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ABSTRACT  

During the last decades, viscous fluid dampers have become an increasingly used 

technology for energy dissipation, protecting structures from severe ground motions.  

The main objectives of this research are to unveil the design parameters that control the 

behavior of viscous dampers subjected to cyclic motions and, subsequently, develop a 

comparison between analytical and experimental responses.  Although extensive 

literature regarding these devices is available, little has been published about the 

internal design details that affect their behavior, due to the complex physical 

phenomena involved and the proprietary nature of the components of commercial 

dampers.  Motivated by this, mathematical models accounting for the coupled fluid 

dynamics and heat transfer of the flow inside the damper are developed and solved with 

state-of-the-art numerical simulation software with multiphysics capabilities, i.e., able 

to handle coupled systems of different physical phenomena.  First, the relevant 

equations that govern the problem are presented and discussed in terms of dominant 

tendencies.  Parametric analyses are then carried out to further understand the influence 

of aspects such as dimensions, geometric relations between components and fluid 

properties in damper behavior.  To validate and calibrate the model predictions, a full 

scale 600 k� prototype was designed, manufactured and tested at the Laboratory of the 

Department of Structural Engineering.  The built prototype included the possibility of 

exchanging its piston, allowing the testing of different internal fluid passage 

configurations as well as different fluid viscosities.  Results show good numerical 

agreement between the mathematical and physical models, which is particularly 

relevant for the future design and production of other damper capacities and 

configurations.  In general, uncertainties in the model come from the representation 

through complex partial differential equations, but also from the rheological properties 

of the employed fluids, specifically their nonlinear constitutive behavior. 

Key words: Vibration Control; Energy Dissipation; Passive Systems; Seismic 

Protection; Viscous Fluid Damper; Non Linear Viscous Fluid Damper; Multiphysics; 

Viscous Heating; Conjugate Heat Transfer. 
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RESUME�  

Durante las últimas décadas, el uso de amortiguadores viscosos para la disipación de 

energía en estructuras expuestas a sismos severos ha aumentado progresivamente.  Los 

objetivos principales de este trabajo son develar los parámetros de diseño que controlan 

el comportamiento de amortiguadores viscosos sometidos a excitaciones harmónicas y, 

posteriormente, desarrollar una comparación entre respuestas analíticas y 

experimentales.  A pesar de que existe una amplia literatura relacionada a este tipo de 

dispositivos, poco se ha publicado sobre los detalles de diseño que afectan su 

comportamiento, debido a la complejidad de los fenómenos físicos involucrados y al 

secreto industrial que protege a los componentes de amortiguadores comerciales.  

Motivado por esto, se desarrollaron modelos matemáticos que consideran la dinámica 

de fluidos y el comportamiento térmico dentro del amortiguador, los cuales se 

resolvieron con software de simulación numérica con capacidades multifísicas, es 

decir, capaces de manejar distintos fenómenos físicos acoplados.  Primero, se presentan 

las ecuaciones relevantes que gobiernan el problema y se discuten sus tendencias 

dominantes.  Luego se llevan a cabo análisis paramétricos para entender en 

profundidad la influencia de aspectos tales como dimensiones, relaciones geométricas 

entre los distintos componentes y propiedades del fluido en el comportamiento del 

amortiguador.  Para validar y calibrar los modelos se diseñó y fabricó un prototipo a 

escala completa con una capacidad de 600 k�, el cual fue ensayado en el Laboratorio 

de Ingeniería Estructural.  El prototipo incluye un pistón intercambiable, permitiendo 

ensayar distintas configuraciones internas y fluidos.  Los resultados muestran una 

buena concordancia entre los modelos matemáticos y físicos, lo cual resulta relevante 

para el diseño futuro y la producción de otras capacidades y configuraciones.  En 

general, las incertidumbres del modelo se pueden atribuir a la representación a través 

de ecuaciones diferenciales parciales complejas, pero también a las propiedades 

reológicas de los fluidos empleados, especialmente su relación constitutiva no lineal.     



xiv  

Palabras Clave: Control de Vibraciones; Disipación de Energía; Sistemas Pasivos; 

Protección Sísmica; Amortiguador Viscoso Lineal; Amortiguador Viscoso No Lineal; 

Calentamiento Viscoso; Transferencia de Calor Conjugada.   



 

1 

 

 

 

1. I�TRODUCTIO� 

The traditional approach for designing earthquake resistant structures is to provide them 

with a combination of lateral resistance and ductility, that is, the ability of its elements to 

deform beyond their elastic limit without a significant loss of strength.  Under this premise, 

structural damage, such as cracking and/or formation of plastic hinges, is likely to occur 

during severe ground motions.  The addition of supplemental energy dissipation devices 

will mitigate this effect; they will absorb part of the mechanical vibration energy, 

decreasing the ductility demand on structural members. Viscous fluid dampers are a 

proven and increasingly used technology for this purpose, dissipating the mechanical 

energy primarily through heat.  Among seismic protection devices, they present advantages 

such as: (i) an extraordinarily high level of energy dissipation density, i.e., they dissipate 

large amounts of energy relative to their size (Symans and Constantinou 1998), (ii) ease of 

implementation in either new or retrofit designs, (iii) no need for replacement after 

earthquakes, and (iv) an output force dependent on velocity, which is out-of-phase with 

displacements, thus reducing structural responses without increasing elastic forces (Lee 

and Taylor 2001). 

 

The basic operating principle for these devices is moving a piston through a viscous 

fluid enclosed in a cylindrical housing, as shown in Figure 1-1.  The piston movement 

forces the fluid to pass from one chamber to the other through different types of orifices, 

being generally acknowledged that the choice of these orifices is a key aspect in 

controlling the damper’s behavior (e.g., Cameron and Makris 2005; Constantinou and 
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Symans 1992; Soong and Dargush 1997; Symans and Constantinou 1998; Valdebenito et. 

al. 2010; Wolfe et. al. 2008). 

 

Figure 1-1: A typical internal view of a viscous fluid damper.   

It is commonly accepted, yet not always accurate as will be discussed in this thesis, 

that a viscous damper’s ouput force relates to the velocity of its end supports by a power 

law: 

 ( )sgnF C V V
α

=  (1.1)    

where F is the output force; C is a damping coefficient; V is the relative velocity of the 

damper’s ends (i.e., the piston’s velocity); sgn( ) is the sign function; and α is an exponent 

with values ranging typically from 0.2 to 1 for structural engineering applications. 

 

Extensive literature is available regarding the dynamic behavior of viscous dampers; 

however, due to the complex physical phenomena involved in their operation and the 

proprietary nature of commercial damper components, little has been published about the 

internal design details that control their force-velocity constitutive relationship.  For 

instance, many authors attribute low velocity exponents (α < 1) to intricate orifices in the 
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piston (Cameron and Makris 2005; Constantinou and Symans 1992; Symans and 

Constantinou 1998; Valdebenito et. al. 2010); nevertheless, no further details are given.  

Motivated by this, the main objective of this research is to understand how different design 

aspects affect viscous damper behavior using state-of-the-art numerical simulation.  The 

impact of geometric dimensions and relations, fluid properties, and input characteristics 

(amplitude and frequency) on the force-velocity relationship for dampers with different 

types of orifices was investigated.   

 

Viscous damper behavior is also affected by fluid heating, mainly because of the 

force reduction and internal pressure rise that take place as the number of cycles increases.  

Consequently, a further objective is to evaluate these effects, for which the damper 

modeling presented herein is able to consider the interaction of fluid dynamics and heat 

transfer.  Commercially available software able to simultaneously solve coupled systems 

of different physical phenomena, a concept denoted as multiphysics, were used in these 

calculations.  Specifically, these were CFX, a finite volume based computational fluid 

dynamics program included in ANSYS (ANSYS Inc. 2009), and COMSOL (COMSOL 

AB 2008), a finite element based multiphysics program.     

 

Finally, to validate and calibrate the models, a full scale prototype was manufactured 

and tested.  The prototype included an exchangeable piston, allowing dynamic testing of 

different internal configurations and fluids.     
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2. PROBLEM STATEME�T A�D DAMPER EQUATIO�S  

Figure 2-1 presents a general scheme of the problem in question.  A piston is subjected to a 

sinusoidal displacement with amplitude A and angular frequency ω = 2π f ; as it moves, 

fluid passes from one chamber to the other through orifices, such as an annular gap 

between the cylinder and a piston of slightly smaller diameter and/or cylindrical orifices 

drilled through the piston.  The fluid’s resistance to flow will subject the piston to stresses 

on its surfaces that will result in the output force.  Hence, the first goal of the model is to 

determine the fluid’s velocity and pressure fields and the corresponding output force at 

each instant, given the piston velocity.  Internal work, as a result of the intermolecular 

forces exerted as fluid layers try to slide past one another, will increase the fluid’s 

temperature.  Therefore, a second goal of the model is to determine the temperature field 

(on the fluid and solid parts), which will influence the viscosity of the fluid.       

cylindrical steel housing

heat convected to 

surrounding ambient air
T

stresses on piston 

faces generate F

amb

V

(sinusoidal)
fluid moves from 

one chamber to the 

other and heats

T(x)

u(x), p(x)

T(x)

 

Figure 2-1: Schematic representation of the problem in concern.   

2.1 Fluid Dynamics 

The equations that model the fluid motion derive from basic continuum conservation 

principles.  Conservation of mass and linear momentum lead to: 
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 ( ) 0
t

ρ
ρ

∂
+ ∇ ⋅ =

∂
u  (2.1) 

 p
t

ρ ρ τ
∂

+ ⋅∇ = −∇ + ∇ ⋅ +
∂

u
u u F  (2.2) 

where ρ is the fluid density; ( ), , ,u v w t=u is the velocity field; ∇u is a velocity 

gradient tensor; p is the pressure field; τ is the deviatoric or viscous stress tensor; and 

F corresponds to body forces, in this case 0.  Eq. (2.2) represents a set of equations 

commonly referred to as the Navier-Stokes equations.     

 

To solve Eqs. (2.1) and (2.2), further relations between the variables are needed.  

Accordingly, a fluid constitutive law expresses that viscous stresses are proportional 

to the symmetric strain rate tensor, defined as: 

 ( )
1

2

T = ∇ + ∇
 

S u u  (2.3) 

Considering an isotropic fluid and using Stokes assumption, S and � are related by a 

proportionality parameter µ, the dynamic viscosity of the fluid: 

 ( )
2

2
3

τ µ µ= − ∇ ⋅S u I  (2.4) 

If viscous stresses are linearly proportional to velocity gradients, i.e., µ is constant, 

the fluid is said to be Newtonian.  In contrast, the relation is non linear for non-

Newtonian fluids. 

 

If the fluid is considered incompressible, density is constant and Eq. (2.1) 

simplifies to: 
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 0∇⋅ =u  (2.5) 

Considering Eq. (2.5) and substituting Eq. (2.4) into (2.2) yields: 

 ( )
T

p
t

ρ ρ µ
∂  + ⋅∇ = −∇ + ∇⋅ ∇ + ∇

 ∂

u
u u u u  (2.6) 

Thus, for an incompressible fluid, Eqs. (2.5) and (2.6) are enough to form a system 

with the same number of equations and unknowns as long as µ is a function of the 

velocity field only.   

 

Silicone oil, used as the damper fluid, is significantly more compressible than 

most liquids.  Despite this, assuming incompressibility leads to a very good 

approximation of the damper’s force-velocity relationship, accurately predicting the 

maximum force and providing a “backbone” curve that resembles the shape of the 

result considering compressibility, as will be seen.  It is particularly accurate at low 

frequency excitations.  Computationally much less expensive, the incompressibility 

assumption is suitable for parametric analysis.   

  

If compressibility is to be considered nonetheless, fluid density may be related to 

pressure with: 

 ( )1ref refp pρ ρ β = + −   (2.7) 

where ρref represents the density at a reference pressure pref and β is the fluid 

compressibility, assumed constant.  This formulation is known as barotropic, since 

density depends only on pressure.  With the boundary conditions used herein 

(detailed further on), this formulation is valid as long as the Mach number, defined as 
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Ma ρ β= ⋅u , is less than one.  The practical limit is however lower than one since 

already at moderate Mach numbers the equations start to display very sharp gradients 

that require special numerical techniques.  The rule of thumb is that these effects will 

not appear for 0.3Ma <  (COMSOL AB 2008).  If viscosity is a function only of the 

velocity field, Eqs. (2.1) through (2.4) and (2.7) form a system with the same number 

of equations and unknowns, allowing to completely determine the damper’s force-

velocity relationship.   

 

The damper’s output force at each time instant may be calculated by integrating 

τ and p in the axial direction at all piston surfaces in contact with the fluid.  Since 

viscous stresses are generally negligible in comparison to pressure, an excellent 

approximation of this force is Ap·∆p, where Ap is the area of the piston face and ∆p is 

the pressure difference between chambers. 

2.2 Heat Transfer  

Fluid heating also plays an important role in damper performance.  For instance, end 

seals (see Figure 1-1) have operating temperature limits, the steel housing cylinder 

(which confines the fluid) must be designed to withstand the pressure build up due to 

fluid thermal expansion and, most important, the damper output force is expected to 

decline progressively as the fluid viscosity decreases with the rise in temperature.  

Hence, for design purposes it becomes relevant to estimate such force reduction as 

the number of cycles increases. 
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The scalar equation that governs the temperature field within the fluid or solid is 

derived from the conservation of energy: 

 ( ) ( ) :p

T
C T k T

t
ρ τ

∂ 
+ ⋅∇ = ∇ ⋅ ∇ + 

∂ 
u S  (2.8) 

 where T is the temperature field; pC  is the specific heat of the medium; and k is the 

thermal conductivity.  This formulation is valid as long as the Mach number is well 

below one, i.e., 0.3Ma < , since the sound wave transport term is being neglected 

(COMSOL AB 2008).  The term :τ S  represents the rate of work for changing the 

shape of a fluid element at constant volume and is known as the dissipation function.  

It acts as a source of thermal energy in the damper, since work is converted 

irreversibly into heat through this mechanism. Naturally, in the domain represented 

by the steel housing, u and S are zero, and heat is transferred only by conduction.   

 

Heat transfer to the ambient air is modeled with a convection boundary 

condition, ks∂T/∂e = h(T – Tamb), in which ks is the steel thermal conductivity, e is the 

direction normal to the boundary and h is a heat transfer coefficient.  The rod 

boundary was considered adiabatic in its full length.   

 

If the velocity field is known, after solving the continuity and momentum 

equations, Eq. (2.8) may be solved independently.  However, the three conservation 

equations may be coupled if some fluid property, viscosity in our case, is modeled as 

temperature dependent.        
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2.3 Fluid Properties 

Silicone oil or polydimethylsiloxane, an organic silicon-based polymer, is commonly 

used as the fluid in viscous dampers.  For low values of shear rate, it has Newtonian 

behavior; however, beyond certain level, viscosity starts to decrease with increasing 

shear rate, phenomenon known as shear thinning.  This phenomenon is explained by 

the stretching of entangled molecules, permitting them to move in a more aligned 

manner, thus, with less resistance (Hou et. al. 2007).  The process is completely 

reversible: viscosity returns to its initial values when shear rate ceases. 

 

If temperature is considered constant, the viscosity-shear rate constitutive 

relationship for silicone fluid may be modeled by the Yasuda-Carreau equation 

(Clasen et.al. 2010, Ghannam and Esmail 1998, Swallow 2002, Hou 2008): 

 ( )
1

0

1

n
a aµ µ

κ γ
µ µ

−

∞

∞

−  = + ⋅
 −

�  (2.9) 

where µ0 is the zero shear rate viscosity (valid for low shear rates); µ∞  is the infinite 

shear rate viscosity (zero in this case); κ is a characteristic time (the reciprocal of the 

intercept between the power law line and the zero shear rate viscosity); n is the power 

law region exponent, a represents the width of the transition region between 

Newtonian and power law behavior; and γ�  is the shear rate magnitude defined as: 

 ( ) ( )
1

2 2 : 2
2

γ = =S S S�  (2.10) 

As expressed in (2.9), viscosity is only a function of the velocity field and may be 

considered along with (2.1) through (2.4) and (2.7) to solve just for the fluid 
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dynamics.  This case is referred to as isothermal flow, since temperature is assumed 

constant and constant values of µ0, κ and a corresponding to the assumed temperature 

are used.      

 

Although less pronounced than in most liquids, silicone oil exhibits a decrease in 

viscosity with rising temperature.  This can be incorporated into Eq. (2.9) by 

multiplying µ0 and κ by a temperature dependent shift factor Z(T) = exp(b/T – b/Tref), 

where b is a parameter and Tref  is a reference temperature to which µ0 and κ 

correspond (Swallow 2002).  Hence, the complete equation to simultaneously model 

shear and temperature response adopted in this research is: 

 ( ) ( ) ( ) ( ){ }
1

0, 1 ( )

n
a a

ref refT Z T T Z T Tµ µ κ γ

−

 = ⋅ + ⋅ ⋅ u �  (2.11) 

Applying Z(T) to the viscosity-shear rate relationship for a reference temperature 

has two effects which can be observed in Figure 2-2 and Figure 2-3.  Multiplying µ0 

by Z(T) causes a vertical displacement of the curves corresponding to different 

temperatures.  The second effect intends to emulate the behavior observed by 

Swallow (2002) during rheological tests of high viscosity silicone gum: viscosity 

became much less dependent of temperature beyond certain shear rate, where 

terminal power law flow was found.  Thus, multiplying κ by Z(T) causes the curves 

corresponding to different temperatures to tend to merge as shear rate increases.  

Considering µ as a function of temperature couples the fluid dynamics and heat 

transfer and allows the evaluation of additional effects, such as the ones discussed at 

the beginning of section 2.2. 
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Two types of silicone oil were used in this research: one with µ0 = 1 Pa·s at Tref  

= 25°C (referred to from here on as SF1) and another with µ0 = 30 Pa·s at Tref  = 20°C 

(referred to from here on as SF30).  In the case of SF1, literature reports several 

different values for κ, α and n (Clasen et. al. 2010; Gelest Inc. 2004; Hou, et.al. 2007; 

Hou 2008).  Herein, the parameters reported by Hou (2008) were adopted, who 

calculated them by fitting Eq. (2.9) to previous experimental data (Currie and Smith 

1950; Lee et. al. 1970) of silicone oil with the same viscosity at 25°C.  Parameter b 

was taken from Ghannam and Esmail (1998).  In the case of SF30, rheological 

analysis for a sample of the silicone oil actually used in the prototype was 

subcontracted to a specialized laboratory (TA Instruments 

http://www.tainstruments.com).  Incremental shear rate tests were carried out at 

different constant temperatures with viscosity being measured up to values of 

approximately 1000 [1/s].  Since much higher values are expected in the damper, an 

additional (γ� ,μ ) pair for polydimethylsiloxane with  µ0 = 30 Pa·s at 25°C was 

obtained from a manufacturer’s manual (Gelest Inc. 2004).  This point was added to 

the TA Instruments viscosity-shear rate plot corresponding to µ0 = 30 Pa·s (i.e., at 

20°C) and κ, α and n were identified from the resulting curve.  Parameter b in this 

case was calculated by fitting an equation in the form of µ0 = c∙exp(b/T) to a plot of 

the measured values of µ0 by TA Instruments versus T, with c being a constant.  This 

is an Arrhenius type equation (Ghannam and Esmail 1998) and is equivalent to 

modeling the zero-shear rate viscosity as µ0 = Z(T) µ0(Tref).   Please see Appendix A 

for details on the parameter determination for SF30.      
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Based on pressure-volumetric contraction data supplied by a manufacturer 

(Clearco Products), the fluid density ρ was assumed to vary linearly with pressure 

according to a compressibility coefficient, as in Eq. (2.7), for typical damper 

operating pressure ranges. 

