
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE
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ABSTRACT

Deformable Image Registration (DIR) is a powerful computational method for image

analysis, with promising applications in the diagnosis of human disease. Despite being

widely used in the medical imaging community, the mathematical and numerical analysis

of DIR methods still has many open questions. Further, recent applications of DIR in-

clude the quantification of mechanical quantities in addition to the aligning transformation,

which justifies the development of novel DIR formulations for which the accuracy and

convergence of fields other than the aligning transformation can be studied. In this work

we propose and analyze a primal, mixed and augmented formulations for the DIR prob-

lem, together with their finite-element discretization schemes for their numerical solution.

The DIR variational problem is equivalent to the linear elasticity problem with a source

term that has a nonlinear dependence on the unknown field. Fixed point arguments and

small data assumptions are employed to derive the well-posedness of both the continuous

and discrete schemes for the usual primal and mixed variational formulations, as well as

for an augmented version of the later. In particular, continuous piecewise linear elements

for the displacement in the case of the primal method, and Brezzi-Douglas-Marini of order

1 (resp. Raviart-Thomas of order 0) for the stress together with piecewise constants (resp.

continuous piecewise linear) for the displacement when using the mixed approach (resp.

its augmented version), constitute feasible choices that guarantee the stability of the asso-

ciated Galerkin systems. A priori error estimates derived by using Strang-type lemmas,

and their associated rates of convergence depending on the corresponding approximation

properties are also provided. Numerical convergence tests and DIR examples are included

to demonstrate the applicability of the method.

Keywords: Image registration, mixed formulation, finite element methods.
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RESUMEN

La registración deformable de imágenes (DIR) representa un poderoso método com-

putacional para analizar imágenes, con prometedoras aplicaciones en el diagnóstico en

enfermedades humanas. A pesar de ser ampliamente usado en la comunidad de imágenes

médicas, el análisis matemático y numérico de métodos de DIR sigue abierto. Además,

aplicaciones recientes de DIR incluyen la cuantificación de indicadores mecánicos además

de la transformación de alineamiento, lo que justifica el desarrollo de formulaciones nove-

dosas de DIR donde la precisión y convergencia de campos que no sean el alineamiento

pueden ser estudiadas. En este trabajo proponemos y analizamos formulaciones primal,

mixta y aumentada para DIR, junto con su esquema de discretización de elementos finitos

para su resolución numérica. La formulación variacional de DIR equivale a un problema

de elasticidad lineal con un término fuente que depende no-linealmente de la alineación.

Argumentos de punto fijo y supuestos de datos pequeños son utilizados para obtener la

correcta formulación tanto del esquema continuo como del discreto para todas las formu-

laciones. En particular, elementos lineales por tramo para el desplazamiento en el caso

primal, elementos Brezzi-Douglas-Marini de orden 1 (resp. Raviart-Thomas de orden 0)

para la tensión junto con constantes por tramo (resp. lineal por tramo) para el desplaza-

miento para el esquema mixto (resp. aumentado), constituyen elecciones factibles que

garantizan la estabilidad de los sistemas de Galerkin asociados. Estimaciones de error a-

priori se obtuvieron usando lemas de tipo Strang, y sus asociadas tasas de convergencia de

acuerdo a propiedades de aproximación se muestran también. Ensayos de convergencia

numérica y ejemplos de DIR se incluyen para mostrar la aplicabilidad del método.

Palabras Claves: Registración de imágenes, formulación mixta, elementos finitos.
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1. INTRODUCTION

The collaborative work performed at the intersection between Biology and Mathemat-

ics has seen a tremendous increase in the last 20 years, with a very symbiotic relationship.

From the perspective of Biology this happens because many biological questions can be

answered through the creation of models that describe complex phenomena, now numer-

ically solvable thanks to the increased computational capacity; from the perspective of

Mathematics, it gives a plethora of new open problems to analyze, both in theory and

practice. The problem we worked on, known as image registration, has acquired a great

amount of attention within the academic community, and consists in finding an optimal

alignment between two images. It is important in many applications, and it has been used

to: determine how to match separate images of one big picture, study tumor growth, ana-

lyze the growth of bacteria populations, find cloud dynamics and generate lung dynamics

from CT images, to name a few. In particular, we focus in deformable image registration

(DIR), which allows for local deformation at the expense of higher computational cost.

In the classical literature, the main ingredients of image registration are: i) the trans-

formation model, that is, a family of mappings that warp a target image into the reference

image, ii) the similarity measure, that is, a functional that weighs the differences between

the reference image and the resampled target image, and iii) the regularizer, which ren-

ders the problem well-conditioned by adding regularity to the DIR solution. DIR has been

approached from mainly three perspectives:

• Minimization of a similarity measure, where tools from the calculus of variations

have been used to establish existence of solutions to the continuous problem

(Aubert & Kornprobst, 2006; Vese & Le Guyader, 2016; Horn & Schunck, 1980;

Dupuis, Grenander, & Miller, 1998) and from that point the difficulty lies in the

implementation. This approach leaves the discrete setting aside, and has focused

mainly in the development of new techniques to deal with the nonlinearity of the

problem.
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• Optimal mass transport (Haker, Zhu, Tannenbaum, & Angenent, 2004; Museyko,

Stiglmayr, Klamroth, & Leugering, 2009; Burger, Modersitzki, & Ruthotto,

2013; Borzi, Ito, & Kunisch, 2002). This approach uses very advanced math-

ematics, as it strongly relies in notions of measure theory. This has kept this

approach far from the applications community.

• A level set segmentation-registration combined problem (Unal & Slabaugh, 2005;

Droske & Ring, 2006). This approach has shown promising results, and depends

mainly in shape optimization techniques. These techniques are very expensive

computationally, and thus make this approach unattractive for the medical com-

munity.

Despite them being widely used in the medical imaging community, there are still

many questions to be answered from the numerical analysis point of view. A noteworthy

approach is the work of Pöschl et al. (Pöschl, Modersitzki, & Scherzer, 2010), where both

the continuous and discretized problems are analyzed, and a solution is found using a pri-

mal finite-element approximation that is shown to be convergent. However, the analysis is

restricted to polyconvex energy densities (both for the similarity measure and regularizer)

and volume-preserving transformations, and does not account for the convergence of the

transformation gradients and stresses. A more traditional Galerkin approach has been in-

troduced in (Lee & Gunzburger, 2011) for optimal-control-based registration, but requires

a considerable degree of regularity (H2+δ) of the target and reference image functions, not

required by other traditional formulations. While most approaches to DIR problems are

based on primal formulations, a mixed formulation of the similarity minimization problem

has been proposed in the setting of fluid registration schemes (Chen & Lorenz, 2011; Ruh-

nau & Schnörr, 2007), where a sequence of incompressible Stokes problems are solved

to find the optimal displacement and pressure fields. While directly solving for the pres-

sure field, which is desirable to understand the mechanical behavior of the images being

registered, limited analysis has been provided to understand the well-posedness of the con-

tinuous problem and convergence of numerical discretizations of mixed formulations of

2



DIR problems.

One important and recent application of DIR is the study of local lung tissue defor-

mation from computed-tomography (CT) images of the thorax (Christensen, Song, Lu,

El Naqa, & Low, 2007). From a continuum mechanics perspective, the transformation

u obtained from the solution of the DIR problem can be considered as a displacement

field, from which a strain tensor field can be computed from its gradient ∇u. Local

deformation studies have revealed that deformation in the lung tissue can be highly het-

erogenous and anisotropic (Amelon et al., 2011; Hurtado et al., 2017), thus providing new

deformation-based markers to understand lung physiology (Choi et al., 2013), showcasing

the potential of DIR strain analysis as a tool in the detection and diagnosis of pulmonary

disease. These advances notwithstanding, it has been recently shown that strain analysis

techniques based on numerical differentiation of DIR solutions can be highly inaccurate

as they are very sensitive to noise, discretization level and embedded anatomical bound-

aries (Hurtado, Villarroel, Retamal, Bugedo, & Bruhn, 2016). While these deficiencies are

diminished with L2 projection smoothing techniques (Hurtado et al., 2016), this approach

lacks a rigorous mathematical framework that can support the stability and accuracy of

the resulting strain fields. This last observation motivates the development of DIR meth-

ods that can accurately predict not only the image transformation but also its gradient by

proving convergence of the associated numerical scheme. In the field of elasticity, the

convergence of displacement fields and quantities associated to its gradient has been suc-

cessfully approached using mixed formulations (Gatica, Márquez, & Meddahi, 2008).

In this work we present three approaches to DIR. One is a primal scheme, which

has already been analyzed in more particular cases, but this approach is better suited to

prove convergence of discrete schemes. It also establishes convergence for all conforming

schemes, thus showing that all solutions obtained using the finite elements method (FEM)

to the problem are convergent. The second one is a mixed finite elements scheme (MFEM),

which incorporates stress as an unknown. This makes the problem more computationally

3



expensive, because it adds new degrees of freedom, but it also grants best approximation

properties to all unknown fields, thus giving an accurate stress estimation. This scheme

is also convergent, but only to a limited number of MFEM schemes. Finally, we use an

augmented formulation, which is a MFEM formulation that incorporates redundant terms.

This regularizes the problem and allows for the use of any discrete scheme, and guarantees

convergence. Galerkin schemes are a great tool to automatically generate transformation

models which grant convergence numerical convergence to the continuous solution, which

gives new arguments to better understand problems in models currently used in the com-

munity. In lung registration, evidence shows correlation between stress and lung injury,

which makes precise estimations of stress critical (Hurtado et al., 2017). It was also shown

in (Hurtado et al., 2017) that common techniques used for DIR present highly oscillatory

stress estimations, leaving the problem of its approximation largely open.

This thesis is ordered as follows: the rest of the introduction presents the tools used

for the primal, mixed and augmented schemes. Chapter 2 includes the article submitted,

chapter 3 shows conclusions that can be obtained from the work and chapter 4 proposes

new research directions for future work.

1.1. Image registration

The alignment between images is formulated as follows: Given a Lipschitz domain Ω,

reference image R : Ω → R and a target image T : Ω → R, find a function u : Ω → Rn

such that

R(x) = T (x+ u(x)) ∀x ∈ Ω.

This problem is ill-posed because of the following reasons:

• Differences in resolution can make the problem infeasible, for instance, meaning

that there could be image intensities that never match.
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• The solution is not unique. A simple case is two concentric circles, one stretched

with respect to the other. In this case, all rotations maintain the alignment.

It is also important to notice that the solution can be very unnatural, as this model does

not enforce any physical constraints, which suggests using smaller solution spaces. For

this, we consider a similarity measure, which is minimized when the images are aligned,

and a regularizer, which adds smoothness to the solution (Modersitzki, 2004). Under

these considerations, we restate image registration as a regularized variational problem

as follows: Given a solution space V , a similarity measure D : V → R, a regularizer

S : V → R and a regularization parameter α > 0, we seek for minimizers to the following

problem

inf
u∈V

αD[u] + S[u]. (1.1)

The choice of the similarity measure and the regularizer is highly context-dependent,

where, for example, for the alignment of pictures it might suffice to take S = 0 and

reduce the solution space to linear functions or rigid motions. In DIR, solutions spaces

are usually Sobolev spaces, similarity measures are usually the norm of the difference

between the images (in L2 or H1), the correlation between the images or their mutual

information, and the regularizer is an energy term. Throughout our work we consider the

following instance, known as elastic registration because of the form regularizer, which is

related to the elastic energy of a body:

D[u] =

∫
(T (x+ u(x))−R(x))2 dx,

S[u] =

∫
Cε(u) : ε(u) dx,

where C is Hooke’s tensor for an isotropic linear elastic body, defined in terms of Lamé’s

parameters µ, λ:

Cτ = 2µ τ + λ trace (τ)I

5



and ε is the symmetric part of the gradient:

ε =
1

2
(∇u+ [∇u]t)

Several techniques can be extended to other kinds of registration, which is stated in re-

marks throughout the article.

