of GMRES and any other iterative or method, depends

of the condition number of the matrix, that can be defined as: (1.39).

cond2(A) :=
|λmax|
|λmin|

. (1.39)

A high condition number implies that the linear system is hard to solve, and poor perfor-

mance of the iterative methods. The condition number of a matrix can be changed if it is

multiplied for for a non singular matrix. For example if A−1 is known then:

cond2(A−1A) = cond2(AA−1) = 1. (1.40)
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This is an ideal situation because, if A−1 is known there is not need to use any iterative

method. Sometimes there is a matrix Pr ∈ Rn×n or Pl ∈ Rn×n such that PlA or APr

have a better condition number than A. In these cases, instead of solving (1.33), one of

the following alternative systems can be solved:

(PlA)x = (Plb), (1.41)

(APr)y = b Pry = x, (1.42)

the matrix Pr is called right preconditioner and Pl is called left preconditioner.

1.5. Objectives

The main objective of this thesis, is to extend the multiple traces formulation 11 for the

use of spectral basis of approximations, and then leading to a formulation able to tackle

hight frequency problems. Aside from the theory concerning the model is expected to have

a numerical implementation that can validate the results for cases where the analytical

solution is knowm.

11The multiple trace formulation will be introduced on chapter 2.
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2. LOCAL MULTIPLE TRACES FORMULATION FOR HIGH-FREQUENCY

SCATTERING PROBLEMS

2.1. Introduction

Many areas in engineering ranging from biomedical imaging via ultrasound or elec-

tromagnetic waves to the design of antennae and telescopes, greatly profit from the ever-

increasing computational processing capacity to simulate wave scattering. After decades

of development, Boundary Integral (BI)-based techniques (Sauter & Christoph, 2010),

also known as the Method of Moments (MoM), have rightfully gained their place among

the modeling tools available for mathematicians, physicists and engineers. By employing

the appropriate Green’s functions, these methods portray wave propagation in the entire

unbounded homogeneous space by solving first or second kind Fredholm boundary inte-

gral equations (BIEs) on the surface of the scatterers. However, in most realistic scenarios,

e.g., whenever scatterers are composed of several distinct parts of largely different sizes,

standard discretization of the BIEs leads to large dense linear systems for which existing

iterative solving algorithms perform poorly. Indeed, a fixed number of degrees of freedom

is mandatory per wavelength in order to represent oscillatory solutions quickly leading to

prohibitive computational expenses. Moreover, the conditioning number of the matrices

obtained can be shown to increase with the wavenumber.

Several solution strategies have been proposed to deal with this so-called high fre-

quency problem. One approach seeks to find faster implementations of standard methods,

such as fast multipole methods (Darve & Havé, 2004a, 2004b; Darrigrand, 2002; Chen

& Chiu, 2002). Another body of work relies on asymptotic techniques such as geomet-

rical optics, physical optics and the geometrical theory of diffraction (Lin, 2014; Philbin,

2014). Such approximations are computationally cheap but generally accurate only for

sufficiently high frequencies. Hence, questions arise as to when and how these techniques

should be applied and what to do in situations that require accommodating different ranges
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of frequencies as in the case of highly contrasting materials (heterogenous scatters). Tak-

ing a different direction, and perhaps closer to our work, Bruno and co-workers (Bruno &

Reitich, 2008; Bruno & Lintner, 2013) have solved the arising high-frequency BIEs using

spectral techniques for Nyström methods for perfectly conducting scatterers.

As it usually happens, algorithm hybridization may bring the best of worlds. More

precisely, one seeks to incorporate asymptotic information of the highly oscillatory na-

ture of the problem into the approximation space, yielding Hybrid Numerical-Asymptotic

methods (de La Bourdonnaye, 1994; Chandler-Wilde, Graham, Langdon, & Spence, 2012;

Hewett, Langdon, & Melenk, 2013; Domı́nguez, Graham, & Smyshlyaev, 2007; Ecevit &

Reitich, 2009; Anand, Boubendir, Ecevit, & Reitich, 2010). Although most of these ef-

forts focus on impenetrable scatterers, Groth et al. (Samuel P. Groth, 2013) have recently

proposed an adaptation of the HNA approach to deal with a single penetrable object but

the extension to heterogeneous scatterers is unclear.

Hence, the question remains: is it possible to solve scattering problems for hetero-

geneous objects portraying a large frequency range in practical terms? To answer this,

we will follow the spirit of the Multiple Traces Formulations (MTFs) (Hiptmair & Jerez-

Hanckes, 2012; Claeys, Hiptmair, & Jerez-Hanckes, 2013; Claeys & Hiptmair, 2013;

Claeys, Hiptmair, Jerez-Hanckes, & Pintarelli, 2014) and tackle two-dimensional compos-

ite scatterers with largely varying wavenumbers. In particular, we will focus on a variant

dubbed local since all unknown boundary traces and test functions are locally defined on

subdomain boundaries. As a Galerkin-Petrov formulation, transmission conditions are en-

forced weakly by testing with also locally defined test functions. On the continuous level,

the resulting first-kind Fredholm equation possesses unique solutions. Hence, the formu-

lation is more robust than other formulations, as it naturally rejects spurious resonances,

i.e. non-trivial but unphysical solutions for certain exterior wavenumbers. Moreover, the

resulting block diagonal structure hints at its amenability to parallelization and operator
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preconditioning. Numerical analysis and results in two and three dimensions already val-

idated this for low-order elements. However, and as expected, such discretization bases

are not sufficient for high-frequency regimes, and so we will explore a purely spectral or

p-refinement approximation for boundary unknowns. In doing so, we will further extend

the mathematical formalism provided for the local MTF to account for piecewise Cauchy

data and show that the formulation lends itself to preconditioning quite easily.

Outline. In Section 2.2 we recall and generalize the derivation of local MTF for

piecewise traces, which requires imposing Calderón identities weakly. Readers may skip

technical subsections 2.2.1, 2.2.3, 2.2.4 to check the final formulation in 2.2.5. Spectral

discretization will be carried out using Chebyshev polynomials as shown in Section 2.3.

