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ABSTRACT OF THE THESIS 

 

Extreme lands lying at the edges of at least one abiotic gradient permit the survival of extremely 

few species. These so-called extremophile species (literally loving “philos” the extremes) harbour a 

unique reservoir of genetic and biochemical adaptations that has always attracted human curiosity. 

Previous studies have shown a high degree of species-specificity for plant adaptation to hostile biomes, 

thus explaining that successful transfers of protective mechanisms to crops remain scant. However, 

generic adaptive strategies may also exist. In this context, I propose to carry out a comprehensive 

approach from the ecosystem to the metabolites to investigate the biochemical adjustments of 

extremophile plant species from the Atacama Desert, the driest non-polar desert on earth. Plants were 

collected in their natural environment that spans an elevation gradient from 2500 to 4500m. Multiple 

metabolomic approaches were combined with machine learning to unveil a generic toolbox for plant 

resilience to harsh conditions. Subsequently, reaction and pathway enrichment analyses identified 

genetic legacies underlying convergent biochemical strategies selected through evolution. Finally, the 

role of positive interactions with the cactus Maihueniopsis camachoi in the adaptation of various plant 

species to harsh environments was explored. Results yielded a better mechanistic understanding of 

facilitation processes and the discovery of an intriguing set of metabolites able to predict the interaction 

status. Overall, while this study provided significant insights into our comprehension of adaptive 

mechanisms underlying plant resilience to extreme climates, our multi-species approach foreshadows 

promising studies and discoveries in agronomy and ecology.  
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RESUMEN DE LA TESIS 

 

Los sitios extremos situados en los márgenes de al menos un gradiente abiótico permiten la 

supervivencia de muy pocas especies. Estas especies denominadas extremófilas (literalmente que aman 

los extremos) albergan una reserva única de adaptaciones genéticas y bioquímicas que siempre han 

atraído la curiosidad humana. Estudios anteriores han demostrado un alto grado de especificidad para la 

adaptación de las especies de plantas a biomas hostiles, lo que explica que las transferencias exitosas de 

esas adaptaciones a los cultivos sigan siendo escasas. Sin embargo, también pueden existir estrategias 

adaptativas genéricas o más generales. En este contexto, me propongo  utilizar un enfoque integral desde 

el ecosistema hasta los metabolitos para investigar las adaptaciones bioquímicas de las especies 

vegetales extremófilas del desierto de Atacama, el desierto no polar más seco del planeta. Las plantas 

se recogieron en su entorno natural, que abarca un gradiente de altitud de 2500 a 4500m. Se combinaron 

múltiples enfoques metabolómicos con el aprendizaje automático o “machine learning” para develar una 

serie de herramientas genéricas para la resistencia de las plantas a las duras condiciones del Atacama. 

Posteriormente, los análisis de enriquecimiento de reacciones y vías metabólicas identificaron los 

legados genéticos subyacentes a las estrategias bioquímicas convergentes seleccionadas evolutivamente. 

Por último, se exploró el rol de las interacciones positivas con el cactus Maihueniopsis camachoi en la 

adaptación de varias especies a las extremas condiciones ambientales. Los resultdos permitieron 

comprender mejor los procesos de facilitación y descubrir un novedoso conjunto de metabolitos capaces 

de predecir el estado de la interacción. Finalmente, este estudio aporta información importante para 

comprender los mecanismos de adaptación que subyacen a la resistencia de las plantas a los climas 

extremos, y nuestro enfoque multiespecífico presagia estudios y descubrimientos prometedores en 

agronomía y ecología. 
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RÉSUMÉ DE LA THÈSE 

 

Les terres extrêmes situées à la limite d'au moins un gradient abiotique permettent la survie de 

très peu d'espèces. Ces espèces dites extrêmophiles (littéralement, aimant "philos" les extrêmes) abritent 

un réservoir unique d'adaptations génétiques et biochimiques qui a toujours attiré la curiosité de 

l'homme. Des études antérieures ont montré un haut degré de spécificité à l’espèce pour l'adaptation des 

plantes aux écosystèmes hostiles, ce qui explique que les transferts réussis de mécanismes de résistance 

vers les cultures agronomiques restent rares. Cependant, des stratégies adaptatives génériques pourraient 

également exister. Dans ce contexte, je propose de mener une approche compréhensive, de l'écosystème 

aux métabolites, afin d’étudier les ajustements biochimiques des espèces végétales extrêmophiles du 

désert d'Atacama, le désert non polaire le plus sec de la planète. Les plantes ont été collectées dans leur 

environnement naturel qui s’étend sur un gradient d’altitude de 2500 à 4500m. De multiples approches 

métabolomiques ont été combinées avec le "machine learning" pour dévoiler une boîte à outils générique 

prédisant la résilience des plantes aux conditions environnementales difficiles. Par la suite, des analyses 

d'enrichissement des réactions et des voies métaboliques ont permis d'identifier des héritages génétiques 

gouvernant des stratégies biochimiques convergentes sélectionnées au cours de l'évolution. Enfin, le 

rôle des intéractions positives avec le cactus Maihueniopsis camachoi dans l'adaptation de diverses 

espèces végétales aux milieux inhospitaliers a été exploré. Les résultats ont permis une meilleure 

compréhension du processus de facilitation et la découverte d’un ensemble intrigant de métabolites 

capables de prédire le statut d'intéraction. Dans l'ensemble, cette étude a permis de mieux comprendre 

les mécanismes d'adaptation qui sous-tendent la résilience des plantes aux climats extrêmes. Par ailleurs, 

notre approche multi-espèces représente une nouvelle stratégie analytique qui ouvre la voie à des études 

et des découvertes prometteuses en agronomie et en écologie.  
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GENERAL CONTEXT OF THE PHD 

 The bedrock of this project is the establishment of a collaboration between the Pontificia 

Universidad Católica de Chile (PUC, Santiago, Chile) and the University of Bordeaux (UBx, Bordeaux 

Biologie AgroSciences Master, Bordeaux, France), which has led to the development of a joint program 

named plant biotechnology program. My experience as the first French student involved in this program 

allowed me to meet Rodrigo Gutiérrez (head of the Plant Systems Biology lab) during a congress in late 

2018. The excellent expertise of his laboratory in transcriptomic and bioinformatic analyses enabled 

investigating of various fields ranging from the study of how Arabidopsis (A.) thaliana senses and 

responds to nutrients (and especially nitrogen) to the exploration of the transcriptome of pioneer and/or 

exotic plants. With the help of Prof. Claudio Latorre (Department of ecology, PUC), an ambitious and 

daring adventure was born almost ten years ago to decipher the plant processes required for adaptation 

in the Atacama Desert. Several years of fieldwork were necessary to discover and characterise the 

Talabre-Lejía transect (TLT), which offers unique plant biodiversity in the Atacama Desert along an 

altitudinal gradient from 2400 to 4500 m. First experiments unveiled genetic clusters relevant for 

adaptation and suggested an exciting role for specific biochemical pathways. Hence, this PhD project 

aims to explore the convergent and divergent metabolic strategies employed by Atacama plants to thrive 

under the extreme conditions of their natural environment. Multiple fields of expertise are required to 

embark on this multidisciplinary project, which implies diverse analyses and unpredictable results. Thus, 

this study required the development of a collaboration between the Plant Systems Biology laboratory 

(R. Gutiérrez, PUC) and the Meta team from Bordeaux Inrae (D. Rolin and P. Pétriacq, UBx) for their 

expertise and knowledge in plant metabolism and metabolomics.  Finally, this project represents the first 

cotutelle contract between UBx and PUC universities in the field of plant sciences. Besides, this project 

has also required skills in ecology and evolutionary biology (knowledge shared between R. Gutiérrez 

and Claudio Latorre from PUC) to preserve the ecological context and better interpret all results. An 

introductory chapter will first provide the main keys (metabolomics, bioinformatics, plant life in extreme 

lands) to understand the different analyses. Then, this manuscript describes and discusses how a large 

spectrum of data covering metabolomics (chapter 1), transcriptomics (chapter 2) and ecology (chapter 

3) was generated and integrated to unveil some of the main secrets enabling multiple plant species to 

thrive in the fascinating Atacama Desert. Notably, this collaboration has already resulted in a review 

(Chapter 1) (Dussarrat et al., 2021) and a scientific article (Chapter 3, minor revision, New Phytologist, 

Dussarrat et al., 2022). Additionally, two articles will be submitted in the coming days (Chapter 4) and 

weeks (Chapter 5). 
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I. METABOLOMICS IN PLANT SCIENCE  

 Plants are living organisms capable of converting environmental energy into chemical matter 

through a miscellaneous series of chemical reactions. The allocation of this chemical matter to 

developmental or defensive processes depends on the evolutionary trajectory of the organism (i.e. 

genome) and its environment. This dialogue between plant and environment is controlled by a precise 

orchestration of the different chemical elements in interaction (e.g. genes, proteins, small molecules). 

Biotic or abiotic variations result in a hierarchical response initiated by the plant genome, which ends in 

an adapted metabolic response after having integrated the regulations of the previous biological levels. 

In parallel, various regulations such as post-translational modifications can occur without encompassing 

genome shifts, which complexifies the analysis of the plant response.   

These short affirmations result from centuries of research in plant science and have not always 

been directly accepted by scientists. Hence, this section first seeks to describe the fantastic evolution of 

both technologies and approaches during the 20th and 21st centuries, which enabled the evolution from 

a reductionist to an integrative approach. Then, the place of metabolomics in the study of the plant 

response to the environment is discussed and the complexity of the plant metabolome is addressed. 

Finally, we present why mathematics earned a central place in modern biological research and how this 

bioinformatics science allows the discovery of meaningful links between environment, plant 

biochemistry and plant phenotype.  

 

I.1. From reductionist to integrative biology 

Life on Earth, as we perceive it, is the interpretable picture of a constant chemical flow between 

environmental resources and living organisms. Plants are a complex chemical system that results from 

the interaction of chemical elements capable of aggregating to create molecules, cells, and finally 

observable physical matter like organs and tissues. Notably, the fascinating relation between plant 

phenotype (i.e. observable state of the organism or specific traits of this organism) and plant chemistry 

has always attracted human curiosity. Pioneer scientists started to explore the different organisation 

levels of the living scale from the entire organism to cells and molecules until the discovery of 

“something” that determines the physical properties of an organism (Johannsen, 2014). The words 

“gene” and “genotype” then replaced the “something” and were linked with the phenotype (Roll-

Hansen, 2014). The foundation of biochemical genetics arose from the “one gene-one enzyme” theory 

developed by George W. Beadle and Edward L. Tatum, where a specific mutation led to the production 

of one enzyme that allowed adaptation to the new conditions (Beadle and Tatum, 1941). Besides, the 

newly discovered relationship between genes, DNA, mRNAs and proteins greatly enhanced the 

scientific interest in looking for specific gene-to-phenotype relationships (Brenner et al., 1961; Jacob 
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and Monod, 1961). During the 20th and 21st centuries, tremendous advances in genetics and sequencing 

technologies have made possible the analysis at the genome-scale (i.e. the analysis on the total amount 

of genes referred to as gene-“omics”) (Holtorf et al., 2002). Model plants such as Arabidopsis thaliana 

were sequenced (The Arabidopsis Genome Initiative, 2000) and used to speed up the analyses and 

demonstrate a plethora of functional pairs (i.e. association between one gene and a phenotypic trait) 

(Boyes et al., 2001). Hence, the beginning of the 21st century is a prolific period where multiple 

descriptions of molecular mechanisms have greatly improved our understanding of the plant system. 

However, numerous studies have led to real breakthroughs, such as the discovery that a gene can 

generate multiple mRNA and proteins, or conversely, not encode for an enzyme (Stark, 1977; Nawa et 

al., 1984). Together with the fact that multiple proteins were found to have diverse functions (Jeffery, 

1999), these discoveries first highlighted the weaknesses of the “one gene-one enzyme-one function” 

theory. In parallel, breeding programs have nicely used these significant discoveries to develop highly 

productive varieties, but subsequently faced two already known phenomena: inter-species variability 

and phenotypic plasticity (Aubin-Horth and Renn, 2009). Phenotypic trait variations can be observed 

based on the interaction between genotype and environment (a phenomenon called phenotypic 

plasticity), suggesting the impact of other molecular mechanisms (Bradshaw, 1965). At the extreme 

level, the same genotype can lead to dramatically different phenotypes, such as the caterpillar to butterfly 

transformation. Altogether, the rupture of the oversimplistic view of “one gene-one enzyme”, the intra- 

and inter-species variability in gene function, and the phenotypic plasticity greatly contributed to the 

conceptual scientific movement towards the integrative approach (Aubin-Horth and Renn, 2009). 

Hence, integrative and reductionist approaches are complementary techniques that enabled significant 

scientific advances.  

The use of new technologies subsequently allowed the breakdown of cellular chemical 

constituents between genotype and phenotype, from DNA to mRNA and proteins (Fig. I.1). 

Interestingly, the combination of these omics strategies allowed for comprehensive analyses of gene 

function, moving from the misconception of one gene-one phenotype to a pyramidal concept (Fig. I.1) 

(Holtorf et al., 2002). While the cumulative utilisation of these methods allowed to attribute gene 

function on a scale previously unimaginable, multiple contradictions were confirmed. For instance, gene 

expression levels were not always correlated to protein abundance (Vélez-Bermúdez and Schmidt, 

2014). Besides, the integrative scale of this pyramid is associated with an increase in complexity. While 

genotype depends on 4 nucleobases, the theoric number of possibilities proteomics is defined by the 

combination of 21 proteinogenic amino acids in eukaryotes. However, although more tedious, integrated 

analysis can elucidate the chemical mechanisms underlying a given phenotypic variation (Fig. I.1) 

(Schmitt, 2003). For instance, proteome analysis allows the comprehension of what causes the 

phenotypic change by integrating not only genomic and transcriptomic levels, but also post-translational 

modification and protein-protein interactions (Altelaar et al., 2013).   
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Even more entertaining, technological advances allowed scientists to move one step further and 

access the direct analysis of the matter composition (Sumner et al., 2003). The analysis of the plant 

biochemical diversity was then considered as the most integrative technology by being the closest omics 

to the phenotype (Rochfort, 2005). Hence, these small molecules called metabolites create a biological 

link between genotype and phenotype, giving a glimpse of the myriad of opportunities offered by this 

science (Fig. I.1). Consequently, the large-scale study of the metabolites at any organisation level in a 

biological matrix, so-called metabolomics, has earned a central place in plant science since its 

introduction between 2 and 3 decades ago (Alseekh and Fernie, 2018).  

Fig. I.1 | The pyramidal concept of omics sciences. GC/LCMS: gaz or liquid chromatography 

coupled to mass spectrometry. The DNA, RNA and protein images were downloaded from Smart 

Server Medical Art. 
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I.2. The complexity of plant metabolism 

The metabolome represents the entire set of endogenous and exogenous (xenobiotics) molecules 

harboured by an organism. Endogenous metabolites are typically divided into central, primary 

molecules (where central and primary metabolism are commonly grouped and referred to as primary 

metabolism), secondary compounds and regulators, which technically could be either primary or 

secondary metabolites (Erb and Kliebenstein, 2020). The first group involves highly conserved 

metabolites, which are shared between plant and animal species, and required for growth, survival and 

reproduction. Central pathways represent the backbone of plant metabolism and are responsible for the 

uptake and process of environmental resources. Besides, central compounds like hexoses from 

glycolysis or organic acids from the tricarboxylic acid cycle (TCA) fulfil the synthesis of other 

compounds. Primary metabolites are therefore compounds directly related compounds to central 

metabolism, including amino acids and lipids, for instance. Subsequently, primary pathways lead to the 

production of vital compounds that serve as building blocks for the synthesis of a miscellaneous series 

of secondary metabolites allowing plants to cope with their environment (Fig. I.2). Interestingly, whilst 

primary compounds have been extensively characterised and analysed during the last decades, 

knowledge of the chemical diversity and biological functions of the secondary metabolism remains 

partial. The following section describes the main classes of plant metabolism as well as the major 

analytical methods to study them.  

Central metabolism 

Major physiological functions like the uptake and process of environmental resources are 

managed by the glycolysis, TCA cycle, and oxidative pentose phosphate pathways (oxPPP) (Plaxton, 

1996; Fernie et al., 2004; Araújo et al., 2012) considered as central metabolism. These pathways are 

composed of a succession of chemical reactions involving hexoses, hexose or pentose phosphates 

(glycolysis and oxPPP), organic acids (TCA cycle), and some amino acids (i.e. anaplerotic pathway). 

Energy (ATP), carbon (C) blocks for biosynthesis of various compounds (e.g. pyruvate, 2-oxoglutarate) 

and reducing power (NADH, NADPH) are generated via the hexose oxidations, the TCA cycle, and the 

oxPPP. Also, central metabolism governs plant development via its interactions with the photosynthetic 

and photorespiratory processes, for instance (Plaxton, 1996; Fernie et al., 2004; Araújo et al., 2012). 

Besides, the central place of these pathways in managing C allocation between growth and defence is 

pinpointed by the synergy observed between primary and secondary metabolisms (Fig. I.2). Notably, 

the transformation of pyruvate to acetyl-CoA (which is considered as a major building block of lipids), 

the relation between 2-oxoglutarate and amino acid biosynthesis, and the connection between oxPPP 

and the shikimate acid pathway (at the origin of several secondary compounds), are some examples of 

these reported metabolic crosstalks (Reid et al., 1977; Kruger and von Schaewen, 2003; Oliver et al., 

2009; Araújo et al., 2012).  
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Fig. I.2 | Simplified scheme illustrating the complexity of plant metabolome and presenting 

some of the main crosstalks between central, primary and secondary compounds. Ac-CoA: 

acetyl-CoA, E4P: erythrose 4 phosphate, G6P: glucose 6 phosphate, NADPH: nicotinamide adenine 

dinucleotide phosphate, OAA: oxaloacetic acid, oxPPP: oxidative pentose phosphate pathway, PEP: 

phosphoenol pyruvate, R5P: ribulose 5 phosphate, SucCoA: succinyl-CoA, TCA cycle: tricarboxylic 

acid cycle, 2 OG: 2-oxoglutarate.  
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Primary metabolism 

Primary pathways are subjected to strong selective pressure owing to their vital properties for 

plant life, thus explaining their ubiquity (except for some exceptions) in the plant kingdom. Interestingly, 

the majority of those molecules are involved in plant growth and plant defence and include multiple 

polymers such as carbohydrates, lipids and monomers as amino acids. Besides, primary compounds act 

as a bridge between central and secondary pathways.   

- Compounds related to monosaccharides - 

Additional carbohydrates refer to primary metabolism such as oligosaccharides and polyols (Fig. 

I.2). Monosaccharides like glucose and fructose can assemble to create compounds known as oligo 

(“few” in Greek) -saccharides as sucrose (Kandler and Hopf, 1980). Starch is a polymer of sugars 

osmotically inactive acting as an accurate indicator of plant fitness, especially under abiotic constraints 

(Thalmann and Santelia, 2017). Additionally, several hundreds of oligosaccharides have been described 

(e.g. raffinose family oligosaccharides) and perform various functions such as energy storage and stress 

resistance (Kandler and Hopf, 1980). Polyols are reduced forms of sugars involving at least 3 C and 

bearing OH groups (e.g. inositol) that accomplish diverse roles in C storage and transport from source 

to sink tissues, or plant defence against abiotic stress (Noiraud et al., 2001). 

- Compounds related to fatty acyls - 

Lipids not only define the viability of biological membranes but are also key actors in plant 

development and defence (Harwood, 1996). Remarkably, the classification of molecules in the “lipid” 

class is still ambiguous since they are defined as any organic compounds that are insoluble in water and 

extractable by non-polar organic solvents (Ohlrogge and Browse, 1995). Lipids are divided into 8 

classes: fatty acyls (synthesised from acetyl-CoA and malonyl-CoA), glycerolipids (including a glycerol 

group), glycerophospholipids (including a phosphate group), sphingolipids (including a nitrogen atom 

in the lipidic chain), saccharolipids (including a sugar attached to the fatty acyl group), polyketides, and 

sterols or prenol lipids (from dimethylallyl or isopentenyl pyrophosphate) (Fahy et al., 2011) (Fig. I.2). 
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Fig. I.3 | Biosynthesis of amino acids. Ac-CoA: acetyl-CoA, E4P: erythrose 4 phosphate, GS-

GOGAT: glutamine synthase-glutamine:2-oxoglutarate amidotransferase, H4P: homoserine 4-

phosphate, OAA: oxaloacetic acid, PEP: phosphoenol pyruvate, SucCoA: succinyl-CoA, 2 OG: 2-

oxoglutarate. Figure inspired by Forde and Lea., 2007 and Yang et al., 2020. 
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- Compounds related to proteins - 

Amino acids serve as constituents of proteins and are thus required for plant growth and survival 

(Hildebrandt et al., 2015). Among this class of compounds, 20 were defined as products of protein 

hydrolysis and qualified as “proteinogenic”. Since their discovery started in the early 19th century 

(wonderfully described in (Vickery and Schmidt, 1931)), plenty of amino acids have been highlighted 

and categorised as non-proteinogenic and classified as secondary compounds (e.g. γ-aminobutyric acid 

(GABA)) (Jander et al., 2020) or novel phytohormone like β-aminobutyric acid (BABA) (Thevenet et 

al., 2017). Notably, ubiquitous proteinogenic compounds ensure additional functions like nitrogen 

assimilation and storage in glutamine, arginine, asparagine, glutamate and aspartate (Forde and Lea, 

2007). Inorganic nitrogen is incorporated into glutamate and glutamine via the glutamine and glutamate 

synthase (known as glutamine oxoglutarate aminotransferase) cycle (GS-GOGAT), which thereafter 

provide aspartate and asparagine (which can also provide from TCA cycle), as well as arginine and 

proline (Forde and Lea, 2007) (Fig. I.3). Besides, aspartic acid is the precursor of lysine, threonine, 

methionine, isoleucine and asparagine (Azevedo et al., 2006; Yang et al., 2020) (Fig. I.3). Similarly, 

sulfate assimilation leads to the synthesis of cysteine, which subsequently generates methionine in 

coordination with aspartate biosynthesis (Hesse et al., 2004). Whilst 2-oxoglutarate is incorporated into 

GS-GOGAT cycle, other precursors come from central pathways like pyruvate for the production of 

branched amino acids (e.g. valine, leucine) and alanine (Binder, 2010; Xu et al., 2017). Also, oxPPP 

acts as a first step for the biosynthesis of i) aromatic amino acids (i.e. phenylalanine, tyrosine and 

tryptophan) via the shikimate pathway, and ii) histidine which is linked to the 5’-phosphoribosyl 1-

pyrophosphate derived from ribose-5-phosphate (Rees et al., 2009; Tzin and Galili, 2010). Finally, 

different biosynthetic pathways were described for the production of glycine and serine with, among 

them, the 3 steps pathway metabolising the 3-phosphoglycerate into serine (Fig. I.3) (Ros et al., 2014).  

Hence, central and primary pathways form the core of the plant metabolic system, ensuring the 

assimilation of essential chemical compounds (e.g. C, N, S) and their distribution according to 

physiological needs and environmental constraints. Even more fascinating, these compounds serve as 

basic pieces of a more complex puzzle known as secondary metabolism. Thus, fatty acids and amino 

acids are, for example, precursors of a plethora of secondary compounds (Fig. I.2) and the source of 

interactions with phytohormones that are considered regulators (e.g. phenolics, jasmonate and ethylene 

biosynthesis) (Oliver et al., 2009; Schaller and Stintzi, 2009; Häusler et al., 2014; Hasanuzzaman et al., 

2018).  
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Secondary metabolism 

The extraordinary diversity of plant secondary metabolism has been estimated between 200 000 

and 1 000 000 compounds (Rai et al., 2017). Interestingly, the evolutionary theories of secondary 

metabolism may explain this functional diversity and redundancy. Secondary metabolites would have a 

dual origin from adaptation (i.e. positive selection) or non-selective processes (e.g. demographic 

history), leading joint and specific functions through evolution (Scossa and Fernie, 2020). Gene 

duplication (from polyploidisation, transposon activity) and gene fusion (i.e. fusion of independent 

cistrons which provide multifunctional proteins) are the main driving forces of secondary metabolism 

evolution. Duplicated genes (also called paralogous genes) then form gene families where the original 

gene maintains its function, while other copies acquire new roles based on, for instance, a shift in 

substrate preference or a change in expression pattern in time and space (Fondi et al., 2009). The 

successive combination of gene duplication and neo-functionalisation is the cornerstone of the 

patchwork hypothesis. The patchwork hypothesis is based on the fact that primitive enzymes were able 

to inefficiently react with various substrates, therefore leading to a myriad of potential reactions (Scossa 

and Fernie, 2020). Primitive enzymes were then recruited and specialised through gene duplication and 

neo-functionalisation to accomplish novel functions in emergent pathways (Caetano-Anollés et al., 

2009; Scossa and Fernie, 2020). Overall, evolution led to a highly diverse metabolism composed of 

generic compounds (ubiquitous between plant families and at the basis of chemical pathways) and 

specific pathways that occurred in relation to environmental pressure and evolutionary trajectory. The 

immensity of this metabolic world led to complex classification systems based on the structure or the 

function of the molecules, for instance (Fig. I.4).  

- N-related compounds - 

N-related compounds cover an extremely high diversity of metabolites, among which alkaloids, 

polyamines and quaternary ammonium compounds play determinant roles in environmental stress 

mitigation and defence against biotic threats.  

- Alkaloids represent a very large group of compounds divided into three major divisions based on their 

structures: i) stricto sensu alkaloids (heterocyclics), which contain an intracyclic nitrogen and derive 

from amino acids, ii) proto-alkaloids (non-heterocyclics), synthesised from amino acids (e.g. tryptophan 

and phenylalanine) and including a nitrogen atom outside of the ring, and iii) pseudo-alkaloids that are 

not derived from amino acids (Gutiérrez-Grijalva et al., 2020).  

- Polyamines (PA) are low molecular products composed of two or more amino groups (Bachrach, 

2010). While different biosynthesis pathways have been revealed, the amino acids ornithine and arginine 

(produced from glutamate) remain the major precursors. Interestingly, multiple roles have been 

attributed to the diamine “putrescine”, the triamine “spermidine” and the tetramine “spermines” in both 



Chapter 1. I. Metabolomics in plant science 

12 

plant development and abiotic stress tolerance, but precise mechanisms of action are still poorly 

described ((Slocum, 2005; Bachrach, 2010), section II).  

- Quaternary ammonium compounds (QACs) have been extensively characterised since highly resistant 

plants accumulate these compounds ((Storey et al., 1977), section II). These compounds are defined 

based on their constantly positively charged methylated nitrogen atom (Rhodes and Hanson, 1993) (Fig. 

I.4). Notably, the biosynthesis of these metabolites are diverse and sometimes poorly documented. 

Besides, betaines like proline and glycine betaine are nitrogenous osmolytes that accumulate in plants 

under stressful conditions but remain specific to several plant families (Trinchant et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.4 | Simplified scheme of the major classes of secondary metabolites.  
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- Terpenoids - 

Terpenoids, or isoprenoids, have been massively studied for their great interest in the 

pharmaceutical and agronomic industries and represent one of the main classes of secondary metabolites 

in terms of biodiversity (Tetali, 2019) (Fig. I.4). Besides, terpenes are closely related to plenty of 

compounds required for plant development and defence (Fig. I.5). The precursors of all terpenoids are 

the five-carbon unit called isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) 

which are produced by two distinct pathways taking place in the plastid (the methylerythritol phosphate 

pathway named MEP) or cytoplasm (the mevalonate pathway named MVA) (Fig. I.5) (Nagegowda and 

Gupta, 2020). Thus, the subclasses are defined based on the number of isoprene(s) as follows: hemi- (1 

isoprene), mono- (2), sesqui- (3), di- (4), sester- (5), tri-(6), and tetra- (8) -terpenoids. MVA starts with 

the conversion of acetyl-CoA to IPP and DMAPP which fulfil the C reserve for sesqui- and triterpenes 

production in the cytoplasm. In parallel, pyruvate and glyceraldehyde-3-phosphate undergo multiple 

reactions until biosynthesis of hemi-, mono-, sesqui-, di- and tetra-terpenes via the MEP in plastids 

(Tholl, 2015). Interestingly, the structural richness of isoprenoids is illustrated by the great diversity of 

chemical properties covered by these compounds (Nagegowda and Gupta, 2020). Diterpenes include 

compounds of primary interest such as phytol (vitamin precursor), whereas triterpenoids and 

tetraterpenes comprise phytosterols and carotenoids, respectively. Even more interesting, 

phytohormones such as gibberellic acids and abscisic acid as members of the terpene chemical family 

and are referred to as either secondary or regulator compounds (Tholl, 2015). Finally, other major 

compounds come down from the MVA pathway as brassinosteroids. Besides, the MEV pathway leads 

to the formation of strigolactones and cytokinins (Nagegowda and Gupta, 2020) (Fig. I.5).   

- Phenolics - 

Phenolics are another major group of secondary metabolites classified according to their 

chemical structure and biochemical origin (Lattanzio, 2013) (Fig. I.4). Pentose phosphate and glycolysis 

pathways provide erythrose 4-phosphate and phosphoenol pyruvate as building blocks for polyphenol 

biosynthesis (Naikoo et al., 2019) (Fig. I.6). These primary compounds are then used through the 

shikimate pathway to generate shikimic acid, which is then metabolised through the phenylpropanoid 

pathway to produce major aromatic amino acids like tyrosine, tryptophan and phenylalanine (Fig. I.6). 

These amino acids then undergo subsequent chemical reactions to synthesise the majority of phenolic 

compounds, which can however derive from the malonate acetate pathway in plants (Maeda and 

Dudareva, 2012). Like terpenes, phenolics encompass a wide range of compounds from simple aromatic 

rings to complex molecules. The five main classes, namely phenolic acids, stilbenes, flavonoids, lignans 

and others, have demonstrated pleiotropic roles in plant growth and resistances (López-Fernández et al., 

2020). Besides, their role in mitigating oxidative stress has been widely described (Decros et al., 2019).  
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Fig. I.5 | Terpenoids and related compounds. Terpenoids biosynthesis, the figure was developed 

by D. Nagegowda and P. Gupta 2020. 
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- Phenolic acids are produced through the phenylpropanoid pathway as other phenylpropanoid 

compounds as flavonoids (Mandal et al., 2010). However, phenolic acids can also derive from the 

monolignol pathway or the breakdown of lignin compounds (Mandal et al., 2010). Notably, phenolic 

acids cover C6-C1 compounds like gallic acid, C6-C2 metabolites, and C6-C3 compounds like p-

coumaric acid (also called 4-hydroxycinnamic acid), which acts as a precursor for the biosynthesis of 

other compounds (e.g. hydroxycoumarins) (Lattanzio, 2013).  

- The phenylpropanoid pathway fulfils the 4-coumaroyl-CoA reserves used for flavonoid biosynthesis. 

This pathway is thus at the origin of a miscellaneous series of flavonoids, which are divided into multiple 

subclasses based on the chemical linkages between the classic C6-C3-C6 (Fig. I.6) (Lattanzio, 2013). 

Interestingly, some of these subclasses encompass a myriad of compounds of interest for their roles in 

plant defence as quercetin and kaempferol in flavonols, tannins in flavanols and cyanidin in 

anthocyanins (Treutter, 2006).   

- Stilbenes are C6-C2-C6 phenolics massively studied for their benefits in human health (Chong et al., 

2009). Their production through the phenylpropanoid pathway is based on the synthesis of the widely 

studied resveratrol from 4-coumaroyl-CoA (Fig. I.6).  

- Lignans are another class of phenolics defined as phenylpropanoid dimers linked by the C8 carbon and 

produced via the phenylpropanoid pathway.  

- Other classes of phenolics include chemicals derived from the phenylpropanoid pathway such as 

lignins (heteropolymer of three monolignols called p-coumaryl, coniferyl and sinapyl alcohols), 

cyanogenic glycosides (synthesised from amino acids and involved in plant defence), and coumarins 

(derived from phenolic acids), for instance (Vetter, 2000; Boerjan et al., 2003; Sarker and Nahar, 2017) 

(Fig. I.6).  

The biological functions of secondary metabolites are as diverse as their chemical structures. 

Whilst these compounds were initially considered as by-products of primary pathways that do not 

participate in the development (Sachs, 1874), it is now clear that these compounds fulfil a plethora of 

roles (e.g. plant-soil or plant-insect interactions, reproduction, plant defence…) (Naikoo et al., 2019). 

However, common roles and properties emerged from multiple classes of chemicals like the antioxidant 

capacity of several terpenes and phenolics, therefore contributing to reduction-oxidation processes 

(Naikoo et al., 2019).  
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Fig. I.6 | Biosynthesis of polyphenols from shikimate pathway. G6P: glucose 6 phosphate, E4P: 

erythrose 4 phosphate, PEP: phosphoenol pyruvate.  

Figure adapted from H. Maeda and N. Dudareva 2012. 
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Redox compounds 

Plants are aerobic organisms and therefore require oxygen to survive. Paradoxically, the use of 

oxygen produces reactive oxygen species (reduced forms of oxygen (ROS) like the hydrogen peroxide, 

the superoxide anion and the hydroxyl radical), mostly through photosynthesis and mitochondrial 

respiration (Decros et al., 2019). Ascorbate (also called vitamin C in Humans) and glutathione are at the 

forefront of plant defence against oxidative damages. The main ascorbate biosynthesis pathway (called 

the D-mannose/L-galactose pathway) uses the D-glucose as a precursor and nicely illustrates the 

patchwork evolution theory since the first steps are common to cell wall precursors while the last steps 

are specific to ascorbate biosynthesis (Ishikawa et al., 2006). Glutathione is a thiol (sulfur-containing 

compound) produced via the combination of glutamate, cysteine and glycine (Noctor et al., 2012). 

Finally, the synthesis of pyridine nucleotides is derived from aspartate, which is subjected to multiple 

reactions in chloroplast and cytosol to finally generate nicotinamide adenine dinucleotide (NAD). NAD 

is then the precursor of the other forms of pyridine nucleotides called NAD phosphate (NADP) and their 

reduced forms (NADH and NADPH) (Gakière et al., 2018). Fascinatingly, evolution led to a vital cycle 

called Foyer-Asada-Halliwill cycle (i.e. ascorbate-glutathione pathway) where ascorbate and 

glutathione act as the two main ROS processors and maintain their redox state using the reduction power 

of pyridine nucleotides (i.e. NADPH and NADH). Additionally, non-enzymatic processing is performed 

via multiple secondary compounds like carotenoids and flavonoids (Decros et al., 2019). More precisely, 

secondary compounds including phenolics and terpenoids act as a significant antioxidant system 

processing excess of ROS and thus contribute to the redox balance (Decros et al., 2019). Overall, the 

rapid evolution of our understanding of redox processes is based on an elegant integrative approach 

where scientists have overcome the reductionist concepts “one gene-one enzyme-one function” or 

“primary and secondary metabolism”. For instance, this redox process first characterised for the 

generation of the toxic ROS responsible for cellular damages is now considered a major player in (i) 

physiological development and (ii) response to biotic or abiotic stress ((Das et al., 2015; Decros et al., 

2019), see section II). 

Altogether, the fascinating diversity of plant metabolism and the unimaginable amount of 

interactions between primary and secondary compounds perfectly demonstrates the need to evolve from 

a reductionist to an integrative approach (Fang et al., 2019). The redundance of their chemical structures 

and roles in plant defence or development, as well as their ubiquitous or specialised nature, represent a 

great challenge in metabolomics. The development of technical facilities now enables for precise (i.e. 

quantitative) or in-depth analysis of the chemical diversity, therefore providing a massive amount of 

data that have to be precautionarily handled to avoid misinterpretation. Hence, the development of 

adapted bioinformatic tools to manage plant chemical diversity is the sine qua non condition to extend 

the successes of the integrative approach.  
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Strategies for metabolite detection and quantification 

 The chemical composition (i.e. the nature and number of each chemical element) and the 

organisation of these elements in space define the chemical and physical properties of each molecule. 

All analytical techniques are using some of these properties (e.g. mass, absorbance, charge,  size, 

volatility, spin) to detect and quantify the different metabolites. Besides, among the major analytical 

tools in metabolomics, biochemical phenotyping is the technique that requires the most biological details 

(description of chemical pathways, enzymes..) since it relies on the use of enzymes and cofactors for the 

quantification of different target metabolites (Gibon et al., 2004). This technique can then be combined 

with robotics to allow for a high-throughput dimension of the analysis (Gibon et al., 2004). Conversely, 

other techniques like nuclear magnetic resonance (NMR) or mass spectrometry (MS) solely rely on 

physical properties such as nuclear spin or the mass of the molecules (Zhang et al., 2012).  

 However, plant metabolomics deals with complex mixtures, including a wide range of 

molecules from small polar compounds to large hydrophobic metabolites. Notably, no analytical tool is 

currently capable of detecting such a broad spectrum, therefore making each metabolomic experiment 

an incomplete analysis. Interestingly, two major approaches are used to cope with this wonderful 

chemical diversity. First, each metabolic analysis must select the type of metabolites analysed via the 

choice of the extraction technique. For instance, while water extraction favours the extraction of polar 

compounds, fatty acyls are preferentially extracted using highly organic solvents like hexane (Domergue 

et al., 2010). Ethanolic or methanolic extractions remain the most widely used extraction methods in 

metabolomics studies due to their capacity to capture a relevant diversity of metabolites (mostly semi-

polar) (Luna et al., 2020). Second, chromatography techniques are combined with mass spectrometry to 

decomplexify this biological matrix before MS analysis and therefore maximises the potential coverage. 

The nature of the column used in liquid or gas chromatography coupled to mass spectrometry (GC and 

LCMS) thus governs the type of detected molecules. For instance, C18 columns are capable of retaining 

metabolites from the mobile phase based on their hydrophobicity, leading to a sequenced arrival of semi-

polar compounds (Zhang et al., 2012).  

 Finally, analytical techniques are defined by their sensitivity (Tian et al., 2016). For instance, 

whilst biochemical assays are limited to a few well-known metabolites, NMR technique enables the 

detection of major polar compounds (detection limit of around 150 µM) and LC or GCMS permit access 

to biochemical diversity (pM to fM) (Sumner et al., 2003). However, while the sensitivity of LCMS 

techniques explains its massive use in metabolomic analyses, this property rapidly becomes a handicap 

when it comes to annotating and quantifying metabolites. Consequently, bioinformatics tools for 

handling, processing and analysing the data vary depending on the analytical facilities employed and 

can range from comparing the intensity of a few known metabolites to integrating thousands of unknown 

chemical compounds within models and metabolic networks.  
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I.3. Systems biology 

 “Mathematics is biology’s next microscope” (Cohen, 2004). The development of omics 

sciences, and especially metabolomics, has led to a sharp increase in the amount of data generated per 

experiment. The bidirectional evolution of metabolomics has fostered the emergence of targeted and 

untargeted approaches that can be combined or performed independently to investigate the molecular 

features and mechanisms underlying phenotypic trait variations (Gorrochategui et al., 2016). Besides, 

the arrival of diverse data sets has rapidly required the development of computational tools to meet the 

new analytical challenges. Analytical workflows are generally divided into a first explanatory phase, 

which seeks to describe the metabolic dataset and establish new hypotheses, and a correlation statistical 

analysis, which varies between analyses (Hendriks et al., 2011). Interestingly, one of the most critical 

challenges is to provide meaningful biological advances while using noisy, heterogeneous and collinear 

datasets. Modelling approaches have received particular attention in recent years due to their ability to 

extract the explanatory variables underlying the variation of phenotypic traits while preserving the 

biological context. Hence, mathematical (Belouah et al., 2019), stoichiometric (reaction-based) and 

kinetic (enzymatic-based) (Beauvoit et al., 2018), as well as predictive (correlation-based) (Nelder and 

Wedderburn, 1972; Luna et al., 2020) models sit at the top of multivariate analyses in the topic of plant 

metabolomics.  

Bottom-up and top-down approaches towards the understanding of phenotypic variations  

 Depending on the analytical technique, metabolomics offers various options from the detailed 

analysis of precise chemical compounds and pathways to the production of a metabolic fingerprint. The 

first analysis can provide a quantitative analysis (via biochemical assays or the use of standards injected 

in NMR or LCMS) of a small set of known metabolic compounds from primary metabolism or some 

well-described secondary pathways (Beauvoit et al., 2018). This targeted approach can be used either in 

combination with untargeted analysis or on its own. When used alone, the targeted analyses are the 

backbone of “bottom-up” approach, which starts from studying key molecular compounds to reconstruct 

a chemical pathway and describe its role in modulating a phenotypic trait of interest (Fig. I.7). Thus, the 

objectives can be either to analyse the response of a metabolic pathway to environmental perturbations 

or to characterise a known metabolic pathway in a new organism or plant tissue. The second approach 

maximises the detection of primary and secondary compounds that may be known or unknown (Luna 

et al., 2020). While this untargeted approach opens the gates to the unknown, this study is strongly 

limited by the annotation process and its inability to quantify unknown compounds. In return, the 

untargeted analysis offers the unique opportunity of working in a “top-down” approach, where potential 

markers or predictors of phenotypic traits are unveiled from a global set of compounds via machine 

learning (Fig. I.7). Both approaches underpin distinct workflows and statistical analyses. Hence, the first 

challenge in systems biology is the definition of the biological question. For instance, specific questions 
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like how redox fluxes influence plant defence against high light intensity will (mainly) lead to targeted 

analyses of redox compounds with various related hypotheses. In contrast, questions like “what are the 

metabolic features of extreme plants” will drive the metabolic analysis towards a “without a priori” 

workflow, which sometimes does not necessarily require an initial hypothesis. Then, the design of the 

biological and technical workflow should include the biological context of the study and define the 

technical approach. Finally, once the experimental work is performed, a plethora of statistical tools can 

be used to extract relevant metabolites and provide new insights into the problem studied (Hendriks et 

al., 2011). Since the question of this PhD has been tackled using a “without a priori” approach, statistical 

analysis of the bottom-up strategy will only be described briefly.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. I.7 | Bottom-up and top down approaches in metabolomics. Pipette and microplate images 

were obtained on Smart Server Medical Art.  
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Univariate methods 

 Univariate statistics are generally used to test the significance of specific metabolic variables. 

Following data normalisation, univariate analyses are thus performed to screen the metabolic dataset 

and extract the informative compounds from the uninformative ones via t-test or analysis of variances 

(ANOVA) (Saccenti et al., 2014). Subsequently, correction tests for false discovery rates are generally 

performed since the probability of revealing false positives increases with the number of univariate tests 

performed (hundreds to thousands when focusing on untargeted analyses) (Benjamini and Hochberg, 

1995). Hence, univariate analyses can be deployed to reduce the complexity of the metabolic dataset 

while preserving “informative” compounds related to the phenotypic trait under investigation. Notably, 

the use of univariate statistics to clean up the metabolic dataset before applying discriminant or 

regression analyses is quite valuable to limit the noise effect.   

Exploratory statistics 

 Untargeted analyses provide complex multivariate datasets characterised by high chemical 

diversity, high noise and collinearity levels. Consequently, the first essential step into statistical analysis 

is data normalisation and scaling, which allows for a multivariate comparison between samples and 

variables and transform the dataset so statistical assumptions for univariate tests are fulfilled. Whilst 

multiple normalisations exist, median normalisation and Pareto scaling (i.e. each variable being mean-

centred and divided by the square root of its standard deviation, which reduces noise influence compared 

to autoscaling) remains the most widely used method in untargeted metabolic datasets (Di Guida et al., 

2016). However, other data scaling might be more suitable when analysing a small number of chemical 

variables like auto-scaling (i.e. each variable being mean-centred and divided by its standard deviation) 

(van den Berg et al., 2006; Di Guida et al., 2016).  