1.2. Preliminaries

Now we introduce some preliminary results required to understand what follows; for

more details, see any functional analysis textbook (Brezis, 2011). A (real) Hilbert space

V is a complete vector space endowed with an inner product 〈·, ·〉 : V × V → R which is:

• symmetric: 〈x, y〉 = 〈y, x〉 for every x, y in V .

• linear in the first argument: 〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉 for a, b scalars

and x, y in V .

• positive definite: 〈x, x〉 ≥ 0 for x in V , and the equality holds only if x = 0.

These spaces have an induced norm given by

‖x‖V =
√
〈x, x〉

and the Cauchy-Schwartz inequality holds on them:

〈x, y〉 ≤ ‖x‖V‖y‖V .

We let V ′ be the topological dual space of bounded linear functionals from V to R.

There exists an explicit isometry on Hilbert spaces onto their dual in virtue of Riesz repre-

sentation theorem, and we letR : V ′ → V be such an isometry. This states that functionals

6



on Hilbert spaces can be written as integrals, so that for a given T in V ′, we can write

T (u) = 〈R(T ), u〉.

We shall adopt the convention of the duality pairing. This means that given T in V ′, we

write 〈T, u〉 instead of T (u). Note that no information is given through this notation if V

is a Hilbert space, in virtue of Riesz representation theorem, and it is still widely in the

mathematics community used if it is not a Hilbert space. Finally, given a distribution, i.e.

a functional d in (C∞0 )′, we can define its distributional gradient as the functional given by

〈∇d, φ〉 := −〈d, div φ〉 ∀φ ∈ C∞0 .

This allows us to write more comfortably abstract gradients to obtain first order conditions,

and as this derivative matches the classical Gâteaux derivative from variational analysis in

our context plus extra boundary terms. Assuming Gâteaux differentiability, we get the

following strong form of the first order conditions for a critical solution u∗:

∇S[u∗] = −α∇D[u∗],

or in weak form

〈∇S[u∗], v〉 = −α〈∇D[u∗], v〉 ∀v ∈ V .

1.3. Primal formulation

The primal formulation of this problem is given for the Euler-Lagrange equations of

problem (1.1). Defining a : V × V → R and F· : V → V ′ as

a(u, v) := 〈∇S[u], v〉 ∀u, v ∈ V ,

Fu(v) := −〈∇D[u], v〉 ∀u, v ∈ V ,

we obtain the abstract form of problem (1.1): Find u in V such that

a(u, v) = αFu(v) ∀v ∈ V . (1.2)

7



For elastic registration, this results in the following forms:

a(u, v) =

∫
Cε(u) : ε(v) dx,

Fu(v) = −
∫

(T (x+ u(x))−R(x))∇T (x+ u(x)) · v dx,

This setting is now appropriate for Lax-Milgram lemma, which we recall now.

Lemma 1. Let V be a Hilbert space. a : V×V → R be a bilinear form and f : V → R

a bounded linear functional. Assume also that a is elliptic, meaning that there exists ca > 0

such that

a(v, v) ≥ ca‖v‖2
V ∀v ∈ V ,

and that it is bounded, meaning that there exists cb > 0 such that

a(u, v) ≤ cb‖u‖V‖v‖V ∀u, v ∈ V .

Under these assumptions, the problem of finding u ∈ V such that

a(u, v) = f(v) ∀v ∈ V

has a unique solution, and there exists a constant C > 0 such that

‖u‖V ≤ C‖f‖V ′ .

PROOF. See (Brenner & Scott, 2008, Thm 2.7.7). �

The last inequality is often referred to as stability, and shows that the problem is con-

tinuous with respect to the data. Lax-Milgram lemma states existence and uniqueness for

a linear problem, whereas in problem (1.2) F is nonlinear in u. This issue is dealt with

using a fixed-point argument, which means that we can define an operator T : V → V

which, given z in V , returns the solution to the partial problem stated as follows: Find u

in V such that

a(u, v) = Fz(v) ∀v ∈ V . (1.3)
8



As the partial problem is well-posed, the operator T is well defined. From this point,

the existence of solutions to (1.2) can be reduced to the existence of fixed points for the

operator T . For this, we use two conditions on the data for some LF ,MF > 0:

‖Fu − Fv‖V ′ ≤ LF‖u − v‖W ∀u, v ∈ V , (1.4)

‖Fu‖ ≤MF ∀u ∈ V , (1.5)

where W is such that V is compactly embedded in it. These conditions are verifiable

for almost every similarity measure. In practice, images are interpolated using cubic B-

splines, which implies in particular that ∇T is Lipschitz in Ω. As the domain is compact,

the function is also bounded, thus satisfying both conditions (1.4) and (1.5).

Now we can formulate the discrete problem. For this, we will use V = [H1(Ω)]2 and

let {Th}h>0 be a regular non-degenerate family of triangulations of Ω such that for every

h > 0 we have ⋃
τ∈Th

τ = Ω

and also

τ̊i
⋂

τ̊j = ∅

for every τi, τj in Th such that i 6= j. Now we define the discrete space for a given order

of approximation k ∈ N:

Vh := {vh ∈ V : vh|τ ∈ Pk(τ)},

where Pk is the space of polynomials of degree up to k. We note that Vh ⊂ V holds, which

makes this a conforming scheme. The discrete primal problem can now be formulated as:

Find uh in Vh such that

a(uh, vh) = Fuh(vh) ∀vh ∈ Vh. (1.6)

We show in the article, in chapter 2, that well-posedness for this problem follows from the

regularity of a and thus is a direct consequence of the continuous analysis. In particular,

9



the ellipticity of a holds in V , and so in particular it holds in Vh, rendering the problem

well-posed. Again, a fixed-point argument establishes the existence of solutions to the

nonlinear discrete problem.

1.4. Mixed finite elements method

In this section we will space the space

H(div , Ω) := {σ : σ ∈ [L2(Ω)]n×n, divσ ∈ [L2(Ω)]n},

where the divergence operator acts row-wise. To see the connection of primal registration

works with the mixed formulation, we start with a seemingly unrelated example. Suppose

we want to solve a Poisson problem with Neumann boundary conditions in a Lipschitz

domain Ω and a source term f in L2(Ω), written as

∆u = f in Ω a.e.,

∇u · n = 0 in ∂Ω a.e.

Defining the unknown σ = ∇u we can restate the problem as

div σ = f in Ω a.e.,

σ = ∇u in Ω a.e.,

σ · n = 0 in ∂Ω a.e.

(1.7)

If we define the spaces H := H(div , Ω) ∩ {τ · n = 0 in ∂Ω}, Q := L2(Ω) and forms

a : H ×H → R, b : H ×Q→ R, F : Q→ R given by

a(σ, τ) :=

∫
σ · τ dx ∀σ, τ ∈ H,

b(τ, v) :=

∫
v div τ dx ∀τ ∈ H, v ∈ Q,

F (v) :=

∫
fv dx ∀v ∈ Q,

10



we can rewrite problem (1.7) as what is called a mixed formulation: Find (σ, u) in H ×Q

such that
a(σ, τ) + b(u, τ) = 0 ∀τ ∈ H,

b(σ, v) = F (v) ∀v ∈ Q.
(1.8)

This is the classical structure of a mixed problem, and they can be written more generally

in matrix notation as A Bt

B 0

σ
u

 =

G
F

 ,
where A and B are linear operators induced by a and b respectively. These kinds of

problems are rendered well-posed using Babuška-Brezzi theory, which we recall now.

Theorem 1. Under the context of (1.8), let

V = {τ ∈ H : b(τ, v) = 0 ∀v ∈ Q}.

If a is V − elliptic, meaning that there exists ca > 0 such that

a(τ, τ) ≥ ca‖τ‖2
H ,

and that b satisfies the inf-sup condition, meaning that there exists cb such that

sup
τ∈H

b(τ, v)

‖τ‖H
≥ cb‖v‖Q ∀v ∈ Q,

then problem (1.8) has a unique solution.

PROOF. See (Gatica, 2014, Thm 2.3). �

For this to apply in image registration, we must note how we obtained the mixed

formulation for the Poisson problem. In this case, we started from a problem that can be

written as

a(u, v) = f(v) ∀v ∈ V

and then used substitutions in the left hand side to get a new problem. Under a similar

procedure, we show in the article that the elastic registration problem can be written as:
11



Find ((σ, ρ), (u, γ)) in H ×Q such that

A((σ, ρ), (τ, ξ)) +B((τ, ξ), (u, γ)) = 0 ∀(τ, ξ) ∈ H,

B((σ, ρ), (v, η)) = F̄u((v, η)) ∀(v, η) ∈ Q,

where:

H := [H(div ;Ω) ∩ {τ · n = 0 in ∂Ω}]× RM,

RM := {v ∈ [H1(Ω)]2 : sym∇v = 0},

Q := [L2(Ω)]2 ×
(
[L2(Ω)]2×2 ∩ {τ = −τt}

)
,

A((σ, ρ), (τ, ξ)) =

∫
C−1σ · τ dx,

B((τ, ξ), (v, η)) =

∫
τ : η dx+

∫
v · div τ dx+

∫
ξ · v dx,

F̄u((v, η)) = Fu(v)

As in the primal case, the approach to solving this problem is to consider a partial problem,

a solution operator and the Banach fixed point theorem to ensure the existence of fixed

points. This imposes a restriction on α, because it uses αCLF < 1, where LF is the

Lipschitz constant from (1.4) and C > 0 is a constant inherent to the problem. For the

discrete case, we take the same family of triangulations we used in the primal case {Th}h>0

and consider the following finite element spaces:

Hσ
h = {τh ∈ H(div ;Ω) : τh ∈ [BDM1(T )]2 ∀T ∈ Th},

Hu
h = {u ∈ [L2(Ω)]2 : u ∈ [P0(T )]2 ∀T ∈ Th},

Hγ
h =


 0 ψ

−ψ 0

 : ψ ∈ P0(T ) ∀T ∈ Th

 ,

where BDMk = [Pk]n×n. With this, setting Hh = [Hσ
h ∩{τ = 0 in ∂Ω}]×RM and Qh =

Hu
h ×H

γ
h we obtain the discrete registration problem: Find ((σh, ρh), (uh, γh)) ∈ Hh×Qh

12



such that

A((σh, ρh), (τh, ξh)) +B((τh, ξh), (uh, γh)) = 0 ∀(τh, ξh) ∈ Hh,

B((σh, ρh), (vh, ηh)) = F̄uh((vh, ηh)) ∀(vh, ηh) ∈ Qh,
.

Again, this problem is tackled using a fixed point strategy. The difficulty of proving inf-

sup stability has already been proved for the partial problem (Gatica et al., 2008), and so

we had to prove the extension to the nonlinear problem and the discrete convergence to the

continuous solution. Everything is performed under data assumptions (1.4) and (1.5), and

under these assumptions we get a convergence of O(h), which was numerically verified.