There we present the numerical analysis required for deducing existence and uniqueness

on the discrete level as well as bounds on the errors based on projection estimates over

weighted Sobolev spaces. Moreover, we discuss the efficient implementation using fast

Fourier techniques (FFT). Numerical results portraying the efficiency and power of the

method proposed, are introduced in Section 2.4 for the simple setting of a circle divided

in two halves. This configuration already present the difficulties inherent to the problem:

triple points and different wavenumbers. Particular attention is given to error convergence

and to the effect of diagonal preconditioning on iterative solvers as shown in Section 2.4.5.

Conclusions and future directions are drawn in section 2.5.

2.2. Generalized Local Multiple Traces Formulation

2.2.1. Functional spaces

Let O be a bounded closed domain. We denote by Lp(O), D(O), D′(O) and Hs(O),

the standard Lebesgue space for p ∈ [1,∞], the space of C∞-compactly supported func-

tions, the space of distributions, and Sobolev spaces for s ≥ 0, respectively, all defined

over O (McLean, 2000). If O has a boundary, we assume that it can be extended to a
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Figure 2.1. Simple model geometry. Observe normal definitions.

closed manifold Õ, with O ⊂ Õ, and write ũ for the extension of u by zero over Õ. For

s > 0 and O Lipschitz, one defines the closed subspace of H̃s(O):

H̃s(O) := {u ∈ Hs(O) : u ∈ Hs(Õ)} (2.1)

provided with the norm ‖u‖H̃s(O) = ‖ũ‖Hs(Õ), where the last norm is the standard one.

For s < 0 we use the L2-duality product so that H̃s(O) is the dual of H−s(O). We will be

particularly interested in

H̃−1/2(O) =
(
H1/2(O)

)′
and H1/2(O) =

(
H̃1/2(O)

)′
. (2.2)

2.2.2. Model problem

Without loss of generality, we consider the geometric arrangement shown in Figure

2.1 where Ω := Ω̄1 ∪ Ω̄2 is a heterogenous simply connected scatterer, composed of two

bounded simply connected subdomains Ω1,Ω2 ∈ R2. The exterior domain is denoted by

Ω0 := R2 \ Ω̄ and interfaces by Γij := ∂Ωi ∩ ∂Ωj . We will make use of the index set

Λi = {j ∈ N : ∂Ωi ∩ ∂Ωj 6= ∅} for i = 0, 1, 2.

For an exciting plane wave uinc, we seek u representing the field scattered in Ω0 and

total field in Ω which satisfy homogeneous Helmholtz equations, with constant wavenum-

bers κi ∈ C \R− in each subdomain Ωi, i = 0, 1, 2. Explicitly, we seek u ∈ H1
loc(Ω ∪Ω0)
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such that

−∆u− κ2
iu = 0, ∀x ∈ ∂Ωi, i = 0, 1, 2, (2.3a)

[γu] = g, ∀x ∈ Γ01 ∪ Γ02, (2.3b)

[γu] = 0, ∀x ∈ Γ12, (2.3c)

+ radiation conditions when ‖x‖ → ∞. (2.3d)

Here we have used the notation γi := (γiD, γ
i
N) for standard Dirichlet and Neumann in-

terior traces on subdomain boundary ∂Ωi, so that (2.3b) and (2.3c) represent inhomoge-

neous, g = −γuinc ∈ H1/2(∂Ωi)×H−1/2(∂Ωi), and homogenous transmission conditions,

respectively, with [·] denoting trace jump across the indicated interface.

2.2.3. Weak transmission conditions

We now extend the local MTF to spectral elements as in (Hiptmair & Jerez-Hanckes,

2012). Such elements will be defined per interface Γij , so instead of working on standard

functional spaces Vi := H1/2(∂Ωi)×H−1/2(∂Ωi), we will rely on “broken” spaces:

Vpw
i := H1/2

pw (∂Ωi)×H−1/2
pw (∂Ωi),

≈
Vi := H̃1/2

pw (∂Ωi)× H̃−1/2
pw (∂Ωi), (2.4)

where

H±1/2
pw (∂Ωi) := {u ∈ D′(∂Ωi) : u|Γij

∈ H±1/2(Γij),∀ j ∈ Λi}, (2.5)

and similarly for H̃±1/2
pw (∂Ωi). Observe that Vpw

i and
≈
Vi are dual to each other when

taking the cross duality product between cartesian elements 〈· , ·〉×, e.g.,
〈
λi , ϕj

〉
× :=〈

λiD , ϕ
j
N

〉
+
〈
λiN , ϕ

j
D

〉
.

Transmission conditions are weakly enforced across each interface Γij . This is done

via local restriction and normal orientation operators, such that adjacent normals are re-

oriented. Then, extension by zero onto the adjacent subdomain boundary is required

23



to set up a single subdomain boundary equation. For this, we make use of restriction-

orientation-and-extension operators, X̃ij mapping Vpw
j → Vpw

i when defined in duality

with
≈
Vi.

2.2.4. Weak Calderón identities

We define our unknowns on subdomains Ωi as λi := (λiD, λ
i
N) ∈ Vpw

i . Notice that

these are not strictly Cauchy data. However, we can weakly enforce Calderón identities

satisfied by each unknown locally. More specifically, integral representations in each sub-

domain are used to set up Calderón identities over boundaries ∂Ωi, such that for allϕ ∈
≈
Vi

it holds 〈
λi , ϕi

〉
× =

〈(
1

2
Id + Ai

)
λi , ϕi

〉
×

=

〈 1
2
Id− Ki Vi

Wi
1
2
Id + K′i

 λiD

λiN

 ,

 ϕiD

ϕiN

〉
×

,

where Ai : Vi → Vi contains the standard weakly singular, double layer, adjoint double

layer and hypersingular integral operators, denoted Vi,Ki,K
′
i and Wi, respectively, over

∂Ωi for a wavenumber κi > 0 and fundamental solution (Sauter & Christoph, 2010):

Gi(x,y) :=
ı

4
H

(1)
0 (κi ‖x− y‖2) (2.6)

where H(1)
0 (·) is the zeroth order Hankel function of the first kind.