Exploratory methods encompass two main unsupervised multivariate statistical methods: 1) 

principal component analysis (PCA), which highlights the global trends of omic impacts as well as 

quality control and potential outliers, and 2) hierarchical clustering, which explores the statistical 

relationships between samples and/or variables based on multivariate data (Fig. I.8). Briefly, PCA 

decomplexifies a highly dimensional dataset into a few uncorrelated (orthogonal) vectors called 

components that maximise the variance between samples (Hendriks et al., 2011). In short, PCA plots 

the samples into a p-dimensions space (p= number of variables), and defines the principal components 

by evaluating the sum of the squared distances (SS(distances)) from the projected samples to the origin. 

Thus, the first component called PC1 combines metabolic variables that provide the largest 

SS(distances) and therefore explains most of the variation between samples. Finally, other components 

can contribute to the description of the variation (PC2, PC3…) and create together with PC1 a new space 

with k-dimensions (k<p) (Fig. I.9). Clustering methods like hierarchical cluster analysis (HCA) provide  
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another unsupervised method to explore and describe the metabolic dataset by grouping metabolic 

variables and samples based on correlations (Hendriks et al., 2011) (Fig. I.8).  

Complementary, supervised methods such as k-means clustering and random forest analysis. 

Shortly, k-means clustering is based on the definition of the “k” which represents the defined number 

of clusters in which samples will be classified (thus differing from HCA by trying to classify samples 

into k clusters). Then, classification relies on the objective of decreasing the total variation (i.e. the sum 

of variation between each sample and the mean value of the cluster) between the different groups of 

samples (Jain, 2010). Random forests are based on decision trees that classify samples based on simple 

successive questions (starting from the most discriminant to the less discriminant one) like “does 

concentration in glucose is higher than Xmg/gDW?”. Then, random forest performs multiple decision 

tree analyses using different subsets of samples and metabolic variables to classify the separative 

capacity of the metabolic variables, which make the classification more efficient and accurate (Hastie et 

al., 2009).  

Fig. I.8 | Multivariate statistical analyses in untargeted metabolomics. PCA: principal component 

analysis, HCA: hierarchical clustering analysis, (M)LR: (multi) linear regression, (O)PLS: 

(orthogonal) partial least squares, DA: discriminant analysis, GLM: generalised linear modelling.    
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Combining supervised and unsupervised exploratory methods is quite interesting first to classify 

samples among classes and then explore the metabolic traits that allow for this discrimination. In 

addition, other analyses question the predictive capacity of metabolic variables. Although multiple 

techniques exist to assign a “weight” to each metabolic variable and therefore perform variable selection 

(Hastie et al., 2009), we here focus on linear regression methods. To better explain the principles of 

regression analyses, the terms X and Y will refer to the explanatory matrix and the dependant or response 

variable, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Regression and discriminant analyses 

 Linear regression uses the least square method (and are thus also called least square regression) 

to define and quantify the link between two variables. The objective of linear regression is to draw a 

line between two variables that will present the lowest sum of squared residuals (i.e. the “least squares”), 

where square residuals represent the distance between the data and the line (Fig. I.8 and I.9). In other 

words, linear regression will optimise the linear equation (Y = aX + b) to minimise the sum of squared 

residuals. In comparison, multiple regression (i.e. defining Y value from multiple X variables) follows 

the same logic under the equation Y = slope1X1 + slope2X2 + slopenXn + intercept or in mathematical 

terms Y = ẞ1X1 + ẞ2X2 +ẞnXn + intercept.  

Fig. I.9 | Decomposition of Principal component analysis and least squares regression.  

SS: sum of squared. Inspired by Josh Starmer’s works.   
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While these simple regression methods are very efficient in targeted analysis, their effectiveness is low 

when dealing with complex sets of noisy and collinear data (i.e. untargeted analyses). Thus, other 

methods were developed to deal with this chemical biodiversity.  

 Partial least square analysis (PLS) and orthogonal PLS (OPLS) enjoy large popularity in 

metabolomics since they greatly decomplexify the initial dataset before applying least square regression. 

PLS approach decomplexifies the initial set of explanatory variables by defining orthogonal components 

that explain the maximum of covariance between X and Y. These components (also called latent 

variables) thus explain both X and Y variances. In consequence, PLS regression models extract the 

components that (i) encompass the maximum variation in observable variables from X and that (ii) 

model the Y response (making PLS model unique when compared to other approaches as multilinear 

regression or principal component regression (PC regression)) (Haenlein and Kaplan, 2004). Similarly 

to PCA, coefficients and loading scores of the metabolic features underlying the latent variables can be 

extracted for further investigations. In the scenario of a single Y-variable, OPLS will provide a simpler 

view of the predictive model by splitting all latent variables (i.e. total component produced via PLS) 

into predictive (correlated to Y) and orthogonal (all components not related to Y) components while 

preserving the same predictive power. Besides, when the Y response is categorical (in opposition to 

numeric value), PLS and OPLS can be used as discriminant analyses (i.e. PLS-DA and OPLS-DA). 

Hence, while PLS and OPLS regression models will, in fine, aim to establish a quantitative relationship 

between the response factor (Y) and the metabolic data (X matrix), discriminant analyses seek to define 

a linear model to predict the class of the samples from their metabolic data (X matrix) (Rohart et al., 

2017; Ruiz-Perez et al., 2020). Remarkably, whilst PLS, OPLS and their related discriminant analyses 

stand at the forefront of multivariate statistical analyses in metabolomics, the selection of the meaningful 

variables remain tedious since principal components can combine a wide range of compounds. Once 

again, mathematicians tackled this variable selection challenge via the development of Sparse PLS 

models (sPLS). sPLS makes a sparsity assumption based on the hypothesis that one can consider that 

only a few variables are managing the variation of the response variable Y. Hence, this method allows 

for a more accessible variable selection by selecting only a subset of correlated variables within the 

latent variables (Chun and Keles, 2010). The choice is based on lasso penalisation (a principle explained 

in the following paragraph) which computes a “0” coefficient to irrelevant variables, thus considered 

“non-essential” (Chun and Keles, 2010). Although lasso penalisation demonstrated outstanding 

robustness, this method is only partially efficient when the number of variables greatly exceeds the 

number of samples and/or (ii) when a high rate of correlations is observed in the dataset (Zou and Hastie, 

2005). Thus, while parsimony is one of the main objectives in modelling approaches, variable selection 

remains quite challenging, especially for complex omics datasets (Engelhardt et al., 2016). 

Consequently, tremendous efforts were performed to develop new modelling methods able to palliate 

these model errors and improve the variable selection.  
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Even more entertaining, an entire conceptual movement called systems biology emerged to reinforce 

the link between modelling and wet lab experiments in both targeted and untargeted analyses 

(Engelhardt et al., 2016).  

Modelling: the error-based learning approach 

 Systems biology is based on the fact that models (either predictive or reaction-based) simplify 

reality. For instance, kinetic models used in targeted approaches can only handle known metabolic 

pathways, while the dataset from untargeted strategies referenced only a part of the plant metabolome 

(depending on the experimental conditions) (Engelhardt et al., 2016). Besides, biological systems are 

still largely unknown, and much of metabolic biodiversity and interactions remain inaccessible, yielding 

incomplete and incorrect models. That said, modelling is a potent tool that could be defined as a 

simplification of reality that aims to predict or explain a specific outcome using explanatory variables. 

Thus, while models first unveil predictive capacity and/or the role of the essential elements, they also 

emphasize the place of non-essential and inaccessible variables in the outcome variation via 

determination coefficient R² in predictive models (explanatory variables rarely explained 100% of the 

response variable), or via external parameters in kinetic modelling, for instance. Hence, modelling is a 

statistical approach generating experimental hypotheses that result from (i) the contextualisation of 

explanatory variables and (ii) the unexplainable part of the outcome parameter variation (i.e. non-

essential and/or inaccessible/unknown parameters). The systems biology concept represents this 

iteration between modelling and experimentation, where experimental hypotheses yield new 

experiments that produce new molecular data to continuously improve our comprehension of the plant 

system (Engelhardt et al., 2016). Here, we first present the latest advances in modelling methods with a 

specific focus on generalised linear models (GLM). Then, the development of innovative analytical tools 

that integrate the best predictors are described.  

- “Crafted” modelling approaches - 

 Reductionist and integrative approaches greatly enriched our knowledge of plant metabolism. 

The discovery of major biochemical pathways arose from the integration of chemical compounds and 

their interactions into a scheme representing a flow of chemical reactions mainly catalysed by enzymes 

(Fernie et al., 2004). Similarly, several modelling tools are now used to gather and organise the vast 

amount of data obtained on primary and secondary metabolism. These statistical tools are mostly related 

to targeted approaches and permit the modelling of biochemical pathways and their activities as a 

constant chemical flow. The construction of these models is mostly “crafted” and in the form of a “step-

by-step” process, where the addition of a reaction, an enzyme activity, or an unknown external factor is 

analysed according to its impact on the output variable (Bordbar et al., 2014; Beauvoit et al., 2018). 

Although other techniques are emerging, the two most artisanal modelling techniques are either 
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constraint-based (i.e. stoichiometric modelling) or enzyme activity-based (i.e. kinetic modelling) (Fig. 

I.8).  

 Stoichiometric models represent a scheme of successive reactions generally catalysed by 

enzymes founded on the assumption of a pseudo-steady state where the balance of the different chemical 

elements is maintained (Bordbar et al., 2014). Besides, this list of chemical reactions is associated with 

multiple constraints like input/output rates to provide a functional and dynamic scheme of metabolic 

fluxes (Bordbar et al., 2014). However, while stoichiometric models are often applied at the genome-

scale, they mostly remain focused on one biochemical pathway or cellular compartment biology due to 

the complexity of this biological system (e.g. compartmentalisation) (Colombié et al., 2017). Kinetic 

models reconstruct dynamic metabolic networks using enzyme activities (Rohwer, 2012). This approach 

requires the description of the stoichiometry of the studied pathway, but also the kinetic properties as 

well as related subcellular compartmentalisation notions. Reactant concentration and kinetic properties 

(e.g. maximal activity) are then used to estimate and predict metabolic fluxes through the use of kinetic 

rate laws like the Michaelis-Menten equation (Rohwer, 2012). Hence, kinetic models provide a dynamic 

view of plant metabolic pathways, which offers the unique opportunity of (i) identifying potential targets 

for plant engineering and (ii) explaining and even predicting the variation of substrates and enzyme 

activities in response to environmental perturbation, for instance (Beauvoit et al., 2018). Besides, these 

dynamic models usually include external parameters to improve the fit between mathematical 

predictions and experimental data. These external parameters (e.g. compartmentalisation, transport) 

represent a golden resource by pinpointing the unknown parameters that need to be studied to further 

improve our understanding of the plant system. However, although artisanal modelling has provided 

critical successes in plant biology, the construction of these dynamic models is based on the use of well-

known compounds and reactions (Rohwer, 2012; Bordbar et al., 2014).  

- Generalised linear models (GLM) - 

The amount of data generated has become exponential since the development of omics, leading 

to significant challenges like “how to handle variables whose only known characteristics are their mass-

to-charge (m/z) ratio and their retention time?” or like “how to extract the explanatory variables from a 

highly noisy and collinear dataset?”. The advantages of GLM methods are multiples and cover (i) the 

possibility to handle datasets that do not follow a normal distribution, (ii) a sophisticated penalisation 

system to improve variable selection using various penalty systems, and (iii) the possibility to preserve 

the biological context (Nelder and Wedderburn, 1972; Zou and Hastie, 2005; Stroup, 2015). Generalised 

linear models are built from (i) a systematic component (i.e. the function Y = ẞ1X1 + ẞ2X2 +..) which is 

equal to the one from multilinear models, (ii) a link function that links the linear model (Y= ẞ1X1 …) 

to the response variable using a function (e.g. Y=log(X), or Y=X² where X is the systematic component), 

and (iii) a random component which is the distribution type of the data (e.g. normal, Poisson) (Fig. I.10). 

For instance, general linear models (gLM) are an example of a generalised linear model (GLM) where 
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the link function is Y=1X and therefore preserve the linearity of the model and is therefore exclusive to 

normalised datasets. Similarly, a binomial or Poisson link function will be if we analyse two groups 

responses (e.g. blue or yellow flowers) or if we analyse discrete values (e.g. number of times that a plant 

survives the stress occurrence) (Nelder and Wedderburn, 1972; Stroup, 2015).  

 

 

 

 

 

 

 

 

 The second advantage of GLM models is their use of various penalty systems when defining the 

systematic component (i.e. line function as mentioned in the previous paragraph). In contrast, other 

multivariate analyses as sPLS only use one. Variable selection is based on the balance between obtaining 

a great fit (i.e. great R² score) with maximum parsimony while avoiding overfitting. General linear 

models (gLM) are characterised as regularised models based on the use of penalty methods (also called 

regularisation methods) divided into ridge, lasso and elastic net methods (Zou and Hastie, 2005; Bunea 

et al., 2011). As explained before, linear and multilinear regression aims to find a line that results in the 

minimum sum of squared residuals (Fig. I.8). However, minimising the least squared residuals greatly 

improve the risk of overfitting the data, which means that the model will be trained to fit the data greatly 

but will fail to fit additional data (Chicco, 2017). gLM models are always performed using a training set 

and a testing set to tackle this overfit risk through the modulation of two parameters called “bias” (i.e. 

the inability to capture the true relationship between two variables) and “variance” (i.e. the difference 

of the sum of square errors between training and testing set) (Fig. I.11). Thus, overfitting is characterised 

by a low bias but high variance. gLM models tend to limit the possibility of overfitting by using 

penalties, which will increase the bias and decrease the variance (Fig. I.11). Ridge and lasso penalty 

values are defined as λ x slope² or λ x | slope |, where λ is the penalty parameter that can go from 0 to 

+ꚙ. Besides, the λ is defined using cross-validations, which consist in varying 2 to 10 times the sample 

distribution between training and testing sets (Chicco, 2017). Multiple λ values from 0 to +ꚙ are tested 

in each condition and the one allowing the lowest variance is chosen. Importantly, while the 

line equation (i.e. systematic component) of linear regression aims to limit the sum of square residuals, 

Fig. I.10 | Generalised linear models (GLM). The three components of a GLM model. Random 

component represents the distribution of the data. General linear models (gLM) are an example of 

generalised linear models (GLM) where the random component follows a normal distribution.    
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the equation from ridge and lasso regression aims to minimise the sum of square residuals + the ridge 

or lasso penalty (Fig. I.11). Similarly, when using general multilinear model with ridge penalty, the 

equation of the line (Y= intercept + slope1X1 + slope2X2 + slopenXn) aim to limit the sum of the square 

residuals + λ x (slope1² + slope2² + slopen²). The major difference between lasso and ridge penalty is that 

by using a penalty of λ x slope² (also called L2-penalty), ridge method will shrink the slope of the 

variables but will not exclude variables, while lasso penalty (λ x | slope |, also called L1-penalty) allows 

a slope equal to 0 (Schmidt, 2005; Zou and Hastie, 2005) (Fig. I.11). Thus, lasso penalty allows variables 

exclusion while ridge regression only shrinks the predictive impact of variables. However, L1-penalty 

is not truly performant when dealing with more predictors than samples and high collinearity among 

variables. Besides, when dealing with thousands of variables, the choice between ridge and lasso 

regularisation method is tedious (Zou and Hastie, 2005). Consequently, a last regularisation method 

called elastic net method allow to combine both L1 and L2 penalty automatically under the penalty: (λ1 

x (slope1² + slopen²)) + (λ2 x (| slope1 | + | slopen | )). Thus, the regularised slope with elastic net method 

aims to minimise the sum of the squared residuals + elastic net penalty. In consequence, elastic-net 

regression allows a good compromise between shrinking and removing variables. Hence, elastic net 

method applied to gLM allows a great parsimony while preserving the correlated variables, which finally 

leads to a better variable selection (Zou and Hastie, 2005) (Fig. I.11).  

  

Fig. I.11 | Penalisation methods in general linear models (gLM). A. Division of the total sample 

set into a training set (80% dataset) and a testing set (20% dataset). B. Effect of penalisation method 

on variance and bias. Inspired by Josh Starmer’s works.    
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Overall, we have seen that gLM models improve variable selection on normally distributed 

datasets using cross-validation and regularisation (penalty). However, an ultimate validation is required 

to perform “real” predictions (Fig. I.12). The predictive capacity of a model is defined when applying 

the final model equation (i.e. systematic component + link function of 1 in the case of a general linear 

model) built with both training and testing datasets on the validation set (Fig. I.12). Finally, permutation 

datasets are developed (where Y scores are randomly assigned to each sample) to test the likelihood of 

spurious predictions (Luna et al., 2020). Based on its capacity to limit overfit possibilities and improve 

variable selection, GLM approach is thus considered the best modelling method to provide meaningful 

discoveries in plant biology. For instance, GLM was used to unveil metabolic compounds that underpin 

resistance against biotic stress (Simmons and Gurr, 2004; Luna et al., 2020), correlate antioxidant 

capacity and phenolic profile (Loupit et al., 2020), predict plant adaptation to extreme ecosystems 

(Dussarrat et al., 2022, see Chapter 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.12 | Validation of the predictive capacity of the gLM models using a validation set.    
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Metabolic networks  

Finally, complementary techniques are used to integrate the best predictors within metabolic 

networks to contextualise these markers and provide another level of biological interpretation. The 

integration of the best predictors within plant metabolism can be achieved via two principal ways 

described in Chapter 2. First, best predictors can be directly plotted into pre-existent metabolic networks 

via MetExplore (https://metexplore.toulouse.inrae.fr) (Cottret et al., 2010). Hence, MetExplore allows 

to observe and analyse the connections between the metabolite of interest and various metabolic 

pathways at the genome-scale. Alternatively, untargeted datasets produced via LC or GCMS/MS can be 

processed through GNPS platform (https://gnps.ucsd.edu) using a Feature-based molecular network 

method (FBMN). FBMN networks are based on the assumption that two compounds with a similar 

chemical structure will be interconnected (Nothias et al., 2020). Thus, structural-based networks 

facilitate the integration of the best predictors within metabolic clusters. Interestingly, whilst 

MetExplore require annotated compounds, FBMN networks is a valuable bioinformatics tool that (i) 

offers the possibility to easily observe if several compounds from the same biochemical pathway are 

involved in the outcome studied and (ii) facilitate the annotation of the best predictors (Nothias et al., 

2020). Hence, the combination of untargeted approach using highly sensitive techniques with GLM 

statistical analysis and the integration of the best markers within metabolic networks offers a direct way 

from the unknown to the discovery of meaningful predictors. Besides, the integration of these predictors 

into the metabolome is the cornerstone for the comprehension of the metabolic mechanisms governing 

the plant response to the studied parameter. The top-down approach thus represents a pyramidal concept 

where a maximum of chemical diversity is first captured and then decomplexified into essential and 

non-essential elements to finally unveil integrated metabolic mechanisms underlying the plant response.   

Overall, a fantastic scientific road has been travelled since discovering the “one gene-one 

enzyme-one function” concept. This initial concept led to the description of a myriad of relationships 

between genes, proteins and phenotypes. Despite a reductionist view, this concept is the root of the 

emergence of omics science and the integrative approach. The integration of genomics, transcriptomics, 

proteomics and metabolomics data revealed the fascinating complexity of the plant system and the 

diversity of its metabolism (Scossa and Fernie, 2020). The subsequent implementation of bioinformatics 

tools was later at the forefront of the development of systems biology (Engelhardt et al., 2016). Systems 

biology, which refers to the iteration between modelling and experiments, permitted this chemical 

diversity to be assembled and organised into metabolic networks (Rohwer, 2012; Bordbar et al., 2014). 

Furthermore, the combination of the latest technological (MS/MS and MSn) and statistical (GLM 

models) advances have made possible the impossible by enabling the extraction of the essential elements 

from complex and poorly known datasets. Thus, the use of the tandem untargeted-modelling approach 

revealed key metabolites capable of predicting the variation of various phenotypic traits (Luna et al., 

2020). Besides, the integration of these predictors into metabolic networks allows for a better perception 

https://metexplore.toulouse.inrae.fr/
https://gnps.ucsd.edu/
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of the metabolic mechanisms involved (Nothias et al., 2020). Despite its advantages, this analytical 

tandem is still poorly used, possibly owing to particular bottlenecks such as the annotation process and 

the difficulty of characterising the structure of unknown molecules. However, there is no doubt that the 

future development of analytical and statistical techniques will overcome these challenges and finally 

make the untargeted-modelling tandem an indispensable approach that will improve our understanding 

of complex living systems. For instance, this approach is ideal for investigating unknown biological 

systems and thus allows the analysis of complex output variables such as adaptation to extreme 

environments.  

 

II.  SPATIO-TEMPORAL ADAPTATIONS IN EXTREME PLANTS 

Wild species are a precious resource for crops improvement, as evolution has naturally fixed 

stress-tolerant traits that allow plant survival under changing conditions (Yolcu et al., 2020). This is 

particularly evident for species that thrive at the edges of plant life compatible gradient and are termed 

“lovers” (philos in Ancient Greek) of “extremes” (i.e. extremophiles). While abiotic stresses are 

becoming more frequent and intense, the analysis of the adaptive mechanisms of extreme plants holds

 great promise for improving our understanding of plant resistance to hostile conditions (Eshel et al., 

2021; Hasegawa et al., 2021). Interestingly, studies highlighted temporal and spatial adaptations (i.e. 

life cycle adaptation and biological matter adaptation, respectively). Besides, metabolism has been 

brought to the forefront of the adaptation process through the discovery of a myriad of biochemical 

compounds that underpin structural and physiological adjustments (Kumari et al., 2020). However, the 

transfer of this knowledge to agronomic plants yielded few results (Turner, 2018). In addition, selective 

approaches that focused on a unique or limited number of species and environments led to the discovery 

of highly specific adaptive mechanisms (Scossa and Fernie, 2020).  

The objective of the following review was to provide a meta-analysis of the adaptive 

mechanisms developed by extreme plants, from the morpho-anatomical to the metabolic scale 

(Dussarrat et al., 2021). Besides, this review presents the main successes of the research in extreme 

environments. We then explored the reasons and challenges explaining the gap between the discovery 

of adaptation markers and their transfer to crop species. Finally, this article exposed the potential 

strategies to meet these challenges, and therefore enhance our understanding of plant strategies for 

extreme climate resilience. We here present several parts of this review that have been slightly modified 

for better readability. However, the complete version is available in Annex I.A1.  
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II.1. Metabolic adaptations at the heart of plant adaptation to harsh lands 

Metabolism is the cornerstone of plant responses to environmental changes. Hence, the 

metabolic adaptations improving survival chances in hostile ecosystems have received considerable 

attention over the past few decades. Using both targeted and untargeted metabolomics techniques, great 

advances have been achieved to describe these metabolic features by (i) comparing extreme species to 

related crops or model plants (Lugan et al., 2010; Yobi et al., 2013), (ii) analysing plant metabolic 

profiles in their natural environment (Tipirdamaz et al., 2006), and (iii) characterising plant metabolic 

responses through a gradient of abiotic stresses (Kumari et al., 2020). Untargeted and targeted analyses 

on extremophile plants transferred to controlled conditions allowed isolating one environmental variable 

to compare its effect on extremophile versus model species and highlight different metabolic response 

strategies. Complementarily, metabolic profiling of extremophile plant species described the different 

biochemical compounds accumulated within a given ecosystem, while the study of these organisms 

through a stress gradient (e.g. altitude, salinity) improves our understanding of how extreme plant 

metabolomes adapt to abiotic stress under extreme conditions. This review sought to summarise these 

works, covering 5 different ecosystems (i.e. deserts, mountains, frozen lands, saline lands and metal-

contaminated sites), thereby pinpointing the convergences of the metabolic responses between species 

in one ecosystems and between ecosystems (Fig. I.13). This meta-analysis included 69 species and 

revealed a dynamic response of central, primary, secondary and redox metabolisms. However, only 31.6 

% of the referenced metabolites referred to secondary metabolism (Fig. I.13A). This suggests that these 

specialised metabolic pathways are often overlooked, which urges for enhancing untargeted analyses 

with wide metabolome coverage of extremophile plant species.  

Central metabolism 

In extreme environments, the adjustment of central pathways under abiotic stress involved 

compounds that were up-or down-regulated depending on the plant species and ecosystem (Fig. I.13B). 

Total soluble sugars, including glucose, fructose and sucrose, were likely to be induced with the altitude 

gradient (Hashim et al., 2020). However, while high sucrose concentration was reported independently 

of the plant species and environment, glucose and fructose regulations were quite variable (Fig. I.13B). 

Interestingly, the same trends were observed within the TCA cycle where malate accumulated for all 

conditions and species, whilst citrate, fumarate and succinate levels fluctuated, an observation perhaps 

explained by the fact that major organic acid content depends on the plant species (Chia et al., 2000; 

Mikulic-Petkovsek et al., 2012; Igamberdiev and Eprintsev, 2016). These results support the central 

place of these pathways in managing carbon (C) resource allocation between primary and secondary 

pathways and in determining C allocation between plant growth and defence under extreme 

environmental conditions.  
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Fig. I.13 | A comprehensive meta-analysis of the metabolic features observed in plants thriving 

under extreme environments. A. Distribution of affected metabolic pathways. B. Details of the 

distribution in 5 extreme ecosystems and response of molecules to environmental pressures: Higher 

or Lower concentrations of compounds, or Both, depending on the plant species. C. UpSet plot of 

the metabolic overlaps between ecosystems. The bottom left side shows the number of metabolites 

described for each ecosystem. The right side shows the possibilities and levels of intersections of 

these molecules between the 5 extreme lands. Letters refer to compounds asoociated with the 

intersection (one letter per column). a: aspartate, inositol; b: proline; c: ascorbate, galactinol; d: 

glucose, sucrose; e: trehalose; f: glutamate, glutamine; g: glutathione, histidine; h: fructose, 

threonine; i: GABA, j: malate, raffinose; k: citrate, phenylalanine; l: mannitol; m: sorbitol, starch; n: 

pinitol, valine; o: stachyose, tocopherol, xylose; p: melibiose; q: alanine, asparagine, choline, 

choline-O-sulfate, fumarate, glycine, putrescine, serine; r: glycine betaine, lysine, rhamnose; s: 

arabinose, arginine, spermidine, zeaxanthin; t: arachidonic acid, catechin, digalactosylglycerol, 

linoleic acid, linolenic acid, oleic acid, ononitol, tryptophan; u: beta-alanine betaine, fucose, 

isoleucine, kaempferol, laricitrin, leucine, malonic acid, norvaline, quercetin, succinate, tyrosine; v: 

allantoin, apigenin, galactose, guanosine, hydroxyproline, isocitrate, lutein, luteolin, naringenin, 

neoxanthin, ribose, spermine, tri-O-galloylquinic acid, verbascose, violaxanthin, γ-

glutamylisoleucine, γ-glutamylleucine, γ-glutamylmethionine, γ-glutamylphenylalanine, γ-

glutamylthreonine; w: 2-oxoglutarate, abscisic acid, caffeoylquinic acids, cinnamic acid, coumaric 

acid, farnesene, ferulic acid, gentiobiose, glycerol, hypoxanthine, jacareubin, kokusaginine, maltose, 

melezitose, MHDglycerol, neohesperidin, PicrosideI, PicrosideII, PicrosideIII, PicrosideIV, 

quebrachitol, ranunculin, rebeccamycin, romucosine B, sagecoumarin, sagerinic acid, seychellene, 

tagatose, tannin, thapsigargin, thujone, total carotenoids, total flavonoids, total sugards, total 

phenolic content, total xantophyll pigments, tricetin, xanthosine, xylitol.        

Adapted rom Dussarrat et al. 2021. 
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Primary metabolism 

Compatible solutes, organic osmolytes responsible for osmotic balance and compatible with 

cellular metabolism (Galinski, 1993), have shown to accumulate in both drought- and freezing-tolerant 

plant species for their role in osmotic adjustment and cryoprotection (Chen and Murata, 2002; Bhandari 

and Nayyar, 2014). Under extreme low temperatures, adapted woody plants have shown high 

concentrations of oligosaccharides, which regulate viscosity in the cytoplasm and therefore prevent 

deleterious effects of freezing temperatures (Stushnoff et al., 1997; Strimbeck et al., 2015). Contents in 

disaccharides (e.g. trehalose), as well as RFOs like raffinose, were heightened under extreme 

temperatures, drought and heavy metal contamination (Fig. I.13C). Also, inositol, pinitol, mannitol, 

sorbitol and galactinol were over-represented within desert, cold-tolerant and hyperaccumulator plant 

species, and likely to be upregulated under each abiotic stress (Fig. I.13C) (Slama et al., 2015). This 

observation agrees with the possible roles of sugar alcohols as carbohydrate reserves or the 

thermoprotective function of sorbitol in higher plants (Moing, 2000).   

 Lipid profiling of resurrection plants has revealed an adjustment in lipid metabolism when 

submitted to drought stress (Quartacci, 2002), resulting in higher unsaturation levels (Tshabuse et al., 

2018). Similarly, a positive correlation was observed between polyunsaturated fatty acid levels from 

seabuckthorn species and altitude in the Himalayan mountains (Sharma et al., 2020), supporting their 

role in maintaining membrane fluidity (Upchurch, 2008). These observations in both freezing- and 

drought-tolerant extremophile plants suggest a central role of lipid remodelling in adaptation to extreme 

environments, by countering the effects of direct drought and cellular dehydration initiated by 

extracellular ice formation (Moellering et al., 2010). 

 Besides sugars, plant resistance under extreme conditions is thought to be partially related to the 

induction of amino acids, which are important metabolic intermediates for the synthesis of environment-

responsive, specialised metabolites (Chouhan et al., 2017). Twenty-six extremophile species 

accumulated proline under various stressful conditions. Notably, the central role of proline in plant 

tolerance to multiple stresses could result from i) its synthesis that limits the reducing power, thus 

leading to an imbalance of photosynthetic activity, and ii) the benefits of proline degradation that 

provides C to the TCA cycle and thus contributes to respiratory activity (Kaur and Asthir, 2015). 

Besides, the shikimic acid pathway activity resulted in the accumulation of tyrosine and phenylalanine 

in some of these plants. These aromatic amino acids act as precursors for the biosynthesis of flavonoids, 

known as secondary antioxidant compounds (Chouhan et al., 2017), suggesting a possible role of 

secondary pathways in adaptation.  
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Secondary metabolism 

Plant secondary metabolism has been already recognised as a major actor of plant-environment 

interaction, involving many specialised metabolites that accumulate under stressful conditions (Akula 

and Ravishankar, 2011). For instance, linear accumulations of polyphenols were revealed within several 

altitudinal gradients for different species (Zidorn, 2010; Monschein et al., 2015; Cirak et al., 2017). In 

extreme conditions, the impact of abiotic stress on secondary metabolism was observed with 29 plant 

species from different extreme environments (Fig. I.13B). The potential role in the adaptation of several 

molecules including quaternary ammonium compounds, terpenes and phenolics were also mentioned 

for different plant families. Interestingly, these compounds were not specific to extremophile species 

and were further present in crop and model plants (Parida et al., 2018). This suggests that secondary 

metabolites found in various plants could play important roles in stress mitigation of harsh climates.  

- N-related compounds - 

Molecular mechanisms by which polyamines alleviate plant tolerance to abiotic stress are not 

fully understood but several works have reported interesting properties and results for such compounds. 

The application of these compounds could regulate the size of potassium channels and therefore the 

aperture of pores in the plasma membrane, which suggests a role in water loss control (Alcázar et al., 

2010). Besides, polyamine accumulation promotes ROS degradation by raising antioxidant enzyme 

activities and possibly affects ion transport under salt stress (Saha et al., 2015).  

Remarkably, polyamine profiles in extremophiles appear up- or down-regulated depending on 

the environmental stress (Fig. I.13B). This observation could be explained by the fact that plant 

resistance is more likely to be associated with a high ratio of (Spermidine + Spermine)/Putrescine, 

suggesting that this protective role mainly involves higher polyamines (Zapata et al., 2004; Chen et al., 

2019). Another hypothesis is that polyamines could conjugate with other molecules, such as coumaric 

or caffeoyl acids, and lead to complex roles in plant defence (Alcázar et al., 2010; Burt et al., 2019). 

However, few details on the occurrence and function of such conjugated forms in extremophile plant 

species are available. 

Quaternary ammonium compounds have been controversially considered as an adaptive 

response of halophytes or other extremophile plants that improves plant tolerance to drought, salt and 

low-temperature stress (Ashraf and Foolad, 2007). Their input in plant resistance mechanisms was 

illustrated by the high concentrations of glycine betaine and choline-O-sulfate found in Alpine, desert, 

and halophyte plant species (Fig. I.13C). These compounds could be involved in osmoregulation by 

modulating Na+ and K+ content, leading to a higher K+/Na+ ratio, which alleviates salt tolerance in higher 

plants (Hu et al., 2012). Additionally, glycine betaine has shown a relevant role in maintaining 

membrane integrity as well as enzyme activities (Annunziata et al., 2019).  
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Hence, while several extreme plants displayed important levels of N related compounds in 

hostile environments suggesting a possible role in adaptation, great variabilities were observed about 

polyamine accumulation and the understanding of how both polyamines and quaternary ammonium 

compounds are integrated in the response to abiotic stress of the different plant species. These 

observations raise the critical need of analysing metabolic features in a more holistic approach where 

tolerance mechanisms would be integrated into the different plant systems thriving in hostile 

ecosystems.   

- Terpenoids - 

The role of carotenoids and tocopherols in photoprotection through antioxidant activity has been 

already widely characterised, but new insights were highlighted when describing the mechanism by 

which ROS can cause the oxidative cleavage of carotenoids leading to hormonal compounds such as 

phytohormones (e.g. strigolactone or abscisic acid) (Havaux, 2014). Interestingly, the impact of abiotic 

stress on photosynthetic pigments and tocopherols is verified in extreme environments where both 

compound classes were accumulated in plants from desert and mountain ecosystems (Fig. I.13C). 

Besides, the increased levels of zeaxanthin and abscisic acid found in Alpine (Fig. I.13) and most 

resurrection plants (Rascio and Rocca, 2005) possibly illustrate the link between carotenoids and 

phytohormones. Altogether, these observations in extremophile plants emphasise the pivotal role for 

terpenes in stress signalling through hormonal responses, and stress mitigation via the processing of 

excess ROS in response to extreme temperatures and radiation levels, for instance. 

- Phenolics - 

The contributions of phenolics to extreme environmental stress responses were reflected with 

the high polyphenol concentrations in plants of Alpine and desert environments (Fig. I.13C). 

Furthermore, phenolics accumulated in a wide biodiversity of extremophile species and medicinal 

plants, some of which thrive under harsh conditions (Li et al., 2020b; Najjaa et al., 2020). These 

observations corroborate the fact that flavonoids hold an important antioxidant function improving 

photoprotection and reducing damage caused by UV radiations and frost (Agati and Tattini, 2010; 

Schulz et al., 2016). Recently, the UV-B protective function was extended to a global enhancement of 

ROS-processing activity independently of the solar wavelength proportions, based on the upregulation 

of flavonoids in response to ROS accumulation and an imbalance of redox homeostasis (Di Ferdinando 

et al., 2012). Additionally, these same authors argue in favour of this hypothesis by highlighting the 

interaction between cold and N stress that leads to the same flavonoid upregulation profiles as for cold 

and high light conditions. On the other hand, the accumulation of metabolites like cinnamic acid under 

extreme conditions may have a role in the production of lignin compounds known to be upregulated 

under abiotic stress to reinforce secondary cell walls (Le Gall et al., 2015).  
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Finally, it is noteworthy that the biosynthesis of several phenolics, proline, and polyols consume 

NADPH (Loescher and Everard, 2000; Szabados and Savouré, 2010; Caretto et al., 2015a), and thus 

participate in the control of cellular redox homeostasis by limiting the excess of reducing power. Hence, 

the increase of the NADP+/NADPH ratio would possibly enhance the oxidative pentose phosphate 

pathway activity, which provides precursors for phenolic compound production (Caretto et al., 2015a). 

Altogether, these observations suggest that not only the proper function of each primary or secondary 

compound matters but also both their biosynthesis and degradation, which therefore emphasises the 

need for a more integrated approach to study the metabolic features of extreme plants. 

Tuning redox metabolism upon extreme climates 

Plant central metabolism produces ROS mostly via three sources that include chloroplastic 

photosynthesis, mitochondrial respiration and peroxisomal photorespiration (Schertl and Braun, 2014) 

(Fig. I.14A). In photosynthetic tissues, ROS mainly originate from the photosynthetic electron transport 

chain (Foyer, 2018), while other sources are important for different organs such as fruit tissues (Decros 

et al., 2019). Therefore, when redox homeostasis becomes unbalanced, a lack of ROS or ROS 

accumulation leads to reductive or oxidative stress, respectively, characterised by, for instance, DNA 

damages, oxidation of cysteine residues in proteins and lipid peroxidation inducing retrograde signalling 

or in some cases cell death (Fig. I.14B). Harmonious plant growth thus requires a finely tuned redox 

homeostasis to avoid oxidative or reductive stress. Due to their sessile lifestyle, plants have developed 

numerous antioxidative defence pathways and strategies to control their redox state (Fig. I.14A).  

In harsh environments, plants growing at high altitudes undergo extreme temperature variations, 

water limitation, nutrient deficiency and high levels of irradiation inducing a reduced photosynthetic 

activity, which results in a surplus of reducing power (NADPH) and higher (photo)respiration 

(Fernández‐Marín et al., 2020). All these abiotic stresses have been shown to exacerbate ROS 

production by central metabolism in model or agronomical species grown under laboratory conditions 

(Choudhury et al., 2017; Pandey et al., 2017). To prevent oxidative damages, Alpine plants adapt their 

photosynthetic defence machinery by increasing their free radical-scavenging capacity through the 

accumulation of photoprotective metabolites such as carotenoids, flavonoids and phenolics (Ma et al., 

2015; Cui et al., 2019; Hashim et al., 2020). These specialised plant compounds are powerful 

antioxidants that process ROS, consume reducing power and can also avoid UV-induced damages 

(Bieza and Lois, 2001; Caretto et al., 2015b; Young and Lowe, 2018) (Fig. I.14A). A first field study of 

nine Alpine plants from different altitudes described a higher content in total leaf antioxidants, especially 

in ascorbate (Wildi and Lutz, 1996), suggesting an important role of redox homeostasis in plant 

acclimation. More recently, biochemical and proteomic analysis of Tibetan plants highlighted a positive 

correlation between the content of soluble antioxidants (ascorbate and phenolics), ROS-processing 

enzyme activity and altitude (Ma et al., 2015; Cui et al., 2019).  
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Fig. I.14 | Redox poise is pivotal to plant growth and acclimation. A. Harmonious plant growth 

requires a finely tuned redox homeostasis to avoid oxidative or reductive stress when the 

ROS/antioxidant balance is altered. B. Plants produce ROS and other redox signals during growth 

and in response to environmental stimuli. Redox homeostasis relies on the balance between ROS 

production (left side) and processing (right side). ASC: ascorbate; CAT: catalase; DHA: 

dehydroascorbate; GRX: glutaredoxins; GSH: glutathione; GSSG, disulfide glutathione; mETC: 

mitochondrial electron transport chain; pETC: photosynthetic electron transport chain; PRX: 

peroxiredoxins; ROS: reactive oxygen species; SOD: superoxide dismutase; TRX: thioredoxins. 

Adapted from Dussarrat et al. 2021. 
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Altogether, these studies of endemic species from the Tibetan plateau reported a strong correlation 

between the altitude gradient and the plant redox metabolism, which was characterised by higher 

enzymatic and non-enzymatic ROS processing capacities. Likewise, desert species also harboured 

higher contents in carotenoids and flavonoids, and increased enzymatic activities of the ascorbate-

glutathione cycle, particularly glutathione reductase, suggesting a more important role of glutathione- 

and thiol-related signalling in the adaptation to desert lands (Streb et al., 1997; Talbi et al., 2015; Wang 

et al., 2016). Additionally, the high oxidation state of glutathione and ascorbate have been correlated 

with desiccation and rehydration tolerance of two resurrection plants (Kranner et al., 2002; Jiang et al., 

2007). Finally, a comparative study reported that the native Antarctic species Colobanthus quitensis 

harboured a total antioxidant activity twenty times higher than its genetically-related species Dianthus 

chinensis combined with a two-fold increased respiration rate and activity of alternative oxidase after 

cold exposure (Clemente‐Moreno et al., 2020). This illustrates the plasticity of redox pathways to 

maintain the redox poise depending on the environment and plant botanical taxa.  

Hence, cellular redox homeostasis is a key factor that accompanies plant growth and responses 

to the environment, more remarkably within the activity of the ascorbate-glutathione cycle. In addition, 

antioxidant secondary metabolism (e.g. carotenoids, flavonoids and phenols) further appears as a 

relevant pathway to stimulate plant oxidative defence capacity and thus participates in the acclimation 

of plants to harsh environments. Currently, the paradigm of redox biology tends to display a bigger and 

clearer picture of the redox network occurring in plants, where multiple sources of ROS are possible 

and associated with many “ROS processing systems” (Noctor et al., 2018). Spatial, temporal, metabolic 

and antioxidant specificities are multiple factors that can influence redox signalling. While knowledge 

on redox biology in plants living in extreme environments is still fragmentary, the concepts that originate 

from model and agronomic species are useful to study the redox metabolism for plant acclimation. 

The study of plants subjected to extreme environments undoubtedly demonstrates a 

reorchestration of plant metabolism for primary, secondary and redox pathways. However, the metabolic 

data available so far only provide a fragmentary knowledge and a more holistic, global overview of plant 

metabolome would benefit our understanding of plant acclimation to harsh climates. This could be 

addressed through untargeted metabolomics approaches to encompass a greater diversity of plant 

compounds, more specifically for specialised metabolites and redox compounds, which are likely to be 

central to mitigate stress. More importantly, it is now crucial to define the steps that should be further 

addressed to move from the description of metabolic features towards (i) the identification of metabolic 

divergences that could result from species-specific adaptation, and (ii) the convergences between plant 

species and between ecosystems to pinpoint generic mechanisms underpinning adaptive strategies.  
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II.2. Challenges and perspectives  

The discovery of the main adaptive mechanisms underlying this metabolic reorchestration is the 

real challenge of research in harsh ecosystems. However, a global change in analytical strategy is 

required to achieve this objective (Fig. I.15). The first challenge will therefore be to use systems biology 

approaches by which the metabolic adaptations of extremophiles can be contextualised (Fig. I.15). 

Because models are limited to transform input variables into output variables, it will be particularly 

important to deal with the most interesting models, especially when it comes to defining performance. 

Hence, the concept of “performance = yields” must be complemented by the ability of a plant to survive 

and thrive in its ecosystem (Fernandez et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.15: Perspectives for a better understanding of plant adaptations to extreme habitats. 

Comprehensive exploration of the metabolome of multiple species in different environments 

combined with physiological and ecological data using systems biology approach can lead to new 

breakthroughs in the understanding of plant adaptation to extreme environments.  

Adapted from Dussarrat et al. 2021. 
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The second challenge will be to make the most relevant observations possible. Extreme biomes 

could be used as natural laboratories, in which the environment would be thoroughly monitored by 

characterising a maximum of environmental variables and by defining the analysis period (e.g. season, 

time of the day, plant organ and developmental stage). However, even if given factors could vary (e.g. 

adding fertiliser or watering), a major threat here lies in poor reproducibility of the growth conditions. 