1.5. Augmented MFEM

The augmented formulation is obtained from the mixed formulation, by adding redun-

dant terms from the strong formulation. For that, we consider the following forms for

constants κ1, κ2, κ3:

κ1

∫
(ε(u)− C−1σ) : (ε(v) + C−1τ) dx = 0,

κ2

∫
divσ · div τ dx = κ2α

∫
fu(x) · div τ dx,

κ3

∫
(γ − skew∇u) : (η + skew∇v) dx = 0,

where

fu(x) := (T (x+ u(x))−R(x))∇T (x+ u(x)).

For simplicity, we let L1, L2, L3 be the left hand sides of the added terms and R2 the

non-zero right hand side. Then, the new formulation is obtained as follows: we redefine

out solution spaces as H = [H(div ;Ω) ∩ {τ = 0 in ∂Ω}] × [H1(Ω)]2 × [L2(Ω)]2× and

13



Q = RM :

Ā((σ, u, γ), (τ, v, η)) := A(σ, τ) +B(τ, (u, γ)−B(σ, (v, η))

+ L1 + L2 + L3,

B̄((τ, v, γ), ξ) =

∫
v · ξ,

F̄u((τ, v, η)) = −
∫
fu · v dx+

1

α
R2.

Here, note that we have imposed stronger regularity on u, as it is now constrained to belong

to [H1(Ω)]2. This allows us to give a new interpretation to the original mixed formulation.

As u is in [H1(Ω)]2, it is actually a non-conforming scheme considering the true regularity

of the displacement field. This is of course not true from a rigorous point of view, but it

gives a way of approximating a continuous field with piecewise constants. We also note

that the inf-sup condition will hold for both the continuous and discrete cases, because we

can make in both cases the following calculation taking (τ, v, η) = (0, ξ, 0):

sup
(τ,v,η)∈H

B((τ, v, η), ξ)

‖(τ, v, ξ)‖H
≥ ‖ξ‖0

‖ξ‖2
1

≥ C‖ξ‖2
0,

for a positive constant C. Here, as RM is a finite dimensional space, its norms are equiv-

alent. We now state the augmented problem: Find ((σ, u, γ), ρ) in H ×Q such that

Ā((σ, u, γ), (τ, v, η)) + B̄((τ, v, ξ), ρ) = αF̄u((τ, v, η)) ∀(τ, v, η) ∈ H,

B((σ, u, γ), ξ) = 0 ∀ξ ∈ Q.
(1.9)

The existence of solutions to this problem can be stated independently of α. This can

be done because there exists a compact immersion from H1(Ω) to L2(Ω), which allows

using the Schauder fixed point theorem. This does not state uniqueness, which again can

be obtained from the Banach fixed point theorem and αCLF < 1.

As the inf-sup condition holds for every conforming discrete space, we can use whichever

space is adequate for the context. In this case, we simply use the least expensive ones in
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terms of the amount of degrees of freedom they generate, given by:

Hσ
h := {τ ∈ H(div ;Ω) : τ ∈ [RT0(T )]2 ∀T ∈ Th},

Hu
h := {u ∈ [H1(Ω)] : u ∈ [P(T )1]2 ∀T ∈ Th},

Hγ
h =


 0 ψ

−ψ 0

 : ψ ∈ P0(T ) ∀T ∈ Th

 .

With that, and setting the discrete spaces Hh = [Hσ
h ∩{τ = 0 in ∂Ω}]×Hu

h ×H
γ
h and

Qh = Q, we arrive at the discrete problem: Find ((σh, uh, γh), ρh) in Hh ×Qh such that

Ā((σh, uh, γh), (τh, vh, ηh)) + B̄((τh, vh, ηh), ) = F̄uh((τh, vh, ηh)) ∀(τh, vh, ηh) ∈ Hh,

B̄((σh, uh, γh), ξh) = 0 ∀ξh ∈ Qh

(1.10)

This problem is analyzed with a similar fixed point strategy, but the existence of solutions

is obtained with the simpler Brouwer fixed point theorem. This grants also convergence

of the discrete solution to the continuous one, and guarantees a convergence of O(h). It is

important to mention that convergence of u in L2 is in this case O(h2).
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2. PRIMAL AND MIXED FINITE ELEMENT METHODS FOR THE DE-

FORMABLE IMAGE REGISTRATION PROBLEM
2.1. Introduction

Deformable image registration (DIR) concerns the problem of aligning two or more

images by means of a transformation that allows for distortion (warping) of the images

under analysis. Such problem arises in a number of important applications, particularly in

the field of medical imaging (Sotiras, Davatzikos, & Paragios, 2013). DIR is commonly

formulated as a variational problem, where the main ingredients of the DIR are i) the

transformation model, a family of mappings that warp a target image into the reference

image, ii) the similarity measure, a functional that weighs the differences between the

reference image and the resampled target image, and iii) the regularizer, which renders the

problem well-conditioned by adding regularity to the DIR solution.

Despite DIR is widely used in the medical imaging community, the mathematical and

numerical analysis of DIR remains understudied. The DIR continuous problem has been

formulated using mainly three approaches: minimization of similarity measures (with or

without constraints), as an optimal mass transport problem (Haker et al., 2004; Museyko

et al., 2009; Burger et al., 2013), or as a level set segmentation-registration combined

problem (Unal & Slabaugh, 2005; Droske & Ring, 2006). The problem of minimizing

similarity measures has been studied in (Aubert & Kornprobst, 2006; Vese & Le Guyader,

2016), where the direct method of calculus of variations has been used to establish exis-

tence of solutions. The optical flow formulation, an associated problem which can be seen

as a sequence of registration problems in time, was proposed by Horn & Schunk in 1980

(Horn & Schunck, 1980), and has been the subject of analysis from an optimal-control

problem point of view (Borzi et al., 2002; Lee & Gunzburger, 2010). Well-posedness

of optical flow schemes has been established for Dirichlet boundary conditions under rea-

sonable assumptions (Dupuis et al., 1998; Trouvé, 1998). Besides providing existence and

uniqueness of the solution, by assuming only uniform boundedness on the images, these
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studies show that the solution is a step-wise diffeomorphism, which is a desirable regular-

ity property when it comes to warping images. The analysis of the numerical schemes

proposed to solve similarity-minimization formulations has received less attention. A

noteworthy approach is the work of Pöschl et al. (Pöschl et al., 2010), where both the

continuous and discretized problems are analyzed, and a solution is found using a primal

finite-element approximation that is shown to be convergent. However, the analysis is re-

stricted to polyconvex energy densities (both for the similarity measure and regularizer)

and volume-preserving transformations, and does not account for the convergence of the

transformation gradients and stresses. A more traditional Galerkin approach has been in-

troduced in (Lee & Gunzburger, 2011) for optimal-control-based registration, but requires

a considerable degree of regularity (H2+δ) of the target and reference image functions, not

required by other traditional formulations. While most approaches to DIR problems are

based on primal formulations, a mixed formulation of the similarity minimization problem

has been proposed in the setting of fluid registration schemes (Chen & Lorenz, 2011; Ruh-

nau & Schnörr, 2007), where a sequence of incompressible Stokes problems are solved

to find the optimal displacement and pressure fields. While directly solving for the pres-

sure field, which is desirable to understand the mechanical behavior of the images being

registered, limited analysis has been provided to understand the well-posedness of the con-

tinuous problem and convergence of numerical discretizations of mixed formulations of

DIR problems that use elastic regularizers.

One important and recent application of DIR is the study of regional deformation of

lung tissue from computed-tomography (CT) images of the thorax (Christensen et al.,

2007). From a continuum-mechanics perspective, the optimal transformation u obtained

from the solution of the DIR problem can be considered as a displacement field, from

which a strain tensor field can be computed using the gradient of the displacement field

∇u. The study of not only motion but also deformation at a regional level in the lung has

revealed that deformation in the lung tissue can be highly heterogenous and anisotropic

(Amelon et al., 2011; Hurtado et al., 2017), thus providing new deformation-based mark-

ers to understand lung physiology (Choi et al., 2013), showcasing the potential of DIR
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strain analysis as a tool in the detection and diagnosis of pulmonary disease. These ad-

vances notwithstanding, it has been recently shown that state-of-the-art strain analysis

techniques based on direct differentiation of DIR solutions can be highly inaccurate as

they are very sensitive to noise, discretization level and embedded anatomical boundaries

(Hurtado et al., 2016). While these deficiencies are ameliorated when using L2 projection

smoothing techniques (Hurtado et al., 2016), such approach remains largely heuristic as it

lacks of a rigorous mathematical framework that can support the stability and accuracy of

the resulting strain fields. This last observation motivates the development of DIR meth-

ods that can accurately predict not only the image transformation but also its gradient by

proving convergence of the associated numerical scheme.

Motivated by discussion above, the main goal of this work is to present a rigorous

formulation and analysis of the registration problem, both for the continuous and discrete

settings. Formulations of DIR using elastic regularizers can be interpreted as an elasticity

problem with non-linear sources, where well-posedness is handled by requiring Lipschitz

continuity and boundedness of the distributional gradient of the similarity-measure den-

sity. Taking this approach, the primal formulation of the DIR problem can be conveniently

analyzed using Schauder’s and Brower’s fixed-point theorems for the continuous and dis-

crete formulations, respectively. To directly account for the solution of not only the dis-

placement field, but also of the associated stresses (and displacement gradients thereof),

we propose and analyze mixed and augmented formulations of the DIR problem. Finite-

element schemes are developed for all the formulations considered in this work, using a

P1 formulation for the primal problem, a BDM1−P0 scheme for the mixed problem, and

a RT0 − P1 scheme for the augmented problem, all of which can be shown to be stable

under the small data assumption.

In what follows, given a scalar expressionA, we letA andA be its vectorial and tensor

versions, respectively. In general, the regular font will be used for scalars, bold for vectors

and bold slanted for tensors. In the same fashion, we define the usual Sobolev framework
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with

L2(Ω) := {v : Ω → R :

∫
v2 <∞} , L2(Ω) := [L2(Ω)]n , L2(Ω) := [L2(Ω)]n×n ,

and given m ∈ N ∪ {0} use accordingly the spaces Hm(Ω),Hm(Ω) and Hm(Ω), where

each v in these spaces has at leastm distributional derivatives in L2(Ω),L2(Ω) and L2(Ω)

respectively. These use the inner product

〈u, v〉m,Ω =
m∑
i=0

〈Diu,Div〉0,Ω,

where m = 0 is just the L2(Ω), meaningly H0 = L2. Typically, mixed-FEM schemes

employ the space

H(div;Ω) = {τ ∈ L2(Ω) : divτ ∈ L2(Ω)},

which is a Hilbert space with inner product

〈τ ,σ〉div;Ω =

∫
Ω

σ : τ +

∫
Ω

divτ · divσ.

Hereafter, div stands for the usual divergence operator acting along the rows of a tensor.

Finally, we define the trace operator γD(u) = u|Γ , and the space

H1/2(Γ ) :=
{
γD(u) : u ∈H1(Ω)

}
,

where its dual is written H−1/2(Γ ) = (H1/2(Γ ))′ with the usual operator norm. In turn,

we let γν : H(div;Ω)→ H−1/2(∂Ω) be the normal trace operator on the boundary, which

is defined distributionally (see (Gatica, 2014) for more details).

2.2. Elastic deformable image registration (DIR) problem

Let n ∈ {2, 3} be the dimension of the images we are interested in analyzing and

Ω ⊂ Rn be a compact domain with Lipschitz boundary Γ := ∂Ω. Let R : Ω → R

be the reference image and T : Ω̃ → R be the target image with Ω ⊆ Ω̃, both in H1.