2.2.5. Final formulation

Define Vpw :=
∏2

i=0 V
pw
i and

≈
V:=

∏2
i=0

≈
Vi. With the above, the variational form of

the MTF system is to seekλ = (λ0,λ2,λ2) ∈ Vpw, such that for allϕ = (ϕ0,ϕ1,ϕ2) ∈
≈
V
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it holds

〈Mλ , ϕ〉 =

〈
M


λ0

λ1

λ2

 ,


ϕ0

ϕ1

ϕ2


〉
×

=

〈
g0

g1

g2

 ,


ϕ0

ϕ1

ϕ2


〉
×

(2.7)

where

M :=


A0 −1

2
X̃01 −1

2
X̃02

−1
2
X̃10 A1 −1

2
X̃12

−1
2
X̃20 −1

2
X̃21 A2

 . (2.8)

with Ai again denoting block boundary integral operators per subdomain and X̃ij taking

care of transmission conditions per interface.

Structurally, the MTF is amenable to parallelization as each subdomain operator can

be sent to different thread. Compared to the original version (Hiptmair & Jerez-Hanckes,

2012), the difference lies in that the new Galerkin-Petrov system requires local test func-

tions to have restrictions to interfaces Γij lying in H̃1/2(Γij) × H̃−1/2(Γij). In practical

terms: Dirichlet traces have to become zero at triple points for 2D, while for Neumann

data standard bases can be used.

THEOREM 1 (Existence and Uniqueness). The local MTF system (2.7) has a unique

solution in Vpw for all g in V0.

PROOF. This result follows from the same statement for V :=
∏2

i=0 Vi in (Hiptmair &

Jerez-Hanckes, 2012). Extension to piecewise spaces is achieved by duality pairings. �
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2.3. Discretization by Spectral Elements

2.3.1. Preliminaries

Define the characteristic function 1O of a set O of non-zero measure:

1O(t) =

1 if t ∈ O,

0 if t ∈ Oc.
(2.9)

Set Γ̂ := [−1, 1]. We assume that for each interface Γij there is a C1-parametri-zation of

Γ̂. Since we assume simply connected domains Ωi, the union of interfaces renders ∂Ωi

a closed curved Lipschitz surface. Specifically, for a subdomain boundary ∂Ωi, we set

hij : Γ̂ → Γij as a positive oriented parametrization of Γij . Similarly, we define over

∂Ωj , a parametrization hji : Γ̂ → Γij . These two parameterizations are required in order

to properly orientate subdomains’ normals. However, as we will later see, the positive

orientation requirement can be dropped as hij , hji will be used solely to compute scalar

line integrals.

2.3.2. Spectral Elements – Chebyshev polynomials

We will discretize (2.7) using as both trial and test functions Chebyshev polynomials

defined over the parameter space Γ̂ and mapped over each interface Γij . The Chebyshev

polynomials Tm(x) and Um(x) of the first and second kinds, respectively, are polynomials

of degree m ∈ N, defined in x ∈ Γ̂ as:

Tm(x) = cosmθ and Um(x) =
sin (m+ 1) θ

sin θ
(2.10)

with x = cos θ. These satisfy the recurrence relation (Abramowitz, 1988, Form. 2.3.14,

2.3.16) :

Pm(x) = 2xPm−1(x) − Pm−2(x) , m = 2, 3, . . . , (2.11)
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together with initial conditions T0(x) = 1, T1(x) = x, U0(x) = 1 and U1(x) = 2x.

Furthermore, it holds for m ∈ N

Um(x) − Um−2(x) = 2Tm(x), m ≥ 2, (2.12)

T ′m(x) = nUm−1(x) , (2.13)

(ω(x)Um−1(x))′ = − mω−1(x)Tm(x), (2.14)

where the weight function ω(x) is given by

ω(x) :=
√

1 − x2, for x ∈ Γ̂. (2.15)

Moreover, the Tm are orthogonal with respect to ω−1:

∫ 1

−1

Tn(x)Tm(x)ω−1(x) dx =


0, n 6= m ,

π/2, n = m 6= 0 ,

π, n = m = 0 .

(2.16)

For the second kind Chebyshev polynomials Um, it holds

∫ 1

−1

Un(x)Um(x)ω(x) dx =

0, n 6= m,

π/2, n = m 6= 0.
(2.17)

Based on the above, we will construct trial and test function bases for the MTF (2.7)

as piecewise combinations of Chebyshev polynomials mapped over interfaces Γij . For

this, we first define canonical bases for trial and test elements restricted over the reference

segment Γ̂, denoted T̂L := span{λ̂l}Ll=0 and Q̂L := {ϕ̂l}Ll=0, respectively, for any L ∈ N,

in the following fashion:

λ̂l := (λ̂D,l, λ̂N,l) = (Tl, Ul) and ϕ̂l = (q̂l, q̂l), q̂l := ωUl, ∀ l ∈ N0, (2.18)
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and where the weight ω forces q̂l to vanish at the endpoints of Γ̂. We need to show that

sequences generated by T̂L and Q̂L are dense in H1/2(Γ̂) × H−1/2(Γ̂) and H̃1/2(Γ̂) ×

H̃−1/2(Γ̂), respectively. For this, we first introduce the next auxiliary lemma.

LEMMA 1. Let f ∈ L∞(Γ̂) and δ > 0. There exists f δ1 ∈ L∞(Γ̂) such that∥∥f − ωf δ1∥∥L2(Γ̂)
≤ δ. (2.19)

PROOF. Let ε > 0 and define f ε1 := ω−1f1ω>ε ∈ L∞(Γ̂) and f ε2 := f1ω≤ε. Clearly,

f = ωf ε1 + f ε2 and it holds

‖f − ωf ε1‖L2(Γ̂) = ‖f ε2‖L2(Γ̂) ≤
√

2ε ‖f‖L∞(Γ̂) . (2.20)

Then it suffices to take ε =
δ2

2 ‖f‖2
L∞

to obtain the desired result. �

PROPOSITION 2.1. The sequence of subspaces {T̂L}L∈N is dense inH1/2(Γ̂)×H−1/2(Γ̂)

and {Q̂L}L∈N in H̃1/2(Γ̂)× H̃−1/2(Γ̂).