 

Values of the parameters used in the modeling, except otherwise indicated, are 

presented in Table 2-1 and the corresponding viscosity-shear rate relationships for 

SF1 and SF30 are shown in Figure 2-2 and Figure 2-3.  These figures clearly show 

the shear thinning and the effect of the shift factor; applying it to µ0 causes a parallel 

displacement of the curves; applying it to κ causes that the curves corresponding to 

different temperatures tend to merge as shear rate increases.  By comparing the two 

fluids, SF30, which is composed of molecules with greater weight, displays a steeper 

viscosity decrease as shear rate increases.  It will be seen that shear thinning plays a 

critical role in viscous damper behavior. 
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Figure 2-2: Viscosity-shear rate relationship for SF1 at different temperatures.  
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Figure 2-3: Viscosity-shear rate relationship for SF30 at different temperatures.  

Table 2-1: Values of parameters used in the modeling 

 Value Units Description 

ρref 970 kg/m
3 

Fluid density at atm. pressure 

pref 0 bar Gauge reference pressure 

Tamb 293.15 K Ambient temperature 

β 0.9341 GPa
-1 

Fluid compressibility 

κ 7.2e-6; 1.41e-3 s Characteristic time  SF1 (25°C); 

SF30 (20°C) 

a 0.6; 1.325  Yasuda exp. SF1; SF30 

n 0.43; 0.407  Power law index SF1; SF30 

b 1452; 1746 K Shift factor parameter SF1; SF30 

Cf 2000 J/(kg·K) Fluid specific heat 

kf 4.4 W/(m·K) Fluid thermal conductivity 

ks 50.9 W/(m·K) Steel thermal conductivity 

h 15.0 W/(m
2
·K) Steel-air heat transfer coeff. 

Cs 486 J/(kg·K) Steel specific heat 

ρs 7854 kg/m
3
 Steel density 
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2.4 Domain Deformation 

All previous equations are derived from an Eulerian standpoint, in which mesh nodes 

remain fixed in space, the usual practice in computational fluid dynamics.  

Nevertheless, in this particular problem the fluid domain continually changes its 

shape as the piston moves.  Fortunately, the mentioned software (COMSOL AB 

2008, ANSYS Inc. 2009) is able to integrate these equations in grids that deform.  

Boundary displacements may be prescribed (the sinusoidal piston displacement in 

this case), to which the domain conforms by solving a displacement diffusion 

equation at the beginning of each time step, preserving the relative distribution of the 

initial mesh (Ansys CFX-Pre User’s Guide 2009).   

 

The previous technique is computationally expensive and time consuming.  

Because of that, Hou (2008) proposed an alternative model in which the analyzed 

domain remained unchanged at all times and fluid velocity was specified at the nodes 

located at one end of the fluid domain, generating a flow that resembles the fluid 

displaced by the movement of the piston.  In the opposite end, a zero relative pressure 

is imposed. All fluid boundaries are immobile rigid walls, in which the no-slip 

condition applies, that is, fluid velocity is zero relative to the wall (Figure 2-4).  This 

approach is considerably faster, simpler and produces results in excellent agreement 

with the analogous deforming mesh model.  Thus, the imposed flow model was used 

in parametric analyses of the fluid dynamics of the damper.   
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u=0u = Aωsin(ωt) p=0

 

Figure 2-4: Boundary conditions in the imposed flow model. 

2.5 Summary of Equations 

For convenience, the previous equations are summarized in Table 2-2 .  This table 

shows the three types of formulations solved during this research and the 

assumptions that lead to them.  Depending on the pursued objective, there are: 

isothermal incompressible flow, isothermal barotropic flow and non-isothermal 

incompressible flow.     
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Table 2-2: Summary of the equations that govern the fluid flow and thermal behaviors 

inside the damper. 

General Conservation Equations
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3. PARAMETRIC A�ALYSES 

Parametric analyses were performed to study how geometric dimensions and fluid 

properties affect the velocity exponent α (Eq. (1.1)) of pistons with annular orifices or 

drilled cylindrical orifices.  Instead of independently varying different dimensions, for 

instance gap width h in the annular case, a single parameter, representative of the general 

geometric relationships, that correlated with α was derived for each configuration.  Since 

the interest was solely on force-velocity relationships, isothermal fluid dynamics was 

considered with μ0 and κ corresponding to 25°C for SF1 and 20°C for SF30.  Furthermore, 

in order to alleviate computational cost, imposed flow models and fluid incompressibility 

were assumed throughout this section.   

3.1 Annular Orifice Geometry 

Considerable insight is gained by first solving analytically a simplified version of this 

problem.  In Figure 3-1, when h<<Rp, flow through the annular region can be 

idealized as flow between parallel plates (Soong and Dargush 1997).  Two limit cases 

may then be considered: prevalence of viscous effects or prevalence of inertial 

effects. (Please refer to Appendix B for a complete derivation of the following 

equations.) Assuming stationary flow, a Newtonian incompressible fluid, neglecting 

the piston’s velocity, approximating the output force as Ap·∆p and neglecting 

convective acceleration in the momentum balance equation, the former limit case 

yields:    

 
( )

2
2 2

0

3

6p v p

viscous

p

R R L
F V

R h

πµ−
=  (3.1) 
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which results in a linear relationship between output force and piston velocity.  If the 

same assumptions are made, but this time ignoring the viscosity instead of the 

convective acceleration, a quadratic relationship between force and velocity results: 

 
( )

3
2 2

2

2 28

p v

inertial

p

R R
F V

R h

ρπ −
=  (3.2) 

L

     h R

RV F

p

v

p

Rc

 

Figure 3-1: Annular orifice geometry.   

Using an idea presented by Li et. al. (2006), the quotient of these two 

expressions offers an indication of how different parameters influence two very 

dominant trends of damper behavior. 

 
( )2 2

048

p vinertial

viscous p p

R R hF
V

F L R

ρ

µ

−
=  (3.3) 

As density, velocity, piston radius and gap width increase, force-velocity will 

tend to a quadratic relationship (α = 2).  As viscosity and piston length increase, the 

behavior will tend to be linear (α = 1).  The quotient in (3.3) is, not surprisingly, 

related to the Reynolds number for flow between parallel plates, defined as Re = ρVh 

/ μ.    
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For the fluids and the range of frequencies (up to 2 Hz) and amplitudes (up to 20 

cm) considered in this thesis, flow dominated by viscous rather than inertial effects 

prevails largely in annular orifice dampers that produce a reasonable output force 

relative to their size.  Accordingly, Reynolds numbers in the gap for the modeled 

configurations are low, generally Re < 100.  As mentioned, this would result in a 

linear damper if the fluid was Newtonian, yet this is not the case for SF1 and SF30. 

Hou et. al. (2007) showed that shear thinning had a significant impact on the 

behavior of dampers filled with silicone oil, making the force-velocity relationship 

deviate from linear to α < 1.  This phenomenon is induced by the no slip condition.  

Inside the gap the velocity profile will resemble a parabolic shape (it would be 

parabolic in the case of a Newtonian fluid, theoretically).  Maximum velocity, 

achieved approximately halfway through the gap (h/2), will have to compensate for 

the fluid with zero relative velocity at the walls, developing steep velocity gradients 

in that zone. Thus, shear rate enters the non-Newtonian range and the fluid thins.  As 

the flow through the gap increases, viscosity will decrease even further. Force will 

therefore increase at a lower rate than linear as piston velocity increases, i.e., α < 1.   

 

It is intuitive that the amount the fluid thins will be related to the area of the 

annular orifice and the cross section area of the fluid chamber.  For a given piston 

velocity, the smaller the ratio between these two, the greater the velocity in the gap 

and shear thinning.  Average velocity in the gap can be estimated using continuity: 
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2
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2

p v

ave

p

R h R
v V

R h

π

π

 + −  =  (3.4) 
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The shear rate magnitude inside the gap may be roughly estimated assuming, for 

example, a linear velocity profile within the gap (Hou et. al. 2007).  At maximum 

piston velocity, the corresponding average shear rate is: 

 
( )

2
2

2

2
2

2
/ 2

p v
ave

ave

p

R h R
v

A f
h R h

γ π

 + −  = = ⋅�  (3.5) 

With shear thinning as the foremost cause of behavior to deviate from linear, aveγ�  

is a natural candidate to correlate with α.  Consequently, a vast number of simulations 

were carried out with different combinations of Rp, Rv, h, Lc, A and f.  The considered 

maximum input velocities ranged from 10 cm/s to 50 cm/s and gap widths h ranged 

from 10% to approximately 0.1% of Rp.  To reduce calculation time, axisymmetry of 

the annular orifice geometry was used with the assumption that all variables were 

independent of the tangential coordinate and velocity was zero in that direction.  After 

solving each case, α-values were fitted to the resulting force-velocity curves and 

plotted against its corresponding aveγ�  as shown in Figure 3-2, evidencing the 

significant impact of shear thinning.  Please see Appendix C for details on the 

geometries and results corresponding to the solved models.     



 

21 

 

 

 

0 5 10
0.4

0.6

0.8

1

γ̇ave x 105 [1/s]

α

0 5 10
0.4

0.6

0.8

1

γ̇ave x 105 [1/s]

α

(a) (b)
 

Figure 3-2: Variation of velocity exponent α as a function of average shear rate: (a) 

SF1, (b) SF30.   

While SF1 displays a more gradual decrease in α as aveγ�  increases, SF30 

displays a sudden decline with α stabilizing at approximately 0.41.  This is consistent 

and intimately related to the rheological behavior of the considered fluids, Eq. (2.9).  

Both curves in Figure 3-2 tend asymptotically to the value of parameter n, 0.43 for 

SF1 and 0.407 for SF30; while this trend is evident in the case of SF30, much higher 

shear rates would be needed to make it apparent in Figure 3-2 (a).  How fast this 

asymptotic value is reached depends on parameter a.      

 

Please note that no values of α greater than 1 were obtained, indicating that 

inertial effects, which would be responsible of generating exponents greater than 

unity, do not play a significant role in annular orifice configurations for the fluids and 

velocity range considered.  Moreover, α-exponents close to one were only generated 

with values of 
ave

γ�  leading to negligible output forces in relation to damper size.  In 

contrast, low values of α in the case of SF1 were generated with geometries that led 

to unrealistically high output forces.  Considering that a “reasonable” geometric ratio 
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h / Rp would be close to 1%, SF1 would be associated to α-values in the range of 0.8 

to 0.9, while SF30 to values of α close to 0.4. 

3.2 Piston with Cylindrical Orifices 

Again, we begin by analytically studying the two limit trends of behavior, dominance 

of viscous or inertial effects.  (Please refer to Appendix B for a complete derivation 

of the following equations.) With the same assumptions as before and referring to 

Figure 3-3, the viscous case yields: 

 
( )

2
2 2

0
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8 o p v

viscous

o

L R R
F V

�R

πµ −
=  (3.6) 

where � is the number of orifices in the piston.  On the other hand, the inertial case 

resolves to:   
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o

R R
F V

� R

ρπ −
=  (3.7) 

Once more, the viscous limit case relates force and velocity linearly, while the 

inertial limit case quadratically.  Dividing Eq. (3.7) by (3.6) yields: 
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−
=  (3.8) 

As density, piston radius and velocity increase, inertial effects will become more 

important and α will tend to values greater than one.  As viscosity, number of orifices 

and orifice length increase, viscous effects will become more important and α will 

tend to one (Li et. al. 2006) or less, depending on how much the fluid thins as 

discovered in the previous subsection. 
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Figure 3-3: Geometry of the piston with cylindrical orifices. 

Unlike the annular orifice configuration, inertial effects are more likely to 

dominate in flow through cylindrical orifices because there will be less fluid-solid 

contact area where the no slip condition causes viscous effects to prevail – naturally, 

this is true as long as the piston does not have too many, very small orifices.  Hence, 

in addition to the previous focus on viscous flow and shear thinning, the cylindrical 

orifice case requires to account for an additional source of non-linearity, inertial 

effects advocating for α > 1. 

 

Shear rate within the orifices was estimated using continuity and assuming a 

parabolic velocity profile.  The average shear rate for such a profile is: 
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ave
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v

R
γ =�  (3.9) 

and the corresponding average velocity at each orifice is: 
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By substituting aveγ�  in the Yasuda-Carreau equation, an average value of dynamic 

viscosity inside the orifice, μave, can be obtained to replace μ0 in Eq. (3.8) to account 
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for shear thinning.  The resulting expression leads to the parameter used in this case 

to correlate with α :   

 
( )2 2
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16
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k V

�L

ρ

µ

−
=  (3.11) 

A great number of models with different geometric dimensions and covering a wide 

range of kc values were analyzed.  Maximum input velocities ranged from 1 to 100 

cm/s, orifice number from 2 to 40, piston lengths from 3 to 25 cm, piston radii from 5 

to 15 cm and orifice radii from 1 to 10 mm.  Please see Appendix C for details on the 

geometries and results corresponding to the solved models. 

 

Contrary to the annular configuration, axial symmetry is lost in this case.  

However, an alternative method was implemented by modeling flow at each orifice 

independently, allowing the use of 2D axisymmetric coordinates.  In the imposed 

flow approach, the total flow rate entering (or leaving) the fluid domain is Q = 

π(Rp
2−Rv

2
)V and this flow rate is distributed among the � orifices.  Since pressure is 

nearly uniform in each chamber, the orifices work in parallel and flow rate through 

each one is driven by the same pressure differential.  Thus, flow rate through each 

orifice will depend on its own dimensions only.  The simplest scenario is for equal 

orifices, as each flow rate qi equals Q/�.   

 

Taking the previous idea into account, the model used in the parametric analysis 

imposed the flow rate in an axisymmetric configuration of a single orifice and the 

corresponding ∆p was determined.  The corresponding geometry and boundary 
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conditions used are shown in Figure 3-4.  With the resulting pressure-flow rate 

relationship, damper output force was calculated using F=Ap·∆p and piston velocity 

with V=qi�
(Rp
2− Rv

2
).   

     

r
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p=0

q

u=0

v=0

i

Axis of symmetry r=0

L L

RRi o

cp

orifice  

Figure 3-4: Model and boundary conditions used for parametric flow analysis of 

piston with cylindrical orifices. 

Values of kc versus α are plotted for each model in Figure 3-5, in which results are 

grouped according to similar levels of average shear rate (or µave).  It is apparent that 

as kc increases, α also increases.  For SF1 (Figure 3-5 (a)) exponents of α >1 are 

easily achieved, unlike the annular orifice case, indicating that inertial effects play an 

important role in this type of configuration.  Theoretically, the upper limit for α is 2, 

corresponding to fully developed turbulent flow in a pipe.  For SF30 (Figure 3-5 (b)) 

the trend becomes clearer as average shear rate increases (µave decreases), since high 

viscosities do not allow to achieve greater values of kc.  The α-value for the lowest kc 

decreases as the shear rate increases due to shear thinning.  For SF30 it seems to 

reach a lower limit at ~ 0.4 (again, the value of parameter n) as in the annular orifice 

geometry; hence, the lower limit for α is equal in both configurations.  In 

comparison, cylindrical orifices offer more flexibility if exponents greater or close to 

one are desired by using a fluid of lower viscosity, such as SF1. 
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Figure 3-5: Relationship between the α-values and parameter kc (Eq.(3.11)) for 

different values of aveµ : (a) SF1, (b) SF30.     

 

Results grouped under µave = 11.8 Pa∙s in Figure 3-5 (b) concentrate at very low 

values of kc since the high µave does not permit greater values given the range in 

which the other variables in kc were decided to fluctuate.   

3.3 Combining Different Types of Orifices 

The independent orifice approach may be generalized to cover more complex cases, 

such as pistons with cylindrical orifices of different diameters, combinations of 

cylindrical and annular orifices or, ultimately, combinations of any kind of orifices.  

Again, the objective of this approach is to develop a technique that is sufficiently 

accurate, but computationally much more economical than modeling the complete 

piston geometry in 3D to obtain the force-velocity relationship. 
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The underlying principle is the same as previously explained; orifices in parallel 

share the same ∆p across them and may be analyzed independently.  If all orifices are 

not the same, a different flow rate will correspond to each type for a given ∆p.  

However, if a pressure-flow rate curve is calculated for each orifice, the total flow 

rate Q passing through the piston may be obtained by horizontally adding the flow 

rates of each orifice at different ∆p values.  The damper force at that instant may then 

be approximated by F=Ap·∆p and the corresponding piston velocity calculated from 

V = Q / π(Rc
2 – Rv

2
).  This is graphically explained in Figure 3-6.  

q

Δp ΔpΔp

q
Q

i j q
i

q
j+

Type i Orifices Type j Orifices Total

 

Figure 3-6: The left side shows the pressure-flow rate relationship for each different 

type of orifice.  The pressure flow rate relationship for the complete piston may be 

derived by adding the flow rates. 

Section 4 will show an example where an annular orifice was combined with 

cylindrical orifices to accomplish a target behavior. 

3.4 Variable Area Orifice 

In general, low values of exponent α are preferred for structural applications.  

Dampers with high α will develop excessive peak forces that may damage braces and 

connections if unexpected high velocities occur, for example, under near fault ground 

motion (Valdebenito et. al. 2010).  On the contrary, peak forces will certainly be 

more controlled if α is low.  A low exponent damper will also be more efficient and 
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dissipate a greater amount of energy at similar levels of maximum force: its force-

displacement curve will resemble a rectangle while a linear damper’s curve, for 

example, will be elliptical.    

 

In an effort to generate lower exponents than those achievable with cylindrical or 

annular orifices, an orifice with an area that varies as ∆p increases was briefly 

studied.  Simply put, this means using valves.  To evaluate the potential of this idea, a 

cylindrical orifice with a spring loaded valve core attached at one of its ends was 

modeled, as seen in Figure 3-7.  This is a fluid-structure interaction problem: as the 

drag force exerted by the fluid increases, the valve core repositions by compressing 

the spring, making the area available for fluid flow greater.  To enhance the non 

linear effect, a preload was considered for the spring, thus the valve core only starts 

moving once the force exerted on it due to the flow exceeds the preload, F0.  Figure 

3-8 shows the pressure-flow rate relationship obtained with SF30 for the following 

values: do = 8[mm], vn = 3.3[mm], vt = 4.6[mm], Lv = 15[mm], dr = 1.3[mm], K = 

160[�/mm] and Fo = 450[�].  The mass of the valve core was not considered in this 

model, but it may be, in which case the valve core-spring system becomes a dynamic 

system.  Several of this type of orifices can be used in a piston, or even combined 

with other types, to achieve a desired behavior.  The force-velocity relationship of the 

complete device may be then predicted with the independent orifice approach.     
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Figure 3-7: Variable area orifice model. 
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Figure 3-8: Pressure-flow rate relationship and valve core displacement for the 

modeled variable orifice. 

It was previously seen that with annular or cylindrical orifices, the lowest 

achievable exponent was α = 0.41; in this specific case, the variable orifice produced 

a considerably lower exponent of 0.32, demonstrating the effectiveness of this idea 

and its potential for obtaining even lower exponents.  Furthermore, if the valve core 

is externally controllable, a semi-active device may be developed.  These aspects 

certainly represent lines for future investigation.                             
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4. DAMPER DESIG� 

Based on the previous results, a full scale prototype with a ± 20 cm stroke, nominal 

capacity of 600 k�, and exchangeable piston was manufactured and tested in three 

different configurations.  Other geometric dimensions common to all tested configurations 

of the device are internal radius Rc = 12 cm, wall thickness of 4.6 cm, radius of the piston 

rod Rv = 3.75 cm and cylinder length 60 cm.  Images of the used meshes and post-process 

images of interesting results while simulating these designs can be seen in Appendix D. 