The requirement that the domain of T is larger than that of R is necessary because in the

definition of the registration problem we will need to evaluate T possibly outside Ω. In
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practice, images used in DIR problems have the same domain, and therefore we consider

the underlying image T0 : Ω → R and construct T by extending it (typically by zero) to

Ω̃. The DIR problem consists in finding a transformation u : Ω → Rn, also known as the

displacement field, that best aligns the imagesR and T , which is expressed as a variational

problem (Modersitzki, 2004) that reads

inf
u∈V

αD[u;R, T ] + S[u], (2.1)

where V is tipically H1(Ω), D : V → R is the similarity measure between the images R

and T , α > 0 is a weighting constant and S : V → R is the regularization term, required

to render the problem well-posed. A common choice for the similarity measure is the sum

of squares difference, i.e, an L2 error that takes the form

D[u;R, T ] :=
1

2

∫
Ω

(T (x+ u(x)) − R(x))2. (2.2)

For the case of elastic DIR, the regularizing term is commonly taken to be the elastic

deformation energy, defined by

S[u] :=
1

2

∫
Ω

Cε(u) : ε(u), (2.3)

where

ε(u) :=
1

2
(∇u+∇ut) (2.4)

is the infinitesimal strain tensor, i.e., the symmetric component of the displacement field

gradient, and C is the elasticity tensor, which for isotropic solids is defined by the expres-

sion

Cτ := λ trace(τ )I + nµτ .

Assuming that (2.1) has at least one solution with sufficient regularity, the associated

Euler-Lagrange equations deliver the following strong problem: Find u ∈ C2(Ω) ∩

C1(Ω̄) such that

div(Cε(u)) = αfu in Ω ,

Cε(u)n = 0 on ∂Ω ,
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where

fu(x) := {T (x+ u(x))−R(x)}∇T (x+ u(x)), ∀x ∈ Ω a.e. (2.5)

2.3. Primal DIR formulation

Let V := H1(Ω) and define the following forms by considering the registration prob-

lem defined in (2.1)

a(u,v) :=

∫
Cε(u) : ε(v) ∀u,v ∈ V ,

Fu(v) := −
∫
fu · v ∀u,v ∈ V ,

where a : V ×V → R is bilinear and Fu : V → R is linear for every u. We can then write

the DIR problem as

min
v∈V

{
αD[v] + a(v,v)

}
, (2.6)

and its Euler-Lagrange equations in weak form give the following problem: Find u ∈ V

such that

a(u,v) = αFu(v) ∀v ∈ V . (2.7)

We will make the following assumptions on the data:

‖Fu − Fv‖V ′ ≤ LF‖u− v‖0,Ω ∀u,v ∈ V , (2.8)

‖Fu‖V ′ ≤MF ∀u ∈ V . (2.9)

We remark that assumptions (2.8) and (2.9) are achieved by imposing the following con-

ditions on the nonlinear load term fu:

|fu(x)− fv(x)| ≤ Lf |u(x)− v(x)| ∀x ∈ Ω a.e,

|fu(x)| ≤Mf ∀x ∈ Ω a.e.

In addition, we notice that in engineering practice, R, T are interpolations of an array of

data (image) where values are defined at the nodes of a Cartesian grid. The most popular
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interpolation schemes used to construct R and T are cubic B-splines, which implies that

R, T ∈ C2. This in turn implies that the load term is C1, and therefore locally Lipschitz.

This can be extended to the entire domain because Ω is compact.

In the following, we will consider the compact embedding ic : H1(Ω) → L2(Ω)

given by Rellich-Kondrachov’s theorem. We further recall Schauder’s fixed point theorem

(see (Ciarlet, 2013) for a proof):

Theorem 2 (Schauder’s Fixed Point Theorem). Let W be a closed and convex subset

of a Banach space V and let T : W → W be a continuous mapping with the property that

T (W ) is compact. Then T has at least one fixed point in W .

We define the following partial problem: Given z ∈ V , find u ∈ V such that

a(u,v) = αFz(v) ∀v ∈ V . (2.10)

This problem does not have unisolvence, so we will modify the problem by imposing weak

orthogonality to the rigid motions space, denoted by RM(Ω) and defined as (see (Brenner

& Scott, 2008, Eq 11.1.7))

RM(Ω) :=
{
v ∈ H1(Ω) : ε(v) = 0

}
,

which guarantees unisolvence of problem (2.10) since RM(Ω) is precisely its null space.

Defining H = RM(Ω)⊥, we define the restricted problem as: Given z ∈ H , find u ∈ H

such that

a(u,v) = αFz(v) ∀v ∈ H. (2.11)

An application of the Lax-Milgram lemma and Korn’s inequality yields the following

result:

Theorem 3. Given z ∈ H , problem (2.11) has a unique solution u ∈ H which

satisfies the following a priori estimate for a constant C > 0:

‖u‖1,Ω ≤ αC ‖Fz‖V ′ . (2.12)
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PROOF. See (Brenner & Scott, 2008, Thm 11.2.30) �

We now define the operator T : H → H given by

T (z) = u, (2.13)

where u is the solution to problem (2.11) and thus rewrite problem (2.7) as: Find u such

that

T (u) = u, (2.14)

which shows that the existence of solutions to the original nonlinear problem reduces to

the existence of fixed points for the operator T . The following lemmas prove that the

conditions required by Schauder’s fixed point theorem hold.

Lemma 2. Let T be an operator defined by (2.13). Then, under data assumption (2.8),

there exists LT > 0 such that

‖T (z1)− T (z2)‖1,Ω ≤ αCLF‖z1 − z2‖0,Ω ∀z1, z2 ∈ H.

PROOF. Given z1, z2 ∈ H , we let u1 := T (z1) and u2 := T (z2), that is u1 and u2

are the unique solutions to the following problems:

a(u1,v) = αFz1(v) ∀v ∈ H and a(u2,v) = αFz2(v) ∀v ∈ H.

Their difference gives a new problem

a(u1 − u2,v) = α (Fz1 − Fz2)(v) ∀v ∈ H,

which satisfies the a priori estimate

‖u1 − u2‖1,Ω ≤ αC ‖Fz1 − Fz2‖V ′ .

Using the condition over the data (2.8), we arrive to the desired result:

‖T (z1)− T (z2)‖1,Ω = ‖u1 − u2‖1,Ω ≤ αC ‖Fz1 − Fz2‖V ′ ≤ αC LF ‖z1 − z2‖0,Ω,
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with Lipschitz constant LT = αCLF . �

Lemma 3. Let T be an operator defined by (2.13). Then, under data assumption (2.9),

there exists r0 > 0 such that

T (B(0, r0)) ⊆ B(0, r0) :=
{
z ∈ H : ‖z‖1,Ω ≤ r0

}
.

PROOF. We conclude from the a priori estimate. Given z ∈ H , we have from (2.12)

and (2.13) that

‖T (z)‖1,Ω = ‖u‖1,Ω ≤ αC ‖Fz‖V ′ ≤ αCMF ,

which shows that T (z) ∈ B(0, r0), with r0 = αCMF , and hence in particular T (B(0, r0)) ⊆

B(0, r0). �

We are now in a position to prove the existence of solution to the fixed-point problem

(2.14).

Theorem 4. Let T be the operator defined by (2.13). Then, under data assumptions

(2.8) and (2.9), T has at least one fixed point. Moreover, if αC LF < 1, the fixed point is

unique.

PROOF. Let {zj}∞j=1 be a sequence in B(0, r0) with r0 = αCMF as shown in Lemma

3. It follows that there exists a subsequence {z(1)
j }j∈N ⊆ {zj}j∈N weakly convergent to

some z in H . Using the compact embedding ic we have that z(1)
j

j−→ z in L2(Ω). In this

way, using Lemma 2 we see that T (z
(1)
j )

j−→ T (z) in H , which means that T (B(0, r0) is

compact and thus by Schauder’s fixed point theorem we conclude the existence of a fixed

point. Finally, if αCLF < 1, T is contraction, and so the conclusion is a consequence of

Banach’s fixed point theorem. �

At this point we observe that, in the context of image registration, the foregoing result

shows the existence of solutions to classic schemes such as diffusion and elastic registra-

tion together with SSD, cross-correlation or mutual information similarities. Also, data
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conditions (2.8) and (2.9) give a rule for how much regularity to ask from the images.

For example, similarities involving gradients require a Lipschitz gradient, so at least H2

is required.

2.3.1. Analysis of the discrete problem

In the following we formulate a Galerkin scheme to the primal DIR formulation. To

this end, let (Vh)h>0 be a conforming family of discrete spaces indexed by a mesh size

h > 0. We define Hh := RM⊥ ∩ Vh, and formulate the nonlinear discrete problem as

follows: Find uh ∈ Hh such that

a(uh,vh) = αFuh(vh) ∀vh ∈ Hh. (2.15)

Analogously to the continuous case, we consider the (discrete) partial problem: Given

zh ∈ Hh, find uh ∈ Hh such that

a(uh,vh) = αFzh(vh) ∀vh ∈ Hh, (2.16)

and also let Th : Hh → Hh be the discrete operator given by

Th(zh) = uh,

where uh is the unique solution of problem (2.16) given zh. To prove the existence of

fixed points of Th, we rely on Brouwer’s fixed point theorem, which we include next for

reference (Ciarlet, 2013):

Theorem 5 (Brouwer’s Fixed Point Theorem). Let K be a compact and convex sub-

set of a finite-dimensional normed vector space and let Th : K → K be a continuous

mapping. Then Th has at least one fixed point.

Considering the same data assumptions as in the continuous case, as well as the conti-

nuity and bound obtained before, we arrive at the following result:
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Theorem 6. Let Th be the discrete operator and assume data conditions (2.8) and

(2.9) hold. Then, Th has at least one fixed point. Further, if αCLF < 1, the fixed point it

is unique.

PROOF. From the discrete analysis of Lemmas 2 and 3 we know that Th is continuous

and that there exists r0 such that Th : B(0, r0)→ B(0, r0). SinceHh is finite-dimensional,

B(0, r0) is compact, and so Brouwer’s conditions hold, from where we can conclude the

existence of a fixed point. Uniqueness is established as in the continuous case with Ba-

nach’s fixed point theorem. �

Having proved the existence of solutions for the discrete problem, we can show con-

vergence under uniqueness regime, and so we leave Cea’s estimate for reference.

Theorem 7. Let u ∈ H and uh ∈ Hh be the solutions to the continuous and discrete

problems (2.7), (2.15). Then, there exist α, C > 0 such that

‖u− uh‖1,Ω ≤ C inf
vh∈Hh

‖u− vh‖H . (2.17)

PROOF. Strang’s first Lemma (see (Steinbach, 2007, Theorem 8.2)) implies that there

exists a constant C̃ > 0 such that

‖u− uh‖ ≤ C̃

{
inf

vh∈Hh
‖u− vh‖H + α ‖Fu − Fuh‖V ′

}
.

Using this inequality, the continuity of the compact embedding ic and data condition (2.8),

we obtain

‖u− uh‖ ≤ C̃ inf
vh∈Hh

‖u− vh‖H + αC̃LF‖u− uh‖H .

Imposing αC̃LF < 1 gives the desired result for C = C̃
1−αC̃LF

. �

Sufficiently small α allows the bound to be independent of it as shown in the following

corollary.
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Corollary 1. Under the same assumptions of the previous Theorem, sufficiently small

α allows C to depend only on C̃.

