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Abstract

Ž . Ž .The pion nucleon vertex function at finite temperature is studied in the framework of: a the thermal linear sigma
Ž . Ž .model to leading one-loop order, and b a thermal QCD-Finite Energy Sum Rule. Results from both methods indicate that

the strength of the pion-nucleon coupling decreases with increasing T , vanishing at a critical temperature. The associated
mean-square radius is a monotonically increasing function of T , diverging at the critical temperature. This is interpreted as
Ž .analytical evidence for the quark-gluon deconfinement phase transition. q 1998 Published by Elsevier Science B.V. All
rights reserved.

The temperature behaviour of hadronic Green’s functions, and their associated parameters such as masses,
widths, couplings, etc., has received considerable attention lately, given its impact on the search for the

w xquark-gluon plasma 1 . Two successful theoretical frameworks for these studies are the thermal sigma model
w x w x2–4 , and QCD sum rules 5,6 . The former technique provides information on the T-dependence of pion and
nucleon masses and widths associated, respectively, with the real and imaginary parts of their two-point Green’s

w xfunctions. While these masses show no appreciable variation with temperature, 2,3 their widths exhibit a
w xdramatic increase with increasing T 2,4 . This result is in line with the expectation that hadronic widths,

w xinterpreted as absorption coefficients in the thermal bath, should diverge at some critical temperature 7 . This
provides a signal or phenomenological order parameter for the quark-gluon deconfinement phase transition.

Ž .Another such signal is the thermal behaviour of hadronic couplings and form factors three-point functions ,
which should vanish at a critical temperature, where the associated mean square radii should diverge. This has

w x w xbeen explicitly confirmed for the electromagnetic form factor of the pion 8 , and for the rho-pi-pi coupling 9 .
Ž .In this note we study the p NN vertex function at finite temperature using the thermal linear sigma model, as

Ž .well as QCD sum rules. The purpose is to obtain additional confirming analytical evidence for the
deconfinement phase transition, as well as information on this vertex function, which should be of use in hadron
gas models at finite temperature.

Ž .We begin with the linear sigma model, and consider the p NN vertex
X2 2G q sV q u p g t u p 1Ž . Ž . Ž .Ž . Ž . f 5 a i

2 Ž X .2where the nucleons are on-mass shell, and the pion has virtual mass q s p yp . The renormalization of the
Ž . w x Žsigma model at Ts0 is discussed e.g. in 10 , and the renormalization of the p NN vertex before the
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. w xinvention of dimensional regularization and the MS scheme may be found in 11 . At finite temperature we
w xshall use the Dolan-Jackiw real time propagators 12 , together with the fact that thermal corrections do not

induce any new kind of ultraviolet corrections. Hence, the thermal theory may be renormalized as at Ts0. We
Ž .have done this using dimensional regularization and the MS scheme. To leading one-loop order, the relevant

Ž . 2diagrams are shown in Fig. 1 a-e . At the kinematical point q s0, and in the chiral limit, the expression for
Ž 2 .the irreducible vertex V q is given by

V 0 sg 1qb 0 g 2 2Ž . Ž . Ž .Ž .
where

2 2 2 21 5 M M 5 M Ms s s s
b 0 s y q 3y lnŽ . 2 2 2 2 2ž /3 616p M M M MN N N N

2 2(4M yM1 M N ss2 2 2 2(q 5M y8 M 4M yM arctan 3Ž .Ž .s N N s43 MM sN

Ž .with M and M being the nucleon and sigma meson masses, respectively. Eq. 2 may be regarded as anN s

Ž .Fig. 1. Leading one-loop diagrams contributing to g in the linear sigma model.p NN
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Ž .expression for the effective coupling constant g in the chiral limit. It is equal to g if b 0 vanishes. Thisp NN
Ž .happens for M ,1300 MeV; in fact, b 0 is small and negative if M is bigger than this value. One shoulds s

Ž . w xrecall that in the linear sigma model g s1, so that the Goldberger-Treiman relation GTR 13 becomes:A
w xM sgf . Using the chiral symmetry limit values 14 : M ,800 MeV, and f ,80 MeV, one finds: g, 10,N p N p

not far from the experimental value g , 13. In any case, here we are only interested in the temperaturep NN
Ž 2 . Ž 2 .behaviour of the ratio V q ,T rV q ,0 ; particularly in the possibility that this ratio vanishes at a critical

temperature, and that the mean square radius diverges there. This will turn out to be largely independent of the
Ž . Ž .particular value assumed by g or g and b 0 or equivalently M , although the specific value of thep NN s

critical temperature does depend on the latter.
Ž .Turning to the temperature corrections to the graphs shown in Fig. 1, we need only consider Fig. 1 b and

