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 AN ALLOMETRIC TRIDIMENSIONAL MODEL OF SELF-THINNING

 FOR A GREGARIOUS TUNICATE

 RICARDO GUI&EZ AND JUAN CARLOS CASTILLA'

 Departamento de Ecologfia, Faciltad de Ciencias Biolagicas, Pontificica Universidad Catalicci c/e Chile,
 Casillc 114-D, Santiago, 6513677, Chile

 Abstract. A tridimensional allometric model of self-thinning was tested in a tunicate

 population of Pyutra praeputialis in the Antofagasta Bay, northern Chile. The theory tested
 follows the bidimensional allometric theory of Osawa and Allen for the self-thinning rule
 proposed for plants, except that in addition to mean individual mass we included three new

 concepts: the number of layers (an equivalent of the leaf area index, [LAI] used in plants),
 the effective unit area, and the density per unit effective area. We assumed constant tunicate
 mass per effective unit area and allometry for mean dimensions of the population. The
 tridimensional model can be reduced to a bidimensional one if density is expressed as the
 density per unit effective area, which corresponds to the number of individuals relative to
 the effective area occupied by individuals when they conform a monolayer. The model
 allows for random sampling and rules out the selection for samples or stands at maximum

 crowding. The self-thinning of P. praeputialis through a tridimensional model showed an
 exponent of -1.518 (95% ci,-1.635 to -1.401) for mean tunicate visceral mass, and an
 exponent of - 1.489 (95% ci, - 1.588 to - 1.390) for the corrected bidimensional model.
 The two exponents were identical to those predicted from tridimensional allometric theory.
 The results of this new approach increase the variance explained in comparison to that of
 classical bidimensional models.

 Key words: allometric theory; crowding; density per unit effective carea; effective area; intra-
 specific competition; layering; Pyuira praeputialis; tunicate; rocky shore; scaling; self-thinning rule;
 tric/imensioncil model.

 INTRODUCTION

 Thinning processes that occur in crowded animal and

 plant populations play an important role in the deter-

 mination of population dynamics and community struc-

 ture (e.g., Weller 1987, Frechette et al. 1992, 1996,

 Bohlin et al. 1994, Marquet et al. 1995, Petraitis 1995,

 Guifiez 1996, Dunham and Vinyard 1997, Guo and

 Rundel 1998, Guifiez and Castilla 1999). As individ-

 uals grow to high population density, a negative rela-

 tionship between individuals per unit area (N) and mean

 individual mass (h) or biomass per area (B) is expected

 (Westoby 1984). This self-thinning process can be rep-

 resented by the following power equation:

 = kN' (1)

 where k, and Y2 are constants defined as the thinning
 coefficient and exponent, respectively. Here, we have

 introduced the subscript 2 to recall that the equation

 represents a bidimensional model (Guifiez and Castilla

 1999). The equation can be expressed in equivalent

 terms referred to population biomass, B, and density

 as, B. = k2NP2, where rhi = 1 + Y2. Eq. 1 describes a

 straight line of slope y, on a log-log plot.
 In both theoretical and empirical studies, the defi-

 Manuscript received 11 August 1999; revised 10 July 2000;
 accepted 31 August 2000; final version received 27 September
 2000.

 Corresponding author. E-mail: jcastill@genes.bio.puc.cl

 nition and quantification of the self-thinning process

 have been controversial (Sackville Hamilton et al.

 1995, Guo and Rundel 1998). A major issue has been

 the different concepts used for self-thinning (Sackville

 Hamilton et al. 1995). Osawa and Sugita (1989) argued

 that the original definition of self-thinning of Yoda et

 al. (1963) was the regression slope of the upper bound-

 ary of plant yield (or mean biomass) on a given density,

 nominated by Weller (1990) as the "species boundary

 line": a species constant defining a limit that cannot

 be exceeded in any environment by individuals of the

 given species. Weller (see also Westoby 1984) also

 advocated the "dynamic thinning line," which de-

 scribes the time trajectory followed by a self-thinning

 population as it approached the boundary line. How-

 ever, it will not in general converge on the species

 boundary line, but on the "population boundary line,"

 a line below which a population that in a given envi-

 ronment can occupy any point, but cannot surpass it

 (White and Harper 1970, Osawa and Sugita 1989, Sack-

 ville Hamilton et al. 1995). The species and population

 approaches have been developed mainly in relation to

 plant studies. In animals, the "dynamic thinning line"

 approach has predominated (Hosomi 1985, Begon et

 al. 1986, Hughes and Griffiths 1988, Frechette and Le-

 faivre 1990, 1995, Grant and Kramer 1990, Elliot 1993,

 Grant 1993, Latto 1994, Bohlin et al. 1994, Frechette

 et al. 1996, Armstrong 1997, Guifiez and Castilla

 1999); yet in salmonids Dunham and Vinyard (1997)
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 combined a time and a spatial approach to self-thin-

 ning.

 Even when comprehensive mathematical models

 have been developed to incorporate both thin and dense

 stands for size-density dynamics of plant populations

 (Hozumi 1977, 1980), it persists another major con-

 troversial issue related with the universal, but some-

 what unsatisfactory, procedure of how to edit data

 points by examining scatter diagrams, thus selecting

 populations or stands undergoing natural thinning at or

 near the boundary condition, defined by all possible

 combinations of density and mean size (e.g., Osawa

 and Allen 1993, Guo and Rundel 1998). Ideally a curve

 should be fitted to all points in the data set (Sackville

 Hamilton et al. 1995), but serious biases in the esti-

 mation of the thinning exponent may result when sparse

 stands or populations are not excluded (Osawa and

 Sugita 1989, Lonsdale 1990, Osawa and Allen 1993).