 

The adopted design process is represented as a flow diagram in Figure 4-2.  The first 

step consists in establishing target values for α and C, the two parameters that characterize 

damper behavior according to Eq. (1.1).  However, an equivalent more straightforward 

alternative is to select a maximum force to be reached at a certain velocity.  The next step 

is to choose a configuration and fluid viscosity that is compatible with the target values.  

For instance, the previous analysis showed that SF30, due to its more pronounced shear 

thinning, is more suitable than SF1 to produce low α-exponents, and that cylindrical 

orifices usually lead to higher α-exponents than annular orifices.  The general procedure 

for both annular and cylindrical orifices is similar: the first step is to determine the 

parameter value ( aveγ�  for annular; kc for cylindrical) that yields the target α.  There is 

freedom to select the geometric properties of the damper as long as they satisfy Eq. (3.5) 

and Eq.  (3.11).  Because there are infinite combinations that yield a specific aveγ�  or kc 

value, several iterations may be needed until certain criteria, such as design feasibility, 

other geometric constraints, and minimum cost, is achieved.  The remaining dimensions 
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are determined by estimating the maximum force based on analytical viscous limit case 

approximations adapted to incorporate shear thinning.  For the annular configuration this 

is: 

 
( )

2
2 2

3

6
p v ave p

est  annular

p

R R L
F V

R h

π µ−
=  (4.1) 

where µave is the average viscosity obtained by replacing the corresponding aveγ�  value, 

Eq.(3.5), into the Yasuda-Carreau equation, Eq. (2.9).  For cylindrical orifices, the viscous 

limit case force is Fcv=8π(Rp
2−Rv

2
)
2
µaveLoV/�Ro

4
, where µave is calculated by replacing 

ave cylγ�  (Eq. (3.9)) into the Yasuda-Carreau equation.  However, in the cylindrical orifice 

case inertial effects cannot be neglected.  To resolve this, it was found that the percentage 

by which the maximum forces obtained in the parametric analysis models differed from 

Fcv, correlated almost linearly with kc, as shown in Figure 4-1 for SF1.      
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Figure 4-1: Difference between maximum damper forces obtained in the cylindrical orifice 

parametric analysis and maximum forces approximated considering the viscous limit case 

for SF1: ( ) /
model cv cv

G F F F= −  

Therefore, force in the cylindrical orifice case may be estimated through the expression: 
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where G(kc) may be obtained from Figure 4-1 for SF1 and µave calculated by replacing 

8 / 3
ave cyl ave o

v Rγ =�  into Eq. (2.9).  Again, the dimensions resulting from this process may 

not satisfy some design criteria and several iterations may be necessary.       
 
  

 

A third alternative presented in Figure 4-2 is to combine annular and cylindrical 

orifices based on the independent orifice approach.  First, the target force-velocity 

relationship is approximated with a pressure-flow rate relationship ∆p(Q) assuming values 

for Rp and Rv.  Next, dimensions for the annular orifice are assumed and the corresponding 

pressure-flow rate relationship, ∆p(qa), estimated with, for example, Eq. (4.1).  Since ∆p is 

nearly uniform at each chamber, the pressure-flow rate relationship for the cylindrical 

orifices, ∆p(qc), is obtained by subtracting qa from Q at different ∆p values.  The resulting 

∆p(qc) relationship will have an associated αc and a certain (qc) max that should be reached 

at ∆pmax.  With these target values, the remaining dimensions (�, Ro and Lo) are determined 

using the same procedure as for the cylindrical orifices, and design iterations may be 

needed as indicated.  In one of the designs presented in this research (Design 1, subsection 

4.1), the cylindrical orifice α > 1 trend for SF1 is compensated with the α < 1 trend of the 

annular orifice case.       

 

Since only approximate expressions were involved up to this point, the final geometry 

needs to be verified using a fluid dynamics model.  Finally, multiphysics should be 

incorporated to evaluate temperature-viscosity related effects.  These last steps can be 

complemented with experimental work.       
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Table 4-1 summarizes the three designs presented herein in terms of configuration, 

target behavior, type of fluid, general dimensions and tests performed on them, including 

the initial fluid temperature.  Additional objectives for Designs 2 and 3 were to calibrate 

the rheological parameters.   
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Figure 4-2: Flow diagram representing the design process. 
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Table 4-1: Summary of the three damper designs.   

Design

2

1

3

Objectives Fluid Performed Tests

ID A [cm] f [Hz]     [cm/s]maxV

    1-1      12.4        0.14          10.9           27.6

    1-2      20.0        0.14          17.6           19.8

   2-1      12.4        0.21          16.4           26.5

   2-2       2.0          1.0           12.6           28.6

   3-1      12.4         0.21          16.4          20.0

   3-2        5.0          0.5           15.7          30.7

SF1

SF1

SF30

α = 1.0 and 

F = 600 kN at 

V = 46.5 cm/s

α ≈ 0.45 and 

F ≈ 600 kN at 

V = 14 cm/s

Model calibration

α ≈ 0.85 and 

F ≈ 450 kN at 

V = 16.5 cm/s

Model calibration

General Dimensions

1.0

15p

h  mm

L  cm

=

=

1.0 15

2.0 10

10

p

o o

h  mm, L  cm

R  mm, L  cm

N

= =

= =

=

L  cm

h  mm1.4

10p

=

=

 [°C]
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4.1 Detailed Example: Linear Damper 

The goal of Design 1 was to produce a linear damper (α = 1) able to achieve a force 

of 600 k� at a maximum velocity of 46.5 cm/s.  Since SF30 shear thins very quickly, 

SF1 was chosen.  However, shear thinning in SF1 is still sufficient to cause α < 1 in 

annular orifice configurations.  A piston with cylindrical orifices, on the other hand, 

will easily achieve exponents equal to one or greater, as shown in Figure 3-5 (a).  

Although the latter is a viable option to achieve the α = 1 objective, it presents some 

slight difficulties such as the need for many small diameter orifices and seals between 

piston and cylinder.  Alternatively, a combination of annular and cylindrical orifices 

was chosen, seeking that they would compensate each other’s tendencies (α < 1 for 

annular and α > 1 for cylindrical orifices) and produce a linear outcome.    
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First, the use of a cylinder with radius Rc = 12 cm was established and a gap of 1 

mm and length Lp = 15 cm were considered appropriate for the annular orifice.  With 

the annular orifice selected, Figure 4-3 shows three pressure-flow rate relationships: 

the target considering all orifices (relationship is linear), the one resulting for the 

annular orifice and the one required for the cylindrical orifices, i.e., the subtraction of 

the previous two. 
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Figure 4-3: Pressure-flow rate relationships for the design of the linear damper. 

With this, completing the design reduces to determining the dimensions and 

number of cylindrical orifices that generate the required pressure-flow rate curve.  

Figure 3-5 (a) shows that for SF1 experimenting an average shear rate associated to a 

viscosity of 0.6 Pa∙ s inside the orifices, kc ≈ 0.35 produces the sought velocity 

exponent of 1.14.  A word of caution regarding the calculation of kc and other 

expressions presented in subsection 3.2: piston velocity V should be replaced with qc 

/ π(Rc
2 – Rv

2
) where qc is the flow rate through all the cylindrical orifices.  The use of 

V corresponds to the case of a piston consisting solely of cylindrical orifices.  Since 

part of the total flow is through the annular orifice in this case, that term needs to be 
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adapted.  For instance, Vmax in Eq. (3.11) should be replaced with Vmax = qc max / π(Rc
2 

– Rv
2
). 

 

The other condition that must be satisfied is that ∆pmax at qc max should be ≈ 145 

bar, the required pressure differential to produce the output force of  600 k�.  To 

estimate ∆pmax, Eq.(4.2) was used assuming Rp ≈ Rc: 
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 (4.3) 

The following dimensions were found to satisfy simultaneously all previous 

conditions and represent a feasible option in terms of manufacture: � = 10, Ro = 2 

mm, Lo = 10 cm, which yield kc = 0.35, µave = 0.55 Pa∙ s and ∆pmax = 144 bar.  From  

Figure 4-1, G(kc) was established as 1.6. 
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5. �UMERICAL A�D EXPERIME�TAL RESULTS 

5.1 Force Velocity Results 

The prototype was connected to a dynamic actuator which imposes prescribed 

displacements along its axis, with maximum loading capacity 980 k�, stroke +/-50 

cm and, due to pump limitations, a maximum achievable velocity of approximately 

17.5 cm/s.  The experimental setting is shown in Figure 5-1.  Actuator displacement 

and the damper output force were recorded by a data acquisition system. 

Additionally, pressure at each chamber was recorded with transducers and monitored 

to ensure operation below 500 bar and fluid temperature was measured at one point 

inside the fluid chamber (at one of the cylinder caps) and at the housing cylinder’s 

outer surface.  In each test, frequency was held constant and the amplitude increased 

from zero up to the target level; after that, a minimum of five complete cycles were 

counted.  (Results for all the performed tests and treatment of the raw data are 

detailed in Appendix E.)    

 

Figure 5-1: Experimental setting.   
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Displayed in Figure 5-2 through Figure 5-4 are the numerical and experimental force-

velocity and force-displacement relationships obtained for the performed tests.  The 

numerical results presented correspond to imposed flow models with compressibility; 

in these results heat transfer was neglected and temperature was kept constant at the 

initial fluid temperature (Ti in Table 4-1).  For the annular configurations (Designs 2 

and 3 in Table 4-1), two-dimensional axisymmetric coordinates were employed; for 

Design 1, the fluid domain consisted in a three-dimensional symmetric portion of the 

cylinder, considering the annular and cylindrical orifices simultaneously, not 

independently. 
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Figure 5-2: Experimental and numerical results for Design 1.   
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Figure 5-3: Experimental and numerical results for Design 2. 
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Figure 5-4: Experimental and numerical results for Design 3. 
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It is apparent from these figures that for Designs 1 and 2 (SF1), the predicted 

and measured force-velocity relationships show reasonable accuracy in terms of 

maximum force, though their α-values differ.  For Design 3 (SF30), discrepancies are 

greater, both in maximum force and α-value (See Table 6-1).  This is not surprising 

given the non-linear constitutive behaviors adopted to represent the fluids.  For SF1, 

reported values for the Yasuda-Carreau parameters a, n and κ exist in the literature 

(Clasen et. al. 2010, Hou 2008, Hou et. al. 2007), but without general consensus; the 

used values (Table 2-1) were taken from Hou (2008).  For SF30, these parameters 

were roughly estimated, as explained in detail in Appendix A. 

 

To improve the accuracy of the numerical models, the Yasuda-Carreau 

parameters for each fluid were calibrated using Tests 2-1 and 3-1.  Eq. (4.1), with V 

assuming a range of values, was used to construct analytical force-velocity curves.  

Since Fest annular is a function of a, n and κ through μave, these parameters were varied 

until the curve that best fit the experimental data was obtained.  This procedure is 

explained in more detail in Appendix F.  The resulting a, n and κ values are presented 

in Table 5-1, with κ corresponding to the reference temperatures of the fluids, 20°C 

for SF30 and 25°C for SF1.  Tests 2-1 and 3-1 were specifically used because of the 

low hysteresis exhibited in their force-velocity relationships, an effect that Eq. Eq. 

(4.1) is not able to reproduce.  
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Table 5-1: Optimal Yasuda-Carreau parameters resulting from the fit of Eq. (4.1) to 

Tests 2-1 and 3-1. 

Fluid a n κ 
SF1 2.0 0.44 

4.03e-5 [s] 

SF30 2.0 0.33 1.46e-3 [s] 

 

Figure 5-5 displays a comparison between the experimental results and models using the 

calibrated parameters (Table 5-1) with greatly improved accuracy.  Quantitative results for 

maximum forces and α-values are presented in Table 6-1. 

−20 −10 0 10 20
−200

0

200
Test 1−1

Velocity [cm/s]

F
o

rc
e

 [
k
N

]

 

 

−20 −10 0 10 20

−200

0

200

Test 1−2

Velocity [cm/s]

F
o

rc
e

 [
k
N

]

−20 −10 0 10 20
−500

0

500
Test 2−1

[cm/s]

[k
N

]

−20 −10 0 10 20
−400

−200

0

200

400
Test 2−2

[cm/s]

[k
N

]

−20 −10 0 10 20
−500

0

500

Test 3−1

[cm/s]

[k
N

]

−20 −10 0 10 20
−500

0

500
Test 3−2

[cm/s]

[k
N

]

Exp.
Model

 

Figure 5-5: Experimental and numerical results using the calibrated Yasuda-

Carreau parameters. 

5.2 Temperature Related Effects 

A zoom of the zone of maximum forces of the experimental force-velocity curves 

will show that force peaks tend to decrease with the number of cycles, as shown in  

Figure 5-6 for Test 2-1. 
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Figure 5-6: Zoom of the maximum force zone for Test 2-1.   

   To capture this effect, multiphysics models with mesh deformation were 

employed.  Since the amount of dissipated energy (hence, heat production) does not 

vary importantly if fluid compressibility is included, incompressibility was assumed 

to decrease computing time.  The piston displacement prescribed in the model was 

the measured dynamic displacement of the actuator, and the calibrated Yasuda-

Carreau parameters (Table 5-1) were used.  The fluid´s initial temperature can be 

seen in Table 4-1.   

 

Shown in Figure 5-7 is an example of the resulting temperature field within the 

fluid and solid domains at the end of a test, specifically t =48.95 s for Test 3-1.  The 

temperature rise concentrates in the length covered by the movement of the piston 

(±12.4 cm for this test) and temperature barely rises in the zone near the seals due to 

the fluid’s low thermal conductivity.  This is positive for the longevity of the seals 

which have upper limits for working temperature. 
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Figure 5-7: Temperature field at the end of Test 3-1. 

This rise in temperature causes a decrease in viscosity, affecting the damper’s 

maximum force.  Figure 5-8 presents the numerically predicted and experimentally 

obtained peak forces and their variation with the number of complete full amplitude 

cycles for Tests 1-1, 2-1 and 3-1.  Although the model is successful in capturing the 

force reduction effect, it tends to overestimate it.  Between the first and fifth 

complete cycle, experimental results show for the three tests a peak force reduction 

of approximately 1.3%, 6.3% and 8.4%, respectively.  Instead, numerical results 

show larger reductions of about 3.9%, 10.8% and 10.0%, respectively.  In the case of 

Test 3-1, the peak force tends to stabilize after the fifth cycle in the experimental 

measurements, as opposed to the numerical model.     



 

44 

 

 

 

1 2 3 4 5 6
130

140

150

160

170

Test 1−1

 P
e

a
k
 F

o
rc

e
 [
k
N

]

1 2 3 4 5
340

360

380

400

420

Test 2−1

1 2 3 4 5 6 7

400

450

500

Test 3−1

Cycles

Exp.

Model

Cycles Cycles  

Figure 5-8: Peak forces vs. number of completed full amplitude cycles for Tests 

1-1, 2-1 and 3-1.    

Although speculative, the model overestimation may be explained by 

underestimating the heat flow out of the fluid domain due to the adiabatic rod 

boundary condition, or the convection boundary condition at the interface between 

cylinder and surrounding ambient air.  Another potential error involves the modeling 

of fluid viscosity, specifically the shift factor that multiplies κ in Eq. (2.11); this 

model was derived by Swallow (2002) for fluids with very low n-value and may not 

be as accurate when n is greater, as is the case of SF1 and SF30.  The merging 

beyond certain shear rate of curves corresponding to different temperatures is greater 

as n becomes lower.  A greater merging of the curves in Figure 2-2 and Figure 2-3 

would produce less viscosity decrease and, thus, less output force decrease with 

temperature.  Moreover, Eq. (2.11) considers viscosity to vary only with γ�  and T; 

however, viscosity in liquids tends to increase with pressure.  The model also 

neglects dimensional changes that occur due to thermal expansion of the steel 

components.      
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The multiphysics model may also be used to estimate the increase in pressure 

due to fluid thermal expansion, very relevant for design purposes.  Pressure changes 

due to temperature variations may be roughly estimated as:    

 /p Tζ β∆ = ⋅ ∆  (5.1) 

where ζ = 1.2 ·10
-3
 1/K is the coefficient of thermal expansion of the fluid.  

Temperature in the fluid domain was averaged at different time instants in the 

multiphysics model and the corresponding pressure increase, calculated using Eq. 

(5.1) was plotted in Figure 5-9.  This figure also includes the average of the pressures 

measured within both chambers at discrete times during Tests 2-1 and 3-1, showing 

good agreement.    

0 15 30
0

50

100

150

200

250
Test 2−1

Time [s]

∆
 p

 [
b

a
r]

 

 

0 15 30 45
0

50

100

150

200

250
Test 3−1

Time [s]

Exp.

Analytic

 

Figure 5-9: Pressure at both chambers averaged at discrete times during Test 2-1 and 

3-1 compared to the analytical estimate substituting the average temperature at the 

fluid domain during the multiphysics simulation in Eq. (5.1)  
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6. �O�-LI�EAR MAXWELL MACROSCOPIC MODEL 

 

The classic damper macroscopic model, Eq.(1.1), assumes a purely viscous behavior: force 

depends exclusively on the instantaneous velocity (zero memory), which implies no 

hysteresis.  Based on Figure 5-2 through Figure 5-5, this type of model fits the lower 

frequency tests adequately.  However, as frequencies increase, tests reveal hysteresis in the 

force-velocity relationship, for both the numerical and experimental results, implying that 

behavior is viscoelastic rather than purely viscous.  Thus, a restoring force or stiffness 

component must be involved.  Previous investigations have reported that some damper 

designs may lead to considerable restoring forces.  For example, a device using a single 

instead of double ended rod will need an extra accumulator chamber to compensate for 

volume variations inside the cylinder as the piston strokes.  Symans and Constantinou 

(1998) attributed the appearance of restoring forces when the damper was excited at 

frequencies beyond a cutoff value to the functioning of this accumulator.  Then again, 

restoring forces have also been observed (Li et. al, 2006) at high frequency excitation in 

dampers that use double ended rods. 

 

Before proposing a macroscopic model that is able to capture this phenomenon, the 

origin of these restoring forces in our prototype will be discussed.  Shown in Figure 6-1 is 

the numerical result for Test 2-1 with an imposed flow model with and without 

compressibility.  In the incompressible case, behavior is purely viscous, while in the 

compressible case, a restoring force appears due to the fluid’s bulk modulus.  An 

additional curve in Figure 6-1 shows the result of a simulation sharing the same maximum 
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velocity, but a frequency two times greater, i.e., 2 Hz, demonstrating that the model is 

indeed able to capture the frequency dependency of this phenomenon.  In contrast, if 

incompressibility is assumed, damper force depends only on velocity, regardless of the A 

and f combination that yields V.  In the three cases, the achieved maximum force is 

virtually the same.  This is true for the range of frequencies studied in this thesis but, in 

general, for a given velocity the maximum force will tend to decrease as frequency 

increases in the compressible case.  If Eq.(1.1) is fitted to the results in Figure 6-1, both 

compressible results yield α = 0.87 and the incompressible result α = 0.88.  These values 

are essentially the same, indicating that despite the appearance of hysteresis, the underlying 

non-linear backbone shape is preserved. 

−10 0 10
−400

−200

0

200

400

Velocity [cm/s]

F
o

rc
e

 [
k
N

]

 

 
Comp. A=2, f =1

−2 0 2
−400

−200

0

200

400

Displacement [cm]

Comp. A=1, f =2

Incomp. A=2, f =1

 

Figure 6-1: Numerical result for Test 2-2 with and without considering compressibility and 

an additional result considering twice the frequency and half the amplitude.   

