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Abstract. In the uniformly hyperbolic setting it is well known that the set

of all measures supported on periodic orbits is dense in the convex space of
all invariant measures. In this paper we consider the converse question, in

the non-uniformly hyperbolic setting: assuming that some ergodic measure

converges to a convex combination of hyperbolic ergodic measures, what can
we deduce about the initial measures?

To every hyperbolic measure µ whose stable/unstable Oseledets splitting is

dominated we associate canonically a unique class H(µ) of periodic orbits for
the homoclinic relation, called its intersection class. In a dominated setting,

we prove that a measure for which almost every measure in its ergodic de-

composition is hyperbolic with the same index such as the dominated splitting
is accumulated by ergodic measures if, and only if, almost all such ergodic

measures have a common intersection class.
We provide examples which indicate the importance of the domination

assumption.

1. Introduction

1.1. Quick presentation of the results. The space Mf of invariant measures by
a homeomorphism f of a compact metric space is a compact metric space (for the
the weak∗ topology) and is convex. We denote by D a distance on Mf defining the
weak∗ topology. The ergodic measures are the extremal points of this convex set and
any invariant measure can be written as a unique convex sum of ergodic measures
and called its disintegration in ergodic measures or f -ergodic decomposition.

A typical picture of hyperbolic dynamics is that the ergodic measures associated
to periodic orbits may be dense in Mf . More precisely, if you consider a shift or
a subshift of finite type, there are periodic orbits following an arbitrary itinerary.
Hence, given any ergodic measures µ1, . . . , µk, there are periodic orbits which follow
a given proportion of time a typical point of the measure µ1 in an orbit segment
long enough for approaching µ1 and then follow µ2 and so on, so that the measure
obtained at the period is arbitrarily close to a given convex combination of the µi.
Now, if f is a diffeomorphism on a manifold and if Λ is an invariant (uniformly)
hyperbolic basic set, the existence of a Markov partitions allows us to transfer this
property to the set Mf (Λ) of invariant measures supported on Λ.
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To understand the non-hyperbolic dynamical systems, one often starts the study
by considering the hyperbolic parts contained in f . For instance, if p and q are hy-
perbolic periodic points with the same index, one says that they are homoclinically
related if the stable and unstable manifold of p cut transversely the unstable and
stable manifolds of q, respectively. A famous result by Smale shows that, if p and
q are homoclinically related, then they are contained in a hyperbolic basic set.
Thus, any convex combination of the invariant measures associated to p and q is
accumulated by periodic orbits.

In this paper, we are interested in some kind of converse to this property. Given
a diffeomorphism f of a compact manifold M and given two ergodic measures µ1

and µ2: what can we say about the dynamical behavior of f if we know that a
convex combination αµ1 + (1− α)µ2 is the limit of measures associated to periodic
orbits? In Section 7 we give examples showing that this approximation of a convex
combination does not imply anything about homoclinic relations, even in the R-
analytic setting, if the dynamic fails to be dominated.

Our main result states that, if the stable/unstable splitting is dominated, then
the approximation of convex combinations by ergodic measures is equivalent to
transverse homoclinic intersection. The idea consists in controlling the size of the
Pesin’s invariant manifolds at the time the orbits are following generic points of one
or the other measure, and to check that this size is enough for getting transverse
intersections. Usually, Pesin theory does not hold in the C1 setting (see [25, 7]).
However, [1] shows that Pesin theory holds for C1-diffeomorphism if one assume
that the stable/unstable splitting is dominated, which is precisely our setting. This
explains why our statements hold for C1-diffeomorphisms. Let us emphasize that
our results are not perturbative results: we are not creating periodic orbits, mea-
sures, or homoclinic intersections by using some perturbation lemma, but prove
that they already exist.

Let us now present precisely this result.

Standing hypothesis. Let f be a C1 diffeomorphism of a Riemannian manifold
M , Λ ⊂ M a invariant compact set which admits a dominated splitting E ⊕

<
F

with s-index dimE. Let Λ̃ be the maximal invariant set in a neighborhood of Λ so
that the dominated splitting E ⊕

<
F extends to Λ̃.

Here recall that TΛM = E ⊕< F dominated splitting over a set Λ if the bundles
E and F are df -invariant and there is a Riemannian metric over M so that df
expands the vectors in Ex strictly less than in Fx. We call dimE the s-index of
the splitting (for further details see Section 2.2). Let µ be an f -invariant Borel
probability measure supported on Λ. We say that µ is hyperbolic if its Lyapunov
exponents are nonzero almost everywhere, and if almost all points have the same
number of negative Lyapunov exponents, in this case we call this number the s-
index of µ. The stable/unstable splitting of µ is the Oseledets splitting Es ⊕< Eu

defined over the generic points of µ, where Es (Eu) is the sum of the Lyapunov
spaces corresponding to the negative (positive) Lyapunov exponents. If µ supported
on Λ is hyperbolic with s-index of µ equal to the s-index of the dominated splitting
E⊕< F , then Esx = Ex and Eux = Fx for any µ-generic point x. One then says that
the stable/unstable splitting of µ is dominated.

If µ is a hyperbolic ergodic measure whose stable/unstable splitting is dominated,
then [11, Proposition 1.4] (see Corollary 3.6) shows that every generic point x of µ
is the limit of periodic orbits approaching µ in the weak∗ topology, and approaching
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the support of µ in the Hausdorff topology; these periodic orbits are hyperbolic of
the same s-index as µ; by the subadditive and maximal ergodic theorems we also
verify that there is a uniform proportion of times on these orbits for which the size
of their invariant manifolds is uniform (see Proposition 3.4). As a consequence we
prove the following.

Theorem 1. Let f be a C1 diffeomorphism of a Riemannian manifold M , Λ ⊂M a
compact invariant set with a dominated splitting E⊕

<
F with s-index dimE, and µ

a hyperbolic invariant (not necessarily ergodic) Borel probability measure supported

in Λ with s-index dimE. Let Λ̃ be the maximal invariant set in a neighborhood of
Λ so that the dominated splitting E ⊕< F extends to Λ̃.

There exists a positive number κ = κ(µ) such that any pair p1, p2 ∈ Λ̃ of pe-

riodic points so that the corresponding invariant measures ν1, ν2 ∈ Mf (Λ̃) satisfy
D(νi, µ) < κ, i = 1, 2, are homoclinically related.

We consider the homoclinic relation on the set of hyperbolic periodic orbits in
Λ̃. It is an equivalence relation and we call intersection classes (relative to Λ̃) the

equivalence classes for the homoclinic relation which are contained in Λ̃.1 Under the
hypotheses of Theorem 1, [11, Proposition 1.4] together with Theorem 1 associates
to any hyperbolic invariant measure µ which is accumulated by ergodic measures
(and, in particular, to any hyperbolic ergodic measure µ) a unique intersection

class, denoted by H(µ) and called the intersection class of µ (relative to Λ̃): the

class H(µ) is the intersection class of any periodic orbit in Λ̃ whose corresponding
measure is close enough to µ. Since we always will restrict our considerations
to Λ̃ alone, below we simply will talk about intersection classes. We will prove
Theorem 1 at the end of Section 4.

The following result is an immediate consequence of Theorem 1.

Corollary 1.1. Under the hypotheses of Theorem 1, any ergodic measure ν ∈
Mf (Λ̃) with D(ν, µ) < κ(µ) shares the same intersection class, that is, we have

H(ν) = H(µ).

As noticed above, convex combinations of the measures associated to homoclini-
cally related periodic orbits are limits of periodic orbits in the same class. Observing
that if µ is hyperbolic ergodic then it can be approximated by periodic orbits (see
Corollary 3.6), as a direct consequence we get the following.

Remark 1.2. Under the hypotheses of Theorem 1, if µ, ν ∈Mf (Λ) are hyperbolic
ergodic with s-index dimE such that ν has the same intersection class as µ, that
is, H(ν) = H(µ), then any convex combination αµ + (1 − α)ν, α ∈ [0, 1], is the

weak∗ limit of measures associated to periodic orbits in Λ̃ belonging to this class.

The main purpose of this paper is to prove the converse to Remark 1.2. We are
now ready to state our main result in that direction.