Thus, in-deep knowledge of the plant environment is a prerequisite for performing ecological 

metabolomics (i.e. the analysis of the environmental impact on metabolic responses) (Díaz et al., 2016, 

2019). In addition, the use of integrated and untargeted approaches appears as a requirement when 

studying plant adaptation at the ecological level. Exciting advances were provided when addressing 

these challenges. Plant responses to extreme environmental constraints were divided into temporal (e.g. 

adapted life-cycle) and structural (e.g. stomatal control or root phenotype adjustment) adaptations 

(Kumari et al., 2020). The metabolic strategies that govern the captivating capacity of plants to thrive 

under extreme conditions were shown to rely on a reorchestration of primary, secondary and redox 

metabolisms (Fig. I.13). However, the high biochemical diversity of metabolites that are abundant in 

extremophiles (Peters et al., 2018) including many that are still unknown (Gagneul et al., 2007; Sanchez 

et al., 2011), and the absence of success in engineering the accumulation of compatible solutes in crops 

(Turner, 2018), are still making the understanding of metabolic adaptations to extreme environments 

very difficult. Consequently, we now need to enlarge the coverage of the metabolome when studying 

extremophiles, in particular by using untargeted analytics and improving our annotation capacities 

(Allard et al., 2017) (Fig. I.15). Then, data should be integrated by using both unsupervised and 

supervised statistical approaches to highlight and then confirm hypotheses linking metabolism and 

adaptation (e.g. relations between metabolic traits and performance). These efforts will directly enrich 

the basis of the metabolic features from extremophile organisms that will thereafter be crucial to moving 

from their description to the comprehension of adaptive mechanisms harboured by both therophytes and 

perennial plants. 

The third challenge will be to reconsider the concept of model species (Fig. I.15). Recently, the 

use of intra-species genetic diversity has emerged as a powerful tool to study metabolism and better 

understand how it participates in plant performance (Clancy et al., 2018). The so-called metaphenomics 

approach goes even further by researching mechanisms within panels of species (Poorter et al., 2010) 

(Fig. I.15). This approach has been performed to quantify combinations of phenotypic performance in 

different stressful environments (Wright et al., 2004; Poorter et al., 2010), and to analyse the biomass 

allocation in multiple species, in response to the environment (Poorter et al., 2012, 2015). Strikingly, 

the introduction of biological functions such as photosynthesis within these meta-analyses has provided 

promising results by correlating the plasticity to light intensity, plant density and plant environments 

(Poorter et al., 2019). Similarly, intriguing convergences were uncovered by this meta-analysis (Fig. 

I.13). However, only a handful of studies have studied the metabolic features of extreme plant species 
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using a multi-species untargeted approach (Defossez et al., 2021), and even fewer attempted to associate 

these features to plant adaptation.  

 

III. GENERAL OBJECTIVES AND SPECIFIC GOALS OF THE PhD 

The development of omics techniques and the integrative approach allows the analysis of the 

molecular mechanisms that govern the evolution of adaptive phenotypic traits. Wild species from hostile 

biomes lying at the edges of plant compatible gradients harbour the molecular responses to current 

abiotic constraints. For instance, the Atacama is the driest non-polar desert on Earth. Nevertheless, tens 

of plant species invaded the Atacama Desert (Díaz et al., 2019). The Talabre-Lejía transect (TLT) (lat 

22°-24°S) hosts multiple plant lineages and spans an elevational cline from 2400 to 4500m.a.s.l in the 

Atacama Desert (Eshel et al., 2021). This transect covers three vegetations belts: the sparsely vegetated 

Prepuna (2400-3300m.a.s.l), the Puna (3300-4000m.a.s.l) and the high Andean Steppe (4000-

4500m.a.s.l) (Eshel et al., 2021). This unique ecosystem is characterised by extremely low precipitation 

levels, which range from 20mm/year in the Prepuna to 160mm/year in the Steppe. Besides, critical 

nitrogen levels (average 9mg/kg), high solar irradiance (average 600W/m²/d) as well as daily negative 

temperatures and high salinity contribute to hindering plant life (Eshel et al., 2021). Interestingly, a 

previous study revealed 265 positively selected genes in Atacama species that cover adaptive 

mechanisms involved in the plant-soil interaction (e.g. nitrogen-fixing bacteria) and the protection 

against high light intensities, nitrogen starvation and osmotic stress (Eshel et al., 2021).  

In parallel, biological biodiversity can palliate metabolic diversity through multi-species and 

multi-environment approaches, and therefore be used to discover generic markers (Dussarrat et al., 

2021). For instance, results from the meta-analysis pinpointed certain evolutive convergences of 

biochemical pathways (e.g. flavonoids, amino acids…) (Dussarrat et al., 2021). Overall, these previous 

studies raise the following questions: (i) what is the role of metabolic processes in adaptation to extreme 

environments and (ii) what is their level of specialisation? 

 In this context, my PhD project aims to combine systems biology (and more specifically, 

untargeted-modelling approach) with ecology to investigate the convergent and divergent metabolic 

mechanisms relevant for extreme climate resilience. More precisely, this project investigates the role of 

metabolic processes in the adaptation of multiple Atacama plant species (Fig. I.16) to extreme habitats.   
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For this purpose:  

- The existence and role of convergent metabolic strategies in plant resilience to extreme climates were 

assessed (Chapter 3). Unprecedented untargeted metabolomics analysis was performed to characterise 

the chemical diversity of 24 Atacama plant species. This precious dataset encompassed a quantitative 

analysis of major physiological markers (e.g. starch, organic acids, amino acids, major fatty acids) and 

a semi-quantitative fingerprint of both semi-polar compounds (LCMS) and fatty acyls (GCMS). Then, 

predictive metabolomics through GLM approach was deployed to unveil a generic toolbox for plant 

resilience to harsh conditions (Dussarrat et al., 2022).   

- Subsequently, evolutionary trajectories of plant chemical compounds in multiple Atacama plant 

lineages were studied to gain insights into the genetic mechanisms that manage convergent metabolic 

strategies and ensure plant survival (Chapter 4). A reaction and pathway enrichment analysis used 

previously established transcriptomics data (Eshel et al., 2021) to compare gene family expansion and 

gene expression patterns between 32 Atacama plant species and their 32 closest non-adapted sequenced 

species. This strategy allowed the identification of genetic legacies underlying convergent biochemical 

strategies selected through evolution. This article will be submitted in the following weeks.  

- While previous chapters focused on the discovery and characterisation of convergent strategies, 

additional traits and factors contribute to plant adaptation to harsh biomes. For instance, microhabitats 

commonly occur in extreme environments and provide favourable conditions for specific plant species 

(Flores and Jurado, 2003). Here, untargeted metabolic analysis, GLM and mathematical modelling were 

deployed to characterise the “puffer” effect of Maihueniopsis camachoi (Cactaceae), which enables 

Atriplex imbricata (Amaranthaceae) survival at high elevation levels (Chapter 5, submission expected 

for April 2022).  

Besides, based on newly developed skills in metabolomics and predictive modelling, I was also 

given the opportunity to participate in various side projects. I used PLS regression modelling to explore 

the response strategy of boxwood to herbivory (col. Christiane Gallet and Anne-Emmanuelle Hay).  I 

further analysed the metabolic features underlying the allelopathic properties of Welwitschia mirabilis 

in the Namibian desert (col. Jean Baptiste Ramond). Furthermore, I studied the impact of foliar biotic 

stress on the rhizosphere chemistry of Arabidopsis thaliana using PLS regression modelling and 

structural metabolic network analysis. This study revealed that foliar infection could be predicted with 

80% accuracy based on the rhizochemicals. Finally, additional data were produced from the 24 Atacama 

plant species to deeply characterise their primary metabolism using NMR and investigate the impact of 

the environment on Atacama plant rhizochemicals. These data are under analysis. 
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Fig. I.16 | Validation of the predictive capacity of the gLM models using a validation set.   
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MATERIALS AND METHODS DEPLOYED TO UNLOCK 
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I. ENVIRONMENTAL DATA AND BIOLOGICAL MATERIALS 

The investigation of the adaptive traits allowing Atacama plants to thrive under extreme 

conditions requires an in-depth knowledge of the environment and the phenotypic properties of the 

species present. To preserve the diversity of this fragile ecosystem, only plants with significant coverage 

and biomass, which was referenced for over 10 years, were collected in their natural environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.1 | Decomposition of the Talabre-Lejía transect and characterisation of the 

environment. A. Location of the elevational gradient from the Talabre-Lejía transect (TLT) 

(Adapted from Eshel et al., 2021). B. Depiction of the climatic and edaphic parameters from the 

TLT.  B: boron, Ca: calcium, Cl: chlorine, Cu: copper, Fe: iron, HCO3: bicarbonate salt, Mg: 

magnesium, Mn: manganese, Mo: molybdenum, Na: sodium, S: sulfur, Zn: zinc, m.a.s.l: meters 

above sea level.     
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I.1. Characterisation of the environment  

The TLT transect area was divided into 22 sites (one level every 100m) to investigate the 

environmental impact on the metabolome of Atacama plant species (Fig. II.1). Two meteorological 

stations were installed at the Prepuna-Puna (3060m.a.s.l) and Puna-Steppe (4090m.a.s.l) junctions to 

record hourly environmental parameters between 2016 and 2022 including surface and soil temperature, 

relative humidity, rainfall, solar irradiance, soil water content (Fig. II.1). The linearity of major abiotic 

parameters like soil water content and temperature were tested and validated in 2019 by measuring these 

parameters at different elevations (Fig. II.2). Hence, theoretical values were assigned to the 22 levels by 

defining linear models in R (R Core Team, 2020). Soil properties included levels of nitrate, ammonium, 

Olsen phosphorous, potassium, copper, manganese, magnesium, zinc, iron, boron, calcium, sulfur, 

chlorine, sodium, molybdenum, magnesium, bicarbonate salt, sand, silt and clay as well as soil 

conductivity and pH were evaluated during three consecutive years in the 22 levels. Previous results 

presented great stability over years (Eshel et al., 2021). All values are presented in Annex II.A1.  

 

I.2. Plant material  

Plant samples from Eshel et al., 2021 collected in 2014 were complemented by three distinct 

environmental campaigns in April 2019, April 2021 and July 2021. Aerial parts of plants were sampled 

and directly snap-frozen in liquid nitrogen. Depending on the needs and availabilities, each species was 

collected in 1 to 6 elevation levels with a minimum of three biological replicates (Fig. II.3). Samples 

were then transported into dry ice until the laboratory and stored at -80°C until freeze-drying. Dried 

samples were ground into a fine powder and stored at -80°C until chemical extraction.  

The main molecular and phenotypical properties of the 35 studied Atacama species including species 

and family name, life form, lifespan, endemism and carbon fixation system is provided in Annex II.A2. 

Additionally, a set of 11 agronomic and ornamental plant species were grown in multiple conditions in 

France and collected following the same protocol. These species included: Beta vulgaris, Capsicum 

annuum, Helianthus annuus, Nicotiana tabacum, Phaseolus vulgaris, Pisum sativum, Portulaca 

oleracea, Solanum lycopersicum, Spinacia oleracea, Vicia faba and Zea mays, which covers 5 of the 14 

Atacama plant families: Amaranthaceae, Asteraceae, Fabaceae, Poaceae and Solanaceae.  
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Fig. II.2 | Validation of the environmental prediction. Distribution of (A) soil water content, (B) 

solar irradiance and (C) temperature along the elevation gradient (Pearson correlation, P<0.05). Soil 

samples were collected near the plants of interest. The moisture content of the soil was determined 

by dividing the fresh weight by the dry weight after one week of freeze drying. Solar irradiance was 

measured using a lux meter near the plants of interest. Temperature was measured using two 

thermometers. Figures from Dussarrat et al., 2022.  
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II. FIELDWORK ANALYSES 

Plant coverage across the TLT has been measured every year after the rainy season (March or 

April) since 2011 by Claudio Latorre, Francisca Díaz and Rodrigo Gutiérrez. To get insights into plant-

plant interaction mechanisms, we performed additional coverage measurements in July 2014, 2015 and 

2021. More precisely, 20 species were found interacting with the cactus M. camachoi in at least one 

elevation level over the years (Fig. II.3). Hence, these measurements aimed to characterise the 

facilitation intensity (i.e. the number of plants growing inside minus the number of plants growing 

outside the cushion). Twenty replicates were performed per elevation level. The diameter of these twenty 

independent cacti was reported and associated with the total diameter (cm) of the connected species 

(Table V.S1). For comparison, the coverage (cm) of the different species developing without cactus was 

measured for a surface equal to the diameter of the cactus for each replicate. The coverage of the 

Atacama species “with” and “without” M. camachoi was thus expressed in centimetres by meter squared 

of M. camachoi and defined in the different sites (Table V.S1). In parallel, three to four thermometers 

were installed at 3000, 3400 and 3800m.a.s.l to measure ground temperature for at least 24 hours in 

August 2016 and 2021. The resulting 2021 dataset combined coverage and temperature measurements 

performed in 2021 while the 2016 dataset was developed using 2016 temperature reports and coverage 

measured in 2014 and 2015. The 2016 dataset was used to validate observations and analyses conducted 

on the 2021 dataset (Chapter 5).  

 

III. EXTRACTION 

 Extraction methods are based on the chemical properties of the target molecules. The use of 

polar or apolar solvents is therefore destined for the analysis of different molecules. A non-targeted 

approach requires access to the chemical biodiversity of the biological system studied. Hence, different 

chemical extraction methods were used to extract major physiological markers, explore semi-polar 

secondary metabolism and investigate fatty acyl profiles.  
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Fig. II.3 | Plant material for the different experiments. Results of sampling performed in April 

2019 (A), April 2014 (B), April 2021 (C) and July 2021 (D). E. Pictures of the 24 plants species 

studied at the metabolic level.   
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III.1.  Preliminary test and ethanolic extraction 

Four distinct extraction methods were tested to analyse plant secondary metabolism via liquid 

chromatography-mass spectrometry (LCMS). Ethanolic, methanolic and water extractions were tested 

before LCMS analysis. Ethanolic extraction was used for its capacity to extract both major primary 

markers like organic acids and hexoses and semi-polar compounds (Luna et al., 2020). Hence, a solution 

of HEPES/KOH 10mM at pH 6 with 80% ethanol solution (EtOH: water, 80:20, v/v) was added to the 

20mg of dry powder and heated at 80°C for 20 minutes as previously described (Luna et al., 2020). 

Samples were then centrifugated for 5 minutes at 14000 rotations per minute (rpm) and the supernatant 

(S1) was collected. The extraction process was repeated twice (once using EtOH 80% and once using 

EtOH 50%) and supernatants S2 and S3 were added to S1. Extracted samples, as well as pellets, were 

then stored at -20°C until robotised biochemical assays. However, preliminary assays highlighted high 

levels of polyphenols that disturbed the measurement of organic acids and soluble sugars. Thus, the 

same extraction method was applied on another microplate containing 20mg of samples plus 20mg of 

polyvinylpolypyrrolidone (PVPP) which adsorbs the polyphenols. Subsequent metabolic analyses were 

performed on the first or second set of ethanolic extracts (i.e. with or without PVPP) depending on the 

objective. 

A distinct ethanolic extraction protocol was performed for LCMS analysis. First, the extraction 

solvent was 80% ethanol with 0.1% formic acid. Methyl vanillate (250 µg/mL) was used as a chemical 

standard to evaluate the quality of the LCMS injections. Besides, 300 µL of the extraction solution was 

added to each sample and the heating extraction step was replaced with ice bath sonication extraction 

for 15 minutes. The extraction process was repeated (EtOH 80%) and supernatants 1 and 2 were pooled. 

Finally, filtrations were performed using 96 wells 0.22µM Millipore plates (reference MSGVS2210). 

Filtered solutions were stored at -80°C until LCMS analysis (Luna et al., 2020).  

Three other extraction methods were tested to evaluate their ability to cover the secondary 

metabolism of 24 plant species from the Atacama. Two methanolic extractions (methanol 70% or 95%) 

were realised as well as one hot water extraction method. In brief, a methanolic solution of 70% 

(Methanol: water 70:30, v/v) or 95% (95:5, v/v) was added to 20mg of dry powder and sonicated for 15 

minutes in an ice bath. Extracted samples were then centrifugated at 14,000 rpm for 5 minutes and 

filtered using 0,2 µm polyvinylidene fluoride (PVDF) filters. Filtered supernatants were collected and 

stored at -80°C until LCMS analysis. Hot water extraction was performed as previously described 

(Cocuron and Alonso, 2014). In brief, 1mL of hot water (100°C) was added to 20mg of dry powder. 

Samples were then placed into a water bath at 100°C for 5 minutes, vortexed and replaced into the water 

bath for 5 additional minutes. After centrifugation (5 minutes at 14,000 rpm), samples were filtered 

using 0,2 µm PVDF filters and stored at -80°C until LCMS analysis.  
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Raw LCMS data from the extraction test were processed via XCMS (v 4.2, an acronym for 

various forms (X) of chromatography mass spectrometry) in R (v 3.6.1) using a noise threshold of 

30,000 (as explained in sections V and VI). Results illustrated a similar coverage capacity (Fig. II.4) in 

positive and negative electrospray ionisation (ESI) mode. Besides, only 1% of the detected ions using 

methanolic or water extraction were not observed when using ethanolic extraction. Hence, ethanolic 

extraction was selected for further LCMS analysis due to its high coverage, safety and usability 

compared to other techniques.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.4 | Detected ions by LCMS analysis following ethanolic, methanolic or water extraction. 

A. Number of detected ions using a noise threshold of 30,000. B. Depiction of the detected ions 

using the different extraction methods.  
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III.2.  Fatty acyl extraction  

Hexane was used as an apolar solvent to extract fatty acyls from the 24 Atacama plant species 

as previously described (Domergue et al., 2010). Shortly, this protocol allows the extraction of fatty 

acyls from glycerolipids (including phospholipids, galactolipids and triglycerides) and sphingolipids 

which are hydrolysed and trans-esterified into fatty acid methyl esters (FAMEs) using a 

transesterification solution. This solution was applied on 10mg of dry powder and was composed of 

methanol and 5% of sulfuric acid (H2SO4). When analysing plant extracts, the C17:0 fatty acid is used 

as a chemical standard (20 µg/ml in the transesterification solution). The hydrolysis of the chemical 

bond (ester or amine bond for lipids and sphingolipids respectively) occurred when adding 1mL of the 

transesterification solution per sample. Samples are then kept at 80-85°C for 3 hours. After cooling, 

1mL of NaCl 2.5% and 400µL of hexane 99% were added to the solution to extract fatty acyls. After 

agitation and centrifugation, the upper phase is collected in GC vials and stored at -20°C (Domergue et 

al., 2010).  
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IV. TARGETED BIOCHEMICAL PHENOTYPING 

Robotised microplate assays were performed to quantitively evaluate levels of major 

physiological markers. The ethanolic extraction led to the separation of a soluble (supernatant) and an 

insoluble fraction (pellet). The two distinct fractions include different compounds that were measured 

using various robotised microplate assays as previously described (Roch et al., 2020).  

 

 

 

 

 

 

 

 

 

 

IV.1. Recovery test  

Recovery tests were performed to optimise and control the quality of the measurements (Fig. 

II.5). Briefly, one chemical and one biological control were used to realise the recovery test. Since each 

of the 24 Atacama plant species was collected at distinct elevation levels, one sample from the highest 

and one sample from the lowest elevation level were subjected to the recovery test. For the different 

assays, the optical density (OD) was measured for XµL of chemical or biological standard (ODstd), XµL 

of sample extract (ODsamp) and for the mix of X/2µL of sample extract plus X/2µL of chemical or 

biological standard (ODrecov) (Fig. II.5). Then, the recovery test consists in comparing the mean OD 

between ODstd and ODsamp with ODrecov (Fig. II.5). Recovery test was validated if 

80% ≤  
(𝑂𝐷𝑠𝑎𝑚𝑝+ 𝑂𝐷𝑠𝑡𝑑)/2

𝑂𝐷𝑟𝑒𝑐𝑜𝑣
× 100 ≤ 120%. The complete list of dilutions and volumes used for the 

different species and assays is displayed in Annex II.A3. All OD measurements were performed on a 

96-well plate reader spectrophotometer (SAFAS MP96). Results were then normalised by the sample 

weights used for the ethanolic extraction (20mg ± 1) before the corresponding assay to obtain a 

concentration (µmol) of amount (µg) of compound per unit of dry mass (e.g. µmol/g of dry weight).   

Fig. II.5 | Recovery test. Chemical standard varies depending on the chemical compounds studied 

(e.g. mix of glucose, fructose, sucrose when analysing sugar content). The variety M82 of S. 

lycopersicum was used as a biological standard. A threshold of 20% (i.e. 80%≤Δ recovery≤120%) 

was used to accept or reject the recovery test for each assay.  
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IV.2. Soluble fraction  

Following ethanolic extraction, the levels of chlorophyll, major soluble sugars (glucose, 

fructose, sucrose), organic acids (malate, fumarate, citrate), nitrates, total free amino acids and total 

polyphenols were measured using the soluble fraction (i.e. supernatant). 

Measurement of chlorophyll levels 

 Chlorophyll content was determined directly after ethanolic extraction by adding 120µL of 

ethanol 98% to the corresponding volume of sample extract (Annex II.A3) and reading the OD at 645 

and 665nm. Then, levels of chlorophyll a and b were estimated using the following formulas: 

chlorophyll a (µg/well) = 5.21 OD665 - 2.07 OD645 and chlorophyll b (µg/well) = 9.29 OD645 - 2.74 OD665 

(Arnon, 1949).  

Determination of major soluble sugar levels 

As previously described (Stitt et al., 1989; Roch et al., 2020), levels of major soluble sugars like 

glucose, fructose and sucrose were accessed using successive addition of hexokinase (HK), 

phosphoglucose isomerase (PGI) and invertase (INV). In brief, 160 µL of a solution of 0.1M of 

HEPES/KOH pH 7 with 3mM of MgCl2, 3µM of ATP, 1.4µM of NADP and 3.4u/mL of glucose-6-

phosphate dehydrogenase was added to the optimised volume of ethanolic extract (Annex II.A3). After 

a first measurement of the blank level at 340nm (at which NADPH is detected), 1µL of HK (900u/mL) 

was added to the mixture and the OD at 340nm was measured again. Similarly, 1µL of PGI (1000 u/mL) 

and 1µL of INV (30 000 u/mL) were successively added to evaluate the levels of fructose and sucrose 

respectively (Fig. II.6). Levels of metabolites are proportional to the produced NADPH. The 

concentration of NADPH at each step is evaluated using the following equation: 

NADPH (µmol) = 
∆𝑂𝐷340𝑛𝑚

𝑙 × 𝜀
 where l represents the optical path length in a well (equal to 2850 cm.L-1) 

and where є represents the extinction coefficient of NADPH (6.22 L.mol-1.cm-1).  

Determination of malate and fumarate levels 

The levels of malate and fumarate are measured through the use of malate dehydrogenase and 

fumarase which catalyse the transformation of malate to oxaloacetate and fumarate to malate, 

respectively (Fig. II.6). Since the metabolisation of malate into oxaloacetate uses NAD+ as a cofactor, 

the amount of fumarate and malate are estimated through the production of NADH (detected at 340nm). 

Briefly, 90µL of the reactional solution that included 69µL of tricine/KOH 0.1M at pH 9, 10µL NAD+ 

30mM, 10µL of glutamate 20mM and 1µL of glutamate-oxoglutarate aminotransferase (GOT) at 

200u/mL in 100mM tricine/KOH at pH 9 was added to the corresponding volume of ethanolic extract. 

Then, 2µL of MDH and 1µL of fumarase were successively added and the OD at 340nm was measured 

between each analytical step (blank, after addition of MDH and after addition of fumarase).  
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The difference in intensity between the different stages (e.g. OD after addition of MDH minus OD from 

blank) was used to determine the levels of malate and fumarate. 

Citrate assay 

Citrate levels were determined using the Citric Acid Assay Kit (K-CITR, Megazyme). The 

reaction catalysed by the citrate lyase metabolises citrate into oxaloacetate and acetate. Oxaloacetate is 

then transformed into malate by the L-malate dehydrogenase (MDH). Notably, some oxaloacetate can 

be converted into pyruvate if some oxaloacetate decarboxylase is present in the sample. Hence, the Citric 

Acid Assay Kit includes the D-lactate dehydrogenase (LDH) to transform the newly produced pyruvate 

into D-lactate. LDH and MDH employ NADH as a cofactor for the reaction and the quantity of citrate 

is therefore deduced from the loss of this compound (Fig. II.6).  

Measurement of nitrate level 

 Nitrate levels were defined using the nitrate reductase as previously described (Mori, 2000). For 

a defined volume of ethanolic extract (Annex II.A3), 10µL of potassium phosphate buffer 1M at pH7.5, 

1µL of NADPH 50mM, 1µL of nitrate reductase 5U/mL, and 83 µL of water were added. The resulting 

solution was mixed and conserved at room temperature for 30 minutes in dark conditions. Then, 15µL 

of phenazine methosulfate 0.25mM was added to the solution, which was then mixed and conserved at 

room temperature for 20 minutes in dark conditions. Subsequently, 60µL of sulphanilamide (1% w/v, 

diluted in phosphoric acid 3M) and 60µL of N(1-Naphtyl)ethylenediamine dihydrochloride 0.02% w/v 

were added to the solution. The OD was measured at 540nm after 10 minutes at room temperature in 

dark conditions. A blank was realised (without nitrate reductase) to access the nitrite amount in samples. 

Then, nitrate levels were obtained by subtracting the OD of the blank for each sample and using the 

calibration curve of  KNO3 from 0 to 1.6mM.  

Determination of the total free amino acid levels 

The total level of free amino acids was measured via the fluorescamine method previously 

described (Bantan-Polak et al., 2001). Shortly, 115 µL of borate buffer which included 15µL of sodium 

borate buffer 0.1M at pH8 with 100µL of water was added to the corresponding volume of ethanolic 

extract (Annex II.A3). Then, 90µL of fluorescamine 0.1% in acetonitrile was added to the mixture and 

the resulting solution was kept at room temperature for 5 minutes. The fluorescence was determined 

with an excitation at 405nm and emission at 485nm. Levels of total free amino acids were deduced using 

a calibration curve of glutamate from 0 to 1000µM. 
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Fig. II.6 | Robotised microplate assays. A. Determination of glucose, fructose and sucrose levels. 

B. Determination of malate and fumarate levels. C. Citrate assay. D. Determination of total 

polyphenol levels. CL: citrate lyase, F6P: fructose-6-Phosphate, G6PDH: glucose-6-phosphate 

dehydrogenase, G6P: glucose-6-phosphate, GOT: glutamate-oxoglutarate aminotransferase, HK: 

hexokinase, HRP: horseradish peroxidase, Inv: invertase, LDH: lactate dehydrogenase, MDH: 

malate dehydrogenase; PGI: phosphoglucose isomerase, 6PG: 6-phosphogluconolactone. 
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Determination of the total polyphenol levels 

Polyphenol levels were estimated using the horseradish peroxidase (HRP) as previously 

described (Stevanato et al., 2004). Shortly, 71µL of water, 10µL of tricine/KOH 0.1M at pH 8, 3µL of 

H2O2 100mM and 6µL of 4-aminoantipyrine 200mM are added to the corresponding volume of ethanolic 

extract (without PVPP). The OD was measured at 405nm to define the baseline and the mixture was 

supplemented with 1µL of HRP to generate a coloured compound that is proportional to the phenol 

content (based on the saturation of H2O2 and 4-aminoantipyrine) (Fig. II.6). Polyphenol content is then 

determined using the calibration curve of pyrogallic acid from 0 to 8g/L.  

 

IV.3. Insoluble fraction   

Following ethanolic extraction, the levels of starch and the quantity of total soluble proteins were 

measured using the insoluble fraction (i.e. pellet). Besides, residual compounds contained in the pellet 

were weighed to estimate the cell wall content.  

Measurement of the total amount of soluble proteins 

 The content of soluble proteins was measured via the Bradford reagent as previously described 

(Bradford, 1976). Soluble proteins by adding 400µL of NaOH 0.1M in the pellet. The solution was then 

heated at 95°C for 30 minutes and centrifugated at 2500 rpm for 5 minutes. Then, 180µL was added to 

the corresponding volume of ethanolic extract (Annex II.A3). After 5 minutes at room temperature, the 

OD was measured at 595nm and the soluble protein content was estimated using the calibration curve 

of bovine serum albumin (BSA).   

Starch assay 

 Starch content was determined following a previously established process (Hendriks et al., 

2003). Following the protein assay, 80µL of HCl 0.5M, acetate/NaOH 0.1M at pH 4.9 was added to the 

pellet (which has already been supplemented with 400µL of NaOH during the protein assay). After 

controlling the pH, 100µL of a degradation mix composed of amyloglucosidase (1.5mL) and α-amylase 

(15µL) were added. The resulting solution was mixed and incubated at 37°C for 16 hours. Then the 

starch content was assessed using the same protocol as the glucose assay. 
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Estimation of the cell wall content 

Following the previously described assays, cell wall content was estimated after two washing 

steps. Samples (including NaOH and HCl solutions) were centrifugated at 2500rpm for 10 minutes. The 

supernatant was discarded and 250µL of NaOH 0.5M was added to the pellet. The resulting mixture was 

mixed and heated at 95°C for 20 minutes and centrifugated again. A second washing step was performed 

with 250µL of NaOH 0.5M. The washed pellets were then freeze-dried overnight and the cell wall 

content was represented by the delta in mass between the sample tube with and without the dried pellet. 

 

V. METABOLOMICS ANALYSES  

Robotized microplate assays were complemented with the investigation of fatty acyl and 

secondary compounds using various techniques. The high sensitivity of gas chromatography coupled to 

a flame ionisation detector (GCFID) or a mass spectrometric detector (GCMS) as well as LCMS gave 

access to the chemical diversity of the Atacama plant species. 

 

V.1.  Analysis of fatty acyls via GCFID and GCMS  

Two analytical techniques were used to explore the lipid profile of multiple plant species from 

the Atacama Desert. First, a quantitative estimation of the FAME content was performed using GC 

(Hewlett-Packard 5890 series II) coupled to an FID and a capillary column HP-5MS of 30mX0.25mm 

as previously described (Domergue et al., 2010). A constant flux of helium was used as a carrier gas. A 

temperature gradient was used to optimise the separation of the FAMEs where 50°C was maintained 

during the first minute and followed by a gradual increase of 25°C per minute until 150°C. This 

temperature was maintained for 2 minutes and increased again with a rate of 10°C per minute to 320°C, 

which was held for 6 minutes. The temperature of the injector and detector was 250°C. The 

quantification of the FAMEs within Atacama samples was performed using the internal standard C17:0. 

Apolar extracts were subjected to untargeted fatty acyl profiling using a GC (Agilent 6850) equipped 

with a 30mX0.25mm HP-5MS column coupled to a mass spectrometer (Agilent 5975; 70 eV; m/z ratio 

from 50 to 750 Da) with a flux of 1.5mL/min of helium as carrier gas (Domergue et al., 2010). The same 

temperature gradient was used.  
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V.2. Analysis of semi-polar compounds via LCMS 

Ethanolic extracts were subjected to untargeted analysis via an Ultimate 3000 ultra-high-

pressure liquid chromatography (UHPLC) system coupled to a LTQ-Orbitrap Elite mass spectrometer 

as previously described (Luna et al., 2020). Samples were ionised via electrospray ionisation source 

(ESI) in positive or negative modes. A C18 column (C18-Gemini, 2.0x150mm, 3 µm, 110Å, 

Phenomenex, USA) was employed to separate semi-polar compounds before mass spectra acquisition. 

A gradient of 18 minutes with a flow of 0.350ml/min composed of 3% of solvent B (acetonitrile LCMS 

grade) and 97% of solvent A (water with 0.1% of formic acid) between 0 to 0.5 minutes, 10% of solvent 

B at T=1min, 50% at T=9min, 100% at T=13 minutes, and 3% from T=14.5min to the end. Besides, 

injection parameters were optimised as follows: draw and dispense speed of 600nl/s, draw and dispense 

delay of 30ms, waste and wash speed of 8 µl/s. Full scan analysis was realised at 240k resolution power 

at m/z = 200 Da. Extraction blanks were used to control the quality of the ethanolic extraction and 

quality control samples (QC, which is a mix of all injected samples) were injected every 10 samples to 

control the quality of the analysis. Similarly, one biological sample was injected every 30 samples to 

evaluate the repeatability of the analysis. Subsequently, MS/MS spectra were acquired in high energy 

collisional dissociation (HCD) mode at a normalised collision energy of 25% and 45% or 50% and 70% 

in positive and negative ionisation mode, respectively.  

 

VI. PROCESSING OF THE METABOLIC DATA 

The processing step enables the extraction, integration, organisation and correction of complex 

sets of informatics data produced via GCFID or GC/LCMS called raw data. This step is therefore 

essential and creates a data matrix that can be easily manipulated (e.g. csv table). Various processing 

strategies were deployed due to the high variety of analytical techniques used in this project.  

 

VI.1.  GCFID and GCMS spectra  

Processing of GCFID and GCMS spectra was performed using the Agilent2 method (adapted 

from the Agilent method), which automatically performed the peak picking step. The intensity threshold 

was defined as 1% of the major peak. Results of this method were controlled and corrected manually. 

The annotation of the different peaks was carried out using an internal library.  
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The quantity of FAMEs was calculated using the formula: FAME (µg/g dry weight) = 

(𝐴𝑠𝑎𝑚𝑝− 𝐴𝑏𝑙𝑘).(𝑀𝐶𝑆)

𝐴𝐶𝑆
×

1

𝑀𝑠𝑎𝑚𝑝 
 where Asamp and Ablk represent the area of the corresponding peak, MCS and 

Msamp represent the quantity of chemical standard (µg) or dry sample powder (g) used for the analysis. 

 

VI.2.  LCMS spectra 

Raw LCMS data can be processed through various software that have been developed recently. 

Here, we focus on the two processes that were used during the PhD project.  

XCMS in R 

Firstly, the raw LCMS data were converted into an mzML format compatible with the XCMS 

software. Then, XCMS software performs the following processing steps: peak picking (which allows 

the detection of the peaks), grouping (grouping the peaks according to their m/z ratio), RT correction 

(where the potential drift of retention time during the LCMS run is corrected), gap-filling (i.e. integrating 

baseline values for missing peaks) (Smith et al., 2006). Here, optimised parameters were used to process 

raw LCMS data as previously described (Luna et al., 2020). These parameters included: a centWave 

method, a m/z window of 0.01 (based on the resolution of the Orbitrap), a noise threshold that varied 

between 20,000 to 100,000 depending on the analysis and a signal on noise ratio threshold of 4. Finally, 

the XCMS software provides an Excel table summarising the intensity of the different ions for each 

sample (including biological samples, blanks and QC).  

MS-DIAL 

MS-DIAL is a user-friendly open-source software pipeline available allowing the processing of 

raw GC or LCMS data, which can be used without prior transformation (Tsugawa et al., 2015). Similar 

settings to those used on XCMS software were used to process the raw LCMS data and included: a MS1 

tolerance of 0.01, a MS2 tolerance of 0.025 and a minimum peak height of 20,000. 

 Independently of the processing software, additional steps were performed to select the most 

stable and meaningful ions across the processed dataset (Fig. II.7). An example is provided with the 

analysis performed in Dussarrat et al., 2022. The total number of ions detected shows the number of 

ions that passed the processing step. The delta between the minimum and maximum RT and m/z should 

not exceed 60s and 0.01Da, respectively. Besides, ions should not be present in the extraction blanks 

(BEX). Finally, the coefficient of variation of an ion in the different injected QCs (one every 10 samples) 

must not exceed 30% to ensure satisfactory stability (Fig. II.7). 
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VII. STATISTICAL ANALYSES 

Mathematics permits hundreds of variables (e.g. ions) to be comparable between hundreds of 

samples through, for instance, normalisation. In addition, statistics enable the extraction of the 

explanatory variables from a complex and abstract set of data. Here, a plethora of statistics was used to 

(i) meet the different constraints induced by an untargeted analysis on multiple unknown plant systems 

and to (ii) extract the explainable variables relevant to the biological question from tens of thousands of 

metabolic variables produced by the different experiments. These statistics can be divided into 

univariate, multivariate (including exploratory and regression analyses) and modelling approaches. All 

datasets were normalised by median normalisation, cube-root transformation and Pareto scaling using 

MetaboAnalyst (https://www.metaboanalyst.ca) as recommended for untargeted metabolomics studies 

(Xia et al., 2015; Di Guida et al., 2016).  

 

VII.1. Univariate and multivariate analyses  

Univariate statistics were deployed either to reduce the complexity of the processed dataset 

before applying multivariate and multivariate analyses or to confirm the relationship of the explanatory 

variables with the phenotypic trait studied. ANOVA or t-test were realised using the agricolae package 

(Mendiburu, 2021) on R or directly on MetaboAnalyst to select the metabolic compounds (e.g. ions) 

Fig. II.7 | Pre-processing of LCMS raw data. Detected ions represent the amount of ions detected 

using a noise threshold of 100,000. Total ions were then filtered by removing ions with a retention 

time (RT) delta (i.e. RTmax – RTmin) than 60s or delta m/z higher than 0.025 Da. Then, ions 

detected in extraction blanks (BEX) are removed, as well as ions with a coefficient of variation 

higher than 30% in quality control samples (QCs).  
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significantly linked to the response factor studied (i.e. temperature parameter). This approach allowed 

either to screen the metabolic dataset and clean up variables that did not respond to the factor studied or 

to validate the potential of the discovered explanatory variables. Besides, various correlation tests were 

realised using Hmisc and corrplot packages to explore the relationships between metabolic and 

environmental variables or between multiple metabolic variables (Jr, 2021; Wei and Simko, 2021).  

Exploratory statistics like PCA were performed to decomplexify a highly dimensional dataset 

and provide preliminary hypotheses via the factoextra and FactoMineR packages (Lê et al., 2008; 

Kassambara and Mundt, 2020). Other exploratory statistics such as clustering approaches and 

visualisation through heatmaps were performed via the pheatmap and cluster packages in R (Kolde, 

2019). Pearson correlation and Ward algorithm were used to cluster the samples based on the consequent 

number of biological replicates.  

PLS, OPLS and associated discriminant analyses (i.e. (O)PLS-DA) were performed to unveil 

the predictive components when the number of samples was not sufficient to perform gLM approach. 

Partial least square regression (PLSr) were realised using the pls package in R with the leave-one-out 

cross-validation approach as previously described (Meacham-Hensold et al., 2019; Mevik et al., 2020). 

To evaluate the predictive capacity of the PLS model, the total sample set was divided into a training 

set (80%) to develop the equation which was then applied to the testing set (20%). Models were 

performed 50 times to cover the different combinations offered by the stratified sampling method used 

to define the training and testing sets. The most predictive components were extracted from the 

predictive components based on their coefficient within the linear equation. Finally, the predictive 

capacity of the best metabolic markers was tested via additional PLSr models. Discriminant analyses 

((O)PLS-DA) were realised directly on MetaboAnalyst. The likelihood of spurious predictions was 

systematically tested by developing permuted datasets where the values of the response factor are 

randomly redistributed between samples. In addition to this statistical validation, a biological validation 

was performed by exploring the predictive capacity of the selected markers on an independent dataset. 

To illustrate and facilitate the interpretation of the results, various plots (including scatter plots, box 

plots, lollipop plots, pie charts…) were designed using ggplot package in R (Wickham, 2016) and 

Inkscape software (https://inkscape.org).  
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VII.2.  Generalised multilinear models (GLM) 

GLMs were used to (i) explore the correlation between metabolic variables and environmental 

data and (ii) extract the best predictors of the studied response factor while preserving the biological 

context. More specifically, we here deployed general multilinear models (gLM) (i.e. a generalised linear 

model where the distribution is normal, see Chapter I) based on the normal distribution of the data using 

the glmnet package available in R (Friedman et al., 2010). Stratified sampling was used to define the 

training set (70%) and the testing set (20%) which were used to establish the model equation and the 

validation set (10%) to test the predictive capacity of the model. Variable selection was ensured via 

lasso, ridge and elastic net penalisation systems where a thousand penalty values were tested between 0 

and 1 (the closer the penalty value is to 1, the smaller the number of variables used in the models). The 

final equation corresponded to the most parsimonious model ensuring the lowest mean square error 

(MSE) within one standard error of the minimal MSE. In total, 500 models were developed to cover the 

multiple sampling possibilities arising from stratified partitioning. Whilst internal cross-validations were 

performed to establish the equation and limit the risks of overfitting, 500 permuted datasets were created 

to test the likelihood of spurious predictions. Besides, statistical validation was complemented with 

biological validation. In short, the equation of the model (as well as variable selection) was established 

using the first biological dataset and then applied to an independent dataset to validate the predictive 

capacity of the best metabolic markers. Finally, figures were developed as explained in the previous 

paragraph (section VII.1).  

 

VII.3.  Mathematical modelling 

Mathematical modelling was used to depict the effect of temperature on A. imbricata coverage. 

We first assessed temperature under the cushion and in open areas as mentioned previously (Chapter 2, 

section II) to determine that the thermal protective properties of M. camachoi occurred between 7 pm 

and 9 am (Chapter 5, Fig. V.3). While the temperature delta between cushions and open areas were quite 

stable over the years, we calculated the average temperature reported between June and July to avoid a 

potential “day effect” when introducing the temperature parameters in the mathematical model. Hence, 

temperatures recorded between 7 pm and 9 am every day between June and July were collected from 

the two weather stations available at 3060 and 4090 m.a.s.l. The linearity of the temperatures across 

elevation was then assumed to calculate a theoretical value for each elevation level as previously 

established (Dussarrat et al., 2022). 
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These temperatures (T) were used in the mathematical model performed in Chapter V to predict the 

cover (c) of A. imbricata from T data with the equation (1) adapted from Yan and Hunt, 1999.  

 𝑐 =  𝐶𝑚𝑎𝑥 (
𝐹𝑚𝑎𝑥−𝑇

𝐹𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
) (

𝑇

𝑇𝑜𝑝𝑡
) ^(

𝑇𝑜𝑝𝑡

𝐹𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)  (1) 

In this equation c the Atriplex cover to predict (cm/m² of M. camachoi), Cmax the maximum coverage 

observed in July 2021 (cm/m² of M. camachoi), Topt the optimal temperature for growth (°C), T the 

measured temperature (°C) and where Fmax the maximum value of an arbitrary parameter that limited 

plant life at the lowest elevation levels. We assumed that temperature was not limiting at low elevation 

levels (Dussarrat et al., 2022), and therefore considered that water and nitrogen scarcity, as well as 

salinity, could be represented through this Fmax factor. Temperatures recorded in 2021 at elevations 

suitable for maximum coverage with and without interaction with the cactus was used to define Topt (as 

mentioned in Chapter 5). Model accuracy was then confirmed using an independent dataset collected in 

2016. The predictive capacity of the model was assessed by varying the T parameter according to 

temperatures measured in 2016, while values of the other parameters established with the 2021 dataset 

(i.e. Fmax, Topt, Cmax) were maintained.  

Note: Results of the model presented in Chapter 5 were obtained using 2020 temperatures since 

measurements of 2021 only became available very recently. However, although the results are thus 

considered preliminary, the average temperatures between June and July did not show major changes 

between 2016 and 2020. 

 

VIII. METABOLIC NETWORKS  

The annotation of the best predictors and their integration within the plant metabolome is an 

essential step to provide a biological interpretation of the results. Depending on the biological question, 

various software and chemical databases were used to perform these essential steps.   

 

VIII.1. Annotation process  

The annotation of a chemical compound is performed at MS and MS/MS levels and should 

follow the metabolomics standards initiative confidence level (MSI) (Sumner et al., 2014). The 

annotation of the MS spectrum can lead to the attribution of the chemical formula of the molecule 

through two distinct analytical ways. First, raw spectra can be directly scrutinised to determine the 

presence or absence of chemical elements like nitrogen (N), carbon (C), oxygen (O), sulfur (S). For 

instance, the FreeStyle function from Xcalibur software proposed putative chemical formula annotations 
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based on accurate m/z ratio and the occurrence of isotopic patterns (13C, 18O, 15N and 34S). In parallel, 

the accurate m/z ratios from the best metabolic predictors can be screened through chemical databases 

such as METLIN (Xue et al., 2020) to directly speculate on the chemical formula. Finally, the putative 

chemical structure is hypothesised by exploring the metabolic candidates on chemical databases such as 

Chebi, METLIN, DNP (http://dnp.chemnetbase.com) and Knapsack (de Matos et al., 2010; Afendi et 

al., 2012; Xue et al., 2020). The MS/MS spectra were used to sharpen the annotation and allow great 

confidence into the chemical structure (and therefore the molecule) by screening the fragmentation 

pattern of the studied molecule on various libraries such as MzCloud (https://www.mzcloud.org), 

METLIN and Massbank (Horai et al., 2010).   