PROOF. Density of subspaces {T̂L}L∈N in H1/2(Γ̂)×H−1/2(Γ̂) follows from the den-

sity of polynomials onto the space of continuous functions (Weierstrass’ theorem), and

by invoking Sobolev embeddings (Sauter & Christoph, 2010, Section 2.5). Hence, we

focus on proving the statement for Q̂L for which we focus on the properties of Q̂L :=

span{q̂l}Ll=0. That Q̂L is dense in H̃1/2(Γ̂) follows from Chebyshev expansion and density

results (Jerez-Hanckes & Nédélec, 2012, Sect. 4.5). Thus, we are left to tackle the density

Q̂L in H̃−1/2(Γ̂).

Let ε > 0 and f, g ∈ D(Γ̂). By density arguments, it is sufficient to show that there

exists an L ∈ N such that for a certain fL ∈ Q̂L := span{q̂l}Ll=0 it holds

‖f − fL‖H̃−1/2(Γ̂) = sup
g∈D(Γ̂)

〈f − fL , g〉
‖g‖H1/2(Γ̂)

≤ ε. (2.21)
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Since fL ∈ QL, fL = ωf ∗L with f ∗L ∈ span{Ul}Ll=0. Thus, by continuity of the duality

product

|〈f − ωf ∗L , g〉| ≤
∥∥ω1/2(f − ωf ∗L)

∥∥
L2(Γ̂)

∥∥ω−1/2g
∥∥
L2(Γ̂)

. (2.22)

On one hand, it holds (Lions & Magenes, 1968; Grisvard, 1985)∥∥ω−1/2g
∥∥
L2(Γ̂)

≤ C ‖g‖H1/2(Γ̂) , (2.23)

while ∥∥√ω(f − ωf ∗L)
∥∥
L2(Γ̂)

≤ ‖f − ωf ∗L‖L2(Γ̂) . (2.24)

Set δ =
ε

2C
. By Lemma 1, there exists a f δ1 ∈ L∞(Γ̂) such that

‖(f − ωf ∗L)‖L2(Γ̂) ≤
∥∥f − ωf δ1∥∥L2(Γ̂)

+
∥∥ω(f ∗L − f δ1 )

∥∥
L2(Γ̂)

(2.25)

≤ ε

2C
+
∥∥f ∗L − f δ1∥∥L2(Γ̂)

. (2.26)

By density of continuous functions in L2(Γ̂) and again Weierstrass’ theorem, there is a

L ∈ N then such that ∥∥f ∗L − f δ1∥∥L2(Γ̂)
≤ ε/2C, (2.27)

from where

‖f − ωf ∗L‖L2(Γ̂) ≤
ε

C
. (2.28)

By replacing the above in (2.24) and using (2.23), (2.22) becomes

|〈f − fL , g〉| = |〈f − ωf ∗L , g〉| ≤ ε ‖g‖H1/2(Γ̂) , (2.29)

from where (2.21) follows. �

Next, we use the family {T̂L}L∈N to define an approximation bases for the spaces Vpw
i

of unknown Dirichlet and Neumman traces by using the mapping hij introduced in Section

2.3.1. Specifically, we define at each interface Γij , the basis functions λijm := λ̂m ◦ h−1
ij ,
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m ∈ N0, such that, over each subdomain boundary ∂Ωi, we build functions:

λim :=
∑
j∈Λi

λijm1Γij
. (2.30)

As expected, these functions are piecewise polynomials of degree L over ∂Ωi. Analo-

gously, we use {Q̂L}L∈N to devise suitable test functions. First, set ϕijl := ϕ̂l ◦ h−1
ij ,

l ∈ N0, then

ϕil :=
∑
j∈Λi

ϕijl 1Γij
. (2.31)

Notice that the test functions satisfy

ϕil(y) = 0 , ∀y ∈ ∂Γij, j ∈ Λi. (2.32)

Although this property is required for functions conforming in H̃1/2(Γij), it has a more

practical use: it improves the computation of the discretized integral operators entries, as

will be seen in section 2.3.3.

Provided with the above definitions, we are set to define the discrete spaces for trial

and test functions over ∂Ωi used to approximate solutions of (2.7):

Vpw
i,Ni

:= span{λim}
Ni
m=0 and

≈
Vi,Ni

:= span{ϕil}
Ni
l=0. (2.33)

For N = (N0, N1, N2) ∈ N3, we set cartesian product spaces

Vpw
N :=

2∏
i=0

Vpw
i,Ni

and
≈
VN:=

2∏
i=0

≈
Vi,Ni

. (2.34)

PROPOSITION 2.2. Let N ∈ N, and N = (N,N,N) ∈ N3, then {Vpw
N }N∈N and

{
≈
VN}N∈N are dense sequences of subspaces of Vpw and

≈
V, respectively.

PROOF. Follows directly from Proposition 2.1. �

30



2.3.3. BIOs approximation - Computational strategy

Armed with the above results, we now focus on the construction of the Galerkin-Petrov

matrices originating from the MTF presented in Section 2.2.5. Particular attention is made

to the approximation of the BI kernels and acceleration via FFT techniques (Trefethen,

2013; Bruno & Reitich, 2008). We need to compute integrals of the canonical form:

IL[m, l] =
〈
Lλ̂m , q̂l

〉
=

∫
Γ̂

∫
Γ̂

FL(s, t)Tm(s)ω(t)Ul(t)dsdt, (2.35)

where L is any of the BIOs and FL represents the associated kernel including mappings

required to push interfaces Γij onto Γ̂. The strategy followed relies on two steps:

(i) Kernel approximation. We first approximate the kernel FL as a degenerate ker-

nel using Chebyshev polynomials. Since Chebyshev polynomials can be directly

be connected with Fourier series (Trefethen, 2013, Chap. 3), one can make use

of the FFT to compute coefficients gn(t) such that

F (s, t) ≈
Nc∑
n=0

gn(t)Tn(s), (2.36)

for a suitable choice of Nc. Alternatively, using (2.12) the approximation (2.36)

can be rewritten in terms of second kind Chebyshev polynomials as

F (s, t) ≈
Nc∑
n=0

fn(t)Un(s). (2.37)

A discussion on these numerical kernel approximation is given in Section 2.4.1.