Theorem 2. Let f be a C1 diffeomorphism of a Riemannian manifold M and
Λ ⊂ M be a compact invariant set with a dominated splitting TΛM = E ⊕

<
F ,

1The intersection class of a hyperbolic periodic point was first considered in [22] and called

h-class. With this terminology, the classical homoclinic class of a hyperbolic periodic point (called
h-closure in [22]) is the closure of its intersection class. See also Remark 4.5 for similar, but a

priori unrelated, concepts.
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and µ ∈ Mf (Λ) be a hyperbolic measure with s-index equal to dimE. Let Λ̃ be
the maximal invariant set in a neighborhood of Λ so that the dominated splitting
E⊕

<
F extends to Λ̃. Let µ =

∫
ν dλ(ν) be the ergodic decomposition of µ. Then µ

is accumulated by ergodic measures νn ∈Mf (Λ̃) if, and only if, λ-almost all ergodic
measures ν are hyperbolic with index dimE and have the same intersection class
H = H(ν). Moreover, in this case H = H(µ).

To sketch the proof of Theorem 2, assume that µ =
∫
ν dλ(ν) is approached by

ergodic measures νn in Mf (Λ̃). Then applying Theorem 1 we first verify that the
measures νn are hyperbolic with the same s-index as λ-almost every ν, hence as
the dominated splitting E ⊕

<
F and that each measure νn is a limit of measures

supported on hyperbolic periodic orbits with index dimE in Λ̃. Thus, one can
assume that the measures νn are supported on periodic orbits On. The key step
in the proof of Theorem 2 is to prove that On have invariant manifolds of uniform
size at points of the orbits close to generic points of a λ-typical ergodic measure ν.
This proof will be completed in Section 5.

In Section 7 we will give examples of smooth diffeomorphisms having hyperbolic
saddle fixed points p1, p2 such that a convex combination of their Dirac measures
is approached by hyperbolic periodic orbits, even with exponents far away from 0,
and whose homoclinic and intersection classes are disjoint (see Theorem 3). This
illustrates the importance of the domination assumption in our results.

1.2. Motivation and historical setting. The question about ergodic measures
associated to periodic orbits being dense in the space Mf of f -invariant measures
has been studied also in a more abstract setting, that is, without a priori assum-
ing that there is a differentiable hyperbolic dynamics present. Perhaps among the
first attacking this general question was Sigmund [27, 28] who showed that pro-
vided the dynamical system satisfies a so-called periodic orbit specification property
the ergodic measures and, in particular, the periodic orbit measures are dense in
Mf . Sigmund’s theorem applies to basic sets of axiom A diffeomorphisms [27, 28].
Roughly speaking, the specification property says that given an arbitrary number
of arbitrarily long orbit segments, one can find a periodic orbit which stays ε-close
to each of those segments and between one segment and the next one needs a fixed
number of iterations which only depends on ε (see [28] for details). In the context of
a basic set of an axiom A diffeomorphism, the existence of a Markov partition guar-
antees a symbolic 1-1 description of essentially all orbits. The shadowing property
enables to arbitrarily connect given (“specified”) orbit pieces of arbitrary length
given by certain symbolic sequences. Concatenating these symbolic sequences in-
finitely often, leads to periodic shadowing orbits. As the Markov partition can
be chosen with arbitrarily small diameter, this procedure enables the “specifica-
tion” and production of periodic orbits with an arbitrary precision. Sigmund’s
specification property has been verified also in a number of topological dynamical
systems such as, for example, topologically mixing subshifts of finite type [12] and
continuous topologically mixing maps on the interval [4, 9].

The shadowing lemma holds more generally for transitive (uniformly) hyperbolic
sets with some caution: if Λ is a topologically transitive hyperbolic set, it admits
a compact neighborhood in which the maximal invariant set Λ̃ is a topologically
transitive hyperbolic set, and pseudo orbits in Λ are shadowed by orbits in Λ̃. As
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a consequence, the convex hull of all invariant measure supported in Λ is contained
in the closure of measures supported on periodic orbits contained in Λ̃.

For a general diffeomorphism, the periodic orbit specification property beyond a
uniformly hyperbolic context is often difficult to verify or fails to hold true. There
exist various extensions of Sigmund’s result under weaker assumptions. Perhaps
the most interesting line of extension in the spirit of our paper are the so-called
approximate product property [23] and g-almost product property [24] initiated by
Pfister and Sullivan. Their variations of the specification property, roughly speak-
ing, “allow to make some number of errors” in the resulting shadowing orbits up
to some number of iterations which decays sufficiently fast when the length of the
specified orbits grows to infinity. Under any of their conditions they show that in
the space of invariant measures ergodic measures are still dense.

Much closer to our approach in the present paper is perhaps Hirayama [17] who
studied a general C1+α topologically mixing diffeomorphism preserving an ergodic
hyperbolic probability measure. He shows that there exists a measurable set Γ of
full measure µ such that the set of all measures supported on periodic hyperbolic
orbits is dense in the (convex) space of invariant measures supported by Γ, meaning
that Γ has full measure for any measure in this space.

All these studies tried to established denseness of ergodic (periodic) measures.
However, to the best of our knowledge, little is known about dynamical systems
which do not have such a property. Clearly, one has to disregard cases where the
system dynamically splits into “basic pieces” such as, for example, attractor-repeller
pairs or a similar family of unrelated disjoint compact invariant sets. More precisely,
Conley theory [10] divides the dynamics of any homeomorphism on a compact
metric space into chain recurrent classes. A non-ergodic measure µ cannot be
approached by ergodic measures if it is not supported on a unique chain recurrent
class, and in particular if its disintegration into ergodic measures gives positive
weight to measures supported in distinct chain recurrent classes.

However, the undecomposability property of the chain recurrent classes is a
very weak property and it is easy to build examples where non-ergodic measures
are not approached by ergodic ones2. Another natural candidate for being an
“elementary piece” of a diffeomorphisms is the homoclinic class of a hyperbolic
periodic orbit, which is the closure of their homoclinic intersection. For C1-generic
diffeomorphisms, the homoclinic classes are the chain recurrence classes containing
periodic points (see [6]), leading to the impression that in this setting the basic
pieces of the dynamics are well defined. The homoclinic classes are the closure of
an increasing sequence of hyperbolic basic sets, leading to a good understanding of
at least a part of the dynamics contained in it. However, the ergodic theory inside
homoclinic classes is in general not understood. [5, Conjecture 2] proposes that for
C1-generic diffeomorphisms the ergodic measures supported in a homoclinic class
are approached by periodic orbits contained in the class. In the opposite direction,
in [13, 14] there can be found an example of a diffeomorphism having a nontrivial
homoclinic class with a hyperbolic periodic orbit which is isolated from the other
ergodic measure supported on the class. We note that this example fits into the
hypothesis of Theorem 2. But, besides the existence of examples, it remains a priori
unclear what general mechanism causes that the closure of the set of invariant

2For example, consider a diffeomorphism of the circle with fixed points which all are of saddle-
node type.
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ergodic probability measures splits into distinct components. According to our
main results, we can now give a refined statement towards the above conjecture:
under the assumptions of C1 domination, for an individual diffeomorphism any
ergodic hyperbolic measure can be approached only by periodic orbits contained in
its intersection class.

Acknowledgement: We thank Lorenzo J. Dı́az for discussion at the origin of this
paper and of the examples in Section 7. We also thank the referee whose suggestions
lead us to a more conceptional and much easier definition of the intersection class
of a hyperbolic ergodic measure.

2. Preliminaries

2.1. The space of measures. Let X be a compact metric space and denote by
M(X) the set of Borel probability measures on X. It is well known that it is
a compact metrizable topological space when equipped with the weak∗ topology
([29, Chapter 6.1]). If {ϕn}n≥1 is a dense subset of the space C0(X) of continuous
functions on X then

D(µ, ν)
def
=

∞∑
n=1

1

2n‖ϕn‖∞

∣∣∣ ∫ ϕn dµ−
∫
ϕn dν

∣∣∣, ‖ϕn‖∞ := sup
x∈Λ
|ϕn(x)|

provides a metric on this space giving the weak∗ topology. We will use the fact
that in the weak∗ topology µn → µ if, and only if, for every ϕ ∈ C0(X) we have∫
ϕdµn →

∫
ϕdµ. In particular, we can consider M(M(X)). If λ ∈ M(M(X)),

then µ =
∫
ν dλ(ν) is a well defined element in M(X) and we call λ a decomposition

of µ.
If f : X → X is a continuous map on X, denote by Mf (X) ⊂M(X) the subspace

of all f -invariant Borel probability measures on X and by Merg(X) ⊂ Mf (X) the
subset of f -ergodic measures. Recall that Mf (X) is a non-empty Choquet simplex
(see [29, Chapter 6.2]). In particular, it is convex and compact. The extreme
points of Mf (X) are the ergodic measures. Any point in a Choquet simplex is
represented by a unique probability measure on the extreme points – this point
of view is often taken to show the ergodic decomposition of nonergodic measures.
Given µ ∈Mf (X), let λ ∈M(M(X)) be the f -ergodic decomposition of µ, that is,
the unique decomposition of µ such that λ(Merg(X)) = 1.

