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Abstract

We present a spectroscopic survey of high-redshift, luminous galaxies over four square degrees on the sky, aiming
to build a large and homogeneous sample of Lyα emitters (LAEs) at z 5.7» and 6.5, and Lyman-break galaxies
(LBGs) at z5.5 6.8< < . The fields that we choose to observe are well studied, such as by the Subaru XMM-
Newton Deep Survey and COSMOS. They have deep optical imaging data in a series of broad and narrow bands,
allowing for the efficient selection of galaxy candidates. Spectroscopic observations are being carried out using the
multi-object spectrograph M2FS on the Magellan Clay telescope. M2FS is efficient enough to identify high-
redshift galaxies, owing to its 256 optical fibers deployed over a circular field of view 30¢ in diameter. We have
observed ∼2.5 square degrees. When the program is completed, we expect to identify more than 400 bright LAEs
at z 5.7» and 6.5, and a substantial number of LBGs at z 6 . This unique sample will be used to study a variety
of galaxy properties and to search for large protoclusters. Furthermore, the statistical properties of these galaxies
will be used to probe cosmic reionization. We describe the motivation, program design, target selection, and M2FS
observations. We also outline our science goals, and present a sample of the brightest LAEs at z 5.7» and 6.5.
This sample contains 32 LAEs with Lyα luminosities higher than 1043 erg s−1. A few of them reach
�3×1043 erg s−1, comparable to the two most luminous LAEs known at z 6 , “CR7” and “COLA1.” These
LAEs provide ideal targets to study extreme galaxies in the distant universe.
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1. Introduction

The epoch of cosmic reionization marks one of the major
phase transitions of the universe, during which the neutral
intergalactic medium (IGM) was ionized by the emergence of
early astrophysical objects. After that, the universe became
highly structured and transparent to UV photons. Measurements
of CMB polarization have determined the reionization peak at
z 8.5~ (Planck Collaboration et al. 2016), and studies of high-
redshift quasar spectra have located the end of reionization at
z 6» (Fan et al. 2006). High-redshift (z 6 ) galaxies are a
natural tool to probe the history of cosmic reionization, as well
as the formation and evolution of early galaxies. Individual
galaxies are usually too faint to provide useful information about
the IGM state during the reionization era. However, such
information can be drawn from their statistical properties, such

as the evolution of the Lyα luminosity function. For example,
recent studies have claimed that the Lyα luminosity function of
Lyα emitters (LAEs) evolves rapidly from z 5.7~ to 6.5 (e.g.,
Kashikawa et al. 2006, 2011; Ouchi et al. 2008; Hu et al. 2010).
This can be explained by the increasing neutral fraction of the
IGM that attenuated Lyα emission via the resonant scattering of
Lyα photons, and thus suggests the end of cosmic reionization
at z 6~ .
In recent years, with the advances of instrumentation on the

Hubble Space Telescope (HST) and large ground-based
telescopes such as the Subaru Telescope, the number of known
high-redshift galaxies has increased dramatically. These
galaxies can play an important role in studies of cosmic
reionization (e.g., Silva et al. 2013; Treu et al. 2013; Cai et al.
2014; Dijkstra 2014; Jensen et al. 2014; Kakiichi et al. 2016;
Pentericci et al. 2016; Ota et al. 2017; Zheng et al. 2017). The
majority of the currently known galaxies at z 6 are
photometrically selected Lyman-break galaxies (LBGs) or
candidates using the dropout technique. While large-area
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ground-based observations are efficient to select bright LBGs
(e.g., Bowler et al. 2012; Curtis-Lake et al. 2012; Willott et al.
2013; Ono et al. 2017), faint LBGs were mostly found by HST
(e.g., Yan et al. 2012; Ellis et al. 2013; Bouwens et al. 2015;
Infante et al. 2015; Zitrin et al. 2015; Schmidt et al. 2016; Tilvi
et al. 2016), with a substantial number of them at z 8> (e.g.,
Laporte et al. 2012, 2015; Coe et al. 2013; Bouwens et al.
2014; Oesch et al. 2014; McLeod et al. 2016). In addition, a
small fraction of these LBGs, among the brightest in terms of
the rest-frame UV luminosity, have been spectroscopically
confirmed (e.g., Jiang et al. 2011; Toshikawa et al. 2012;
Finkelstein et al. 2013; Oesch et al. 2015; Watson et al. 2015;
Roberts-Borsani et al. 2016; Song et al. 2016). The latest
development is the discovery of the galaxy GN-z11 at z 11~
from HST grism observations (Oesch et al. 2016).

The narrowband (or Lyα) technique offers a complementary
way to find high-redshift galaxies. Indeed, the first z 6>
galaxies were discovered to be LAEs at z 6.5 using the
narrowband technique (Hu et al. 2002; Kodaira et al. 2003;
Rhoads et al. 2004). This technique can efficiently identify
high-redshift galaxies and has a high success rate of spectro-
scopic confirmation. Three dark atmospheric windows with
little OH sky emission in the optical are often used to detect
galaxies at z 5.7 , 6.5, and 6.9. More than 200 LAEs have
been spectroscopically confirmed at these redshifts (e.g.,
Taniguchi et al. 2005; Iye et al. 2006; Kashikawa et al. 2006,
2011; Shimasaku et al. 2006; Hu et al. 2010; Ouchi et al. 2010;
Rhoads et al. 2012; Zheng et al. 2017; Hu et al. 2017). The
narrowband technique is also being used to search for higher-
redshift LAEs at z 7> (e.g., Hibon et al. 2010; Tilvi et al.
2010; Krug et al. 2012; Ota & Iye 2012; Shibuya et al. 2012;
Konno et al. 2014). All of these Lyα surveys were made with
ground-based instruments owing to their large fields of view
(FoVs). In particular, the Subaru prime-focus imager Suprime-
Cam (Miyazaki et al. 2002) has played a major role. Now, the
new Subaru prime-focus imager Hyper Suprime-Cam is being
used to search for large samples of LAEs and LBGs at high
redshift (e.g., Harikane et al. 2017; Konno et al. 2017; Ono
et al. 2017; Ouchi et al. 2017; Shibuya et al. 2017).

Meanwhile, the physical properties of z 6 galaxies are
also being investigated. As the rest-frame UV and optical light
from these galaxies moves to the infrared range, infrared
observations using HST and the Spitzer Space Telescope
(Spitzer) are critical for understanding these objects. Large
samples are now being used to measure physical properties of
high-redshift galaxies in a variety of aspects, such as UV slopes
(e.g., Dunlop et al. 2012; Finkelstein et al. 2012; Bouwens
et al. 2014), galaxy morphology (e.g., Guaita et al. 2015;
Kawamata et al. 2015; Shibuya et al. 2015, 2016; Curtis-Lake
et al. 2016; Kobayashi et al. 2016; Liu et al. 2017), stellar
populations, and star-formation rates (e.g., Egami et al. 2005;
Stark et al. 2013; González et al. 2014; Faisst et al. 2016;
Castellano et al. 2017; Karman et al. 2017). These studies are
mostly based on photometrically selected samples; there are
very few studies based on spectroscopically confirmed
samples. Recently, Jiang et al. (2013a, 2013b, 2016) carried
out deep HST and Spitzer observations of a sample of 67
spectroscopically confirmed LAEs and LBGs at z5.7 7.0< < ,
and conducted an extensive analysis of the physical properties
of these galaxies. Yet the number of such studies is still very
limited (e.g., Bowler et al. 2017a).