(ii) Orthogonality. By applying the orthogonality properties of Chebyshev polyno-

mials, one can quickly obtain expressions of the form

IL[m, l] ≈ π

2
cl

∫ +1

−1

fm(t)Tm(t)dt (2.38)

which can be computed by either the trapezoidal method or Gauss-Legendre

quadrature.
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Parallel to the above, one should be aware of the existence of two different singular

behaviors in the integrands depending on whether the interfaces Γij and Γik coincide or

not, i.e. for j, k ∈ Λi. Specifically,

• If j 6= k, the singularity occurs only at s = t = ±1, where the Chebyshev

expansion loses accuracy.

• If j = k singularities lie on the line t = s with t, s ∈ Γ̂. In this case, we

follow standard regularization techniques (Hu, 1995; Farina, 2001) to extract

the singularity.

2.3.3.1. Single layer operator (Vi) computation

The singular layer BIO maps Neumann trace data to Dirichlet one. Given the piecewise

structure of our approximation bases, the discretization of the bilinear form associated to

the single layer becomes, for m, l ∈ N0,

IVi
[l,m] :=

〈
Viλ

i
N,l , ϕ

i
D,m

〉
∂Ωi

=

〈
Viλ

i
N,l ,

∑
j∈Λi

qijm1Γij

〉
∂Ωi

=
∑
j∈Λi

〈
Viλ

i
N,l , q

ij
m

〉
Γij

(2.39)

At the same time,

Viλ
i
N,l(x) =

〈
Gi(x, ·) ,

∑
k∈Λi

λikN,l1Γik

〉
∂Ωi

=
∑
k∈Λi

〈
Gi(x, ·) , λikN,l

〉
Γik

(2.40)

To be even more explicit, (2.39) reads,

IVi
[l,m] =

∑
j∈Λi

∑
k∈Λi

〈〈
Gi(x, ·) , λikN,l

〉
Γik

, qijm

〉
Γij

(2.41)
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We study the summands IjkVi
[l,m] :=

〈〈
Gi(x, ·) , λikN,l

〉
Γik

, qijm

〉
Γij

. By continuity, we can

write

IjkVi
[l,m] =

∫
Γ̂

∫
Γ̂

Gi

(
‖hij(s)− hik(t)‖2

)
Ul(t)ω(s)Um(s) ‖h′ik(t)‖

∥∥h′ij(s)∥∥ dsdt
(2.42)

Case j 6= k. The term Gi

(
‖hij(s)− hik(t)‖2

)
presents at most two singularities corre-

sponding to the end points, i.e. t = s = ±1. For all t ∈ (−1, 1), Weierstrass’ theorem

(Trefethen, 2013, Chap. 6) guarantees that the approximation by the Chebyshev expan-

sion,

Gi

(
‖hij(s)− hik(t)‖2

) ∣∣h′ij(s)∣∣ ≈ Nc∑
n=0

gn(t)Tn(s), Nc ∈ N, (2.43)

converges uniformly to the left hand side, where coefficients gn(t) are computed by the

FFT algorithm. By (2.12), series (2.43) can be written in terms of second kind Chebyshev

polynomials, with coefficients fn(t), and by orthogonality property (2.17), one eliminates

one of the integrals in (2.42) to retrieve

IjkVi
[l,m] ≈

∫ 1

−1

π

2
fm(t)Ul(t) ‖h′ik(t)‖ dt, for j 6= k. (2.44)

This last integral is obtained via quadrature as mentioned before. Note that coefficients

fm(t) are only required for interior points, i.e. t ∈ (−1, 1).

Case j = k. To avoid this difficulty, the kernel Gi is regularized. Let us recall the kernel

corresponding to the Laplacian problem (null frequency, κi = 0):

G0(‖x− y‖2) = − 1

2π
log ‖x− y‖2 . (2.45)
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By using a Taylor expansion together with the series representation for the Hankel func-

tion to represent Gi (Abramowitz, 1988, Formula 9.1.3), one can deduce that for a C1-

parametrization hij of the interface, the following kernel subtraction is a continuous func-

tion (Hiptmair, Jerez-Hanckes, & Urzúa-Torres, 2013, Sect. 2.6), i.e.

Hi(t, s) := Gi(‖hij(s)− hij(t)‖2)−G0(|s− t|) ∈ C0(Γ̂× Γ̂), (2.46)

This property leads to the splitting IVi
[l,m] = I1

Vi
[l,m] + I2

Vi
[l,m] with

I1
Vi

[l,m] :=

∫
Γ̂

∫
Γ̂

Hi(t, s)Ul(t)ω(s)Um(s)
∥∥h′ij(s)∥∥ ‖h′ik(t)‖ dsdt, (2.47)

I2
Vi

[l,m] :=

∫
Γ̂

∫
Γ̂

G0(|s− t|)Ul(t)ω(s)Um(s)
∥∥h′ij(s)∥∥ ‖h′ik(t)‖ dsdt. (2.48)

The regularity property of Hi(t, s)
∥∥h′ij(s)∥∥ allows uniform convergence for a Chebysev

expansion, and thus, the computation of I1
Vi

is given by quadrature formula as in (2.38).

To calculate I2
Vi

, we recall that the kernel G0 can be written as a series of Chebyshev

polynomials (Logarithmic, Over, & Interval, 2012, Prop. 4.13):

G0(|t− s|) =
1

2π
log 2 +

∞∑
n=1

1

nπ
Tn(t)Tn(s), s 6= t ∈ Γ̂. (2.49)

Thus, we can quickly derive the following expansion:

G0(|s− t|)
∥∥h′ij(s)∥∥ ≈ ∞∑

n=0

vn(t)Un(s), (2.50)

with final computation of I2
Vi

again carried out using (2.38).
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2.3.3.2. Double layer operators (Ki,K
′
i) computation

We only consider the case of Ki as similar arguments hold for its adjoint. Discretization

of bilinear forms for m, l ∈ N0 are

IKi
[l,m] :=

〈
Kiλ

i
D,l , ϕ

i
N,m

〉
∂Ωi

=

〈
Kiλ

i
D,l ,

∑
j∈Λi

qijm1Γij

〉
∂Ωi

=
∑
j∈Λi

〈
Kiλ

i
D,l , q

ij
m

〉
Γij
.