We will use the following straightforward result.

Lemma 2.1. Let µ ∈Mf (X) and let λ ∈M(M(X)) be its f -ergodic decomposition.
Then for any neighborhood V of µ in Mf (X), there exist ν1, . . . , νk ∈Merg(X) and

positive numbers λ1, . . . , λk satisfying
∑k
j=1 λj = 1 such that

∑k
j=1 λjνj ∈ V .

Proof. See, for example, [2, Lemma 2.1]. Indeed, the only difference is that we
require νj to be ergodic. Note that in the proof in [2] one can take yi ergodic. �

2.2. Hyperbolicity and dominated splitting. Now let f : M → M be a C1-
diffeomorphism of a Riemannian manifold, and let Λ ⊂ X be a compact invariant
set. By Oseledets’ multiplicative ergodic theorem, given µ ∈ Mf (Λ), for µ-almost
every x there are a positive integer s(x) ≤ dimM , a df -invariant splitting

TxM =

s(x)⊕
i=1

Eix,
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and numbers χ1(x) < . . . < χs(x)(x), called the Lyapunov exponents of x, such that

for all i = 1, . . . , s(x) and v ∈ Eix \ {0} we have

χi(x) = lim
|n|→∞

1

n
log ‖dfnx (v)‖.

We call such a point x Lyapunov regular with respect to f (see for example [21] for
details on Lyapunov regularity). Moreover, χi(·) are µ-measurable functions and
we denote by

χi(µ)
def
=

∫
χi(x)dµ(x).

the Lyapunov exponents of the measure µ (observe that we allow µ to be noner-
godic). For a Lyapunov regular point x let us denote by Esx (by Eux ) the span of
all subspaces of TxM that correspond to a negative Lyapunov exponent (a posi-
tive Lyapunov exponent). The stable index or simply s-index (unstable index or
u-index ) of a Lyapunov regular point x is the dimension of Esx (of Eux ).

We say that µ is hyperbolic if for µ-almost every x there is 1 ≤ ` = `(x) < s(x)
such that

χ`(x) < 0 < χ`+1(x)

(there are negative and positive but no zero Lyapunov exponents). If µ is ergodic
then s(·), χi(·), as well as the dimensions of Es(·) and Eu(·) are constant almost

everywhere. Correspondingly to what is defined above, the stable index (unstable
index ) of a hyperbolic measure is the stable index (unstable index ) of almost every
Lyapunov regular point.

An f -invariant set Γ ⊂ M is hyperbolic if there exists a df -invariant splitting
Es ⊕ Eu = TΓM of the tangent bundle and positive constants C and λ such that
for every x ∈ Γ for every n ≥ 0 we have

‖dfnx (v)‖ ≤ Cenλ‖v‖ for all v ∈ Esx,

‖df−nx (w)‖ ≤ Cenλ‖w‖ for all w ∈ Eux .

Recall that for a compact f -invariant hyperbolic set, up to a smooth change of
metric, we can assume C = 1.

A set Γ ⊂M is locally maximal if there exists an open neighborhood U of Γ such
that Γ =

⋂
k∈Z f

k(U). A set Γ ⊂ M is transitive if it is the closure of a positive
orbit. Recall that a set is basic (with respect to f) if it is compact, invariant,
transitive, locally maximal, and hyperbolic.

Given an f -invariant set Γ, a df -invariant splitting TΓM = E ⊕ F is dominated
if there exists N ≥ 1 such that for every point x ∈ Γ and all unit vectors v ∈ Ex
and w ∈ Fx we have

‖dfNx (v)‖ ≤ 1

2
‖dfNx (w)‖

and if dimEx (and hence dimFx) does not depend on x ∈ Γ. It will be denoted by
E ⊕

<
F .

Recall that a dominated splitting E⊕
<
F is always continuous and extends to the

closure Γ of Γ. Moreover, for a sufficiently small neighborhood V of Γ, considering
the maximal invariant set Γ̃ in V , there is a unique dominated splitting on Γ̃ which
extends E⊕< F (see [8] for more details). We call such Γ̃ a dominated extension of
(Γ, E ⊕< F ).

If Γ ⊂ Λ is hyperbolic then its associated splitting Es⊕Eu = TΓM is dominated.
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Given a dominated splitting E ⊕
<
F , it may happen that the bundles E and

F can be further decomposed into subbundles satisfying a domination condition.
There always exists a (unique) finest dominated sub-splitting in the sense that it
is not further decomposable. For an ergodic measure µ ∈ Mf , the bundles of any
dominated splitting on the support of µ can be written, for µ-generic points, as
sums of the Oseledets spaces of groups of increasing Lyapunov exponents. We will,
however, in this paper disregard such finer splittings. We only consider a dominated
splitting into two bundles which separates positive and negative exponents alone.
These subbundles are denoted Es and Eu, respectively, and if this splitting is
dominated we say that the stable/unstable splitting of µ is dominated.

We note that, if E ⊕
<
F is a dominated splitting defined over suppµ which has

the same s-index such as µ then the stable/unstable splitting Es ⊕Eu over suppµ
is dominated.

2.3. Subadditive and maximal ergodic theorems. Consider a dominated split-
ting E ⊕< F = TΛM . Note that the sequence (ψn)n of functions ψn : Λ→ R given
by

ψn(x)
def
= log ‖dfn/Ex

‖
is subadditive, that is, for every n,m ≥ 1 we have ψn+m ≤ ψn + ψm ◦ fn. Observe
that the sequence (−φn)n of functions −φn : Λ→ R, where φn are given by

φn(x)
def
= log ‖(dfn/Fx

)−1‖−1 = log ‖df−n/Ffn(x)
‖−1

is also subadditive. By Kingman’s subadditive ergodic theorem, there exist mea-
surable functions λE , λF : Λ → R such that for a given measure µ ∈ Mf (Λ) for
µ-almost every x we have

λE(x) = lim
n→∞

1

n
log ‖dfn/E‖, λF (x) = lim

n→∞

1

n
log ‖(dfn/F )−1‖−1

and are called the maximal Lyapunov exponent of x in E and the minimal Lyapunov
exponent of x in F , respectively. (For this note that in our setting the sequences
(ψn/n)n and (φn/n)n are uniformly bounded from below.) Moreover,

λE(µ)
def
=

∫
λE dµ = lim

n→∞

∫
1

n
ψn dµ = inf

n≥1

∫
1

n
ψn dµ

λF (µ)
def
=

∫
λF dµ = lim

n→∞

∫
1

n
φn dµ = sup

n≥1

∫
1

n
φn dµ

(1)

and we call these numbers the maximal Lyapunov exponent of µ in E and the
minimal Lyapunov exponent of µ in F , respectively. If µ is ergodic, then λE and
λF are constant µ-almost everywhere.

Given N ≥ 1, define the function ψ∗N : Λ→ R by

ψ∗N (x)
def
= sup

k≥1

1

k

k−1∑
`=0

ψN (f `N (x)).

Let
BN

def
= {x : ψ∗N (x) ≤ −1} .

Recall that, given µ ∈Mf , by the maximal ergodic theorem applied to the Birkhoff
averages (with respect to fN : Λ→ Λ) of the potential ψN we have∫

Λ\BN

(ψN + 1) dµ ≥ 0
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which implies

(2) −
∫

Λ\BN

ψN dµ ≤ µ(Λ \BN ).

3. C1-dominated Pesin theory

The usual Pesin theory requires a C1+α regularity of the dynamics ([25, 7]
show that the Pesin theory does not hold in the C1-setting). We use here the
C1-dominated Pesin theory developed in [1, 2], which holds only when the sta-
ble/unstable bundle is dominated. From this theory, we derive in particular the
size of local stable/unstable manifolds.

3.1. Invariant manifolds in the C1 dominated setting. Let f be a C1 diffeo-
morphism of a Riemannian manifold M . The (Pesin) stable set at a point x ∈ M
is defined by

W s(x)
def
= {y ∈M : lim sup

n→∞

1

n
log d(fn(y), fn(x)) < 0} .