Despite the progress that has been made on studies of high-
redshift galaxies, the number of spectroscopically confirmed
galaxies is relatively small. For example, it has been found that
the Lyα luminosity function evolves rapidly from z 5.7~ to
6.5, as mentioned earlier, but there are large discrepancies (a
factor of ∼2–3) among the normalizations of the luminosity
functions in different studies (Kashikawa et al. 2006, 2011;
Ouchi et al. 2008; Hu et al. 2010). In addition, there are also
discrepancies between the results from spectroscopically
confirmed samples and photometrically selected samples
(e.g., Matthee et al. 2015; Santos et al. 2016; Bagley et al.
2017). The reasons for these discrepancies are still not clear,
but cosmic variance, sample incompleteness, and target
contamination are some of the main reasons. If so, a much
larger LAE sample with high completeness and secure redshifts
over a large area is the only solution. Furthermore, studies of
physical properties of spectroscopically confirmed galaxies are
limited. The current spectroscopically confirmed samples
usually consist of several to a few tens of galaxies, which are
much smaller than photometrically selected samples with
hundreds of galaxies.
In this paper, we present a large spectroscopic survey of

galaxies at z5.5 6.8< < , using the large FoV, fiber-fed, multi-
object spectrograph M2FS (Mateo et al. 2012) on the 6.5 m
Magellan Clay telescope. Taking advantage of a 30¢-diameter
FoV, M2FS is one of the most efficient instruments to identify
relatively bright high-redshift galaxies (e.g., Oyarzún et al.
2016, 2017). The fields that we chose to observe are well-
studied deep fields, including the Subaru XMM-Newton Deep
Survey (SXDS), A370, the Extended Chandra Deep Field-
South (ECDFS), COSMOS, and SSA22. They cover a total of
∼4 deg2. We have observed about 2.5 deg2 so far, and have
discovered a giant protocluster at z=5.70 (Jiang et al. 2017).
Here we will provide an overview of the program and show one
of our first scientific results: a sample of the brightest LAEs at
z 5.7» and 6.5. In this paper, we call galaxies found by the
narrowband technique LAEs and those found by the dropout
technique LBGs. This LAE/LBG classification only reflects
the methodology that we apply to select galaxies (e.g., Jiang
et al. 2013a, 2013b, 2016). We do not discuss galaxies
identified by blind searches (e.g., Dressler et al. 2011; Henry
et al. 2012).
The layout of the paper is as follows. In Section 2, we

introduce the deep fields that we chose to observe, the imaging
data, and the target selection. In Section 3, we describe the
M2FS observations and data reduction. In Section 4, we
present our planned science cases, and then present a sample of
very luminous LAEs. We summarize our paper in Section 5.
Throughout the paper, all magnitudes are expressed on the AB
system, We use a Λ-dominated flat cosmology with
H0=68kms−1Mpc−1, Ωm=0.3, and 0.7W =L .

2. Survey Fields and Imaging Data

In this section, we describe the fields that we selected for our
program and the imaging data that we used for our target
selection. These fields are well studied with a large number of
existing data. In particular, the fields were chosen to have deep
Subaru Suprime-Cam imaging data in the optical, especially in
two narrowband (NB) filters, NB816 and NB921 (and/or
NB912), which correspond to the detection of LAEs at z 5.7
and 6.5. The full widths at half maximum (FWHM) of the
two filters are roughly 120 and 132Å. The Suprime-Cam is a
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wide-field prime-focus imager for the 8.2 m Subaru telescope.
With an FoV of 34 27¢ ´ ¢, it has played a major role in finding
LAEs at z 5.7 .

Our fields are summarized in Table 1. Column 2 gives the
field names. Column 3 shows the central coordinates of the
fields. Column 4 is the area coverage. Columns 5–8 list the
magnitude limits of the NB816, NB921, NB912, and z-band
images that were used to select our galaxy candidates. The
details of the individual fields are explained in the following
subsections. As we will see, some areas have been covered by
previous spectroscopic observations. We include them to cross-
check our target contamination and sample completeness.

2.1. Imaging Data

We briefly describe the imaging data used for our target
selection below. Our fields generally have very deep images in
a series of broad and narrow bands in the optical. As we
mentioned above, the images were taken with Subaru Suprime-
Cam and were retrieved from the archival server SMOKA
(Baba et al. 2002). The images were reduced, resampled, and
co-added using a combination of the Suprime-Cam Deep Field
REDuction package (Yagi et al. 2002) and our own IDL
routines. The details are given in Jiang et al. (2013b). The
following is a brief summary.

Our data processing began with the raw images with point-
spread function (PSF) sizes better than1. 2 . Each image was bias
(overscan) corrected and flat-fielded. Bad pixel masks were
created from flat-field images. Then cosmic rays, saturated
pixels, and bleeding trails were identified and interpolated. For
each image, a weight mask was generated to include these
defective pixels. We then corrected the image distortion,
subtracted the sky background, and masked out the pixels
affected by the Auto-Guider probe. After individual images were
processed, we extracted sources with SExtractor (Bertin &
Arnouts 1996), and used these sources to calculate astrometric
and photometric solutions with SCAMP (Bertin 2006). Both
science and weight-map images were scaled and updated using
the astrometric and photometric solutions measured above. We
also incorporated PSF information into the weight image, i.e.,
weight is inversely proportional to the square of PSF. We
resampled and co-added images using SWARP (Bertin et al.
2002). The resampling interpolations for science and weight
images were LANCZOS3 and BILINEAR, respectively.

We then ran SExtractor on the final co-added images to
detect sources. We performed flux calibration for broadband
images using the results of Yagi et al. (2013). Flux calibration
for narrowband images was done using the colors between

narrow bands and nearby broad bands for the Suprime-Cam
system (e.g., Taniguchi et al. 2005; Shimasaku et al. 2006;
Ouchi et al. 2008). We measured aperture photometry in a 2
diameter aperture. Then an aperture correction was applied to
correct for light loss. The aperture correction is determined
from a large number of bright, but unsaturated point sources in
the same image.