Pathway analyses were performed to question whether biological predictors belonged to similar 

biochemical routes or conversely covered various pathways across primary and secondary metabolism. 

The KEGG identifiers were obtained via KEGG database and the related metabolism, biochemical 

pathway and sub-pathways were assigned using MetaboAnalyst and PlantReactome (Kanehisa et al., 

2014; Naithani et al., 2019).  

 

VIII.2. Metabolic networks 

In this project, the best metabolic predictors were integrated into metabolic networks to (i) help 

interpret their relevance in the phenomenon studied and/or (ii) evaluate the response of the related 

compounds. First, top chemical markers were integrated into a pre-existing A. thaliana metabolic 

network using KEGG identifiers on MetExplore to appreciate their potential role in plant metabolism 

(Cottret et al., 2010). Alternatively, structural metabolic networks were developed using the GNPS 

platform. The feature-based molecular network (FBMN) method creates metabolic networks based on 

the assumption that structurally-related molecules belong to the same pathway (Nothias et al., 2020). In 

short, the correlation level between two molecules is defined by the cosine score which calculates the 

similarity of the fragmentation spectra (from MS/MS analysis) between 0 and 1 (where 1 refers to a 

perfect match). Optimised parameters were used and included an ion mass tolerance of 0.01Da and a 

cosine score threshold of 0.7 with a minimum of 4 corresponding fragment ions. Finally, the newly 

developed metabolic network was uploaded into Cytoscape (version 3.8.2) to improve visualisation 

(Shannon, 2003). 

 

 

http://dnp.chemnetbase.com/
https://www.mzcloud.org/
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IX. REACTION AND PATHWAY ENRICHMENT ANALYSES 

Wild species may have selected the most efficient metabolic strategies to cope with extreme 

abiotic conditions through millions of years of evolution within the Atacama Desert. Transcriptomics 

data from Eshel et al., 2021 were used to investigate the reaction and pathway enrichments within 32 

Atacama plant species. A comparison between the transcriptome of the 32 Atacama species and the 32 

closest non-adapted sequenced species was deployed to identify expanded and over-expressed gene 

families. The material and method presented below was summarised from Chapter 4, which will be 

submitted in the following weeks.  

 

IX.1. Generation of annotated reactions and pathways  

Reactions and pathways for each of the 64 species transcriptome were built using the annotation 

results generated by the e2p2v4 enzymes annotation tool (Schläpfer et al., 2017). Next, PTOOLS v24.5 

was used to infer reactions and pathways using default parameter values (Karp et al., 2021).  

 

IX.2.  Reaction and pathway enrichment analyses 

Reaction enrichment analysis was performed by assessing the expansion of gene families and 

the variation of the top-expressed genes within Atacama plant species compared to phylogenetically 

related species. First, the total number of genes per reaction, as well as the total number of top-expressed 

genes per reaction (i.e. genes underlying the top 10% intense transcripts), were extracted from the 

transcriptomics data previously developed (Eshel et al., 2021).  

Thereafter, pairwise comparisons (i.e. Atacama-Related species couples) were performed to characterise 

a reaction as enriched when at least 3 times more genes per reaction were observed (total genes per 

reaction or top-expressed genes per reaction). Results were concatenated to define the percentage of 

occurrence (i.e. the number of species in which a given reaction was enriched). In addition, a Fisher’s 

exact test was performed to explore the enrichment of entire biochemical pathways using the phyper 

function in R as previously described (Wieder et al., 2021). Finally, Benjamini-Hochberg P correction 

was employed to identify significantly enriched pathways using the p.adjust function available on R 

(Benjamini and Hochberg, 1995). The most relevant reactions and pathways were subjected to an 

annotation process using the MetaCyc, KEGG and HMDB databases. 
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X. MANAGEMENT OF SAMPLES, DATA AND METADATA 

Untargeted analysis of unknown plants collected in different years produces a large amount of 

data. Besides, various collaborations were developed to meet the needs of the diverse angles of analysis. 

Furthermore, a large amount of data remain unexplored and should be available for all partners. Finally, 

subsequent projects are under development and will probably require samples collected in 2019 or 2014 

to, for example, serve as an independent dataset for validation. Hence, we propose this section to clearly 

specify the location of (i) the remaining samples and their characteristics, (ii) raw metabolic data already 

processed and (iii) raw data under current investigation.  

 

X.1. Samples 

All samples collected in 2019 were subjected to untargeted LCMS analysis (20 mg of dry 

weight), untargeted GCMS (10 mg of dry weight), targeted robotised microplate assays (40 mg of dry 

weight in total). Besides, 30 mg of dry powder from several samples were used for NMR analysis. In 

addition, multiple tests were performed on various samples. All remaining samples are stored at -80°C 

in four distinct plastic bags which contain silica gel (two bags tagged “Atacama 2019-2014 TD” and 

two bags tagged “Atacama 2021”). Depending on the time of the next analysis, we perhaps recommend 

redoing the lyophilisation step to ensure the absence of water in the samples.  

 

X.2. Data availability 

Published metabolic data and sample metadata from samples collected in 2014 and 2019 have 

been made available for the scientific community following the Findable, Accessible, Interoperable, 

Reusable (FAIR) principles (Jacob et al., 2020). Transcriptomics data became publicly available since 

the publication of the paper from Eshel et al., 2021. Reaction and pathway enrichment data as well as 

metabolic data and sample metadata developed for the analysis of the interaction between A. imbricata 

and M. camachoi will become available following the FAIR method once published. All additional data 

that are still under investigation are available for both laboratories in private servers. At the Meta team 

from INRAE Villenave d’Ornon, data are stored in the NAS (folder Thomas Dussarrat). At the Plant 

Systems Biology Lab, Facultad de Ciencias Biológicas, Departamento de Genética Molecular y 

Microbiología, data are stored in the lab’s Google drive (folder Thomas Dussarrat).  
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I. TOWARDS THE DISCOVERY OF GENERIC MECHANISMS 

This chapter has resulted in a scientific paper accepted in New Phytologist in February 2022. 

Here, we proposed a short introduction (Section I) to set the topic in the context of the PhD. The 

manuscript of this article was then implemented in a Word format in Section II. Finally, a short 

conclusion was provided to integrate the into the PhD context (Section III).  

All supplemental tables are available at the following link: 

https://drive.google.com/drive/folders/1Z3HLMY0Hb281HEu56MM82MHtY_YQ9tkE?usp=sharing  

The adaptation of an organism is inherent to heritable genetic changes that allow survival in a 

given environment (Borowitzka, 2018). These random mutation events result in the adjustment of 

metabolic pathways which enhance the capacity of a plant to perform in its new environment (Scossa 

and Fernie, 2020). Whilst most studies focus on the analysis of model plants in controlled conditions, 

wild species have naturally adapted their metabolome to their environment (Castañeda-Álvarez et al., 

2016). Harsh ecosystems such as deserts, high mountains and saline lands provide a unique reservoir of 

adapted species that possess the fascinating ability to cope with extreme conditions while most species 

can not survive (Tipirdamaz et al., 2006; Díaz et al., 2019; Kumari et al., 2020). Decades of research on 

extreme plants have nicely improved our understanding of the metabolic mechanisms underlying 

adaptation (Turner, 2018). Interestingly, altitudinal clines across extreme lands are of major interest 

since they provide the opportunity to decipher the metabolic mechanisms that underpin adaptation as 

well as their response to a gradient of environmental constraints (Walker et al., 2022). This was 

exemplified by a great correlation between phytochemical and elevation in Alpine mountains (Defossez 

et al., 2021). Besides, the first meta-analyses which compiled individual studies performed on a limited 

or unique plant species revealed general trends among stress-resistant organisms (Dussarrat et al., 2021; 

Walker et al., 2022). The response of phenotypic traits such as the specific leaf area (SLA) was linked 

to both elevation level and global metabolic trends (Walker et al., 2022). Primary compounds like amino 

acids and secondary compounds like terpenoids and flavonoids were increasingly synthesised as leaf 

area decreased with altitude (Walker et al., 2022). However, most studies sought to identify the genetic 

or metabolic differences between one agronomic or model plant and its related extreme species, yielding 

highly species-specific markers (Dussarrat et al., 2021). Our approach adopted the opposite analytical 

angle to question the role of metabolic convergences in plant resilience to harsh climates. We explored 

the biochemical diversity of 24 Atacama plant species which flourish across an elevational gradient 

(from 2400 to 4500 m.a.s.l) using robotised microplate assays, GCFID, GCMS and LCMS techniques. 

Subsequent machine learning unveiled a generic toolbox predicting plant environment, independently 

of the plant species and sampling year. 

 

https://drive.google.com/drive/folders/1Z3HLMY0Hb281HEu56MM82MHtY_YQ9tkE?usp=sharing
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II. A METABOLIC TOOLBOX PREDICTING ENVIRONMENT 

The following article was accepted in New Phytologist in February 2022. However, the PDF 

format is not yet produced. Here, we present the Word format that will be published online in the 

coming weeks. 
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Summary 

● Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this 

scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to 

learn about new mechanisms for resilience. Previous studies have shown species specificity for 

metabolites involved in plant adaptation to harsh environments.  

● Here, we combined multi-species ecological metabolomics and machine learning-based 

generalised linear model predictions to link the metabolome to the plant environment in a set of 

24 species and belonging to 14 families growing along an altitudinal gradient in the Atacama 

Desert.  

● Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus 

establishing the plant metabolome as an excellent integrative predictor of environmental 

fluctuations. These metabolites were independent of the species and validated both statistically 

and biologically using an independent dataset from a different sampling year. Thereafter, using 

multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors like 

freezing temperature, water deficit and high solar irradiance.  

● These findings indicate that plants from different evolutionary trajectories use a generic 

metabolic toolkit to face extreme environments. These core metabolites, also present in 

agronomic species, provide a unique metabolic goldmine for improving crop performances 

under abiotic pressure. 

 

Keywords: adaptation, extreme environments, multiple species, plant metabolism, predictive 

metabolomics. 
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Introduction  

Humans domesticated plants 10,000 years ago in the hostile environments of the Fertile Crescent 

(Riehl et al., 2012; Dai et al., 2012). Over the years, selected crops have been improved by a variety of 

methods. However, current yields of domesticated therophytes are stagnating and threatened by climate 

change despite significant efforts to develop abiotic stress tolerance for the best ideotypes (Long et al., 

2015). Wild plants naturally evolved mechanisms to meet abiotic constraints in natural habitats from 

which they cannot escape (Fatima et al., 2020; Signori-Müller et al., 2021). In this scenario, returning 

to wild plant species that live and thrive in some of the harshest environments on Earth offers an 

opportunity to find new strategies for crop improvement (Castañeda-Álvarez et al., 2016). Recent 

studies pinpointed relevant metabolic clusters in adaptation to extreme environments in plants harvested 

in high mountains, deserts and salt lands (Dussarrat et al., 2021). These adaptive mechanisms involved 

the accumulation of amino acids (Lugan et al., 2010) as precursors of secondary metabolites, and 

carotenoids (Cui et al., 2019) and polyphenols (Hashim et al., 2020) as processors of reactive oxygen 

species (ROS). Besides, most studies were carried out on a unique or limited number of species 

(Dussarrat et al., 2021), which, combined with high biochemical diversity, led to highly specific 

metabolic markers involved in adaptive mechanisms exclusive to species or environment (Peters et al., 

2018; Dussarrat et al., 2021).  

The metabolome is an excellent integrative system to predict plant environment since it carries 

imprints of omic inferences and environmental influences (Kosmacz et al., 2020; Lewis & Kemp, 2021). 

Ecological metabolomics aims to study the environmental impact on metabolic responses, acclimation 

and adaptation processes in natural ecosystems. Applying untargeted ecological metabolomics on 

multiple species could unravel universal plant adaptive strategies to abiotic factors in their natural 

environment (Poorter et al., 2012; Umair et al., 2019; Sardans et al., 2020; Wong et al., 2020). However, 

this approach has primarily focused on phytochemical diversity analysis. Plant metabolomes were 

recently used to predict phenotypic traits such as yield and stress resistance (Luna et al., 2020; 

Szymański et al., 2020; Zhu et al., 2018) within specific species. By exploiting multiple species, 

previous studies reported strong relationships between growth rate and biomass composition (Roch et 

al., 2020) and between phytochemical diversity and environmental conditions of plants growing in 

alpine regions (Defossez et al., 2021). Interestingly, several phenotypic traits predicted from plant 

metabolism were further used to predict complex output like plant fitness but remain tedious to collect 

(Laughlin et al., 2012; Laughlin & Messier, 2015). Thus, ecological metabolomics could be used to 

uncover readily measurable soft traits that can predict complex outputs such as plant fitness. Adaptation 

to extreme environments is thought to rely on specialised secondary metabolic pathways often 

considered to be species-specific (Moghe & Last, 2015; Scossa & Fernie, 2020). However, generic 

mechanisms may also exist. To test this hypothesis, large scale metabolomics in multiple wild species 
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are needed to unveil general metabolic interactions with environmental factors and propose adaptive 

roles for specific metabolites (Wong et al., 2020).  

The Atacama Desert is the driest non-polar desert on Earth. In addition to extreme aridity, the 

Atacama is characterised by high solar radiation, extreme daily temperature oscillations, high soil 

salinity and low nitrogen content (Eshel et al., 2021). Although multiple abiotic factors are intense 

enough to severely limit plant life, this desert hosts tens of plant species (Jordan & Kirk-Lawlor, 2014; 

Díaz et al., 2016, 2019), thus bestowing a unique opportunity to analyse adaptive metabolic plant 

responses to abiotic stress in an entire ecosystem. The present study aimed to characterise the metabolic 

profiles of 24 dominant plant species in 19 different sites along an altitudinal transect in the Atacama 

Desert. Biological and environmental diversity was used to question the extent adaptation to extreme 

environments relies on generic metabolic mechanisms.  

To meet these ambitious objectives, multi-platform metabolomics covering primary compounds 

including carbohydrates, amino and organic acids, fatty acids and secondary metabolites revealed 

metabolic features that participate in environmental adaptation. Subsequent machine learning modelling 

of this comprehensive dataset via a generalised multilinear-based statistical approach established that 

the metabolome of these 24 extremophile plants was an excellent integrative predictor of plant 

environments. Moreover, our analysis uncovered a common set of metabolites associated with extreme 

climate resilience. 

 

Materials and Methods  

Plant materials and sampling. Aerial parts of 24 plant species belonging to 14 plant families 

(Table III.S1) were collected in their natural conditions from the Chilean Atacama Desert (Talabre-Leja 

transect (Díaz et al., 2016), lat 22°-24°S). For each species, a minimum of three biological replicates 

composed of multiple plants was collected. Each species has been collected in 1 to 6 distinct elevation 

levels (Fig. III.1) depending on the biological availability, directly snap frozen into liquid nitrogen, 

brought back to the laboratory on dry ice and stored at -80°C until freeze-drying. Sampling was 

performed during two consecutive days (06-07/04/2019) between 9.30 am to 5.30 pm. The time 

variation between samplings in different environments did not impact starch content, suggesting stable 

central metabolism during the sampling period (Fig. III.S1). Additionally, crops and ornamental plant 

species including Capsicum annuum, Phaseolus vulgaris, Spinacia oleracea, Vicia faba, Pisum sativum, 

Beta vulgaris, Portulaca oleracea, Helianthus annuus, Zea mays, Nicotiana tabacum and Solanum 

lycopersicum were grown in multiple natural conditions in France. The aerial parts of those plants were 

harvested, snap-frozen into liquid nitrogen and stored at -80°C until freeze-drying. All freeze-dried 

material from extremophiles and common plants were kept at -80°C until further analysis.  
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Environmental data. Climatic conditions were characterised using two meteorological stations 

(at 3060 and 4090 meters above sea level (m.a.s.l)), which measured temperature, humidity and solar 

irradiance as well as precipitation or soil moisture levels every hour throughout the year 2018-2019 

(Eshel et al., 2021). Besides, soil chemical properties including pH and contents of nitrate, ammonium, 

Olsen phosphorous, zinc, potassium, manganese, copper, iron, boron, molybdenum, sulfur, calcium, 

manganese, sodium, chlorine, bicarbonate salt and silt were measured and described for over three years 

(Eshel et al., 2021). 

Metabolite extraction. Using 20 mg of lyophilised plant material (from crops, ornamental and 

Atacama plants), robotised extractions of metabolites were performed according to an ethanol 

fractionation protocol (Luna et al., 2020), which targets a wide range of semi-polar plant biochemicals 

including primary compounds (soluble sugars and starch, organic and amino acids, total proteins) and 

specialised metabolites (terpenes, phenolics, alkaloids). In parallel, 10 mg of lyophilised plant samples 

were used to extract fatty acyls from total lipids as described previously (Domergue et al., 2010). 

Metabolomics. Ethanol extracts were screened for multiple compounds (chlorophyll, glucose, 

fructose, sucrose, malate, free amino acids, nitrate, total proteins and starch) based on coupled enzyme 

assays (Luna et al., 2020). The same extracts were also subjected to untargeted metabolic profiling by 

UHPLC-LTQ-Orbitrap mass spectrometry (LCMS) using an Ultimate 3000 ultra-high-pressure liquid 

chromatography (UHPLC) system coupled to a LTQ-Orbitrap Elite mass spectrometer interfaced with 

an electrospray ionisation (ESI) source (ThermoScientific, Bremen, Germany) operating in both 

negative and positive ion modes as described previously (Luna et al., 2020). The separation was 

performed using a C18 column (C18-Gemini, 2.0x150mm, 3 µm, 110Å, Phenomenex, USA). Full scan 

high resolution MS spectra were acquired at 240k resolution power at m/z = 200 Da. Besides, LCMS/MS 

acquisitions were acquired in higher-energy collisional dissociation (HCD) mode at a normalised 

collision energy of 60% and 35% (ESI- and + respectively). Fatty acyls were analysed using gas 

chromatography coupled to a flame ionisation detector (GCFID) or a mass spectrometric detector 

(GCMS) as detailed previously (Domergue et al., 2010). Biochemical phenotyping and LCMS 

experiments were performed for all plants (i.e. Atacama plants from 2014 and 2019, crops and 

ornamental plants), while GCFID and GCMS experiments were performed for 2019 Atacama plants and 

crops and ornamental plants exclusively.  

Processing of metabolomic data. Raw LCMS data were processed via XCMS (v 4.2) in R (v 

3.6.1) (Smith et al., 2006) using in-house optimised parameters (Luna et al., 2020) yielding 8750 

detected RT-m/z pairs for 5130 ESI- and for 3620 ESI+ modes. Subsequent data cleaning (blank check, 

ΔRT < 60 s, Δm/z < 0.025 Da, coefficient of variation in quality controls < 30%) generated 4540 metabolic 

variables (2564 ESI- and 1976 ESI+) that were retained for chemometric analyses. Both untargeted and 

targeted metabolomics data were first normalised by median normalisation, cube-root transformation 
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and Pareto scaling using MetaboAnalyst v.3 (Xia et al., 2015) before applying multivariate and 

univariate statistical analyses. The non-normalised dataset obtained after preprocessing is available in 

Supplemental Table III.2 and deposited online (see Section Data availability).  

Generalised multilinear models (GLM). Generalised linear modelling was performed to 

appreciate the quantitative correlation between metabolism and elevation levels used as a proxy of the 

plant environment. All metabolic variables that could not be measured based on detection limitations 

were inputted as 0 in the data matrix. The linear models were generated using the glmnet package 

(Friedman et al., 2010) in the R software (R Core Team, 2020) (version 3.6.1). Three model types were 

constructed (lasso, elastic net and ridge) by varying the penalty value of elastic net as a proxy to 

modulate the number of variables used by the models. Thousand values ranging from 0 to 1 were tested. 

Internal cross-validation was performed for the construction of the models to mitigate the overfitting. 

The best model was chosen based on Mean Square Error (MSE), and the most parsimonious model 

within one standard error of the minimal MSE was selected to perform predictions. The datasets were 

divided into three parts: 70% of the plants in a “training” set, 20% in a “test” set and 10% in the 

“validation” set to perform real predictions using the best model developed with both training and testing 

sets. Stratified sampling was used to perform a uniform sampling of the individuals based on the 

measured elevation levels. Due to this random partitioning, 500 different simulations were performed 

to sample the solution space of possible predictions. Besides, 500 sets of randomly assigned elevation 

levels were created to test the likelihood of spurious predictions. Student tests were performed to 

compare the 500 results from models performed with permutated and real elevation levels. The 

occurrences of the metabolic variables among the 500 simulations were analysed to extract the best 

predictors (Table III.1). 

Finally, statistical validation was complemented with biological confirmation to validate the 

predictive capacity of the metabolic markers using an independent sample set harvested in 2014 (Eshel 

et al., 2021) as for 2019. Using the equation calculated on the entire 2019 dataset, a validation model 

predicted the elevation for each plant from the 2014 dataset. The quality of the prediction was evaluated 

by both the coefficient of determination and the P-value observed when comparing real and predicted 

altitudes (Fig. III.2). The same permutation protocol was used to test the likelihood of spurious 

prediction of 2014 validation models.  

Multivariate statistical analyses. The normalised dataset was processed through multivariate 

analysis like PCA via FactoMineR package (Lê et al., 2008) from R software (version 3.6.1) and O2PLS 

via SIMCA 16.0.1 (Umetrics, Sweden). Besides, Tukey’s tests were performed to compare the 

expression of the metabolic markers between species or between environments using agricolae package 

(Mendiburu, 2020) with a threshold of significativity established at P<0.01. Finally, box plots, scatter 

plots, correlation plots and heatmaps were realised using ggplot2, ggpubr, Hmisc and pheatmap 
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packages (Wickham, 2016; Kolde, 2019; Jr et al., 2020; Kassambara, 2020) (Pearson correlation, Ward 

algorithm) from R software, respectively.  

Annotation. The best metabolic predictors were annotated using two different methods. Firstly, 

MS spectra were used to analyse the isotopic patterns (13C, 18O, 15N and 34S) and speculate on the ion 

composition. Besides, all putative chemical formulas were calculated by the FreeStyle function from 

Xcalibur 4.2 software with the following minimal and maximal constraints on chemical elements: 14N 

0-60, 16O: 0-6, 12C: 0-100, 1H: 0-200, 32S: 0-60, 35Cl: 0-60, 31P: 0-60 and a mass tolerance at 10 ppm. 

Thus, the best candidates were chosen based on the MS spectra analysis and screened on chemical 

databases (Chebi (de Matos et al., 2010), METLIN (Xue et al., 2020), DNP 

(http://dnp.chemnetbase.com), Knapsack (Shinbo et al., 2006)). In parallel, accurate m/z values of the 

most discriminant monoisotopic ions were screened using METLIN database (Smith et al., 2005) for 

putative annotation. The resulting outputs from both methods were compared to select the best putative 

annotation for each ion (Table III.1). Besides, MS/MS spectra of all samples were used to improve the 

annotation level by comparing experimental fragments with experimental MS/MS spectra available in 

multiple libraries like Massbank (Horai et al., 2010), MzCloud (https://www.mzcloud.org) and 

METLIN (Xue et al., 2020). The annotation level of each predictor was therefore attributed following 

the metabolomics standards initiative confidence level (MSI levels) (Sumner et al., 2014).  

Pathway analysis and metabolic networks. The 39 predictors were screened through chemical 

databases and integrated into a metabolic network to better interpret their role in the plant response to 

extreme conditions. The KEGG identifiers were identified using KEGG database (Kanehisa et al., 2014) 

on the 39 molecules if available or on chemically related compounds (Table III.S3). Thereafter, a 

pathway enrichment analysis was realised using MetaboAnalyst (Xia et al., 2015) and PlantReactome 

(Naithani et al., 2019) databases, and combined with the best markers integration into a pre-existing A. 

thaliana metabolic network via MetExplore (Cottret et al., 2010).  

 

  

https://www.mzcloud.org/
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Fig. III.1 | Depiction of Atacama plant diversity despite extreme conditions. A. Picture of the 

three vegetation belts. B. Description of the environmental conditions observed along the elevation 

gradient (Pearson correlation, P<0.05). SWC: soil water content, Ntot: total nitrogen, CE: electrical 

conductivity, Temp: temperature, p_ represents a partially predicted parameter. C. Description of 

the sampling site ranges and main characteristics (carbon fixation systems or lifespan) of the 

collected plant species. D. Analysis of the taxonomic relationships between Atacama species and 

between Atacama and agronomic or ornamental plant species. Triangles represent the Atacama 

plants while circles represent the agronomic and ornamental species. E. Pictures of the Atacama 

plant species collected. Adapted from Dussarrat et al., 2022, New Phytologist.      
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Results  

Plant diversity in the extreme conditions of the Atacama Desert. The Atacama Desert 

represents one of the harshest environments for plant life (Jordan & Kirk-Lawlor, 2014; Díaz et al., 

2016), where plants must endure the major abiotic stresses currently threatening agriculture. The 

Talabre-Lejía Transect (TLT) spans an elevation gradient covering three different plant communities: 

the poorly vegetated Prepuna (2400-3300 m.a.s.l), the Puna shrubland (3300-4000 m.a.s.l) and the high 

Andean Steppe (4000-4500 m.a.s.l) (Fig. III.1A) (Díaz et al., 2016; Eshel et al., 2021). Water 

availability increases and temperature decreases with altitude, while high solar irradiance and very low 

nitrogen levels are critical constraints throughout the TLT transect (Eshel et al., 2021). Rainfall ranges 

from 20 mm/year in the prepuna to 160 mm/year in the steppe, illustrating the extreme aridity as 

compared to other plant-sheltering deserts (Báez & Collins, 2008; Li et al., 2015; Díaz et al., 2016; 

Ziaco et al., 2018). The daily average solar irradiance of 600 W/m²/d along this transect is three times 

higher than many deserts and high mountain ecosystems (Bo et al., 2009; Zhang et al., 2010; Arancibia-

Bulnes et al., 2014). Besides, low total nitrogen (average 9 mg/kg) throughout the transect, low 

phosphorus levels (6-20 mg/kg), and high salinity in Prepuna sites add to the harsh conditions plants 

must endure. Nonetheless, plant life in this ecosystem of Atacama can be traced back to 45,000 years 

ago (Latorre et al., 2002; Díaz et al., 2019) and likely thrived in such extreme conditions since probably 

12 million years ago (Jordan & Kirk-Lawlor, 2014). Hence, this ecosystem represents a unique resource 

of adaptive mechanisms potentially relevant to engineer crop resilience. Interestingly, deep-sequencing 

of 32 dominant species representing the major clades highlighted common and specific strategies 

relevant for plant survival (Eshel et al., 2021). In this context, we collected 21 of these 32 plant species 

based on their coverage in their natural ecosystem. We complemented this set with one Cactaceae, one 

Solanaceae and one Boraginaceae to finally represent relevant biodiversity covering annual and 

perennial plants, different carbon fixation systems (i.e. C3, C4 and CAM) and different lifespans like 

shrubs and herbs (Fig. III.1C and Table III.S1). Clear distinctions regarding the distribution of life-form 

and carbon fixation types have been highlighted where all annuals and C4 plants were observed under 

an elevation of 3870 m.a.s.l. Additionally, while some species were relatively specific to a single 

environment (e.g. Moschopsis monocephala), other species had a wide distribution along the transect 

area that we divided into 19 sites (each 100 m.a.s.l) (Fig. III.1B). We also selected 11 agronomic and 

ornamental species based on their plant family to analyse and compare using the same experimental 

procedures (as explained in the Methods section). A taxonomic analysis performed on the Atacama and 

agronomic plant species via NCBI taxonomy browser unveiled the relationships between the 14 

Atacama plant families (Fig. III.1D). Interestingly, this sample set of 23 angiosperms and one 

gymnosperm included well known resilient plant families like Cactaceae and Boraginaceae (Ma et al., 

2010) together with species of economic interest such as Poaceae, Asteraceae, Fabaceae and 
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Solanaceae. Besides, the 11 agronomic and ornamental plant species covered 5 of the 14 Atacama plant 

families (including the most widespread ones like Poaceae, Fabaceae, Asteraceae and Solanaceae).  

Predictive metabolomics reveals a core metabolic set in multiple resilient species. To get 

insight into the mechanisms by which these extremophile plants (i) adapt to the extreme conditions of 

the Atacama Desert and (ii) respond to environmental variations, we performed multi-platform 

metabolomics to screen both primary and secondary metabolisms from the aerial tissues of Atacama 

plants and agronomic species (Fig. III.2A). Quantitative evaluation of 10 major compounds by 

biochemical phenotyping (used as key physiological indicators) and 26 fatty acids by gas 

chromatography coupled to a flame ionisation detector (GCFID) highlighted a significant reduction in 

chlorophyll, nitrate and protein content in Atacama species when compared to 11 known crops and 

ornamental plants (Fig. III.S2). In addition, the unknown biochemical diversity of these extreme 

Atacama plants was analysed through untargeted metabolomics using GCMS and liquid 

chromatography-mass spectrometry (LCMS), which resulted in 335 acyl chains and 4540 semi-polar 

features after preprocessing (Fig. III.S2). Given that the phytochemical diversity fluctuated with 

environmental conditions along the elevation gradient (400-2000 m.a.s.l) (Defossez et al., 2021), 

generalised linear modelling (GLM) was deployed to test whether the metabolome (4911 variables) 

could predict environmental conditions (Fig. III.2A). Elevation represents the integration of abiotic 

factors (Carpenter, 2005), among which climatic and edaphic factors have been previously described 

(Eshel et al., 2021) (Fig. III.1B). Thus, the elevation level of the 19 sampling spots was used as a proxy 

of the 19 environmental conditions analysed. First, the possibility of calculating the elevation levels 

from five different plant species selected based on both their biomass and coverage along the elevation 

gradient was evaluated. For each species, 80% of the sample set (i.e. training sets) was used for the 

regression analysis. The equation was then used to calculate elevation for the 20% of the sample set 

remaining (i.e. testing set). Interestingly, the resulting average R² from 500 models (i.e. fits between 

calculated and measured elevation) ranged between 0.88 and 0.96 depending on the species (Fig. III.2B). 

These results indicate the plant metabolome integrates environmental variations. Environmental 

conditions elicited characteristic metabolic patterns where compounds correlate with elevation allowing 

us to infer the altitude from which the sample was collected. 

Moreover, estimating the altitude (i.e. resulting as an environment proxy) from metabolic data 

alone for species from several plant families raised the question of whether generic mechanisms serve 

as a basis for adaptation to extreme environments such as the Atacama Desert. To address this question, 

we used GLM on the entire dataset divided into (i) a training set (70%), (ii) a testing set (20%) and a 

validation set (10%) since the total size of the dataset was sufficient (n = 224). We thus predicted the 

plant environment (i.e. elevation level) and highlighted the shared metabolic predictors (Fig. III.2A). A 

first modelling step determined the predictive capacity of the 4911 metabolic variables, represented by 

their percentage of use in the models. Consequently, a threshold of 40% (i.e. variables used in more than  
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Fig. III.2 | Predictive metabolomics of Atacama plants. A. A simplified scheme of the predictive 

metabolomics approach used in this study. B. Species-specific level: R² scores of the fit between 

calculated and real elevation levels with letters indicating statistical significance (Tukey’s test, 

P<0.01). Theoretical elevation levels were calculated from plant metabolome. C. Global level: 

threshold of the variable occurrence defined by 500 models performed on all variables for all 

species. The 13 variables used in 80% represent the most relevant compounds for predicting 

elevation. Numbers referred to the precise number of compounds for the corresponding occurrence. 

D. R² scores depending on the variable occurrence threshold (Tukey’s test, P<0.01). E. Biological 

validation using an independent sample set from 2014. F. R² scores obtained by predicting the 

elevation level from 2014’s plants using the multilinear equation calculated on 2019’s plants 

depending on the variable occurrence threshold (Tukey’s test, P<0.01), G. Predicted elevations from 

2019 and 2014 plants using the best 66 markers (Pearson correlation). Compounds in c, d and f refer 

to metabolic variables stricto sensu prior to annotation.          

Adapted from Dussarrat et al., 2022, New Phytologist.      
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40% of the 500 models) included 263 features while 80% involved the best 13 metabolic predictors (Fig. 

III.2C). Subsequently, each threshold was processed to (i) exclude the non-predictive features and (ii) 

tightly select the best ratio between the predictive capacity and the number of metabolic variables. The 

plant environment was considerably predictable at 66% and 79% using 13 or 66 markers, respectively 

(Fig. III.2D). Besides, lower thresholds (e.g. 40%) allowed better predictions but yielded less robust 

predictors (i.e. higher standard deviations). Importantly, 500 permutation sets involving randomly 

assigned elevation levels were developed to test the likelihood of spurious predictions, which led to a 

mean R² of 0% and thus statistically validated the GLM-based modelling approach. Hence, we 

demonstrated that common features could greatly predict plant environments (79%), independently of 

the species and family. 

To further test the robustness of such predictions, we biologically confirmed the predictive 

capacity of the metabolic features using an independent dataset composed of 9 Atacama plant species 

harvested in 2014 and covering 12 environments (2770 to 4270 m.a.s.l) (Fig. III.2E). The linear equation 

developed using the 2019 samples was then applied to the 2014 dataset to estimate elevation levels, 

thereby resulting in similar predictive patterns between 2019 and 2014 (Fig. III.2F). Altogether, both 

mean R² prediction and standard deviation results pinpointed towards an ideal threshold of 60% (66 

variables), which allowed a prediction at 79% for both years (P < 2.2e-16) (Fig. III.2G). These results 

hence confirm that plants harbour a core set of metabolites to adapt to the environmental constraints.  

A not-so-specialised set of secondary metabolites also detected in agronomic and 

ornamental plant species. Next, we annotated the best 66 predictors using both accurate m/z values 

and MS/MS analysis. This annotation process allowed excluding the fragments observed among the 66 

features (Table III.S4), finally retaining 39 metabolic predictors without remarkable impact on the 

average R² (Fig. III.S2A). The MSI annotation level for each predictor is presented in Table III.1. 

Notably, the best predictor was starch, while 37 metabolites referred to semi-polar compounds (Table 

III.1). Only 6 markers were positively correlated to elevation, while the intensity of the remaining 

compounds decreased with the elevation (Fig. III.S3B). Remarkably, predictors in Atacama plant 

species were also found in several agronomic and ornamental plants (Table III.S5 and III.S6), 

demonstrating the ubiquitous nature of these metabolites. These 39 compounds were queried in 

biochemical databases (e.g. Kegg, PlantReactome) to perform a pathway analysis (Table III.S3) and 

placed into a pre-existing A. thaliana metabolic network available on MetExplore(Kanehisa et al., 2014) 

(Fig. III.S4). More than half of the markers were involved in secondary metabolism (56%), while 

primary metabolism and regulators (e.g. jasmonates) covered 31% in total (Fig. III.3). The remaining 

13% included 3 unknown compounds and 2 salt artefacts that combined sodium and magnesium to 

formic acid, suggesting salt hyperaccumulation processes (Fig. III.3 and III.S3A). Notably, starch, 

trehalose and amino acid-related pathways were involved in crosstalk with the biosynthesis of secondary 
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metabolites, while the central place of raffinose was highlighted in galactose metabolism involving other 

oligosaccharides known for their role in abiotic stress tolerance (Vinson et al., 2020) (Fig. III.S4A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table III.1 | Annotation of the 39 best metabolic markers. ND: not determined.  
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Besides, phenolics represented the major enrichment observed in Atacama plant species with 14 of the 

39 markers. While alkaloids and N-containing compounds (e.g. proline betaine, or polyamines 

combined with flavonoids) were included in the best markers, flavonoid, phenylpropanoid and terpenoid 

pathways were clearly overrepresented (Fig. III.3 and III.S4). Last but not least, despite their 

classification into primary or secondary metabolisms, a relevant part of these 39 markers also referred 

to redox homeostasis owing to their chemical nature or interactions with ascorbate or glutathione 

pathways (Fig. III.S4), suggesting its importance in the adaptation to hostile environments. Overall, 

predictive metabolomics reveals that plant metabolism greatly reflects environmental fluctuations in 

extreme ecosystems, also pinpointed by a core set of metabolites (involved in secondary, primary and 

redox pathways) capable of predicting at 79% the plant environment independently of the plant species. 

These findings thus confirm a central place of generic metabolic pathways underpinning plant adaptation 

to environmental constraints.  

Plant metabolome is tailored to environmental constraints. Elevation integrates a wide range 

of abiotic factors, among which edaphic variables were measured in each of the 19 sampling spots. 

Besides, climatic variables like temperature, soil water content (SWC, representing the interaction 

between precipitation and soil properties), precipitations and solar irradiance were measured via two 

stations (at 3060 and 4090 m.a.s.l). Theoretical values of these factors along the elevation gradient for 

the 19 environments were predicted considering a linear distribution that was confirmed by field 

measurements (Fig. III.S5). Elevation greatly correlated with most environmental parameters in the 

Atacama Desert (Fig. III.S6). Thus, an analysis combining principal component (PCA) and two-way 

Fig. III.3 | Pathway analysis of the 39 markers. Metabolism, biochemical pathways and sub-

pathways were elucidated by screening the KEGG identifiers through MetaboAnalyst, 

PlantReactome and MetExplore databases. Adapted from Dussarrat et al., 2022, New Phytologist.      
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orthogonal partial least square (O2PLS) was performed to (i) unravel the elevation factor and (ii) 

highlight the relationship between the 39 best predictors and environmental factors.  

First, PCA was used to reveal the influence of the elevation on the climatic and edaphic 

conditions. The first two components of the PCA model explained 82.4% of the total variance of the 

dataset (Fig. III.4A) and showed clear discrimination of the plant communities (i.e. Prepuna, Puna and 

Steppe) along a multivariate vector that represented the elevation gradient. Also, a second plane defined 

by several minerals divided the different environments belonging to the Prepuna ecosystem, which did 

not occur with Steppe spots. Hence, the previously predicted elevation factor was here depicted by a 

multivariate vector represented mostly by edaphic variables (e.g. pH, P, K), temperature and solar 

irradiance. 

Second, we predicted the covariation between environmental factors and the best 39 markers 

using an O2PLS analysis (Fig. III.4B). Remarkably, 95% of the variation observed in the environmental 

dataset was covered by the metabolic features (Table III.S7). Congruently with the correlation matrix 

and PCA (Fig. III.4), the best predictors were primarily distributed along the first component 

representing elevation and, to a lesser extent, linked to several edaphic factors like sulphur. The O2PLS 

biplot further highlighted a remarkable separation between metabolic compounds positively or 

negatively correlated with elevation along the first plane. In particular, 5 phytochemicals determined by 

Pearson clustering and including raffinose were plotted opposite of temperature. Hence, these results 

indicate that the discriminant capacity of elevation primarily resulted from temperature, solar irradiance, 

SWC and several edaphic factors. These PLS predictions were also confirmed by GLM, where the best 

predictions using the 39 best markers on independent environmental parameters were obtained for SWC, 

solar irradiance, pH, and temperature (Fig. III.4C).  

Overall, we provide a valuable approach combining metabolomics, GLM and multivariate 

statistical analyses. Exploiting multiple species in a natural environment can successively unveil generic 

mechanisms of interest and disentangle complex systems into specific environmental parameters (i.e. 

climatic and edaphic). 
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Fig. III.4 | Decomposition of the elevation factor and environment-metabolome covariation. 

A. Principal component analysis biplot. Discrimination of the sampling spots by the environmental 

data. SWC represents the soil water content while p_ represents a partially predicted parameter.  

B. Two-way orthogonal partial least squares describing the covariation between environmental and 

metabolic data. Hierarchical clustering analysis was realised with Pearson correlation and Ward 

algorithm. C. Boxplot showing the average R² scores (500 models) performed on the best 

discriminant environmental variables using the 66 best metabolic markers. Letters indicate statistical 

significance (Tukey’s test, P<0.01). Soil W cont represents the soil water content, Temp represents 

the temperature. The box in each box plot illustrates the lower, median and upper quartile values, 

and the vertical lines show the range of the R² variation in samples while squares and circles 

represent the mean R² and potential outliers, respectively.         

Adapted from Dussarrat et al., 2022, New Phytologist.   
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Discussion  

Predictive metabolomics demonstrates a generic metabolic toolbox for plant adaptation to 

extreme habitats. Ecological metabolomics, which allowed to study the interaction between plant 

metabolism and environment, has attracted scientific curiosity for over 50 years (Sardans et al., 2020). 

While studies on single plant species led to limited results when transferred to crops, a meta-analysis of 

individual studies highlighted metabolic convergencies in extreme plant species (Dussarrat et al., 2021), 

enticing plant researchers to move towards a more holistic approach. Strikingly, our approach combining 

ecological metabolomics with GLM-based modelling was able to predict the plant environment with an 

R2 as high as 0.96 within given species (Fig. III.2B) and 0.79 between species (Fig. III.2). Such values 

are far above correlation coefficients usually obtained with phenotypic traits (Laughlin et al., 2012; 

Poorter et al., 2019), which are also more difficult to score (Laughlin & Messier, 2015), making 

metabolic markers ideal soft traits.  

All Atacama plant species harboured low chlorophyll levels as compared to agronomic species, 

which could result from an adaptive response to high solar irradiance or the meagre availability of other 

resources like water or nitrogen (Hikosaka et al., 2003), as further illustrated by the very low nitrate and 

protein contents (Fig. III.S2). Our results suggest that these 24 species, belonging to 14 families, also 

use a common metabolic toolbox, underpinned by the 39 metabolic markers revealed by our modelling 

approach, to cope with their environment (Fig. III.2G). Besides, this toolbox is certainly generic as the 

same metabolic traits were found in several agronomic and ornamental families, validating the 

ubiquitous nature of this core set. Main differences were observed for flavonoid and terpenoid related 

predictors, which greatly accumulated in Atacama plants (Fig. III.S7). In addition, levels of raffinose 

and 4 hydroxy beta-ionone (a compound related to carotenoid degradation) were higher in Steppe 

species than most temperate species, while Prepuna species accumulated proline derivative compounds. 

Several markers like quercetin glucoside and coumaroyl-spermidine relatives were only detectable using 

a lower threshold in agronomic families (Table III.S6). Conversely, several hormone and primary 

metabolism-related predictors (e.g. jasmonates, trehalose) did not present major changes between 

extreme and non-adapted species, except for chlorophylls and proteins which were lower in Atacama 

plants. Overall, these observations question the potential adaptive capacity of these agronomic and 

ornamental species, which naturally develop in mainly temperate regions. The possibility that the 

genome of agronomic plants would already permit the synthesis of metabolites relevant for plant 

survival in harsh lands is supported by the presence of S. chilense (closely related to the cultivated S. 

lycopersicum) in the 24 Atacama species studied. From an evolutionary point of view, this further 

suggests that it is easier to modify the regulation of existing metabolic pathways than to create new ones. 

Also, the high R² score prompts the question of how species-specific metabolic adaptations could 

provide a selective advantage. Hence, the relation between these metabolic markers and the genetic 

adaptations discovered in Atacama plants (Eshel et al., 2021) deserves further investigation. In 
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particular, several species colonised a wide elevation gradient, which suggests high plasticity (Fig. III.1). 

Consequently, metabolic adjustments enabling the acclimation or adaptation to extreme conditions are 

not necessarily the result of a long evolutionary process.  

Involvement of the best metabolic predictors in extreme environment adaptation. The 

influence of the elevation gradient on metabolic patterns is mainly reflected in a multivariate vector 

involving temperature, SWC, irradiance and pH (Fig. III.4A). However, extremophiles also face other 

environmental pressures like the mineral imbalance observed in the Atacama Desert that deserves closer 

examination (Fig. III.1B). Thus, the success of thriving in the Atacama Desert elevation gradient would 

result from the ability to (i) cope with daily freezing temperatures at the top of the transect and hyper-

aridity and high salinity at the bottom or (ii) manage the balance between carbon input and access to 

other critical resources such as water.  