The (Pesin) unstable set at x is defined to be the stable set at x with respect to
f−1 and denoted by Wu(x).

In this section we continue to assume that Λ ⊂ M is a compact f -invariant set
and that its tangent bundle carries a dominated splitting TΛM = E ⊕< F . We
fix cone fields CE ,C F around the bundles E,F which are strictly invariant. More
precisely, for every x ∈ Λ the open cone CE

x ⊂ TxM contains Ex, is transverse to Fx,
and the image of its closure under dfx is contained in CE

f(x). Analogously we define

C F
x being invariant with respect to df−1

x . Such cone fields can be extended to cone
fields on a small open neighborhood of Λ, keeping all the above given properties.

Given x ∈ Λ and δ > 0, we say that a set D is a C1 stable disk of radius δ
centered at x if there is a C1 map ϕ from a ball of radius δ centered in 0 in Ex to
Fx such that D is the graph of the map v 7→ expx(v+ϕ(v)) and so that the tangent
space of D at each point is tangent to the cone field CE . Analogously, we define a
C1 unstable disk.

Definition 3.1 (δ0). By the Plaque family theorem (see [18, Theorem 5.5] or [1])
there exist some δ0 and a continuous family of C1 stable (unstable) disks centered at
points x ∈ Λ of radius δ0 which is locally invariant. Moreover, by choosing δ0 small
enough, one can ensure that these disks are tangent to the cone field CE (C F ).
By shrinking if necessary the size of the plaques one may assume that every stable
plaque is transverse to any unstable plaque at any point of intersection.

For the following we will fix such families and denote them by {DE
x }x∈Λ and

{DF
x }x∈Λ.

In the whole paper, when we consider a set Λ (or Λ̃) with a dominated splitting
E⊕

<
F , we always endow it implicitly with a continuous family of locally invariant

plaques. We say that a point x ∈ Λ has a (local) stable (unstable) manifold of size δ
if there is a disk D of radius δ centered at x in the plaque DE

x (DF
x ) and contained

in the stable set of x.
The following lemma is an immediate consequence of the transversality of the

stable and unstable plaques families {DE
x }x∈Λ and {DF

x }x∈Λ and will be often used
in this paper.
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Lemma 3.2. For every δ > 0 there exists η > 0 such that for every pair of points
x, y ∈ Λ which satisfy d(x, y) ≤ η and which both have C1 stable and unstable disks
of radius at least δ these disks intersect transversally and cyclically, that is, the
stable disk of x intersects the unstable disk of y and vice versa.

3.2. Size of invariant manifolds. The sets and functions considered below are
the main ingredients in [1, 2] for controlling the size of the invariant manifolds.
Here we favor the more direct and flexible (though essentially equal) approach
in [2, Sections 4.2.1–4.2.2] since to determine the sizes of stable/unstable manifolds
it does not require to verify certain quantifiers on a full measure set of points with
respect to some (ergodic) measure (compare [1, Proposition 8.9]).

Given a positive integer N , define the stable Pesin block

Bs(N, f)
def
=

{
x ∈ Λ: sup

k≥1

1

k

k−1∏
`=0

log ‖dfN/E
f`N (x)

‖ ≤ −1

}
.

Also define by Bu(N, f)
def
= Bs(N, f−1) the unstable Pesin block.

Proposition 3.3 ([2, Theorem 4.7]). Let f be a C1 diffeomorphism, Λ a compact
invariant set with a dominated splitting E ⊕

<
F . For every N ≥ 1 there exists

δ > 0 such that for every x ∈ Bs(N, f) there exists an injectively immersed C1-
manifold WE(x) of dimension dimE tangent to Ex, which is a local stable manifold
WE(x) ⊂W s(x) of size δ. The analogous result holds for Bu(N, f).

3.3. Approximation of hyperbolic measures. We derive the following conse-
quence from Proposition 3.3 about hyperbolic measures and their neighborhoods.

Proposition 3.4. Assume that the Standing hypothesis is satisfied. Let µ ∈Mf (Λ)
be hyperbolic with s-index dimE. Then for every ε ∈ (0, 1) there exist a positive

integer N and a number κ > 0 such that for any ν ∈Mf (Λ̃) satisfying D(ν, µ) < κ
we have ν(Bs(N, f) ∩Bu(N, f)) > 1− ε. Moreover, any ergodic ν ∈Mf (Λ̃) satis-
fying D(ν, µ) < κ is hyperbolic with s-index dimE and satisfies λE(ν) < λE(µ)/4
and λF (µ)/4 < λF (ν).

Proof. The proof follows closely arguments in [2, Sections 4.2.1–4.2.2] invoking the
subadditive and maximal ergodic theorems which we recalled in Section 2.3.

Let ψn = log ‖dfn/E‖ and observe that (ψn)n is a subadditive sequence of continu-

ous functions which are uniformly bounded from below. By Kingman’s subadditive
ergodic theorem, ψn/n converges µ-almost everywhere to a measurable function
λE . Since µ is hyperbolic with s-index dimE, λE(x) is negative at µ-almost every
x.

Let ε ∈ (0, 1). There exist λ > 0 and a measurable set Ω ⊂ Λ such that
µ(Ω) > 1− ε and such that for every x ∈ Ω we have λE(x) ≤ −λ.

Let γ ∈ (0, λ) and χ = λ− γ. Note that λE + χ < 0 on Ω.
By the dominated convergence theorem, λE is integrable and

lim
n→∞

∫ ∣∣∣ψn
n
− λE

∣∣∣ dµ = 0.

Hence, denoting a+ = max{0, a}, we have∫ ∣∣∣ψn
n
− λE

∣∣∣ dµ ≥ ∫ (ψn
n
− λE

)+

dµ ≥ 0
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which implies

(3) lim
n→∞

∫ (ψn
n
− λE

)+

dµ = 0.

Moreover, since λE + χ < 0 on Ω, we can conclude that for any x ∈ Ω we have

0 ≤
(ψn
n

+ χ
)+

(x) =
((ψn

n
− λE

)
+ (λE + χ)

)+

(x) ≤
(ψn
n
− λE

)+

(x),

while for µ-almost every x in the bigger set Λ, since λE(x) < 0 we have

0 ≤
(ψn
n

+ χ
)+

(x) =
((ψn

n
− λE

)
+ (λE + χ)

)+

(x) ≤
(ψn
n
− λE

)+

(x) + χ.

Moreover, since µ(Λ \ Ω) ≤ ε we obtain

0 ≤
∫ (ψn

n
+ χ

)+

dµ ≤ χµ(Λ \ Ω) +

∫ (ψn
n
− λE

)+

dµ

≤ χε+

∫ (ψn
n
− λE

)+

dµ.

Hence, with (3) we conclude

0 ≤ lim
n→∞

∫ (ψn
n

+ χ
)+

dµ ≤ χε.

We now choose N ≥ 1 such that

(4)
1

N
< χε and

∫ (ψN
N

+ χ
)+

dµ < 2χε.

As the integrand of the integral in (4) is a continuous function, there exists κ > 0

such that for every ν ∈Mf (Λ̃) satisfying D(ν, µ) < κ we have

(5)

∫ (ψN
N

+ χ
)+

dν < 3χε.

By the maximal ergodic theorem (2) we have

(6) −
∫

Λ̃\Bs(N,f)

ψN dν ≤ ν
(

Λ̃ \Bs(N, f)
)
.

What remains is to estimate ν(Bs(N, f)) for every such measure ν. Observe that
with (5)

(7)

∫
Λ̃\Bs(N,f)

(ψN
N

+ χ
)+

dν ≤
∫ (ψN

N
+ χ

)+

dν < 3χε.

As χ = (t+ χ)− t ≤ (t+ χ)+ − t for any t ∈ R, with t = ψN/N we have

χν
(

Λ̃ \Bs(N, f)
)

=

∫
Λ̃\Bs(N,f)

χdν ≤
∫

Λ̃\Bs(N,f)

((ψN
N

+ χ
)+

− ψN
N

)
dν.

With (7), (6), the fact that ν is a probability measure, and (4) we obtain

χν
(

Λ̃ \Bs(N, f)
)
< 3χε+

1

N
ν
(

Λ̃ \Bs(N, f)
)
< 4χε.