2.2. Survey Fields

2.2.1. The SXDS Field

The Subaru deep survey projects, including SXDS (Furusawa
et al. 2008) and the Subaru Deep Field (SDF; Kashikawa et al.
2004), have been very successful in searching for z 6
galaxies. SXDS consists of five Suprime-Cam pointings
(Figure 1), and covers ∼1.2 deg2 in total (Furusawa et al.
2008). It has one of the deepest optical imaging data sets among
ground-based surveys. The imaging data in five broad bands
BVRi z¢ ¢ reach depths of 27.9, 27.6, 27.4, 27.4, and 26.2 AB mag
(5s in a 2 diameter aperture), respectively. Especially
noteworthy is the availability of deep observations with a series

Table 1
Survey Fields

No. Field Coordinates Area mlim(NB816) mlim(NB912) mlim(NB921) mlim(z¢)
(J2000.0) (deg2) (mag) (mag) (mag) (mag)

(1) (2) (3) (4) (5) (6) (7) (8)

1 SXDS 02:18:00–05:00:00 1.0 26.1 K 25.4 26.2
2 A370a 02:39:55–01:35:24 0.2 26.0 25.8 26.0 26.3
3 A370b 02:41:16–01:34:30 0.2 25.9 25.9 K 25.9
4 ECDFS 03:32:25–27:48:18 0.2 26.0 K 26.0 26.7
5 COSMOS 10:00:29+02:12:21 2.0 25.7 K 25.8 25.5
6 SSA22a 22:17:32+00:15:14 0.2 26.1 25.7 25.5 26.7
7 SSA22b 22:18:23+00:37:08 0.2 26.2 25.6 K 25.9

Note. The magnitude limits correspond to 5s detections in a 2 diameter aperture.

Figure 1. SXDS field. The field consists of five Suprime-Cam pointings (gray
area) and covers ∼1.2 deg2 in total (Furusawa et al. 2008). The five large
circles indicate the five M2FS pointings. The red and blue points represent
LAE and LBG candidates, respectively.
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of narrowband filters, including NB816 and NB921. The depths
of the stacked NB816 and NB921-band images are 26.1
and 25.4mag, respectively. Note that the depths slightly vary
(±0.1 mag) across the five different Suprime-Cam pointings. In
addition to the optical imaging data, the SXDS central region
(∼0.8 deg2) is covered by deep near-IR imaging data from the
UKIDSS Ultra Deep Survey (UDS). The UDS field has a series
of deep imaging data from ultraviolet to radio. For example, it is
partly covered by the HST CANDELS survey (Grogin et al.
2011; Koekemoer et al. 2011).

The SXDS images have been used to search for high-redshift
LAEs, including z 5.7» and 6.5 LAEs. Ouchi et al. (2008)
presented a large sample of LAE candidates at z 3.1» , 3.7, and
5.7. They also reported on the spectroscopic confirmation of
17 z 5.7» LAEs from a sample of 29 candidates. Ouchi et al.
(2010) presented a photometric sample of LAEs at z 6.5» .
They also took spectroscopic observations of 30 candidates and
identified 19 LAEs. Matthee et al. (2015) reported on a small
sample of bright photometrically selected LAEs at z 6.5» . In
our program, we will observe most z 5.7» and 6.5 LAE
candidates brighter than 7s detections, over the whole
SXDS field.

2.2.2. The A370 Field

The A370 field consists of two Suprime-Cam pointings,
denoted as A370a and A370b in the paper (Figure 2). A370a is
centered on the famous galaxy cluster Abell 370 at z=0.375.
The cluster is one of the best studied strong-lensing clusters,
and the cluster region has a wealth of multi-wavelength data. It
is one of the HST Frontier Fields (Lotz et al. 2017). The
Suprime-Cam imaging data in five broad bands (BVRIz¢) reach
depths of 27.7, 27.0, 27.0, 26.2, and 26.3 mag, respectively. It
is also covered in three narrow bands, NB816, NB912, and
NB921, and the depths in these bands are 26.0, 25.8, and
26.0 mag, respectively.

A370b slightly overlaps with A370a. The Suprime-Cam
imaging data in four broad bands (BRIz¢) have depths of 27.3,

27.5, 26.4, and 26.1 mag, respectively. We also have a V-band
image, but it is too shallow compared to other images, so we
did not use it. This does not affect our target selection of high-
redshift objects. The image depths in two narrow bands
(NB816 and NB912) are 25.9 mag. We do not have NB921-
band images for A370b.
Hu et al. (2010) has carried out deep spectroscopy of z 5.7»

and 6.5 LAE candidates in the A370 field, and confirmed 24
LAEs. They did not use the NB921-band image, and did not
observe z 6 LBG candidates. In our program, we use both
NB912- and NB921-band images for z 6.5» LAEs, and we
also target LBGs at z 6 .

2.2.3. The ECDFS Field

The ECDFS field consists of one Suprime-Cam pointing
(Figure 3). It is partly covered by deep X-ray data (e.g., Lehmer
et al. 2005; Xue et al. 2016; Luo et al. 2017), as well as other
multi-wavelength data. In particular, it is partly covered by
several HST deep fields. It has deep Suprime-Cam r¢- and
z′-band images with depths of 27.4 and 26.7 mag. The depths
of its two narrowband images in NB816 and NB921 are
26.0 mag. This field does not have Suprime-Cam i¢ or I-band
images (the i¢ or I-band data are critical for target selection
here). We have generated a pseudo i′-band image as follows.
ECDFS was observed in a series of more than 15 narrow and
intermediate bands by Suprime-Cam. We combined these
images that have central wavelengths within the wavelength
coverage of the Suprime-Cam i¢ filter. The photometric zero
point of the stacked pseudo image was determined by
comparing the i z¢ - ¢ colors of the objects in this image to
those from other fields with i¢- and z′-band images. The depth
of this pseudo i′-band image is 27.5 mag. The wavelength
coverage of the pseudo i¢ band is slightly different from that of
the Suprime-Cam i¢ filter. This has little effect on the selection
of LAE candidates, but slightly affects the selection of LBG
candidates (or i′-band dropouts) due to a small difference on

Figure 2. A370 field. The field consists of two Suprime-Cam pointings (gray
area), denoted as A370a and A370b in the paper. The two large circles indicate
the two M2FS pointings. The red and blue points represent LAE and LBG
candidates, respectively.

Figure 3. ECDFS field. The field consists of one Suprime-Cam pointing (gray
area). The large circle indicates the M2FS pointing. We have to move the
pointing center far away from the field center to find a suitable SH star. The red
and blue points represent LAE and LBG candidates, respectively.
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the red-end wavelength cutoff. We take this into account for
target selection.

2.2.4. The COSMOS Field

The COSMOS field (Scoville et al. 2007) covers ∼2 deg2

(Figure 4) and has extensive multi-wavelength images (e.g.,
Capak et al. 2007). For example, it is partly covered by the
UltraVISTA near-IR imaging data and the HST CANDELS
data. Taniguchi et al. (2007) presented Supreme-Cam observa-
tions of COSMOS in detail. These observations cover the
whole COSMOS field in six broad bands (Bg Vr i z¢ ¢ ¢ ¢) and one
narrow band NB816. Capak et al. (2007) released the images to
the public. These images were smoothed to a large PSF size
( 1. 6~  ) for a better photometric redshift measurement. Our
stacked images have better PSF sizes (∼1 0–1 2). In seven
bands BVr i z¢ ¢ ¢ and NB816, they have depths of 27.3, 26.7,
26.7, 26.3, 25.5, and 25.7 mag, respectively. We did not use the
g¢ images because of their poor image quality. The central part
of COSMOS (roughly 1 deg2) was also observed in the NB921
band. The stacked NB921-band image that we produced has a
depth of 25.8 mag.