Starch was the best predictor (Table III.1), while trehalose and raffinose were among the top 

predictors, confirming a suitable place for carbohydrates in the resilience mechanism (Fig. III.S4). In 

the Atacama Desert, solar irradiance is not a limiting factor for carbon entry, and even threatens plant 

survival (Eshel et al., 2021). The shallow protein level observed in all Atacama plant species (Fig. III.S2) 

suggests that plant growth is very low (Elser et al., 2008). Therefore, carbon that does not fuel plant 

growth and protein turnover could be transiently stored as starch or allocated to protective systems 

against oxidative stress induced by other environmental factors such as water availability, temperature 

and salinity. Starch, whose metabolism is known to play a major role against abiotic stress (Thalmann 

& Santelia, 2017), can be used as a carbon source for the synthesis of protective compounds when 

environmental conditions become harsher, while its accumulation could be linked to sodium scavenging 

in halophytes (Thalmann & Santelia, 2017), for instance. The strong negative correlation of starch with 

elevation would result from a trade-off with the production of osmolytes and other protective compounds 

required in the highest elevation levels, where daily freezing temperatures occur. Alternatively, the 

lower efficiency of transitory starch remobilisation under cold temperature could explain low starch 

contents at high levels. Conversely, raffinose negatively correlated with temperature, validating the 

central place of Raffinose Family Oligosaccharides in cold tolerance (Vinson et al., 2020). Still, several 

predictors were fatty acyls within the primary metabolism and jasmonates, which supported the role of 

lipid remodelling in extreme environments (Cao et al., 2016; Dussarrat et al., 2021).  

More than half of the 39 best markers were involved in secondary metabolism (Fig. III.3). 

Remarkably, phenolics (14/39 compounds) were increased at lower elevation levels, which would help 

plants cope with both the very low water availability and high salinity of these lands. This protective 

process has already been described in multiple extremophile plant species (Dussarrat et al., 2021). 

Phenolic antioxidant properties, mainly for cinnamic acid and quercetin derivatives (extensively 

represented in the best predictors), enhance photoprotection and resilience to abiotic stresses (Agati & 
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Tattini, 2010). Regarding terpenoids, the presence of xanthoxin and 4-hydroxy beta-ionone (a carotenoid 

degradation product) within the 39 best markers supported the role of carotenoids per se as well as their 

degradation in extreme climate resilience (Table III.1). Despite their well-described antioxidant role, 

exciting studies have discussed the link between the catabolism of carotenoids and plant defence, as 

their cleavage leads to hormonal compounds (e.g. abscisic acid) or redox signalling (Havaux, 2014). 

Also, the accumulation of N-related compounds could be attributed to their role in osmoregulation (e.g. 

proline betaine). The contribution of phenolics that conjugate polyamines and other molecules (e.g. 

tricoumaroyl spermidine) is more complex, despite a growing body of evidence for their implication in 

stress mitigation (Pál et al., 2018). Most importantly, our study linked plant survival under harsh 

conditions to redox metabolism since the majority of metabolic markers directly or indirectly involves 

redox homeostasis. This was exemplified by primary compounds of the glutathione and ascorbate 

pathways, metabolites for ROS processing including carotenoids, as well as potential links between the 

biosynthesis of several compounds and NAD metabolism (Fig. S4), all participating in oxidative stress 

signalling (Decros et al., 2019; Dussarrat et al., 2021). Among the best predictors is proline, whose 

accumulation in response to osmotic stress has been widely documented and recently attributed to redox 

homeostasis (Szabados & Savouré, 2010). Alternatively, accumulated levels of amino acids could serve 

as metabolic intermediates for the synthesis of more complex secondary metabolites with stress-

responsive functions. 

Overall, uncovering the metabolic characteristics of Atacama species highlighted (i) the linear 

encapsulation of environmental fluctuations by the plant metabolome (involving primary, secondary and 

redox pathways) and (ii) the use of generic metabolic mechanisms to adapt to extreme growth 

conditions. Such an approach (multi-species harvested in extreme environments) offers promising 

perspectives in both ecological chemistry and stress physiology worldwide. A fascinating perspective 

will be to research the genetic and molecular mechanisms that control the levels of these metabolic 

markers.  
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Fig. III.S1 | Correlation between starch content and sampling time. Absence of correlation 

between the time (in hours) of sampling and starch content in plant samples (Pearson correlation). 

Adapted from Dussarrat et al., 2022, New Phytologist.   
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Fig. III.S2 | Changes in major compounds in Atacama plants. A. Two-dimensional clustering 

analysis (Pearson correlation, Ward algorithm) showing a heatmap of major compounds detected 

by targeted assays and GCFID of 24 Atacama plants versus 11 agronomic or ornamental species.  

B. Biochemical diversity observed in the 19 sites using targeted and untargeted analyses. Only 

significant variables were used (Tukey’s test with P<0.01) C-H. Details of the major discriminant 

compounds. Tukey’s test were performed with P<0.01. The box in each box plot illustrates the 

lower, median and upper quartile values, and the vertical lines show the range of the concentration 

variation in samples while squares and circles represent the mean concentration and potential 

outliers, respectively. Adapted from Dussarrat et al., 2022, New Phytologist.   
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Fig. III.S3 | Best metabolomics predictors in Atacama plants. A. Boxplot showing R² of the 500 

models performed on the best metabolic markers (threshold 60%) with or without fragments and 

Formic acid + salt compounds. The box in each box plot illustrates the lower, median and upper 

quartile values, and the vertical lines show the range of the R² variation in samples while squares 

and circles represent the mean R² and potential outliers, respectively. B. Clustering analysis (Pearson 

correlation, Ward algorithm) with a heatmap illustrating the relation between best metabolic 

predictors and elevation. Adapted from Dussarrat et al., 2022, New Phytologist.   
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Fig. III.S4 | Metabolic networks. Best markers were mapped into a pre-existing A. thaliana 

metabolic network using MetExplore. A. Crosstalk between the sub-pathways “Starch and sucrose 

metabolism” and “Galactose metabolism”. B. Crosstalk between the sub-pathways “Cysteine and 

methionine derivatives”, “Arginine and proline derivatives” and “Alanine, aspartate and glutamate 

derivatives”. C. “Flavonoid biosynthesis” sub-pathway. D. “Carotenoid biosynthesis” sub-pathway. 

E. “Phenylpropanoid biosynthesis” sub-pathway.          

Adapted from Dussarrat et al., 2022, New Phytologist.   
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Fig. III.S4 | Metabolic networks. Best markers were mapped into a pre-existing A. thaliana 

metabolic network using MetExplore. A. Crosstalk between the sub-pathways “Starch and sucrose 

metabolism” and “Galactose metabolism”. B. Crosstalk between the sub-pathways “Cysteine and 

methionine derivatives”, “Arginine and proline derivatives” and “Alanine, aspartate and glutamate 

derivatives”. C. “Flavonoid biosynthesis” sub-pathway. D. “Carotenoid biosynthesis” sub-pathway. 

E. “Phenylpropanoid biosynthesis” sub-pathway.          

Adapted from Dussarrat et al., 2022, New Phytologist.   
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Fig. III.S5 | Validation of the environmental prediction. Distribution of (A) soil water content, 

(B) solar irradiance and (C) temperature along the elevation gradient (Pearson correlation, P<0.05). 

Soil samples were collected near the plants of interest. The moisture content of the soil was 

determined by dividing the fresh weight by the dry weight after one week of freeze drying. Solar 

irradiance was measured using a lux meter near the plants of interest. Temperature was measured 

using two thermometers. Adapted from Dussarrat et al., 2022, New Phytologist.   
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Fig. III.S6 | Decomposition of the elevation parameter. Correlation plot of the environmental data 

(P<0.01, Pearson correlation). Adapted from Dussarrat et al., 2022, New Phytologist.   
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Fig. III.S7 | Best metabolic predictors in agronomic and ornamental plant species. Clustering 

analysis of the best metabolic predictors between Atacama and agronomic and ornamental plant 

species (Pearson correlation, Ward algorithm).           

Adapted from Dussarrat et al., 2022, New Phytologist.   
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III. CONVERGENT STRATEGY TO FACE HARSH CONDITIONS 

The combination of eco-metabolomics with machine learning highlighted the excellent 

integrative capacity of plant metabolome under extreme environmental conditions. This was first 

exemplified by the possibility of predicting the plant environment from metabolic traits with 90% 

accuracy in species thriving across a 500m elevation gradient. At the ecosystem level, our approach 

allowed the discovery of a generic toolbox composed of 39 metabolites predicting plant environment 

with 79% accuracy, independently of the plant species and sampling year. The high prediction rates in 

both global and species-specific analyses suggest that predictive metabolomics is a valuable technique 

to unveil adaptive metabolic markers. Besides, predictions greatly exceed previous results using 

phenotypic traits (Laughlin et al., 2012). Predictive metabolomics could therefore be deployed to 

uncover highly predictive soft traits for different purposes in agronomy or ecology (Fig. III.5). However, 

care is required since the biological interpretation of these markers depends on the biological level 

studied (i.e. from organism to ecosystem level). Here, predictive modelling at the species level was 

likely to highlight the best adaptive metabolic strategy for a given genome and environment. Meanwhile, 

a global scale modelling approach would pinpoint the generic metabolic mechanisms enabling Atacama 

plants to cope with the limiting abiotic constraints (e.g. temperature, solar irradiance, water availability).  

Findings raise some troubling points when it comes to interpreting results at the evolution level. 

Predictions of the plant environment from 39 metabolites with 79% accuracy support the hypothesis that 

adaptation of Atacama plants is mediated by generic metabolic mechanisms (Fig. III.5). While previous 

reviews described similar chemical patterns among distinct plant species, our approach unveiled for the 

first time a generic metabolic toolbox with potential adaptive property for multiple plant species in the 

Atacama Desert. Besides, the underlying metabolites were congruent with previous studies. For 

instance, low chlorophyll levels were observed in all Atacama plants but also in plants from the 

Himalayan mountains to probably mitigate the impact of high solar irradiance (Cui et al., 2019). High 

levels of raffinose and proline were respectively detected in plants growing at high (negative 

temperature) or low (high salinity) elevations, as described in cold, saline or arid lands (Lugan et al., 

2010; Strimbeck et al., 2015). Additional protective compounds like quercetin and jasmonates as well 

as the over-expression of protective reactions (e.g. 4-hydroxy beta-ionone from carotenoid degradation) 

were also related in other works (Dussarrat et al., 2021). By extension, the capacity of Atacama species 

to span the elevation gradient would depend on their capacity to regulate the levels of these different 

metabolic markers. Accordingly, some related compounds have been shown to evolve in a similar 

manner in other elevation clines (Kumari et al., 2020).  

Last but not least, all predictors were detected in multiple agronomic and ornamental plant 

species, emphasising their potential for engineering resilient crop species (Fig. III.5). Altogether, the 

predictive capacity of these metabolites and their presence in agronomic plants suggest that adaptation  
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may lie in the regulation of pre-existing pathways rather than in the development of new ones. Hence, 

the analysis of genetic traits fixed through the evolutionary process is all the more crucial to confirm the 

existence of convergent evolutionary trajectories and the significance of these metabolic markers in 

adaptation.   

  

Fig. III.5 | The secrets of plant adaptation to the Atacama Desert. 

Chapter 3: The use of a generic metabolic toolbox.  
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I. ENRICHMENT ANALYSES IN EXTREME PLANT SPECIES 

This chapter has resulted in a scientific paper that will be submitted to the Journal of 

Experimental Botany in the following weeks. Here, we proposed a short introduction (Section I) to set 

the topic in the context of the PhD. The manuscript of this article was then implemented in a Word 

format in Section II. Finally, we provided a short conclusion that summarised the contribution of this 

study to the thesis project (Section III).  

All supplemental tables are available at the following link: 

https://drive.google.com/drive/folders/1Z3HLMY0Hb281HEu56MM82MHtY_YQ9tkE?usp=sharing  

The genetic diversity of wild relatives of domesticated crops was used to enhance stress 

resilience in various crop varieties (Castañeda-Álvarez et al., 2016). This approach is even more 

meaningful when applied to plants growing in extreme biomes, through the analysis of expanded gene 

families, for instance (Bolger et al., 2014; Kang et al., 2020). As an example, an intriguing shift in gene 

expression patterns was observed in Solanum pennellii, a stress-tolerant species related to Solanum 

lycopersicum, and linked to a change in lipidic profile (Bolger et al., 2014). However, most works were 

performed on a limited number of species and used pairwise comparisons evaluating the genomic 

variations between one crop species and its closest sequenced wild species (Kashyap et al., 2020). 

Although these discoveries provided interesting insights, the resulting adaptive molecular markers were 

mainly species-specific (Dussarrat et al., 2021). Thus, adaptation to extreme lands is primarily 

considered as the result of a plant lineage that strongly depends on evolutionary processes (Chae et al., 

2014; Scossa and Fernie, 2020). Conversely, recent studies suggested a fascinating role of generic 

molecular and metabolic mechanisms in the adaptation of multiple plant species in the Atacama Desert, 

the driest non-polar desert of the earth (Eshel et al., 2021; Dussarrat et al., 2022). For instance, 39 

metabolic compounds, which encompassed primary compounds such as trehalose or proline and 

secondary compounds like quercetin, predicted the plant environment with 79% accuracy (Dussarrat et 

al., 2022). Hence, these recent findings offered strong support to the existence of a common metabolic 

strategy employed by Atacama plants to face harsh abiotic constraints, but the underlying genetic 

legacies remained unknown. Our approach sought to identify shared genetic traits developed through 

the evolutionary process by evaluating the reaction and pathway enrichments within 32 Atacama plant 

species compared to their phylogeneticd relative species. Besides, this analysis aimed to characterise 

whether these genetic legacies converged to the regulation of similar or divergent biochemical reactions, 

and therefore potentially validate the role of the previously described metabolic markers in adaptation. 

Computational analysis was deployed using PathwayTools and Fisher’s exact test (Karp et al., 2021; 

Wieder et al., 2021) to explore gene expansion and gene expression patterns, which highlighted a set of 

reactions enriched in more than 50% of the plant species. These naturally selected reactions were tightly 

linked to environmental constraints and related to the predictive metabolic toolbox. 

https://drive.google.com/drive/folders/1Z3HLMY0Hb281HEu56MM82MHtY_YQ9tkE?usp=sharing
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II. SHARED GENETIC LEGACIES GOVERNING PRECISE CHEMICAL 

PATHWAYS 

The following article will be submitted to the Journal of Experimental Botany in the following weeks. 
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Abstract.  

Climate change is a serious threat to global agriculture. The best ideotype yields are under 

monitoring pressure due to increased aridity in many parts of the world. Developing new resilient 

varieties is urgent to face this threat. Understanding conserved molecular mechanisms in wild plants is 

key to develop new strategies for sustainable agriculture. Yet our knowledge of wild species is scant, 

particularly in extreme environments. We performed pathway and reaction enrichment analysis to 

understand the biochemical commonalities and differences of wild plant species in the Atacama Desert. 

To gain insights into the mechanisms that ensure plant survival in this extreme environment, we 

compared gene expansion and expression patterns between the annotated reactions from 32 Atacama 

plant species and 32 phylogenetically related plant species that do not live in Atacama. We found 

significant biochemical convergences in primary, secondary and redox metabolism characterised by 

reactions enriched in at least 50% of the species, independent of the plant lineage. Analysis of the 

annotation indicated potential advantages against drought, salinity, high solar irradiance and nitrogen 

starvation. These findings suggest adaptation in the Atacama Desert may result from shared genetic 

legacies governing the expression of key metabolic pathways to face harsh environmental conditions. 

Enriched reactions referred to ubiquitous compounds common to extreme and agronomic species. 

Hence, genes underlying these adaptive traits offer promising perspectives for improving abiotic stress 

resilience in crop species.  

 

Keywords: Plants; metabolism; enrichment analysis; convergent mechanisms; extreme ecosystems; 

Atacama Desert; multi-species. 
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Introduction 

Plants are sessile organisms which rely on the availability of local resources to live. Conversely, 

deficiencies or excesses can severely compromise plant growth, development and fitness (Fernandez et 

al., 2016; Prevéy et al., 2019). Substantial efforts in plant breeding programs have focused on developing 

increasingly productive and resistant ideotypes to environmental constraints such as drought (Voss-Fels 

et al., 2019). However, the accelerated changes in climate due to global warming is rapidly making these 

genetic improvements obsolete, resulting in a stagnation of crop yields worldwide (Bailey-Serres et al., 

2019). Interestingly, a few wild plant species flourish under very harsh environmental conditions, 

representing a unique reservoir of adaptive mechanisms (Díaz et al., 2019). Random genetic mutations 

have tailored the plant genome to extreme ecosystems such as deserts, providing a selective advantage 

against high light intensities and nutrient or water deficiencies, for instance (Bolger et al., 2014). 

Understanding plant survival strategies from extreme environments could help unravel sustainable 

resistance mechanisms that would greatly benefit global food security. Although promising, studies on 

extreme wild plant species are scant and mostly performed under controlled laboratory conditions. Those 

settings lack ecological context and may hinder the identification of adaptive traits that are expressed 

only under natural conditions (Dussarrat et al., 2021).  

Plants evolved temporal and spatial strategies to optimise the balance between development and 

defence in hostile ecosystems. For instance, multiple species avoid the harshest periods by modulating 

their life cycle and phenology (Prevéy et al., 2019). In contrast, the survival of plants that can not adapt 

in time depends on distinct genetic mechanisms underlying metabolic processes and adjustments as 

osmoregulation or tight management of the lipidic profile, respectively (Bolger et al., 2014; Turner, 

2018). However, most of this knowledge is based on the study of one or a limited number of species. 

Understanding conserved mechanisms that act under natural conditions may increase the likelihood of 

success when transferred to other species, for example for crop improvement (Turner, 2018). Recent 

analyses on several hundred of thousands of plant species indicated that the appearance of several 

phenotypic traits strongly correlated with environmental variations (e.g. latitudinal gradient) worldwide 

(Joswig et al., 2021). Besides, the adjustment of phenotypic traits in response to abiotic stresses such as 

light intensity seemed to converge between species from different evolutionary trajectories (Poorter et 

al., 2019). Other classical examples of convergent evolution in plants, also related to the response to 

extreme conditions, are C4 and CAM photosynthesis (Edwards, 2019). Therefore, it is of interest to 

determine the extent to which convergent evolution occurred between molecular mechanisms. We have 

evidence that this can happen. A recent study from our group unveiled 265 positively selected genes 

(PSGs) from 32 species from the Atacama Desert, the driest non-polar desert on Earth (Eshel et al., 

2021). These genes encompassed various molecular processes related to the protection against high solar 

irradiance, nitrogen starvation and osmotic stress, with a great part of these PSGs being shared among 

different plant lineages. Finally, top-expressed genes in the Atacama species were related to primary 
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and secondary chemical compounds (Eshel et al., 2021). Hence, the exciting possibility of a strong 

influence of shared adaptive genetic processes in adaptation and an intriguing over-expression of genes 

related to protective metabolite synthesis emerged (Eshel et al., 2021). These results thus pinpoint a 

potential existence of selected generic mechanisms managing key metabolic processes that govern plant 

life under major abiotic threats. However, the exact nature, role, and evolutionary trajectories of the 

enriched chemical reactions and pathways in Atacama plant species remain unclear.  

Studies demonstrated that plant metabolism is an excellent predictor of environmental variation 

in harsh biomes (Fiehn, 2002; Kumari et al., 2020). For instance, the orchestration of primary and 

secondary metabolism led to the accumulation of amino acids (as precursors of secondary compounds), 

phenolics (e.g. flavonoids as quercetin), isoprenoids (e.g. carotenoids) and nitrogen-containing 

metabolites (e.g. quaternary ammonium compounds such as proline and glycine betaine) (Lugan et al., 

2010; Dussarrat et al., 2021). Besides, while few studies performed an ecological metabolomic approach 

using multiple species, promising results demonstrated a significant correlation between phytochemical 

diversity and environmental variation, with secondary metabolism at the core of plant performance 

(Defossez et al., 2021). Interestingly, recent work from our group used a coprehensive analysis of 24 

plant species thriving in the Atacama Desert to discover a metabolic toolbox composed of 39 metabolites 

predicting plant environment independently of the plant lineage. These generic predictors were also 

detected in agronomic plant species, raising great hope for their use in engineering crop resilience to 

harsh abiotic constraints (Dussarrat et al., 2022). However, the genetic traits governing the modulation 

of this generic toolbox remain unknown.  

As detailed before, the Atacama Desert is a highly challenging environment where intensities of 

abiotic stresses reach extremes of the plant life-compatible gradients (Eshel et al., 2021). The onset of 

hyperaridity cycles 12 million years ago prompted the development of the Atacama Desert, which is 

currently characterised by extremely low precipitations (20 to 160 mm/year) and high solar irradiance 

(600 W/m²/d) compared to other deserts or high mountain ecosystems (Báez and Collins, 2008; Zhang 

et al., 2010; Jordan et al., 2014; Díaz et al., 2016; Ziaco et al., 2018). Besides, plants face extremely low 

levels of nutrients such as nitrogen and high levels of salinity (Eshel et al., 2021). Hence, the Atacama 

Desert offers opportunities to uncover molecular mechanisms determining plant performance under 

extreme conditions, from the genome to the metabolome. Development of a computer pipeline has made 

it possible to study the evolutionary trajectories of plant chemical compounds using genomic data (Chae 

et al., 2014; Schläpfer et al., 2017; Kang et al., 2020). This study aims to decipher the adaptive 

biochemical responses selected through the evolution of multiple plant lineages from the Atacama 

Desert. By extension, it is interesting to depict whether this evolution process led to the convergent 

fixation of various biochemical reactions and pathways or conversely resulted in distinct strategies. To 

meet these objectives, we first extracted biochemical reaction-related genes and annotated associated 

reactions and pathways from 32 Atacama species covering fourteen plant families. For comparison, we 
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performed a similar workflow in 32 plant species that were phylogenetically related to the Atacama 

species but lived in other milder environments (Eshel et al., 2021). We analysed gene family expansion 

and expression patterns and evaluated the enrichment of chemical reactions and pathways when 

comparing each pair of Atacama and related species using over-representation analysis (ORA) (Wieder 

et al., 2021). This computational strategy highlighted the convergent selective advantages of Atacama 

plant metabolomes. The most ubiquitous genetically enriched responses were related to protective 

mechanisms against major abiotic stresses observed in the Atacama Desert, such as drought, nitrogen 

deprivation and high light intensity. These findings provide fascinating new insights into adaptive 

mechanisms for plant survival in the Atacama Desert and new genetic targets for crop engineering for 

more resilient agriculture.  

 

Materials and methods 

Plant material. Reaction and pathway enrichment analyses were performed using previously 

described and available transcriptomics data from Atacama plant species (Talabre-Lejía transect, lat 

22°-24°S) (Eshel et al., 2021). This natural environment spans an altitudinal cline from 2400 to 4500m 

and involves three vegetation belts defined based on the measured variations in water and nutrient 

availability, temperature and pH gradient (Carra  o‐Puga et al., 202 ). A set of 32 Atacama species 

were collected, directly snap-frozen and stored until transcriptomics analysis. These species covered 14 

distinct plant families and flourished in the different vegetation belts. Additionally, transcriptomics data 

from the taxonomically-closest species available for each one of the 32 Atacama plants were extracted 

for phylogenomics analysis (Eshel et al., 2021). Here, those species are referred to as Sister species. 

Generation of annotated reactions and pathways using PathwayTools. Reactions and 

pathways for each of the 64 species transcriptome were built using the annotation results generated by 

the e2p2v4 enzymes annotation tool (Schläpfer et al., 2017). Next, PTOOLS v24.5 was used to infer 

reactions and pathways using default parameter values (Karp et al., 2021). 

Data treatment. To get insights into gene expansion patterns in Atacama plant species, we 

characterised the total number of genes per reaction for each annotated reaction. This process provided 

a first matrix which served as a basis for the reaction enrichment analysis through gene family expansion 

(Fig. IV.1, Table IV.S1). In parallel, the top 10% expressed genes from each of the 32 Atacama plant 

species, as well as the top expressed genes from 17 related Sister species (from which raw sequencing 

data were available), were extracted from the previous transcriptomics analysis (Eshel et al., 2021). Top 

expressed genes that were not associated with any reaction were removed. We then define the number 

of top-expressed genes per reaction. Hence, this number can range from 0 to “n” (no or “n” top-expressed 
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gene linked to the reaction i). This process produced the second matrix, which was used to decipher the 

enrichment of Atacama reactions based on gene expression patterns (Fig. IV.1, Table IV.S2).  

Reaction enrichment analysis. Reaction enrichment analysis was performed on both gene 

family expansion and gene expression tables. We first focus our analysis on researching gene family 

expansion within Atacama plant species. Exclusive reactions from each ecosystem (i.e. either exclusive 

to the Atacama Desert or other lands) were extracted. Then, common reactions (detected in at least one 

species of each ecosystem) were scrutinised to determine their enrichment properties. Multiple 

comparison analyses were performed to compare the average number of genes per reaction in (i) all 

Atacama versus all Sister species, (ii) all species from specific vegetation belts (i.e. Prepuna or Steppe) 

versus related sisters. A high threshold was used to characterise reactions as enriched to avoid false 

positives. Thus, reactions were considered enriched if at least 3 times more genes per reaction were 

observed. Since this approach highlighted substantial variations in enriched reaction patterns between 

Prepuna and Steppe, pairwise comparisons between the 32 couples of Atacama-Sister species were 

performed to avoid the dilution effect. Results were then aggregated to calculate a percentage of 

occurrence per ecosystem (Atacama or Sister) or per vegetation belt (Prepuna or Steppe) (Table IV.S4).  

Besides, since final transcript levels highly depend on genomics and transcriptomics 

interactions, a second analytical step focuses on gene expression levels. Reactions were considered 

enriched if at least 3 times more associated genes were observed in the top 10% of one Atacama species 

than its related sister. Similarly, average (e.g. average in all Atacama species versus average in all 

Sisters) and pairwise comparisons were performed for each available Atacama-Sister couple (Table 

IV.S5).  

Pathway enrichment analysis. Pathway enrichment analysis was deployed to determine if 

entire pathways were enriched in Atacama plant species (Table IV.S6). The probability P of finding at 

least k reactions in pathway i was calculated using Fisher’s exact test based on the hypergeometric 

distribution via phyper function available on R (version 4.0.4) as previously described (R Core Team, 

2021; Wieder et al., 2021) (Fig. IV.1). Pathways were considered as potentially enriched when P<0.05. 

Then, Benjamini-Hochberg correction was applied via the p.adjust function available on R (version 

4.0.4) to define significantly enriched pathways when corrected P<0.05 (Benjamini and Hochberg, 

1995) (Tables IV.S7 and IV.S8). Finally, reactions and pathway enrichment analyses were performed 

using this same process to compare Steppe and Prepuna evolution (Tables IV.S9 and IV.S10).  

Annotation of the enriched reactions and pathways. Reactions enriched in at least 50% of the 

plant species per vegetation belt (i.e. at least 50% of the species from Steppe, Prepuna or all Atacama 

plants) were annotated using the MetaCyc database (Caspi et al., 2020). Besides, metabolism, sub-

pathways and biochemical pathways were determined using KEGG and HMDB databases (Kanehisa et 

al., 2014; Wishart et al., 2018).   
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Fig. IV.1 | A simplified scheme of the reaction and pathway enrichment approach used in this 

study. P represents the probability of finding at least k reactions in pathway X (k E-RXs in PX) and 

was calculated using Fisher’s exact test based on the hypergeometric distribution (Wieder et al., 

2021). E-RXs: enriched reactions, E-PXs: enriched pathways.  
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Results  

Atacama-exclusive reactions undergo species and environment specificity. Various plant 

lineages colonised and adapted their metabolism to perform in extreme ecosystems over millions of 

years of evolution (Guerrero et al., 2013). Studying the enrichment of chemical reactions and pathways 

on multiple species in harsh biomes could unravel universal or evolutionary convergent metabolic 

strategies relevant for adaptation. Remarkably, a phylogenomic analysis compared 32 Atacama species 

and 32 related species to unveil common and specific molecular mechanisms underlying plant survival 

(Eshel et al., 2021). These species encompass 14 plant families and flourished upon an elevation gradient 

from 2400 m to 4500 m in the Atacama Desert. This elevation gradient includes three vegetation belts 

or areas with distinct plant types: the Prepuna (low elevation, high salinity and low water availability), 

the Puna shrubland and the Steppe (high elevation, low temperatures) (Eshel et al., 2021 and Fig. IV.1). 

Here, we conducted reaction and pathway enrichment analyses that compared gene expansion and gene 

expression levels across the chemical reactions from 32 Atacama plant species and their related Sister 

species.  

A total of five thousand and six annotated reactions (Fig. IV.1) were extracted from 

transcriptomics data available in the 64 species using PathwayTools (Eshel et al., 2021; Karp et al., 

2021). The enrichment of chemical reactions may result from gene family expansion or a slightly 

different regulation that leads to a different expression of the plant genome (Kang et al., 2020; Scossa 

and Fernie, 2020). The expansion of enzyme-related genes through gene duplication, for instance, 

represents one of the main motors for eukaryote evolution (Lespinet et al., 2002). Through this 

phenomenon, gene copies will acquire a slightly different function as a shift in substrate preference 

(Fondi et al., 2009). Hence, reaction environment analysis was first performed by comparing gene family 

expansion and contraction across Atacama and Sister species (Fig. IV.1). To avoid false positives, 

reactions were considered enriched if the number of genes per reaction was at least 3 times higher in a 

given condition. In parallel, to access genome expression variations, we extracted and compared the top 

10% expressed genes from Atacama and Sister species (Eshel et al., 2021 and Fig. IV.1). Then, we 

compiled the amount of top-expressed genes for each reaction and defined the enrichment property using 

the same threshold (i.e. at least three times more top-expressed genes per reaction). Interestingly, this 

comparative genomic evolution analysis highlighted an intriguing set of 463 exclusive reactions from 

Atacama species (Fig. IV.2). Although probably underestimated, these exclusive reactions were 

characterised by a high species-specificity level.  

Environmental constraints have greatly impacted Atacama plant evolution, leading to different 

metabolic strategies. For instance, where exclusive reactions were equally divided between primary and 

secondary metabolism in Prepuna, 76% represented secondary pathways in Steppe species (Fig. IV.2). 

Fatty acyls, carbohydrates, amino acids and monoterpenes pathways have shown relevant activity to 
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cope with the extreme osmotic stressful conditions in Prepuna. Conversely, carotenoids and flavonoids 

were the main impacted pathways in Steppe, an ecosystem characterised by its low temperatures and 

high radiation levels (Fig. IV.2, Table IV.S3). Remarkably, multiple exclusive reactions were potentially 

related to regulating specific metabolites that have been characterised as relevant for adaptation to 

extreme Atacama conditions (e.g. quercetin, proline) (Dussarrat et al., 2022, Table IV.S3).  

  

Fig. IV.2 | Analysis of reactions to Atacama and Sister species. The Venn diagram describes the 

ecosystem-specific reactions from the 32 Atacama plant species or their closely related Sister 

species. Since Puna (3300-4000 m.a.s.l) has shown intermediate results, this figure illustrates the 

exclusive reactions from Prepuna (2400-3300 m.a.s.l) and Steppe (4000-4500 m.a.s.l) species. 

Metabolism, biochemical pathways and sub-pathways were defined based on MetaCyc and KEGG 

data. m.a.s.l: meters above sea level.  
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Enrichment analyses unveil convergent chemical strategies shaped by environmental 

constraints. Next, a global comparison of the gene expansion and gene expression levels (i.e. genes per 

reaction and top-expressed genes per reaction respectively) between all Atacama plants versus all related 

species was performed to evaluate the enrichment among the 4260 shared reactions. Overall, although 

multiple convergences, reactions enriched via gene expansion and/or gene expression showed great 

environment specificity (Fig. IV.3A and IV.3B). Hence, pairwise comparisons were performed to avoid 

a potential dilution effect. Whilst gene expansion patterns were analysed on the 32 couples, 17 couples 

were used to study gene expression levels since raw sequencing data were only available for 17 species. 

In total, 2507 reactions presented three times more genes per reaction, and 1549 reactions involved three 

times more top-expressed genes per reaction in at least one Atacama species (Tables IV.S4 and IV.S5). 

To test the hypothesis of whether the Atacama plant evolution led to the convergent enrichment of 

biochemical reactions among the different plant lineages, we extracted the reactions enriched in at least 

50% of the species in a given ecosystem (Fig. IV.3C and IV.S2). Hence, the gene expansion analysis 

results illustrate the reactions enriched in at least 16 species when considering all Atacama plants or at 

least seven species when considering individual vegetation belts (i.e. Prepuna or Steppe) (Fig. IV.3C).  

Similarly, results from gene expression analysis encompassed reactions enriched in at least nine 

or four species since raw sequencing data were available for 17 Sister species. Excitingly, results 

pinpoint a global reorchestration of both primary and secondary metabolism. First, Atacama plants likely 

limit carbon entry by regulating chlorophyll levels, a protective process observed in other extreme plants 

(Cui et al., 2019) (Fig. IV.3C and IV.S2). Chlorophyll b reductase was overexpressed in more than half 

of the Atacama plant species, an enzyme whose protective role against high light intensity was described 

as essential (Sato et al., 2015). Besides, results highlighted a synthesis of a battery of protective primary 

and secondary compounds while a great activity of hormones related to plant development and growth 

was observed. Gibberellins (e.g. gibberellin oxidase), cytokinins (e.g. cytokinin oxidase but also 

cytokinin-activating enzymes), and jasmonates (e.g. acyl-coenzyme A oxidase 1) were among the 

impacted chemical compounds in at least half of the plant species, probably due to their role in plant 

development or in boosting plant defences against biotic and abiotic stress. Reactions related to 

carbohydrate pathways (e.g. starch and polyols), lipids (e.g. waxes synthesis) and amino acids (e.g. 

proline) were enriched in the majority of Atacama plant species (Fig. IV.3C and IV.S2). Importantly, 

most of the highlighted reactions by our computational analysis were previously characterised for their 

function in mitigating various abiotic stresses. For example, the glucan/water dikinase and the 

disproportionating enzyme was associated with starch degradation and freezing tolerance (Yano et al., 

2005), while an intriguing role in coordinating plant growth and tolerance to abiotic stress was 

highlighted for inositol phosphatases (Lou et al., 2007; Jia et al., 2019), which were greatly enriched in 

Atacama species (Tables IV.S4 and IV.S5). Furthermore, fatty aldehyde decarbonylase was linked to 

cuticular waxes synthesis and protection against drought (Zhou et al., 2013), while proline 



Chapter 4. II. Shared genetic legacies governing precise chemical pathways  

 

116 

accumulations due to delta 1-pyrroline-5-carboxylase synthase overexpression in response to various 

osmotic perturbations were extensively detailed (Strizhov et al., 1997).  

  

Fig. IV.3 | Identification and classification of enriched reactions from Atacama plant species 

into major chemical pathways. A. Global analysis of enriched reactions between vegetation belts 

based on gene family expansion analysis. B. Distribution of enriched reactions based on comparing 

top 10% expressed genes. Analyses were performed by comparing mean values of genes per reaction 

(A) or top 10% expressed genes per reaction (B) between Atacama VS Sisters or Prepuna or Steppe 

VS related sisters. C. Results of a pairwise comparison analysis and classification of the reactions 

enriched in at least 50% of the species. Each Atacama-Sister species pair was analysed individually 

to avoid a potential dilution effect. Results were then aggregated to calculate a percentage of 

occurrence per ecosystem (Atacama or Sister) or per vegetation belt (Prepuna or Steppe). Asn: 

asparagine, Asp: aspartate, Chl: chlorophyll, FA: fatty acids, Gln: glutamine, Glu: glutamate, Gly: 

glycine, Met: methionine, Plip: phospholipids, Pro: proline. 
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Secondary pathways were also highly represented and referred to carotenoid, triterpene, 

phenylpropanoid and flavonoid pathways (Fig. IV.3C and IV.S2). Enzymes involved in carotenoid 

synthesis and cleavage such as carotene hydroxylases and carotenoid dioxygenases, which were also 

linked to strigolactones synthesis, were observed among reactions enriched in at least 50% of the plant 

species. Concomitantly, flavonoid glucosyltransferase enzymes were extensively enriched in Atacama 

species, supporting the role of flavonoids in plant resilience to abiotic constraints (Di Ferdinando et al., 

2012). Notably, the Atacama plant’s evolution led to a natural enrichment of reactions related to uptake 

and process of nitrogen resources (e.g. reactions linked to glutamate, glutamine, GABA, polyamine) as 

well as nitrogen remobilisation through purine degradation. Strikingly, most of the underlying enzymes 

have shown interesting protective properties under various stressful conditions. As an example, the 

activity of glutamine, glutamate, GABA pathways, here represented by the presence of several enzymes 

such as glutaminases, γ-aminobutyrate aminotransferase and transaminases (Table IV.S5), was revealed 

in other extreme plants and undoubtedly linked to plant defence mechanisms (Kinnersley and Turano, 

2000; Solomon and Oliver, 2002; Martinelli et al., 2007). Moreover, the enrichment of agmatine 

deiminase and spermidine synthase in Atacama plants was congruent with their pivotal role in plant 

defences (Kasukabe et al., 2004). Finally, evolution greatly impacted the cell wall content of Prepuna 

plants through lipidic profile modulation. Conversely, Steppe species emphasised the production of 

protective compounds as lignans (Fig. IV.3C and IV.S2, Tables IV.S4 and IV.S5). Besides, Steppe 

species favoured the tolerance to oxidative stress through 4-hydroxybutanoate synthesis and pyridine 

nucleotide repair via epimerases, which were recently considered as a relevant player in NAD(P)H 

metabolism (Breitkreuz et al., 2003; Gakière et al., 2018). Overall, reaction enrichment analysis unveiled 

relevant management of the resources (i.e. carbon and nitrogen) towards a more adapted balance 

between plant development and defence compared to related non-adapted species. Also, several 

reactions were specifically enriched in Steppe or Prepuna species to satisfy environmental demands. In 

contrast, Atacama plants have likely contracted or negatively regulated gene families involved in energy 

processes and hormone and terpene pathways (Fig. IV.S1, Table IV.S5).  

Next, we performed Fisher’s exact test based on the hypergeometric distribution to test whether 

entire biochemical pathways were enriched through evolution (Wieder et al., 2021 and Fig. IV.1). 

Interestingly, protective compounds were again over-represented and greatly influenced by 

environmental constraints. For instance, the production of protective compounds in Prepuna was mainly 

related to primary metabolism (e.g. polyunsaturated fatty acid, inositol synthesis). Conversely, the 

synthesis of phenolics, quaternary ammonium and cyanogenic glycoside compounds were prominent in 

Steppe. Additionally, multiple pathways were ubiquitously highlighted and referred to proline, 

ornithine, carotenoid and polyamine compounds (Fig. IV.4). Finally, to get insights into the variations 

in adaptive chemical strategies employed between vegetation belts, we conducted a reaction and 

pathway enrichment analysis comparing the 13 Steppe and 13 Prepuna species (Fig. IV.5, Tables IV.S9 
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and IV.S10). Results confirmed (i) the existence of similarities and divergences among the chemical 

strategies adopted by plants to respond to major environmental constraints and (ii) a significant 

homogeneity of enriched reactions and pathways across the different Prepuna or Steppe species. Overall, 

these findings identified multiple evolutionary convergences illustrated by the high proportion of 

reactions enriched in more than 50% of the plant species (Fig. IV.3, IV.4 and IV.5). Even more thrilling, 

these enriched reactions and pathways strongly coincide with the potential regulation of the metabolic 

toolbox employed by plants to face extreme Atacama conditions (Dussarrat et al., 2022, Table IV.S12). 

Hence, this genome-scale comparative analysis provided a unique goldmine of genetic targets for 

engineering resilient crops against major abiotic threats.   

  

Fig. IV.4 | Characterisation of enriched pathways detected in Atacama plant species. All 

reactions (exclusive and common reactions) were used to perform pathway enrichment analysis.    

B-H: Benjamini-Hochberg, Pro: proline, Arg: arginine. 
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Fig. IV.5 | Reaction and pathway enrichment analysis comparing Steppe and Prepuna species. 

A. Venn diagram describing the distribution of the predicted annotated reactions in 32 Atacama 

plant species and their closely related sisters. Metabolism, biochemical pathways and sub-pathways 

of the ecosystem-specific reactions were defined based on MetaCyc and KEGG data. B. Depiction 

of the reactions enriched in at least 50% of the species from Steppe or Prepuna.  

C. Results of pathway enrichment analysis. Asp: aspartate, Chl: chlorophyll, Glu: glutamate, Leu: 

leucine, Pro: proline.  



Chapter 4. II. Shared genetic legacies governing precise chemical pathways  

 

120 

Discussion 

Evolution led to generic metabolic strategies in extreme plants from diverse lineages. How 

plants adapt to their environment has been of great interest since the domestication of plants in the harsh 

environments of the Fertile Crescent 10,000 years ago (Riehl et al., 2012). Although great successes in 

plant breeding allowed feeding a growing population, the current acceleration of global warming 

strongly limits the efficiency of genetic improvement in the best ideotypes (Seneviratne et al., 2012; 

Bailey-Serres et al., 2019). We thus need innovative research strategies that break away from the current 

reductionist single-species approach to discover universal plant resilience mechanisms, which should be 

more easily transferable to crops. Presumably, the evolution process by natural selection should display 

some of the most efficient genetic traits for plant survival under harsh conditions. Remarkably, an eco-

metabolomics approach unveiled the existence of a generic metabolic toolbox allowing plant resilience 

to harsh climates (Dussarrat et al., 2022). Importantly, our strategy interrogated the evolution of the 

genetic mechanisms underlying adaptive metabolic strategies of multiple Atacama plant species. This 

approach compared the gene expansion and expression levels at the genome-scale between 32 Atacama 

species and 32 related species, yielding the discovery of convergent and divergent biochemical 

evolutions relevant for plant survival.  

Firstly, while the Atacama and Sister species allocate carbon and nitrogen resources 

differentially, it is noteworthy that these plants were not so fundamentally distinct. Very few exclusive 

reactions were observed in Atacama plants. Besides, the extreme majority (99%) of the 463 exclusive 

reactions were observed in only one, two or three species. Similarly, Atacama plants conserved most of 

the chemical reservoir from their ancestors since only 6% of the total annotated reactions were unique 

to Sisters (Fig. IV.2). Although probably underestimated since this approach can only access known 

reactions, these numbers prompt how common a random mutation event generates a new chemical 

pathway required for plant adaptation. While phylogenomics and metabolomics approaches permit the 

detection of these unknown traits, the majority of genes and metabolites highlighted as relevant for 

adaption of Atacama species referred to conserved processes (Eshel et al., 2021; Dussarrat et al., 2022). 

Considering the occurrence of vital genome innovations over the past 145 million years of angiosperm 

evolution, twelve million years (i.e. age of the Atacama Desert) represents a short time-scale for the 

development of new species-specific reactions allowing survival of 14 distinct plant lineages (Benton et 

al., 2021). Nevertheless, these exclusive reactions might have a role in improving plant fitness at the 

species level, which could be evaluated through an untargeted comparison of adapted and non-adapted 

species from the same genus (e.g. Atriplex). 