From this we conclude ν(Bs(N, f)) > 1− 4ε.
Without loss of generality, we can assume that the above quantifiers and esti-

mates simultaneously hold also for Bu(N, f). This proves the claim about the size
of stable and unstable Pesin blocks.
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To prove the claim about hyperbolicity of ergodic measures close to µ, consider
now also the subadditive sequence φn = − log ‖df−n/Ff−n(x)

‖ and let us assume that

above N was chosen large enough such that we have

λE(µ) ≤
∫
ψN
N

dµ <
1

2
λE(µ),

1

2
λF (µ) ≤

∫
φN
N

dµ < λF (µ).

By our assumption we have λE(µ) < 0 < λF (µ). As φN/N is continuous, we can

assume that κ was chosen small enough such that for every ν ∈ Mf (Λ̃) satisfying
D(ν, µ) we also have∫

ψN
N

dν <
1

4
λE(µ) < 0 <

1

4
λF (µ) ≤

∫
φN
N

dµ.

Then by the subadditive ergodic theorem (1), for every ergodic measure ν satisfying
D(ν, µ) < κ we obtain

λE(ν) <
1

4
λE(µ) < 0 <

1

4
λF (µ) < λF (ν).

Thus, ν is hyperbolic with s-index dimE with Lyapunov exponents uniformly
bounded away from 0. �

The following is an immediate consequence of Proposition 3.4.

Corollary 3.5. Assume that the Standing hypothesis is satisfied. Let µ ∈Mf (Λ) be
hyperbolic with s-index dimE. Then for every ε ∈ (0, 1) there exist positive numbers

δ > 0 and κ > 0 such that for every invariant measure ν ∈ Mf (Λ̃) supported on
the orbit of a periodic point p and satisfying D(ν, µ) < κ there is a set of points
G(p) on this orbit satisfying

• cardG(p) ≥ (1− ε)π(p), where π(p) denotes the period of p;
• every x ∈ G(p) has a local stable and a local unstable manifold of size δ,

respectively.

Proof. Taking N = N(µ, ε) and κ = κ(µ, ε) as in Proposition 3.4 and δ = δ(N) as
in Proposition 3.3, it suffices to observe that if G is a Borel set such that ν(G) > 1−ε
then with G(p) = G∩{p, f(p), . . . , fπ(p)−1(p)} we have cardG(p) > (1−ε)π(p). �

We will finally formulate the following slightly strengthened version of [11, Propo-
sition 1.4] (and of Proposition 3.4) which is contained in its proof in [11]. This is
an ersatz to Katok’s horseshoe construction (see [19, Supplement S.5]) in the C1

dominated setting.

Corollary 3.6. Assume that the Standing hypothesis is satisfied. Let µ ∈Merg(Λ)
be hyperbolic with s-index dimE.

Then for every ε ∈ (0, 1) there exist δ > 0 and κ > 0 such that for every

ν ∈ Merg(Λ̃) satisfying D(ν, µ) < κ there exists a set Γν such that ν(Γν) > 1 − ε
and that for every point x ∈ Γν there is a sequence (pn)n ⊂ Λ̃ of hyperbolic periodic
points with s-index dimE such that:

• pn converges to x as n→∞;
• the orbit of pn converges to the support of ν in the Hausdorff topology;
• the invariant measures supported on the orbit of pn converge to ν in the

weak∗ topology;
• every pn has a stable and a unstable local manifold of size δ, respectively.
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As a consequence, if κ was chosen sufficiently small, all points pn whose corre-
sponding measures νn satisfy D(νn, µ) < κ are pairwise homoclinically related.

Proof. We follow the proof of [11, Proposition 1.4], with essentially the only change
that we use the stable and unstable Pesin blocks as in [2]. By Proposition 3.4
applied to µ and ε, there are a positive integer N = N(µ, ε) and a number κ =

κ(µ, ε) > 0 such that for every ergodic measure ν ∈ Mf (Λ̃) with D(ν, µ) < κ we
have ν(Bs(N, f) ∩ Bu(N, f)) > 1 − ε. Let δ0 = δ(N) > 0 as in Proposition 3.3

applied to the set Λ̃. Recall that for every x ∈ Bs(N, f)∩Bu(N, f) for every k ≥ 0
we have

k−1∏
`=0

‖dfN/E
f`N (x)

‖ ≤ e−k and

k−1∏
`=0

‖df−N/F
f−`N (x)

‖ ≤ e−k.

As ν is assumed to be ergodic, ν-almost every point is recurrent. Hence, since
ν(Bs(N, f)∩Bu(N, f)) > 1−ε > 0 there is a set Γν ⊂ Bs(N, f)∩Bu(N, f) satisfying
ν(Γν) > 1 − ε formed by points x in the support of ν that have positive iterates
fm(x) ∈ Bs(N, f) ∩ Bu(N, f) arbitrarily close to x such that the (noninvariant)

atomic measure 1
m

∑m−1
i=1 δfi(x) is arbitrarily close to ν. In particular, for every

k = 0, . . . ,m one has

(8)

k−1∏
`=0

‖dfN/E
f`N (x)

‖ ≤ e−k and

k−1∏
`=0

‖df−N/F
fm−`N (x)

‖ ≤ e−k.

This property and the domination E ⊕< F allow to apply Liao-Gan’s shadowing
lemma [16] which states that the orbit segment x, f(x), . . . , fm(x) is c-shadowed by
a periodic orbit p, f(p), . . . , fm(p) = p where c tends to 0 as d(x, fm(x)) decreases.
In particular the atomic measure on this periodic orbit is close to ν. Note that
the periodic point p satisfies an estimate similar to (8) up to some multiplicative
constants which only depend on c and N (but not on ν) and which tend to 1 as

d(x, fm(x)) decreases. This way, we obtain a sequence (pn)n ⊂ Λ̃ of hyperbolic
periodic points with s-index dimE which converge to x, whose orbit converge to
supp ν, and whose measures converge to ν in the weak∗ topology. And by the
estimates (8) and arguments similar as in the proof of Proposition 3.3 the size of
the local stable and the local unstable manifolds at pn are uniformly bounded from
below by some positive δ ∈ (0, δ0) (which depends on N but does not depend on
ν). But we refrain from giving all details. �

4. Intersection classes

Definition 4.1 (Intersection class). Let f be a diffeomorphism of a compact man-
ifold M . Let Perhyp be the set of hyperbolic periodic points in M . On Perhyp we
consider the relation ∼H of being homoclinically related, that is, two hyperbolic
periodic points p ∼H q if, and only if, the invariant manifolds of their orbits meet
cyclically and transversely. This defines an equivalence relation on the set Perhyp.
The equivalence classes for ∼H are called the intersection classes.3

Remark 4.2. For every hyperbolic periodic point, its homoclinic class is the clo-
sure of its intersection class.

3Note that we do not consider the closure of the set of the transverse intersection points. To
avoid confusion with other common usage of terms we avoid to call such an equivalence class a

homoclinic class, although this would be an appropriate name.
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A given homoclinic class C of a hyperbolic periodic point p may contain several
distinct intersection classes. For instance, C may contain points of s-indices differ-
ent from the s-index of p. More surprisingly, C may contain hyperbolic periodic
points q with the same s-index as p but not homoclinically related with p: [15, 13]
(see also [20]) provide such examples where the homoclinic class of q is strictly
contained in C.

For the remainder of this section, we assume that the Standing hypothesis is
satisfied.

Definition 4.3 (Intersection class of a hyperbolic ergodic measure). For any hy-
perbolic ergodic measure µ with s-index dimE supported in Λ, Corollary 3.6 in
particular asserts that for µ-almost every x there exists a sequence (pn)n≥1 of hy-

perbolic periodic points pn ∈ Λ̃ with s-index dimE such that limn→∞ pn = x. On
the other hand, Theorem 1 asserts that there is a neighborhood of µ in the set of
invariant measures supported in Λ̃ so that every pair of periodic orbits in Λ̃ whose
corresponding invariant measures are contained in this neighborhood are homoclin-
ically related, hence belong to the same class.

Therefore, Corollary 3.6 together with Theorem 1 implies that there is exactly
one intersection class containing orbits in Λ̃ and whose corresponding measures
tend to µ. We call this class the intersection class of µ and we denote it by H(µ).

For Definition 4.3 to be coherent it remains now to prove Theorem 1.