Murayama et al. (2007) presented a sample of 119 LAE
candidates at z 5.7» . They did not carry out spectroscopic
observations of these candidates. Matthee et al. (2015) reported
on a sample of bright photometrically selected LAEs at
z 6.5» . In our program, we spectroscopically identify z 5.7»
and 6.5 LAE candidates, as well as LBG candidates. So far we
have only considered the region covered by the NB921-band
image. We will complete observations for the whole COSMOS
field later.

2.2.5. The SSA22 Field

The SSA22 field consists of two Suprime-Cam pointings,
denoted as SSA22a and SSA22b in the paper (Figure 5).
SSA22a and SSA22b slightly overlap with each other. For
SSA22a, the Suprime-Cam imaging data in five broad bands

(BVRIz¢) reach depths of 27.9, 28.1, 28.0, 27.3, and 26.7 mag,
respectively. It is also covered in three narrow bands, NB816,
NB912, and NB921, and the depths in these bands are 26.1,
25.7, and 25.5 mag, respectively. For SSA22b, the Suprime-
Cam imaging data in the five broad bands reach depths of 27.6,
27.2, 27.2, 26.5, and 25.9 mag. Its two narrowband images in
NB816 and NB912 have depths of 26.2 and 25.6 mag.
Hu et al. (2010) has carried out deep spectroscopy of z 5.7»

and 6.5 LAE candidates in the SSA22 field, and confirmed
nearly 50 LAEs. They did not use the NB921-band data, and
did not observe LBG candidates. Matthee et al. (2015) reported
a sample of bright, photometrically selected LAEs at z 6.5» .
In our program, we use both NB912- and NB921-band images
to select z 6.5» LAEs. We also observe z 6 LBG
candidates.

3. Target Selection, M2FS Observations,
and Data Reduction

In this section, we briefly describe our target selection of
LAE and LBG candidates, and then present the details of the
M2FS observations and data reduction. One advantage of
M2FS is its large number (256) of fibers available. This allows
us to relax target selection criteria so that we can include more
candidates and improve sample completeness.

3.1. Target Selection

We select LAE and LBG candidates using the narrowband
(or Lyα) technique and the dropout technique, respectively.
The two techniques used for high-redshift galaxies have been
extensively addressed in the literature. Figure 6 shows the
filters that are used for our target selection. Different fields have
slightly different combinations of broadband filters,18 such as
r i z Ri z,¢ ¢ ¢ ¢ ¢, and RIz¢. As an example, below we use Ri z¢ ¢ to
briefly present our selection criteria for the SXDS field.

Figure 4. COSMOS field. The field covers ∼2 deg2 in total (gray area). So far
we have only considered the central ∼1 deg2 region that has the NB921-band
imaging data. The five large circles indicate the five M2FS pointings. The red
and blue points represent LAE and LBG candidates, respectively.

Figure 5. SSA22 field. The field consists of two Suprime-Cam pointings (gray
area), denoted as SSA22a and SSA22b in the paper. The two large circles
indicate the two M2FS pointings. The red and blue points represent LAE and
LBG candidates, respectively.

18 In this paper, the Suprime-Cam filter Rc is denoted as R, and Ic is denoted
as I.
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The selection of z 5.7» LAE candidates is mainly based on
the i NB816¢ - color (top panel in Figure 7). We apply the
following color cuts to all 7s> detections in the NB816 band,

i R z RNB816 1.0, 2 or 3 detection, 1s¢ - > - ¢ > < ( )

where the second criterion requires R z 2- ¢ > if a candidate is
detected in z ;¢ otherwise, it requires that the R-band detection is
fainter than 3s. We further require that candidates should not
be detected ( 2s< ) in any bands bluer than R, assuming that no
flux can be detected at the wavelength bluer than the Lyman
limit. We visually inspect each candidate and remove spurious
detections.

The selection of z 6.5» LAE candidates is mainly based on
the z NB921¢ - (or z NB912¢ - ) color (middle panel in
Figure 7). We apply the following color cuts to all 7s>
detections in the NB921 (or NB912) band,

z
i z i
R z R

NB921 0.8,
1.3 or 3 detection,
2.5 or 3 detection. 2

s
s

¢ - >
¢ - ¢ > ¢ <
- ¢ > < ( )

We also visually inspect each candidate, and require no
detection ( 2s< ) in any bands bluer than R.

The selection of z 6 LBG candidates is mainly based on the
i z¢ - ¢ color (bottom panel in Figure 7). The survey limit is also
7s detections in the z¢ band. We apply the following color cuts,

i z i
R z R

1.3 or 3 detection,
2.0 or 3 detection. 3

s
s

¢ - ¢ > ¢ <
- ¢ > < ( )

As for the LAE candidates, we require no detection ( 2s< ) in
any bands bluer than R. Each candidate is also visually
inspected.

As we can see, our selection criteria are relatively
conservative, compared to those used in the literature (e.g.,
Taniguchi et al. 2005; Shimasaku et al. 2006; Ouchi et al. 2008,
2010; Hu et al. 2010). This allows us to include less promising
candidates and achieve high completeness. On the other hand,
it means a relatively lower efficiency (a larger fraction of
contaminants). However, it is not a concern in our program,
since we have enough fibers to cover all these candidates. For

the same reason, we do not use near-IR imaging data for our
target selection. As we mentioned earlier, some fields are
covered by deep near-IR imaging data, which can potentially
remove some contaminants. For example, many contaminants
of high-redshift galaxies are late-type dwarf stars and low-
redshift red (dusty) galaxies, which tend to have different
(redder) colors in the (observed-frame) near-IR. For the
purpose of sample completeness, we do not use these near-IR
data. We choose to use simple color cuts in the optical to
achieve high completeness.
In addition to the above main targets of z 6 galaxies, we

also select a variety of ancillary targets for spare fibers. First of
all, we include some weak LAE and LBG candidates with
detections lower than 7s in the narrow bands or z¢ band. Our
main targets have 7s> detections. As candidates go fainter, the
contamination rate rises rapidly. Nevertheless, we include a
sample of LAE and LBGs with detections between 5s and 7s,
using the same selection criteria 1–3. We also include other
ancillary targets. Three examples are (1) strong X-ray sources
that have not been spectroscopically identified; (2) relatively
lower-redshift LBG candidates at z5.3 5.5;< < and (3)
z′-band dropout objects if y-band images are available. These
targets do not form complete samples.
The selection criteria may slightly vary from field to field,

depending on the bands of the available imaging data, image
depth, and candidate surface density. All targets are prioritized
before they are fed to fiber plates. Candidate LAEs at z 6.5»
and 5.7 have the highest priorities, followed by i′-band dropout

Figure 6. Transmission curves of the main Suprime-Cam filters that are used
for our target selection. The NB816 and NB921 (or NB912) bands correspond
to the detection of LAEs at z 5.7 and 6.5, respectively.

Figure 7. Color–magnitude diagrams that are used for our target selection of
z 5.7» and 6.5 LAE candidates, and z 6 LBG candidates. Each panel
contains roughly 20,000 objects selected from the SXDS catalog. Colors
greater than 2.3 are shown as 2.3 in the figure. The red dashed lines indicate our
color cuts and the blue dashed lines indicate the 7s limits.
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objects (LBG candidates), and finally ancillary targets. Table 2
shows the numbers of the targets selected earlier, and the
numbers of the targets that have been observed (or will be
observed) by our M2FS program. More detailed information
will be presented in the future papers when we study galaxy
properties and luminosity functions.