(2.51)

Again, the operator action on λiD,l can be written as

Kiλ
i
D,l(x) =

〈
∂Gi

∂ny

(x, ·) ,
∑
k∈Λi

λikD,l1Γik

〉
∂Ωi

=
∑
k∈Λi

〈
∂Gi

∂ny

(x, ·) , λikD,l
〉

Γik

, (2.52)

where the normal derivative of the Green kernel is

∂Gi

∂ny

= −κiH(1)
1 (κi ‖x− y‖2)

(y − x) · ny
‖x− y‖2

, (2.53)

with ny being the outward normal vector to the interface at the point y.

Case j 6= k. For double layer operators, singularities at t = s = ±1 are stronger than

for the single layer case, i.e. compare H(1)
1 (κi ‖x− y‖2) ∼ 1

‖x−y‖2
to H(1)

0 (κi ‖x− y‖2) ∼

log ‖x− y‖2, and thus, the approximation by Chebyshev polynomials is much worse when

approaching the corners. Luckily, thanks to the weighted test function this singularities

are smoothened yielding a precise approximation of IKi
and IK′i (see Table 2.1).

Case j = k. To be able to apply to Chebyshev expansion, the kernel requires to be

continuous, which is shown in the following proposition:

PROPOSITION 2.3 (Lemma 2.2.14 in (Sauter & Christoph, 2010)). Let n denote the

exterior normal to Ωi. If n is continuous over Γij , then there exists a bounded constant
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cn > 0 such that

|(y − x) · ny| ≤ cn ‖y − x‖2
2 , x 6= y ∈ Γij. (2.54)

Thus, it is straightfoward to show that if the interface Γij is a C1-curve then the double

layer BIO kernel is continuous, and can be approximated by,

∂Gi

∂ny

∣∣h′ij(s)∣∣ ≈ Nc∑
n=0

kn(t)Un(s) (2.55)

and we can proceed as sketched at the beginning of Section 2.3.3.

2.3.3.3. Hypersingular operator (Wi) computation

Here we carry out the same piecewise summation over interfaces Γij and recast the

problem in terms of single layer operator as follows. First, recall that for a curve Γ

piecewise smooth in R2 with unitary normal vector n, and a C1(I)-function defined on

a neighborhood I of Γ, f : I → R, the curl operator reads

curl f(x) := n1(x)∂2f(x)− n2(x)∂1f(x) , x ∈ Γ. (2.56)

We then invoke the following result:

PROPOSITION 2.4 ( Theorem 6.15 in (Steinbach, 2008)). Let Γ be a sufficiently smooth,

bounded curve in R2 and let g, f be C1(Γ) functions such that g(y) = 0 for all y ∈ ∂Γ.

Then it holds

〈Wif , g〉∂Ωi
= 〈Vi curl f , curl g〉∂Ωi

− κ2
i 〈nx · nyVif , g〉∂Ωi

− f
∫

Γ

Gi(‖x− y‖) curl g(y)dΓy)
∣∣∣
x∈∂Γ

.
(2.57)

Thus, for IWi
[l,m] we can also obtain a Fourier-Chebyshev series expansion. We es-

tablish explicit formulas for curl λ̂D,m and curl q̂l via the polynomial properties presented
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in Section 2.3.2:

curl λ̂D,m = T ′m = mUm−1, (2.58)

curl q̂l = (ωUl)
′ = −ω−1Tl+1. (2.59)

Since now test functions are expressed in terms of first kind Chebyshev polynomials, or-

thogonality relation (2.16) allows direct use of the Chebyshev expansion of the kernel.

Note that the term,

λ̂D,m

∫
Γij

Gi curl q̂ldΓ
∣∣∣
x∈∂Γij

(2.60)

is not accurate close to the corners (t = ±1) when j 6= k. To circumvent this issue, we

observe that a corner belongs to two interfaces and, instead of considering the point on the

interface Γij , we take it on Γik. This leads back to the case j = i and kernel regularization

is used to compute the required coefficient.

2.4. Numerical Results

We now present numerical simulations for a two-dimensional scatterer. We first ex-

amine the range of validity of our numerical approximations for the BIOs, then consider

error convergence for fixed wavenumbers and with respect to a frequency sweep. Finally,

we study the effect of preconditioning for iterative solvers.

The geometry considered is illustrated in Figure 2.2, and it consists of three domains:

Ω0 := {x ∈ R2, ‖x‖2 > 1}, Ω1 := {x ∈ R2, ‖x‖2 < 1, x1 < 0}, and Ω2 := {x ∈

R2, ‖x‖2 < 1, x1 > 0}. This simple case contains all the difficulties portraying Lipschitz

domains with sharp corners. The experiments were performed on MATLAB 2009b, 64-

bit, running on a GNU/Linux desktop machine with 3.40GHz CPU and 32GB RAM. The

discretization of the operators is computed by a MEX-C library. CPU times to compute

the MTF system of moderate to high frequency (κ from 10 to 100) range between a few

seconds to less than one hour.
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Figure 2.2. Canonical geometry used to test the spectral MTF method

Heuristically, the parameter used in the degenerate expansion of the kernels is given

byNc = 2ceil(3N+maxκi)+128. Also observe that when consideringN for the number

of degrees of freedom, 2N + 1 trial and test functions are considered .