 Guo and Rundel (1998) suggested that the upper

 boundary of data points is defined by the nature of

 organisms' development and competition, and that a

 scatter arrangement of data points below the upper thin-

 ning lines indicates the effects of environmental het-

 erogeneity across the stands or sampling quadrats.

 However, Guifiez and Castilla (1999) showed that the

 scatter data points in bidimensional models, either in

 time dynamic thinning lines or population thinning

 lines, may be explained by a systematic bias that is

 produced by not considering the amount of layering in

 a gregarious multilayered marine mussel. They devel-

 oped an allometric tridimensional self-thinning model,

 based on population mean allometries in which the de-

 gree of crowding (measured as the number of mussel

 layers, L, a positive real number), in addition to the

 density (N) and the mean mass (mh) or total biomass

 per area (B) was considered, leading to the following

 model:, B = k3LI-03 N3, where the subscript 3 is used
 to distinguish parameters of the tridimensional model.

 This equation is called the tridimensional model or the

 B-N-L diagram (Guifiez and Castilla 1999) in oppo-

 sition to the bidimensional model or B-N diagram

 (Westoby 1984).

 We have shown that the expected 2 exponent E(T)
 derived from a two-dimensional B-N diagram, applied

 to populations where tridimensional models are better

 suited, would be a biased estimate of that obtained from

 a B-N-L diagram. This is because E(T) = 3(1 - bL-N)
 + bL-N = 2 (where bL-N is the slope of the linear
 regression of logL on logN), which shows that 2 will
 always be greater than 3, at least for 33 < 1 and 0 <
 bL-N < 1 (Guifiez and Castilla 1999).

 The tridimensional model can be expressed also in

 equivalent terms as follows:

 m = k3NT31L53 (2)

 where yY and k3 are the thinning exponent and coeffi-
 cient, respectively, and P3 = 1 + 'y3. Since, if we divide

 B = k3L'-03 Na by N, then it follows that B/N = m=

 k3L'-3 NO3/N = k3L'-Pl N03-' = k3AT3IL-3.
 In this paper, we extend our allometric tridimensional

 model, to the intertidal barrel-shaped tunicate Pyura
 praeputialis, a gregarious noncolonial tunicate species

 (Castilla 1998), following our suggestion that a B-N-

 L approach may be used in other animal taxa where

 overlapping spatial configuration is present (Guifiez

 and Castilla 1999). We used the population boundary

 line approach and spatial consideration, assuming that

 a self-thinning line (or plane) exists below which the

 tunicate population can occupy any point, but cannot

 surpass it. The tunicate P. praeputialis (Paine and Su-

 chanek 1983, Castilla 1998, Clarke et al. 1999) shows

 several morphs and has given rise to taxonomical con-

 fusion. In Chile, P. praeputialis (previously identified
 as P. stolonifera; see Kott 1997, 1998, Castilla et al.

 2000) occurs exclusively in and around the Bay of

 Antofagasta, northern Chile, along -60-70 km of

 rocky shore (Castilla et al. 2000), and, according to

 Castilla and Guifiez (2000), was introduced from Aus-

 tralia. The species is a competitive dominant (Paine

 and Suchanek 1983) and forms tightly packed mono-

 specific aggregations (beds or matrices) on hard sub-

 strates in the middle and low intertidal zones (and in

 the shallow subtidal), showing intraspecific competi-

 tion associated with increased packing biomass, even

 under situations where the cover is <100% (Dalby

 1995, Castilla et al. 2000). Therefore, the population

 is expected to show self-thinning.

 The aims of our study were four-fold: (1) to develop

 a tridimensional allometric model of self-thinning for

 the tunicate, (2) to derive empirical coefficients and

 exponents of the self-thinning relationships, (3) to test

 the assumptions of the allometric tridimensional the-

 ory, and (4) to determine if the observed self-thinning

 fits the theoretical expectations of the B-N-L approach.

 THE ALLOMETRIC THEORY FOR A

 GREGARIOUS TUNICATE

 Assumptions

 Classical isometric and allometric models (Yoda et

 al. 1963, White 1981) have been developed, assuming

 that total surface projected to the substrate by individ-

 uals per unit of area is constant, such that the following

 relationship holds:

 NS = ST= constant= 1 (3)

 where N is the density estimated as the number of in-

 dividuals per unit area, ST is the total area projected

 perpendicularly to the substrate of the individuals per

 unit area (area per area), S is the mean individual area

 projected to the substrate (ST per individual). ST is as-

 sumed constant and equal to one, because the individ-

 uals cover all (100% cover) the sampling area. The

 same assumption has been used for other sessile marine

 invertebrates (i.e., Hughes and Griffiths 1988, Frech-
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 FIG. 1. Representation of the Pyuria praeputialis tunicate matrix. (A) Position of a tunicate with respect to the substrate,
 showing tunic, viscera tissue, and maximum diameter of an individual (Dt, mm) in the direction of the siphons. (B) Case 1:
 Top view of tunicate matrix with 100% cover. In this case, the sampling area (As) is equal to the effective area (A,), and
 therefore the number of layers L = 1. (C) Case 2: Lateral view of tunicate matrix with 100% cover, but A, < A, and L > 1.
 (D) Same as (C), but the matrix is shown in a top view as expected if the individuals were laid out in a monolayer. (E) Case
 3: Top view of matrix where cover <100%, A, > A, and L < 1. A, is the total surface area covered by the 12 individuals in
 a sampling area (As) and was estimated as 1tl-. (ir14) D2. L was estimated dividing A, by A. Bold arrows relate oblique view
 to top view.

 ette and Lefaivre 1990, 1995). On the other hand, con-

 temporary allometric theory of self-thinning for plants

 (see Long and Smith 1984, Osawa and Allen 1993)

 have been developed assuming constancy of the leaf

 mass per area (ML). This assumption is valid only when

 the canopy has a 100% cover and the individuals form

 a monolayer. An equivalent allometric model for ani-

 mals, considering constancy in mean mass of some

 characteristic, has so far not been explored.