3.2. M2FS Observations

3.2.1. Plate Design

M2FS, the Michigan/Magellan Fiber System, is a fiber-fed,
multi-object, double optical spectrograph on the Magellan Clay
telescope (Mateo et al. 2012). Each spectrograph is fed by 128
fibers, resulting in a total of 256 fibers. M2FS provides a large
FoV of 30¢ in diameter. It has high throughput in the
wavelength range from 3700 to 9500Å. We use a pair of
red-sensitive gratings with a resolving power of about 2000.
The wavelength coverage of our observations is roughly from
7600 to 9600Å, corresponding to the wavelength of Lyα
emission in galaxies at z 5.3 6.8» – .

The design of the M2FS pointings or plug plates is limited
by the availability of Shack–Hartmann (SH) stars, guide stars,
and alignment stars. Each plate (or M2FS field) is centered on
an SH star, which is fed to SH wavefront sensors for primary-
mirror wavefront corrections. The SH star is required to be
brighter than V=14 mag. At least two guide stars are needed
for each plate, and they are brighter than V=15 mag. In
addition, each plate requires at least four (up to eight)
alignment stars brighter than V=15.5 mag. These restrictions
have an impact on our selection of M2FS pointing centers, due
to the small numbers of bright stars in our fields. Note that
these fields were chosen to have few bright stars in the first
place. An extreme sample is the ECDFS field (see Figure 3),
where several HST deep fields are located. We had to shift the
M2FS pointing center far away from the field center to find a
suitable SH star.

In addition to the science targets and bright setup stars, we
also include 5–10 relatively bright point sources in each field.
They are used as reference stars to check image quality and
depth.

Finally, we include sky fibers. The number of sky fibers
varies around 30–40, depending on the availability of spare
fibers. Sky fibers are critical for sky subtraction, and more sky
fibers usually lead to better sky subtraction. On the other hand,

our main targets are very faint high-redshift galaxy candidates,
and they are mostly much fainter than sky background. So most
fibers for the galaxy candidates can be used as sky fibers. As a
result, roughly half of the total fibers can be used as sky fibers,
which allows us to achieve accurate sky subtraction (see the
next subsection for details).

3.2.2. Observations

Our goal is to detect z 5.7» LAEs down to at least
25.5–25.6 mag in the NB816 band. This corresponds to a Lyα
flux depth of 1 10 17~ ´ - erg s−1 cm−2 ( 5s> detection). The
total integration time per pointing was initially set to be 5 hr,
based on the theoretical system throughput. Later we found that
we were able to achieve our goal with this integration under
normal weather conditions. Accordingly, we are able to detect
z 6.5» LAEs down to at least 25.2 mag (in the NB921 or
NB912 band).
Table 3 summarizes the M2FS observations that we have

carried out so far. The five SXDS M2FS pointings are denoted
as SXDS1, SXDS2, SXDS3, SXDS4, and SXDS5, and the five
COSMOS pointings are denoted as COSMOS1, COSMOS2,
COSMOS3, COSMOS4, and COSMOS5. We have observed
most fields or pointings. The remaining pointings will be
observed in the near future.
The M2FS observations are made in the queue mode, and the

M2FS observing blocks are typically scheduled in dark or gray
time. The observing conditions for our fields were usually
normal, with relatively clear skies and ∼0 7–1 0 seeing. A
small fraction of images was collected in relatively poor
conditions (see Table 3). The on-source integration time for
each pointing was about 5–6 hr, consisting of several individual
exposures. The individual exposure time was typically 1 hr, and
can be 30 minutes or 45 minutes, depending on the weather
condition and airmass. In addition to science images, we also
took a set of calibration images in the afternoon or during the
night. The calibration data include bias, twilight flats, dark,
lamps, fiber maps, etc. All images were binned with two by two
pixels.

Table 2
Numbers of Targets

Field
No.a Field Name

z∼5.7
LAEs

z∼6.5
LAEs

z∼6
LBGs

Other
targets

(1) (2) (3) (4) (5) (6)

1 SXDS 121/162 35/39 205/249 392
2, 3 A370 21/22 61/63 74/85 91
4 ECDFS 3/3 9/12 71/105 159
5 COSMOS 18/21 160/226 105/145 828
6, 7 SSA22 17/17 45/48 21/24 223

Note. In Columns 3–5, the latter number in each field indicates the total
number of candidates, and the former number indicates the number of
candidates that were observed (or will be observed) by our M2FS program.
Column 6 shows the actual numbers of ancillary targets that were observed (or
will be observed).
a Numbers correspond to Column 1 in Table 1.

Table 3
Summary of the M2FS Observations

Field
No.a Field Name Year/Month

Exp.
Time Comments

(1) (2) (3) (4) (5)

1 SXDS1 2016
Nov, Dec

5.0 hr 20% data not usable

1 SXDS2 2016 Dec 5.0 hr L
1 SXDS3 2015 Nov 7.0 hr L
1 SXDS5 2016 Dec 5.0 hr L
2 A370a 2015

Sep, Nov
7.0 hr cloudy (3 hr), cir-

rus (4 hr)
4 ECDFS 2016 Feb 6.3 hr L
5 COSMOS1 2015 Apr 6.0 hr cirrus (2 hr)
5 COSMOS2 2015 Apr 4.5 hr L
5 COSMOS3 2015 Apr 5.0 hr L
5 COSMOS4 2015 Apr 5.0 hr L
5 COSMOS5 2016 Feb 5.7 hr L
7 SSA22b 2015 Sep 7.5 hr cirrus (4 hr)

Note.
a Field numbers correspond to Column 1 in Table 1.
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3.3. Data Reduction

The data reduction of our M2FS images is not straightfor-
ward due to the following reasons. First of all, the wavelength
range considered here is contaminated by a large number of
strong OH skylines. The spectral resolution is not optimal for
efficiently removing these OH lines. This makes it particularly
difficult for the detection of weak sources. Second, our targets
are faint, but the spectral dispersion is high, so we take long
exposures (typically one hour) for science images. This results
in a number of cosmic rays and varying OH skylines. In
addition, the observed OH line width is a function of spatial
position in science images. This needs to be taken into account
for sky subtraction.

We reduce the M2FS images using our own customized
pipeline. The basic procedure is as follows. First, raw images
are bias (overscan) corrected, dark subtracted, and flat-fielded.
Cosmic rays are also identified and interpolated. For brevity,
we call images in this step “calibrated” two-dimensional (2D)
images. Then we trace fiber positions using twilight images,
and extract one-dimensional (1D) spectra of science, twilight,
and lamp images from their calibrated 2D images. We do not
use the simple box sum for spectral extraction. Instead, we fit a
flux profile along the spatial direction at each pixel wavelength.
The extracted 1D spectra are also used to correct small frame-
to-frame positional shifts (usually 0.5 pixels per night). In
Figure 8, the upper left panel shows part of a calibrated science
image in SXDS3. The upper right panel shows the residual
image of the science image after the above 2D profiles are
subtracted. The clean residual image suggests that the 2D
profiles are well modeled. Such 2D information is used in later
steps of the data reduction procedure.