 

Previous investigations, such as Makris and Constantinou (1991), Makris and 

Constantinou (1993), and Lewandowski and Chorazyczewski (2010), have proposed 

modeling viscoelastic fluid dampers with Maxwell-type macroscopic models using 

derivatives of fractional or complex order.  In this article, a simple approach is proposed 
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based on the same idea of a dashpot (non-linear, with F ∝ V 
α
) and a spring connected in 

series, as can be seen in Figure 6-2.  Solving for F in this case yields: 

 ( )/ sgn /F C y F K y F K
α

= − −� �� �  (7.1) 

          As K→∞, i.e. an incompressible fluid, Eq. (7.1) reduces to (1.1).  The appearance of 

F� accounts for the input frequency dependence, since F�  will be an increasing function of 

ω.           

y, Fz

C, αK

 

 

Figure 6-2: Non-linear Maxwell model consisting of a linear spring and non-linear dashpot 

connected in series.   

For easy integration of Eq. (7.1) using a numerical scheme such as Runge-Kutta, F�  

may be solved in terms of F by separating this equation in two cases: 

 
( ) ( )

( ) ( )

/ / 0

/ / 0

C y F K if   y F K
F

C F K y if   y F K  

α

α

 − − >
= 
− − − <

� �� �

� �� �

 (7.2) 

If ( )/ 0y F K− >�� : 

( )/F C y F K
α

= − ��  

( )
1/

/ /F C y F K
α

= − ��  

( )
1/

/F K y K F C
α

= ⋅ − ⋅� �  

 

If ( )/ 0y F K− <�� :   

( )/F C F K y
α

= − −� �  

( )
1/

/ /F C F K y
α

− = −� �  

( )
1/

/F K y K F C
α

= ⋅ + ⋅ −� �  
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Hence,  

 
( ) ( )

( ) ( )

1/

1/

/ / 0

/ / 0

Ky K F C if y F K
F

Ky K F C if y F K

α

α

 − − >
= 

+ − − <

�� �
�

�� �

 (7.3) 

The proposed macroscopic model, in lieu of Eq. (1.1), is able to represent hysteretic 

effects as frequency increases, thus adapting very accurately to the experimental force-

velocity results.  Shown in Figure 6-3 is Eq. (7.1) fitted to these results.  Instead of two 

parameters as in Eq. (1.1), three parameters are needed to characterize the curves: C, α  and 

K.   

−20 −10 0 10 20
−200

0

200
Test 1−1

Velocity [cm/s]

F
o

rc
e

 [
k
N

]

 

 

−20 −10 0 10 20

−200

0

200

Test 1−2

Velocity [cm/s]

F
o

rc
e

 [
k
N

]

−20 −10 0 10 20
−500

0

500
Test 2−1

[cm/s]

[k
N

]

−20 −10 0 10 20
−400

−200

0

200

400
Test 2−2

[cm/s]

[k
N

]

−20 −10 0 10 20
−500

0

500

Test 3−1

[cm/s]

[k
N

]

−20 −10 0 10 20
−500

0

500
Test 3−2

[cm/s]

[k
N

]

Exp.
Model

 

Figure 6-3: Non linear Maxwell model, Eq. (7.1), fitted to the experimental results; 

corresponding numerical values of C, α and K may be seen in Table 6-1. 

Table 6-1 summarizes the best fit values of C, α and K corresponding to the 

experimental results and to the numerical results considering the originally presented 

Yasuda-Carreau parameter values (Table 2-1) and the calibrated ones (Table 5-1).  Table 

6-1 corroborates what was graphically evident in Figure 5-2 through Figure 5-4: the 
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simulations carried out with the original Yasuda-Carreau parameters overestimated the 

experimental α-values.  Simulations with the calibrated parameters, on the other hand, 

reproduce the experimental maximum force and α-values with much better accuracy, as 

can be graphically seen in Figure 5-5.  Although an important dispersion may be observed 

in K, the sensitivity of the proposed model to this parameter is small.  Thus, for the range 

of frequencies considered in this article, a representative value of K adopted after 

considering several tests may be used to characterize the damper without a significant loss 

of accuracy.     

Table 6-1: Results of fitting Eq. (7.1)  to the experimental and numerical results 

considering the originally presented Yasuda-Carreau parameters (Table 2-1) and the 

calibrated values (Table 5-1). 

    Test 1-1 1-2 2-1 2-2 3-1 3-2 

Exp. Fmax [k�] 172 189 424 326 501 441 

  C [k�/(m/s)α] 1143 1159 1545 1640 906 891 

  α   0.86 0.86 0.73 0.77 0.36 0.37 
  K [k�/m] 89813 81326 89950 78821 105210 90781 

Orig. Fmax [k�] 142 163 448 358 665 654 

 YC C [k�/(m/s)α] 1139 1174 2165 2217 1496 1527 

  α   0.94 0.95 0.86 0.87 0.44 0.45 

  K [k�/m] 100070 190950 124560 225270 201460 212310 

Calib. Fmax [k�] 142 160 409 344 475 475 

 YC C [k�/(m/s)α] 953 958 1585 1639 928 952 

  α   0.86 0.86 0.74 0.75 0.37 0.38 
  K [k�/m] 112610 183150 112270 224080 200750 199830 
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7. CO�CLUSIO�S 

The mathematical models presented herein have proven sufficiently accurate to be 

integrated as an effective tool in the design process of viscous dampers, both for thermal 

evaluation, and for estimating their force-velocity constitutive relationship. The greatest 

observed discrepancies between numerical and experimental results are in the vicinity of 

10-15%. 

 

The gross tendencies of different fluid passage configurations were approximated by 

analytically solving fluid mechanics limit cases, identifying that aspects such as passage 

length and viscosity advocate for viscous flow and aspects such as density, piston radius 

and velocity advocate for inertial flow.  Furthermore, velocity exponent α correlates well 

with a parameter that estimates the shear deformation rate in the case of the annular orifice, 

and with the ratio of inertial to viscous effects in the case of cylindrical orifices.  These 

correlations are valid for any damper size, allowing the design of any desired damper 

capacity.  It was found that annular orifices are better suited to produce low exponent 

outputs (α < 1), while cylindrical orifices offer more flexibility if exponents greater or 

close to one are sought by using a lower viscosity fluid (e.g., SF1).      

 

The constitutive behavior of the fluid turned out to be essential to the damper’s 

behavior.  Highly viscous silicone oils (≥ 1 Pa·s) tend to low exponent outputs due to their 

rapid shear thinning, while lower viscosity silicone oils tend to higher exponents due to 

their smaller shear thinning.  Quantitatively, as shear rate increases and viscous effects 
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prevail, α will tend to the value of n from the Yasuda-Carreau equation.  Since the silicone 

oils used in this research could not be tested thoroughly, the uncertain rheological data 

adopted led to discrepancies, for example, α being overestimated.  This was corrected by 

calibrating the rheological parameters according to the experimental force-velocity results.  

It is clear that for precise predictive modeling, an accurate rheological characterization of 

the fluid is required.   

   

Although rather complex damper models were developed, including aspects such as 

mesh deformation to account for piston movement, model simplifications led to successful 

results.  In this regard, the imposed flow approach (allowing a stationary domain) and the 

independent orifice approach (allowing the combination of different orifices without 

having to reproduce the complete piston geometry) were exceedingly faster, yet 

sufficiently accurate to be used as a design tool and for parametric analyses.   

 

The multiphysics models were found to overestimate the decrease in output force 

caused by fluid heating, however, they still provide a sufficiently accurate estimation of 

this phenomenon.  Furthermore, it was shown how to estimate the pressure build up due to 

thermal expansion of the fluid, an essential aspect for design. 

 

Both the numerical and experimental results showed that the classic purely viscous 

macroscopic model, Eq. (1.1), was accurate only at low frequencies, where damper 

restoring forces were negligible.  At higher frequencies, significant viscoelastic behavior, 

attributed to the fluid’s bulk modulus, becomes relevant.  An extension of Eq. (1.1) was 
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proposed by incorporating stiffness to a macroscopic model that can be used in structural 

analyses.  The proposed model, consisting of a non-linear dashpot and a linear spring in 

series, was able to represent the experimental and numerical results extremely accurately.     

 

Proposed future work includes the study of a much broader variety of fluids, 

increasing the ability to generate different α exponents and optimization in terms of 

manufacturing cost.  Parametric analyses concerning thermal performance, for instance 

analyzing what geometric proportions or configurations are more favorable to reduce the 

output force decrease, could also be interesting alternatives.  The multiphysics model can 

also be enhanced to include the influence of pressure on viscosity.  Finally, a further 

enhancement would be a deeper study of variable area orifices and, eventually, make them 

controllable, transforming the viscous damper into a semi-active device.    
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APPE�DIX A: RHEOLOGY TESTI�G OF SF30 SILICO�E FLUID   

Viscosity analysis of the SF30 silicone fluid ( [ ]0 30 Pa sµ = ⋅  at 20°C) was hired at TA 

Professional Services (http://www.tainstruments.com).  The experiments were performed 

on a TA Instruments AR-2000ex Rheometer with a Peltier plate for temperature control.  A 

schematic representation of this instrument can be seen in Figure A-1. 

 

Figure A-1: Rheometer used to measure viscosity-shear rate relationships for SF30 silicone 

fluid at different temperatures. 

In a rotational rheometer the sample is sheared between two plates or a cone and 

plate geometry and the viscosity is calculated as the ratio of the applied stress and the 

applied deformation rate (rotation speed).  For the series of tests presented here, parallel 

plates were used, specifically a 25 mm diameter for the upper geometry and a Peltier plate 

for the lower geometry. 

 

The original test procedure consisted in a steady state flow sweep, stepping shear 

rates from 1 [1/s] to a maximum of 10000[1/s].  Shear rates were to be equilibrated at 

discrete values for 10 seconds and viscosity collected and averaged for 5 seconds.  This 



 

58 

 

 

 

process was to be carried out for the following temperatures:  10°C, 20°C, 30°C, 40°C, 

50°C, 60°C, 70°C, 80°C, 90°C, and 100°C.  

 

Unfortunately, the projected maximum shear rate of 10000 1/s was not reached, due 

to the flow behavior exhibiting a distinct “edge failure” of the sample at different critical 

shear rates depending on the temperature.  Viscosity data for higher shear rates was 

attempted using various cone diameters and angles and various parallel plates, and the 

conclusion was the same for all geometries.  For each temperature, the sampled failed at 

relatively low critical shear rate levels regardless of the geometry used.  Figure A-2 shows 

the specific results for 20°C to illustrate the described phenomenon.  Figure A-3 overlays 

the plots corresponding to all tested temperatures.   
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Figure A-2: Viscosity-shear rate relationship at 20°C obtained with a steady state flow 

sweep.  In the Newtonian flow region the average viscosity is 29.3 Pa∙s.  At about 800 

[1/s] a distinct edge failure with flow instability is recognizable. 
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Figure A-3: Overlay of viscosity-shear rate plots for the different tested temperatures. 
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The data gathered from these tests was used to fit an Arrhenius type equation to 

model the zero shear rate viscosity (μ0) dependence on temperature.  The general model, 

Eq. (A.1), was fitted in a least squares sense to the average viscosities in the Newtonian 

flow regions measured at different temperatures.   

 ( ) ( )exp /f x c b x= ⋅   (A.1) 

The calculated coefficients, with 95% confidence bounds, were c = 78.97  (52.74, 105.2) 

and b = 1746  (1646, 1846), as was presented in Table 2-1 in the body of this thesis.  The 

units for c and b are mPa∙s and K, respectively.  Figure A-4 shows the experimental data 

and the fitted curve.         
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Figure A-4: Measured zero shear rate viscosities at different temperatures and curve fit.   
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Additionally, a Yasuda-Carreau equation (2.9) was fitted to the reliable test data 

corresponding to 20°C (µ0 = 30 Pa·s), that is, before the edge failure.  Since higher shear 

rates were expected in the damper, it was decided to add an extra point to this data.  This 

point was taken from a manual provided by a manufacturer of polydimethylsiloxane 

(Gelest Inc. 2004) stating that for a silicone fluid with µ0 = 30 Pa·s at 25°C, a viscosity of 6 

Pa·s is expected for a shear rate of 10000 1/s.  

 

The general model used for the curve fitting, a Yasuda-Carreau equation, was: 

 ( ) ( )
1

29300 1

n
a af x xκ

−

 = ⋅ +
 

 (A.2) 

The calculated coefficients, with 95% confidence bounds, were n = 0.407  (0.3671, 0.447), 

a = 1.325  (1.244, 1.406) and κ = 0.001405 [s]  (0.001193, 0.001617), as was presented in 

Table 2-1.  Figure A-5 shows the experimental data and the fitted curve and Figure A-6 

compares this result with a viscosity-shear rate curve for the equivalent fluid presented in 

the mentioned manual. 
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Figure A-5: Curve fitted to the experimental viscosity-shear rate data measured at 20°C 

and the extra point provided in the Gelest manual (Gelest Inc. 2004). 
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Figure A-6: Comparison of the fitted viscosity-shear rate relationship with an analogous 

curve presented in the Gelest manual (Gelest Inc. 2004). 
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 APPE�DIX B: LIMIT CASES FOR VISCOUS A�D I�ERTIAL FLOW 
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Figure B-1: Annular orifice geometry.    

Figure B-1 displays the geometry corresponding to the annular orifice case.  As the piston 

strokes with velocity V, fluid flows from chamber 1 to chamber 2.  When h << Rp , flow 

through the annular region can be idealized as flow between parallel plates.  If the fluid is 

considered incompressible, the momentum equation (Eq. (2.2)) reduces to: 

                                                  
u u p

u
t x x y

τ
ρ

∂ ∂ ∂ ∂ 
+ = − + 

∂ ∂ ∂ ∂ 
 (B.1) 

where u denotes velocity in the x direction.  There are two limit cases for Eq. (B.1): 

dominance of viscous effects and dominance of inertial effects.  For the viscous dominance 

case, convective acceleration can be neglected, and so can the transient acceleration term 

for low frequency excitation.  Therefore: 

 
p

x y

τ∂ ∂
=

∂ ∂
 (B.2) 
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On the other hand, for stationary unidirectional flow, / / pp x p L∂ ∂ = −∆ , where 

1 2p p p∆ = − .  Assuming a symmetric velocity profile in the gap, i.e., ( )/ 2 0hτ = , and 

integrating yields: 

 
2p

p h
y

L
τ

∆  
= − 

 
 (B.3) 

If the fluid is considered Newtonian, ( ) 0 /y u yτ µ= ⋅∂ ∂  and applying the no slip condition 

( ) 0u h = , a further integration of Eq. (B.3) yields: 

 ( ) ( )2

02 p

p
u y hy y

Lµ

∆
= −  (B.4) 

By combining Eq. (B.4) with the continuity principle, Eq. (B.5), ∆p may be solved for. 

 ( ) ( )2 2

0

2

h

c v pV R R R u y dyπ π− = ∫  (B.5) 

Then, using the 
pF A p= ⋅ ∆  approximation and assuming 

p cR R≈ , the damper output 

force ( ) ( )
2

2 2 3

06 /p v p pF R R L R h Vπµ= − ⋅  is obtained, that is, Eq. (3.1) in the body of this 

thesis. 

 

If inertial effects dominate, the fluid can be idealized as inviscid, i.e., / 0yτ∂ ∂ = .  

Neglecting transient acceleration, Eq. (B.1) reduces further to: 

 
u p

u
x x

ρ
∂ ∂

= −
∂ ∂

 (B.6) 
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 Assuming that velocity is equal to zero somewhere near the entrance of the gap and 

that fluid particles are then accelerated to velocity 2u , integrating the previous equation 

yields: 

 ( )
2

2
2 1

2

u
p p p

ρ
− − = ∆ =  (B.7) 

Combining this with continuity: 

 ( )2 2

2
2

c v p
V R R R huπ π− =  (B.8) 

Finally, assuming 
p cR R≈ , the relation between output force and velocity can be 

approximated by 
pF A p= ⋅ ∆ , resulting in ( )

3
2 2 2 2 2/ 8p v pF R R R h Vρπ= − ⋅ , as expressed 

in Eq. (3.7). 

 

The same analysis was done for the piston with cylindrical orifices, whose geometry 

can be seen in Figure B-2.  The analysis focuses on the flow inside the orifices and 

assumes that pressure is uniform pressure in chambers 1 and 2. 
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Figure B-2: Geometry for the piston with cylindrical orifices.      

  For an incompressible, Newtonian fluid, the momentum equation (Eq. (2.2)) inside 

the orifices in cylindrical coordinates reduces to: 

 0

1w w p w
w r

dt z z r r r
ρ µ

∂ ∂ ∂  ∂ ∂    
+ = − +    ∂ ∂ ∂ ∂    

 (B.9) 

where w denotes the velocity in the z direction and r denotes the radial direction inside the 

orifice.  If viscous effects dominate, convective acceleration can be neglected, and so can 

the transient term for low frequencies.  Eq. (B.9) becomes: 

 
0

1 1p w
r

z r r rµ

∂ ∂ ∂ 
=  

∂ ∂ ∂ 
 (B.10) 

Integrating this equation twice (assuming that velocity at the cylinder walls is zero and that 

velocity at r = 0 must be finite) and using that for stationary unidirectional flow, 

/ / pp z p L∂ ∂ = −∆ , the velocity profile inside the orifice is: 

 ( ) ( )2 2

0

1

4
o

p

p
w r R r

Lµ

∆
= −  (B.11) 

where oR  is the orifice radius.  Applying continuity and integrating (B.11) yields: 
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 ( )
4

2 2

08

o
p v

p

R p
V R R �

L

π
π

µ

∆
− =  (B.12) 

Assuming that 
pF A p≈ ∆ , the output force for the damper is therefore 

( )
2

2 2 4

08 /p p v oF L R R �R Vπµ= − ⋅ , as expressed in Eq. (3.6).   

 

If inertia effects dominate, the fluid can be idealized as inviscid.  Neglecting transient 

acceleration, Eq. (B.9)  reduces to: 

 
w p

w
z z

ρ
∂ ∂

= −
∂ ∂

 (B.13) 

Assuming a zero velocity near the entrance of the orifice and that the fluid is accelerated to 

velocity 2w , integrating the previous equations results in: 

 ( )
2

2
2 1

2

w
p p p

ρ
− − = ∆ =  (B.14) 

In this case, continuity can be expressed as ( )2 2 2

2p v
R R V � R wπ π− = .  Substituting in Eq. 

(B.14) yields ( )
3

2 2 2 4 2/ 2p v oF R R � R Vρπ= − ⋅ , as expressed in (3.7).  
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 APPE�DIX C: PARAMETRIC A�ALYSES 

Annular Orifice Configuration 

The geometric dimensions and corresponding force-velocity curves of the models 

solved to generate Figure 3-2 are listed next.  The same geometries were used for both the 

SF1 fluid (Figure 3-2 (a)) and SF30 fluid (Figure 3-2 (b)).    