 In gregarious sessile species such as mussels (e.g.,

 Perumytilus purpuratus; Alvarado and Castilla 1996,

 Guifiez 1996) that form crowded multilayered bed ag-

 gregations, it has been shown that a new type of mod-

 eling is needed to adequately address self-thinning pro-

 cesses, because the classical assumption represented by

 Eq. 3 is violated. This leads to deviations from self-

 thinning expectations (Hughes and Griffiths 1988,

 Frechette and Lefaivre 1990, Guifiez 1996, Guifiez and

 Castilla 1999). Nevertheless, consideration of the de-

 gree of overcrowding, measured as the number of lay-

 ers (L) as a variable different from density (N), presents

 difficulties (Guifiez and Castilla 1999) for the appli-

 cation of bidimensional allometric self-thinning mod-

 els (Eq. 1). As a solution, the modeling of Guifiez and

 Castilla (1999) assumes that N cc LIS when individuals

 in the matrix reach a limiting available volume, leading

 to the model represented by Eq. 2.

 The tunicate model

 For the development of the model, we used a dif-

 ferent concept of area: the effective unit area (Ae),
 which is defined as the area occupied by individuals if

 they were laid out as a monolayer, and is estimated as

 the total area projected perpendicularly to the substrate

 covered by the individuals (Fig. 1). This is an important

 distinction, because we have demonstrated that Ae does

 not coincide necessarily with the sampling area A, (Gui-
 nez and Castilla 1999), even when the cover is 100%.

 This has enabled us to define the number of layers (L)

 as an index of crowding, allowing the incorporation of

 the overlapping spatial configuration of the individuals.

 L is estimated as the effective area divided by the sam-

 pling area: L = Ae/As (Guifiez 1996, Guifiez and Castilla

 1999).

 The model for P. praeputialis is developed using

 mean allometries instead of individual allometries and

 following the theory of Osawa and Allen (1993). Nev-

 ertheless, we define a new concept of density: the den-

 sity per unit effective area (Ne, the corrected density):

 the expected density if the individual would form a
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 monolayeri If ni is the number of individuals in one

 sampling unit of area As, then, as traditionally done, N

 is estimated as nIA, (individual per area), but N, is
 estimated as nIAe (individual per effective area). Our
 model also contains a new assumption: that the tuni-

 cate's tunic mass per unit effective area (MT, given in

 grams per area) is constant, i.e.,

 IfTNC = MT = constant (4)

 where /IiT is the mean tunicate tunic mass per individual

 (grams per individual). In fact, we have found evidence

 for this constancy in samples from P. praeptutialis (see

 Results and Discussion: Constancy in tunicate's tunic

 dry mass). The model of Osawa and Allen, following

 Long and Smith (1984), assumes constancy of the leaf

 mass "per area" (ML) for plants. Nevertheless, ac-

 cording to us constancy "per effective area" has not

 been demonstrated previously in animals or in plants.

 So if we assume that the tunicate's tunic mass per

 unit area (MT) is constant relative to the effective area

 occupied (Ae) (Eq. 4), it follows that

 1IT I - II I =mTN- = MT = constant. (5)
 SA 7AeIA L

 If InT and ', (the mean tunicate visceral mass, grams
 per individual) are both allometrically related to mean

 maximum diameter of the tunicate in the direction of

 the siphons (D, length per individual), then

 "hT= acDT (6)

 =bD-f (7)

 where a, b, 7, and w are constant. Eqs. 5-7 yield the
 following relationship between Pn, N and L:

 - b(MT Ia) I./TL (/T
 mv = NCO/T (8)

 Eq. 8 is a tridimensional model that incorporates the

 new variable L, that is, the number of individual layers,

 in addition to those used in traditional bidimensional

 models. Comparison of Eqs. 2 and 8 indicate that Y3

 = -I/T and k3 = b(MT1a)wo/T. Therefore, the thinning
 exponent, y3, and the thinning coefficient, k3, can be
 determined from known parameters of the population.

 In addition, as shown by Guifiez and Castilla (1999),

 when L = 1 (i.e., the number of individual layers is

 one and the effective area and sampling area are equal),

 the tridimensional model (Eq. 8) collapses to the clas-

 sical bidimensional model (i.e., Osawa and Allen 1993:

 Eq. 7) (Fig. 1iB, Case 1). The tridimensional model
 permits the inclusion of samples where L > 1, a sit-

 uation of overcrowding.(Fig. IC, D, Case 2) (Guifiez

 and Castilla 1999). Here, we also extend the use of L

 to situations where L < 1 (Fig. IE, Case 3), where L

 can be interpreted as a measure of cover. This repre-

 sents a new modeling situation, whereas the individuals

 do compete in spite of L < 1.

 If the density is expressed as the corrected density

 (NC) relative to effective area (Ae) (Eq. 4) and is esti-
 mated as

 NC = nlAe = NIL (9)

 then Eq. 5 is expressed as Eq. 4, i.e.,

 rnT(A) = rnTNC = MT = constant (10)

 and Eq. 8 changes to the following corrected bidimen-

 sional model:

 b (MT IaZ) 01T

 V NCw/T(11)

 METHODS

 Stucly area

 The study was conducted at three sites: Curva Len-

 guado (CLEN), El Way (EWAY), and Las Conchillas

 (LCON), on intertidal rocky platforms within the An-

 tofagasta Bay (23038'47.4" S, 70?23'54.8" W), in north-
 ern Chile, where P. praeputialis forms highly packed

 matrices (Paine and Suchanek 1983, Castilla 1998,

 Castilla et al. 2000).