PROOF. Repeat the argument in Theorem 2.17 assuming α C̃ LF ≤ 1
2
, then C ≥

2 C̃. �

2.4. Mixed DIR formulation

In the following, we introduce a mixed variational formulation for (2.20). Following

(Barrientos, Gatica, & Stephan, 2002) and particularizing the method for the 2D case, we

note that the constitutive relation can be inverted, to obtain that

C−1σ :=
1

2µ
σ − λ

2µ(2µ+ nλ)
trace(σ)I. (2.18)

We further define an auxiliary field given by the skew symmetric component of the dis-

placement field gradient as

ρ :=
1

2
(∇u−∇ut). (2.19)

We note that from a continuum mechanics perspective, ρ corresponds to the rotation

tensor, which accounts for displacement gradients that do not induce deformation energy.

Then, the strong form of the mixed registration BVP problem reads: Findu ∈ C1(Ω),σ ∈

C1(Ω) ∩ C(Ω̄) and ρ ∈ C0
skew(Ω) such that

C−1σ = ∇u− ρ in Ω , divσ = αfu in Ω ,

σ = σt in Ω , σn = 0 in ∂Ω ,

(2.20)
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2.4.1. Analysis of the continuous problem

Following the standard integration by parts procedure, the weak variational formula-

tion of the mixed registration problem (2.20) reads: Find (σ, (u, ρ)) ∈ H ×Q such that

a(σ, τ ) + b(τ , (u, ρ)) = 0 ∀τ ∈ H,

b(σ, (v,η)) = αFu(v,η) ∀(v,η) ∈ Q.
(2.21)

where

H := H0(div;Ω) = {τ ∈ H(div;Ω) : γντ = 0},

Q := L2(Ω)× L2
skew(Ω),

and the bilinear forms a : H×H → R and b : H×Q→ R are defined as follows:

a(σ, τ ) :=

∫
Ω

C−1σ : τ ∀σ, τ ∈ H,

b(τ , (v,η)) :=

∫
Ω

v · divτ +

∫
Ω

η : τ ∀τ ∈ H, (v,η) ∈ Q,

whereas given u ∈ L2(Ω), Fu : Q→ R is the linear functional given by

Fu(v,η) := α

∫
Ω

fu · v ∀(v,η) ∈ Q.

To study the solvability of (2.21), we define the partial problem: Given z ∈ L2(Ω), find

(σ, (u, ρ)) ∈ H ×Q such that

a(σ, τ ) + b(τ , (u, ρ)) = 0 ∀τ ∈ H,

b(σ, (v,η)) = αFz(v,η) ∀(v,η) ∈ Q,
(2.22)

which is a linear elasticity problem with Neumann boundary conditions. This problem

does not have unisolvence, so we impose orthogonality to the rigid motions space RM

weakly. With this consideration, we define H := H × RM(Ω), as well as the bilinear
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forms

A((σ,ρ), (τ , ξ)) := a(σ, τ ) ∀(σ,ρ), (τ , ξ) ∈ H

B((τ , ξ), (v,η)) := b(τ , (v,η)) +

∫
Ω

ξ · v ∀((τ , ξ), (v,η)) ∈ H ×Q.

We then consider the following equivalent mixed variational formulation: Given z ∈

L2(Ω), find ((σ,ρ), (u, γ)) ∈ H ×Q such that

A((σ,ρ), (τ , ξ)) +B((τ , ξ), (u, γ)) = 0 ∀(τ , ξ) ∈ H,

B((σ,ρ), (v,η)) = αFz((v,η)) ∀(v,η) ∈ Q.
(2.23)

This formulation delivers a well-posed problem, as proved in (Gatica et al., 2008, Theorem

3.1), and thus it allows for the definition of a fixed-point operator. Let T : L2(Ω) →

L2(Ω) given by

T (z) := u ∀z ∈ L2(Ω), (2.24)

where u is the displacement component of the unique solution of problem (2.23), and so

the mixed formulation can be restated as: Find u ∈ L2(Ω) such that

T (u) = u. (2.25)

Note here that if ((τ , ξ), (v,η)) = ((, ξ), (ξ,∇ξ)), we obtain∫
ρ · ξ =

∫
fz · ξ ∀ξ ∈ RM,

so the Lagrange multiplier ρ removes the compatibility requirement from the data.

To prove the existence of a solution to problem (2.25) we use Banach’s fixed point

theorem for a sufficiently small α and data conditions (2.9) and (2.8). The continuity of

the operator T is established in the following lemma.

Lemma 4. Let the operator T defined by (2.24), assume the data condition (2.8), and

let C > 0 be the constant of continuous dependence on data of (2.23). Then there holds:

‖T (z1)− T (z2)‖0,Ω ≤ αCLF‖z1 − z2‖0,Ω ∀z1, z2 ∈ L2(Ω). (2.26)
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PROOF. Set ui = T (zi), i ∈ {1, 2}. Substracting terms we arrive at the following

system of equations:

A((σ1 − σ2,ρ1 − ρ2), (τ , ξ)) +B((τ , ξ), (u1 − u2, γ1 − γ2)) = 0 ∀(τ , ξ) ∈ H,

B((σ1 − σ2,ρ1 − ρ2), (v,η)) = α(Fz1 − Fz2)(v,η) ∀(v,η) ∈ Q,

from which, using the continuous dependence of (2.23) and the Lipschitz continuity of F ,

we get

‖T (z1)− T (z2)‖0,Ω = ‖u1 − u2‖0,Ω ≤ αC ‖Fz1 − Fz2‖Q′ ≤ αC LF ‖z1 − z2‖0,Ω,

thus completing the proof. �

Theorem 8. Under data conditions (2.8), (2.9) and assuming αCLF < 1, there is a

unique fixed point for problem (2.25). With this, the mixed formulation (2.21) has a unique

solution and the a priori estimation

‖((σ,ρ), (u, γ))‖H ≤ αCMF

holds.

PROOF. From Lemma 4 we have that

‖T (z1)− T (z2)‖0,Ω ≤ αCLF‖z1 − z2‖0,Ω ∀z1, z2 ∈ L2(Ω),

which thanks to the assumption αC LF < 1 makes T a contraction, and thus prove the

existence of the unique fixed point by virtue of Banach’s fixed point theorem. For the a

priori bound, we use the same estimate of the partial problem setting z = u and condition

(2.9), which gives

‖((σ,ρ), (u, γ))‖H ≤ αC‖Fu‖Q′ ≤ αCMF ,

which concludes the proof. �
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2.4.2. Analysis of the discrete problem

In this section we analyze a Galerkin scheme for problem (2.21). Let {Th}h>0 be a

regular family of triangularizations of Ω of characteristic size h, and the following set of

inf-sup stable discrete spaces:

Hσ
h :=

{
τh ∈ H(div;Ω) : τh,i|T ∈ BDM1(T ) ∀T ∈ Th

}
,

Quh :=
{
vh ∈ L2(Ω) : vh ∈ [P0(T )]n ∀T ∈ Th

}
,

Qγ
h :=


 0 ψh

−ψh 0

 : ψh ∈ P1(T ) ∀T ∈ Th

 ,

where BDMk = [Pk]n are the Brezzi-Douglas-Marini elements (Brezzi, Douglas, &

Marini, 1984) and τh,i is the ith row of τh. Then, we introduce

Hσ
0,h := Hσ

h ∩H0(div;Ω) , Hh = Hσ
0,h × RM(Ω) ,

and

Qh = Quh ×Q
γ
h .

Thus, we define the discrete version of (2.23) as follows: Given zh ∈ Quh , find ((σh,ρh), (uh, γh)) ∈

Hh ×Qh such that

A((σh,ρh), (τh, ξh)) +B((τh, ξh), (uh, γh)) = 0 ∀(τh, ξh) ∈ Hh

B((σh,ρh), (vh,ηh)) = αFzh((vh,ηh)) ∀(vh,ηh) ∈ Qh .

(2.27)

The unique solvability and stability of (2.27), being the Galerkin scheme of a linear

elasticity problem with Neumann boundary conditions has already been established in

(Gatica et al., 2008, Theorem 4.1). This allows us to define the discrete operator Th :

Quh → Quh , given by

Th(zh) = uh,

31



and then rewrite the discretized nonlinear problem as: Find uh ∈ Quh such that

Th(uh) = uh. (2.28)

Concerning the other components σh, γh and ρh of this problem, we will refer to ((σh,ρh), (uh, γh))

as the mixed solution for a given zh.

Lemma 5. Let Th be the discrete operator given by (2.28) and C be the constant of

continuous dependence on data of (2.27). Then, given z1, z2 in Quh , there holds

‖Th(z1)− Th(z2)‖0,Ω ≤ αCLF‖z1 − z2‖0,Ω.

PROOF. Repeat argument in Lemma 4 to Th. �

Now we are in position to establish the well-posedness of problem (2.28), as well as

to prove the Cea’s best approximation property.

Theorem 9. Under data assumptions (2.8), (2.9) and assuming αC LF < 1, the

problem (2.28) has a unique solution ((σh,ρh), (uh, γh)) ∈ Hh ×Qh such that

‖((σh,ρh), (uh, γh))‖H×Q ≤ αCMF .

In addition, there exists C̃ > 0 such that Cea’s estimate holds for the unique solution

((σ,ρ), (u, γ)) to problem (2.25), i.e,

‖((σ,ρ), (u, γ))−((σh,ρh), (uh, γh))‖H×Q ≤ C̃ inf
(τh,0)∈Hh,
(vh,ηh)∈Qh

‖((σ,0), (u, γ))−((τh,0), (vh,ηh))‖H×Q.

PROOF. The first part is analogous to the continuous case, so we are only left with

Cea’s estimate. Let ((σ,ρ), (u, γ)) ∈ H ×Q and ((σh,ρh), (uh, γh)) ∈ Hh ×Qh be the

solutions arising from the continuous and discrete problems (2.25) and (2.28), respectively.

Equivalently, ((σ,ρ), (u, γ)) (resp. ((σh,ρh), (uh, γh))) solves (2.23) with z = u (resp.

(2.27) with zh = uh). In addition, let also ((ζh,ϕh), (wh, sh)) ∈ Hh×Qh be the solution
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to the discrete version of (2.23) with z = u, but without changing u by uh, that is

A((ζh,ϕh), (τh, ξh)) +B((τh, ξh), (wh, sh)) = 0 ∀(τh, ξh) ∈ Hh

B((ζh,ϕh), (vh,ηh)) = αFu((vh,ηh)) ∀(vh,ηh) ∈ Qh .

(2.29)

By virtue of (Gatica, 2014, Theorem 2.6), the following estimate holds for a constant

C̄ > 0, which depends only on the bilinear forms A,B:

‖((σ,ρ), (u, γ))− ((ζh,ϕh), (wh, sh))‖H×Q

≤ C̄ inf
(τh,ξh)∈Hh,
(vh,ηh)∈Qh

‖((σ,ρ), (u, γ))− ((τh, ξh), (vh,ηh))‖H×Q .
(2.30)

Substracting systems (2.27) with zh = uh and (2.29) it holds that

A((σh − ζh,ρh −ϕh), (τh, ξh)) +B((τh, ξh), (uh −wh, γh − sh)) = 0

B((σh − ζh,ρh −ϕh), (vh,ηh)) = α(Fuh − Fu)((vh,ηh)),

(2.31)

for all (τh, ξh) ∈ Hh, (vh,ηh) ∈ Qh, and once again the Babuška-Brezzi theory gives the

estimate

‖((σh,ρh), (uh, γh))− ((ζh,ϕh), (wh, sh))‖H×Q ≤ αC ‖Fu − Fuh‖Q′ . (2.32)

Finally, using (2.30) and (2.32) we obtain the following Strang-type estimate

‖((σ,ρ), (u, γ))− ((σh,ρh), (uh, γh))‖H×Q

≤ ‖((σ,ρ), (u, γ))− ((ζh,ϕh), (wh, sh))‖H×Q + ‖((σh,ρh), (uh, γh))− ((ζh,ϕh), (wh, sh))‖H×Q

≤ C̄ inf
(τh,ξh)∈Hh,
(vh,ηh)∈Qh

‖((σ,ρ), (u, γ))− ((τh, ξh), (vh,ηh))‖H×Q + αC‖Fu − Fuh‖Q′ .
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In this way, using the data condition (2.8), and assuming that αC LF < 1, we find that

‖((σ,ρ), (u, γ))− ((σh,ρh), (uh, γh))‖H×Q

≤ C̃ inf
(τh,ξh)∈Hh,
(vh,ηh)∈Qh

‖((σ,ρ), (u, γ))− ((τh, ξh), (vh,ηh))‖H×Q ,

where C̃ = C̄
1−αCLF

. The absence of the rigid motion variable is due to the space not being

discretized, and thus we have that d(ρ,RM(Ω)) = 0. �

Notice that the proof used to establish this Strang-type estimate is analogous to the one

employed in the primal case in (Steinbach, 2007, Theorem 8.2).