Next, we perform wavelength calibration in two steps. In the
first step, we derive preliminary wavelength solutions using the

1D lamp spectra. In the second step, we refine the wavelength
solutions using a large number of strong OH skylines in science
spectra. Then we measure fiber response curves using the 1D
twilight spectra. These curves are used to correct fiber-to-fiber
variations in science spectra.
Now the 1D science spectra are ready for sky subtraction. As

we mentioned in Section 3.1, most of our science targets are
much fainter than sky background, and their fibers can be
safely used as sky fibers. As a result, more than half of all fibers
are used as sky fibers. Our spectra are largely contaminated by
OH skylines. The widths of OH lines vary slowly along the
spatial direction in images, as illustrated in Figure 9. Therefore,
a subtraction of a global sky background does not work well.
The large number of sky fibers allows us to build a “local” sky
spectrum for each object, by averaging (with sigma rejection)
flux from the nearest ∼30 sky fibers in science images. This
sky spectrum is then scaled and subtracted from the object
spectrum. In order to visually identify weak emission lines, we
map the 1D sky spectrum of each object to a 2D sky spectrum
using the 2D profile obtained when we trace fiber positions.
The 2D sky spectra are then scaled and subtracted from 2D
calibrated science images. The lower left panel in Figure 8
shows the sky-subtracted fibers for the same portion of the
image in the other panels.
Finally, we weigh individual exposures and combine them to

generate the final 1D and 2D spectra. In Figure 8, the lower
right panel shows the combined 2D image. We can clearly see
seven LAEs in this portion of the image.

3.4. Preliminary Observational Results

The current depth of the observations is not uniform. The total
integration time varies between 4.5 and 7.5 hr from field to field
(Table 3). In addition, some fields were observed under relatively

Figure 8. M2FS data reduction. Upper left panel: part of a calibrated 2D science image in SXDS3. Upper right panel: the residual of the science image after each fiber
is traced, modeled, and subtracted. Lower left panel: sky-subtracted 2D image. Blank pixels are possibly affected by cosmic rays and are not used. Lower right panel:
the final combined 2D image, where we can clearly identify seven LAEs at z 5.7~ . The wavelength coverage is approximately from 8040 to 8230 Å.
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poor weather conditions. We are still accumulating data and
improving the data reduction pipeline. On the other hand, the
current stacked images are deep enough for us to securely identify
relatively luminous LAEs (see the next section). Most of them are
deep enough to identify z 5.7» LAEs down to 25.5mag.

We identify Lyα emission lines in our data based on both 2D
images and 1D spectra (see Figures 8 and 10). Our target
selection criteria usually ensure that a detected emission line in
the expected wavelength range is a Lyα line. The main reason
is that the non-detections in very deep BVR images suggest that
these candidates are not likely low-redshift contaminants. We
use z 5.7~ candidates as an example. The four strong
emission lines in star-forming galaxies that likely contaminate
our lines are [O II] λ3727, Hβ, [O III] λ5007, and Hα. The
wavelength coverage rules out the possibility that a detected
line is one of the Hβ and [O III] λ5007 lines, and the deep BVR
images rule out the possibility that a detected line is Hα. The

most likely contaminants are [O II] λ3727 emitters. But the
[O II] λ3727 lines are doublets, and our spectral resolution is
high enough to identify the doublets. A tiny fraction of the
candidates are indeed confirmed to be [O II] λ3727 emitters at
lower redshift. Furthermore, we can clearly see asymmetry in
the emission lines of relatively bright galaxies. This is the
indicator of the Lyα emission line at high redshift due to strong
IGM absorption blueward of the line.
We use the results from two fields, A370a and SXDS3, to

demonstrate the performance of our program. These two fields
are chosen for two reasons. The first reason is that the two
fields have reached our designed depth. The other one is that
they have the largest numbers of spectroscopically confirmed
LAEs at z 5.7~ from the literature (Ouchi et al. 2005, 2008;
Hu et al. 2010). There are 13 confirmed z 5.7~ LAEs in
SXDS3 from Ouchi et al. (2005, 2008), and 7 confirmed
z 5.7~ LAEs in A370a from Hu et al. (2010).
In A370a and SXDS3, we have 39 and 58 LAE candidates

that are brighter than 7s detections in NB816. From our data,
we confirm 16 and 35 LAEs, respectively. The average
detection rate is slightly above 50%, which is lower than those
in the literature. This is expected. As we mentioned in
Section 3.1, our target selection criteria are relatively
conservative, which increases the sample completeness, but
decreases the success rate. For the remaining candidates in
A370a and SXDS3, there are about 10 weak emission lines that
have been identified as “possible” LAEs. One candidate is an
[O II] λ3727 emitter. All others are non-detections in our data.
We match our results with the LAE lists in the above

literature. We find that we have recovered all 7 LAEs in A370a
from Hu et al. (2010), and recovered 12 out of 13 LAEs in
SXDS3 from Ouchi et al. (2005, 2008). For the one that we do
not recover, it shows a weak line that is classified as a
“possible” LAE in our M2FS spectra. Its emission line is also
weak in the literature. Deeper spectroscopy is needed to
confirm this LAE. In short, the above comparison suggests that
our sample completeness is high.

4. Science Goals and the First Results

With the M2FS survey, we will build a large sample of
bright, spectroscopically confirmed LAEs and LBGs at z 6 .
We are still gathering and reducing M2FS data. Based on the
data processed so far and the luminosity functions from the
literature, we expect to find z300 5.7~ » LAEs brighter than
25.5–25.6 mag, and z60 6.5~ » LAEs brighter than
25.1–25.2 mag. Meanwhile, we will identify a smaller sample
of more than 50 fainter LAEs with high Lyα equivalent widths
(their completeness will be relatively lower). In addition, we
will also find a sample of bright LBGs at z 6 and a sample of
ancillary objects (Section 3.1). The unique bright LAE sample
will enable much science. In this section, we will provide a few
examples, such as the Lyα luminosity function and its
evolution, high-redshift protoclusters, physical properties of
high-redshift galaxies, etc. We will also present some
preliminary results, including a sample of very bright LAEs.