 Sample measurements for observed

 self-thinning relationships

 Individual allornetries.-To estimate the parameters
 for individual allometries during July 1998, we sam-

 pled individuals from the middle intertidal fringe at El

 Way (n = 47) and at Las Conchillas (n = 47), repre-

 senting the entire individual size range. The individual

 tunic and visceral dry masses were determined by oven

 drying the respective tissues at 70'C for 72 h, until

 stable mass was attained. Individual allometries were

 estimated with allometric equations by applying Re-

 duced Major Axis (RMA) regression (Clarke 1980) on

 crude or logi0-transformed data. In the latter case, a
 correction factor (CF) was applied on the allometric

 coefficient (Sprugel 1983, LaBarbera 1989). According

 to LaBarbera (1989) log-transformed data reduce the

 heteroscedasticity of nontransformed data. The adjust-

 ed equation of individual visceral dry mass (my, in
 grams) on tunicate maximum diameter (D, in milli-

 meters) was

 iv = 0.0000202D 284565 (12)

 Sample size = 94, R2 = 0.94 for log-transformed data,

 CF = 1.05218, and pWR, the log10 of maximum-to-
 minimum ratio of a variable (LaBarbera 1989), was

 0.79 for the diameter.

 For the dependence of total dry mass (rnd) on wet
 mass (mw) in grams, we obtained the following linear

 equation:

 Md = 0.00678 + 0.22908rnw (13)

 where sample size = 94, and R2 = 0.96.
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 Self-thinning relationships.-To analyze self-thin-

 ning relationships, we used a total of 45 samples ex-

 tracted from 0.6 X 0.4 m quadrats taken at random in

 April and May 1997 (CLEN, n = 24; EWAY, n = 9;

 LCON, n = 12). Individuals in each sampling area were

 counted and the density (N) was expressed as number

 of individuals per square meter. Percent cover of the

 samples was obtained by digitizing color photograph

 using a video camera connected to the Optimas Soft-

 ware Package (Optimas Inc.). One subarea (0.06 M2)

 was randomly selected within each of the 45 sampling

 areas to measure the tunic maximum diameter D, (in
 the direction of the siphons, Fig. IA) and the total wet

 mass of each individual. The diameter was measured

 with a caliper to the nearest 0.01 mm and wet mass

 was determined with a balance to the nearest 0.01 g.

 Mean tunicate visceral dry mass (en) (in grams) was

 estimated for each subarea using Eq. 12, and mean

 tunicate tunic dry mass (MT) (in grams) using total dry

 mass (mnd) with Eq. 13. Then the tunicate tunic dry mass

 in grams was obtained by subtracting the tunicate vis-

 ceral dry mass (mr) (obtained from Eq. 12) from mnd.

 An estimator of the number of layers (L) was obtained

 as the sum of the individual area divided by the area

 of the corresponding subsample. The individual area

 was estimated as (wrI4)D2 (Fig. 1). To estimate the cor-
 rected density (Ne) we followed Eq. 9, dividing the

 number of individuals (n) by the effective area (Ae).

 Sample measurements for mean allomnetries

 To obtain the parameters for the mean allometries,

 we took 30 independent samples during July-Septem-

 ber 1997 at the middle intertidal fringe at El Way using

 a 0.17 X 0.17 m sampling area, with 100% cover of

 P. praeputialis. We also used these data to determine

 the allometry between mean tunic mass and the cor-

 rected density (NJ) to test if the mean tunicate tunic
 mass per unit of effective area was constant. Addi-

 tionally, we added 5 samples (0.10 X 0.10 m) with

 100% cover in August 1998, which included cohorts

 of juvenile P. praeputialis representing the smallest

 diameters recorded. For each individual, we measured

 the maximum diameter D, and the tunicate tunic and

 visceral dry masses by oven drying the respective tis-

 sues at 70'C for 72 h. To test the assumptions for mean
 allometries of the model .(Eqs. 6 and 7), mean allom-

 etries from the 35 independent samples were obtained

 on logl0-transformed data, using mean diameter (D),
 mean tunicate visceral dry mass (en), and mean tuni-

 cate tunic dry mass (/nT) for each sample.

 Regression analyses

 For the bidimensional corrected model, regression

 lines were fitted to mean tunic mass (MLT) on corrected

 density (Eq. 10), and to mean visceral mass (en) on

 corrected density (Eq. 1 1). We also calculated the upper

 boundary slope for the same data (100% cover), using

 the method of Blackburn et al. (1992). For that we

 divided the x-axis (density) into nine segments of the

 same width and selected from within each segment the

 maximum y-variable (mean visceral dry mass). Orig-

 inal data were log 0-transformed. We used Reduced Ma-

 jor Axis (RMA) regression, because (1) it is less sen-

 sitive to assumptions on the error structure in the data,

 (2) it is a less biased estimate of the underlying func-

 tional relationship, and (3) it appears to be a better

 approach than principal component analysis when the

 mass-density self-thinning formulation is used (La-

 Barbera 1989, Osawa and Allen 1993, Sackville Ham-

 ilton et al. 1995). For RMA regression for bivariate

 model we followed Clarke (1980), and for trivariate

 model we followed Kirby (1991a, b). Statistical anal-

 yses used SAS version 6 (SAS Institute 1988), and for

 RMA multiple regression we used the program de-

 scribed in the part two of Kirby (1991b).