2.4.1. BIOs numerical approximation

Let us define the following errors for different values of Nc ∈ N for a given t ∈ Γ̂ and

interface Γik

eVCheb(t) :=

∥∥∥∥∥Gk(‖x(t)− y(s)‖) |(h′ik(s)| −
Nc∑
n=0

gn(t)Tn(s)

∥∥∥∥∥
L2(Γ̂)

,

eKCheb(t) :=

∥∥∥∥∥∂Gi

∂n
(‖x(t)− y(s)‖) |h′ik(s)| −

Nc∑
n=0

gn(t)Tn(s)

∥∥∥∥∥
L2(Γ̂)

The errors of the discretized Galerkin-Petrov operators for entries IL[m, l] are found by

integrating over the next interface Γij , and we drop the superscript ij in (2.42):

eIV [m, l] :=
∣∣∣ICheb

V [m, l]− Iquad
V [m, l]

∣∣∣ ,
eIK(m, l) :=

∣∣∣ICheb
K [m, l]− Iquad

K (m, l]
∣∣∣
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where ICheb
V , ICheb

K are the approximations of IV and IK using the method described on Sec-

tions 2.3.3.1 and 2.3.3.2, respectively. Values Iquad
V , Iquad

K are approximations obtained us-

ing an expensive adaptative quadrature scheme. Results for a few cases are given in Table

2.1. The good accuracy of the approximation for ICheb
V , ICheb

K arises from the smoothening

behavior of the weighted test functions.

(a) Nc = 128

t eVCheb eIV (0, 0) eKCheb eIK (0, 0)
0.9 10−15 10−15

0.99 10−7 10−8

0.9999 10−3 10−14 10−3 10−12

1− 10−6 10−2 10−1

1− 10−8 10−2 100

(b) Nc = 1280

t eVCheb eIV (0, 0) eKCheb eIK (0, 0)
0.9 10−15 10−15

0.99 10−14 10−14

0.9999 10−8 10−14 10−7 10−12

1− 10−6 10−4 10−1

1− 10−8 10−2 100

(c) Nc = 12800

t eVCheb eIV (0, 0) eKChebyshev eIK (0, 0)
0.9 10−15 10−15

0.99 10−14 10−14

0.9999 10−11 10−14 10−11 10−12

1− 10−6 10−9 10−6

1− 10−8 10−6 100

Table 2.1. Kernel approximation performances for different values of Nc.
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2.4.2. Symmetric configuration

We study the case of one penetrable obstacle as described in Figure 2.2 with equal

interior wavenumbers κ1 = κ2, and varying exterior wavenumber κ0. Under these condi-

tions, the exact solution is provided by means of Mie series (Warnick, 2008, Section 3.1.5)

which is used to validate the model.

Figure 2.3 depicts convergence rates in different norms pointing out at a maximum

number of degrees of freedom after which, no further convergence is achieved. This is

due to the numerical approximation of the BIOs and is bounded by machine precision

in the best case. In fact, the total number of trial and test functions required to reach a

given accuracy can be derived from asymptotics of the underlying Mie series. From these

figures, one can observe that this number is not completely linear with the wavenumber,

e.g., for an error of 10−4, N ≈ 12 at κ0 = 10, N ≈ 45 at κ0 = 50 and N ≈ 80 at

κ0 = 100. More details about the number of degrees of freedom is given in Section 2.4.4.

On the other hand, the error derived from the weak Calderón identities on Figure 2.6 are

defined as the Euclidean norm of the vector v = 〈2Aiλi, φi〉 − 〈λi, φi〉.

2.4.3. Asymmetric configuration

Subdomains Ω1 and Ω2 portrayed in Figure 2.2 are now given different wavenumbers,

κ1 = 50 and κ2 = 1, with exterior wavenumber set to κ0 = 100. In this configuration,

solutions cannot be computed via Mie series nor is there any analytic solution available.

To validate the model, we check whether jump relations (2.3b) and (2.3c) are fulfilled.

Figures 2.4 and 2.5 show traces defined on each interface for the mentioned case.

Expected jump relations (2.3c) and (2.3b) are satisfied and their corresponding error is of

magnitude 10−12 in L2-norm. Note that the Neumann traces are not continuous at the triple

points, e.g., at angles −90◦, 90◦, 270◦, which are taken into account by the discontinuous

trial functions belonging to Vpw
0 .
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2.4.4. Error convergence frequency analysis

Until now we have only verified that the model works for different wavenumbers.

However, for most applied models, one usually fixes physical parameters and seeks for

solutions over a frequency range. To illustrate this, we recall the wavenumber definition

for the electromagnetic case per subdomain, κi = ω0
√
εiµi, where εi and µi are the dielec-

tric and permeability constants, respectively, and ω0 is the radial frequency of excitation.

To simplify our analysis, we set permeabilities µi = 1, for all i = 0, 1, 2, and set

ε0 = 1 so that wavenumbers become κ0 = ω0, κi = κ0
√
εi, i ∈ {1, 2}. We now fix εi

and compute the error for a range of values of κ0 . For every κ0, we need to determine

the number of test and trial functions. Based on some ideas of the truncation of the Mie

series (Warnick, 2008), for the symmetric case we tried three different rules, with their

specifications given in Figure 2.6.

We observe that for the symmetric case the three rules have a similar behavior so we

choose the rule minimizing the number of degrees of freedom, 2Ni + 1 = 1.1κi + 7.

We repeat the same experiment but now for an asymmetric arrangement, ε1 = 2, ε2 = 3,

for which results are displayed in Figure 2.7. As can be seen, only the rule 2Ni + 1 =

1.1 maxi{κi}+ 7 works for all the cases but is not optimal in terms of degrees of freedom.

The reason behind this lack of clear knowledge stems from the lack of Mie series and

deserves future investigation.

2.4.5. Performance using iterative solvers - Preconditioning

When the wavenumber increases, the Helmholtz equation becomes more indefinite,

hence, the convergence rate of iterative solvers based on Krylov subspace, e.g. Gener-

alized Minimal Residual (GMRes)method, is either poor or not achieved (Saad, 2002,

Chapter 6). To tackle this, one traditionally resorts to different preconditioning schemes

(Ernst & Gander, 2011; Erlangga, 2008; Benzi, 2002).
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The Calderón identity, used to establish MTF, leads to a built-in preconditioner given

by the block diagonal operator,

A :=


A0 0 0

0 A1 0

0 0 A2

 , (2.61)

whose discrete form is already computed. More precisely, the discrete Calderón identity

becomes a mass-like matrix Mass with a block diagonal composed by duality products.