Ž . Ž Ž .. Ž .Fig. 1 d identical to Fig. 1 e , as Fig. 1 c is Boltzmann suppressed on account of M ,M ))m . TheN s p

Ž .thermal correction to the graph Fig. 1 b is given by

d4k k 2 n k d k 2 ym2Ž . Ž .B 0 pX2 3G q ,T syg u p g t u p 4Ž . Ž . Ž .Ž . Hf 5 a i 4 2 2X 2 22p p yk yM pyk yMŽ . Ž . Ž .N N

Ž . Ž z r T .y1where n is the Bose thermal factor: n z s e y1 . Hence, this contribution vanishes in the chiralB B
Ž .limit. That of Fig. 1 d is found to be

22 2 4 2M ym d k 2m yku 2pd k n kŽ . Ž .Ž .Ž .s p N B 0X2 3G q ,T sg u p g t u p 5Ž . Ž . Ž .Ž . Hf 5 a i2 4 2 22 22 f M 2p kqq yM pyk yMŽ . Ž . Ž .p N s N

We choose for convenience a Lorentz frame in which the incoming nucleon is at rest with respect to the heat
Ž .bath ps0 . We have checked that the final results are largely independent of the choice of frame. The thermal

effective p NN coupling in the chiral limit, and at q2 s0, may then be written as

V 0,T g 2T 2Ž .
s1y 6Ž .2 2V 0,0 12 M 1qg b 0Ž . Ž .Ž .N

where the GTR has been used. Notice that an extrapolation in temperature of this result implies a critical
temperature

2(T s 12 1qb 0 g M rg 7Ž . Ž .Ž .d N

Ž .which depends on the value of the sigma-meson mass through b 0 ; numerically, T ,150y300 MeV ifd

M ,1300y1600 MeV. One should not assign too much importance to the specific numerical values of thiss

critical temperature andror the sigma-meson mass, to wit. First, the relations among parameters in the sigma
model are valid at the 25y30% level; e.g. g s1 instead of the experimental value g s 1.26, and g ,A A p NN

Ž . Ž . 210 from the GTR , as opposed to the experimental value g , 13, etc. Second, Eq. 6 and the Tp NN

dependence is a consequence of the one-loop approximation. Higher loop corrections will induce higher order
Ž .in T terms which will alter the numerical value of the critical temperature. These will be suppressed, though,
by inverse powers of the nucleonrsigma-meson masses. A similar situation arises in chiral perturbation theory

Ž . 2 Ž . w xand the T-dependence of the pion decay constant f T . To order T , f T vanishes at T ,240 MeV 15 ,p p c

while higher order corrections bring down this value considerably. What we find important here, is that the
p NN coupling at leading order in T decreases with increasing temperature.

Ž 2 .Next, we consider the mean-square radius associated with V q ,T , and defined as

2 2 2-r ) V 0,0 E V q ,T E V q ,0Ž . Ž . Ž .p NN T
s 8Ž .2 2 2V 0,T-r ) E q E qŽ .p NN 0 2q s0
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We have calculated this ratio numerically, the result being shown in Fig. 2. An extrapolation in temperature
indicates quite clearly the divergence of this mean square radius. This may be interpreted as a signal for
deconfinement, to the extent that the size of the nucleon, as probed by a pion, increases with increasing
temperature, becoming infinite at TsT .d

Ž .We study next the same vertex function, but in the framework of QCD Finite Energy Sum Rules FESR .
This will provide important independent support to the above result, especially since the QCD sum rule
technique, unlike the sigma model, does not entail any expansion in powers of the temperature. To this end, we
begin the analysis at zero temperature and introduce the three-point function

XX 2 4 4 iŽ p P xyqP y.² :P p , p ,q s i d x d y 0 T h x J y h 0 0 e 9Ž . Ž . Ž . Ž . Ž .Ž .HH 5