Proof of Theorem 1. We want to prove that, for κ = κ(µ) small enough, all pe-

riodic orbits in Λ̃ whose corresponding measures are κ-close to µ are homoclin-
ically related. Arguing by contradiction, we assume the existence of a sequence
(O(pn),O(qn))n of pairs of periodic orbits of periodic points pn, qn ∈ Λ̃, whose cor-
responding measures νn, ξn tend to µ, and so that the unstable manifold of O(pn)
has no transverse intersection point with the stable manifold of O(qn).

Recall that for n large enough O(pn) and O(qn) are hyperbolic with the same
s-index as µ. Furthermore, Corollary 3.5 ensures the existence of numbers δ =
δ(µ) > 0 and θ = θ(µ) ∈ (0, 1) and of a subset G(pn) ⊂ O(pn) with the following
properties:

• card(G(pn)) ≥ θ card(O(pn)) and card(G(qn)) ≥ θ card(O(qn)), that is,
νn(G(pn)) ≥ θ and ξn(G(qn)) ≥ θ.
• for any x ∈ G(pn) the local stable (and unstable) manifold of x contains a

disk of radius δ centered at x, and for any y ∈ G(qn) the local unstable (and
stable) manifold contains a disk of radius δ centered at y.

Let νsn denote the restriction of νn to the set G(pn) and ξun denote the restriction
of ξn to G(qn). Thus νsn and ξun are positive measures whose total mass is within
the interval [θ, 1]. Note that the set of such measures is closed with respect to the
weak∗ topology.

Therefore, up to considering subsequences, one may assume that the measures
νsn converge to a measure νs and the measures ξun tend to a measure ξu. Note that
for any continuous positive function φ one has

∫
φdνsn ≤

∫
φdνn which implies that∫

φdνs ≤
∫
φdµ. In the same way, one deduces

∫
φdξu ≤

∫
φdµ. Thus,

µ(supp νs) ≥ θ and µ(supp ξu) ≥ θ.
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As µ is ergodic, there is k ∈ N so that

µ
(

supp νs ∩ fk(supp ξu)
)
> 0.

Choose now positive numbers δ0 and η satisfying δ0 < δ · (max ‖Df−1‖)−k and
η � δ0. Consider a point x ∈ supp(νs)∩ fk(supp ξu) and the ball B(x, η) of radius
η centered at x. In particular νs(B(x, η)) > 0 and ξu(f−k(B(x, η))) > 0.

For any n large enough we have νsn(B(x, η)) > 0 and ξun(f−k(B(x, η))) > 0. This
means, in particular, that the set B(x, η) contains:

• a point yn ∈ G(pn) ⊂ O(pn) (with local stable manifold larger than δ),
• a point fk(zn) with zn ∈ G(qn) ⊂ O(qn) (zn has a local unstable manifold

larger than δ and therefore fk(zn) has a unstable manifold larger than δ0).

When η was chosen small enough, this implies that W s(yn) cuts transversely
Wu(fk(zn)). But this contradicts the hypothesis that W s(O(pn)) does not have
transverse intersection points with Wu(O(qn)), proving the theorem. �

A straightforward consequence is the following.

Corollary 4.4. For µ satisfying the hypotheses of Corollary 3.6, the closure H(µ)
of the intersection class H(µ) contains the support of µ.

Remark 4.5. Finally let us point out that there exist other concepts in the liter-
ature which are related to the above defined intersection class (besides the already
mentioned concept of a homoclinic class, see Remark 4.2). Generally they are,
however, quite distinct objects.

For example, a related concept has been studied in [26] (see also [2]). For com-
pleteness we will provide its definition. In the context of f being a C1+α diffeomor-
phism, Pesin theory guarantees that for every ergodic hyperbolic measure µ there

is a Borel set R̂ of full measure such that for every x ∈ R̂ the stable and unstable
sets W s(x) and Wu(x) are immersed manifolds (see [3] for details). Let p be a
hyperbolic periodic point and denote by O(p) its orbit. Define

Hs
erg(p)

def
=
{
x ∈ R̂ : W s(x) transversally intersects Wu(O(p))

}
,

Hu
erg(p)

def
=
{
x ∈ R̂ : Wu(x) transversally intersects W s(O(p))

}
,

Herg(p) = Hs
erg(p) ∩Hu

erg(p) .

In [26], the set Herg(p) is called the ergodic homoclinic class of p. It has been
introduced to study ergodicity of smooth measures and it is shown in [26] that if
f preserves a smooth measure m and if both sets Hs

erg(p) and Hu
erg(p) both have

positive measure, then Herg(p) coincides modulo zero sets with Hs
erg(p) and Hu

erg(p),
and form an ergodic component of m.

In our notation, given an ergodic invariant hyperbolic probability measure µ
supported in Λ and with s-index dim, for every periodic point p ∈ Λ̃ with invariant
measure sufficiently close to µ, we have

H(µ) = Herg(p) ∩ Perhyp

and this set is contained in the homoclinic class of p.
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5. Proof of Theorem 2

Let f be a C1 diffeomorphism, Λ be a compact invariant set with a dominated
splitting TM |Λ = E⊕<F . We fix a maximal invariant set Λ̃ in a neighborhood of Λ

so that the dominated splitting E⊕
<
F extends to Λ̃. Let µ ∈Mf (Λ) is a hyperbolic

invariant Borel probability measure with s-index dimE. Let µ =
∫
ν dλ(ν) be its

ergodic decomposition.

Assuming that the intersection classes coincide. Suppose that there exists some in-
tersection class H ⊂ Λ̃ such that λ-almost every ergodic measure ν has intersection
class H(ν) = H. Given ε ∈ (0, 1), let κ = κ(µ, ε) > 0 as in Proposition 3.4. By
Lemma 2.1, there exist ν1, . . . , νk ∈Merg(Λ) and positive numbers λ1, . . . , λk satis-

fying
∑k
j=1 λj = 1 such that D(

∑k
j=1 λjνj , µ) < ε. Applying Corollary 3.6 to each

of these measures νj , there is a sequence of hyperbolic periodic points (pj,n)n such
that the invariant measures νj,n supported on the orbit of pj,n converge to νj in the

weak∗ topology. By local maximality, pj,n ∈ Λ̃. Moreover, by Theorem 1 eventually
all points pj,n belong to H(νj). As by hypothesis the intersection classes H(νj) all
coincide, all periodic points pj,n are pairwise homoclinically related. Hence, for

every n ≥ 1 there is a basic set ∆n ⊂ Λ̃ which contains all pj,n, j = 1, . . . , k. Thus,
there is a sequence (pn,m)m of periodic points pn,m in ∆n whose associated invariant
measures ηn,m accumulate at the measure λ1ν1,n+ · · ·+λkνk,n. By diagonalization,
there is a sequence (ηn,mn

)n tending to λ1ν1 + · · · + λkνk. As ε was arbitrary, it

follows that µ is accumulated by ergodic measures in Mf (Λ̃) as claimed.

Assuming existence of one accumulated convex combination. Suppose now that µ is
accumulated by a sequence (νn)n ⊂Merg(Λ̃) of ergodic measures. By Corollary 3.6,
each νn is accumulated by measures supported on hyperbolic periodic orbits with
s-index dimE which are contained in Λ̃. Hence, without loss of generality, we can
assume that each measure νn is supported on the orbit of a hyperbolic periodic
point qn with s-index dimE in Λ̃. By Corollary 1.1, there exists an intersection
class H ⊂ Λ̃ such that eventually, for n large, H(νn) = H.

Let ν ∈Mf (Λ) be an ergodic measure which is a typical point in the decompo-
sition of µ, that is, that λ(U) > 0 for any neighborhood U ⊂Mf (Λ) of ν. Clearly,
ν is hyperbolic with s-index dimE. We want to show that H(ν) = H. Fixing some
ε ∈ (0, 1) let δ = δ(ν, ε) > 0 and κ = κ(ν, ε) > 0 as in Corollary 3.6. Consider a
neighborhood U ⊂Mf (Λ) such that every ν′ ∈ U satisfies D(ν′, ν) < κ. Let

νκ
def
=

∫
U

ν′ dλ(ν′) and λ0
def
= λ (U) ∈ (0, 1].