 

 



Chapter 4. II. Shared genetic legacies governing precise chemical pathways  

 

121 

Conversely, an exciting number of chemical convergences was shown as a result of the plant 

evolution process in the Atacama Desert among conserved reactions between Atacama and Sister 

species (Fig. IV.3 and IV.S2). Overall, these shared mechanisms demonstrated a high potential to 

modulate resource uptake and allocation between development and defence. More thrilling, the 

modulation of major metabolic processes was targeted by enriched reactions in at least 50% of the 

species studied, encompassing 14 different plant lineages. Besides, genes underlying these enriched 

chemical routes clearly point to the regulation of metabolites employed by Atacama plants to face 

extreme environmental conditions (Dussarrat et al., 2022). For instance, starch, proline, trehalose, 

jasmonic acids, 5'-methylthioadenosine, quercetin and quercetin glucoside, tricoumaroyl spermidine 

compounds as well as carotenoid cleavage and chlorophyll cycle (Table IV.S11). With carotenoid and 

chlorophyll-related pathways, quercetin was the most frequently observed compound in exclusive and 

enriched reactions. Interestingly, this flavonoid was linked to various roles as an antioxidant (response 

to high irradiance), a mediator of interaction with nitrogen-fixing bacteria (response to critical nitrogen 

levels), a protective compound against heavy metals, and its links with both hormones (e.g. abscisic acid 

and auxins) and redox buffers (e.g. glutathione) (Singh et al., 2021).  

Hence, while adaptation was thought of as mainly species-dependent (Turner, 2018; Dussarrat 

et al., 2021), these findings strongly suggest that a relevant part of this is conversely the result of 

convergent evolution of regulatory processes. In other words, the development of adaptive traits 

providing a selective advantage is more likely to occur from the regulation of pre-existing compounds 

and pathways than from the emergence of new ones. Furthermore, most of these convergences 

represented conserved compounds among wild and crop species. Finally, some metabolic traits were 

highlighted using two independent analytical approaches and therefore hold great promise for potential 

crop engineering.  

Strong environmental pressures define the evolutionary trajectories. Solar irradiance, water 

and nitrogen availability are three critical parameters for plant survival in the Atacama Desert (Eshel et 

al., 2021). Besides, other limiting parameters arise along the elevation gradient from 2400 to 4500m. 

Whilst Steppe undergoes negative daily temperatures, Prepuna species are subjected to extreme salinity 

(Díaz et al., 2019). Overall, the Atacama Desert represents a unique opportunity for studying plant 

response to current agronomical challenges (Pachauri et al., 2015). Our study unveiled several adaptive 

mechanisms that have been fixed through evolution and answer a great proportion of these challenging 

environmental constraints.  

Carbon is not a limiting resource in desertic regions due to intense solar irradiance (Xu et al., 

2016). In contrast, other edaphic and climatic parameters forced a global metabolic reorganisation. First, 

Atacama plants tend to limit the level of chlorophyll and increase the chlorophyll a/chlorophyll b ratio 

to regulate energy capture and mitigate oxidative stress, in agreement with other extreme plants (Cui et 
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al., 2019). Then, the allocation of carbon reserves between plant growth and defence was finely tuned 

through evolution with, for example, the modulation of gibberellin and cytokinin pathways (Fig. IV.3C). 

Besides, strong remobilisation of carbon reserves via starch degradation and the extensive synthesis of 

protective compounds suggested that Atacama plants evolved out of their physiological range (Tables 

IV.S4 and IV.S5). Hence, a series of enriched reactions in at least 50% of the plant species referred to 

as protective compounds from both primary and secondary metabolism could represent adaptive traits 

to face osmotic pressure as well as frost, high solar irradiance and nitrogen starvation (Fig IV.3C and 

IV.S2). Synthesis of oligosaccharides (e.g. sucrose) and other chemical constituents like polyols could 

be linked to the meagre water availability (Williamson et al., 2002; Pamuru et al., 2021). Lipids were 

also universally represented based on their role in plant defence against osmotic and cold stress. The 

synthesis of waxes and long fatty acyl chains can refer to how plants limit evapotranspiration and 

minimise the solar irradiance impact (Kolattukudy, 1970). Besides, the extensive activity of lipid 

metabolism illustrated by a shift in the degree of saturation could support the role of membrane fluidity 

in adaptation (Li et al., 2020a). Finally, these changes accompanied regulation of the TCA cycle and 

proteinogenic amino acid pathways, two major precursors of secondary compounds (Yang et al., 2020). 

Thus, a significant part of carbon reserves was used to produce secondary protective compounds. The 

presence of the mevalonate pathway and carotenoids synthesis and cleavage processes among the 

reactions enriched in more than 50% of the Atacama species is consistent with their role in stress 

mitigation and their links with hormonal and redox pathways (Havaux, 2014). Besides, nitrogen related 

compounds (e.g. GABA, polyamines and quaternary ammonium compounds) and phenolics are other 

metabolic features employed by plants to face a myriad of climate constraints (Dussarrat et al., 2021). 

Interestingly, a significant proportion of the enriched reactions is directly or indirectly linked to redox 

homeostasis through reactive oxygen species scavenging (e.g. polyphenols) or proline and carotenoid 

cleavage respectively, supporting its central place in adaptation.  

Fascinatingly, the Atacama plant genome greatly integrated the specific requirement across the 

elevation gradient (Fig. IV.3C, IV.S2 and IV.4). This was exemplified by the over-representation of 

polyol and sterol synthesis in Prepuna, where drought and salinity are extremely severe (Rogowska and 

Szakiel, 2020; Eshel et al., 2021). Nitrogen starvation is of major importance in this vegetation belt, 

illustrated by the extensive genetic expansion and expression of glutamine, glutamate and nitrate 

reduction-related pathways. In addition, evolution led to an increased synthesis of some flavonoid-

polyamine conjugates (e.g. tricoumaroyl spermidine) whose roles remain poorly described (Dussarrat et 

al., 2021). In contrast, Steppe species favoured the production of a plethora of secondary compounds 

(Fig. IV.4). Carotenoids and other isoprenoids could be used for their advantages to mitigate abiotic 

constraints (Havaux, 2014). Interestingly, plants from higher levels tend to produce a wide range of 

metabolites involved in biotic defence such as coumarins and cyanogenic glucosides (Gleadow and 

Woodrow, 2002; Stringlis et al., 2019).  
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Such a comparative approach allows investigating the plant response to major abiotic constraints 

while preserving the ecological and evolutionary context (Kang et al., 2020). Interrogating Atacama 

plant evolution highlighted that extreme plants uniqueness lay in the regulation of pre-existing pathways 

and unveiled a high degree of convergences between chemical strategies selected to face harsh climate 

conditions. Strikingly, these generic strategies included reactions and pathways relevant for plant 

resilience against osmotic (e.g. drought and salinity), frost and high irradiance stress as well as low soil 

suitability (e.g. salinity and nitrogen starvation). Hence, these findings pave the way for wider use of 

these generic metabolic mechanisms to provide sustainable solutions to improve global food security. 

A thrilling perspective will be to investigate whether these generic chemical reactions are also involved 

in adaptation to other extreme lands. 
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Supplemental figures. Supplemental tables are available at the following link until publication: 
https://drive.google.com/drive/folders/1Z3HLMY0Hb281HEu56MM82MHtY_YQ9tkE?usp=sharing   

  

Fig. IV.S1 | Characterisation of enriched reactions from Sister species. Biochemical pathways 

were defined based on MetaCyc and KEGG data.   

 
 
 
 
  
 
 
  
 
  
  
  
  
 
 
 
 
  
 

 
 
 
 
 
  
 
  
 
 
  
 
 
 
 
  
 
 
 
  
 
 
 

 

 

 

 

  

   

 

 

 

 

Fig. IV.S2 | Enriched reaction in Atacama species. Depiction of the main biochemical classes 

enriched in Atacama plant species. Only annotated reactions enriched in more than 50% of the 

species in a given ecosystem (i.e. Atacama, Steppe, Prepuna) are represented. N compounds: 

nitrogen-related compounds. 
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III. EXTREME CLIMATES CONDITION EVOLUTION TRAJECTORIES  

The comparison of the gene expansion and expression patterns using PathwayTools (Kang et 

al., 2020) pinpointed an interesting set of reactions and pathways enriched in a broad range of Atacama 

plant species. In addition, the vast majority of reactions enriched in at least half of the plant species were 

detected in both extreme and non-adapted plant species, while Atacama exclusive reactions were mostly 

species-specific. Hence, based on the hypothesis that fixed genetic mutations provide a selective 

advantage, these findings confirm the existence and the significance of the convergent biochemical 

strategies in the adaptation of multiple Atacama plant species (Fig. IV.6). This was supported by a strong 

correlation between ubiquitously enriched reactions and major environmental constraints that challenge 

plant performance in Prepuna or Steppe. However, the potential role of the species-specific traits in 

adaptation can not be excluded and should be further studied. In this sense, a generic toolbox predicted 

the elevation level of 24 Atacama plant species with 79% accuracy, while models performed at the 

species level allowed a prediction with 90% accuracy (Dussarrat et al., 2022). These observations 

suggest that although generic strategies are likely to sit at the forefront of the adaptation process, the 

role of species-specific strategies should not be neglected. Notably, a plethora of causes could explain 

this 11% delta and the occurrence of divergent strategies (exclusive enriched reactions of species-

specific markers). These markers could, for example, hide the existence of micro-environments within 

the Atacama Desert, a phenomenon that commonly occurs in harsh biomes (Flores and Jurado, 2003; 

Cavieres et al., 2006). For instance, epiphytes employ ingenious strategies to thrive in challenging 

environments such as orchids which developed specialized root tissues in tree canopies (Zotz and 

Winkler, 2013). Nurse plants favoured commensalism, where seeds benefit from a protected habitat 

providing a warm or moist environment (Flores and Jurado, 2003). Such conditions might occur in the 

Atacama Desert, and their analysis would broaden our knowledge of the adaptive strategies developed 

across the evolutionary history of this unique ecosystem. 

 Expanded and overexpressed gene families are congruent with the 39 metabolites capable of 

predicting the environment of multiple Atacama plant species (Dussarrat et al., 2022). The negative 

correlation of proline, quercetin glucoside and polyamine derivatives with the elevation level as well as 

the positive correlation of complex sugars like raffinose and carotenoids were validated by the genetic 

enrichment observed in Prepuna and Steppe species, respectively. Thus, findings from this 

computational approach first confirmed the existence of convergent biochemical evolution in different 

plant lineages, but also provided evidence for the significance of most metabolites included in the 

predictive toolbox at the evolutionary scale (Fig. IV.6). Interestingly, primary metabolism was much 

more represented as compared to the predictive metabolomics approach, pinpointing the need for 

complementary analyses towards polar, central compounds. Notably, amino acids such as glutamate and 

glutamine were observed among enriched reactions in Prepuna species. These traits could refer to an  



Chapter 4. III. Extreme climates condition evolution trajectories 

126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.6 | The secrets of plant adaptation to the Atacama Desert.  

Chapter 4: A convergent biochemical evolution guided by environmental constraints. 
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adaptive response against nitrogen starvation, a critical limitation for plant life in the Atacama Desert 

(Díaz et al., 2016). While a high activity of amino acid metabolism was detected via robotised microplate 

assays (Dussarrat et al., 2022), complementary techniques such as NMR or hydrophilic chromatographic 

assays would permit a deeper investigation of these essential compounds (Kim et al., 2010). Finally, 

bottom-up approaches would help characterise the role of the metabolic markers validated at both 

metabolic and evolutionary levels. While only three species can be grown in the greenhouse (the 

Fabaceae H. doellii, the Solanaceae S. chilense and the Poaceae A. adscensionis), we could imagine an 

experiment to explore the response of these predictors under a temperature, nitrogen or drought gradient. 

Subsequently, the integrative modelling approach could be complemented by various molecular biology 

techniques to evaluate the impact of these compounds on the resilience of extreme plant species and 

relative crops and improve our comprehension of the underlying molecular mechanisms (Moore et al., 

2009; Zhu et al., 2020). 
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I. FROM INDIVIDUALISTIC TO ECOSYSTEM APPROACH 

The publication of this chapter is expected for April 2022. Here, we proposed a short 

introduction (Section I) to set the topic in the context of the PhD. This analysis is being finalised, results 

are reported in a paper format and a short introduction is added to provide a general background of the 

facilitation process in anticipation of the valuation of this work (Section II). Finally, discussion and 

conclusion paragraphs were included in Section III.  

The Atacama Desert is one of the harshest environments for plant life (Eshel et al., 2021). Such 

hostile conditions required a global reorganisation of carbon and nitrogen allocation to ensure a 

sufficient reserve for development and reproduction while delivering a precise biochemical defensive 

strategy (Dussarrat et al., 2021). A few species succeed in this fascinating challenge through adaptation 

of their metabolome, which encompassed remarkable metabolic strategies to cope with extreme drought, 

salinity, solar irradiation and daily sub-zero temperatures (Díaz et al., 2016). This biochemical adaptive 

response was surprisingly mainly mediated by convergent evolutions which enabled the regulation of 

pre-existing pathways. Thus, genetic legacies allowed subtle management of different metabolic 

reactions involving various compounds from primary and secondary metabolism. These metabolites 

predicted plant environment with 79% accuracy, independent of plant species and year (Dussarrat et al., 

2022). Hence, these results strikingly supported the central place of convergent evolutions in adaptation 

to extreme lands. However, despite the so-called “multi-species” approach, these conclusions and 

analyses remained grounded in an individualistic approach. In other words, the comprehension of the 

metabolic strategies employed by plants to cope with abiotic stresses remained linked to the individual 

and not the population level. Interestingly, our perception of the plant system was affected by the 

development of the classification system and the analysis of their response to stress, which primarily led 

to the individualistic theory (Gleason, 1926; Huntley, 1991; Enquist and Leffler, 2001). This 

individualistic theory was initially supported by the fact that plant species variation and distribution 

across environmental gradients is continuous and rarely overlapping (Austin, 1985; Callaway et al., 

2002). However, advances in ecological models proposed that the coverage of a given species was not 

simply linked to its capacity to regulate phenotypic and metabolic traits in response to environmental 

perturbation but rather conditioned by the ecosystem dynamics (Callaway, 1998; Bruno et al., 2003; Hu 

et al., 2021). For instance, microbial communities have an important role in plant adaptability, especially 

in arid lands (Soussi et al., 2016; Zhang et al., 2020). Besides, plant-plant interactions are a major driver 

of plant community structure (Lortie et al., 2004). While the potential role of communication between 

plants and soil microorganisms in adaptation to the Atacama Desert has been raised previously (Eshel 

et al., 2021), here we focus on the potential role of the facilitation process. We combined metabolomics 

and machine learning with ecology to investigate the role of plant-plant interactions in the adaptation of 
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Atacama plants. More precisely, great efforts were deployed to disentangle the thermophysical and 

metabolic mechanisms underlying the facilitation process from which multiple species benefited 

through the interaction with a cactus species called Maihueniopsis camachoi.  

 

II. CACTUS “NURSE EFFECT”: FROM ECOSYSTEM TO METABOLISM 

 

Introduction  

Plant-plant interactions shape community structure by influencing plant diversity and abundance 

(Berlow, 1999; Lortie et al., 2004; Ploughe et al., 2019). Besides, this phenomenon is a crucial player 

in shaping ecosystem response to climate change (Brooker, 2006; Delgado-Sánchez et al., 2013; 

Sherwood and Fu, 2014; Åkesson et al., 2021). Previously neglected, positive relationships earned 

peculiar interest for their role in plant communities (Bruno et al., 2003; McIntire and Fajardo, 2014). 

Furthermore, nurse plant (i.e. a plant providing a positive effect to other species in close spatial 

association) properties have also shown promising results for the restoration of degraded environments 

(Padilla and Pugnaire, 2006; Zhao et al., 2007). While the effect of abiotic stress on facilitation processes 

is still debated, wildlands offer a unique opportunity to improve our understanding of facilitation 

processes, predict the impact of climate change on harsh biomes, and plan restoration practices (Brooker 

et al., 2007; Urza et al., 2019). Previous analyses highlighted an increased abundance of nurse species 

in arid and cold biomes compared to other environments (Flores and Jurado, 2003; Antonsson et al., 

2009). The Cactaceae family includes many of those species, suggesting that their short stature and 

compact structure enable the trapping of ambient heat and moisture (Flores and Jurado, 2003; Yang et 

al., 2017). Nevertheless, analysing the integral picture of protective facets offered by cushions as thermal 

or hydric refuges is complex since these species generally experience only one of the above constraints 

(Körner, 2003). For instance, two meaningful studies performed on tens to hundred plant species 

spanning elevation gradients yielded opposite results, where positive associations decreased or increased 

with elevation (Callaway et al., 2002; Cavieres et al., 2006). Hence, an ecosystem-scale approach in an 

extreme environmental gradient combining temperature and hydric constraints is all the more crucial to 

provide a more inclusive understanding of facilitation processes on diverse plant lineages and lifespans. 

Surprisingly, the potential benefits of nurse species on plant survival have been mainly reduced 

to the analysis of seedling establishment (Cavieres et al., 2006). Notably, two studies provided valuable 

information about the nurse effect on various ecophysiological and anatomical traits such as osmotic 

potential and chloroplast density, paving the way for further significant research (Delgado-Sánchez et 

al., 2013; van der Merwe et al., 2021). In contrast, the impact of these protected micro-environments on 
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plant metabolism remains unexplored. The metabolome has a tremendous ability to capture 

environmental variations and integrates past, present and future biochemical processes of plant life 

(Lewis and Kemp, 2021; Signori-Müller et al., 2021). Advances in analytical techniques and machine 

learning recently allowed the development of ecological metabolomics, which aimed to study the 

metabolic interactions between plants and their natural environment (Sardans et al., 2020). In parallel, 

one of the main goals in ecology is to extend individual traits to an ecosystem scale to provide a 

comprehensive view of plant communities (Lortie et al., 2004). We believe metabolomics could be 

combined with ecology to help address this objective by (i) providing readily measurable soft traits, 

which have already outperformed the predictive capacity of phenotypic traits (Dussarrat et al., 2022), 

and (ii) conferring a mechanistic understanding of the underlying molecular aspects (Walker et al., 

2022). Yet, the use of metabolomics to investigate plant-plant connections seemed mostly limited to 

negative relationships, as exemplified by the wide description of allelopathic compounds (Weir et al., 

2004). However, positive interactions were shown with the capacity of plants to activate the defences 

of their neighbours through the emission of volatile organic compounds (Baldwin et al., 2006). 

Therefore, it is questionable whether ecological metabolomics could be used to test the potential effect 

of facilitation processes on both host and protected species. Then, metabolomics and ecology should be 

combined with machine learning to unveil predictive metabolic markers explaining the plant response 

to such interaction.   

The Atacama Desert is the driest non-polar desert on Earth and offers an elevation gradient from 

2400 to 4500 m.a.s.l where plant life is challenged by drought, high solar radiation and daily negative 

temperatures, for instance (Eshel et al., 2021). Fascinatingly, tens of plant species flourish in this transect 

such as the cushion cacti Maihueniopsis camachoi (Díaz et al., 2016). Hence, this ecosystem provides a 

unique opportunity to analyse the impact of the facilitation process from the ecosystem to the 

metabolism. Here, the coverage of multiple plant species was evaluated in different years to highlight 

different patterns of association with M. camachoi. Fieldwork measurements were coupled with 

mathematical modelling to assess the potential benefits of the nurse effect that may vary between 

species. Targeted and untargeted metabolomics analyses were performed to identify the metabolic 

patterns underlying the interaction between Atriplex imbricata and M. camachoi. A generalised linear 

modelling approach was deployed to unveil metabolic signatures predicting interaction status 

independent of the sampling year. 

 

Results  

Facilitation patterns depend on plant species and elevation. The Talabre-Lejía Transect 

(TLT) is an elevation gradient that includes a linear range of extreme environmental constraints for plant 

life (Eshel et al., 2021). This transect covers three distinct vegetation belts as follows: the Prepuna (2400-
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3300 m.a.s.l) characterised by very low rainfall (20 mm/year), the Puna (3300-4000 m.a.s.l), and the 

Steppe (4000-4500 m.a.s.l) defined by daily freezing temperatures. In addition, plants are subjected to 

very low soil suitability (e.g. high salinity in Prepuna and low nitrogen levels), and high solar irradiance 

(600 W/m²/d) (Eshel et al., 2021). Despite these hostile conditions, the Atacama Desert hosts a unique 

reservoir of plant biodiversity. Notably, several plant species flourish across a significant elevation 

gradient while others remain exclusive to specific levels (Díaz et al., 2019). In the present study, we 

focused on the 20 species that were able to (i) develop in winter and (ii) cover a sufficient elevation 

delta to study their interaction with M. camachoi (Fig. V.1A and Table V.S1).  

  

Figure V.1 | Global workflow. A. Fieldwork analysis. Depiction of the nurse effect provided by 

M. camachoi. Coverage measurements aimed to define the facilitation intensity. Plant cover “with” 

the cactus (cm/m² of cactus) was compared to the plant cover “without” cactus on an equivalent 

surface. B. Workflow of the metabolic analysis. GLM: Generalised multilinear models. PLS-DA: 

Partial least squares discriminant analysis. Both approach used the same metabolomic data (i.e. 

targeted and untargeted analyses).    



Chapter 5. II. Cactus “nurse effect”: from ecosystem to metabolism 

135 

The coverage of these species was evaluated at 11 sites across the TLT (i.e. one site every 100 

meters from 2770 to 3770 m.a.s.l). This biodiversity encompassed C3, C4 and CAM carbon fixation 

systems, various lifespans (i.e. perennial and annuals) and life forms (e.g. shrubs, herbs) and plant 

families. Then, plant cover “with” cactus (cm/m² of cactus) was assessed for each species across the 

elevation gradients and compared to the related plant cover “without” cactus on an equivalent surface, 

which corresponded to the cactus surface (Fig. V.1A and Table V.S1). A total of 18 species (i.e. 90% of 

the studied species) were observed in interaction with M. camachoi in at least one elevation level. Three 

species called Atriplex imbricata, Baccharis tola and Neuontobotrys tarapacana established a 

significant positive relationship with M. camachoi, expanding their coverage at higher or lower 

elevations independent of year (Table V.S3). Additional species benefited from this relationship in one 

year and others presented clear tendencies (Table V.S3). These numbers were probably underestimated 

since most annual species from the Atacama Desert could not be observed in winter (Díaz et al., 2019). 

Overall, great inter-species variations were displayed with opposite trends between Prepuna (2400-3300 

m.a.s.l) and Steppe (4000-4500 m.a.s.l) species (Fig. V.2). For instance, the C4 plant Atriplex imbricata 

showed a natural coverage between 2800 to 3700 m.a.s.l with a maximum cover between 2900 and 3200 

m.a.s.l without positive interaction, while the C3 plant Baccharis tola developed between 3300 and 4000 

m.a.s.l with a maximum cover between 3800 m.a.s.l and 4000 m.a.s.l. without positive interaction (Díaz 

et al., 2016). Thus, Atriplex imbricata favoured positive interaction at the upper limits of its life 

compatible gradient, while Baccharis tola evidenced the opposite pattern (Fig. V.2). Hence, the 

distribution of A. imbricata along the elevation cline seemed congruent with the hypothesis that 

temperature is a critical factor for C4 plant survival (Collins and Jones, 1986). In contrast, the nurse 

effect of the Cactaceae was likely to benefit B. tola at lower elevations where other abiotic factors are 

limiting (e.g. high salinity, water scarcity). Hence, these findings supported the stress-gradient 

hypothesis and illustrated the need of integrating phylogenic and phenotypic information into the 

analysis to provide a more integrative understanding of the facilitation phenomenon (Callaway et al., 

2002).   
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The “nurse effect” of M. camachoi defines plant performances. To get insights into the 

potential benefits of the positive interaction of Prepuna species with M. camachoi, we (i) measured 

temperature at 5 cm of the soil surface over at least 24 hours at three elevation levels and (ii) deployed 

a mathematical modelling approach to study the coverage (Fig. V.1A). Interestingly, M. camachoi acted 

as a thermal buffer at various elevations, independent of the year (Fig. V.3). Notably, the protective 

effect of the facilitation process seemed to occur between approximately 19:00 and 9:00 based on the 

assumption that the potential benefit of this process resided in protection against cold temperature for 

Prepuna species. Besides, the puffer effect of M. camachoi was not linearly correlated and varied 

between 1.4 and 4.4°C (Table V.S2). This delta seemed related to cactus size (Fig. V.S1), in agreement 

with previous reports (Schöb et al., 2013). 

 

 

 

 

Figure V.2 | Depiction of the delta plant coverage with and without interaction with M. 

camachoi (i.e. coverage outside minus inside cactus). Average delta coverage of Atacama species 

significantly impacted by the interaction with M. camachoi (P<0.0001). Delta coverage were equal 

to the coverage “within” the cactus minus the coverage “with” the cactus. Thus, negative values 

corresponded to higher coverage with the cactus than without the cactus. Global delta plant coverage 

included the 20 analysed species. Other species interacted significantly with M. camachoi to a lesser 

extent (10 species at P<0.05) but were not represented in this graph (Table V.S4). Solid lines refer 

to discontinuous data.  
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Figure V.3 | The nurse effect of M. camachoi. A. Characterisation of the soil temperature delta in 

presence or absence of M. camachoi in 2016. B. Characterisation of the soil temperature delta in 

presence or absence of M. camachoi in 2021. Temperatures were assessed at 3000, 3400, 3500, or 

3800 m.a.s.l depending on the year. Straight lines represented the replicates (3 to 4 replicates per 

elevation site), while dotted lines illustrate the average of the replicates.  



Chapter 5. II. Cactus “nurse effect”: from ecosystem to metabolism 

138 

The interaction between M. camachoi and A. imbricata was then used to investigate the 

facilitation effect. Notably, the root system of the protected plant seemed to thrive in the decaying 

material of the cactus, suggesting an epiphyte relationship (Fig. V.S2). More importantly, the interaction 

status of A. imbricata showed a significant shift around 3170 m.a.s.l (Fig. V.4A). Mathematical 

modelling was then employed to get insights into the impact of temperature on the coverage of A. 

imbricata using a general equation established to simulate the temperature response of plants 

𝑐 =  𝐶𝑚𝑎𝑥 (
𝐹𝑚𝑎𝑥−𝑇

𝐹𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
) (

𝑇

𝑇𝑜𝑝𝑡
) ^(

𝑇𝑜𝑝𝑡

𝐹𝑚𝑎𝑥−𝑇𝑜𝑝𝑡
)  (Yan and Hunt, 1999). Here, Topt (optimal temperature for 

plant coverage) and Cmax (maximum coverage of A. imbricata) were defined accordingly to fieldwork 

analyses (as detailed in Chapter 2 section VIII.3), T represented the temperature with or without cactus, 

while Fmax (theoretical maximum value for the arbitral limiting factor at low elevations) could here 

encapsulate water, salinity or nitrogen stress, for instance. First, the Topt parameter was fixed as the 

temperature reported at 3370 m.a.s.l since the maximum coverage (Cmax) of A. imbricata was observed 

between 3270 and 3470 m.a.s.l for 2021 and 2016 datasets (Fig. V.4A). Similarly, the Fmax value was 

artificially defined as the temperature detected at 2770 m.a.s.l, thus forcing the model to limit plant life 

at the lower levels (Table V.S4). Importantly, relevant stability of the different parameters was noticed 

between the interaction status, which supported the viability of the model. For instance, the average Cmax 

reached 5.25 and 3.97 cm/m² (average Cmax measured in 2021 and 2016) and was related to an average 

Topt of 8.08 and 8.17 °C under the “without” and “with” interaction conditions, respectively (Table 

V.S4). This equation was then used to calculate the theoretical coverage (c) score for each elevation 

level and therefore appreciate the impact of temperature on A. imbricata performances. Mathematical 

model predicted with plant coverage with 76% and 63% accuracy for the “without” and “with” 

conditions in 2021, respectively (Fig. V.4B and V.4D). Model accuracy was then confirmed using an 

independent dataset. The Fmax, Topt and Cmax parameters established using 2021 data were preserved to 

characterise the temperature effect on plant coverage in 2016. Thus, temperatures recorded in 2016 were 

used to define the T parameter and predict Atriplex cover (c) in 2016. The predictive capacity of the 

model was then confirmed by R² scores of 72% and 54% using 2016 coverage and temperature data 

(Fig. V.4C and V.4D). Besides, predictions reached 72% and 78% accuracy if considering Atriplex 

coverage at 3070 (Fig. V.4C, green circle observed at 7 °C) as an outlier. Hence, these results showed 

that temperature alone was an excellent predictor of A. imbricata survival in the Atacama Desert. By 

extension, we here revealed that the puffer effect of M. camachoi facilitated and even enabled the 

extension of A. imbricata life compatible gradient to high elevations.  
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Figure V.4 | The nurse effect of M. camachoi extends A. imbricata survival to higher elevations. 

A. Average coverage of A. imbricata (A.im) with and without interaction with M. camachoi (M.ca) 

across the elevation gradient. Pearson standard deviations were calculated on the average coverage 

from 2021 and 2016 datasets. B. Prediction of A. imbricata cover using a mathematical model 

performed on the 2021 dataset. C. Biological validation of the nurse effect using an independent 

dataset. Values of Topt, Fmax and Rmax defined on 2021 data were directly applied on 2016 data. D. 

R² scores of the predictions performed on 2021 and 2016. Note: Figure 4B and 4D were performed 

using 2020 temperatures and are thus under validation using 2021 real temperatures, which are 

currently under treatment (as detailed in Chapter 2 section VIII.3). However, average temperatures 

did not show major changes between the different years (from 2016 to 2020).  
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Plant metabolome predicts interaction status. The plant metabolome has the fascinating 

ability to integrate biotic and abiotic variations in complement to genome influences. Thus, an eco-

metabolomics approach was conducted to explore the effect of the positive interaction between A. 

imbricata and M. camachoi (Fig. V.1B). We quantitatively evaluated 12 major compounds through 

robotised biochemical assays and assessed the biochemical diversity via liquid chromatography-mass 

spectrometry (LCMS) analysis to provide a fingerprint of the metabolome from A. imbricata collected 

in 2019 and 2021 (Table V.S5). Multivariate statistical analyses, orthogonal partial least squares 

discriminant analyses (OPLS-DA) and generalised linear modelling (GLM) methods were deployed for 

a thorough investigation of the metabolic features underlying the facilitation process (Fig. V.1B). First, 

the resulting metabolomics dataset (6556 variables after preprocessing) was processed through a GLM 

approach to test the extent to which A. imbricata could predict the environmental conditions as 

previously described (Dussarrat et al., 2022) (Fig. V.S3). Elevation level was used as a proxy of plant 

environment based on its integration of abiotic and biotic factors (Carpenter, 2005). The model equation 

was developed on 80% of the sample set (i.e. training and testing sets) composed of plants collected in 

April 2019 and 2021. The equation was then applied on the 20% left (i.e. validation set) to test the 

predictive capacity of the model. This first modelling step was used to select the 1% most predictive 

variables (i.e. 66 features) based on their occurrence in the model. Results showed that plant metabolome 

from A. imbricata predicted environmental conditions (i.e. elevation level) with an average accuracy of 

87% (i.e. average R² from the 500 models) using 66 variables (Fig. V.S3). Finally, 500 permuted datasets 

were developed to test the likelihood of spurious predictions and yielded a mean R² of 0%, thus 

statistically validating the models. Notably, the intensities of the best 66 predictors suggested a 

bidirectional protective strategy marked by specific metabolic signatures at low (2770-2970 m.a.s.l) and 

high (3370-3470 m.a.s.l) elevations (Fig. V.S3). Hence, these findings (i) confirm the excellent 

integrative capacity of plant metabolome, and (ii) support the results of the previous ecophysiological 

analysis, which identified the 3170 m.a.s.l site as a critical elevation level requiring a shift in interaction 

status for survival (Fig. V.4).  

To better understand the potential link between the protective strategy employed by A. imbricata 

at high elevations and the facilitation process, we combined metabolomics and machine learning to 

explore the impact of the positive interaction on Atriplex plants collected at 3070 m.a.s.l in July 2021 

(Fig. V.1B). The biochemical biodiversity (6556 variables) was first processed using t-test analysis to 

identify 440 significant markers of the interaction with M. camachoi (Fig. V.5). Interestingly, several of 

the top 1% metabolic markers predicting elevation level were included in these 440 markers, and others 

showed relevant trends (Table V.S6). The discriminatory ability of these markers was assessed using 

unsupervised statistics (i.e. principal component analysis) and yielded a significant distinction of the 

interaction status, with a first component explaining almost 50% of the variance, for instance (Fig. 

V.S4). Besides, OPLS-DA allowed testing these 440 features towards the prediction of the interaction 
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status. Models displayed a tremendous predictive capacity with an R² score of 0.81 and a Q² score equal 

to 0.73 (Fig. V.5). Importantly, these models were statistically validated using permutations (Table 

V.S7).  

 

 

 

 

 

 

 

 

 

 

 

To improve the robustness of these markers and validate their significance over years, we tested 

their response on the entire set of A. imbricata plants (including plants collected in April 2019 and 2021). 

The interaction status of A. imbricata plants was defined according to their photographs (collected in 

the field during the sampling) when available (n=28), while plants without pictures were removed from 

the analysis. Notably, 98 features were expressed differentially between the interaction states and 

allowed a satisfactory classification of the samples, except for one sample that could be considered an 

outlier based on its metabolic profile (Fig. V.6 and Table V.S8). Ultimately, both independent datasets 

(i.e. July 2021 and April 2019 plus April 2021) were combined to test whether these 98 markers could 

efficiently predict the interaction status via GLM models. These markers provided a mean R² score of 

83%, thus demonstrating a high predictive value independent of sampling year (Fig. V.6). Notably, 500 

permutation tests were realised to validate the predictive capacity of these markers and yielded an 

average R² of 62.5%. This number was explained by the fact that the validation sets included 8 samples 

in total among which 5 were classified as “Without interaction” (i.e. 20% of the total dataset). Hence, 

models assigned the “Without interaction” status to all samples based on their incapacity to predict 

better, yielding an accuracy of 62.5% (5 good predictions on 8 samples). Our models were therefore 

statistically validated and confirmed via OPLS-DA analyses, which provided significant R² and Q² 

Figure V.5 | Metabolic pattern underlying A. imbricata-M. camachoi interaction. A. Depiction 

of the 440 significant metabolic features from A. imbricata underlying the interaction with M. 

camachoi (Pearson correlation, Ward algorithm). B. Prediction via OPLS-DA model of the A. 

imbricata interaction status using significant markers.  
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scores (Fig. V.6, Fig. S5 and Table S7). Finally, the previously described analytical workflow was 

applied on M. camachoi to speculate on the potential impact of the facilitation process on the host plant. 

Although the identified markers could not be validated biologically using an independent dataset, results 

suggested a significant impact of the interaction on 249 variables (Fig. V.S6). Besides, these predictors 

could efficiently predict the interaction state (Table V.S7). Overall, we here established for the first time 

that the puffer effect of M. camachoi induced a biochemical impact on protected plant species through 

the discovery of 440 potential markers. Even more entertaining, we highlighted a set of 98 variables 

capable of predicting the interaction status with 83% accuracy, independent of sampling year. Notably, 

these predictors hold great promise for improving our mechanistic understanding of the facilitation 

process.  

  

Figure V.6 | Predictive metabolomics unveiled metabolic markers predicting interaction with 

M. camachoi, independent of sampling year. A. Selection of the significant markers in independent 

datasets (i.e. A. imbricata collected in April 2019 and 2021) as well as in plants collected in August 

2021 (Pearson correlation, Ward algorithm). ANOVA test was performed to highlight 98 significant 

markers (P<0.05). B. Average R² scores of 500 GLMs where the binomial variable “interaction 

state” was predicted from A. imbricata metabolome. Models were statistically validated using 500 

permuted datasets (Tukey’s test, P<0.01). C. Annotation of the significant markers.  
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The facilitation process reshapes plant metabolic strategy. The best predictors of 

environmental conditions and biotic interactions were then annotated using accurate m/z values and 

MS/MS data (Fig. V.1 and Table V.S9). The annotation level was defined according to the metabolomics 

standards initiative confidence level (MSI levels) (Sumner et al., 2014). The KEGG identifier of the 

annotated molecules was then used to classify the markers in major biochemical pathways. First, more 

than half of identified 66 variables predicting elevation level belonged to secondary metabolism. A. 

imbricata accumulated a broad range of flavonoids and cinnamic acids at lower elevation levels, in 

agreement with previous results (Dussarrat et al., 2022). Besides, primary metabolites, including 

carbohydrates and organic acids, were negatively correlated with elevation level, and a significant shift 

in lipidic profiles was observed. Finally, results suggested a potential role of abscisic acid and 

jasmonates at high and low elevations, respectively (Table V.S9). Next, the 98 interaction markers from 

A. imbricata were classified as positive (i.e. higher intensity when interacting with M. camachoi) and 

negative (i.e. lower intensity when interacting with M. camachoi) predictors (Fig. V.6). Importantly, 

almost 70% of the annotated molecules negatively correlated with interaction were flavonoids, which 

agrees with previous eco-metabolomics studies (Defossez et al., 2021, Dussarrat et al., 2022). In 

addition, primary metabolites such as lipids were represented to a lesser extent among these negatively 

correlated predictors (Fig. V.6). Strikingly, a large proportion of these markers were related to the 39 

metabolites predicting plant environment with 79% accuracy in multiple species thriving in the Atacama 

Desert (Dussarrat et al., 2022). For instance, secondary compounds such as quercetin, luteolin and 

coumaroyl derivatives were described as protective metabolites against osmotic stress in Prepuna and 

were negatively linked to the interaction with M. camachoi (Fig. V.6 and Table V.S9). In contrast, the 

extreme majority of the 59 positively correlated markers were unknown. Last but not least, the 

annotation of the best predictors from M. camachoi showed a similar profile (Fig. V.S6). Fascinatingly, 

while flavonoids represented the majority of the negatively correlated metabolites, a significant part of 

the positive markers remained unknown. However, an intriguing pattern arose from the analysis with 

the occurrence of terpenes, which accounted for more than 30% of the annotated positively correlated 

compounds (Fig. V.S6 and Table V.S9). Notably, additional markers from the 440 Atriplex compounds 

responding significantly to the interaction status were subsequently subjected to the annotation process. 

Flavonoids and terpenoids were the most represented biochemical class among those markers (Table 

V.S10). Altogether, these results suggested that the facilitation process not only favours seedling 

establishment but also reshapes the metabolic strategy employed by plant species to cope with their 

extreme environment.  

Overall, this study further reinforces the potential benefits of an approach combining ecology 

and predictive metabolomics. The integration of ecophysiological, environmental and metabolic data 

has profoundly expanded our understanding of the facilitation process from the ecosystem to the 

metabolic scale. Besides, while phenotypic analyses highlighted the different advantages provided by 
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the positive interaction with M. camachoi, metabolomics deciphered its consequences on the 

biochemical level and unveiled a set of metabolites predicting the interaction status with 83% accuracy, 

independent of year.  

 

III. THE PLACE OF FACILITATION PROCESS IN ATACAMA DESERT  

The central place of biotic micro-environments in plant adaptation to extreme lands. The 

Atacama Desert, one of the oldest deserts on Earth, developed as a direct consequence of hyperaridity 

cycles 12 million years ago (Jordan et al., 2014). The TLT transect spans an elevation cline from 2700 

to 4500m.a.s.l in the Atacama Desert and harbours fascinating plant biodiversity (Díaz et al., 2019). 

Interestingly, these species developed genetic and metabolic adaptation to face extreme stress gradients 

such as drought, temperature and salinity (Dussarrat et al., 2022; Eshel et al., 2021). However, although 

the evolution of genetic and metabolic strategies enabled the adaptation of multiple plant species to 

Atacama conditions, these organisms may not perform at their physiological optimum across the entire 

transect (Nicotra et al., 2010). The severity of the stress gradient progressively constraints the 

performance of the species until the critical point where the stress overcomes the phenotypic and 

metabolic plasticity of the species (Fig. V.2). At this point, the survival of plants depends on their 

interactions with biotic communities such as microorganisms or plants (Brooker et al., 2007).  

 Cushions seemed of major interest in structuring the Atacama plant community based on their 

significant influence on plant coverage across the different vegetation belts (Fig. V.2). The importance 

of niche construction by cushions has been widely described in alpine and arid regions (Callaway et al., 

2002). The phenotypic traits of cacti confer protective thermal and hydric properties from which other 

species can benefit (Cavieres et al., 2006). These physicochemical properties have even earned the 

cactus a central place in environmental restoration programmes (Padilla and Pugnaire, 2006; Zhao et al., 

2007). Here, a positive relationship with M. camachoi impacted significantly the coverage of five 

Atacama plant species (Table V.S3). Besides, the facilitation intensity (i.e. the difference between the 

number of individuals within and without the Cactaceae) rose dramatically between 3300 and 3550 

m.a.s.l, while decreasing at lower and higher levels (Fig. V.2). Hence, these findings suggested that the 

requirement for positive interaction was not linked to elevation per se but the stress diversity and 

intensity. Notably, the high Andean Steppe was mainly colonised by C3 grasses and shrubs, whilst C4 

species inhabited the Prepuna (Díaz et al., 2019). In agreement with previous studies, these observations 

strongly suggested a considerable influence of temperature and osmotic stress on the performances of 

Prepuna and Steppe species, respectively (Dussarrat et al., 2022). For instance, a consequence of the C4 

carbon fixation system is a lower quantum yield (i.e. the initial slope of the photosynthetic light response 

curve) than C3 species at moderate to low temperature (Ehleringer et al., 1997). In this context, the 
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analysis of the puffer effect of M. camachoi was confirmed via fieldwork measurements and 

mathematical modelling (Fig. V.3 and V.4). In addition, the positive interaction with M. camachoi not 

only seemed to generate a facilitation process but rather represented a vital resource for extending the 

life compatible gradient of certain species (Fig. V.1). Results showed that the presence of B. tola and A. 

imbricata at the edge of their life gradient (both occurring around 3400-3500m.a.s.l) were dependent on 

this positive relationship (Fig. V.1 and V.4). Importantly, the highest diameters of M. camachoi reported 

between 3470 and 3570m.a.s.l coincided with the highest facilitation intensity level (Fig. V.S1 and V.1). 

These elevations corresponded to the Puna, where a major shift between Prepuna and Steppe species 

occured (Díaz et al., 2019), thus supporting the dynamic role of this nurse effect in determining the 

organisation and diversity of Atacama plant communities. Hence, these findings challenged the 

individualistic theory (i.e. the concept that the plant richness pattern of a given species is independent 

of other species) and suggested that the impact of facilitation on ecosystem dynamics remains 

underestimated (Gleason, 1926; Callaway et al., 2002).  

Protective functions of the facilitation process are reflected by an adapted metabolic 

response. Plant-plant interactions are now recognised as an essential driver of terrestrial community 

organisation (Bruno et al., 2003). Although significant efforts allowed characterising the influence of 

facilitation on plant survival and seedling establishment, the impact at the metabolic level and the 

underlying biochemical mechanisms remain surprisingly unexplored (Cavieres et al., 2006; Brooker et 

al., 2007). Our ecological metabolomics approach combined with GLM learning provided, to our 

knowledge, the first analysis of these mechanistic aspects. Here, we showed that positive relationships 

with M. camachoi reshaped the metabolic strategy employed by plants to face extreme environmental 

constraints. Subsequently, this analysis unveiled a set of metabolites predicting the interaction status 

independent of year, thus supporting the potential of this approach to improve our comprehension of 

complex life systems.  

The metabolome of A. imbricata was an excellent integrator of environmental variations (Fig. 