The duality pairings for the Neumann trace yield a identity-like matrix due to the or-

thogonality of first kind Chebyshev polynomials, while for Dirichlet traces one obtains a

bi-diagonal matrix coming from recursion and orthogonality properties between first and

second kind Chebyshev polynomials.

The preconditioning matrix explicitly reads,

P = M−1
assA (2.62)

where A the discretization of (2.61) and M−1
ass is the mass-like matrix. Since the structure

of the mass matrix is diagonal per block, the numerical cost of its inverted matrix-vector

product is negligible compared to the dense matrix-vector product originated by A. We use

the naive strategy to carry out a LU-factorization of the relative small bi-diagonal blocks,

which means a simple reordering, and then perform sparse substitutions at each iteration

of GMres method.

Note that the discretization form used in (2.61) to build the preconditioner is not nec-

essarily the optimal one to tackle the wavenumber dependency (Hiptmair, 2006; Steinbach

& Wendland, 1998). However, the proposed preconditioner requires a negligible numeri-

cal cost.

Figure 2.8 shows the convergence history for a homogeneous case (κ1 = κ2 = 1) and

a heterogeneous case (κ1 = 50, κ2 = 1), both comparing GMRes (Saad & Schultz, 1986)
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without and with the block diagonal preconditioner proposed P, at moderate frequency

(κ0 = 10) and high frequency (κ0 = 100). One can observe the significant reduction

in number of iterations for the preconditioned system, while the convergence of the un-

preconditioned system becomes unacceptable. In terms of CPU time, the solution by

GMRes without preconditioner (resp. with), including preprocessing of factorization, re-

quires 18s (resp. 2s) for the case κ0 = 10, κ1 = 50, κ2 = 1, and 245s (resp. 30s) for the

case κ0 = 100, κ1 = 50 | 1, κ2 = 1.

2.5. Conclusions and Future Work

We have presented a robust and efficient method that allows the modeling of scatter-

ing by heterogeneous penetrable scatters for large frequency ranges. Robustness is due

to the lack of spurious modes and large frequency sweep that can be practically handled.

Efficiency comes from two sources: the parallelizable character of the formulation along

with the choice of discretization bases. Computation of matrix entries resulting from the

Galerkin-Petrov discretization proposed can be quickly computed using FFT and regular-

ization techniques. Moreover, the method yields a built-in preconditioner, as its diagonal

and mass matrix can be reused to improve convergence of iterative solvers as GMRes,

just as previously shown for low-order elements. Nonetheless, although a rule of thumb

has been given to obtain the number of Chebyshev polynomials required, better estimates

should be sought after. Also, particular attention should be given to integration routines

for boundary integral operator.

Future research directions focus on a more detailed study of related preconditioning

schemes: their dependency on wavenumbers, contrast and the relation to operator precon-

ditioning. Also we intend to continue improving code efficiency by accelerating matrix-

vectors computations by compression and its extension three-dimensions.
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Figure 2.3. Error convergence for the exterior trace in different norms for
the Dirichlet and Neumann traces (λD

0 , λ
N
0 ) on ∂Ω0 for two half-circles with

κ1 = κ2 = 1 and different values of κ0. The impinging plane wave comes
at an angle θ = 0◦ but similar behaviors are obtained for other angles.
Exact traces are obtained via Mie series.
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N
1,2) in the common inter-

face Γ12, one taken from Ω1 (dashed-red), and another one taken from Ω2

(blue). The values of the wavenumber are κ0 = 100, κ1 = 50 and κ2 = 1
for an impinging plane wave at an angle θ = 0◦. The x-axis represents
the coordinate parametrization and the y-axis represents the real part of the
traces in arbritrary units.
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κ0 = 100, κ1 = 50 and κ2 = 1, for an impinging plane wave with angle
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Figure 2.6. Error performance versus wavenumber κ0 ∈ [0, 250] in differ-
ent norms for the symmetric case .
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Figure 2.7. Errors in different norms for increasing frequencies, κ0 ∈
[0, 250] asymmetric case.
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Darve, E., & Havé, P. (2004a). Efficient fast multipole method for low-frequency

scattering. J. Comput. Phys., 197(1), 341–363. Retrieved from http://dx.doi

.org/10.1016/j.jcp.2003.12.002 doi: 10.1016/j.jcp.2003.12.002
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APPENDIX 1. FURTHER SIMULATIONS

A. FURTHER SIMULATIONS

Until now, in all our simulation we have increased the permitivity and the number

of modes. Is also of interest to see how the method works when the frequency increase.

Figure 1.2(a) portrays errors for different exterior wavenumbers κ0 and given contrasts

using a fixed Ni = 1.4ki rule. This implies that for κ0 = 100, the size of the linear

system to solve is 1500 × 1500 (ε1,2 = 2). If the same number of modes strategy is

applied for the asymmetric case, the method fails to provide convergence. In this case,

the strategy followed is to use the same maximum amount of modes achieving acceptable

convergence errors. Figure 1.2(b), shows that even in the case of over-discretization the

method is reliable. However, a robust rule of thumb is not clear. One can also observe an

increase in error as frequency moves up. We are currently trying to determine whether this

is inherent to our method or relate to the strategy used to set the number of modes.

Also we were able to compute the solution on other geometries. For example consider

triangular geometry, as it can be see on figure 1.3(a). We fix the wave numbers asexterior

wave number κ0 = 10, interior wave numbers: upper left κ1 = 30, upper right κ2 = 30,

lower left κ3 = 20 and lower right κ4 = 20, and increase the modes, as it can be see

on figure (?, ?) the behaviour is totally different to the circular case. This can be easly

explained because the singularities of the solution on the corners of the domain. Also,

we compute the voulmen solution on figure 1.3(c), this was done with the repressentation

formula 1.18.
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Figure A.1. Frequency sweep results
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