Note that νκ is finite and inner regular4.
On the one hand, by Corollary 3.6 for every ergodic measure ν′ ∈ U there is a

set Γν′ so that ν′(Γν′) > 1− ε and that every x ∈ Γν′ is accumulated by hyperbolic

periodic points in Λ̃ of s-index dimE which have local stable and unstable manifolds
of size at least δ. As δ does not depend on ν′, we obtain

(9) νκ(G(δ)) > ε0, where ε0
def
= λ0(1− ε),

4Recall that a finite measure ν on a metric space X is inner regular (or tight) if for any ε > 0
there exists a compact subset Ωε of Ω such that ν(X \ Ωε) < ε.
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where G(δ) denotes the set of points x ∈ Λ which are accumulated by a sequence

(pn)n of hyperbolic periodic points in Λ̃ of s-index dimE such that each pn has a
local stable and a local unstable manifold of size δ, respectively.

On the other hand, let N ′ = N(µ, ε0/5) and κ′ = κ(µ, ε0/5) be as in Proposi-
tion 3.4 and let δ′ = δ(N ′) be as in Proposition 3.3.

Let η = min{η(δ), η(δ′)} > 0 for numbers η(δ) and η(δ′) as in Lemma 3.2. Hence
for any pair of periodic points which are η-close and which both have C1 stable and
unstable disks of radius at least min{δ, δ′} these disks intersect transversally and
cyclically.

Let us sketch the final step of the proof. We want to argue that any periodic orbit
measure νn sufficiently close to µ has a large fraction of points on its support which
simultaneously have large stable/unstable manifolds and are η/2-close to the set
G(δ) and hence are η-close to periodic points accumulating on points in G(δ) and
which have large stable/unstable manifolds and hence belong to the intersection
class H(ν). As their manifolds must intersect transversally and cyclically, we can
conclude that H(ν) = H(νn) = H. The technical problem is that G(δ) is in general
only a measurable set. To deal with weak∗ approximation, we use inner regularity
of νκ and choose some compact subset Γ of G(δ) whose characteristic function can
be approximated by some continuous function ϕ. This will make our approximation
arguments rigorous.

Recalling preliminary facts about the weak∗ topology in Section 2.1, without
loss of generality, we can assume that

U =

{
ν′ ∈Mf (Λ):

∣∣∣∣∫ ϕi dν
′ −
∫
ϕi dν

∣∣∣∣ < κ0, i = 1, . . . , n

}
for some κ0 > 0 and some continuous functions ϕi : M → R, i = 1, . . . , n. Let

Ω
def
=

{
x ∈ G(δ) :

∣∣∣∣∣ lim
k→∞

1

k

k−1∑
`=0

ϕi(f
`(x))−

∫
ϕi dν

∣∣∣∣∣ < κ0, i = 1, . . . , n

}
be some subset of the set of generic points for ergodic measures in U. This set is
measurable and by (9) we have νκ(Ω) > ε0. Hence, as νκ is regular, Ω contains a
compact set Γ such that νκ(Γ) > 4ε0/5. Denote by U the η/2-neighborhood of Γ.
Let ϕ : M → [0, 1] be a continuous function being equal to 0 outside U and equal
to 1 inside the η/4-neighborhood of Γ.

Consider now νn with n sufficiently large such that∣∣∣∣∫ ϕdνn −
∫
ϕdµ

∣∣∣∣ < ε0

5
.

By this and the above we have

νn(U) ≥
∫
ϕdνn >

∫
ϕdµ− ε0

5
.

Recalling the ergodic decomposition of µ we have∫
ϕdµ =

∫ (∫
ϕ(x) dν′(x)

)
dλ(ν′) ≥

∫
U

(∫
Γ

1 dν′
)
dλ(ν′) = νκ(Γ) >

4ε0

5
.

Hence, on one hand we obtain νn(U) > 3ε0/5 and so at least a 3ε0/5-fraction of
points on the orbit of qn are η/2-close to a point in Γ ⊂ G(δ) which by the above
choices is accumulated by hyperbolic periodic points with manifolds of size δ. On
the other hand we had that at least a (1− ε0/5)-fraction of points on its orbit have
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local manifolds of size at least δ′. Hence, at least a 2ε0/5-fraction of points on this
orbit have both properties.

This finishes the proof of the theorem. �

6. Examples

Let us present some examples to which we apply our results. For that recall that
the convex hull ch(A) of a subset A of a vector space is the smallest convex set
containing A.

In this section we will always assume that the Standing hypothesis is satisfied.

Example 1 (Convex hull of finitely many hyperbolic ergodic measures). Let µ1,
. . ., µk ∈ Mf (Λ) be k ergodic hyperbolic measures with s-index equal to dimE.
Then the convex hull of all these measures is the simplex

ch({µ1, . . . , µk}) =
{
s1µ1 + · · ·+ skµk : s1, . . . , sk ≥ 0,

k∑
j=1

sj = 1
}
.

It is an immediate consequence of Proposition 3.4 that for every ε ∈ (0, 1) there are

positive numbers κ, λ, and δ with the following property: Every ergodic ν ∈Mf (Λ̃)
which satisfies D(ν, µ) < κ for some µ ∈ ch({µ1, . . . , µk}) is hyperbolic with s-
index dimE and the maximal Lyapunov exponent of ν in E and the minimal
Lyapunov exponent of ν in F are bounded away from 0 by −λ and λ, respectively.
Moreover, together with Proposition 3.3, for every such measure ν there exists
a set of points Ων ⊂ Λ̃ satisfying ν(Ων) > 1 − ε such that every x ∈ Ων has
stable and unstable local manifolds of size at least δ. Finally, by Theorem 2, any
µ ∈ ch({µ1, . . . , µk}) is accumulated by ergodic measures (νn)n ⊂ Mf (Λ̃) if, and
only if, H := H(µ1) = . . . = H(µk); and in this case for every νn satisfying
D(νn, µ) < κ we have H(νn) = H := H(µ).

Example 2 (Convex hull of measures supported on hyperbolic sets). Let Λ1, . . .,
Λk ⊂ Λ be k pairwise disjoint uniformly hyperbolic transitive5 compact invariant
sets with s-index dimE and denote Vj = Mf (Λj), j = 1, . . . , k. Then, for every
ε ∈ (0, 1) there are positive numbers κ, λ, and δ with the following property: Every

ergodic measure ν ∈ Mf (Λ̃) which belongs to the κ-neighborhood of the convex
hull of the (compact) set V1 ∪ . . . ∪ Vk is hyperbolic with s-index dimE and for
ν the maximal Lyapunov exponent in E and the minimal Lyapunov exponent in
F are bounded away from 0 by −λ and λ, respectively. Moreover, for every such
measure ν there exists a set of points Ων ⊂ Λ̃ satisfying ν(Ων) > 1 − ε such that
every x ∈ Ων has stable and unstable local manifolds of size at least δ. Finally,
Λ1, . . . ,Λk are pairwise homoclinically related if, and only if, there exists a measure
µ ∈ ch(V1 ∪ · · · ∪ Vk) \ (V1 ∪ · · · ∪ Vk) which is accumulated by ergodic measures νn
in M(Λ̃). Exactly as for Theorem 2 we can show that if one measure of the interior6

of the set ch(V1 ∪ · · · ∪ Vk) \ (V1 ∪ · · · ∪ Vk) is accumulated by ergodic measures in

M(Λ̃) then the whole convex hull ch(V1 ∪ · · · ∪ Vk) is contained in the closure of
periodic orbits homoclinically related with Λ1.

5As in many recent works, an invariant compact set is called transitive if it is the closure of a

positive orbit. This notion is equivalent to the notion of topological ergodicity.
6We leave it as an exercise to see that this set could be empty if the sets Λi are not pairwise

disjoint.
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Example 3. Let µ be a hyperbolic invariant Borel probability measure with s-
index dimE which is supported in Λ. Assume that µ is not ergodic and let µ =∫
ν dλ(ν) be its f -ergodic decomposition. By hyperbolicity of µ, λ-almost every ν

is hyperbolic with the same s-index dimE. By Theorem 2, µ is accumulated by
ergodic measures in Mf (Λ̃) if, and only if, λ-almost all ergodic measures ν have
the same intersection class H := H(ν). Let us assume that this is the case and
consider any measure λ′ ∈ M(M(Λ)) which is absolutely continuous to λ. Note

that then λ′(Merg(Λ)) = 1 and hence µ′
def
=
∫
ν dλ′(ν) is invariant and has f -

ergodic decomposition λ′. Moreover, λ′-almost every ν ∈ Merg(Λ) is hyperbolic
with s-index dimE and satisfies H(ν) = H. Thus, we can conclude that µ′ is also

accumulated by ergodic measures in Mf (Λ̃).