V.S3). Predictive metabolomics highlighted a bidirectional strategy employed by A. imbricata to face 

cold temperatures and osmotic stress (Fig. V.S3 and V.6). At high elevation levels (i.e. 3300 to 

3600m.a.s.l), plant survival was linked to the positive interaction with M. camachoi. This relationship 

induced a significant response of 440 features in the protected plants. Strikingly, 98 markers predicted 

the interaction status at 83% accuracy, regardless of year. The annotation of these predictors pinpointed 

a global reorganisation of the secondary biochemical strategy (Fig. V.6). Results suggested that the 

micro-environment offered by M. camachoi provided favourable conditions under which the carbon 

allocation shifted from the production of protective compounds to other defensive or developmental 

mechanisms. For instance, flavonoids, cinnamic acids and benzoic acid derivatives were prominently 

represented among predictors negatively correlated with interaction status (Table V.S9). Besides, the 

synthesis of quercetin, luteolin and coumaroyl derivatives were lower in interacting plants, while 
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identified as a defensive response to osmotic stress in multiple Prepuna species from the Atacama Desert 

(Dussarrat et al., 2022). Remarkably, studies showed that the antioxidant properties of flavonoids 

mitigated a broad range of abiotic stress, such as low water availability and high salinity (Agati et al., 

2012; Dussarrat et al., 2021). Intriguingly, an alternative hypothesis could reside in the potential link 

between flavonoids and plant-microorganisms interactions (Jeon et al., 2021; Yu et al., 2021). This 

hypothesis was supported by the potential epiphyte pattern of A. imbricata characterised by the root 

system developed in the decomposing cactus material (Fig. V.S2). Hence, living in this protected micro-

environment could eventually lead to a lower interaction with soil micro-organisms. Importantly, the 

protective biochemical strategy of A. imbricata was, however, not restricted to the relationship with the 

Cactaceae. The prediction of the plant environment at 87% accuracy involved several compounds 

positively or negatively affected by elevation but uncorrelated to the interaction status (Fig. V.S3 and 

Table V.S9). For instance, accumulated levels of fatty acyls and flavonoids, as well as abscisic and 

ascorbic acids were exposed at high altitudes. These compounds could serve plant adaptation by 

mediating the defensive response against environmental constraints such as solar irradiance, which can 

not be alleviated by M. camachoi (Berli et al., 2009; Smirnoff, 2018). Similarly, contents in azelaic acid 

and jasmonate relatives increased at low sites, suggesting either higher herbivory or a higher osmotic 

pressure at these elevations (Arimura et al., 2000; Machado et al., 2013; Marti et al., 2013). Thus, these 

findings proposed that the adaptation of A. imbricata was underpinned by the evolution of (i) an 

individualistic metabolic strategy and (ii) a dependence on positive interaction with M. camachoi at the 

highest elevations. Interestingly, the benefits of the plant-plant interaction might not be restricted to the 

protected species but rather extended to the host as a similar metabolic response (i.e. a decrease in the 

synthesis of protective compounds) was observed in M. camachoi (Fig. V.S6) (Schöb et al., 2014). 
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Overall, our results characterised facilitation as a stress-gradient dependent process that 

profoundly influenced plant community structure by providing thermal and osmotic refuge for a wide 

range of plant species under harsh conditions (Fig. V.7). In the Atacama Desert, these micro-

environments favoured the development of several plant species and inputted a greater resilience to 

major abiotic stresses such as temperature and drought. This enhanced resilience was illustrated by the 

decline in the production of several major defensive compounds. Thus, while these results reinforced 

the role of metabolites previously revealed as excellent predictors of the environment, they also 

highlighted the importance of interspecies dependence within this unique ecosystem (Fig. V.7). Besides, 

although it was difficult to speculate on the role that cacti played in the evolution of plant biodiversity 

tens of thousands of years ago, it is reasonable to say that this Cactaceae is currently assuming a pivotal 

position in the equilibrium of the plant community. Thus, understanding this facilitation process from 

ecosystem to metabolic levels is vital for anticipating the effect of increased global aridity on M. 

camachoi and, by extension, to predict the response of the entire Atacama system.   

In addition, our eco-metabolomics approach unveiled (i) a set of metabolites predicting the 

interaction status with accuracy and (ii) a significant effect of facilitation on the metabolic strategy 

employed by A. imbricata to face extreme conditions. Hence, applying such an approach to multiple 

plant species would help unravel convergent metabolic mechanisms underlying plant-plant interactions, 

which seemed critical to develop more accurate and realistic ecological models. 
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Fig. V.7 | The secrets of plant adaptation to the Atacama Desert.  

Chapter 5: Positive interactions with M. camachoi influence Atacama species distribution. 

Schematic curves of plant cover and richness were adapted from Díaz et al., 2019.   
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Supplemental figures. Supplemental tables are available at the following link until publication: 

https://drive.google.com/drive/folders/1Z3HLMY0Hb281HEu56MM82MHtY_YQ9tkE?usp=sharing  

 

  

Figure V.S1 | Non-linearity of the delta of temperature potentially explained by the size of M. 

camachoi. A. Delta of temperature according to the elevation level. Dots represented the measured 

temperatures between 7 pm and 9 am where M. camachoi served as a thermal refuge. B. Depiction 

of the size of M. camachoi according to the elevation level. 

https://drive.google.com/drive/folders/1Z3HLMY0Hb281HEu56MM82MHtY_YQ9tkE?usp=sharing
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Figure V.S2 | Root system of A. imbricata within M. camachoi. Pictures illustrated the interaction 

of A. imbricata with M. camachoi. A. Positive interaction between the two species.  

B. The layered growth of M. camachoi. Living material seemed to blossom on the top of previously 

dead organic matter. C and D. The root system of A. imbricata seemed to thrive in the decaying 

material of the cactus.  
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Figure V.S3 | Predictive metabolomics identified metabolic variables predicting elevation level 

of A. imbricata. A. R² scores of GLM models using all significant variables, top 1% predictors (i.e. 

66 variables), or permuted datasets. 500 permuted datasets were created to test the likelihood of 

spurious predictions (Tuckey’s test, P<0.01). B. Predicted elevation levels from the top 1% 

metabolic predictors (Pearson correlation). Comparison of the 500 predictions for each measured 

elevation level (Tuckey’s test, P<0.01). C. Depiction of the fits (i.e. Predicted versus measured 

elevation levels) on the testing set using the top 1% predictors. D. Heatmap of the best 66 predictors 

(i.e. top 1%).  
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Figure V.S4 | Unsupervised method to analyse the discriminatory capacity of A. imbricata 

metabolism. Principal component analysis using the 440 significant markers. 
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Figure V.S5 | Predicting the interaction status of A. imbricata from its metabolome over years. 

A. Clustering of the A. imbricata samples harvested in 2019 and 2021 in the Talabre-Lejía transect 

using the 440 significant compounds highlighted via the “A. imbricata-M. camachoi interaction” 

experiment (Pearson correlation, Ward algorithm). B. Prediction via OPLS-DA model of the A. 

imbricata interaction status using significant markers in all conditions. C. Prediction via OPLS-DA 

model on plants collected in August 2021 using the 98 significant markers.  
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Figure V.S6 | M. camachoi metabolome responds to the presence of A. imbricata. A. Depiction of 

the 249 significant metabolic features from M. camachoi underlying the interaction with A. 

imbricata (Pearson correlation, Ward algorithm). B. Prediction of the M. camachoi interaction status 

using the 249 significant variables. C. Annotation of the significant markers   
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CHAPTER 6 

--------------------------------------------------------------------------- 

GENERAL DISCUSSION. MAJOR METABOLIC 

FEATURES UNDER ATACAMA SPECIES ADAPTATION 

AND POTENTIAL FALLOUTS OF THE ANALYSIS 
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I. METABOLISM REORCHESTRATION: THE CONSEQUENCE AND 

CAUSE OF ATACAMA SPECIES ADAPTATION 

In the Atacama Desert, intensities of abiotic stresses, which are a challenge for current 

agriculture, reach the extremes of the gradients of compatibility with plant life (Eshel et al., 2021). 

Adapted plant species embed genetic and metabolic innovations that provide sufficient resilience to 

perform under stressful conditions. In this framework, this PhD project aimed to explore the metabolic 

features of multiple Atacama species, which are of major interest for current agriculture. Although this 

objective could be addressed by distinct analytical strategies (Dussarrat et al., 2021), we selected a 

holistic, ecological approach that combined metabolomics, transcriptomics and machine learning 

techniques. This comprehensive approach preserved the ecological context of the study, but was also 

subjected to certain limitations. In this chapter, we first argued the main strengths and weaknesses of 

our approach. Subsequently, findings were integrated to discuss the metabolic strategies employed by 

Atacama plant species to cope with their environment. Finally, we conceived two potential perspectives 

that might provide complementary insights into our understanding of plant adaptation to extreme 

biomes.  

 

I.1. An open question addressed by a holistic approach 

A previous study suggested a significant place of metabolic processes in the adaptation of 

Atacama plant species (Eshel et al., 2021). In addition, a few studies described the biochemical diversity 

of Andean plants whilst others investigated specific genera, such as Baccharis and Parastrephia (two 

genera that were collected in the Atacama Desert) for pharmacological purposes (Padilla-González et 

al., 2017; Isla et al., 2021; Minteguiaga et al., 2021). Thus, the main limitations of this project were low 

availability of metabolic data on the selected Atacama species and the multi-stress environmental 

properties of this natural environment. Our works highlighted various methods to uncover adaptive 

markers of extreme plant species (Dussarrat et al., 2021). These approaches could be divided into two 

categories: the pairwise strategy, which aimed to compare pairs of extreme species with phylogenetically 

related species (mostly represented by crops or model plants), and a more global approach, which sought 

to explore general metabolic patterns of extreme plant species. In the context of Atacama species, the 

first approach would offer the possibility of analysing plant responses to specific stress gradients such 

as drought or salinity in natural or controlled conditions based on the opportunity to develop three 

species in greenhouses (S. chilense, H. doellii and A. adscensionis). Then, this strategy could be 

extended to some of the other 21 plant species collected. We preferred a more holistic approach, where 

various plant species were collected at different elevation levels and subjected to multi-platform 

metabolic analyses, for three reasons.  
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- First, previous results argued for the existence of convergent strategies to face harsh climates involved 

in protection against high light intensities, salt or nitrogen starvation, for instance (Eshel et al., 2021). 

Besides, strong relationships were observed between phytochemical diversity and environmental 

conditions, reinforcing the interest in using metabolomics to uncover protective biochemical traits 

against these environmental constraints (Defossez et al., 2021).  

- Second, this holistic approach avoided potential acclimation processes that could occur under 

controlled conditions (Dussarrat et al., 2021).  

- Third, this holistic strategy conserved biological diversity. Plant metabolome diversity in the plant 

kingdom was estimated between 200 000 and 1 million compounds, with up to 40 000 metabolites per 

species (Alseekh and Fernie, 2018). Although a myriad of compounds was classified as species-specific, 

a great proportion is shared between the majority of species in the plant kingdom (Hartmann, 1996; 

Alseekh and Fernie, 2018). For instance, primary metabolism and basal secondary metabolites are 

shared between plant species (Hartmann, 2007). Hence, it seems relevant to question to what extent 

these shared metabolites participate in adaptive processes, especially when considering these markers 

for a more generic breeding strategy. Our approach used biological diversity to highlight the most 

generic compounds as best predictors of the elevation levels based on (i) the need for shared compounds 

to predict the environment for all species and (ii) their high correlation with elevation.  

Hence, a holistic eco-metabolomics approach appeared as a valuable strategy for reaching the 

project objectives and addressing the main analytical and environmental constraints. More excitingly, 

this approach is pioneering in several aspects. For instance, we provided an alternative strategy to study 

plant adaptation to harsh climates by showing that the application of eco-metabolomics to multiple 

species enabled the discovery of generic mechanisms predicting the distribution of plants at 79%. While 

these results will undoubtedly inspire future studies that will improve our understanding of adaptive 

mechanisms to extreme conditions, this approach is also likely to be increasingly used in agronomy and 

ecology (Chapter VI. Section II). However, such an approach was subjected to various limitations.  

- First, a metabolic analysis integrating a broad range of species implied a large phenotypic and chemical 

variability that must be controlled. Significant efforts were deployed to characterise phenotypic 

specificities of each species (e.g. flowering, size, ratio between living and dead tissue). Similarly, such 

intra- and inter-species variability implied analytical compromises in chemical analyses. Analytical 

parameters (e.g. dilution, solvent, injection flow) were thus optimised via multiple time-consuming tests 

to (i) maximise the chemical coverage and (ii) ensure great comparability between species (Chapter 2).  

- Besides, sufficient biodiversity was required to perform such an analysis and ensure a sufficient 

dynamic range of metabolic data. Hence, sampling was performed after the rainy season (i.e. 

March/April), where the maximum of species diversity and coverage was observed (Díaz et al., 2016, 
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2019). Consequently, our eco-metabolomics approach could not access the evolution of plant 

metabolome over a year. By extension, the protective role of the best metabolic predictors (i.e. 39 

compounds predicting plant environment) across seasons could not be explored (Chapter 3). However, 

enrichment analyses confirmed their significance at the evolution level, thus rejecting the hypothesis of 

a transient role for these markers in resilience to extreme environmental constraints (Chapter 4).  

- In addition, the efficiency of this strategy was based on the individualistic theory, according to which 

the distribution of the species is independent of other species (Callaway et al., 2002). We thus tested the 

influence of plant-plant interactions in the survival of Atacama plant species (Chapter 5).  

- Finally, additional limitations were intrinsically linked to our analytical workflow. For instance, the 

freeze-drying process strongly restricted enzymatic, redox analyses and in vivo measurements such as 

photosynthesis activity for fresh materials.  

Overall, while some of these limitations were overcome by complementary analyses, others 

represent blind spots of the project. Nevertheless, the benefits offered by this holistic approach led to 

significant discoveries that improved our understanding of the metabolic mechanisms underlying the 

adaptation of multiple plant species to extreme environments.    

 

I.2. Metabolic strategies employed to face environmental constraints  

This PhD project aimed to decipher the metabolic strategies employed by Atacama plant species 

to thrive in their extreme environment. For decades, the chemical properties enabling plant survival in 

harsh environments have attracted human curiosity (Turner, 2018). However, most studies focused on 

specific chemical classes known for their osmoprotective functions. In contrast, untargeted studies 

provided relevant information on the role of secondary compounds in adaptation, but have suffered from 

the limitations of the species-specific approach (Dussarrat et al., 2021). Hence, the first challenge of this 

project was to capture the biochemical diversity of these extreme Atacama species. Here, we deployed 

multi-platform metabolomics to provide a metabolic fingerprint of 24 Atacama species, which 

encompassed major primary compounds as well as fatty acyls and secondary metabolites. In addition, 

this metabolic matrix permitted to explore the impact of a multiple stress gradient (e.g. high solar 

irradiance, drought, salinity, freezing temperature) on the metabolism of these different species (19 sites 

between 2400 and 4500 m.a.s.l). Strikingly, our strategy enabled the discovery that (i) Atacama plant 

metabolome was an excellent integrator of environmental parameters, (ii) convergent biochemical 

strategies were conserved through evolution and ensured a predictable resilience against major abiotic 

constraints (Chapters 3 and 4), and (iii) plant community structure and interactions greatly influenced 



Chapter 6. I. Metabolism reorchestration: the consequence and cause of Atacama species adaptation 

160 

plant distribution and coverage (Chapter 5). Importantly, these convergent metabolic strategies 

accurately reflected the major abiotic constraints (Fig. VI.1).  

Regulation of energy entry. One of the few non-limiting resources in the Atacama Desert is 

light (Eshel et al., 2021). Instead, the high photon density was three times higher than other deserts and 

high mountains (Zhang et al., 2010; Arancibia-Bulnes et al., 2014). To face high solar irradiance, all 

Atacama species harboured low chlorophyll content (Fig. III.S1), in accordance with other analyses 

(Balaguer et al., 2002; Körner, 2003). This result suggested that plants mitigated solar irradiance 

damages by limiting energy entry. Unfortunately, photosynthetic and respiration rates could not be 

verified. It is generally admitted that the desynchronisation between photon entry and the photosynthetic 

electron transport chain disturbs redox homeostasis (Fernández‐Marín et al., 2020). Studies revealed 

that high solar irradiance, as well as water or nutrient deficiency, reduced photosynthetic activity and 

increased ROS production (Decros et al., 2019; Dussarrat et al., 2021). The defect or excess of these 

environmental variables unbalanced the redox state, thereby resulting in a global reprogramming of 

plant metabolome.  

Redefining priorities and performances based on carbon and nitrogen resources. While the 

objective of any plant in physiological conditions is to develop and reproduce, the primary objective of 

Atacama species is survival. In physiological or stressful conditions, carbon and nitrogen cycles (from 

uptake to transport and use) are extremely regulated at the molecular levels (Coruzzi and Zhou, 2001). 

This was even more evident in extreme plants that carefully managed carbon and nitrogen allocation 

between plant development and defence (Fig. IV.3). Nitrogen availability is one of the most vital 

limitations for plant life in the Atacama Desert (Díaz et al., 2016; Eshel et al., 2021). This was 

exemplified by critical nitrate levels compared to several agricultural and ornamental species (Fig. 

III.S1). Interestingly, Atacama species developed ingenious strategies to cope with nitrogen starvation. 

First, a previous transcriptomics analysis comparing 32 Atacama species and 32 phylogenetically related 

species revealed a strong interaction with growth-promoting bacteria, including nitrogen fixers (Eshel 

et al., 2021). Complementarily, more than 50% of these species naturally enriched reactions involved in 

the uptake and process of nitrogen resources (e.g. glutamate and glutamine related reactions), as well as 

nitrogen remobilisation (e.g. purine degradation) at the genomic level (Fig. IV.3). Although several 

aspects remained untackled, such as the Michaelis constant of nitrate transporters, these findings 

pinpointed the significance of adaptive processes to cope with inadequate nutrient conditions. 

Concomitantly, all Atacama plants harboured shallow protein levels (Fig. III.S1), and enrichment 

analyses highlighted a significant regulation of gibberellins and cytokinins pathways (Fig. IV.3). Hence, 

although phenotypic traits such as biomass and relative growth rate were not available, these 

observations indicated a strong restriction of plant growth processes. This idea was also supported by 

the position of starch as the best predictor of the plant environment (Fig. III.3), an adaptive role further 

confirmed by enrichment analyses (Fig. IV.3). Considering plant metabolome as a constant chemical 
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flux, carbon that did not fuel growth processes would be stored as osmotically inactive carbohydrates 

such as starch, especially under drought and saline conditions (Rontein et al., 2002).  

In stark contrast, Atacama species invested remarkable efforts and resources in the synthesis of 

protective compounds. Importantly, the defence strategy of these species was precisely organised and 

tailored to (i) the common pressures of the different ecosystems in the transect and (ii) the vegetation 

belt-specific constraints. In addition to the nitrogen-related adaptations, protective strategies could be 

divided into three parts covering defence against high solar irradiance, low temperatures and osmotic 

constraints (including high salinity and drought).  

Defence against high light intensity. Plants are sessile organisms that can not escape climatic 

parameters. The Atacama Desert does not offer shaded micro-environments that could protect annual 

and perennial plants from the constant solar irradiance pressure. High radiations induce dramatic effects 

on photosynthetic machinery (Wimalasekera, 2019). As a direct consequence, Atacama species 

developed adaptive mechanisms to face this abiotic constraint. Massive changes in lipidic profiles were 

likely to occur across Atacama species when compared to their 32 phylogenetically related species. For 

instance, extreme species tended to enhance the synthesis of long-chain fatty acids and waxes (Fig. 

IV.3), which demonstrated effective ultraviolet reflectance properties and additional protective 

functions against high light intensity (Holmes and Keiller, 2002; Santos et al., 2017). Besides, precursors 

of lipids (e.g. jasmonates, azelaic acid) figured among the best predictors of plant environment (Fig. 

III.3). Interestingly, the higher number of enriched reactions related to fatty acyl metabolism in Prepuna 

species coincided with the surprisingly highest solar irradiance at these levels, which was confirmed 

over the years (Eshel et al., 2021, Dussarrat et al., 2022). Complementarily, the adaptive role of 

carotenoids and flavonoids was pinpointed in gene expression enrichment analysis as well as in eco-

metabolomics approaches carried out at the species-specific (i.e. A. imbricata) or global scales (Agati et 

al., 2011; Ramel et al., 2012). Alternatively, the excess of solar irradiance could be dissipated as heat 

through alternative oxidases and uncoupling proteins (Grant et al., 2009). Regrettably, mitochondrial 

photoprotective mechanisms (e.g. alternative oxidases that deviate the electron flow from mitochondrial 

complexes) have not been addressed. 

Defence against freezing temperatures.  Daily sub-zero temperatures challenge plant life in 

the high Andean Steppe, explaining the absence of C4 plants in these sites (Eshel et al., 2021, Dussarrat 

et al., 2022). Subfreezing air temperature can lead to extrinsic or intrinsic ice nucleation, cellular 

dehydration, membrane damages and plant death (Pearce, 2001; Neuner and Hacker, 2012). Primary 

metabolism emerged as a significant resource of protective compounds against freezing stress. Various 

sugars and polyols were significantly enriched in Steppe species (Fig. IV.3). Interestingly, previous 

studies showed their accumulation under cold acclimation to improve plant hardiness in a frost 

environment (Román‐Figueroa et al., 2021). Notably, an intriguing shift in protection strategy occurred 
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in Steppe species, which favoured the production of complex sugars like raffinose (a compound 

observed among the 39 best predictors) over starch. The lower efficiency of starch remobilisation could 

explain this phenomenon under cold temperatures and by the relevant functions of raffinose family 

oligosaccharides to mitigate freezing effects (Peters and Keller, 2009). In addition, lipid remodelling 

(e.g. prevalence of polyunsaturated fatty acyls) observed in Atacama plants and other extreme species 

may contribute to cold stress tolerance by protecting membrane stability, for instance (Barrero-Sicilia 

et al., 2017). However, temperature effects were not restricted to high elevations. In contrast, the 

diversity and coverage of Prepuna species in Puna (i.e. between 3300 and 4000 m.a.s.l) were constrained 

by cold temperatures (Fig. V.2). Interestingly, the survival and development of these species like H. 

doellii and A. imbricata (i.e. annual or perrenial plant) were dependent on the positive interaction with 

M. camachoi, suggesting that their metabolome was not sufficiently adapted to cope with freezing 

temperatures. This facilitation process was responsible for a decrease in synthesis of protective 

compounds by acting as a thermal and hydric refuge (Fig. V.2 and V.6).   

Defence against osmotic pressures. The Atacama Desert is the driest non-polar environment 

on earth (Eshel et al., 2021). While water limits plant life across the entire transect, other abiotic 

parameters negatively impact plant performances, such as salinity. Drought causes irreversible damage 

in plant cells and disturbs redox homeostasis, a scenario exacerbated by high salinity in Prepuna 

(Rizhsky et al., 2002; Parihar et al., 2015). Interestingly, the first observable consequence is the 

prevalence of C4 plants, as opposed to Steppe environments. The evolution of primary metabolism 

converged towards the synthesis of various sugars such as trehalose in Prepuna species (Fig. IV.5). The 

selective advantage of trehalose synthesis under osmotic pressure was confirmed by its predictive ability 

and its accumulation at the lower elevation levels (Fig. III.3), and by previous results (Bhattacharya and 

Kundu, 2020). Furthermore, a broad range of polyols accumulated in Atacama species, although some, 

like inositol, were more specific to Prepuna (Fig. IV.3 and IV.4). Concomitantly, the expression of genes 

related to lipid metabolism (e.g. pollen wall, phospholipids) was higher in the majority of low elevation 

species (Fig. IV.3 and IV.5), reinforcing their function in osmotic stress resilience (Barrero-Sicilia et 

al., 2017). Findings showed a significant place of various amino acids in adaptation of Steppe and 

Prepuna species. For instance, proline metabolism (e.g. proline, proline betaine) was systematically 

reported in the different analyses (Fig. III.3 and IV.5), consistent with its influence on redox homeostasis 

(Szabados and Savouré, 2010; Dussarrat et al., 2021). More generally, the accumulation of other amino 

acids could refer to their extensive relationship with secondary metabolism (Fig. I.6 and IV.3). Intriguing 

accumulation of phenolic-polyamine conjugates (e.g. tri-coumaroyl spermidine) was found in Prepuna 

species, congruent with resurrection species (Alcázar et al., 2011). Furthermore, phenolic pathways were 

extensively represented among the best markers of plant environment and generic enriched reactions in 

all Atacama plant species (Fig. III.3 and IV.3). Besides, their adaptive role was observed in other 

extreme species (Dussarrat et al., 2021). Importantly, their widely described antioxidant properties 
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contribute to photoprotection and mitigate the redox poise by scavenging ROS excess, thus improving 

plant resilience against osmotic stress (Agati and Tattini, 2010; Decros et al., 2019). Interestingly, 

quercetin relatives were the most widely represented compound in this study, a central adaptive place 

possibly explained by (i) its roles in antioxidant machinery, (ii) its interaction with soil chemistry and 

nitrogen fixers, and (iii) its link with growth and developmental processes (Singh et al., 2021). Finally, 

positive interactions between Steppe species and M. camachoi seemed to facilitate the development of 

these species in Puna, emphasising their protective role against osmotic stress (Fig. V.2). This function 

was also supported by previous analyses of facilitation processes in arid lands (Flores and Jurado, 2003).  

In conclusion, while the diversity of the Atacama plant community encompassed multiple 

botanic families characterised by various evolutionary trajectories, the adaptation of these extreme 

species was underlined by convergent metabolic strategies fixed over evolution (Fig. VI.1). Here, we 

first provided an unprecedented metabolic resource uncovering the biochemical fingerprint of multiple 

extremophile plant species. Then, we confirmed the excellent integrative capacity of plant metabolome, 

which captured the most limiting abiotic parameters at both species and ecological levels. Next, our eco-

metabolomics approach was combined with machine learning to unveil a generic toolbox allowing plant 

resilience to extreme climates. To our knowledge, this discovery represented the first evidence of the 

prevalence of convergent chemical strategies in adaptation to harsh lands. This finding was then 

validated at the evolutionary scale through the analysis of gene expansion and expression patterns. 

Importantly, while enabling survival of various plant lineages, these shared metabolic processes mainly 

involved secondary compounds, thus challenging the species-specificity of adaptive strategies 

previously expected. In addition, the annotation of these generic mechanisms has unlocked some of the 

secrets of the adaptation of Atacama species. Plant metabolome is undoubtedly tailored to environmental 

constraints. Atacama plants favoured the regulation of pre-existing ubiquitous pathways (e.g. quercetin 

and carotenoids chemicals) with various protective functions against high solar irradiance and drought, 

for instance. Furthermore, specific adaptations emerged to face freezing temperature (e.g. raffinose) or 

osmotic stress (e.g. proline, tri-coumaroyl spermidine) in Steppe and Prepuna species, respectively. 

Remarkably, a relevant part of adaptive compounds referred directly or indirectly (i.e. through 

interaction with redox pathways) to redox homeostasis, emphasising its central role in adaptation 

processes. Finally, this intricate metabolic reordering was complemented by positive biotic interactions, 

which enabled plant development beyond the limits of their life compatible gradients by providing 

protected micro-environments against temperature and osmotic pressures (Fig. VI.1). Overall, this study 

provided tremendous insights into our understanding of the adaptive responses of plants to extreme 

abiotic constraints that challenge current agriculture. Besides, our approach and findings offered 

promising opportunities and perspectives for further investigations to enhance our comprehension of 

plant-environment interactions.   
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Figure VI.1 |  

Evolution of adaptive traits in Atacama plant species: from the ecosystem to the metabolism.  

Asn: Asparagine, Asp: Aspartate, Gln: Glutamine, Glu: Glutamate, Met: Methionine, Pp: Prepuna, 

Pro: Proline, St: Steppe.  
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II. GENERAL PERSPECTIVES: HOW TO GO FURTHER? 

Atacama plants integrated molecular answers developed over tens of thousands of years of 

evolution. This PhD project unlocked several secrets hidden by this unique biodiversity. In addition, the 

multi-species eco-metabolomic approach offers promising perspectives for further research in plant 

sciences. 

 

II.1. The mysteries of the Atacama: the quest for secrets goes  on 

The analyses performed throughout this project yielded a large number of perspectives already 

mentioned in the different chapters. For instance, complementary works should be conducted to (i) 

investigate the function of the chemical pathways and metabolites unveiled by both enrichment and 

metabolomics studies (Chapters 3 and 4) under environmental variations (e.g. testing their response to 

water or salt inputs), (ii) assess the photosynthetic and respiration rates, (ii) extend our comprehension 

of major primary compound responses to environmental variations in extreme lands (e.g. NMR 

analysis), and (iii) explore convergent metabolic mechanisms underlying plant-plant interaction 

processes (Chapter 5). Here, we detailed three complementary analyses that would help overcome the 

blind spots of our analysis.  

Plant metabolic dynamics in the Atacama Desert. As mentioned above, the kinetic aspect of 

the metabolism of these plants is absent. Besides, although the adaptive role of the discovered metabolic 

traits was supported by two independent analyses, their behaviour through time remains unexplored. 

This notion of time could be addressed at two distinct scales. On short time scales (i.e. hours, days), 

studying the response of chemical fluxes to water or nitrogen inputs through enzymatic assays would 

provide significant insights into how Atacama plants process environmental resources. On a larger time 

scale (i.e. months), the trade-off between the synthesis of protective compounds and growth, and thus 

protein, could be examined. Intriguingly, all Atacama plants (including annuals) showed low protein 

contents compared to agronomic and ornamental plants (Dussarrat et al., 2022). Hence, implementing 

the behaviour of the best metabolic predictors to complementary data such as ecophysiological features 

(e.g. photosynthesis rates) and phenotypic traits (e.g. growth rate) over the year would provide precious 

information about how Atacama species manage carbon and nitrogen allocation to thrive under extreme 

conditions. For instance, comparing metabolic, proteomic and phenotypic profiles of plants collected in 

different seasons would enhance our comprehension of plant physiology under extreme conditions. Even 

more thrilling, such a study would help disentangle major roads from environment perturbation to 

metabolic integration and phenotypic consequences (Poorter et al., 2019; Walker et al., 2022). Lastly, a 

growing interest in the analysis of redox signalling resulted in a better understanding of its various roles 

in plant physiology and defence (Foyer and Noctor, 2016; Decros et al., 2019). Thus, understanding the 
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contribution of redox mechanisms in these trade-offs represents one of the most critical challenges for 

the future.  

Plant-soil interactions under extreme abiotic conditions. Plant-soil feedback (i.e. reciprocal 

interaction between plant and soil) showed high potential in modulating plant community structure (Ke 

et al., 2015, 2021), and was strongly influenced by abiotic factors such as drought (Kaisermann et al., 

2017). Remarkably, profound changes in microbial communities arose between the different vegetation 

belts (i.e. Prepuna, Puna, Steppe) in the Atacama Desert (Eshel et al., 2021). Besides, this same study 

highlighted the highest bacterial abundancy (≥2-fold) in plant root zones compared to bare soil patches, 

including growth-promoting and nitrogen-fixing microorganisms. These findings were not isolated since 

intriguing biodiversity of plant-microbe interactions was reported in other extreme ecosystems (Bang et 

al., 2018). Hence, it is highly probable that Atacama plant adaptation depends on plant-soil interactions 

and that these interactions may differ between species and vegetation belts. While the quest for 

convergent mechanisms underlying plant-microbe communications is still valuable between species 

from a given vegetation belt, a peculiar interest in the various strategies deployed by Poaceae, Fabaceae 

and Asteraceae (the three prominent plant families in the Atacama Desert) would be of major interest. 

Hence, a joint transcriptomics and metabolomics analysis applied to paired samples (i.e. aerial parts of 

plants with related plant root zones) from various plant species and elevation levels would represent an 

unprecedented analysis that aims to decipher the benefits of plant-soil interactions in extreme 

ecosystems and expand our understanding of the molecular mechanisms underlying these vital 

processes. 

Behaviour of the best metabolic markers under various conditions. Although less extreme 

than the Atacama Desert, Californian drylands represent other types of harsh environments where plants 

face multiple stress gradients (Jacobsen et al., 2007). Interestingly, several plant genera collected in the 

Atacama Desert are observed in Californian drylands (e.g. Atriplex, Ambrosia, Lupinus). A tri-partite 

analysis would allow comparing the metabolomic profiles of an Atacama species, a Californian related 

species and a related agronomic species. This tri-partite system could be complemented with Atacama 

plant species developed under controlled conditions (e.g. H. doellii, S. chilense). Such a comparative 

study would address the following questions: “how do the best predictive markers of the plant 

environment respond to various natural and controlled environmental variations (e.g. in other 

ecosystems or under artificial drought gradient)?” and “do these metabolic markers provide a selective 

advantage in other challenging ecosystems?”.  

 

 

 



Chapter 6. II. Perspectives: how to go further? 

167 

II.2. Eco-metabolomics: from ecosystem to agronomic level   

Climate warming alters plant functional traits and thus stability properties of ecological 

communities (Ma et al., 2017; Bjorkman et al., 2018). Biodiversity has the fascinating potential to 

mitigate the effects of increased frequency and intensity of abiotic events (Chapin III et al., 2000; Hisano 

et al., 2018). Moreover, species interactions are considered a major player in shaping climate change 

impact (Åkesson et al., 2021). However, ecological models are sorely lacking in a more mechanistic and 

molecular understanding of the ecological mechanisms that control the balance and response of plant 

communities. 

In stark contrast, the current agricultural system is based on monospecific cultures of the best 

ideotypes, whose yields are directly dependent on the resilience of this species to climatic variations 

(Chai et al., 2021; Chaloner et al., 2021; Lesk et al., 2021). In consequence, the performances of these 

plants are stagnating and even decreasing over the years (Long et al., 2015), showing the difficulty 

agronomists have in finding sustainable solutions in the current breeding system. In this context, 

chemical and biological diversity might be helpful by delivering naturally selected strategies deployed 

by plants to cope with their environment. Altogether, current challenges in both ecology and biology 

illustrate the need to improve our ability to predict plant performances (i.e. resilience and yields) under 

a wide range of environmental conditions and perturbations.  

We believe our predictive multi-species metabolomics approach represents an innovative and 

promising analytical strategy that could help meet these ambitious objectives through its ability to 

uncover highly generic metabolic predictors while preserving the ecological context. While providing 

clues for a better understanding of ecological models, such an approach could be used to unveil easily 

measurable soft traits predicting various phenotypic traits or biotic interaction patterns. In parallel, the 

multi-species approach would certainly serve the breeder's interests through its capacity to unveil 

generic strategies for various purposes. Finally, the already strong potential interest in the use of eco-

metabolomics in agriculture and ecology is supported by high predictive performance, low costs and 

high throughput properties, thus offering a promising future to this integrative approach.  
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Abstract: The environmental fluctuations of a constantly evolving world can
mould a changing context, often unfavourable to sessile organisms that must
adjust their resource allocation between both resistance or tolerance mechanisms
and growth. Plants bear the fascinating ability to survive and thrive under extreme
conditions, a capacity that has always attracted the curiosity of humans, who
have discovered and improved species capable of meeting our physiological
needs. In this context, plant research has produced a great wealth of knowledge
on the responses of plants to a range of abiotic stresses, mostly considering
model species and/or controlled conditions. However, there is still minimal
comprehension of plant adaptations and acclimations to extreme environments,
which cries out for future investigations. In this article, we examined the main
advances in understanding the adapted traits fixed through evolution that
allowed for plant resistance against abiotic stress in extreme natural ecosystems.
Spatio-temporal adaptations from extremophile plant species are described from
morpho-anatomical features to physiological function and metabolic pathways
adjustments. Considering that metabolism is at the heart of plant adaptations,
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a focus is given to the study of primary and secondary metabolic adjustments
as well as redox metabolism under extreme conditions. This article further casts
a critical glance at the main successes in studying extreme environments and
examines some of the challenges and opportunities this research offers, especially
considering the possible interaction with ecology and metaphenomics.

Keywords: extremophile, abiotic stress, adaptation, extreme environment,
metaphenomics, metabolism, redox

1 Introduction

In a rapidly evolving world, environmental fluctuations create a changing
context, often unfavourable to sessile organisms that must adjust their
resource allocation between both resistance mechanisms and growth to
thrive under stressful conditions. The stress concept was classically defined
as any environmental factor capable of inducing a potentially injurious
strain in living organisms (Selye, 1950; Levitt, 1980). Abiotic environmental
stresses such as water deficit, temperature, excess light radiations, or soil
depletion and contamination, negatively impact plant performances and
likely become more prevalent and intense (Battisti and Naylor, 2009; Fedoroff
et al., 2010). Indeed, the toxicological concept of ‘Only the dose makes the
poison’ (Paracelsus), could be applied when characterising soil suitability in
which either water, mineral, and nutrient deficiency like aridity (Mishra and
Singh, 2010), nitrogen (N), and phosphorous (P) starvation (Vance, 2001), or
excess like salinity (Munns, 2002; Shahid et al., 2018), metal contamination
(Nagajyoti et al., 2010; Tóth et al., 2016) and flooding (Loreti et al., 2016)
are adverse for plants. Moreover, resistance to those stressors is further
complicated when associated with low and high temperatures (Pearce, 2001;
Neuner and Hacker, 2012; Qu et al., 2013) or intense UV radiations (Caldwell
et al., 1989; Zandalinas et al., 2018), all of which can create conditions that
challenge plant survival in such stressful constraints (Mittler, 2006).

Interestingly, some lands naturally harbour these stress combinations
where both their intensity and frequency levels have led to the name of
‘extreme environments’. Over the last few decades, extreme environments
have been continuously discovered on Earth and permanently challenge
our understanding of the limits at which life can exist. In terms of microbial
life, these ecosystems include hot springs, glacial ice, and deep-sea vents
(Merino et al., 2019). Plants do not colonise these environments, yet they can
also grow and even thrive in areas where water is scarce, solar radiations
are extremely high, temperatures can reach extremes of cold and/or heat,
nutrients are almost completely absent, and salts accumulate (Rothschild
and Mancinelli, 2001). Besides, extreme environments have been mostly
characterised by specific environmental variables such as water resources,
salinity, temperatures, and solar irradiance.
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Water is of major limitation for plant growth and survival (Farooq et al.,
2012). The aridity index, which refers to the net difference between precipita-
tions and water losses through evapotranspiration, was used to characterise
drylands (Levin et al., 2006; Girvetz and Zganjar, 2014). Hyperarid and arid
zones present an aridity index below 0.03 and 0.03–0.20 with annual rainfall
rarely exceeding 100 and 250 mm, respectively (Noy-Meir, 1973). Also,
extremes usually involve scarce precipitations mainly occurring during the
rainy season (Noy-Meir, 1973). Thus, this article refers to ‘extreme aridity’
lands where annual rainfalls are highly variable, with a large unpredictable
component, and not exceeding 250 mm year−1. Remarkably, several arid soils
are also highly saline where halophytes have succeeded to survive (Allbed
and Kumar, 2013). Halophytes have evolved from a wide range of plant
families (Flowers et al., 2010) in several lands as deserts or sea coasts, and
are defined as plants able to complete the life cycle in a salt concentration of
at least 200 mM NaCl and constitute 1% of the world’s flora (Flowers and
Colmer, 2008).

Furthermore, drought and saline stress are usually combined with other
parameters like the temperature in natural environments (Mittler, 2006).
In most vascular plants, cold stress likely occurs once the subfreezing air
temperature falls between −0.6 and −2.6 ∘C, where ice nucleation happens
and causes extracellular freezing, resulting in cellular dehydration and plant
death (Pearce, 2001; Neuner and Hacker, 2012; Hasanuzzaman et al., 2013).
Adding the time parameter (Körner, 2016), extremely cold environments
here referred to terrestrial areas with daily negative temperatures (e.g. polar
circle, elevations above the climatic treeline, lands with long-term cold
periods). Similarly, while the upper threshold temperature depends on plant
species, an average maximum temperature of 35–40 ∘C was highlighted in
crops, forage, rangeland, and wild species (Wahid et al., 2007; Hasanuzza-
man et al., 2013; Dürr et al., 2015). Consequently, extreme heat stress would
be considered as long-term 40 ∘C conditions, above which most plants are
out of their optimal temperature ranges.

In addition, extremophile plants able to inhabit ecosystems like high
mountains or deserts are facing low soil suitability (Larcher et al., 2010; Sun
and Wang, 2016). This is particularly true for mineral nutrients such as N
or phosphate for which soil deficiencies could be observed in natural con-
ditions. An outstanding example is given with the Atacama desert in South
America and South-western Australia lands characterised by extremely low
N and phosphate soil availability, respectively (Lambers et al., 2011, 2013;
Díaz et al., 2016). Nevertheless, these very harsh environmental conditions
are rather rare as human activities have modelled most nutrient contents in
the soil to suit the need for agricultural practices.

In stark contrast, light is not a limiting factor in desert or mountain
ecosystems where the irradiance can even reach extreme levels (Piacentini
et al., 2003). Further, the daily light integral (between 1 and 50 mol m−2 d−1),
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which is the photosynthetic photon flux density (400–700 nm) integrated
over a day, has shown a positive relationship with multiple phenotypic traits
(Poorter et al., 2019). However, expected ozone reduction could increase
solar irradiance (Williamson et al., 2014) including (i) UV-B (280–315 nm)
radiations that disturb plant performance directly by causing DNA and
membrane damage or indirectly by increasing mutation occurrences (Zlatev
et al., 2012) and (ii) UV-A (315–400 nm), which impact both photosynthetic
level and plant growth (Verdaguer et al., 2017). A meta-analysis of the
responses of woody and herbaceous plants from different latitudes to 40%
elevated ambient UV-B radiations have shown deleterious effects on several
phenotypic traits (Li et al., 2010).

Finally, while the previously mentioned abiotic variables naturally
occur at extreme levels, human activity has led to the development of
extreme lands where plants should harbour adaptive traits to cope with
high heavy metal concentrations for instance. Soil contaminations by the
overaccumulation of essential micronutrients [e.g. copper (Cu), cobalt (Co),
manganese (Mn), molybdenum (Mo), and zinc (Zn)] or highly toxic elements
[e.g. arsenic (As), cadmium (Cd), chrome (Cr), nickel (Ni), and lead (Pb)] are
increasingly common and lead to diverse toxic effects on plants (Nagajyoti
et al., 2010; Tóth et al., 2016). Metallophytes are plants capable of grow-
ing in metal-contaminated soils while the great majority of plants cannot
(Antonovics et al., 1971). They represent 500 plant species among which most
are obligate metallophytes (Pollard et al., 2014). Recently, a special interest
has grown on a subgroup of metallophytes known as hyperaccumulators,
which can survive while concentrating metals in shoots. Concentration
thresholds in dry weight foliar tissue to define a plant as hyperaccumu-
lator were nicely described for both essential micronutrients (e.g. Co and
Cu> 300 μg g−1; Mo> 1500 μg g−1; Zn> 3000 μg g−1; Mn> 10 000 μg g−1) and
highly toxic elements (e.g. Cd> 100 μg g−1; Cr, Ni, Pb and As> 1000 μg g−1)
(Krämer, 2010; Boojar and Tavakkoli, 2011; Singh et al., 2013; Peng et al.,
2020).

Altogether these observations suggest that an environmental variable
could be defined as ‘extreme’ when its intensity lies at the edges of its
organism-specific, life-compatible gradient, for a duration or periodic-
ity high enough to allow extremely few species to survive and thrive in the
ecosystem to which this variable belongs. Any environment lying at the
edges (or ‘extremes’) of any abiotic gradient generates enough stress that
would kill most organisms (Rothschild and Mancinelli, 2001). Consequently,
adapted organisms able to thrive under such conditions are termed ‘lovers’
(phílos in Ancient Greek) of ‘extremes’ (i.e. extremophile). Accordingly, the
adaptation of an organism to its environment would refer to any heritable
change in genotype that improves survival and physiological activity at any
level of organisation in response to an environmental variation, whereas
acclimation would refer to plasticity, which involves both gene expression
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and molecular mechanism variations in response to a change in the environ-
ment (Borowitzka, 2018). Nicotra et al. (2010) further stated that phenotypic
plasticity was a feature that could be considered an adaptive trait if present
over a long-term period. Besides, the adaptive traits of extremophile plant
species positively influence the plant performance by increasing its capacity
to survive, generate biomass, and even reproduce (Fernandez et al., 2016;
Fridley, 2017). Indeed, the trade-off between survival and growth required
under harsh environmental conditions are driven by specific adaptations on
behalf of any organism to survive (Rothschild and Mancinelli, 2001).