 Estimated variation in the mean individual mass for

 a sample and in the number of layers was little affected

 by density. Thus, statistical problems of spurious cor-

 relation derived from the use of mean mass values to

 study self-thinning (Petraitis 1995, but see LaBarbera

 1989, Scrosati 1996) do not appear to be important for

 our data.

 RESULTS AND DISCUSSION

 Number of layers, density, and corrected density

 The estimated number of layers (L) was not signif-

 icantly related to the mean tunicate maximum diameter

 (R2 = 0.004, P = 0.68). This result suggests that L is

 independent of mean diameter (D). This is a necessary

 condition for the development of the model, because

 we estimated L as the sum of the individual areas (Tw

 4)D2 divided by the sampling area (Fig. 1). The log of

 the number of layers did show a significant relationship

 with the log of density (slope = 0.713, R2 = 0.83, P

 < 0.001), but slopes and coefficients of determination

 were smaller for samples with 100% cover (slope =

 0.267, R2 = 0.25, P = 0.023) than for those with lower

 cover (slope = 0.617, R2 = 0.77, P < 0.001) (Fig. 2A).

 According to Guifiez and Castilla (1999) the slope

 (bL-N) of the relationship between logL and logN rep-

 resents changes in number of layers per individual in

 the population, as well as the degree in which the bi-

 dimensional estimates are biased with respect to the

 tridimensional ones. Our results suggest that a bias is

 expected from our data, either using all or segregating

 by cover. In the latter case, it appears that the bias is

 greater when the cover is < 100% and justifies the need

 to edit the data when the bidimensional approach is

 applied; but still, a bias would exist for the 100% cover

 samples. Fig. 2A also shows that, even when a 100%

 cover is detected (as determined by photography), this

 does not necessarily imply that the individuals are ef-

 fectively occupying 100% of the sampling area if they

 form a monolayer. For example, five samples are below

 the expected value of unity (shown in Fig. 2A by a
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 FIG. 2. Density in Pyutra praeputialis samples in relation
 to (A) number of layers and (B) corrected density. Solid cir-
 cles indicate samples with 100% cover; open circles indicate
 those with cover <100%. The dotted line in (A) shows the
 expected number of layers for 100% cover if the individuals

 form a monolayer. The continuous line in (B) shows the sit-
 uation for an exact correspondence between the density and
 the corrected density, represented by a slope of 1. The dashed
 line in (B) represents the fitted reduced major axis (RMA)
 line for the samples.

 dotted line). The number of layers of nine samples are

 -10% of its expected value of one (Fig. 2A), and for

 six samples it is >10% of the expected value. This

 suggests that individuals are increasing their overlap-

 ping and that the term "100% cover" in self-thinning

 studies may be ambiguous and require refinement. In

 the case of plants, Sackville Hamilton et al. (1995)

 suggested using the maximum or at-ceiling leaf area

 index (LAI,). However; because in our case the number
 of layers (L) (an equivalent to leaf area index LAI;

 Hosomi 1985) is considered a variable and not a con-

 stant, we did not follow this approach (also see Mat-

 thew et al. 1995). Instead, we followed two new cri-

 teria: (1) that represented by Eq. 8, where the number

 of layers is directly incorporated into a tridimensional

 model as a new variable, and (2) a correction factor

 for density as shown in Eq. 9, where density is pro-

 jected to the effective area occupied by individuals (in

 square meters).

 The corrected density for the samples of P. prae-

 putialis in relation to their density is shown in Fig. 2B.

 The slope of the RMA line 0.730 (dimensionless; 95%

 ci, 0.556-0.904; R2 = 0.40, P < 0.001, n = 45) is

 significantly different from unity (Fig. 2B), indicating

 that these two density measures are not exactly equiv-

 alent.