Ž . Ž .where the nucleon and pion interpolating currents, h x and J x , respectively, are chosen as5

a b m ch x se u x Cg u x g g d x 10Ž . Ž . Ž . Ž . Ž .abc m 5

J x s i u x g u x yd x g d x 11Ž . Ž . Ž . Ž . Ž . Ž .5 5 5

where C is the charge conjugation operator. The couplings of these currents to the nucleon and the pion are
defined as

² < < :0 h 0 N p ,s sl u p ,s 12Ž . Ž . Ž . Ž .N

2² < < :N p ,s J 0 N p ,s su p ,s g g q u p ,s 13Ž . Ž . Ž . Ž . Ž . Ž .Ž .2 2 5 1 1 2 2 5 P 1 1

where

f m2 gp p p NN2g q s 14Ž .Ž .P 2 2m q ymq p

and where m is the average of the up and down quark masses. In our normalization, the pion decay constant isq
Ž .f ,93 MeV. The hadronic representation of the imaginary part of the vertex function Eq. 9 is obtained byp

inserting a complete set of hadronic states. After summing over spins, and making the standard nucleon-pole
Ž .approximation thus including in the continuum all the radial excitations of the nucleon one obtains
X 2 < 2 2 2 X 2ImP s,s ,q sg l M ig qu p d syM d s yMŽ .Ž . Ž . Ž .HAD P N N 5 N N

X X X 2 <qu sys u s ys ImP s,s ,q 15Ž . Ž . Ž .Ž . QCD0 0

Since we are interested in the pion-nucleon coupling in the vicinity of q2 s0, we can safely neglect any q2

dependence in g . This dependence would arise from the contribution of the radial excitations of the pion,p NN
XŽ . 2 2

Xp 1300 etc., which in the chiral limit is a correction of order q rM . As usual, the hadronic continuum withp

Ž .Fig. 2. Thermal behaviour of the p NN mean square radius, Eq. 8 , in the linear sigma model.
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thresholds s and sX is modelled by the QCD spectral function. The leading order diagrams needed to compute0 0

the latter are shown in Fig. 3. In the chiral limit, the relevant structure to be sought is proportional to quq2. It
Žturns out that the diagram Fig. 3a does not have this behaviour, while that of Fig. 3b plus all other related

.diagrams gives

² :qq ig qu5X X2 <ImP s,s ,q s sqs 16Ž . Ž .Ž . QCD 22p q

where -uu),-dd)s-qq) has been used. By means of Cauchy theorem, and assuming global
Ž .quark-hadron duality, one obtains the lowest dimensional FESR

f s sX s qsXŽ .p 0 0 0 0
g s 17Ž .p NN 3 28p l MN N

w xwhere use has been made of the Gell-Mann, Oakes and Renner relation 16
2 2 ² :f m sy2m qq 18Ž .p p q

Since the dispersion in p2 ss and pX 2 ssX refers to the two nucleonic legs, it is reasonable to assume s ,sX .0 0
Ž . w xAn analysis of the two-point function involving the nucleonic current h x 17 in the framework of QCD FESR

yields
3 ² :s qq02 2 2l s , l M sy s 19Ž .N N N 04 2192p 8p

Ž .which determines the nucleon mass in terms of s . Conversely, using M and -qq) as input, Eq. 19 fixes0 N
Ž .l and s . In this fashion, Eq. 17 becomes: g s48p f rM ,15, not far from the experimental valueN 0 p NN p N

g ,13. This level of agreement is more than enough for our purpose here, which is to determine thep NN

Fig. 3. Leading order QCD diagrams entering the determination of the spectral function relevant to g .p NN
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Ž . Ž .temperature behaviour of the p NN coupling, i.e. the ratio g T g 0 . To achieve this, we havep NN p NN

calculated the thermal corrections to the QCD spectral function with the result

1 ig qu5X X 2 X2² :ImP p , p ,q s qq p f p ,T qp f p ,T 20Ž . Ž . Ž . Ž .� 424p q

where

< < < < < < < <p y p x p q p x1 0 0
f p ,T s dx 1yn yn 21Ž . Ž .H F Fž / ž /2 2y1