 

[ ] [ ]3.2 0.5A cm f Hz= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 h 

(mm) 
Rp 

(cm) 
Rv 

(cm) 
Lp 

(cm) 
ave

γ�  

(1/s) 
1 5 5 0 20 486.57 

2 2 5 0.5 19 2693.22 

3 2 8 0.5 18 4209.11 

4 2 12 3 15 5857.6 

5 1.5 13 4 12 10786.7 

6 1.5 13 3 10 11267.9 

7 1.3 14 2 15 16626.9 

8 1.5 19 5 16 16071.9 

9 0.9 12 3 13 28373.7 

10 0.9 11 1 19 27527.7 

11 1.1 15 2 14 24848.8 

12 0.9 18 4 16 42921.9 

13 1 20 2 20 40213.4 

14 0.8 19 3 18 58705.9 

15 0.8 21 4 20 64083.5 

16 0.7 20 2.5 15 81359.3 

17 0.5 18 2 15 143783 

18 0.7 25 2 13 102501 

19 0.5 20 4.2 13 154561 

20 0.4 19 4 14 229185 
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[ ] [ ]4.0 0.8A cm f Hz= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ ] [ ]4.8 1A cm f Hz= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 h 

(mm) 
Rp 

(cm) 
Rv 

(cm) 
Lp 

(cm) 
ave

γ�  

(1/s) 
1 3 5 0 10 2510.15 

2 1.8 5 0.5 19 6598.41 

3 1.3 8 0.5 18 19584.8 

4 2 12 3 15 11715.2 

5 1.5 13 4 10 21573.4 

6 1.5 13 4 25 21573.4 

7 1.5 13 4 20 21573.4 

8 1.5 19 5 16 32143.8 

9 0.9 11 3 13 51444.8 

10 0.9 11 3.6 19 49657.6 

11 1.1 15 2 14 49697.7 

12 0.6 12 3.75 16 122295 

13 0.84 21 3 18 118197 

14 0.8 20 4 20 121644 

15 0.7 19 3.75 15 151003 

16 0.4 12 2 15 295229 

17 0.67 21 2 13 187614 

18 0.5 20 5 16 303203 

19 0.5 21 4.2 13 325883 

20 0.45 20 3.5 14 386786 

 h 

(mm) 
Rp 

(cm) 
Rv 

(cm) 
Lp 

(cm) 
ave

γ�  

(1/s) 
1 3 5 0.2 10 3759.86 

2 1.8 6 0.4 19 11800.7 

3 1.3 7 0.5 18 25793.2 

4 2 11 4 15 15002.9 

5 1.5 14 3 10 36616.7 

6 1.5 12 3 25 30968.6 

7 1.5 14 3.5 20 35994.4 

8 1 8 4.7 16 32813.3 

9 0.9 13 3.2 13 92286.9 

10 0.9 9 3.6 19 57644.5 

11 1.1 13 2.1 14 64215.4 

12 0.95 12 3.75 16 73644.7 

13 1.1 20 3.1 18 98404.6 

14 0.5 12 4.1 20 258148 

15 0.65 20 3.75 15 277352 

16 0.5 15 2.2 15 356543 

17 0.6 15 2.2 13 247936 

18 1.2 37 5 16 153162 

19 0.48 19 4.3 13 474458 

20 0.44 20 3.7 14 604544 
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[ ] [ ]6.4 1A cm f Hz= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ ] [ ]4 2A cm f Hz= =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 h 

(mm) 
Rp 

(cm) 
Rv 

(cm) 
Lp 

(cm) 
ave

γ�  

(1/s) 
1 3.2 5 0.2 13 4439.45 

2 1.9 6 0.4 21 14167.6 

3 1.2 7 0.5 14 40247.8 

4 1.9 11 4 11 22119.6 

5 2 10 3 15 19108.9 

6 1.7 15 3 26 41024.8 

7 1.3 14 3.5 21 63703.1 

8 1.1 15 4.7 18 91379.4 

9 1 13 3.2 14 99831.9 

10 0.9 15 3.6 21 142149 

11 1.5 23 2.1 13 82602.5 

12 0.9 16 3.75 19 151929 

13 0.5 11 3.1 17 328988 

14 0.78 21 4.1 19 269085 

15 0.45 12 3.75 17 433630 

16 0.55 18 2.2 15 474341 

17 0.69 24 2.2 16 404346 

18 0.4 15 5 19 674233 

19 0.54 22 4.3 14 586573 

20 0.4 19 3.7 19 922852 

 h 

(mm) 
Rp 

(cm) 
Rv 

(cm) 
Lp 

(cm) 
ave

γ�  

(1/s) 
1 3.6 4.5 0.2 13 4064.61 

2 2 7 0.4 21 18555.1 

3 1.12 8 0.5 14 65671.5 

4 1.8 10 4 11 27190.6 

5 1.65 13.6 3 15 49001.6 

6 1.9 14.9 3 26 40876.3 

7 1.2 11.3 3.5 21 73005.1 

8 1.1 11 4.7 18 76544.1 

9 1 15 3.2 14 145951 

10 0.8 12.7 3.6 21 185983 

11 1.6 24 2.1 13 94787 

12 0.85 15.3 3.75 19 202472 

13 0.55 12 3.1 17 375850 

14 0.8 23.4 4.1 19 358800 

15 0.67 21 3.75 17 458303 

16 0.58 17 2.2 15 502998 

17 0.45 12 2.2 16 580192 

18 0.5 18 5 19 671999 

19 0.5 20 4.3 14 771098 

20 0.55 24.1 3.7 19 785706 



 

 

72 

 

SF1 Annular Orif. Parametric Analysis Results A = 3.2 [cm] f = 0.5 [Hz]
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SF1 Annular Orif. Parametric Analysis Results A = 4 [cm] f = 0.8 [Hz]
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SF1 Annular Orif. Parametric Analysis Results A = 4.8 [cm] f = 1 [Hz]
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SF1 Annular Orif. Parametric Analysis Results A = 6.4 [cm] f = 1 [Hz]
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SF1 Annular Orif. Parametric Analysis Results A = 4 [cm] f = 2 [Hz]
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SF30 Annular Orif. Parametric Analysis Results A = 3.2 [cm] f = 0.5 [Hz]
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SF30 Annular Orif. Parametric Analysis Results A = 4 [cm] f = 0.8 [Hz]
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SF30 Annular Orif. Parametric Analysis Results A = 4.8 [cm] f = 1 [Hz]
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SF30 Annular Orif. Parametric Analysis Results A = 6.4 [cm] f = 1 [Hz]
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SF30 Annular Orif. Parametric Analysis Results A = 4 [cm] f = 2 [Hz]
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Piston with Cylindrical Orifices Using SF1 Fluid  

The geometric dimensions and corresponding force-velocity curves of the models 

solved to generate Figure 3-5 (a) were: 

 

Group 1 

 

 

 

 

 

 

 

 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 23 14.827 4.200 2.900 14.898 29.649 1.689 0.368 0.0155 0.902 

2 13 4.930 0.900 3.100 19.467 13.444 5.276 0.979 0.0207 0.883 

3 14 7.607 4.500 3.800 16.940 16.393 5.197 0.835 0.0290 0.905 

4 20 12.302 3.800 3.800 13.855 26.164 16.001 0.099 0.0329 0.908 

5 22 14.063 4.000 4.500 12.025 28.744 2.911 0.675 0.0563 0.914 

6 12 9.253 1.200 4.100 12.033 26.484 11.594 0.222 0.0641 0.893 

7 15 8.439 2.000 3.200 3.571 21.168 7.019 0.193 0.0710 0.912 

8 8 10.944 2.900 5.300 15.212 37.308 2.899 0.779 0.0870 0.905 

9 8 6.615 0.900 4.000 5.800 23.170 3.120 1.010 0.1244 0.893 

10 6 6.078 1.400 5.000 8.433 24.145 17.374 0.247 0.1243 0.908 

11 15 13.797 3.100 5.400 14.126 34.712 3.637 0.982 0.1302 0.891 

12 11 8.127 1.100 5.000 8.527 24.279 7.300 0.830 0.1796 0.888 

13 7 9.709 2.700 5.500 7.530 35.250 5.750 0.460 0.1830 0.909 

14 16 11.959 3.200 5.500 9.610 28.809 3.000 1.790 0.1980 0.892 

15 21 10.841 2.400 4.500 4.170 23.069 7.996 0.480 0.2068 0.902 

16 5 6.788 1.000 6.400 13.386 30.024 17.061 0.483 0.2380 0.889 

17 9 8.940 0.300 7.100 13.300 29.783 14.400 0.738 0.3025 0.893 

18 6 9.229 1.100 8.000 16.240 37.408 10.400 0.808 0.3061 0.901 

19 8 13.178 2.700 7.400 12.930 45.601 2.721 1.800 0.3350 0.896 

20 16 10.490 3.000 5.900 7.540 25.130 8.036 1.278 0.3713 0.882 
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Group 2 

 

Group 3 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 14 6.464 1.616 2.500 18.852 16.726 1.862 0.745 0.009 0.897 

2 19 8.982 2.246 2.900 19.324 19.953 1.550 0.739 0.010 0.911 

3 9 6.899 1.725 3.500 15.690 22.266 2.728 0.742 0.027 0.900 

4 18 6.934 1.733 3.300 11.100 15.824 2.186 1.501 0.031 0.901 

5 18 7.130 1.533 3.500 15.209 16.412 3.800 1.190 0.034 0.889 

6 8 13.772 3.443 3.400 5.293 47.147 2.296 0.182 0.075 0.899 

7 7 6.620 1.655 5.400 15.048 24.228 1.500 3.800 0.094 0.905 

8 24 7.967 1.992 6.000 21.342 15.745 14.851 1.311 0.095 0.902 

9 16 15.051 3.763 5.900 20.384 36.434 2.438 1.546 0.104 0.898 

10 5 9.074 2.268 4.500 9.173 39.290 1.300 1.171 0.109 0.894 

11 16 10.561 2.640 6.100 17.673 25.563 5.500 1.280 0.109 0.907 

12 14 7.017 1.754 4.200 4.217 18.157 9.756 0.477 0.153 0.906 

13 10 11.054 2.764 6.500 20.409 33.847 4.987 1.373 0.165 0.888 

14 13 9.321 2.330 6.500 18.026 25.031 13.999 0.941 0.197 0.885 

15 6 13.614 3.404 7.500 20.050 53.815 5.900 0.600 0.217 0.898 

16 4 6.809 1.702 7.400 12.327 32.962 14.482 0.420 0.223 0.918 

17 11 8.973 2.243 8.000 16.673 26.197 7.700 1.735 0.229 0.913 

18 14 12.311 3.078 7.400 17.543 31.857 13.706 0.918 0.314 0.883 

19 16 15.954 3.988 5.300 5.017 38.618 3.200 0.970 0.398 0.883 

20 7 14.972 3.743 6.200 6.292 54.792 6.200 0.330 0.416 0.894 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 13 6.357 1.589 2.000 19.324 17.072 1.550 1.663 0.019 0.796 

2 20 12.557 3.139 2.200 18.852 27.188 1.862 0.710 0.025 0.799 

3 23 8.769 2.192 2.600 20.409 17.704 4.987 1.066 0.039 0.795 

4 16 6.318 1.580 1.800 4.217 15.294 9.756 0.217 0.056 0.806 

5 20 15.502 3.876 1.800 5.017 33.563 9.800 0.054 0.057 0.789 

6 13 6.462 1.615 3.100 18.026 17.352 3.999 1.861 0.058 0.817 

7 20 6.971 1.743 3.200 20.050 15.093 5.900 1.869 0.059 0.815 

8 6 13.060 3.265 3.100 17.673 51.626 5.500 0.161 0.063 0.812 

9 7 12.555 3.139 3.400 20.384 45.946 2.438 0.767 0.093 0.790 

10 14 6.344 1.586 2.600 6.292 16.418 7.200 0.681 0.098 0.817 

11 22 15.340 3.835 2.800 11.100 31.666 2.186 1.104 0.106 0.781 

12 22 9.171 2.293 3.600 17.543 18.932 13.706 0.944 0.127 0.791 

13 23 7.712 1.928 3.300 9.173 15.570 10.300 1.140 0.145 0.812 

14 16 12.787 3.197 4.100 15.209 30.953 3.800 1.835 0.211 0.793 

15 9 13.431 3.358 4.700 15.048 43.349 3.500 1.517 0.318 0.794 

16 6 14.491 3.623 4.700 15.690 57.282 2.728 1.175 0.324 0.789 

17 12 12.948 3.237 5.300 16.673 36.192 7.700 1.142 0.323 0.815 

18 14 9.922 2.481 5.500 21.342 25.676 14.851 1.510 0.329 0.802 

19 5 13.577 3.394 3.900 5.293 58.792 2.296 0.579 0.406 0.814 

20 6 14.235 3.559 5.400 12.327 56.267 14.482 0.269 0.468 0.814 
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Group 4 

 

Group 5 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 15 14.001 3.500 1.400 9.039 35.002 1.290 0.171 0.014 0.792 

2 4 7.067 1.767 2.900 21.914 34.211 15.627 0.099 0.038 0.819 

3 7 7.361 1.840 2.600 14.274 26.937 3.463 0.620 0.052 0.802 

4 22 7.818 1.955 3.300 22.957 16.140 12.400 0.979 0.065 0.803 

5 18 11.797 2.949 3.500 22.901 26.923 4.700 1.026 0.072 0.810 

6 14 6.046 1.512 2.600 11.370 15.646 4.910 1.492 0.076 0.788 

7 4 8.638 2.160 1.900 3.841 41.819 0.407 0.877 0.077 0.800 

8 16 14.687 3.672 2.600 5.595 35.551 2.726 0.375 0.107 0.819 

9 13 7.455 1.864 3.700 14.308 20.021 10.956 0.899 0.129 0.814 

10 19 15.619 3.905 4.200 17.063 34.695 7.856 0.600 0.155 0.816 

11 12 14.173 3.543 3.900 10.438 39.615 2.019 1.377 0.194 0.819 

12 21 9.998 2.499 4.100 7.590 21.124 9.100 1.255 0.312 0.819 

13 13 7.450 1.862 4.100 6.335 20.005 9.073 1.592 0.431 0.807 

14 7 10.314 2.579 5.100 12.763 37.746 4.772 1.859 0.475 0.795 

15 7 11.499 2.875 5.700 15.754 42.081 6.100 1.637 0.538 0.795 

16 32 14.693 3.673 4.200 6.092 25.149 11.017 1.022 0.561 0.794 

17 8 15.106 3.777 5.000 8.043 51.713 5.800 0.650 0.589 0.811 

18 6 8.599 2.150 4.700 7.862 33.989 5.500 1.563 0.605 0.795 

19 9 13.749 3.437 4.100 4.778 44.375 8.138 0.386 0.616 0.801 

20 5 6.844 1.711 5.200 9.038 29.637 18.847 0.743 0.646 0.803 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 20 10.401 2.600 1.600 18.182 22.519 3.916 0.480 0.029 0.695 

2 17 7.537 1.884 2.200 11.234 17.698 16.888 0.426 0.108 0.707 

3 15 6.908 1.727 2.600 18.024 17.271 9.522 1.275 0.108 0.710 

4 10 8.407 2.102 2.700 13.679 25.741 3.913 1.627 0.167 0.705 

5 8 11.181 3.600 3.700 23.236 37.424 10.454 0.723 0.245 0.708 

6 4 8.665 2.166 3.600 21.732 41.948 3.139 1.891 0.262 0.700 

7 5 12.718 3.180 3.500 20.480 55.071 1.977 1.668 0.268 0.695 

8 12 8.810 2.203 3.600 20.391 24.625 12.187 1.421 0.281 0.699 

9 7 10.574 2.644 3.500 16.646 38.698 4.933 1.219 0.291 0.708 

10 16 13.788 3.447 2.900 9.351 33.375 3.600 1.299 0.301 0.706 

11 23 6.680 1.670 2.400 4.751 13.486 12.924 1.231 0.328 0.708 

12 16 14.754 3.688 4.400 24.122 35.713 15.357 0.906 0.395 0.709 

13 8 12.761 3.190 4.100 20.173 43.685 10.567 0.738 0.399 0.704 

14 14 11.271 2.818 2.400 4.141 29.168 14.795 0.248 0.410 0.699 

15 9 12.377 3.094 3.800 13.711 39.947 4.854 1.543 0.472 0.703 

16 3 8.891 2.223 4.300 18.772 49.700 9.699 0.685 0.469 0.710 

17 5 14.577 3.894 4.100 14.911 62.821 5.821 0.707 0.598 0.693 

18 4 12.951 3.238 4.200 13.899 62.701 7.600 0.520 0.602 0.708 

19 16 13.436 3.859 3.100 4.024 32.175 5.333 1.127 0.832 0.708 

20 14 10.235 2.559 3.900 8.705 26.484 14.463 1.361 0.870 0.695 
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Group 6 

 

Group 7 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 14 11.254 2.814 1.800 18.352 29.123 6.619 0.232 0.039 0.700 

2 16 7.389 1.847 1.600 11.544 17.885 4.399 0.644 0.043 0.701 

3 16 15.727 3.932 1.800 13.290 38.070 15.126 0.065 0.060 0.688 

4 18 11.303 2.826 2.300 18.785 25.796 13.458 0.281 0.072 0.710 

5 13 7.920 1.980 2.900 18.444 21.269 7.610 1.582 0.161 0.700 

6 14 12.963 3.241 3.100 19.463 33.544 5.829 1.073 0.199 0.693 

7 16 6.938 1.735 3.100 12.289 16.795 18.991 1.189 0.280 0.706 

8 21 9.658 2.415 3.400 16.308 20.407 17.767 1.180 0.291 0.701 

9 8 13.635 3.409 2.800 9.505 46.676 7.885 0.318 0.319 0.687 

10 7 9.935 2.484 3.400 10.948 36.357 15.400 0.388 0.385 0.713 

11 24 10.849 2.712 2.600 4.411 21.441 16.687 0.495 0.466 0.704 

12 5 13.720 3.430 4.400 19.854 59.408 5.996 0.820 0.468 0.712 

13 15 10.046 2.511 3.600 11.302 25.114 16.452 1.034 0.519 0.697 

14 4 12.714 3.179 3.900 12.910 61.553 3.428 0.995 0.542 0.703 

15 7 13.413 3.353 3.700 9.676 49.085 17.253 0.254 0.586 0.709 

16 3 11.201 2.800 3.500 8.138 62.613 19.798 0.119 0.616 0.704 

17 6 8.279 3.070 3.100 4.934 31.389 15.405 0.408 0.674 0.709 

18 13 14.611 3.653 4.500 13.288 39.238 8.829 1.361 0.745 0.712 

19 17 15.329 3.832 4.600 12.098 35.997 9.589 1.500 0.816 0.719 

20 16 14.484 2.621 3.600 7.150 35.612 5.055 1.770 0.877 0.689 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 14 7.781 0.900 1.350 22.794 20.656 1.889 1.388 0.031 0.605 

2 4 8.126 2.621 1.900 19.990 38.459 1.064 1.887 0.092 0.612 

3 15 8.089 1.735 1.900 22.841 20.401 6.828 1.220 0.098 0.590 

4 19 8.999 3.653 1.200 4.973 18.869 12.658 0.186 0.108 0.596 

5 20 7.341 3.832 1.800 14.614 14.001 8.112 1.599 0.108 0.611 

6 24 12.000 3.750 2.000 15.000 23.268 7.400 1.000 0.172 0.591 

7 22 12.754 3.409 1.500 5.961 26.202 10.709 0.219 0.172 0.598 

8 10 6.567 3.932 2.000 9.092 16.633 16.534 0.799 0.253 0.604 

9 7 11.219 2.826 1.600 5.129 41.036 9.306 0.133 0.262 0.589 

10 14 7.040 3.430 1.800 6.135 16.431 10.722 0.976 0.294 0.596 

11 8 9.455 2.511 3.000 24.903 32.229 7.174 1.582 0.295 0.611 

12 21 9.596 1.847 1.800 5.501 20.549 5.950 1.118 0.326 0.597 

13 8 11.972 3.070 3.000 22.263 40.913 10.952 0.655 0.338 0.608 

14 5 10.685 2.484 2.500 10.455 46.474 12.109 0.264 0.414 0.609 

15 24 15.121 2.712 2.800 13.577 30.366 10.569 1.104 0.508 0.594 

16 9 15.052 2.415 2.500 8.130 49.522 1.831 1.485 0.509 0.614 

17 5 9.358 1.980 2.900 13.276 40.905 11.621 0.563 0.517 0.607 

18 8 11.619 3.353 2.900 10.244 39.330 15.649 0.471 0.706 0.601 

19 5 7.842 2.800 2.800 7.303 32.758 15.567 0.612 0.887 0.601 

20 6 7.757 3.241 2.600 4.279 28.770 13.392 0.682 1.098 0.613 
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Group 8 