 Observed self-thinning relationships

 Fig. 3 shows a bivariate log-log plot of mean tunicate

 diameter vs. density (Fig. 3A) and corrected density

 (Fig. 3B). According to the expectations of a bidimen-

 sional model, the samples at full density should be

 close to the probable boundary condition (i.e., Osawa

 and Allen 1993), and the RMA-adjusted regression,

 using only these samples, has slope of -2.033 (di-

 mensionless; 95% ci, -2.649 to -1.416; R2 = 0.63, P

 2.0 .
 . A

 - ~~~~~~0 0 0

 2 1.5- 00 00 .0
 0 0o0 0

 S ~~~~ ~~~~0 0 0 .. FIG. 3. Mean tunic diameter (mm) in rela- E 0 o * :
 tion to (A) tunicate density and (B) corrected 0 0

 density. Solid circles indicate samples with *$U 1.5 2.0 2.5 3.0 3.5
 100% cover; open circles indicate those with =

 cover <100%. The RMA line (dotted) for the Log(density)
 samples at 100% cover is shown in (A). The ca 2.0
 RMA line (continuous) for all the samples using 5 . B
 the corrected density is shown in both graphs. a0
 Stars represent two outliers in (B), according to _
 the Cook's distance criteria on residuals.
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 .0

 1.5 2.0 2.5 3.0 3.5

 Log(corrected density)

This content downloaded from 146.155.158.13 on Thu, 21 Dec 2017 19:43:52 UTC
All use subject to http://about.jstor.org/terms



 August 2001 SELF-THINNING IN A GREGARIOUS TUNICATE 2337

 < 0.001, sn = 20). The slope of - 1.904 (dimensionless;

 95% ci, -2.181 to -1.627; R2 = 0.84, P < 0.001, n

 = 45) for all the data using the corrected density is not

 different from that representing the probable boundary

 condition (Fig. 3B). When two possible outliers (Fig.

 3B) are not considered, the RMA line is exactly equal

 to the probable boundary condition -2.033 (95% ci,

 -2.267 to - 1.799; R2 = 0.87). A negative relationships

 between density (N) and mean surface projected to the

 substrate (S), such that N at S', is expected in geo-

 metrical bidimensional model of self-thinning when in-

 dividuals occupy the substrate as a monolayer with

 100% cover of the substrate (Guifiez and Castilla 1999).

 If the mean surface of a tunicate projected to the sub-

 strate is isometrically related to the square of the mean

 diameter (D2), it is expected that N a S-' a D-. This

 satisfied the adjusted RMA slope for the probable

 boundary condition (Fig. 3B) and for the corrected den-

 sity, because the slope is not significantly different

 from negative two. However, as shown by Guifiez and

 Castilla (1999), the relationship between N and S is

 violated when the degree of crowding (i.e., the number

 of layers) or overlapping spatial configuration are in-

 corporated in the self-thinning model. In this situation,

 the relationship is biased, since what is expected is that

 N at LIS, whereas the variance explained (Fig. 3A) de-

 creases to 0.17 (P < 0.01).

 Fig. 4A shows a scatter bidimensional log-log plot

 of the mean tunicate visceral dry mass vs. density. The

 slope for the samples that had 100% cover is - 1.245

 (95% ci, -1.608 to -0.882; R2 = 0.65, P < 0.001, sn

 = 20). The upper boundary slope (using the method

 of Blackburn et al. [1992]) of the adjusted RMA line

 is -1.336 (dimensionless; 95% ci, -1.898 to -0.770;

 R2 = 0.78, P < 0.01, n = 9) (Fig. 4A). However; the

 two estimates are not significantly different, nor are

 they different from negative one, the expected value

 for a competition-density effect, which could occur

 without density-dependent mortality (Kira et al. 1953,

 Osawa and Allen 1993, Fr6chette and Bacher 1997,

 Guifiez and Castilla 1999). When the relationship is

 analyzed for all samples using the corrected density

 (two outliers are not considered, Fig. 4B) according to

 Eq. 11, the slope of the RMA line is - 1.489 (95% ci,

 -1.588 to -1.390; R2 = 0.96. P < 0.001, n = 43;

 correction factor CF = 1.011). Finally, when the data
 are represented in a tridimensional diagram as shown

 in Fig. 4C, following Eq. 7, the adjusted RMA multiple

 regression on the log-transformed data, using mean vis-

 ceral dry mass (hfi) as dependent variable, and density
 (N) and number of layers (L) as independent variables,

 is 'Tv = (23.70 X 103)(L'522/N'518) (R2 = 0.96 for the
 log-transformed data, P < 0.00 1, N = 43, CF = 1.0 I 1),

 with 95% ci for the exponent associated to N ranging

 -1.635 to -1.401). These estimates of thinning ex-

 ponents, (a) - 1.489 from the bidimensional approach

 on corrected density data, and (b) - 1.518 from the

 tridimensional approach, do not differ significantly. As

 1.0

 0.5 -

 0 0.0 00 " cl ~~~~~~~~~~~~~~~~~~lo 1:

 -0.5

 -10.0
 * 1.5 2.0 2.5 3.0 3.5

 Log(N)

 1.0,
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 FIG. 4. Thinning relationships (log scale) for (A) classical
 and (B) corrected bidimensional models, and for (C) the tri-
 dimensional model. (A) Relationship between mean visceral
 dry mass (msv) and density (N). Solid squares indicate samples
 with 100% cover; open sqUares indicate those with cover

 <100%. (B) Relationship between mv and corrected density
 N. (C) Relationship among inr, N, and number of layers L.
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 judged by the 95% ci of the slopes of both thinning

 exponents, they are smaller than and significantly dif-

 ferent from negative one, the expected value for a com-

 petition-density effect.

 These results agree with the theoretical and empirical

 demonstrations (see Results and Discussion: Number

 of layers, density, and corrected density), showing that

 the thinning exponent obtained from a B-N diagram

 overestimates its value when a tridimensional diagram

 is considered (Guifiez 1996, Guifiez and Castilla 1999).

 This suggests that, for species showing multilayered

 packing and overlapping spatial configurations, or

 when consideration of the number of layers is relevant,

 the likelihood of detecting density dependence may be

 much more frequent than what has been reported so

 far (Guifiez and Castilla 1999). The bias implicit in the

 estimation of self-thinning relationships without con-

 sideration of the number of layers does not permit ap-

 propriate testing of the thinning models, and we there-

 fore suggest that these results may not change by ad-

 ditional sampling, either using more data with 100%

 cover or looking for upper boundary slope.