Corollary 2. The above Theorem holds for C̃ = 2C̄ provided α is sufficiently small.

PROOF. In the preceding proof, take αC LF ≤ 1
2
. �

We end this section by providing the rate of convergence of the solution to (2.28). We

first recall the classic approximation results from (Brezzi & Fortin, 1991) and proceed as

in (Gatica et al., 2008):

(AP σ
h ) For each τ ∈ H1(Ω) ∩H0(div;Ω) with divτ ∈ H1(Ω) there exists τh ∈ Hσ

0,h

such that

‖τ − τh‖div;Ω ≤ Ch{‖τ‖1,Ω + ‖divτ‖1,Ω}.

(APuh ) For each v ∈H1(Ω) there there exists vh ∈ Hu
h such that

‖v − vh‖0,Ω ≤ Ch‖v‖1,Ω.

(AP γ
h ) For each η ∈ H1(Ω) ∩ L2

asym(Ω) there exists ηh ∈ Hγ
h such that

‖η − ηh‖0,Ω ≤ Ch‖η‖1,Ω.

These allow us to establish the following theorem:
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Theorem 10. Under data assumptions (2.8), (2.9) and assuming αCLF ≤ 1
2
, let

((σh,ρh), (uh, γh)) ∈ Hh × Qh be the mixed solution of (2.28) and ((σ,ρ), (u, γ)) ∈

H ×Q the solution of the continuous mixed problem (2.25). Then, there exists a constant

C > 0, independent of h, such that whenever σ ∈ H1(Ω), divσ ∈ H1(Ω),u ∈ H1(Ω)

and γ ∈ H1(Ω), there holds

‖((σ,ρ), (u, γ))−((σh,ρh), (uh, γh))‖H×Q ≤ Ch {‖τ‖1,Ω + ‖divτ‖1,Ω + ‖v‖1,Ω + ‖η‖1,Ω} .

PROOF. It follows from applying Cea’s estimate and the approximation properties

(AP σ
h ), (APuh ) and (AP γ

h ). �

2.5. Augmented DIR formulation

This section proposes an augmented mixed variational formulation for the BVP (2.20).

This scheme gives additional regularity to the displacement field, allows the use of a

weaker fixed point theorem guaranteeing the existence of solutions for any positive α,

and permits more flexibility for the choice of the finite element subspaces. Again, suffi-

ciently small α grants uniqueness. It has been studied in (Gatica, 2006) that the augmented

Dirichlet and mixed-boundary condition linear elasticity problems have a unique solution,

and here we prove that the same holds for the null traction problem.
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2.5.1. Analysis of the continuous problem

LetH := H(div;Ω)×H1(Ω)×L2
skew, Q := RM(Ω). We further define the operators

A : H ×H → R, B : H ×Q→ R and Fz ∈ H ′ as follows

A((σ,u, γ), (τ ,v,η)) := a(σ, τ ) + b(τ , (u, γ))− b(σ, (v,η))

+ κ1

∫
Ω

(ε(u))− C−1σ) : (ε(v) + C−1τ )

+ κ2

∫
Ω

divσ · divτ

+ κ3

∫
Ω

(γ − skew∇u) : (η + skew∇v),

B((τ ,v,η), ξ) :=

∫
Ω

v · ξ,

Fz((τ ,v,η)) :=

∫
Ω

fz · (−v + κ2divτ ) ,

(2.33)

where κ1, κ2, and κ3 are positive parameters to be suitably chosen later on. With the def-

initions above, the augmented formulation reads: Given z ∈ H1(Ω), find ((σ,u, γ),ρ)

∈ H ×Q such that:

A((σ,u, γ), (τ ,v,η)) +B((τ ,v,η),ρ) = αFz((τ ,v,η)) ∀(τ ,v,η) ∈ H,

B((σ,u, γ), ξ) = 0 ∀ξ ∈ Q.

Now we define the augmented fixed point operator T : H1(Ω) → H1(Ω) given by

T (z) = u, where u is the displacement component of the solution to problem (2.34), and

so we write the nonlinear augmented problem as: Find u ∈H1(Ω) such that

T (u) = u. (2.34)

We apply the Babuška-Brezzi conditions to see that the proposed problem has a unique

solution and depends continuously on the data. We will use the following definitions:

τ d = τ − 1

n
trace(τ )I and τ0 = τ − 1

|Ω|

∫
trace(τ )I,
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where the first one is known as the deviatoric tensor, and is such that it has null trace. The

second one is the decomposition that arises from H(div;Ω) = H̃(div;Ω) ⊕ RI, where I

is the identity tensor and

H̃(div;Ω) :=
{
τ ∈ H(div;Ω) :

∫
trace τ = 0

}
.

We will use the following lemmas:

Lemma 6. There exists C1 > 0 such that

‖τ d‖2
0,Ω + ‖divτ‖2

0,Ω ≥ C1‖τ‖2
div;Ω ∀τ ∈ H0(div;Ω). (2.35)

PROOF. We start from (Gatica, 2006, Lemma 2.1), which guarantees the existence of

c1 > 0 such that

‖divτ‖2
0,Ω + ‖τ d‖2

0,Ω ≥ c1‖τ0‖2
0,Ω ∀τ ∈ H(div;Ω) .

Then, noting that τ0 = τ d0 and divτ = divτ0, we readily find that

‖τ d‖2
0,Ω + ‖divτ‖2

0,Ω ≥
c1

2
‖τ0‖2

0,Ω +
1

2
‖divτ‖2

0,Ω ≥
1

2
min {c1, 1} ‖τ0‖2

div;Ω. (2.36)

Now, writing explicitly τ = τ0 + dI we impose the null normal trace condition from

0 = γν(τ ) = γν(τ0 + dI) and obtain

|d|‖ν‖−1/2,Γ = ‖γντ0‖−1/2,Ω ≤ ‖τ0‖div;Ω ,

or equivalently,

|d| ≤ 1

‖ν‖−1/2,Γ

‖τ0‖div;Ω,

where the continuity of the normal trace was used. Then, aplying this to the norm of τ we

get

‖τ‖div;Ω = ‖τ0‖div;Ω + n|d||Ω| ≤
(

1 +
n|Ω|
‖ν‖−1/2,Γ

)
‖τ0‖div;Ω,
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and everything together in equation (2.36) gives the desired result, withC1 = 2

(
1 + n|Ω|

‖ν‖−1/2,Γ

)2

min{1, c1}
.

�

Lemma 7. There exists κ̃ > 0 such that :

‖ε(v)‖2
0,Ω ≥ κ̃ ‖v‖2

1,Ω ∀v ∈ RM⊥. (2.37)

PROOF. The proof is a combination of (Brenner & Scott, 2008, Theorem 9.2.12)

(Korn’s second inequality) and the fact that H1 = Ĥ1 ⊕ RM, where

Ĥ1(Ω) =

{
v ∈ H1(Ω) :

∫
Ω

v = 0,

∫
rot v = 0

}
.

�

Theorem 11. Let V := N(B), where B is the operator induced by the bilinear form

B defined in (2.34). Then, there exist κ1, κ2 and κ3 for (2.33) such that

(i) the bilinear form A is V -elliptic,

(ii) the bilinear form B satisfies the inf-sup condition,

so that there exists a unique solution ((σ,u, γ), ξ) ∈ H × Q to the problem (2.34) for a

given z ∈H1(Ω). In addition, there exists a constant C > 0 such that

‖((σ,u, γ), ξ)‖H×Q ≤ αC ‖Fz‖H′ .

PROOF. It is important to mention that we are considering rigid motions endowed with

the L2(Ω) inner product, and that the main idea is to find values for κ1, κ2, κ3 (cf. (2.33))

such that ellipticity holds. First we prove ellipticity in V , where the norm used will be the

following:

‖(τ ,v,η)‖2
V := ‖τ‖2

div;Ω + ‖v‖2
1,Ω + ‖η‖2

0,Ω.

In fact, since V := {(σ,u, γ) ∈ H : B((σ,u, γ), ξ) = 0 ∀ξ ∈ Q}, we find that

V = {(σ,u, γ) ∈ H :

∫
u · ξ = 0 ∀ξ ∈ Q} = {(σ,u, γ) ∈ H : u ∈ RM⊥} .
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In turn, for the ellipticity we are seeking, we use from (Gatica, 2006, Theorem 3.1) that

A((τ ,v,η), (τ ,v,η)) =

∫
Ω

C−1τ : τ − κ1‖C−1τ‖2
0,Ω + (κ1 + κ3)‖e(v)‖2

0,Ω

+κ2‖divτ‖2
0,Ω + κ3‖η‖2

0,Ω − κ3|v|21,Ω ,
(2.38)

and that ∫
Ω

C−1τ : τ − κ1‖C−1τ‖2
0,Ω ≥

1

2µ

(
1− κ1

2µ

)
‖τ d‖2

0,Ω , (2.39)

which require 0 < κ1 < 2µ. Then, proceeding as in (Gatica, 2006, Section 3.2), that is

applying Lemma 6 and Korn’s second inequality (cf. Lemma 7), it follows from (2.38)

and (2.39) that

A((τ ,v,η), (τ ,v,η)) ≥ α1 ‖τ‖2
div;Ω +

{
κ1 κ̃−κ3 (1− κ̃)

}
‖v‖2

1,Ω+κ3‖η‖2
0,Ω , (2.40)

where α1 := C1 min
{

1
2µ

(
1− κ1

2µ

)
, κ2

}
. In this way, the bilinear form becomes V -

elliptic for the ranges of the parameters given by 0 < κ1 < 2µ, 0 < κ2, and κ3 > 0 if

κ̃ ≥ 1, or 0 < κ3 <
κ1 κ̃
1−κ̃ if κ̃ < 1. Next, the inf-sup condition for B is established directly,

because taking (τ ,v,η) = (0, ξ, 0) gives

sup
(τ ,v,η)∈H

B((τ ,v,η), ξ)

‖(τ ,v,η)‖H
≥
‖ξ‖2

0,Ω

‖ξ‖1,Ω

≥ c2‖ξ‖1,Ω,

where the last step comes from the fact that RM is a finite dimensional space, thus the

Open Mapping theorem gives the existence of a constant c > 0 such that ‖ξ‖0,Ω ≥

c‖ξ‖1,Ω. To end the proof, we note that both bilinear forms have only L2 inner prod-

ucts, so that their boundedness is directly established and thus Babuška-Brezzi conditions

hold, which imply continuous dependence on data. �

The existence of a solution for problem (2.34) is given by Schauder’s Fixed Point

Theorem.