 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 5 9.677 2.419 1.100 20.473 41.901 1.064 0.293 0.016 0.619 

2 17 13.894 3.473 1.000 6.358 32.627 1.889 0.206 0.040 0.618 

3 23 7.006 1.752 0.950 9.590 14.145 12.109 0.164 0.026 0.602 

4 7 7.518 1.880 1.500 23.609 27.515 5.950 0.377 0.046 0.590 

5 18 8.060 2.015 1.200 10.123 18.395 6.828 0.345 0.050 0.603 

6 16 8.057 2.014 1.600 13.082 19.502 7.400 0.640 0.086 0.610 

7 17 10.053 2.513 1.300 5.232 23.608 5.567 0.341 0.129 0.597 

8 16 11.518 2.879 2.400 28.920 27.880 16.534 0.510 0.144 0.599 

9 9 9.883 2.471 2.200 18.590 31.896 10.709 0.443 0.163 0.605 

10 4 8.374 2.093 2.100 14.240 40.539 1.831 1.416 0.189 0.603 

11 21 8.941 2.235 2.500 20.754 18.891 10.569 1.828 0.208 0.609 

12 4 6.867 1.717 2.300 16.674 33.243 12.658 0.401 0.212 0.603 

13 10 6.915 1.729 2.100 12.316 21.173 15.649 0.634 0.230 0.597 

14 18 8.290 2.072 2.300 13.085 18.918 9.306 1.787 0.291 0.595 

15 5 13.719 3.430 2.900 24.253 59.406 5.112 0.642 0.304 0.599 

16 18 13.819 3.455 2.200 7.937 31.538 10.952 0.432 0.371 0.609 

17 10 11.309 2.827 3.100 20.148 34.626 9.221 1.120 0.379 0.618 

18 6 12.419 3.105 3.100 17.765 49.092 5.722 0.909 0.437 0.616 

19 15 7.048 1.762 2.200 4.782 17.621 13.392 1.249 0.695 0.595 

20 8 10.845 2.711 2.900 6.305 37.125 7.174 1.116 1.101 0.606 
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SF1 Cyl. Orif. Parametric Analysis Results Group 1, ηave ≈ 0.9 [Pa · s]
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SF1 Cyl. Orif. Parametric Analysis Results Group 2, ηave ≈ 0.9 [Pa · s]
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SF1 Cyl. Orif. Parametric Analysis Results Group 3, ηave ≈ 0.8 [Pa · s]
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SF1 Cyl. Orif. Parametric Analysis Results Group 4, ηave ≈ 0.8 [Pa · s]
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SF1 Cyl. Orif. Parametric Analysis Results Group 5, ηave ≈ 0.7 [Pa · s]
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SF1 Cyl. Orif. Parametric Analysis Results Group 6, ηave ≈ 0.7 [Pa · s]
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SF1 Cyl. Orif. Parametric Analysis Results Group 7, ηave ≈ 0.6 [Pa · s]
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SF1 Cyl. Orif. Parametric Analysis Results Group 8, ηave ≈ 0.6 [Pa · s]

−0.02 0 0.02

−50

0

50

[m/s]

[t
o
n
f]

k
c
=0.016

C=1748.5

α=0.833
F

max
=65.9

−0.02 0 0.02

−50

0

50

k
c
=0.04

C=1209.3

α=0.862
F

max
=49.2

−0.1 0 0.1

−20

−10

0

10

20

k
c
=0.026

C=117.4

α=0.837
F

max
=20.5

−0.1 0 0.1

−40

−20

0

20

40

k
c
=0.046

C=219.4

α=0.858
F

max
=40.8

−0.1 0 0.1

−20

−10

0

10

20

k
c
=0.05

C=124.6

α=0.868
F

max
=23.7

−0.2 0 0.2

−20

−10

0

10

20

[m/s]

[t
o
n
f]

k
c
=0.086

C=71.6

α=0.915
F

max
=23.7

−0.1 0 0.1

−20

−10

0

10

20

k
c
=0.129

C=160.8

α=0.956
F

max
=21.2

−0.5 0 0.5

−50

0

50

k
c
=0.144

C=154.3

α=0.975
F

max
=83.5

−0.2 0 0.2

−40

−20

0

20

40

k
c
=0.163

C=147.6

α=1.001
F

max
=44.3

−0.1 0 0.1

−20

−10

0

10

20

k
c
=0.189

C=172.1

α=1.025
F

max
=27

−1 0 1

−20

0

20

[m/s]

[t
o
n
f]

k
c
=0.208

C=29.1

α=1.043
F

max
=35.9

−0.2 0 0.2

−20

−10

0

10

20

k
c
=0.212

C=64.1

α=1.044
F

max
=19.6

−0.5 0 0.5

−10

0

10

k
c
=0.23

C=28.3

α=1.059
F

max
=17.3

−1 0 1

−20

−10

0

10

20

k
c
=0.291

C=24.3

α=1.106
F

max
=25.8

−0.2 0 0.2

−100

−50

0

50

100

k
c
=0.304

C=626.9

α=1.122
F

max
=107.6

−0.2 0 0.2

−50

0

50

[m/s]

[t
o
n
f]

k
c
=0.371

C=200.5

α=1.176
F

max
=48.6

−0.5 0 0.5

−50

0

50

k
c
=0.379

C=92.9

α=1.184
F

max
=56.1

−0.2 0 0.2

−50

0

50

k
c
=0.437

C=241.3

α=1.212
F

max
=62.7

−1 0 1

−10

−5

0

5

10

k
c
=0.695

C=9.9

α=1.32
F

max
=10.7

−0.5 0 0.5

−20

0

20

k
c
=1.101

C=87

α=1.444
F

max
=32.5



 

95 

 

 

 

Piston with Cylindrical Orifices Using SF30 Fluid  

The geometric dimensions and corresponding force-velocity curves of the models 

solved to generate Figure 3-5 (b) were: 

 

Group 1 

 

 
 
 
 
 
 
 
 
 
 
 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 15 4.930 0.900 4.000 19.467 12.515 3.276 0.979 0.000556 17.656 

2 23 14.827 4.200 4.100 14.898 29.649 1.689 0.368 0.000794 17.585 

3 16 7.607 4.500 5.100 16.940 15.334 5.197 0.835 0.001288 17.803 

4 22 12.302 3.800 4.900 13.855 24.946 15.001 0.099 0.001446 17.624 

5 24 14.063 4.000 5.700 12.025 27.520 2.911 0.675 0.002699 17.478 

6 14 9.253 1.200 5.800 12.033 24.520 11.594 0.222 0.002794 17.564 

7 17 8.439 2.000 4.100 3.571 19.884 7.019 0.193 0.003221 17.729 

8 10 10.944 2.900 6.800 15.212 33.369 2.899 0.779 0.003598 17.512 

9 10 6.615 0.900 5.500 5.800 20.723 3.120 1.010 0.005110 17.394 

10 6 6.078 1.400 6.800 8.433 24.145 17.374 0.247 0.006424 17.565 

11 15 13.797 3.100 8.100 14.126 34.712 3.637 0.982 0.006656 17.429 

12 11 8.127 1.100 7.700 8.527 24.279 7.300 0.830 0.009025 17.677 

13 7 9.709 2.700 7.500 7.530 35.250 5.750 0.460 0.009389 17.707 

14 16 11.959 3.200 8.200 9.610 28.809 3.000 1.790 0.010130 17.439 

15 21 10.841 2.400 6.300 4.170 23.069 7.996 0.480 0.010744 17.364 

16 5 6.788 1.000 9.800 13.386 30.024 17.061 0.483 0.012015 17.607 

17 9 8.940 0.300 10.100 13.300 29.783 12.400 0.738 0.013203 17.621 

18 6 9.229 1.100 11.400 16.240 37.408 10.400 0.808 0.015692 17.573 

19 8 13.178 2.700 10.800 12.930 45.601 2.721 1.800 0.017212 17.436 

20 16 10.490 3.000 9.300 7.540 25.130 8.036 1.278 0.018769 17.457 
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Group 2 

 

Group 3 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 14 6.464 1.616 3.650 18.852 16.726 1.862 0.745 0.000447 17.536 

2 19 8.982 2.246 3.850 19.324 19.953 1.550 0.739 0.000513 17.519 

3 9 6.899 1.725 5.000 15.690 22.266 2.728 0.742 0.001392 17.491 

4 18 6.934 1.733 4.700 11.100 15.824 2.186 1.501 0.001602 17.595 

5 18 7.130 1.533 5.350 15.209 16.412 3.800 1.190 0.001738 17.556 

6 8 13.772 3.443 4.900 5.293 47.147 2.296 0.182 0.003809 17.592 

7 7 6.620 1.655 7.500 15.048 24.228 1.500 3.800 0.004819 17.577 

8 24 7.967 1.992 8.400 21.342 15.745 14.851 1.311 0.004956 17.384 

11 16 15.051 3.763 8.600 20.384 36.434 2.438 1.546 0.005302 17.636 

9 5 9.074 2.268 6.700 9.173 39.290 1.300 1.171 0.005514 17.689 

10 16 10.561 2.640 8.300 17.673 25.563 5.500 1.280 0.005675 17.473 

12 14 7.017 1.754 5.800 4.217 18.157 9.756 0.477 0.007864 17.635 

13 10 11.054 2.764 10.000 20.409 33.847 4.987 1.373 0.008294 17.656 

14 13 9.321 2.330 10.100 18.026 25.031 13.999 0.941 0.009971 17.501 

15 6 13.614 3.404 10.900 20.050 53.815 5.900 0.600 0.011072 17.591 

16 4 6.809 1.702 9.400 12.327 32.962 14.482 0.420 0.011634 17.554 

17 11 8.973 2.243 10.500 16.673 26.197 7.700 1.735 0.011912 17.587 

18 14 12.311 3.078 11.700 17.543 31.857 13.706 0.918 0.015810 17.539 

19 16 15.954 3.988 8.300 5.017 38.618 3.200 0.970 0.020166 17.428 

20 7 14.972 3.743 9.200 6.292 54.792 6.200 0.330 0.021107 17.617 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 20 10.401 2.600 3.750 18.182 22.519 3.916 0.480 0.001675 11.921 

2 17 7.537 1.884 4.950 11.234 17.698 16.888 0.426 0.006497 11.756 

3 15 6.908 1.727 5.800 18.024 17.271 9.522 1.275 0.006510 11.758 

4 10 8.407 2.102 6.150 13.679 25.741 3.913 1.627 0.009874 11.900 

5 8 11.181 3.600 8.400 23.236 37.424 10.454 0.723 0.014463 11.997 

6 4 8.665 2.166 8.200 21.732 41.948 3.139 1.891 0.015735 11.635 

7 5 12.718 3.180 8.150 20.480 55.071 1.977 1.668 0.015776 11.789 

8 12 8.810 2.203 8.280 20.391 24.625 12.187 1.421 0.016662 11.778 

9 7 10.574 2.644 7.800 16.646 38.698 4.933 1.219 0.017716 11.627 

10 16 13.788 3.447 6.600 9.351 33.375 3.600 1.299 0.017816 11.908 

11 19 6.980 1.170 5.450 7.751 15.786 12.924 0.923 0.012358 11.824 

12 16 14.754 3.688 9.900 24.122 35.713 15.357 0.906 0.023638 11.851 

13 8 12.761 3.190 9.400 20.173 43.685 10.567 0.738 0.023471 11.975 

14 14 11.271 2.818 5.500 4.141 29.168 14.795 0.248 0.024495 11.703 

15 9 12.377 3.094 8.600 13.711 39.947 4.854 1.543 0.028417 11.684 

16 3 8.891 2.223 9.600 18.772 49.700 9.699 0.685 0.028337 11.759 

17 5 14.577 3.894 9.590 14.911 62.821 5.821 0.707 0.035135 11.808 

18 4 12.951 3.238 9.400 13.899 62.701 7.600 0.520 0.036393 11.708 

19 16 13.436 3.859 7.000 4.024 32.175 5.333 1.127 0.049518 11.898 

20 14 10.235 2.559 9.000 8.705 26.484 14.463 1.361 0.051937 11.635 
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Group 4 

 

Group 5 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 14 11.254 2.814 4.138 18.352 29.123 6.619 0.232 0.002292 11.810 

2 16 7.389 1.847 3.660 11.544 17.885 4.399 0.644 0.002536 11.786 

3 16 15.727 3.932 4.270 13.290 38.070 15.126 0.065 0.003471 11.818 

4 18 11.303 2.826 5.150 18.785 25.796 13.458 0.281 0.004328 11.800 

5 13 7.920 1.980 6.660 18.444 21.269 7.610 1.582 0.009533 11.800 

6 14 12.963 3.241 7.300 19.463 33.544 5.829 1.073 0.011555 11.918 

7 16 6.938 1.735 7.100 12.289 16.795 18.991 1.189 0.016426 12.019 

8 21 9.658 2.415 7.800 16.308 20.407 17.767 1.180 0.017265 11.813 

9 8 13.635 3.409 6.650 9.505 46.676 7.885 0.318 0.018620 11.755 

10 7 9.935 2.484 7.600 10.948 36.357 15.400 0.388 0.022952 11.958 

11 24 10.849 2.712 5.900 4.411 21.441 16.687 0.495 0.027864 11.778 

12 5 13.720 3.430 9.800 19.854 59.408 5.996 0.820 0.028208 11.801 

13 15 10.046 2.511 8.320 11.302 25.114 16.452 1.034 0.030800 11.738 

14 4 12.714 3.179 8.900 12.910 61.553 3.428 0.995 0.032223 11.835 

15 7 13.413 3.353 8.310 9.676 49.085 17.253 0.254 0.035134 11.819 

16 3 11.201 2.800 7.900 8.138 62.613 19.798 0.119 0.037131 11.682 

17 6 8.279 3.070 7.000 4.934 31.389 15.405 0.408 0.040043 11.933 

18 13 14.611 3.653 10.020 13.288 39.238 8.829 1.361 0.044858 11.818 

19 17 15.329 3.832 10.000 12.098 35.997 9.589 1.500 0.050008 11.734 

20 16 14.484 2.621 8.520 7.150 35.612 5.055 1.770 0.051093 11.831 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 13 6.357 1.589 2.180 19.324 17.072 1.550 1.663 0.002695 5.498 

2 20 12.557 3.139 2.350 18.852 27.188 1.862 0.710 0.003667 5.381 

3 23 8.769 2.192 2.850 20.409 17.704 4.987 1.066 0.005634 5.522 

4 16 6.318 1.580 1.900 4.217 15.294 9.756 0.217 0.008135 5.508 

5 20 15.502 3.876 2.000 5.017 33.563 9.800 0.054 0.008285 5.431 

6 13 6.462 1.615 3.130 18.026 17.352 3.999 1.861 0.008648 5.475 

7 20 6.971 1.743 3.230 20.050 15.093 5.900 1.869 0.008817 5.412 

8 6 13.060 3.265 3.200 17.673 51.626 5.500 0.161 0.009210 5.522 

9 7 12.555 3.139 3.800 20.384 45.946 2.438 0.767 0.013356 5.524 

10 14 6.344 1.586 2.600 6.292 16.418 7.200 0.681 0.014855 5.385 

11 22 15.340 3.835 3.200 11.100 31.666 2.186 1.104 0.015260 5.441 

12 22 9.171 2.293 4.000 17.543 18.932 13.706 0.944 0.018305 5.501 

13 23 7.712 1.928 3.400 9.173 15.570 10.300 1.140 0.021477 5.503 

14 16 12.787 3.197 4.500 15.209 30.953 3.800 1.835 0.030628 5.464 

15 9 13.431 3.358 5.100 15.048 43.349 3.500 1.517 0.046906 5.384 

16 6 14.491 3.623 5.200 15.690 57.282 2.728 1.175 0.047270 5.401 

17 12 12.948 3.237 5.400 16.673 36.192 7.700 1.142 0.048092 5.472 

18 14 9.922 2.481 5.850 21.342 25.676 14.851 1.510 0.048491 5.441 

19 5 13.577 3.394 4.000 5.293 58.792 2.296 0.579 0.059757 5.532 

20 6 14.235 3.559 5.500 12.327 56.267 14.482 0.269 0.070002 5.435 
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Group 6 

 

Group 7 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 15 14.001 3.500 1.540 9.039 35.002 1.290 0.171 0.002103 5.428 

2 4 7.067 1.767 2.900 21.914 34.211 15.627 0.099 0.005760 5.439 

3 7 7.361 1.840 2.750 14.274 26.937 3.463 0.620 0.007697 5.398 

4 22 7.818 1.955 3.500 22.957 16.140 12.400 0.979 0.009632 5.446 

5 18 11.797 2.949 3.600 22.901 26.923 4.700 1.026 0.010782 5.395 

6 14 6.046 1.512 2.900 11.370 15.646 4.910 1.492 0.011013 5.455 

7 4 8.638 2.160 2.050 3.841 41.819 0.407 0.877 0.011240 5.504 

8 16 14.687 3.672 2.600 5.595 35.551 2.726 0.375 0.016138 5.454 

9 13 7.455 1.864 3.740 14.308 20.021 10.956 0.899 0.019566 5.373 

10 19 15.619 3.905 4.240 17.063 34.695 7.856 0.600 0.023365 5.418 

11 12 14.173 3.543 3.900 10.438 39.615 2.019 1.377 0.029194 5.454 

12 21 9.998 2.499 4.100 7.590 21.124 9.100 1.255 0.047041 5.437 

13 13 7.450 1.862 4.300 6.335 20.005 9.073 1.592 0.063291 5.491 

14 7 10.314 2.579 5.530 12.763 37.746 4.772 1.859 0.069845 5.403 

15 7 11.499 2.875 6.200 15.754 42.081 6.100 1.637 0.078795 5.426 

16 32 14.693 3.673 4.600 6.092 25.149 11.017 1.022 0.081386 5.471 

17 8 15.106 3.777 5.200 8.043 51.713 5.800 0.650 0.086270 5.535 

18 6 8.599 2.150 5.100 7.862 33.989 5.500 1.563 0.089109 5.399 

19 9 13.749 3.437 4.400 4.778 44.375 8.138 0.386 0.089750 5.494 

20 5 6.844 1.711 5.500 9.038 29.637 18.847 0.743 0.095386 5.437 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 14 7.781 0.900 1.350 22.794 20.656 1.889 1.388 0.010016 1.867 

2 4 8.126 2.621 1.900 19.990 38.459 1.064 1.887 0.029442 1.922 

3 15 8.089 1.735 1.900 22.841 20.401 6.828 1.220 0.032966 1.753 

4 19 8.999 3.653 1.200 4.973 18.869 12.658 0.186 0.035790 1.795 

5 20 7.341 3.832 1.800 14.614 14.001 8.112 1.599 0.034628 1.914 

6 24 12.000 3.750 2.000 15.000 23.268 7.400 1.000 0.057713 1.763 

7 22 12.754 3.409 1.500 5.961 26.202 10.709 0.219 0.056542 1.816 

8 10 6.567 3.932 2.000 9.092 16.633 16.534 0.799 0.082271 1.861 

9 7 11.219 2.826 1.600 5.129 41.036 9.306 0.133 0.088177 1.750 

10 14 7.040 3.430 1.800 6.135 16.431 10.722 0.976 0.097511 1.798 

11 8 9.455 2.511 3.000 24.903 32.229 7.174 1.582 0.094318 1.912 

12 21 9.596 1.847 1.800 5.501 20.549 5.950 1.118 0.107795 1.804 

13 8 11.972 3.070 3.000 22.263 40.913 10.952 0.655 0.108628 1.891 

14 5 10.685 2.484 2.500 10.455 46.474 12.109 0.264 0.132907 1.896 

15 24 15.121 2.712 2.800 13.577 30.366 10.569 1.104 0.168962 1.786 

16 9 15.052 2.415 2.500 8.130 49.522 1.831 1.485 0.161187 1.938 

17 5 9.358 1.980 2.900 13.276 40.905 11.621 0.563 0.166773 1.882 

18 8 11.619 3.353 2.900 10.244 39.330 15.649 0.471 0.231146 1.835 

19 5 7.842 2.800 2.800 7.303 32.758 15.567 0.612 0.289867 1.840 

20 6 7.757 3.241 2.600 4.279 28.770 13.392 0.682 0.348678 1.930 
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Group 8 