 The thinning coefficient for the tridimensional model

 (k3 = b[MT/a]"w'T (from Eq. 8) was 23.70 X 101 (95%

 ci, 10.21 X 103-55.02 X 103 gm2Y3), and for the bi-

 dimensional model, with corrected density, it was 19.94

 X 103 (95% ci, 9.94 X 103-40.04 X 103 g.m2Y2; y3 and

 Y2, which appear in the exponents of the dimensions,
 are the estimated values of the thinning exponent for

 the tri- and the bidimensional diagram, respectively,

 indicating the location of the self-thinning line on log-

 arithmic coordinates (Fig. 4B, C).

 Next, we test if allometric relationships could ex-

 plain the observed values of the thinning exponent and

 coefficient. First, we test the assumptions of the model

 related with the constancy of the tunicate tunic mass

 per effective unit area occupied (Eqs. 5 and 10). Sec-

 ond, we test the assumption of mean population allom-

 etries (Eqs. 6 and 7), and third, we evaluate whether

 the theoretical and empirical thinning exponents and

 coefficients are or are not equal (Eqs. 8 and 1).

 Constancy in tunicate tunic dry mass

 For the tridimensional model, we assumed that tu-

 nicate tunic mass per effective unit area occupied by

 individuals (MT) is constant. This was tested using two

 independent data sets: first, data from the 30 adult in-

 dependent samples were used to get the population al-

 lometric parameters (See Results and Discussion: Sam-

 ple measurements for mean allometries). Second, the

 data were used to determine the observed self-thinning

 relationships (See section Results and Discussion.
 Sample measurements for observed self-thinning re-

 lationships). According to Eq. 4, we have 1'T = MT/
 Nc, and, applying log10 to both terms, it follows that

 logilT = logMT - 1logNc. In this way, the assumption
 of constancy in total tunic dry mass can be tested if

 the slope is negative one. In fact, the fitted RMA re-

 gression slope (R2 = 0.76, P < 0.001, n = 30, CF =

 1.01) was - 1.038 (95% ci, - 1.244 to -0.833) for the

 independent data set, and - 1.187 (95% ci, - 1.404 to

 -0.970; R2 = 0.66, P < 0.001, in = 43, CF = 1.05,

 with two outliers not included) for the second data set.

 For both data, we were unable to reject the assumption

 of constant tunic mass density (slope =- 1) according

 to the 95% ci. For the independent data set the esti-

 mated constant tunic dry mass density, MT, was 19 630

 g/m2 (95% ci, 4517-85 297 g/m2), and for the second

 data set it was 9380 g/m2 (95% ci, 2043-43 063 g/m2).

 Although the former data shows higher value than the

 later, the estimated tunicate tunic mass per unit area

 effectively occupied by individuals did not differ sig-

 nificantly between them, according to the 95% ci.

 In tunicates the tunic tissue has the function of struc-

 tural skeletal support, and at Antofagasta Bay we have

 found that P. praeputialis tunic dry biomass can get

 up to 20.45 kg/nM2 on average, and it represents almost

 95% of the total dry biomass (Castilla et al. 2000). This

 implies that a high proportion of the biomass is being

 assigned to structural skeletal support. Paine and Su-

 chanek (1983) suggested that in this species larger body

 size seemed to confer competitive superiority. Fur-

 thermore, we have shown evidence that changes in

 body form, even at cover <100%, are determined by

 crowding/packing biomass competitive effects: a larger

 number of squat individuals at lower crowding and

 more thin individuals at high crowding (Castilla et al.

 2000). Therefore, we propose that a constant tunic dry

 mass per effective unit area is expected if the tunicates

 are competing near their mass-carrying capacity per

 effective unit area.

 Mean population allometries

 The other two additional assumptions of self-thin-

 ning models relate to the population allometric rela-

 tionship between mean tunicate tunic dry mass (mhT)

 and mean tunicate visceral dry mass (mv) vs. the mean
 tunic diameter (D) (Eqs. 6 and 7). Estimated values of

 the allometric exponents (Fig. 5) by RMA regression

 are r = 2.05 (95% ci, 1.92-2.18; R2 = 0.97) for tunic

 mass and w = 2.94 (95% ci, 2.70-3.17) (R2 = 0.95)
 for visceral mass. Values of the allometric coefficients

 were also estimated by RMA regression as, a = 662

 x 10-5 g/mT for tunic mass (95% ci, 425 X 10-5-1030

 x 10-5; CF = 1.0002), and b = 1356 X 10-8 g/mwj for

 visceral mass (95% ci, 615 X 10-8-2991 X 10-8; CF

 = 1.0005).

 Test of the allometric models

 The mean population allometries and parameters es-

 timated for the tridimensional self-thinning model de-

 veloped in this paper lead to a predicted thinning ex-

 ponent of = -w/7 = -1.43 (dimensionless) and to a
 thinning coefficient of b(M/a)1', = 24395 g/m2w/"T. To
 be consistent, we have used the MT value of 19 630 g/

 m2 obtained from the independent sample. The empir-
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 FIG. 5. Allometric relationship between mean tunic mass
 (open circles) oV mean visceral mass (solid circles) per in-
 dividual and mean tunic diameter at 100% cover with fitted

 RMA regression lines.

 ical exponent of -1.518 (95% ci, -1.635 to -1.401)
 and coefficient of 23.70 x 103 (95% ci, 10.21 x 103-

 55.02 x 103 g.M2L), are not significantly different from
 their theoretical expectations, as they are within the
 boundaries of the empirical values. For the bidimen-
 sional diagram, using corrected density, the observed
 thinning exponent (- 1.489, 95% ci -1.588 to -1.390)
 and coefficient (19.94 X 103, 95% ci 9.94 x 103-40.04
 x 103 g M2Y0) are also similar to their predicted values.
 Therefore, the allometric theory developed hereby for
 the tunicate P. praeputialis, considering the number of
 layers as a new variable, success fully explains the em-
 pirical values whether using the tridimensional model
 or the bidimensional corrected one.

 Population boundary line

 Assuming (1) isometric growth, (2) a constant max-

 imum at ceiling leaf area index LAI, and (3) that the
 mean leaf area per plant (A,) is related to the mean
 shoot biomass per plant (w, with wd = k'Ah3e2 and k'
 indicating the mass:area ratio), Sackville Hamilton et
 al. (1995) proposed the following modified self-thin-
 Asng equation:

 Ws = k'LAI1'2/N312 (14)

 resulting in a model with a mathematical structure anal-

 ogous to OUr tridimensional model represented by Eq.