Ž X .and a similar expression for f p ,T . The FESR in this case becomes

1 f T XŽ . Ž . Ž .s T s Tp X X X0 0g T s ds ds sf p ,T qs f p ,T 22Ž . Ž . Ž . Ž .H Hp NN 3 28p M T l TŽ . Ž . 0 0N N

where use has been made of the thermal Gell-Mann, Oakes and Renner relation, which has been recently shown
w xto be valid over a wide range of temperatures 18 . The temperature behaviour of f , valid up to the criticalp

w x Ž .temperature, has been obtained in 19 . The function s T has been determined from a FESR for the two-point0
w x Ž . Ž . Ž Ž . Ž ..2function involving the axial-vector current 20,21 ; it scales as: s T rs 0 , f T rf 0 . The thermal0 0 p p

Ž . w xnucleonic coupling l T has been determined from a QCD-FESR in the nucleon channel, with the result 17N

3
s TŽ .02 2l T sl 0 1qG T 23Ž . Ž . Ž . Ž .N N až /s 0Ž .0

where

576 vr2 vr2Ž .s T' 0G T s dv dx dy x vy2 xŽ . Ž .H H Ha 3
0 0 vr2yxs TŽ .Ž .0

= yn x yn y qn x n y qn vyxyy n x qn y y1 . 24� 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .F F F F F F F

Ž . Ž yz r T .y1 Ž .and n z s 1qe is the Fermi factor. With all this information one can then solve Eq. 22 , afterF

choosing a particular Lorentz frame. Our choice is the rest frame of the incoming nucleon, i.e. ps0 and p0's s , however, the final results are quite insensitive to the choice of frame. The result for the ratio
Ž . Ž .g T rg 0 as a function of TrT is shown in Fig. 4. One can clearly appreciate the vanishing of thisp NN p NN d

Ž .Fig. 4. Thermal behaviour of the p NN coupling determined from the QCD-FESR Eq. 22 .
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Ž .Fig. 5. Thermal behaviour of the p NN mean square radius, Eq. 26 , according to the QCD-FESR.

Ž .coupling at the critical temperature. This is the temperature at which f T vanishes, i.e. the critical temperaturep

Ž .for the chiral-symmetry restoration phase transition, which is basically the same temperature at which s T0
w xvanishes, i.e. the critical temperature for the quark-gluon deconfinement phase transition 20,21 .

Finally, the mean-square radius associated to the pion-nucleon vertex

E
2 2

2² : <r s6 ln g q ,T 25Ž .Ž .T q s0p NN p NN2E q

can be easily calculated, with the result
y1

XŽ . Ž . 1s T s T X X0 02 '² :r s ds ds dx s 1y2n s r2 qs 1y2n zŽ .Ž .Ž .Ž .T H H Hp NN F F½ 5
0 0 y1

=

X
X6 1 sqsŽ . Ž . 1s T s T X0 0 2 z r Tds ds dx n z e 1qx 26Ž . Ž .H H H XF' < <2T syss0 0 y1

where
X < X <sqs q sys x

zs 27Ž .'4 s

Ž .and the rest frame of the incoming nucleon has been used. A numerical evaluation of Eq. 26 gives the result
shown in Fig. 5. Notice that since we have made the pion-pole approximation, g at Ts0 is independent ofp NN

q2. The mean-square radius is non-vanishing only at finite temperature, where a q2 dependence appears through
the Fermi factors.

In summary, the vanishing of the pion-nucleon coupling, and the divergence of the associated mean-square
radius, at a critical temperature has been shown to follow from the thermal linear sigma model at leading
Ž . Ž .one-loop order, as well as from a thermal QCD-FESR. This may be viewed as analytical evidence supporting
the existence of the quark-gluon deconfinement phase transition. As the critical temperature is approached, the
strength of the coupling of pions to nucleons is quenched, and at the same time, the size of the nucleon as
probed by the pion gets bigger. The qualitative agreement between the two methods lends further support to the
extension of the QCD sum rule program to finite temperature. It should be noticed that potential non-diagonal

w x Ž .vacuum condensates 22 do not enter our FESR because of their higher dimensionality. We have emphasized
many times in the past that QCD-FESR are far better than e.g. QCD-Laplace transform sum rules, to the extent

Ž .that the lowest dimensional thermal FESR do not involve unknown non-diagonal vacuuum condensates.

Ž .This work has been supported in part by the Foundation for Research Development South Africa , and by
Ž .Fondecyt Chile under grant No. 1950797.
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