4.1. Science Cases

With the large sample of LAEs at z 5.7» and 6.5, we will
significantly improve the measurement of the Lyα luminosity
function at these two redshifts. As we mentioned earlier, a
strong evolution of the Lyα luminosity function from z 5.7»

Figure 9. Variation of OH skyline width and relative intensity. The color-
coded profiles represent 1D spectra extracted from all sky fibers in one SXDS3
science image. Different colors from red to blue indicate the increasing fiber
numbers along the spatial direction (y-axis in the image; see Figure 8). It is
clear that both line width and relative intensity of OH skylines vary slowly and
smoothly along the spatial direction, which has been taken into account during
our sky subtraction.
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Figure 10. M2FS spectra of the 32 luminous LAEs. The spectra have been scaled to match the observed narrowband photometry in Table 4. For each LAE, the gray
region indicates the1s uncertainty region, and the bottom of the gray region indicates the zero-flux level. The vertical dotted lines show the positions of OH skylines.
The object number corresponds to the number in Column 1 of Table 4.
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to 6.5 has been reported, but there are large discrepancies
among these results. Cosmic variance is likely one of the main
reasons. The large number of galaxies over a large area will
significantly reduce the uncertainty from cosmic variance. For
example, assuming we find 300 LAEs at z 5.7» in 4 deg2, the
uncertainty from cosmic variance (including Poisson uncer-
tainty) is only 13%~ , using the calculator of Trenti & Stiavelli
(2008). We have assumed 0.858s = , and the average bias is
∼7. If we evenly split the sample into five luminosity bins, the
uncertainty from cosmic variance for each binned luminosity
function is 19%~ . In addition, our sample is well defined, with
high completeness. All imaging data were taken by the same
instrument (Suprime-Cam), and were reduced using the same
pipeline (our own). All galaxy candidates were selected in the
same way, and were spectroscopically identified by the same
instrument. These factors largely reduce systematic uncertain-
ties. With this LAE sample, we will conclusively confirm
whether there is a strong evolution of the Lyα luminosity
function from z 5.7» to 6.5. Currently, we are measuring the
Lyα luminosity function at z 5.7» based on the M2FS data
taken so far (Z. Zheng et al. 2017, in preparation).

With the bright sample of LBGs at z 6 , we will improve
the measurement of the fraction of LBGs that have strong Lyα

emission. This fraction is expected to decrease toward higher
redshifts (z 6 ), as the neutral IGM fraction becomes higher.
Such a change of the fraction has been found in several LBG
samples (e.g., Stark et al. 2011; Treu et al. 2012; Bian et al.
2015). We expect to identify a uniform LBG sample that is
very suitable for calculating the fraction of LBGs with strong
Lyα emission. We will measure the evolution of this fraction,
which will be used to constrain the state of the IGM at these
redshifts.
The LAE sample will allow us to find large protoclusters of

galaxies at high redshift. In recent years, there has been growing
interest in hunting for high-redshift protoclusters, the progenitors
of mature clusters at low redshifts (e.g., Ouchi et al. 2005;
Venemans et al. 2007; Overzier et al. 2008; Toshikawa et al. 2012;
Lee et al. 2014; Dey et al. 2016; Cai et al. 2017). In order to
reliably identify high-redshift protoclusters and measure their
properties, such as overdensity, spectroscopic redshifts are critical
(Chiang et al. 2013). A large-area spectroscopic survey is an
efficient way to find these structures. Based on the data taken so
far, we have successfully identified a giant protocluster at
z 5.70» in the SXDS field (Jiang et al. 2017). This protocluster
consists of at least 41 spectroscopically confirmed, luminous LAEs
within a volume of roughly 53 36 46´ ´ (co-moving Mpc)3. Its

Table 4
A Sample of the Brightest LAEs at z 5.7» and 6.5

No. Field R.A. Decl. i¢ z¢ NBa L(Lyα) Redshift
(J2000.0) (J2000.0) (mag) (mag) (mag) (1043 erg s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 A370a 02:40:38.28 −01:30:33.0 26.28 25.82 24.28±0.06 1.20±0.14 5.705
2 A370a 02:39:17.66 −01:26:54.9 26.17 26.07 24.13±0.05 1.74±0.19 5.676
3 A370a 02:39:30.01 −01:25:29.9 26.14 26.29 24.37±0.06 1.45±0.17 5.676
4 A370a 02:40:08.49 −01:24:47.7 25.42 25.07 24.15±0.05 1.80±0.20 5.666
5 A370a 02:39:28.58 −01:24:01.4 26.26 26.62 24.24±0.05 1.72±0.19 5.671
6 ECDFS 03:32:15.17 −28:00:13.7 28.0> 25.84 24.50±0.08 1.88±0.23 5.656
7 ECDFS 03:32:41.55 −27:59:22.3 27.78 25.75 24.45±0.07 1.58±0.19 5.661
8 ECDFS 03:32:37.52 −27:40:57.8 28.0> 27.2> 24.42±0.06 1.36±0.16 5.722
9 COSMOS 10:01:24.80 +02:31:45.4 26.9> 25.82 23.72±0.04 2.71±0.29 6.545
10 COSMOS 09:59:54.78 +02:10:39.3 26.56 26.0> 24.32±0.02 1.89±0.19 5.664
11 SXDS1 02:17:57.60 −05:08:44.9 27.9> 25.67 23.56±0.05 4.78±0.53 6.595
12 SXDS1 02:19:01.44 −04:58:59.0 27.9> 26.8> 24.43±0.06 1.54±0.27 6.556
13 SXDS1 02:18:27.45 −04:47:37.2 26.33 25.93 23.87±0.04 1.96±0.21 5.703
14 SXDS2 02:18:06.23 −04:45:10.8 27.9> 26.71 24.16±0.06 2.24±0.26 6.577
15 SXDS2 02:18:29.02 −04:35:08.1 27.47 25.52 24.12±0.06 1.96±0.22 6.513
16 SXDS2 02:17:34.58 −04:45:59.1 26.62 25.64 24.45±0.06 1.03±0.12 5.702
17 SXDS2 02:18:23.30 −04:43:35.1 26.11 25.05 24.50±0.06 1.05±0.12 5.670
18 SXDS2 02:17:58.92 −04:30:30.5 26.63 25.98 24.26±0.05 1.30±0.14 5.690
19 SXDS3 02:17:14.01 −05:36:48.8 26.29 24.69 23.55±0.04 2.07±0.22 6.530
20 SXDS3 02:17:29.49 −05:38:16.6 26.21 26.05 24.35±0.07 1.53±0.18 5.671
21 SXDS3 02:17:52.65 −05:35:11.8 25.11 24.57 24.05±0.04 3.20±0.34 5.759
22 SXDS3 02:17:07.87 −05:34:26.8 26.39 26.04 23.61±0.03 2.75±0.29 5.680
23 SXDS3 02:17:24.04 −05:33:09.7 25.68 25.05 23.48±0.02 2.70±0.27 5.708
24 SXDS3 02:17:48.47 −05:31:27.1 26.30 25.64 24.26±0.05 1.24±0.14 5.690
25 SXDS3 02:17:45.26 −05:29:36.1 26.55 25.97 24.03±0.04 1.76±0.19 5.688
26 SXDS3 02:17:49.13 −05:28:54.3 26.08 25.60 24.04±0.04 1.62±0.17 5.696
27 SXDS3 02:17:04.30 −05:27:14.4 26.30 26.25 23.98±0.04 1.89±0.20 5.687
28 SXDS3 02:17:36.39 −05:27:01.8 26.89 26.8> 24.48±0.06 1.33±0.15 5.674
29 SXDS3 02:16:57.89 −05:21:17.1 26.69 26.8> 24.46±0.06 1.55±0.18 5.669
30 SXDS5 02:16:05.11 −05:07:54.0 26.16 25.23 24.29±0.06 1.88±0.21 5.654
31 SXDS5 02:15:25.26 −04:59:18.3 26.63 25.70 24.24±0.06 1.35±0.15 5.674
32 SXDS5 02:16:24.72 −04:55:16.7 26.41 25.92 23.71±0.04 1.91±0.20 5.707

Note.
a NB indicates NB816 for z 5.7» LAEs, and NB921 (or NB912) for z 6.5» LAEs.
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LAE overdensity is larger than 4. This protocluster will collapse
into a galaxy cluster with a total mass significantly higher than the
masses of the most massive clusters or protoclusters known so far.