Lemma 8. Let T be the augmented fixed point operator given by (2.34) and assume

that data assumptions (2.8) and (2.9) hold. Then

T (B(0, r0)) ⊂ B(0, r0) :=
{
v ∈H1(Ω) : ‖v‖1,Ω ≤ r0

}
,
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where r ≤ r0 := αCMF with C the constant arising from the stability estimate of the

augmented problem. In addition, there holds

‖T (z1)−T (z2)‖1,Ω ≤ α max(1, |κ2|)C LF ‖z1−z2‖0,Ω ∀ z1, z2 ∈H1(Ω) . (2.41)

PROOF. Let z ∈ H1(Ω). Then, from the continuous dependence on data and (2.9) it

follows:

‖T (z)‖1,Ω = ‖u‖1,Ω ≤ αC‖Fz‖H′ ≤ αCMF =: r0.

Now, given z1, z2 ∈ H1(Ω), we subtract both augmented systems and get a new solution

u1 − u2 with F := Fz1 − Fz2 . Applying continuity on data and (2.8) we get the desired

result:

‖T (z1)− T (z2)‖1,Ω ≤ αC ‖F‖H′ ≤ α max(1, |κ2|)C ‖Fz1 − Fz2‖H′

≤ α max(1, |κ2|)C LF ‖z1 − z2‖0,Ω .

�

These results are enough to guarantee the existence of at least one solution of problem

(2.34).

Theorem 12. Assume that the data satisfy (2.8) and let r0 := αCMF . Then the

augmented problem (2.34) has at least one solution in B(0, r0), all of which have the

following a priori estimate:

‖((σ,u, γ), ξ)‖H×Q ≤ αCMF .

Moreover, if αC LF max(1, |κ2|) < 1, the solution is unique.

PROOF. Let {zk}k∈N ⊂ B(0, r0) be a bounded sequence given by iterated solutions

of problem (2.34), then it has a subsequence {z(1)
k }k∈N ⊆ {zk}k∈N weakly convergent to

some z in H1(Ω). Rellich-Kondrachov’s compactness theorem states that there exists a

compact embedding ic : H1(Ω) → L2(Ω), so that zki → z in L2(Ω). Using estimate
40



(2.41) from Lemma 8 we see that also T (zki) → T (z) in H1(Ω) and so there exists a

fixed point due to Schauder’s fixed point Theorem. The bound on α is established if T is

forced to be a contraction. �

2.5.2. Analysis of the discrete problem

For a Galerkin scheme of the augmented formulation, let {Th}h>0 be a regular family

of triangularizations of Ω of size h. Now, it is crucial for the analysis to notice that the

bilinear form B does not change when a discretization is made because the rigid motions

space is already discrete. With this in mind, the inf-sup condition is proved trivially and

so the ellipticity of A in the discrete kernel is just a consequence of the continuous case.

In virtue of this, any conforming set of discrete spaces will suffice, and as such we take

the following:

Hσ
h :=

{
τh ∈ H(div;Ω) : τh,i|T ∈ RT0 ∀T ∈ Th

}
,

Hu
h :=

{
v ∈H1(Ω) : v|T ∈ [P1(T )]n ∀T ∈ Th

}
,

Hγ
h : =


 0 ψh

−ψh 0

 : ψh ∈ P0(T ) ∀T ∈ Th

 .

Then, setting Hh = (Hσ
h ∩H0(div;Ω)) ×Hv

h ×H
γ
h , Qh = RM, the Galerkin scheme of

the augmented partial problem reads: Given zh ∈ Hu
h , find ((σh,uh, γh), ξh)) ∈ Hh×Qh

such that

A((σh,uh, γh), (τh,vh,ηh)) +B((τh,vh,ηh), ξh) = αFzh((τh,vh,ηh)) ∀(τh,vh,ηh) ∈ Hh,

B((σh,uh, γh),ρh) = 0 ∀ρ ∈ Qh.

(2.42)

We finally define the discrete operator Th : Hu
h → Hu

h given by

Th(zh) = uh,

where uh is the second component of the solution in Hh from the discrete partial aug-

mented problem (2.42), so that the nonlinear discrete problem can be stated as: Find
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u ∈H1(Ω) such that

Th(u) = u . (2.43)

As we did with the mixed formulation, we will first establish the well posedness of the

discrete partial problem, and then extend this to the nonlinear problem.

Theorem 13. Given z ∈ Hu
h , problem (2.42) has a unique solution ((σ,u, γ), ξ) ∈

Hh ×Qh and there exists a constant C such that

‖((σh,uh, γh), ξh)‖H×Q ≤ αC‖Fzh‖H′h .

PROOF. First we note that N(Bh) ⊆ N(B). From there, the inf-sup condition and

ellipticity are a consequence of the continuous case and thus Babuška-Brezzi conditions

hold. �

Now we establish the regularity of the discrete operator. The following lemma is

analogous to the continuous case, so we leave it without proof.

Lemma 9. Let Th be the discrete fixed point operator associated to the discrete aug-

mented problem (2.43) and assume that data conditions (2.8) and (2.9) hold. Then

Th(Bh(0, r0)) ⊂ Bh(0, r0) :=
{
v ∈ Hu

h : ‖u‖1,Ω ≤ r0

}
,

where r0 := αCMF withC the constant that arises from the a priori estimate of the partial

problem. In addition, there holds

‖Th(z1)− Th(z2)‖1,Ω ≤ αmax(1, |κ2|)CLF‖z1 − z2‖1,Ω ∀z1, z2 ∈ Hu
h .

This is enough to prove the well-posedness of the original nonlinear problem, which

we show in the following theorem.
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Theorem 14. Assuming data conditions (2.8) and (2.9), problem (2.43) has at least

one solution. All solutions verify the a priori estimate

‖((σh,uh, γh), ξh)‖H×Q ≤ αCMF . (2.44)

Moreover, if αC LF max(1, |κ2|) < 1, the solution is unique. If under the same hypothesis

((σ,u, γ), ξ) ∈ H × Q is the unique solution to the continuous problem, Cea’s estimate

holds for a certain constant C4 > 0:

‖((σ,u, γ), ξ)− ((σ,uh, γh), ξh)‖H×Q ≤ C4 inf
(τh,vh,ηh)∈Hh

‖(σ,u, γ)− (τh,vh,ηh)‖H .

(2.45)

PROOF. First for the a priori estimate, we note from Lemma 9 that Brower’s fixed

point theorem holds, so that there exists a fixed point with

Th(uh) = uh,

and then the rest of the proof follows exactly as in the mixed case. We obtain the a priori

estimate from the partial a priori estimate

‖((σ,u, γ), ξ)‖H×Q ≤ αC ‖Fuh‖H′h ≤ αCMF .

In the case of the mixed formulation, proving Cea’s estimate was done by taking partial

problems and then subtracting. We only need for the same technique to work to have

an approximation property for a given z. Indeed, plugging z in (2.42), then the solution

((ζh,wh, sh),ϕh) ∈ Hh × Qh to such problem would have the desired property for a

constant C3 > 0 independent of z:

‖((σ,u, γ), ξ)− ((ζh,wh, sh),ϕh)‖H×Q

≤ C3 inf
(τh,vh,ηh)∈Hh

‖(σ,u, γ)− (τh,vh,ηh)‖H .
(2.46)

Using equation (2.46) and proceeding as in the proof of the mixed case, the result holds

for the constant C4 := C3

1−αC max(1,|κ2|)LF
. �
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Corollary 3. Under the assumptions from the previous theorem, a sufficiently small α

grants C4 independent of it.

PROOF. The proof is analogous to that of the primal and mixed cases. �

We end this section with the rates of convergence for the solutions of (2.43). We

first recall classic approximation results from (Brezzi & Fortin, 1991) and proceed as in

(Gatica, 2006):

(AP σ
h ) For each τ ∈ H1(Ω)∩H0 with divτ ∈H1(Ω) there exists τh ∈ Hσ

0,h such that

‖τ − τh‖div;Ω ≤ Ch {‖τ‖1,Ω + ‖divτ‖1,Ω} .

(APuh ) For each v ∈H1(Ω) there there exists vh ∈ Hu
h such that

‖v − vh‖0,Ω ≤ Ch‖v‖1,Ω.

(AP γ
h ) For each η ∈ H1(Ω) ∩ L2

asym(Ω) there exists ηh ∈ Hγ
h such that

‖η − ηh‖0,Ω ≤ Ch‖η‖1,Ω.

Consequently, we can prove the following result:

Theorem 15. Under data assumptions (2.8) and (2.9) and assuming αC LF max(1, |κ2|) ≤
1
2
, let ((σ,u, γ),ρ) ∈ H×Q and ((σh,uh, γh),ρh) ∈ Hh×Qh be the unique solutions of

the continuous problem (2.34) and the discrete one (2.43) respectively. Then, there exists

a constant C > 0 independendt of h such that whenever σ ∈ H1(Ω), divσ ∈ H1(Ω),

u ∈H2(Ω) and γ ∈ H1(Ω), there holds

‖((σ,u, γ), ξ)−((σh,uh, γh), ξh)‖H×Q ≤ C h
{
‖τ‖1,Ω+‖divτ‖1,Ω +‖v‖1,Ω+‖η‖1,Ω

}
.

(2.47)

PROOF. The proof relies in the application of Cea’s estimate together with the approx-

imation properties (AP σ
h ), (APuh ) and (AP γ

h ). �
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2.6. Numerical simulations

The registration problem was implemented in python using the library FEniCS ((Alnæs

et al., 2015), for reference see (Logg, Mardal, Wells, et al., 2012)). Numerical results were

visualized using Paraview (Ahrens, Geveci, & Law, 2005). The numerical solution of

the discrete problems was computed using a regularization technique of the gradient-flow

type, which is extensively used in the DIR community (see (Schmidt-Richberg, 2014), also

known as the proximal point method in the optimization community (Rockafellar, 1976)).

To this end, we consider an artificial time variable such that the velocity of the movement

points towards the greatest-descent direction of the original functional and then discretize

in time using an implicit Euler method. The resulting iterative scheme (time-discretized

gradient-flow problem) reads

1

∆t
〈u− un,v〉 = −a(u,v) + fu(v) ∀v ∈ V . (2.48)

It is easy to show that the previous problem derives from the following variational principle

min
u∈V

1

2
a(u,u)−D[u] +

1

2∆t
‖u− un‖2

0,Ω := Πn[u], (2.49)

where ∆t is a regularizing parameter chosen so that the incremental functional is strictly

convex (Hurtado & Henao, 2014), guaranteeing the convergence of the iterative problem.

The stop criterion is based on the L2 error of the solution to (2.49) with respect to the

previous converged solution.

In the following, the DIR methods developed in this work are tested in the registration

of a synthetic image. To this end, we let Ω = [0, 1]2, and consider the reference image

described by

R(x0, x1) = sin(2πx0) sin(2πx1). (2.50)

To construct the target image, we first consider an affine displacement field of the form

u(x) =

0.4 0

0 −0.2

x, (2.51)
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where x = (x0, x1)t. Then, the target image is found by composition, i.e., T = R ◦ (id+

u)−1. Figure 2.1 shows the resulting reference and target images.