 

 � Rp 
(cm) 

Rv 
(cm) 

Ro 
(mm) 

Lp 
(cm) 

Ri 
(mm) 

A 
(cm) 

f 
(1/s) 

kc 
 

µave 
(Pa∙∙∙∙s) 

1 5 9.677 2.419 1.400 19.473 41.901 0.706 0.993 0.012799 1.882 

2 17 13.894 3.473 1.000 6.358 32.627 1.889 0.206 0.012599 1.972 

3 23 7.006 1.752 0.950 9.590 14.145 12.109 0.164 0.008544 1.846 

4 7 7.518 1.880 1.500 23.609 27.515 5.950 0.377 0.015588 1.758 

5 18 8.060 2.015 1.200 10.123 18.395 6.828 0.345 0.016193 1.851 

6 16 8.057 2.014 1.600 13.082 19.502 7.400 0.640 0.027526 1.905 

7 17 10.053 2.513 1.300 5.232 23.608 5.567 0.341 0.042648 1.805 

8 16 11.518 2.879 2.400 28.920 27.880 16.534 0.510 0.047345 1.822 

9 9 9.883 2.471 2.200 18.590 31.896 10.709 0.443 0.052875 1.870 

10 4 8.374 2.093 2.100 14.240 40.539 1.831 1.416 0.061500 1.854 

11 21 8.941 2.235 2.500 20.754 18.891 10.569 1.828 0.066624 1.900 

12 4 6.867 1.717 2.300 16.674 33.243 12.658 0.401 0.069088 1.853 

13 10 6.915 1.729 2.100 12.316 21.173 15.649 0.634 0.076068 1.808 

14 18 8.290 2.072 2.300 13.085 18.918 9.306 1.787 0.096910 1.788 

15 5 13.719 3.430 2.900 24.253 59.406 5.112 0.642 0.099946 1.820 

16 18 13.819 3.455 2.200 7.937 31.538 10.952 0.432 0.118945 1.899 

17 10 11.309 2.827 3.100 20.148 34.626 9.221 1.120 0.118913 1.969 

18 6 12.419 3.105 3.100 17.765 49.092 5.722 0.909 0.137624 1.954 

19 15 7.048 1.762 2.200 4.782 17.621 13.392 1.249 0.230964 1.791 

20 8 10.845 2.711 2.900 6.305 37.125 7.174 1.116 0.356070 1.872 
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SF30 Cyl. Orif. Parametric Analysis Results Group 1, ηave ≈ 17.6 [Pa · s]
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SF30 Cyl. Orif. Parametric Analysis Results Group 2, ηave ≈ 17.6 [Pa · s]
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SF30 Cyl. Orif. Parametric Analysis Results Group 3, ηave ≈ 11.8 [Pa · s]
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SF30 Cyl. Orif. Parametric Analysis Results Group 4, ηave ≈ 11.8 [Pa · s]
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SF30 Cyl. Orif. Parametric Analysis Results Group 5, ηave ≈ 5.45 [Pa · s]
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SF30 Cyl. Orif. Parametric Analysis Results Group 6, ηave ≈ 5.45 [Pa · s]
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SF30 Cyl. Orif. Parametric Analysis Results Group 7, ηave ≈ 1.85 [Pa · s]
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SF30 Cyl. Orif. Parametric Analysis Results Group 8, ηave ≈ 1.85 [Pa · s]
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APPE�DIX D: MESHES A�D SIMULATIO� RESULTS EXAMPLES 

This appendix includes model images and post-process example plots of different 

simulation results that were not included in the body of the thesis for brevity. 

 

First, aspects from the models that included only fluid dynamics (imposed flow 

models, no heat transfer) will be presented.  In the case of the annular orifice configuration, 

solved in two dimensional cylindrical coordinates, the fluid domain was discretized 

entirely with triangular elements, as exemplified in Figure D-1.  Naturally, the mesh was 

much finer near the gap, were the steepest velocity gradients develop.     

 

Figure D-1: This particular mesh corresponds to Design 3 and consists of 3103 triangular 

elements.  The left figure zooms into the gap zone, were the mesh becomes much finer. 

(Comsol) 

Figure D-2 shows an example of the resulting velocity field for this type of model.  

Specifically, it corresponds to the time instant of maximum piston velocity for an input of 

A = 12.4 cm and f = 0.21 Hz, as in Test 3-1.  Recalling, the fluid used in this test was SF30 

and the geometry that of Design 3.  For this type of geometry, the fluid velocities in most 

of the domain are very low, except near and inside the gap.  The maximum velocity, 

approximately 8.3 m/s, develops halfway through the gap width.  Near this zone, variations 

in the velocity profile are mild, as seen in Figure D-3.  In contrast, steep velocity gradients 
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develop near the gap walls, causing the fluid to thin and originating the non linearity of the 

damper´s force-velocity relationship.   

 

Figure D-2: Velocity field at the instant of maximum piston velocity of Test 3-1. 
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Figure D-3: Velocity profile inside the gap at the piston’s mid-length at the instant of 

maximum piston velocity of Test 3-1.   

Figure D-4 presents another interesting result, the pressure distribution inside the 

fluid domain at the same instant as the previous velocity field.  This figure confirms, as 

was assumed during the body of this thesis, that pressure indeed remains constant 
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throughout each chamber and that the pressure drop is linear and concentrated in the gap’s 

length.        

 

Figure D-4: Pressure field at the instant of maximum piston velocity of Test 3-1. 

  The configuration combining cylindrical and annular orifices (Design 1), in 

comparison, was solved on a three dimensional domain since axial symmetry is lost in this 

configuration.  However, symmetry was taken advantage by modeling only a portion of the 

complete cylinder, as illustrated in Figure D-5.  In this case, the mesh (Figure D-6) 

consisted of 585,793 elements, mixing tetrahedral elements (in the chambers) and 

hexahedral elements (in the gap and orifice).   

 

Figure D-5: A symmetric portion of the complete geometry was modeled to reduce 

computation time.     
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Figure D-6: Mesh corresponding to Design 1. (ANSYS) 

Figure D-7 shows an example of the resulting velocity field for this type of 

configuration.  Specifically, it corresponds to the time instant of maximum piston velocity 

for an input of A = 2 cm and f = 1 Hz, as in Test 1-2.  Recalling, the fluid used in this test 

was SF1 and the geometry that of Design 1.  Maximum velocities inside the orifice 

reached values as high as 45.6 m/s.  The compressible flow formulation presented in this 

thesis is valid as long as Ma < 0.3; in this case:  

                   
1

3
45.6 970 0.9341 0.043

m kg
Ma GPa

s m
ρ β − = ⋅ ⋅ = ⋅ ⋅ = u  (D.1) 

which is far below the limit value.     
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Figure D-7: Velocity field at the instant of maximum piston velocity of Test 1-2. 

With respect to the fully multiphysics models, that is including heat transfer, the 

preference was to use meshes based on quadrilaterals.  Since these models included the 

piston’s movement, quadrilateral elements worked better at preserving the mesh quality 

and avoiding inverted elements as the mesh deformed.  Figure D-8 shows a two 

dimensional mesh, consisting on approximately 4000 elements, used for the annular orifice 

configuration (specifically Design 3) and its deformation as the piston strokes. 
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Figure D-8: Deforming mesh used for the multiphysics annular orifice models.  In order to 

maintain the mesh quality, the gap mesh projects into the other domains. (Comsol)      

Figure D-9 shows the resulting temperature field for Test 3-1 at different times.  The 

temperature rise concentrates in the central zone (in the range of the piston’s 

displacement), primarily due to the fluid’s low thermal conductivity.  The temperature in 

the cylindrical housing barely rises, indicating that for this type of excitation measuring its 

outer surface temperature is not a good indicator of the fluid’s temperature, as was initially 

thought.  In general, the tests were planned bearing in mind seismic applications (low 

number of cycles with high amplitudes).  For an input emulating wind excitation, that is, 

over 2000 short amplitude cycles in which the test duration extends for a much longer 

time, the outer temperature would certainly be a better indicator of the internal temperature 

and the heat transfer coefficient between the cylinder’s surface and the ambient would 

have to be selected more rigorously.           
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Figure D-9: Temperature fields at different times during Test 3-1. 

Figure D-10 shows the mesh, consisting of 488,026 elements, used to discretize the 

geometry of Design 1.  Again, the mesh was based on quadrilateral elements, except in the 

piston which, naturally, does not deform.  A comparison of Figure D-10 and Figure D-8 

illustrates the different approaches used by Comsol and ANSYS to model the interface 

between the silicone fluid and the inner surface of the cylindrical housing.  In the case of 

Figure D-10, the mesh at the solid and fluid sides does not match; the CFX Solver 
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calculates the temperature based on heat flux conservation through that boundary (Ansys 

Inc., 2009).  The cylinder’s mesh is therefore static during the whole simulation.  On the 

contrary, Comsol is able to handle deforming meshes both in fluid and solid domains.  

Therefore, the cylindrical housing’s mesh is able to accommodate the piston’s movement 

maintaining always a 1:1 mesh connection at the interface. 

 

Figure D-10: Deforming mesh used for the multiphysics model of Test 1-1.  Again, in 

order to maintain the mesh quality, the gap and orifice’s mesh project into the other 

domains. (ANSYS) 

Contrasting with the imposed flow model of this geometry (Design 1), symmetry 

was further exploited in the multiphysics case: a portion containing only one half of one 

orifice was used to reduce calculation time, as depicted in Figure D-11.          
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Figure D-11: A small symmetric portion of the geometry was used for the multiphysics 

model of Test 1-1 to decrease the number of elements and speed up calculations.      

 

Figure D-12 shows the resulting temperature field for Test 1-1 at different times.  

The temperature rise distributed almost uniformly throughout the fluid domain, unlike the 

annular orifice configuration.  Since this damper configuration was tested far below the 

velocity it was designed for (due to pump limitations), the temperature rise was very slight, 

with an average of approximately 5 °C after 6 cycles.         
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Figure D-12: Temperature fields at different times during Test 1-1. 
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APPE�DIX E: EXPERIME�TAL RESULTS A�D DATA PROCESSI�G 

 

During the months of October, November and December of 2010, three testing sessions 

took place at the Structural and Geotechnical Engineering Department’s Laboratory.  In 

each session one of the designs detailed in the body of this thesis was tested in 

corresponding order, that is, Session 1 corresponded to Design 1, Session 2 to Design 2 

and so on.  The finished prototype may be seen in Figure E-1 and the experimental setting 

in Figure E-2. 

 

Figure E-1: Prototype ready to be tested.   

Measured quantities during the tests were the actuator force and displacement, 

pressure in the damper’s two chambers, fluid temperature at one point (near one of the 

cylinder caps, at the extreme of a chamber) and the temperature at the housing cylinder’s 

outer surface.  Figure E-3 shows the instrumentation connected to the damper and the data 

acquisition system.   
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Figure E-2: Experimental setting at the lab.   

 

Figure E-3: Damper instrumentation and data acquisition system.   

The complete list of performed tests may be seen in Table E-1 through Table E-3.  

The tests referred to during the body of this thesis (Test 1-1, 1-2, 2-1, etc.) are labeled 

accordingly in these tables.  Tests with a 15 cm±  note in the observations column were 

performed with the piston oscillating with respect to a point that was offset from the 

cylinder’s mid-length.  
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Table E-1: Tests performed on Design 1.   

                

 

 

 

 

 

 

 

 

 

Table E-2: Tests performed on Design 2.   

 

Test ID Amplitude 
(cm) 

Frecuency 
(Hz) 

MaxVel. 
(cm/s) 

Completed 
Cycles 

Date Obs. 

1a 10.0 0.10 6.28 7 23-10-10 10:08 - 

2b 2.0 0.50 6.28 7 23-10-10 11:47 - 

3a 16.0 0.10 10.05 7 23-10-10 12:05 - 

4a 1.25 1.50 11.78 7 23-10-10 13:34 - 

5a 1.0 2.00 12.57 7 23-10-10 13:59 - 

6a 1.5 1.50 14.14 7 23-10-10 14:31 - 

7a 5.0 0.50 15.71 7 23-10-10 15:19 - 

8a 1.4 2.00 17.59 7 23-10-10 18:05 - 

10a 12.4 0.14 10.91 7 23-10-10 18:39 Test 1-1 

9b 20.0 0.14 17.59 7 24-10-10 10:07 - 

11a 2.0 1.00 12.57 7 24-10-10 10:52 Test 1-2 

12a 2.3 1.00 14.45 7 24-10-10 10:58 - 

13a 1.4 1.50 13.19 7 24-10-10 12:18 - 

14a 1.4 1.25 11.00 7 24-10-10 12:23 - 

15a 1.4 1.00 8.80 7 24-10-10 12:42 - 

16a 1.4 0.50 4.40 7 24-10-10 12:48 - 

18a 8.0 0.20 10.05 7 24-10-10 13:10 - 

17a 3.6 0.60 13.57 7 24-10-10 13:37 - 

19a 1.4 1.50 13.19 7 24-10-10 14:06 - 

20a 1.4 1.25 11.00 7 24-10-10 14:08 - 

21a 1.4 1.00 8.80 21 24-10-10 14:11 - 

Test ID Amplitude 
(cm) 

Frecuency 
(Hz) 

MaxVel. 
(cm/s) 

Completed 
Cycles 

Date Obs. 

17a 8.0 0.08 4.02 7 20-11-10 8:53 - 

2a 16.0 0.10 10.05 7 20-11-10 9:26 - 

11a 1.4 1.25 11.00 7 20-11-10 10:57 - 

12a 1.4 1.00 8.80 7 20-11-10 10:59 - 

13a  1.4 0.50 4.40 7 20-11-10 11:02 - 

4a 5.0 0.50 15.71 7 20-11-10 11:31 - 

14a 3.6 0.60 13.57 7 20-11-10 12:10 - 

18a 3.6 0.60 13.57 7 20-11-10 13:34 (+15 cm) 

5a 1.4 2.00 17.59 7 20-11-10 14:16 - 

8a 2.0 1.00 12.57 7 20-11-10 14:43 Test 2-2 

9a 2.3 1.00 14.45 7 20-11-10 14:46 - 

22a 1.4 1.00 8.80 7 20-11-10 15:13 - 

3a 1.5 1.50 14.14 7 20-11-10 16:01 - 

1a 10.0 0.10 6.28 7 20-11-10 16:43 - 

16a 4.0 0.30 7.54 7 20-11-10 17:08 - 

1b 10.0 0.10 6.28 7 20-11-10 17:14 - 

20a 1.4 1.50 13.19 7 23-11-10 12:10 - 

21b 1.4 1.25 11.00 7 23-11-10 12:15 - 

7a 12.4 0.21 16.36 5 23-11-10 12:51 Test 2-1 

23a 10.0 0.23 14.14 7 23-11-10 13:25 - 

15a 6.0 0.40 15.08 7 23-11-10 13:57 - 

24a 5.0 0.50 15.71 7 23-11-10 14:29 - 

19b 2.0 1.00 12.57 7 23-11-10 14:35 - 
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Table E-3: Tests performed on Design 3.    

 

 

.  

In general, the electrical signals measured during the different tests had a noise 

component that was filtered out in order to obtain smoother results.  The case of velocity, 

for instance, was particularly critical since it is calculated as the numerical derivative of the 

displacement.  If the unprocessed displacement signal were used for this, the noise would 

be amplified and the resulting velocity incoherent.  As a consequence, the displacement 

and pressure signals for the different tests were filtered as explained next.  The force 

signal, in contrast, was used unprocessed since the signal to noise ratio was high.   

 

Test ID Amplitude 
(cm) 

Frecuency 
(Hz) 

MaxVel. 
(cm/s) 

Completed 
Cycles 

Date Obs. 

1a 8.0 0.08 4.02 5 04-12-10 12:38 - 

2a 4.0 0.30 7.54 7 04-12-10 13:01 - 

3b 1.4 1.00 8.80 7 04-12-10 13:14 - 

4a 1.4 1.25 11.00 7 04-12-10 13:23 - 

5a 1.4 1.50 13.19 7 04-12-10 13:32 - 

6a 1.4 1.75 15.39 7 04-12-10 13:42 - 

7a 1.4 2.00 17.59 7 04-12-10 14:00 - 

8a 16.0 0.10 10.05 4 04-12-10 14:16 - 

9a 3.6 0.60 13.57 7 04-12-10 15:25 - 

10a 3.6 0.60 13.57 7 04-12-10 16:06 (-15 cm) 

11a 6.0 0.40 15.08 7 04-12-10 16:34 - 

12a 7.0 0.40 17.59 4 04-12-10 17:29 - 

13a 5.0 0.50 15.71 7 04-12-10 18:10 - 

14a 6.0 0.40 15.08 7 04-12-10 18:41 - 

15a 10.0 0.225 14.14 5 04-12-10 19:46 - 

16a 12.4 0.21 16.36 6 05-12-10 10:02 Test 3-1 

17a 5.0 0.55 17.28 7 05-12-10 10:33 - 

18a 5.0 0.50 15.71 7 05-12-10 11:06 Test 3-2 

19a 2.0 1.00 12.57 7 05-12-10 12:10 - 

20a 1.4 1.50 13.19 7 05-12-10 12:13 - 

21a 1.4 1.25 11.00 7 05-12-10 12:15 - 

22a 1.4 1.00 8.80 7 05-12-10 12:17 - 

23a 16.0 0.14 14.07 2.5 05-12-10 13:23 - 

24a 3.6 0.70 15.83 7 05-12-10 14:13 - 

25a 3.6 0.60 13.57 7 05-12-10 14:16 - 

26a 10.0 0.23 14.14 5 06-12-10 11:38 - 

27a 4.0 0.30 7.54 7 06-12-10 11:43 - 
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The objective of filtering a signal is to eliminate undesired frequency content.  In this 

case, a low-pass Butterworth filter was employed, which is characterized by a plateau in 

the passing band and decaying rapidly beyond the cutoff frequency.  The gain for this kind 

of filter may be expressed as: 

( ) ( )
2

22 0

2

1

n

c

G
G H jω ω

ω

ω

= =
 

+  
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 (E.1) 

where n is the filter order,  cω  the cutoff frequency and 0G  the gain at zero frequency.  As 

an example, Figure E-4 displays the frequency response for a fifth order Butterworth filter 

with a cutoff frequency of [ ]2 /rad sω = . 
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Figure E-4: Frequency response for a fifth order Butterworth filter with a cutoff frequency 

of [ ]2 /rad sω = . 

Matlab includes a Butterworth filter through a function named butter.  This 

function receives two parameters as input: a, the order of the filter and b, which allows to 



 

123 

 

 

 

indicate the cutoff frequency and is defined as ( )/ 0.5cutoff sb f f= , where sf  is the signal 

sampling rate, in this case 100 Hz.  Herein, a fifth order filter was employed in all cases 

and b was established as / 50testb Z f= ⋅  where Z amplifies the frequency corresponding to 

the particular test, testf , so the cutoff frequency is greater than it.  It was observed that Z 

values between 2 and 3 worked well for the higher frequencies (1 to 2 Hz) and between 4 

and 5 for the lower frequencies (0.08 to 0.7 Hz).    