Our observations will enable other important science
objectives, including the enhanced clustering of LAEs by
patchy reionization (e.g., McQuinn et al. 2007; Jensen et al.
2014) and Lyα emission halos around LAEs due to the
resonant scattering of Lyα photons (e.g., Zheng et al. 2011;

Jiang et al. 2013a; Momose et al. 2014; Lake et al. 2015;
Mas-Ribas & Dijkstra 2016; Xue et al. 2017). In addition, the
deep fields that we selected are well studied with a large
amount of ancillary data. In particular, these fields are (partly)
covered by deep near-IR and mid-IR imaging data, such as
UDS, UltraVISTA, HST CANDELS, and Spitzer Warm
Mission Exploration programs. The combination of the optical
and infrared data allows us to estimate a variety of physical

Figure 11. Thumbnail images of the 32 luminous LAEs in the i z,¢ ¢, and narrow bands. The image size is 25×25 pixels, or 5 5 ´ . The object numbers correspond
to the numbers shown in Column 1 in Table 4. NB indicates NB816 for z 5.7» LAEs and NB921 (or NB912) for z 6.5» LAEs. They represent the most luminous
LAEs at z 6 .
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properties of these spectroscopically confirmed galaxies, such
as morphology, UV slope, star-formation rate, age, dust, stellar
mass, etc.

4.2. A Sample of Very Luminous LAEs

Recently, the most luminous LAEs at z 6 , such as
“Himiko,” “Masosa,” “CR7,” and “COLA1,” have received
much attention (e.g., Ouchi et al. 2009; Lidman et al. 2012;
Sobral et al. 2015; Zabl et al. 2015; Hu et al. 2016). For
example, “CR7” has been suggested to harbor a direct-collapse
black hole, a massive seed of a supermassive black hole (e.g.,
Dijkstra et al. 2016; Latif & Ferrara 2016). It has also been
suggested that “CR7” contains PopulationIII-like stars (e.g.,
Pallottini et al. 2015; Sobral et al. 2015), though the claim is
still controversial (e.g., Bowler et al. 2017b). Nevertheless,
these extreme objects may have played important roles in the
early massive black-hole formation, Population III stellar
populations, and cosmic reionization.

In this subsection, we present a sample of very luminous
LAEs at z 5.7» and 6.5. As we mentioned earlier, the current
depths of the M2FS data are not uniform across the fields. The
LAE sample presented here is from part of the data that has
been fully processed. The LAEs are selected to have
narrowband magnitudes brighter than 24.5 mag, roughly
corresponding to a Lyα luminosity of L 1043~ erg s−1. This
is about half of the “CR7” Lyα luminosity. Some LAEs in this
sample are even brighter than “CR7.”

The sample of 32 luminous LAEs are summarized in
Table 4. Columns 3 and 4 give the coordinates of the LAEs.
Columns 5 through 7 show their i z,¢ ¢, and narrowband
photometry. Column 8 shows the Lyα luminosities. Column
9 shows the redshifts measured from their Lyα emission lines.
These LAEs are among the brightest of all known LAEs at
z 6 . In particular, about 25% of them are brighter than
24 mag, and they are comparable to “CR7” in terms of Lyα
luminosity. A few of them reach NB 23.5» mag, as bright as
the most luminous LAEs known, “COLA1.” Note that our
observations did not cover “CR7” and “COLA1,” but covered
“Himiko” (No. 11 in Table 4) and “Masosa” (No. 9). The first
five LAEs in Table 4 are from the A370a field, but none of
them were reported by Hu et al. (2010), for unknown reasons.

Figure 10 shows the M2FS spectra of the 32 LAEs.
Figure 11 shows the thumbnail images of the 32 LAEs in the
i z,¢ ¢, and one of the narrow bands (NB816 for z 5.7» LAEs,
and NB921 or NB912 for z 6.5» LAEs). The brightest
galaxies at z 6 generally display extended features or
multiple clumps in deep HST images (e.g., Jiang et al.
2013a). These features are not so obvious in ground-based
images. Owing to the excellent image quality (0 6–0 8),
however, most LAEs in Figure 11 clearly show extended (or
diffuse) Lyα emission. A detailed structural and morphological
study of these LAEs will be presented in a following paper
(F. Bian et al. 2017, in preparation).

5. Summary

We have presented an overview of our ongoing program
aimed to build a large and homogeneous sample of luminous
LAEs at z 5.7» and 6.5, and LBGs at z5.5 6.8< < . The
fields that we chose to observe are well studied, including
SXDS, A370, ECDFS, COSMOS, and SSA22. They cover a
total of nearly 4 square degrees on the sky. These fields have

deep optical imaging data in a series of broad and narrow
bands, taken by the prime-focus imager Suprime-Cam on the
8.2 m Subaru telescope. The multi-band data have allowed us
to efficiently select galaxy candidates via the narrowband (or
Lyα) and Lyman-break techniques. In particular, we have used
two narrowband images, NB816 and NB921 (or NB912), to
select candidate LAEs at z 5.7» and 6.5.
We are carrying out spectroscopic observations to identify

these galaxy candidates, using the fiber-fed, multi-object spectro-
graph M2FS on the 6.5 m Magellan Clay telescope. M2FS has
256 optical fibers deployed over a large circular FoV 30~ ¢ in
diameter, making it one of the most efficient instruments to
identify distant galaxies. With a total of 5–6 hr on-source
integration per pointing, we are able to identify z 5.7» LAEs
down to at least NB816 ≈25.5–25.6 mag, corresponding to a
Lyα flux depth of 1 10 17~ ´ - erg s−1 cm−2, or a luminosity
depth of 4 1042~ ´ erg s−1. We have observed ∼2.5 square
degrees so far. When the program is completed, we expect
to find more than 300 z 5.7» LAEs brighter than
NB816=25.5mag, more than 60 z 6.5» LAEs brighter than
NB921=25.2mag, a smaller sample of fainter LAEs, and a
substantial number of bright LBGs at z 6 . We will also
identify a large sample of ancillary objects at lower redshift.
We have outlined some of our science goals, including the

investigation of Lyα luminosity function and its evolution,
large protoclusters, and cosmic reionization. Particularly, the
large LAE sample over a large area will allow us to obtain an
accurate Lyα luminosity function and answer an important
question: whether there is a strong evolution between z 5.7»
and 6.5. Our fields are partly covered by rich ancillary data in
multiple wavebands, which will be used to study a variety of
physical properties of high-redshift galaxies. We have also
presented one of the first results: a sample of very luminous
LAEs at z 5.7» and 6.5. This sample consists of 32 LAEs
brighter than 24.5 mag (in the narrow bands). Some of them are
as bright as the two most luminous LAEs known at z 6 ,
“CR7” and “COLA1.” Thus, this sample represents the
brightest LAEs at z 6 .
Currently we are still accumulating data for this program and

improving the data reduction pipeline. We expect to complete
all M2FS observations in one year.
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