We perform numerical convergence tests for the three formulations using the images

just defined. To this end, a fine mesh with 65,536 triangular elements and characteristic

length h = 0.0055 is considered as the baseline solution. The degrees of freedom involved

in each case are denoted by N and the corresponding errors are quantified as

e0(σh) := ‖σ − σh‖0,Ω, e(σh) := ‖σ − σh‖div;Ω,

e0(uh) := ‖u− uh‖0,Ω, e(uh) := ‖u− uh‖1,Ω ,

and

e(γh) := ‖γ − γh‖0,Ω,

where (σ,u, γ) is the baseline solution to the mixed or the augmented case when it corre-

sponds, and (σh,uh, γh) is the associated finite element solution with coarser mesh sizes.

We further define the experimental rates of numerical convergence as

r0(σh) :=
log(e0(σ)/e′0(σh))

log(h/h′)
, r(σh) :=

log(e(σ)/e′(σh))

log(h/h′)
,

r0(uh) :=
log(e0(uh)/e

′
0(uh)

log(h/h′)
, r(uh) :=

log(e(uh)/e
′(uh)

log(h/h′)
,

and

r(γh) :=
log(e(γh)/e

′(γh))

log(h/h′)
,

where h and h′ denote two consecutive mesh sizes with corresponding errors e and e′.

The experiments were performed using the primal, mixed and augmented schemes with

α = 0.5, ∆t = 0.1 and µ = λ = 0.5, and the termination criterion used was a relative error

of 10−8. In turn, the stabilization parameters κi, i ∈ {1, 2, 3}, of the augmented scheme

were chosen according to the ranges derived in the proof of Theorem 11. Figures 2.2,

2.3 and 2.4 show the results of the numerical convergence studies measured under several
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error norms for the primal, mixed and augmented schemes, respectively. In all cases,

the error norms monotonically decrease as the number of degrees of freedom increases

(equivalently, the mesh size is reduced). The convergence rates obtained for the primal,

mixed and augmented schemes are documented in Tables 2.1, 2.2, and 2.3, respectively.

We note that, in most of the cases, the expected (linear) convergence rate is met by the

numerical tests, and sometimes exceeded. The exception is the H(div) norm of σ in

the mixed and augmented schemes where convergence rates are positive but well below

1, which simply says that the computation of the rates of convergence for this unknown

depends strongly on how accurately the continuous solution is approximated.

Figure 2.5 shows the reference image, and the composed image T (x+ uh(x)) for all

three formulations using a structured mesh with 2048 elements, for the sake of compari-

son of the registration solution between methods. All three DIR methods delivered very

similar solutions for the composed target image, which are qualitatively similar to the

reference image. The associated stress fields are depicted in Figure (2.6) in terms of the

Frobenius norm of the stress tensor. Stress fields are displayed using an L2-projection to a

P1 FE space constructed on the mesh, for visualization purposes. While all three solutions

qualitatively agree, the solution of the primal scheme differs from the solutions provided

by the mixed and augmented schemes, which are nearly identical.

2.7. Discussion

In this work we have proposed and analyzed a mixed and augmented formulations

for the DIR problem, along with suitable finite-element discretization for their numerical

solution. To this end, we consider the variational formulation of the Euler-Lagrange equa-

tions associated to the original DIR problem, which presents a structure similar to that

of a linear elasticity problem with a nonlinear load source. In this form, we leverage a

large body of results in mathematical and numerical analysis to study the DIR problem,

namely the Babǔska-Brezzi theory for mixed formulations as well as fixed-point theo-

rems. Two key assumptions needed to prove existence of solution, both in the continuous
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and discrete settings, are the Lipschitz continuity and boundedness of the distributional

gradient of the similarity measure, which we argue can be easily verified in DIR appli-

cations where images are typically constructed using smooth interpolation schemes. This

result, which we particularize for similarity measures of the sum-of-squares-difference’s

type, is readily extendable to other standard similarity measures, such as correlation and

mutual information. For the case of the elastic regularization term, we assume the bijec-

tivity of its Gâteaux gradient, possibly quotiented by its kernel, or simply its surjectivity

and the availability of a space reduction that renders the operator injective. Under these

assumptions, fixed point arguments allowed us to establish well-posedness of the continu-

ous and discrete problems. A key result of our work, that can be exploited in the feasibility

analysis of DIR problems, is the necessary condition for uniqueness of the DIR solution:

αCLF < 1. This inequality establishes a novel relation between the similarity weighting

constant α and the Lipschitz constant of the nonlinear source term LF given by α ∝ L−1
F .

The Lipschitz constant, is interpreted as the largest slope between two points as seen in

the definition:
‖F (u)− F (v)‖
‖u− v‖

≤ LF ∀u,v.

In virtue of the preceding discussion, we show that DIR of images with higher gradients

(i.e., high image contrast, or rapidly oscillating intensity fields due to noise) require the

reducing the relevance of the similarity term for well-posedness to hold. This result pro-

vides a new insight for the success of DIR, for which a standard practice is to preprocess

the reference and target images to reduce image contrast. One such approach is pyra-

midal gaussian convolution, where images are filtered and then subsampled to perform a

sequence of chained registrations, with increasing level of detail, but more sophisticated

strategies have been proposed to reduce noise (Paquin, Levy, & Xing, 2008; Athavale &

Tadmor, 2011).

Another key contribution resulting from this work is the formulation and analysis of

mixed and augmented numerical schemes for DIR, where convergence can be proven not

only for the transformation (displacement) mapping but also for the stress (and in turn
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Figure 2.1. Synthetic images used in numerical tests: (a) Reference image,
(b) Target image.

strain) and the rotation tensor. Our results show that, while the transformation mapping

that results from solving the primal DIR problem can be very similar to those obtained

from the mixed and augmented formulation, the stress fields can be different. Tradition-

ally, the transformation mapping has been the fundamental field sought in DIR applica-

tions, particularly in medical applications where the goal is to align the reference and target

images (Sotiras et al., 2013). However, recent applications of medical image quantification

have highlighted the importance of guaranteeing certain accuracy and convergence when

estimating stress tensor fields (Sotelo et al., 2016) and rotation tensor fields (Sotelo et al.,

2017), due to their important connection to medical conditions. Further developments to

improve the accuracy of the numerical solution, that are naturally developed within the

finite-element framework adopted in this work, are the introduction of a-posteriori mesh

refinement methods, where recent results in linear elasticity for mixed formulations with

Neumann boundary conditions (Domı́nguez, Gatica, & Márquez, 2016) can be extended

to the case of DIR problems addressed here.
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Figure 2.2. Errors vs. N for the primal formulation

N e0(uh) r0(uh) e(uh) r(uh)
50 1.66E-3 — 2.06E-2 —

162 6.23E-4 1.42 1.19E-2 0.80
578 2.02E-4 1.62 6.18E-3 0.94

2178 5.55E-5 1.86 3.08E-3 1.01
8450 1.16E-5 2.26 1.55E-3 0.99

Table 2.1. Errors and convergence rates for the primal scheme.

N e0(σh) r0(σh) e(σh) r(σh) e0(uh) r0(uh) e(γh) r(γh)
323 0.80 — 17.49 — 7.25E-2 — 0.53 —

1219 0.46 0.81 14.88 0.23 3.93E-2 0.88 0.39 0.45
4739 0.32 0.50 12.94 0.20 2.25E-2 0.81 0.27 0.52
18691 0.23 0.50 11.34 0.19 1.26E-2 0.83 0.19 0.51
74243 0.13 0.85 8.69 0.38 5.72E-3 1.14 0.11 0.75

Table 2.2. Errors and convergence rates for the mixed scheme.
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Figure 2.3. Errors vs. N for the mixed formulation
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Figure 2.4. Errors vs. N for the augmented formulation
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N e0(σh) r0(σh) e(σh) r(σh) e0(uh) r0(uh) e(uh) r(uh) e(γh) r(γh)
197 4.40E-1 — 0.49 — 2.58E-2 — 2.80E-1 — 5.70E-1 —
709 3.51E-2 3.65 0.16 1.570 1.91E-3 3.76 3.33E-2 3.08 4.66E-2 3.62

2693 1.38E-2 1.35 0.14 0.190 4.57E-4 2.06 1.48E-2 1.17 1.82E-2 1.36
10501 6.26E-3 1.14 0.14 0.061 1.09E-4 2.06 7.06E-3 1.07 8.14E-3 1.16
41477 2.71E-3 1.21 0.14 0.004 2.22E-5 2.30 3.14E-3 1.17 3.43E-3 1.25

Table 2.3. Errors and convergence rates for the augmented scheme.

Figure 2.5. Registration results and comparison for α = µ = λ = 0.5. (a)
Reference image R. Composed image T (x+uh(x)) using solutions of (b)
the primal method, (c) the mixed method, and (d) the augmented method.
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Figure 2.6. Frobenius norm of the stress tensor field for α = µ = λ = 0.5
and ∆t = 0.1 with 25 elements per side: (a) primal scheme, (b) mixed
scheme, and (c) augmented scheme. Stress fields are displayed using an
L2-projection to a P1 FE space constructed on the mesh.
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3. CONCLUSIONS

In this work we presented a mixed formulation for elastic DIR. One of the advantages

is that the problem can be seen as a linear elasticity equation with a nonlinear load term

problem, for which there exists a lot of analysis. We require only Lipschitz continuity and

boundedness on the load, which is easily verifiable for the most common interpolation

schemes for the images and similarity terms. We also obtained a sufficient condition

for uniqueness, namely αCLF < 1, which establishes a novel relationship between the

similarity weight α and the Lipschitz constant LF . It had been noticed that high gradients

affect registration, but no formal proof of this had been given. It also gives a new way of

understanding the success of image smoothing techniques, such as gaussian filtering.

Another important consequence of this approach is that it states convergence of all the

unknowns used, namely the displacement field, the rigid motion Lagrange multiplier, the

skew-symmetric component of the displacement’s gradient and the stress. It also delivers

the rates of convergence at which this fields converge, which helps estimate the required

computational cost of the method. This approach gives a more straightforward way of

analyzing the problem and the relationship between it and the discrete problem.

Finally, we show that the incorporation of an extra rigid motion space removes stiffness

from the scheme. This happens because the left hand side of the system has a non trivial

kernel, and thus restricts the solution to be orthogonal to such space. This is inexpensive

in practice, as it adds only 3 degrees of freedom to the problem.
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4. FUTURE WORK

From here, in the future we will prove the well-posedness of the extended problem with

the added degrees of freedom in RM and analyze how they affect the registration of real

lung images. We expect to show that the stiffness incurred severely deteriorates schemes

with Neumann boundary conditions. This kind of schemes cannot be circumvented as

Dirichlet conditions impose spurious stresses near the boundary.

As the images are highly nonlinear, semi-implicit time-stabilized techniques are com-

mon. In this regard, we will also prove the convergence and stability of such stabilization

techniques in order to find theoretical bounds for the time step, which is still largely an

open question. This will be performed to both implicit and semi-implicit schemes. In prin-

ciple the implicit schemes are avoided because they are more expensive, but we hope to

see comparable computation times in virtue of the the added stability of implicit schemes.

We will also study and compare mixed methods with the other existing methods to

benchmark their usefulness in stress estimation with respect to state-of-the-art software.

Currently, the most popular deformation model is B-splines, which have been shown to

produce numerical artifacts when estimating gradients (Hurtado et al., 2017). This was one

of the main motivations for the development of a mixed scheme in lung image registration,

and we expect it to perform better than current approaches.

Finally, we will develop an a posteriori method to establish a way of performing mesh

refinement in registration, which is largely an open question. This will help the devel-

opment of future registration codes as it will give a guideline for refining. One of the

biggest challenges in registration is its computational cost, because the images are highly

nonlinear, so methods for cost reduction are critical. This problem has been traditionally

approached with smoothing techniques, and we expect to give a new way of reducing the

cost of registration.
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