 

Another anomalous phenomenon in the raw experimental data that was corrected had 

to do with unwanted displacements of the damper cylinder.  Ideally, the displacement of 

the dynamic actuator should be transmitted perfectly to the damper, without relative 

movement between them.  Nevertheless, there was a slight clearance between the pin and 

the damper’s clevis and also a perceptible movement of the supporting frame.  This 

manifested as a plateau near the zones of zero force in the force-velocity and force-

displacement curves.  In other words, the actuator could move without resistance when 

changing its direction.  Figure E-5, illustrates this phenomenon in one of the tests on 

Design 1, particularly Test 11a according to Table E-1.  (The test referred to as 11a in this 

appendix is the same as the test referred to as 1-2 during the body of the thesis.)  The red 

circles show the plateaus where velocity increased without an increase in force, which 

would not be physically possible and is only explained by the unwanted displacements just 

described.         
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Figure E-5:  Unprocessed force-velocity curve corresponding to Test 11a.  The red circles 

indicate the plateau region caused by undesired relative movement between the damper 

and the dynamic actuator.       

Intuitively, the first inclination to correct this problem a posteriori is to revise the 

displacement signal.  However, since these are displacement controlled tests, the dynamic 

actuator executes the prescribed displacement independently of what occurs with the tested 

probe.  Therefore, no evident problems are identifiable when examining the displacement 

history, as seen in Figure E-6.  On the contrary, when examining the force history in the 

same figure, there is an unmistakable anomaly when the force changes its sign.  It was 

decided to solve this by replacing the anomalous points with interporlated points using the 

previous and subsequent zones to the problematic area, eliminating the alluded plateaus.  

Considering that velocity is what determines the damper’s output force, once all the 

clearance in the mentioned zones is adjusted, the damper’s piston velocity is effectively the 

same as the actuator’s velocity regardless of any previous unwanted displacement.         
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Figure E-6: Fragment of the displacement and force histories during Test 11a without 

processing.  The red circles indicate the problematic zones. 

Figure E-7 shows an example of how the original anomalous points (in red) where 

replaced with interpolated points for Test 11a.  Naturally, the definitive solution for this 

problem would be to physically eliminate the clearance between the pin and clevis and, 

furthermore, directly measuring the piston’s and the cylinder’s displacement with two 

LVDT’s and subtract them to determine the true displacement.     
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Figure E-7: Points in red were replaced with interpolated points using the previous and 

subsequent zones. 

Force-velocity relationships for all the performed tests and the non-Linear Maxwell 

macromodel fitted to them are presented in the following figures, grouped in chronological 

order of execution.  The green points are data that was disregarded and corrected with the 

procedure just described.       
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Figure E-8: Experimental force-velocity relationships measured during Session 1 (blue) and fit of Eq. (7.1) to this data (red). 
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Figure E-9: Experimental force-velocity relationships measured during Session 1 (blue) and fit of Eq. (7.1) to this data (red).     
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Figure E-10: Experimental force-velocity relationships measured during Session 2 (blue) and fit of Eq. (7.1) to this data (red).     
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Figure E-11: Experimental force-velocity relationships measured during Session 2 (blue) and fit of Eq. (7.1) to this data (red).     
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Figure E-12: Experimental force-velocity relationships measured during Session 3 (blue) and fit of Eq. (7.1) to this data (red).      
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Figure E-13: Experimental force-velocity relationships measured during Session 3 (blue) and fit of Eq. (7.1) to this data (red).     
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Figure E-14: Experimental force-velocity relationships measured during Session 3 (blue) and fit of Eq. (7.1) to this data (red).
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Table E-4: Summary of parameters resulting from the fit of the non linear Maxwell macro 

model (Eq. (7.1)) to the experimental results from Design 1. 

 

Test ID Amplitude 
(cm) 

Frecuency 
(Hz) 

Max Vel. 
(cm/s) 

C 
tonf/(m/s)α 

α K 
(tonf/m) 

1a 10 0.1 6.28 132.2 0.87 7537 

2b 2 0.5 6.28 148.5 0.92 7520 

3a 16 0.1 10.05 119.1 0.85 8297 

4a 1.25 1.5 11.78 112.3 0.84 8767 

5a 1 2 12.57 134.8 0.92 10164 

6a 1.5 1.5 14.14 112.6 0.84 7534 

7a 5 0.5 15.71 115.1 0.85 9799 

8a 1.4 2 17.59 108.8 0.85 9512 

10a 12.4 0.14 10.91 116.6 0.86 9158 

9b 20 0.14 17.59 111.2 0.83 7934 

11a 2 1 12.57 118.2 0.86 7293 

12a 2.3 1 14.45 124 0.89 8617 

13a 1.4 1.5 13.19 124 0.88 8375 

14a 1.4 1.25 11 130.3 0.9 7765 

15a 1.4 1 8.8 134.5 0.9 7153 

16a 1.4 0.5 4.4 137 0.89 6522 

18a 8 0.2 10.05 120.3 0.86 8508 

17a 3.6 0.6 13.57 105 0.82 8307 

19a 1.4 1.5 13.19 123.5 0.9 9351 

20a 1.4 1.25 11 134.6 0.92 7989 

21a 1.4 1 8.8 122.2 0.88 7319 

              

      Ave. 123.1 0.87 8258 
      Min. 105.0 0.82 6522 

      Max. 148.5 0.92 10164 

      Std. Dev. 11.02 0.03 952 
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Table E-5: Summary of parameters resulting from the fit of the non linear Maxwell macro 

model (Eq. (7.1)) to the experimental results from Design 2. 

 

Test ID Amplitude 
(cm) 

Frecuency 
(Hz) 

Max Vel. 
(cm/s) 

C 
tonf/(m/s)α 

α K 
(tonf/m) 

17a 8 0.09 4.52 245.7 0.83 7905 

2a 16 0.1 10.05 171.7 0.73 7610 

11a 1.4 1.25 11 178.3 0.78 8214 

12a 1.4 1 8.8 168.3 0.75 7455 

13a  1.4 0.5 4.4 284 0.9 7444 

4a 5 0.5 15.71 160.1 0.74 8713 

14a 3.6 0.6 13.57 161 0.74 7799 

18a 3.6 0.6 13.57 166.4 0.77 8054 

5a 1.4 2 17.59 171.2 0.79 8661 

8a 2 1 12.57 167.2 0.77 8038 

9a 2.3 1 14.45 162.7 0.76 8666 

22a 1.4 1 8.8 180.1 0.8 7761 

3a 1.5 1.5 14.14 165.8 0.78 8296 

1a 10 0.1 6.28 203.5 0.81 7406 

16a 4 0.3 7.54 177.2 0.78 7912 

1b 10 0.1 6.28 195 0.81 7030 

20a 1.4 1.5 13.19 170.6 0.77 8754 

21b 1.4 1.25 11 167.8 0.76 7725 

7a 12.4 0.21 16.36 157.6 0.72 9172 

23a 10 0.23 14.14 157.8 0.77 8081 

15a 6 0.4 15.08 152.8 0.77 8494 

24a 5 0.5 15.71 150.4 0.78 7993 

19b 2 1 12.57 154.2 0.8 8035 

              

      Ave. 176.9 0.78 7905 
      Min. 150.4 0.72 7030 

      Max. 284 0.9 9172 

      Std. Dev. 30.97 0.04 518 
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Table E-6: Summary of parameters resulting from the fit of the non linear Maxwell macro 

model (Eq. (7.1)) to the experimental results from Design 3. 

 

Test ID Amplitude 
(cm) 

Frecuency 
(Hz) 

Max Vel. 
(cm/s) 

C 
tonf/(m/s)α 

α K 
(tonf/m) 

1a 8 0.09 4.52 142 0.47 8825 

2a 4 0.3 7.54 110 0.41 8192 

3b 1.4 1 8.8 99.2 0.41 8538 

4a 1.4 1.25 11 94.9 0.4 8429 

5a 1.4 1.5 13.19 87.1 0.38 8814 

6a 1.4 1.75 15.39 85.9 0.37 8605 

7a 1.4 2 17.59 88.2 0.39 9751 

8a 16 0.1 10.05 107.9 0.39 9660 

9a 3.6 0.6 13.57 88.4 0.36 8572 

10a 3.6 0.6 13.57 82.2 0.34 9221 

11a 6 0.4 15.08 91.1 0.36 9246 

12a 7 0.4 17.59 89.7 0.35 11511 

13a 5 0.5 15.71 90.4 0.36 9249 

14a 6 0.4 15.08 91.8 0.36 9219 

15a 10 0.225 14.14 98.3 0.37 9224 

16a 12.4 0.21 16.36 92.4 0.36 10566 

17a 5 0.55 17.28 88.3 0.35 10033 

18a 5 0.5 15.71 90.8 0.37 9257 

19a 2 1 12.57 93 0.39 8805 

20a 1.4 1.5 13.19 94.1 0.41 8817 

21a 1.4 1.25 11 101.4 0.42 8610 

22a 1.4 1 8.8 110.8 0.44 8583 

23a 16 0.14 14.07 102 0.37 9248 

24a 3.6 0.7 15.83 86.5 0.35 8783 

25a 3.6 0.6 13.57 92 0.37 8760 

26a 10 0.23 14.14 92.1 0.35 8690 

27a 4 0.3 7.54 113.1 0.43 8882 

              

      Ave. 96.4 0.38 8736 
      Min. 82.2 0.34 8192 

      Max. 142 0.47 11511 

      Std. Dev. 12.21 0.03 709 
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APPE�DIX F: CALIBRATIO� OF THE YASUDA-CARREAU PARAMETERS 

As explained in the body of the thesis, discrepancies between the numerical and 

experimental results were not unexpected due to the uncertain rheological behavior of the 

employed fluids.  In order to achieve a better agreement between models and experiments, 

parameters κ, a and n of the Yasuda-Carreau equation, i.e., Eq. (2.9), were calibrated as 

explained here. 

 

To accomplish this task, tests concerning annular orifice configurations were used 

since analytical approximations are easier to derive in their case.  Specifically, Eq. (4.1) 

represents a simple, yet accurate expression to estimate output force for annular orifice 

dampers.  For convenience, this equation is presented again here: 
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Test results from Design 2 were thus used to adjust the parameter values of SF1 and test 

results from Design 3 for SF30; both designs correspond to annular orifice geometries. 

 

If instead of a single value, V is substituted with a range of velocities in Eq. (F.1), for 

example the different velocities measured during a test, a force-velocity curve will be 

obtained.  Since this equation does not include compressibility, the resulting curve will be 

purely viscous, with no memory or viscoelastic effects.  The experimental data, on the 
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other hand, is not purely viscous, even though tests with a relatively low frequency and 

high amplitude were chosen in each fluid’s case to minimize this effect.  Therefore, instead 

of fitting Eq. (F.1) directly to the experimental data, it was fitted to a force velocity curve 

generated with an equation in the form of ( )sgnF C V V
α

= , that is Eq. (1.1), the classic 

purely viscous model.  The values for C and α were obtained from fitting Eq. (7.1), the 

proposed non-linear Maxwell macroscopic model, to specific tests from each design.  This 

indirect method was found to be more appropriate and yielded better results than directly 

using the experimental curve, since it allowed to fit Eq. (F.1) to an also purely viscous 

model.   

 

Denoting the data generated with Eq. (1.1) as (Vk, Fk), the calibration’s objective was 

to vary parameters κ, a and n in Eq. (F.1) until ( )a kF V  was as similar as possible to kF  in a 

least-squares sense.  Mathematically this is:     
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The individual procedure for each fluid is detailed next.  Please recall from Eq. (2.11) that 

while a and n are independent of temperature, κ has to be multiplied by a shift factor Z(T) 

to account for different temperatures.  For convenience, the κ values obtained in the fitting 

process were shifted to the fluid’s reference temperatures, 25°C for SF1 and 20°C for 

SF30.        
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Parameter Calibration for SF30 

Test 16a (according to Table E-3 and referred to as Test 3-1 during the body of the thesis) 

was chosen to calibrate the parameters for the SF30 fluid.  It was selected for various 

reasons.  Naturally, to properly characterize the viscosity-shear rate relationship, shear rate 

values as high as possible are needed and Test 16a was one of the tests that reached the 

highest input velocity permitted by the dynamic actuator’s pump.  Additionally, it was the 

first test performed on the day it took place.  As a consequence, it is reasonable to suppose 

that the fluid temperature measured at one of the cylinder caps was uniform throughout the 

fluid, which ceases to be true once a test has been performed.  This implicates that the 

zero-shear rate viscosity µ0, a function of temperature, can be estimated confidently.  

Hence, for the initial fluid temperature measured at 20 °C, µ0 ≈ 30 Pa∙s.  This value 

happened to coincide with the fluid’s reference temperature, allowing the direct calculation 

of κ without the need of a temperature shift.  Moreover, only the first complete cycle of 

this test was used in order to avoid further temperature effects that alter the force-velocity 

curve as the fluid heats.   

 

Fitting Eq. (7.1) to the experimental force-velocity curve from the first full-

amplitude cycle of Test 16a yielded the following results: α = 0.34, C = 96.3 tonf/(m/s)
α
  

and K = 9929 tonf/m.  (Note: these results differ slightly from the results presented in Table 

E-6 since those considered five complete cycles instead of one like it was done here.)  

Figure F-1 shows the experimental data and the macroscopic model fitted to it.     



 

140 

 

 

 

 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-60

-40

-20

0

20

40

60
Test 16a Macroscopic Model Fit

[m/s]

[t
o

n
f]

 

 

Exp.

Fit

 

Figure F-1: Comparison of the first complete cycle of Test 16a (in red) and the fit of Eq. 

(7.1) (in blue) to this data.   

As explained earlier, resulting values α = 0.34, C = 96.3 tonf/(m/s)
α
 were used to 

generate a new force-velocity curve, using Eq. (1.1), whose objective is to resemble the 

experimental data.  A comparison between both can be seen in Figure F-2. 
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Figure F-2: Comparison of the first complete cycle of Test 16a (in red) and the curve 

generated with Eq. (1.1) using the fitted values of α and C.   

Subsequently, Eq. (F.1) was fitted to the generated curve (blue in Figure F-2): the 

resulting optimal Yasuda-Carreau parameters were a = 2.0, n = 0.33 and κ = 1.46e-3 s.  

Please recall that this κ value corresponds to a temperature of 20°C.  The bounds 

considered for the optimization problem, as expressed in (F.2), are shown in Table F-1.    

Table F-1:  Upper and lower limits for the Yasuda-Carreau parameters during the SF30 

optimization process. 

 a n κ 
Min 0.1 0.2 

1.00e-3 [s] 

Max 2.0 0.4 2.50e-3 [s] 

 

It can be noted that the optimal solution attaches to the upper boundary in the case of 

a.  The same continued happening if a’s upper bound was increased and, in consequence, it 

was set at a = 2.0, a value common to many shear-thinning fluids.  In fact a = 2 is a 
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particular case of the Yasuda-Carreau model known simply as the Carreau model.  Hou et. 

al. (2007) used this equation to characterize a silicone fluid in a damper.  Anyhow, this is 

not especially relevant since the sensitivity of the result with respect to parameter a is very 

low.  As an example, Figure F-3 shows the result of plotting Eq. (F.2) with the optimal 

parameter values and then with a value of a twice as high; the resulting curve barely 

changes.   
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Figure F-3: Force-velocity relationships calculated with Eq. (F.1) and the optimal 

parameter values.  Even though a was doubled in the red curve case, the difference in the 

resulting curve is negligible. 

Finally, Figure F-4 compares the plot of Eq. (F.1) using the optimal parameters with 

the force-velocity curve generated with Eq. (1.1) and with the experimental data 

corresponding to Test 16a. 
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Figure F-4: The left plot shows the fit of Eq. (F.1) to the curve generated with Eq. (1.1)  

and the right plot compares this result with the experimental data. 

Parameter Calibration for SF1 

The original intention for the SF1 parameter calibration was to use a test performed under 

the same scenario as Test 16a for SF30 in the sense that it would be the first one of the day, 

allowing the assumption of a uniform fluid temperature.  Unfortunately, this condition 

could not be replicated since there was a pump malfunction during the first test; its 

measured data was useless and the opportunity to perform a test with a good knowledge of 

the internal fluid temperature was therefore lost.  Please recall that the temperature rise of 

the fluid concentrates in the piston displacement zone, as seen in Figure 5-7.  Therefore, 

once a test has been performed, the measurement of the temperature sensor, placed at one 

of the cylinder caps, is no longer representative of the fluid temperature.         

 

To amend this situation, the selected approach was to approximate the fluid’s 

temperature according to its pressure and assume a uniform temperature distribution 
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throughout the cylinder.  With temperature measured in °C and pressure in bar, the next 

equation, derived from Eq. (5.1), relates temperature and pressure increases: 

 0.078T p∆ = ⋅ ∆   (F.3) 

 

Test 7a (according to Table E-2 and referred to as Test 2-1 during the body of the 

thesis) was selected for the calibration of the SF1 fluid.  Before any test took place that 

day, the damper’s initial fluid pressure was measured at 117.4 bar and the temperature at 

18.5°C, values that were used as reference points to estimate µ0.  On the other hand, at the 

beginning of Test 7a fluid pressure was measured at 219.9 bar.  Using Eq. (F.3), the 

corresponding fluid temperature was approximated as:    

 ( )7 718.5 0.078 219.9 117.4 26.50a aT T C− = ⋅ − ⇒ = °  (F.4) 

For SF1 this corresponds to a zero shear rate viscosity of μ0 = 0.95 Pa∙s.   

 

Fitting Eq. (7.1) to the experimental force-velocity curve from the first full-

amplitude cycle of Test 7a yielded the following results: α = 0.714, C = 161.9 tonf/(m/s)
α
  

and K = 9195 tonf/m.  Figure F-5 shows the experimental data and the macroscopic model 

fitted to it.  
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Figure F-5: Comparison of the first complete cycle of Test 7a and the fit of Eq. (7.1) (in 

blue) to this data.    

As before, the resulting values α = 0.714 and C = 161.9 tonf/(m/s)
α
 were used to 

generate a new force-velocity curve using Eq. (1.1).  A comparison between this and the 

experimental curve can be seen in Figure F-6. 
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Figure F-6: Comparison of the first complete cycle of Test 7a (in red) and the curve 

generated with Eq. (1.1) using the fitted values of α and C. 

Subsequently, Eq. (F.1) was fitted to the generated curve (blue in Figure F-6): the 

resulting optimal Yasuda-Carreau parameter values were a = 2.0, n = 0.44 and κ = 4.13e-5 

s.  Shifting κ’s value to 25°C (SF1’s reference temperature) with b = 1452 K yields: 

 [ ]5

25 26.5
exp 4.03 10

299.65 298.15

b b
sκ κ − 

= − ⋅ = ⋅ 
 

 (F.5) 

 

The bounds for the optimization problem are shown in Table F-2.  The optimal 

solution for this fluid also attached to the upper boundary in the case of a, thus it was 

decided to limit that value to 2.0 again. 
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Table F-2:  Upper and lower limits for the Yasuda-Carreau parameters during the SF1 

optimization process. 

 a n κ 
Min 0.1 0.3 

1.0e-5 [s] 

Max 2.0 0.8 9.0e-5 [s] 

 

Finally, Figure F-7 compares the plot of Eq. (F.1) using the optimal parameters with 

the force-velocity curve generated with Eq. (1.1) and with the experimental data 

corresponding to Test 7a.   
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Figure F-7: The left plot shows the fit of Eq. (F.1) to the curve generated with Eq. (1.1)  

and the right plot compares this result with the experimental data. 

 

 

 

 