7. Approximation of convex sum of (uniformly) hyperbolic measures,
without assuming domination

In our main results, we require systematically that the measures νn are supported
on some dominated extension Λ̃ of Λ. This domination is necessary for the use of
C1-Pesin theory, and a natural question is if we could remove this hypothesis if
we assume a higher regularity, C1+α or C2. The aim of this section is to provide
smooth examples showing that the domination is a necessary hypothesis even with
high regularity, C∞ or even analytic.

We provide here two classes of examples.

7.1. Variations of Bowen’s figure-8. We start with a first very classical exam-
ple. We consider an area preserving map f of S1×R given by the time-1 map of the
hamiltonian vector field given by the Hamiltonian H(x, y) = y2 − cos(4πx), where
S1 = R/Z. Observe that f has 4 fixed points at (i/4, 0), i ∈ {1, . . . , 4}: there are
two fixed points of center type at (0, 0) and ( 1

2 , 0) and two hyperbolic fixed points of

saddle type at p1 = (1
4 , 0) and p2 = ( 3

4 , 0) having the same contraction/expansion
eigenvalues (compare the left figure in Figure 1). Observe the following level set

{(x, y) : H(x, y) = 1} = W s(p1) ∪W s(p2) = Wu(p1) ∪Wu(p2).

For every ε ∈ (0, 1), the level set {H = 1 − ε} is a smooth closed simple curve on
which f is conjugate to a (rational or irrational) rotation (with rotation number
tending to 0 as ε→ 0). The following is a classical exercise.

Lemma 7.1. If µn is a sequence of f -invariant probability measures supported on
level sets {H = 1 − εn} with εn → 0 as n → ∞, then µn converges in the weak∗
topology to 1

2δp1 + 1
2δp2 . The Lyapunov exponents of every ergodic measure µn are

all equal to 0.
The homoclinic and the intersection classes of the points p1, p2 are trivial and

hence disjoint.

Note that this example is not contradicting the results in this paper: the mea-
sures µn are not supported in any dominated extension of the hyperbolic set
Λ = {p1, p2}.

Let us present now two variations of the above example (compare the middle
and the right figure in Figure 1).

1) We can easily modify the map f such that the homoclinic class of p1 is
nontrivial while the one of p2 remains trivial (middle figure), keeping all the
properties claimed in Lemma 7.1.
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Figure 1. Variations of Bowen’s figure-8

p = (0, 0) p1 p1

p2

p2

Figure 2. Blowing up the hyperbolic fixed point p

2) We can modify the map inside the disk bounded by the heteroclinic con-
nections in such a way that there appears a sequence of hyperbolic periodic
saddles whose measures tend in the weak∗ topology to 1

2δp1 + 1
2δp2 (right

figure). In the case that f is C2 the Lyapunov exponents of these saddles
tend to 0.

The construction presented below provides an example where the hyperbolic
measures approximating a convex combination of two ergodic hyperbolic measures
have Lyapunov exponents all uniformly bounded from 0.

7.2. Blowing up of an Anosov diffeomorphism. Let A ∈ SL(2,Z) be a hyper-
bolic linear automorphism with eigenvalues 0 < 1

λ < 1 < λ. We continue denoting

by A : T2 → T2 the induced linear Anosov diffeomorphism on the torus T2.
The point p = (0, 0) ∈ T2 is a fixed point of A.
Let us denote by S the (non-orientable) closed surface obtained from T2 by

blowing up the point p, and let π : S → T2 be the canonical projection. S is
naturally endowed with an R-analytic structure so that the projection π is R-
analytic. The projection is a diffeomorphism over T2 \{(0, 0)}, and the exceptional
fiber C = π−1(0, 0) is canonically identified with the circle RP1 (see Figure 2).

A classical result asserts that:

Lemma 7.2. • The diffeomorphism f admits a (unique) continuous lift fA
on S, and fA : S → S is an analytic diffeomorphism of S. In particular π
induces a R-analytic conjugacy between the restrictions of fA to S \ C and
of A to T2 \ {p}.

• The restriction of fA to the exceptional fiber has exactly two fixed points p1

and p2.
• The points p1 and p2 are hyperbolic saddle points of fA, whose eigenvalues

are 0 < 1
λ2 < 1 < λ and 0 < 1

λ < 1 < λ2, respectively.
• the stable manifold W s(p1, fA) is C\{p2} and the unstable manifold Wu(p2, fA)

is C\{p1}. As a consequence, the homoclinic classes and intersection classes
of p1 and p2 are trivial.
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• Wu(p1, fA) \ {p1} is the lift of Wu(p,A) \ {p} and W s(p2, fA) \ {p2} is the
lift of W s(p,A) \ {p}.

Theorem 3. Let MfA be the (convex) set of invariant probability measures of fA.
Then a measure µ ∈MfA is accumulated in the weak∗ topology by ergodic measures
νn if, and only if,

• either µ ∈ {δp1 , δp2}, and hence νn = µ for n large enough,
• or µ(p1) = µ(p2), in which case µ is the limit of a sequence of periodic orbits

whose Lyapunov exponents are ± log λ.

Proof. We use the R-analytic conjugacy between the restriction of A to T2 \ {p}
and of fA to S \ C. It suffices to observe that if an orbit of A approaches p then
its corresponding orbit of fA passes the same time close to C with approximately
half of this time close to p1 and p2, respectively. �

As a straightforward corollary one gets the following.

Corollary 7.3. The hyperbolic periodic points p1 and p2 have trivial and disjoint
homoclinic classes and intersection classes.

Nevertheless the measure 1
2δp1+ 1

2δp2 is the weak∗ limit of the measures associated
to periodic orbits On of fA in S \C. In particular the orbits On are hyperbolic and
their Lyapunov exponents are ± log λ.

Remark 7.4. Starting with an Anosov diffeomorphism so that the fixed point p
has eigenvalues λ1 < 1 < λ2 and blowing up p, we get the same result however with
measures approximating the convex combination with weights s and 1−s satisfying
s/(1− s) = − log λ1/ log λ2.

Remark 7.5. Multiplying the above dynamics by a Anosov diffeomorphism on T2

we get an example where both hyperbolic fixed points p1 and p2 have nontrivial
but disjoint homoclinic and intersection classes, keeping all the properties claimed
above.
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7. Ch. Bonatti, S. Crovisier, and K. Shinohara, The C1+α hypothesis in Pesin theory revisited,
J. Mod. Dyn. 7 (2013), 605–618.

8. Ch. Bonatti, L. J. Dı́az, and M. Viana, Dynamics beyond Uniform Hyperbolicity. A Global

Geometric and Probabilistic Perspective, Math. Phys. III, Encyclopaedia Math. Sci. 102,
Springer, Berlin, 2005.

9. J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc. 349 (1997), 2737–2754.

10. C. Conley, Isolated invariant sets and Morse index, CBMS Regional Conference Series in
Mathematics 38, AMS Providence, R.I., (1978).



22 JAIRO BOCHI, CHRISTIAN BONATTI, AND KATRIN GELFERT

11. S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Advances in Math. 226

(2011), 673–726.

12. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture
Notes in Mathematics 527, Springer, Berlin-New York, 1976.

13. L. Dı́az and K. Gelfert, Porcupine-like horseshoes: Transitivity, Lyapunov spectrum, and

phase transitions, Fund. Math. 216 (2012), 55–100.
14. L. Dı́az, K. Gelfert, and M. Rams, Abundant phase transitions in step skew products, Non-

linearity 27 (2014), 2255–2280.

15. L. Dı́az, V. Horita, I. Rios, and M. Sambarino, Destroying horseshoes via heterodimensional
cycles: generating bifurcations inside homoclinic classes. Ergodic Theory Dynam. Systems

29 (2009), 433–74.

16. S. Gan, A generalized shadowing lemma, Discrete Contin. Dyn. Syst. 8 (2002), 627–632.
17. M. Hirayama, Periodic probability measures are dense in the set of invariant measures, Dis-

crete Contin. Dyn. Syst. 9 (2003), 1185–1192.
18. M. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics 583,

Springer, Berlin, 1977.

19. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, En-
cyclopedia of Mathematics and Its Applications 54, Cambridge University Press, Cambridge,

1995.

20. R. Leplaideur, K. Oliveira, and I. Rios, Equilibrium states for partially hyperbolic horseshoes.
Ergodic Theory Dynam. Systems 31 (2011), 179–195.
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