 8, but with LAIC constant. The authors defined LAIC as
 the maximum leaf area index sustainable by a particular

 plant species in a particular environment. This led the

 authors to propose what is known as the "population

 boundary rule," which may be represented mathemat-

 ically as ws = k"/R)LAI3'2/N312 (Matthew et al. 1995),
 where, kis the mean biomass per unit volume of shoot

 tissue, and R is a dimension-corrected measure of plant

 area:volume ratio. On the other hand, the number of

 layers (L) defined by Guihez (1996) and Guifiez and

 Castilla (1999) for gregarious marine invertebrates

 could be considered analogous to the LAI in plants

 (Hosomi 1985). Nevertheless, in the case of P. prae-

 putialis, L is considered a variable, while in plants'

 models of self-thinning (Eq. 14) LAI, is incorporated
 as a constant (Matthew et al. 1995). Since we have

 assumed that in the tunicate matrices, when a critical

 volume determined by space competition is reached, a

 dynamic compensation between N, L, and S occurs;

 that is N oc LIS (Guifiez and Castilla 1999). We also

 assumed constant MT relative to the effective area (Ae)

 (see Eq. 5), which was not falsified. This result is rel-

 evant, because it suggests that P. praeputiali.s matrices

 tend to maintain a maximum and constant tunic mass

 per effective unit of area. Thus, the characteristic of

 this tunicate to form extremely tightly packed matrices

 may explain its success as a competitively dominant

 species (Paine and Suchanek 1983, Castilla 1998). In

 fact, in the intertidal of Antofagasta Bay we have ob-

 served that Pyura intertidal matrices reaches up to 11.3

 m (1 SE = 0.99) wide, reaching almost 80% cover

 (Castilla et al. 2000). Also, the fact that the allometric

 tridimensional model explains successfully the empir-

 ical values, suggests that competition among P. prae-

 putialis is driven by space. The same conclusion was

 reached for the mussel P. purpuratus using a tridi-

 mensional model (Guifiez 1996, Guifiez and Castilla

 1999), which is expected for competitive intertidal ses-

 sile invertebrates (Paine and Suchanek 1983, Okamura

 1986, Hughes and Griffiths 1988, Dalby 1995, Guifiez

 and Castilla 1999).

 The results of this study suggest that the scatter of

 the data points below the upper thinning line in a B-

 N diagram, at least in the case of the tunicate P. prae-

 putialis and the mussel P. purpuratus (Guifiez and Cas-

 tilla 1999), can be explained as an effect of the degree

 of crowding and overlapping spatial configuration (i.e.,

 number of layers). When the thinning exponent was

 estimated using the upper-limit concept, we were able

 to explain 78% of the variance; but, when L was in-

 corporated following the tridimensional or the cor-

 rected density approach, the variance explained in-

 creased to 96%. Additionally, the incorporation of lay-

 ering and overlapping spatial configuration permits the
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 separation of its effects from density per se (Guifiez

 and Castilla 1999). In fact, we were able to evaluate

 the relative importance of density and layering on bio-

 mass in P. purpuratus through the properties of the

 model I regression with type III partial sum of squares

 (SS3) (PROC GLM-SAS), using as the statistical model

 the log version of the tridimensional model. The SS3

 quantifies the percentage of variance explained by each

 variable not involving parameters of other effects; this

 is the case since it holds the effects of other variables

 constant and the sequence by which variables are an-

 alyzed does not affect the partial sums of squares. We

 showed that layering explained 50% (P < 0.001) and

 density only 3% (P < 0.005) of the variance in total

 mass. If we apply the same methodology on our data

 from P. praeputialis using the log version of Eq. 8, we

 find that layering explains 34% (P < 0.001) and density

 63% (P < 0.001) of the variance in mean tunicate

 visceral mass. This suggests that the dynamics of P.

 /)urpuratus and P. praeputialis matrices differ in the

 degree by which they may be driven by layering effects

 and density per se. Although there have been several

 studies of layering effects and resultant consequences

 for the population dynamics of mussels (Hosomi 1985,

 Hughes and Griffiths 1988, Fr6chette and Lefaivre

 1990, Alvarado and Castilla 1996, Guifiez and Castilla

 1999), we are not aware of approaches in tunicates that

 aim to estimate the effect of different overlapping spa-

 tial configurations, except for the work of Dalby (1995)

 showing evidence of intense intraspecific competition

 inside the aggregation matrices, even without physical

 contact among individuals.

 Finally, it is noteworthy that our modeling was de-

 veloped and tested including samples that were <100%

 cove; where L < 1; usually, these samples are edited
 and deleted from the reported analyses (Westoby 1984,

 Osawa and Allen 1993). Instead, we obtained our sam-

 ples at random, and therefore the sampling is expected

 to be statistically representative of the tunicate popLI-

 lation. In our study, sampling deletion was not nec-

 essary, except in two cases considered as outliers. We

 suggest that in P. praeputialis matrices competition for

 space occurs even under conditions when L < 1, cor-

 responding to cover <100% (e.g., Dalby 1995). In fact,

 for P. praeputialis at the Antofagasta Bay, we have
 shown evidence for the effect of intraspecific compe-

 tition even under situations where the cover is <100%

 (L < 1) (Castilla et al. 2000). In the same vein, in

 Australian populations of P. stolonifera, Dalby (1995)

 has shown experimental evidence supporting intraspe-

 cific competition, even where noncontact among in-

 dividuals existed (when L < 1). We suggest that this

 is so because P. praeputialis tends to maintain a con-

 tinuous matrix structure even when cover may be re-

 duced either by physical or biological disturbances.

 Finally, because of the similarity of the thinning model

 in this study with that of Osawa and Allen (1993) for

 plants, we suggest that it is possible to apply our mod-

 eling to other sessile organisms (e.g., plants), allowing

 for ecological comparisons not implemented to date.
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