Hitherto, several reviews have nicely summarised the progress into
the analysis of the plant responses to abiotic stress (Bundy et al., 2008;
Nakabayashi and Saito, 2015; Bowne et al., 2018) and biotic factors (Suzuki
et al., 2014; Mhlongo et al., 2018; Tugizimana et al., 2018). Here, this review
tackled the main advances in the understanding of the adapted traits fixed
through evolution that allow for plant resistance against abiotic stress in
extreme ecosystems. Spatio-temporal adaptations from extremophile plant
species are described from morpho-anatomical features to physiological
function and metabolic pathway adjustments, considering that plant resis-
tance can be reached either by avoiding the intrusion or by tolerating its entry
without impacting the plant (Levitt, 1980). Considering that metabolism is
at the heart of plant adaptations, we particularly focus on the roles of both
primary and secondary metabolic pathways, as well as the adjustments
of redox metabolism under extreme conditions. Finally, we cast a critical
glance at the main successes in studying extreme environments and examine
some of the challenges and opportunities that this research offers, especially
considering the possible interaction with ecology and phenomics.

2 Life Cycle and Morphological Adaptations, a Critical Step
to Jump the Hurdles of Extreme Environments

Plant adaptation arises from changes in morphology and life cycle, and both
are the product of development and evolution. Moreover, morphology is
central to plant taxonomy and used to infer phylogeny. Nevertheless, the
organisation and evolution of molecular diversity and phenotype are also
structured and correlated with abiotic environmental heterogeneity and
stress (Nevo, 2001).

Even though harsh environments present relatively low total species bio-
diversity compared to mild physical conditions (Brown, 1990), extreme or
stressful environments tend to display high genetic diversity and phenotypic
adaptations (Nevo, 2001).

This section seeks to summarise and contrast some examples of life cycle
and morphology adaptations to survive in extreme environments and is by
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no means an exhaustive list of all possible adaptations. Instead, it reflects
some life cycle adaptations from a temporal avoidance perspective and some
structural adaptations to tolerate or avoid stresses related to water resources,
salinity, temperature, and radiation.

2.1 Temporal Avoidance Adaptations

Apart from molecular, physiological, and morphological adaptations, plant
survival in harsh environments also relies on seasonal responses to variable
environmental conditions. In this context, the temporal response to abiotic
stress represents an escape or avoidance strategy with which plant life
cycles synchronise with seasonal variations. On the other hand, seedling
germination, establishment, and initial development are the most vulner-
able and challenging aspects in a plant’s life, imposing a vital population
bottleneck. Finding the right time and space to germinate is crucial to avoid
non-favourable growing seasons.

2.1.1 Short Life-forms
Plants (tissues or organs) may not need to be adapted to tolerate every season
or the harshest environmental conditions. Geophytes (a perennial herb that
propagates from an underground organ) or therophytes (short-life annual
herbs), for example, are very dominant in deserts and steppes (Vidiella
et al., 1999). These plants need effective mechanisms to sense environmental
parameters, undergo rapid growth and development strategies to complete
their life-cycle in a short period, and the ability of seeds or underground
organs to survive during non-favourable seasons. Reproduction is also an
essential trait under temporal regulation in extreme environments. Annual
plants need to complete their life cycle in a short time period and, in some
flood habitats, need to accelerate flowering during unpredictable short dry
periods (Blom et al., 1990). In the winter-rainfall Succulent Karoo of South
Africa, some perennials flower in autumn to avoid pollination competition
with annuals during spring (Cowling et al., 1999).

2.1.2 Seed Adaptations
Seed dormancy is a common strategy to survive often unpredictable
prolonged dry or cold periods. Another key strategy to increase seedling
survival, however, is to spread germination over different time periods
during transient favourable circumstances, but with overall unpredictable
future conditions (Cohen, 1966; Gutterman, 2000). In some extreme cases,
dispersal via seeds is not the most successful strategy, and some plants
favour germination on the parent and disperse live seedlings or propagules
(vivipary and pseudovivipary). Many plants use these germination strate-
gies in salty shallow marine environments, such as mangroves or seagrasses,
allowing some development (shoots, roots, floating systems) before being
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adrift in salty and hypoxic water (Tomlinson and Cox, 2000; Alleman and
Hester, 2011). This strategy is also used in arid environments. The epiphyte
Tillandsia recurvata in the Southern Chihuahuan Desert of North America
presents ‘true-vivipary’ as roots of seedlings may attach to hosts more
readily than seeds without roots (Pérez-Noyola et al., 2020). The epiarenitic
Tillandsia landbeckii survive exclusively off fog along the hyperarid coast of
the Atacama Desert (Rundel et al., 1997) and produce asexual propagules
that are released to the environment as small, fully developed, clones of
the mother plants (pseudovivipary). This strategy allows them to quickly
colonise favourable environments as fog water input fluctuates over time
(Latorre et al., 2011).

2.2 Structural Tolerance and Avoidance Adaptations

Many extreme environments can be further defined by marked seasonality or
by the absence or excess of one or more essential resources such as nutrients.
Perennial plants that grow in extreme seasonal environments cannot escape
temporally and therefore have evolved structural and morphological mech-
anisms to tolerate such stress. Rooting systems are adapted to use different
strategies to cope with environmental stress. Leaf size and shape along with
the density of stomata, epicuticular wax development, and trichomes are all
influenced by environmental factors and are key components in determin-
ing the leaf boundary layer (Bickford, 2016), which has a significant impact
on transpiration, leaf water status, and stomatal behaviour (Hill et al., 2015;
Matthews and Lawson, 2018). Some of these adaptive mechanisms are con-
stitutive (e.g. breathing roots, succulence, salt glands) and others are induced
(e.g. supercooling, stomata control) responses that allow plants to maintain
homeostasis despite environmental fluctuations.

2.2.1 Water Resources
In deserts, depending on the amount, seasonality, and predictability of
rainfall, xerophytic plants develop diverse strategies to survive in arid
environments. One root system, already mentioned with temporal scape
strategies, is the underground perennating rootstocks typical of geophytes.
In contrast, phreatophytic species use deep tap roots to reach the ground-
water table and other desert species grow branched horizontal and shallow
roots to collect surface water as primary sources. These root system archi-
tectural adaptations even modify community attributes. For instance, some
desert perennials have extremely shallow (0.1–0.2 m) roots, making them
vulnerable to rare episodes of lower-than-average rainfall, generating entire
communities of relatively short-lived (5–10 years) shrubs (Von Willert et al.,
1985; Cowling et al., 1999).

Leaf and stem aerial plant tissues have evolved diverse morphologies
and structures to tolerate aridity, from dwarfism with a low leaf index to
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waxy skin, hairs, and thorns to reduce water loss and to reflect heat. Some
perennial plants even lose their leaves or entire shoots as conditions become
drier. One of the better known structural adaptations is succulent leaves
or stems, common in dehydration or salt stress environments. Succulents
are plants with fleshy stems (e.g. Cactaceae, members of Euphorbiaceae) or
leaves (e.g. species of the Aizoaceae, Crassulaceae, or Portulacaceae) that
store more water than required for immediate metabolic needs (Cowling
et al., 1999). Stem succulence illustrates the convergent evolution of func-
tional adaptations in morphology. The external similarities contrast with a
variable internal architecture, including the participation of different stem
tissues in water storage (Eggli and Nyffeler, 2009).

Stomata control the uptake of CO2 into the leaf along with water loss
through transpiration and are critical for maintaining plant water balance
and leaf temperature. Stomata size (guard cell length) and density deter-
mine their conductivity, but these structures adjust to the environment
to balance the requirement for CO2 entry against leaf dehydration. When
water is limited, stomata modify their position and can be sunken and
concentrated below the leaf surface or protected in leaves pressed into the
stems (Sundberg, 1986; Dong and Zhang, 2000). Small stomata structures
or densities will avoid water loss, but in many deserts, temperatures are
high, so the increased leaf temperature as a result of stomatal closure
can negatively impact plants (Matthews and Lawson, 2018). Xerophytic
plants have evolved different strategies to deal with water stress, including
increasing or decreasing their stomatal density depending on their partic-
ular environmental stresses, photosynthesis pathways (discussed below),
and life-forms (e.g. relatively large, infrequent stomata on the surface of
succulents) (Sundberg, 1986; Dong and Zhang, 2000).

In contrast to aridity, aquatic and flooded soil represent highly water-
saturated soils that exclude oxygen, one of the fundamental requirements
for plant life. Several anatomic adaptations facilitate gas transport in flooded
soils, such as developing aerenchyma and gas-tight barriers in the epidermis
and exodermis in roots decreasing radial oxygen losses (Aschi-Smiti et al.,
2003). In mangroves, massive root systems appeared. Some plant species,
such as Avicennia or Sonneratia, develop pneumatophores or breathing roots
to obtain the scarce oxygen present in the mud (Scholander et al., 1955;
Purnobasuki, 2011). Another structural root adaptation in mangroves is stilt
roots that diverge from stems and branches and penetrate the soil away from
the main stem to increase stability.

2.2.2 Salinity
Halophytes are adapted to live in salty environments, and they need to
develop methods for salt exclusion or excretion and water conservation. The
salinity tolerance of a species varies according to the plant’s developmental
status (Ball, 1988). Most halophyte root adaptations are physiological or
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metabolic, but root structure also changes. Some mangrove root systems are
isolated from the external solution by a hydrophobic barrier to apoplastic
transport in the periderm and exodermis, restricting the access of salty
water to a small distal proportion of the root periphery (Moon et al., 1986;
Krishnamurthy et al., 2014).

Salt secretors or secretohalophytes are salt-tolerant plants that excrete
excess salts through specialised glands on their leaf surfaces. This secretion
is found in more than 50 species in 14 families and can be grouped into
four structural classes sharing convergently evolved features that compart-
mentalise and excrete salt (Dassanayake and Larkin, 2017). Many grow in
mangroves, but others are common to deserts including Atriplex species,
where salt is excreted from salt glands into the central vacuole of the bladder
cell (Fahn, 1988).

Arid soils are often highly saline. It is suggested that salinity-induced
reduction in stomatal density represents a fundamental mechanism by
which plants optimise water use efficiency under saline conditions. In the
halophyte desertic plant Chenopodium quinoa, salt-grown plants showed a
significant (approximately 30%) reduction in stomatal density observed in
all leaves (Shabala et al., 2012).

2.2.3 Temperature
Temperature is one of the critical drivers of leaf size and shape worldwide,
generating giant leaves that have fewer, smaller teeth in tropical plants, and
tiny ones with more numerous teeth in deserts (Peppe et al., 2011). Aridity
limits leaf size as the risk of overheating during daytime maximum temper-
atures increases as they grow larger. In contrast, freezing risks limits leaf size
in wetter climates, especially freezing at night (Wright et al., 2017).

In high altitude and/or high latitude environments, leaves and stems
tolerate or avoid freezing temperatures and potential ice formation within
their tissues. Many plants survive to freeze through a process of cold acclima-
tion. In freezing-tolerant tissues, the construction of extracellular ice by loss of
cellular water lowers the cell’s freezing point by increasing solute concentra-
tion as well as by producing osmolytes. In freezing-avoidance, tissues survive
by supercooling, keeping cell solutions between the equilibrium freezing
point and the homogeneous ice nucleation temperature of water (usually
between −1 and −41 ∘C) (Wisniewski and Fuller, 1999). Freezing-tolerant
species such as Calluna vulgaris have developed ice barriers tissue at the base
of the pedicel, where the anatomical features of the pit membrane that are
likely impermeable to ice and the presence of hydrophobic substances such as
lignin, suberin, and cutin present in cell walls, represent a critical constriction
for ice propagation into supercooled tissues (Kuprian et al., 2016).

In hot environments, plants can reduce their internal temperature
using different structural adaptations, such as hairs and thorns to reduce
overheating. Stomata control and an effective cuticular barrier are key plant

Annual Plant Reviews Online, Volume 4. Edited by Jeremy Roberts.
© 2021 John Wiley & Sons, Ltd. Published 2021 by John Wiley & Sons, Ltd.

559



T Dussarrat et al.

adaptations for thermal control. The plant cuticle consists of a matrix of
polymeric cutin with cuticular waxes embedded or deposited in leaf surfaces
and act as a transpiration barrier at elevated temperatures (Schuster et al.,
2016). This plays a vital role in hot-desert plants, where it is imperative to
reduce transpiration while lowering overall temperature. Plant cuticle layers
are especially adapted in these habitats and show lower permeability than in
non-desert habitats and more resistance to temperature increases (Schuster
et al., 2016).

2.2.4 Radiation
The morphology of shoots and leaves is a key aspect for light capture and
can be modified by ultraviolet (UV) radiation changes. When plants are
exposed to excess UV-B radiation, overall biomass, and even root system
morphology can exhibit sizable declines (Caldwell et al., 2007). In addition,
UV-B has inhibitory effects on stem length, leaf size and leaf anatomy
(Verdaguer et al., 2017). UV-A also has morphological effects, especially on
leaf size and foliage.

The epicuticular wax and trichomes covering plant surfaces also play
important roles in protecting plants against UV radiation. The dense
trichomes often covering young leaves, in addition to other functions, tran-
siently protect the underlying cells against UV-B radiation damage while
other internal protective mechanisms develop (Karabourniotis et al., 1995).

3 Modulations of Plant Major Physiological Functions
in Extreme Conditions

The evolution of plant phenotype and lifespan in extreme ecosystems
requires the adaptation of some major physiological functions. In adequa-
tion to the life cycle and plant morphology features, these physiological
functions allow for the modulation of both the uptake and transport of
mineral elements (e.g. transport of salt from roots to glands in secreto-
halophytes) and the management of the allocation of C resources between
resistance or growth mechanisms in response to abiotic perturbation, for
instance. This section aims at summarising some of the physiological adap-
tations that extremophile plants harbour to face water scarcity, high solar
irradiance, and low soil suitability.

3.1 Extremophile Plants Facing Water Scarcity

In extreme environments, the plant water status is indirectly dependent
on precipitation levels and directly on their ability to draw water from
the soil or fog deposition, and limit losses due to evaporative mechanisms
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(Martin and von Willert, 2000; Xu et al., 2011; Schuster et al., 2016). Physical
and chemical soil properties represent a major environmental variable
that greatly participates in defining water resources (Hamblin, 1986) and
therefore plant water status. The structure and texture of the soil govern the
drying process during water shortage periods that affect plant growth in
two ways (Zou et al., 2010). First, the dehydration state of the soil surface
layers limits the microbial activity and the recycling of mineral nutrients,
which therefore impact plant performance (Sardans and Peñuelas, 2005;
Schimel, 2018). In contrast, long-term aridity leads to direct drought stress,
known for its disastrous effects on plant survival and development (Schulze
et al., 1980). Remarkably, assemblages of dry grasses, dwarf shrubs, and
cushions or Alpine semi-desert plants, naturally thrive in some of the
world’s driest regions found in the Pamir desert between 3500 and 4500
m.a.s.l or in the Atacama desert (Pyankov et al., 1999; Díaz et al., 2016,
2019), where the possibility of surviving is not limited to ‘extreme’ plant
families like Cactaceae or Boraginaceae, but extended in genera from crop
families including Poaceae (e.g. Jarava, Puccinellia), Asteraceae (e.g. Baccharis,
Parastrephia) and Fabaceae (e.g. Lupinus, Oxytropis). These ecosystems
are characterised by low precipitations (lower than 250 mm year−1), low
winter snow cover, extreme surface desiccation of soils and low relative air
humidity (lower than 40%) that force plants to cope with very little moisture
(Edwards et al., 2007; Díaz et al., 2016). Great advances have been made on
the understanding of the physical and biochemical mechanisms allowing
those extremophiles like Alpine plants to extract water from the soil and
limit their loss through evapotranspiration. In the course of evolution,
plants have developed a set of hierarchical control procedures that allow
both short and long-term control of water status (Körner, 2003). As an
example, extreme plants tend to limit water deficits during the growing
season by highly reducing the osmotic potential that could reach a level
lower than −2 MPa (Seemann et al., 1986; Körner, 2003; Liu et al., 2003). The
control of osmotic potential in extreme organisms, like for the Alpine plant
Potentilla saundersiana, is underlined by adaptive mechanisms involving
proteins, lipid peroxidation as well as metabolic adjustments (Ma et al.,
2015). They revealed the elevation gradient impact on 118 proteins involved
in antioxidant processes and on the adjustments of both primary (e.g. soluble
sugars, proline) and secondary metabolites (e.g. anthocyanins). The stressful
balance between the vital need of CO2 entry and the danger of water loss
has also led to precise control of stomatal density, length, and aperture (Li
et al., 2014; Chaves et al., 2016). However, the regulation of these structures
is not sufficient under extreme conditions for long-term control of plant
water status that requires other mechanisms such as the adjustment of dry
mater investments and phenology (e.g. restricting plant size, mass, and
area to limit water losses). Indeed, the trend of increasing stomatal density
may become reversed in elevation gradient (Körner et al., 1986, 1989) and
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it is now clearly accepted that plants employ multiple strategies to enhance
their adaptation to extreme environments. Thick cell wall structures, the
first mechanical barrier to environmental stress, have been observed in leaf
samples taken from plants grown at high elevations (Ma et al., 2015). Also,
a positive correlation was described between abiotic stress intensity and
positive interactions among Alpine plants (Callaway et al., 2002), where
more than 90% of the plants shared the same root system at 5200 m of
elevation (Ma et al., 2015).

3.2 Extremophile Plants Facing Energy Excess

In extreme conditions, plants are generally characterised by a short growing
season where vegetative and reproductive growth compete for carbon (C)
resources (Jordan and Nobel, 1979). In these challenging environments,
phenotypic plasticity has been considered as an important adaptation
response to harsh environments by improving fitness, suggesting a possible
role in natural selection under a rapidly changing environment (Richards
et al., 2006; Davidson et al., 2011; Godoy et al., 2011). The finding that
invasive plant species were more plastic than native ones illustrates the high
fragility of extreme environments where human activities could lead to a
profound ecological shift by modifying both water and nutrient cycles that
would enhance the ability of invaders to outcompete the existing vegetation
(van Kleunen and Richardson, 2007; Davidson et al., 2011). Indeed, the
invasion of non-native plants could restrict the access to environmental
resources (e.g. light availability), which would ultimately limit plant growth
of native species.

Plant biomass production is the net result of CO2 uptake through photo-
synthesis and its loss through respiration and depends on environmental
parameters like the photon flux density. Besides, CO2 fixation in plants is
governed by photosynthetic activity and leaf traits (Krall and Edwards,
1992; Reich et al., 1992). In the Alpine environment, specific leaf area (SLA,
leaf area per leaf mass) and total leaf area per total plant mass tend to
be lower at high elevation (Körner, 2003). Light is not a limiting factor of
photosynthetic activity during the growing season in such environments
(Berry and Bjorkman, 1980). Rather the opposite, these plants usually face
an excess in photon flux densities, which can cause an imbalance in the
photosynthetic machinery characterised by extreme rates of chloroplastic
electron transport that finally induce the formation of reactive oxygen
species (ROS, detailed in Section 4.3). Consequently, extreme species har-
bour relevant adaptations to adjust to this high photon flux by decreasing
chlorophyll a and b levels, increasing the carotenoid/chlorophyll ratio,
and developing effective photochemical quantum yield of PS II or photo-
chemical quenching coefficient, for instance (Öncel et al., 2004; Cui et al.,
2019). Also, two large databases on leaf traits of plant species from seven
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different ecosystems have been analysed to determine whether mass-based
metabolism rate was proportional to the surface area in plant leaves (Jin
et al., 2008). They have shown that the ratio between mass-based photo-
synthetic capacity and specific leaf area is significantly higher (1.66) in the
Alpine environment (low temperature and high light) than in the tropical
forest (1.23, high temperature and high light). In parallel, changes in leaf
structure and biochemistry have been observed with thermal acclimation of
photosynthesis and respiration in cold-tolerant crops (Yamori et al., 2009),
Antarctic vascular plants (Xiong et al., 2000), and tree species (Way and Oren,
2010). These observations pinpointed the impact of temperature variations
on all aspects of the C cycle including photosynthesis and respiration
processes (Zhang et al., 2015). This explains that temperature acclimation
appears to be central to species distribution and growth. In plants, thermal
acclimation can optimise C gain by (i) shifting the thermal optimum for
net photosynthesis to improve photosynthetic capacity, (ii) modifying the
respiration quotient (Q10) and/or the base respiration rate (Zhang et al.,
2015).

Thus, these observations suggest that water availability as well as ade-
quate temperatures are critical factors to ensure plant survival and growth
while light does not seem to be a limiting environmental feature within the
extreme habitats studied.

3.3 Extremophile Plants Facing Low Soil Suitability

In hostile environments, extremophiles not only have to cope with extreme
temperatures and aridity but also with an imbalance between essential
nutrients (e.g. N, P, and K) and deleterious elements to plant growth like salt
and heavy metals (An et al., 2019). In extreme ecosystems, adapted plants
are usually growing out of their physiological optimum, considering that
both excess and deficiency in soil mineral nutrients are common situations
(Lambers et al., 2011, 2013; Díaz et al., 2016). Consequently, plants growing
with limited mineral nutrients allocate more C in root systems to improve
the uptake capacity of the limiting soil resource (Li et al., 2019; Akram
et al., 2020). Similarly, this adaptive strategy was confirmed on diverse
perennial herbs that increasingly manage the biomass allocation towards
belowground parts and especially storage organs as elevation increases in
the Qinghai-Tibetan Plateau (Ma et al., 2010). Among mineral nutrients,
N is one of the main nutrients for plant growth and considered a limiting
factor for net primary production in all terrestrial ecosystems (Xia and Wan,
2008).

In most deserts, the N cycle is governed by the limitation of N that arises
from the limited plant cover, from fluctuations in rainfall and microbial
activities (León-Sobrino et al., 2019). The N cycle can be summarised as
an exchange of N between the atmosphere and the biosphere (Gruber and
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Galloway, 2008). The atmospheric N2 (78% of the atmosphere) is inaccessible
to higher plants and only a small number of Archaea and Bacteria is able to
fix N (Ramond et al., 2018). Thus, microbial activity became the key factor
to provide N to desert plants (Hanna et al., 2013), but this microbial activity
was controlled by water availability (Yuan et al., 2014). A comparative
study performed in five arid Mars analogue environments of the genes
related to the N cycle (nitrogenase and nitrite reductase, two functional
markers for the identification of microorganisms that mediate N fixation
and denitrification within any given community) and of the bacterial
community composition (using 16S rRNA clone libraries), has reported that
the soil content for almost all measured forms of C, N, and P was higher
at the more humid site than at the drier one (López-Lozano et al., 2012).
More recently, a study using the combinatory analysis of metagenomic and
metatranscriptomic data indicated that the soil salinity shaped microbial
communities, which play important roles in the N cycle providing C and N
nutrients for higher plants in saline soils (Ren et al., 2018). Likewise, bacteria
can break down and use P, which plays a fundamental role in the physiology
and biochemistry of all living organisms, in different oxidation states and
therefore contributes to ecosystem P cycling (Tapia-Torres et al., 2016).
Finally, a meta-analysis showed a negative effect of an extended drought
period on plant N and P contents, which suggested that water availability
was the main factor governing plant growth rather than N and P, under
long-term arid conditions (He and Dijkstra, 2014).

Furthermore, while soil nutrient availability limits plant development by
deficiency, salinity restricts the performances by excess (Dodd and Donovan,
1999). As an example, salinity is a key determinant for microbial commu-
nities in deserts (Zhang et al., 2019). Besides, in low-nutrient ecosystems,
nutrient resorption – the mechanism by which a plant withdraws nutrients
from senescent leaves – is a key process to limit nutrient losses and therefore
improve survival capacity (Lü et al., 2012). This mechanism was greatly
impacted by abiotic stress like salinity in arid lands (Drenovsky et al., 2010).
In addition, increasing salinity in desert ecosystems directly interferes with
the uptake of cations such as K+, Ca2+, and Mg2+ and reduces N availability
as well as P solubility (James et al., 2005). Consequently, extreme high
salinity (up to 200 mM) required specific adaptation allowing to manage salt
within the plant system. Halophyte plants have shown various remarkable
sodium (Na) regulation strategies by enhancing the accumulation and
compartmentation capacities, the ability to uptake and manage efficiently
essential nutrients (e.g. P), and the ability to regulate transpiration under
high salinity (Flowers et al., 2010). A first strategy to cope with saline soils
is the one used by pseudohalophytes, which develop the capacity to limit
the entry of saline ions within the transpiration stream. However, several
halophytes developed adaptive strategies to respond to the massive entry of
salt within leaf tissues. Indeed, while euhalophytes developed the possibility
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of accumulating salt within foliar tissues and sequestering it in vacuoles
(Flowers and Colmer, 2008), other halophytes are characterised by a secretion
capacity (i.e. secretohalophytes) allowed by secreting glands (see Section
2.2.2) (Wang et al., 2017).

Remarkably, these adaptive traits were also observed in metallophytes
(Verbruggen et al., 2009). As a consequence of human activity (agriculture,
industry), the frequency of soil contamination by heavy metals steadily
increases worldwide (Nagajyoti et al., 2010). Also, high concentrations of
heavy metal were observed in ecosystems already naturally characterised as
extreme (Zhang et al., 2013). The accumulation of essential micronutrients
like Co and Zn, or highly toxic elements like Cd and Cr limits plant growth
by impairing key physiological processes such as mineral nutrition, pho-
tosynthesis, and enzyme activities (Shanker et al., 2005; Yruela, 2009; Lin
and Aarts, 2012), a destabilising context further complicated when coupled
with other abiotic pressures in hostile ecosystems. The improvement of
physiological mechanisms has allowed revegetation of lands characterised
by high metal concentrations lying at the edge of the plant life-compatible
gradient. Indeed, years of evolution have led to highly specialised mech-
anisms, which enable metallophyte tolerance by restricting the entry of
metals into the shoot or by enhancing the ability to accumulate metals at
high concentrations (Whiting et al., 2004). Excluders (i.e. metallophytes that
maintain relatively low constant values of metals in the shoot) are able to
thrive by limiting the level of metals translocated from roots to aerial parts
until a critical soil value, above which the mechanism breaks down leading to
plant death (Baker, 1981). Oppositely, hyperaccumulators (i.e. metallophytes
capable of hyperaccumulating metals in aerial tissues) have been studied
for their environmental role in detoxifying contaminated-lands, a process
known as phytoremediation (Cunningham et al., 1995). Hyperaccumulators,
which diverged from 34 different plant families, have shown enhanced
capacities of metal uptake, long-distance transport, and detoxification (Peng
et al., 2020). Vacuolar sequestration in the leaves is thought to be the main
pathway of metal detoxification and involves an efficient transport from
the roots to the leaf vacuole and the chelation of metals, which are bound
to ligands such as organic acids or amino acids like histidine (Verbruggen
et al., 2009). Interestingly, these adaptive processes require enhancing the
expression of key genes that are shared with the non-hyperaccumulating
relative species, suggesting that several plants could adapt to extreme envi-
ronments by modifying basal functions rather than by developing entirely
new biochemical pathways. Also, the evolution of both constitutive or
induced barriers and physiological functions underlies specialised biochem-
ical adaptations as well as supplemental adaptive metabolic features that
together allowed a few plant species to cope with extreme environmental
conditions.
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4 Metabolic Adaptations at the Heart of Plant Responses
to Extreme Ecosystems

Metabolism is the cornerstone of plant responses to environmental changes.
Hence, the metabolic adaptations improving survival chances in hos-
tile ecosystems have received considerable attention over the past few
decades (see Table S1 for references). Using both targeted and untargeted
metabolomics techniques, great advances have been achieved to describe
these metabolic features by (i) comparing extreme species to related crops
or model plants (Lugan et al., 2010; Yobi et al., 2013), (ii) analysing plant
metabolic profiles in their natural environment (Tipirdamaz et al., 2006),
and (iii) characterising plant metabolic responses through a gradient of
abiotic stresses (Kumari et al., 2020). Untargeted and targeted analyses
on extremophile plants transferred to controlled conditions allowed iso-
lating one environmental variable to compare its effect on extremophile
versus model species and highlight different metabolic response strate-
gies. Complementarily, metabolic profiling of extremophile plant species
described the different biochemical compounds accumulated within a given
ecosystem, while the study of these organisms through a stress gradient
(e.g. elevation, salinity) improves our understanding of how extreme plant
metabolomes adapt to abiotic stress under extreme conditions (see Table S1
for references). This review sought to summarise these works, covering
five different ecosystems (i.e. deserts, mountains, frozen lands, saline lands,
and metal-contaminated sites), thereby pinpointing the convergences of
the metabolic responses between species in one ecosystems and between
ecosystems (Figure 1). This meta-analysis included 69 species and revealed
a dynamic response of central, primary, secondary, and redox metabolisms.
However, only 31.6% of the referenced metabolites referred to secondary
metabolism (Figure 1a). This suggests that these specialised metabolic path-
ways are often overlooked, which urges for enhancing untargeted analyses
with wide metabolome coverage of extremophile plant species.

4.1 Primary Metabolism

4.1.1 Central Pathways
Glycolysis, tricarboxylic acid cycle, and oxidative pentose phosphate path-
ways are ubiquitous in the plant kingdom and essential for defining plant
performance (plant growth and tolerance to biotic and abiotic stress) via its
interactions with the photosynthetic and photorespiratory processes and
amino-acid biosynthesis, for instance (Fernie et al., 2004). The glycolytic
pathway provides carbohydrates carrying osmoprotectant functions that can
also be used as a C source for polyol and oligosaccharide biosynthesis (Singh
et al., 2015). The central place of the tricarboxylic acid cycle (TCA) cycle in
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Figure 1 A comprehensive meta-analysis of the metabolic features observed
in plants thriving under extreme environments. (a) Distribution of affected
metabolic pathways. (b) Details of the distribution in five extreme ecosystems and the
response of molecules to environmental pressures: Higher, higher concentration; Lower,
lower concentration; Both, depending on the plant species. (c) UpSet plot of the
metabolic overlaps between ecosystems. The bottom left side shows the number of
metabolites described for each ecosystem. The right side shows the possibilities and levels
of intersections of these molecules between the five extreme ecosystems. Letters refer to
compounds associated with the intersection (one letter per column). a: aspartate,
inositol; b: proline; c: ascorbate, galactinol; d: glucose, sucrose; e: trehalose; f: glutamate,
glutamine; g: glutathione, histidine; h: fructose, threonine; i: GABA, j: malate, raffinose;
k: citrate, phenylalanine; l: mannitol; m: sorbitol, starch; n: pinitol, valine; o: stachyose,
tocopherol, xylose; p: melibiose; q: alanine, asparagine, choline, choline-O-sulfate,
fumarate, glycine, putrescine, serine; r: glycine betaine, lysine, rhamnose; s: arabinose,
arginine, spermidine, zeaxanthin; t: arachidonic acid, catechin, digalactosylglycerol,
linoleic acid, linolenic acid, oleic acid, ononitol, tryptophan; u: β-alanine betaine, fucose,
isoleucine, kaempferol, laricitrin, leucine, malonic acid, norvaline, quercetin, succinate,
tyrosine; v: allantoin, apigenin, galactose, guanosine, hydroxyproline, isocitrate, lutein,
luteolin, naringenin, neoxanthin, ribose, spermine, tri-O-galloylquinic acid, verbascose,
violaxanthin, γ-glutamylisoleucine, γ-glutamylleucine, γ-glutamylmethionine,
γ-glutamylphenylalanine, γ-glutamylthreonine; w: 2-oxoglutarate, abscisic acid,
caffeoylquinic acids, cinnamic acid, coumaric acid, farnesene, ferulic acid, gentiobiose,
glycerol, hypoxanthine, jacareubin, kokusaginine, maltose, melezitose, MHDglycerol,
neohesperidin, PicrosideI, PicrosideII, PicrosideIII, PicrosideIV, quebrachitol, ranunculin,
rebeccamycin, romucosine B, sagecoumarin, sagerinic acid, seychellene, tagatose, tannin,
thapsigargin, thujone, total carotenoids, total flavonoids, total sugards, total phenolic
content, total xantophyll pigments, tricetin, xanthosine, xylitol.
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abiotic stress tolerance has been widely accepted and characterised by the
role of organic acids as important players in osmoregulation, support of
ionic gradients across membranes, acidification of extracellular spaces, and
the maintenance of redox equilibrium (Igamberdiev and Eprintsev, 2016).
TCA enzymes were also linked to photosynthetic activity and organic acids
were embedded within a series of chemical reactions to produce or consume
amino acids and secondary metabolites (Sweetlove et al., 2010).

In extreme environments, the adjustment of these central pathways under
abiotic stress involved compounds that were up- or downregulated depend-
ing on the plant species and ecosystem (Figure 1b). Total soluble sugars,
including glucose, fructose, and sucrose, were likely to be induced with
the elevation gradient (Hashim et al., 2020). However, while high sucrose
concentration was reported independently of the plant species and environ-
ment, glucose, and fructose regulations were quite variable (Figure 1b and
Table S1). Interestingly, the same trends were observed within the TCA cycle
where malate accumulated for all conditions and species, whilst citrate,
fumarate, and succinate levels fluctuated, an observation perhaps explained
by the fact that major organic acid content depends on the plant species
(Chia et al., 2000; Mikulic-Petkovsek et al., 2012; Igamberdiev and Eprintsev,
2016). These results support the central place of these pathways in managing
C resource allocation between primary and secondary pathways and in
determining C allocation between plant growth and defence under extreme
environmental conditions.

4.1.2 Primary Metabolites
Lipids are major constituents of all biological membranes that represent
an interface between the cell and adverse environmental pressure (Mazliak,
1977; Anjum et al., 2015). The lipid remodelling observed in several plants
like Arabidopsis is one critical mechanism to improve membrane stability
and therefore limit damaging effects from freezing stress (Moellering et al.,
2010).

Similarly, the shifts in lipid compositions were observed in extreme plants
under abiotic stress like temperature (Zheng et al., 2011) or drought (Giarola
et al., 2017). As an example, lipid profiling of resurrection plants has revealed
an adjustment in lipid metabolism when submitted to drought stress (Quar-
tacci, 2002), resulting in higher unsaturation levels (Tshabuse et al., 2018).
Similarly, an increase in lipid unsaturation is a common response to cold
stress (Barrero-Sicilia et al., 2017) and a positive correlation was observed
between polyunsaturated fatty acid levels from seabuckthorn species and ele-
vation in the Himalayan mountains (Sharma et al., 2020), supporting their
role in maintaining membrane fluidity (Upchurch, 2008). Furthermore, the
remobilisation of membrane lipids towards the synthesis of signalling lipids
as phosphoinositides and phosphatidic acids was reported in the resurrec-
tion plant Craterostigma plantagineum (Gasulla et al., 2013) and accepted as
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a major regulator of membrane properties, protein functions and phytohor-
mone pathways (Hou et al., 2016). Altogether, these observations in both
freezing- and drought-tolerant extremophile plants suggest a central role of
lipid remodelling in adaptation to extreme environments, by countering the
effects of direct drought and cellular dehydration initiated by extracellular
ice formation (Moellering et al., 2010).

The role of primary metabolism in plant tolerance to osmotic stress was
highlighted when describing the importance of osmotic adjustment in
regulating plant cellular turgor and stomatal conductance (Blum, 2017).
Compatible solutes, organic osmolytes responsible for osmotic balance
and compatible with cellular metabolism (Galinski, 1993), have shown to
accumulate in both drought- and freezing-tolerant plant species for their role
in osmotic adjustment and cryoprotection (Chen and Murata, 2002; Bhandari
and Nayyar, 2014). Moreover, the contributions in plant tolerance to abiotic
stress of other compatible solutes, like the raffinose family oligosaccha-
rides (RFO), have been extended to participate in stabilising proteins and
membrane phospholipids (ElSayed et al., 2014).

Under extreme low temperatures, adapted woody plants have shown
high concentrations of oligosaccharides, which regulate viscosity in the
cytoplasm and therefore prevent deleterious effects of freezing temperatures
(Stushnoff et al., 1997; Strimbeck et al., 2015). Contents in disaccharides
(e.g. trehalose, melibiose), as well as RFOs like raffinose and stachyose,
were heightened under extreme temperatures, drought, and heavy metal
contamination (Figure 1c). Osmoprotective properties were also represented
among polyol compounds like mannitol, allowing plants to cope with
extreme salinity (Slama et al., 2015). Also, inositol, pinitol, mannitol, sorbitol,
and galactinol were over-represented within desert, cold-tolerant and
hyperaccumulator plant species, and likely to be upregulated under each
abiotic stress (Figure 1c). This observation agrees with the possible roles of
sugar alcohols as carbohydrate reserves or the thermoprotective function of
sorbitol in higher plants (Moing, 2000).

Besides sugars, plant resistance under extreme conditions is thought
to be partially related to the induction of amino acids, which are impor-
tant metabolic intermediates for the synthesis of environment-responsive,
specialised metabolites (Chouhan et al., 2017). In addition, a myriad of con-
troversial functions was proposed for other amino acids, for example proline
accumulation, including cytosolic pH buffer, protein structure stabiliser,
osmotic adjustment, ROS scavenger, and metal chelator. However, recent
efforts have allowed pinpointing the relationship of proline metabolism
between either the pentose phosphate pathway or the mitochondrial
electron transport (Kaur and Asthir, 2015). The central role of proline in
plant tolerance to multiple stresses could result from (i) its synthesis that
limits the reducing power, thus leading to an imbalance of photosynthetic
activity, and (ii) the benefits of proline degradation that provides C to the
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TCA cycle and thus contributes to respiratory activity (Kaur and Asthir,
2015).

Likewise, 26 extremophile species accumulated proline under various
stressful conditions, and the shikimic acid pathway activity resulted in
the accumulation of tyrosine and phenylalanine in some of these plants
(Table S1). These aromatic amino acids act as precursors for the biosynthesis
of flavonoids, known as secondary antioxidant compounds (Chouhan et al.,
2017), suggesting a possible role of secondary pathways in adaptation.
Furthermore, high concentrations of aspartate referenced in plant survivors
from several extreme ecosystems (Figure 1c) could be linked to redox and C
metabolisms by fuelling the synthesis of nicotinamide adenine dinucleotide
(NAD), a redox cofactor also involved in stress responses (Gakière et al.,
2018). However, pyridine nucleotide contents have been unfortunately
overlooked in metabolic studies of extremophile plants. Altogether, these
observations strongly suggest that the study of plant resistance against
extreme abiotic stress should not be restricted to primary metabolism
activity but broadened to a larger scale to include secondary and redox
metabolisms.

4.2 Secondary Metabolism

Plant secondary metabolism has been already recognised as a major actor
of plant–environment interaction, involving many specialised metabolites
that accumulate under stressful conditions (Akula and Ravishankar, 2011).
For instance, linear accumulations of polyphenols were revealed within
several elevation gradients for different species (Zidorn, 2010; Monschein
et al., 2015; Cirak et al., 2017). In extreme conditions, the impact of abiotic
stress on secondary metabolism was observed with 29 plant species from
different extreme environments (Table S1 and Figure 1b). The potential role
in the adaptation of several molecules including quaternary ammonium
compounds, terpenes, and phenolics was also mentioned for different plant
families. Interestingly, these compounds were not specific to extremophile
species and were further present in crop and model plants (Parida et al.,
2018). This suggests that secondary metabolites found in various plants
could play important roles in stress mitigation of harsh climates.

4.2.1 Nitrogen-related Compounds
Polyamines are N-containing secondary low molecular compounds involved
in both plant development and stress resistance (Chen et al., 2019). The
biosynthesis pathway of putrescine and higher polyamines as spermidine
and spermine is ubiquitous and greatly affected by abiotic stress. Molecular
mechanisms by which polyamines alleviate plant tolerance to abiotic stress
are not fully understood but several works have reported interesting proper-
ties and results for such compounds. As an example, the application of these
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compounds could regulate the size of potassium channels and therefore the
aperture of pores in the plasma membrane, which suggests a role in water
loss control (Alcázar et al., 2010). The integration of polyamines within both
primary and secondary pathways was supported by the foliar application
of putrescine that triggers the biosynthesis of amino acids and sugars (Chen
et al., 2019). Finally, polyamine accumulation promotes ROS degradation
by raising antioxidant enzyme activities and possibly affects ion transport
under salt stress (Saha et al., 2015, see Section 4.3).

Remarkably, polyamine profiles in extremophiles appear up- or downreg-
ulated depending on the environmental stress (Figure 1b). This observation
could be explained by the fact that plant resistance is more likely to be
associated with a high ratio of (Spermidine+ Spermine)/Putrescine, sug-
gesting that this protective role mainly involves higher polyamines (Zapata
et al., 2004; Chen et al., 2019). Another hypothesis is that polyamines could
conjugate with other molecules, such as coumaric or caffeoyl acids, and
lead to complex roles in plant defence (Alcázar et al., 2010; Burt et al., 2019).
However, the proportions between free and conjugated polyamines vary
among different plant species (Bagni and Tassoni, 2001), and few details on
the occurrence and function of such conjugated forms in extremophile plant
species are available.

Quaternary ammonium compounds have been controversially considered
as an adaptive response of halophytes or other extremophile plants that
improves plant tolerance to drought, salt, and low-temperature stress (Ashraf
and Foolad, 2007). Their input in plant resistance mechanisms was illustrated
by the high concentrations of glycine betaine and choline-O-sulfate found
in Alpine, desert, and halophyte plant species (Figure 1c). Both compounds
encountered in a wide range of extreme plants act as key compatible solutes.
Glycine betaine is synthesised in the chloroplast from choline or glycine and
could be involved in osmoregulation by modulating Na+ and K+ content,
leading to a higher K+/Na+ ratio, which alleviates salt tolerance in higher
plants (Hu et al., 2012). In addition, glycine betaine has shown a relevant
role in maintaining membrane integrity as well as enzyme activities. Finally,
accumulation of glycine betaine within different transgenic plant species
could protect the photosynthetic machinery against salt stress damage
(Giri, 2011). However, several plants like Brassica napus fail to accumulate
glycine betaine (Gibon et al., 1997) and higher levels could negatively
correlate with the production of other stress markers such as proline in some
extremophiles (Tipirdamaz et al., 2006).

Hence, while several extreme plants displayed important levels of
N-related compounds in hostile environments suggesting a possible role in
adaptation, great variabilities were observed about polyamine accumulation
and the understanding of how both polyamines and quaternary ammonium
compounds are integrated in the response to abiotic stress of the different
plant species. These observations raise the critical need (exposed in Section 5)
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of analysing metabolic features in a more holistic approach where tolerance
mechanisms would be integrated into the different plant systems thriving in
hostile ecosystems.

4.2.2 Terpenoids
Terpenoids, or terpenes, represent one of the main class of secondary metabo-
lites in terms of biodiversity and have been massively used as pharmaceu-
ticals and industrial compounds (Tetali, 2019). The two compartmented
pathways producing these compounds are the mevalonate (MVA) pathway
in the cytoplasm and the methylerythritol phosphate (MEP) pathway in
plastids, both leading to different subclasses of terpenoids (Cheng et al.,
2007). The activity of these chemical pathways can be inversely affected
in response to light conditions. While the expression of genes involved in
the MVA pathway that produces sterols is downregulated, MEP pathway
genes are upregulated under light conditions, enhancing carotenoid and
tocopherol production (Tholl, 2015). The role of carotenoids and tocopherols
in photoprotection through antioxidant activity has been already widely
characterised (described in Section 4.3), but new insights were highlighted
when describing the mechanism by which ROS can cause the oxidative
cleavage of carotenoids leading to hormonal compounds such as phyto-
hormones (e.g. strigolactone or abscisic acid) (Havaux, 2014). Finally, the
roles of phytohormones in plant resistance against abiotic pressures like
heavy metals contamination and osmotic stress are thoroughly examined in
different reviews (Fahad et al., 2015; Singh et al., 2016; Sharma et al., 2019).

Interestingly, the impact of abiotic stress on photosynthetic pigments and
tocopherols is verified in extreme environments where both compound
classes were accumulated in plants from desert and mountain ecosystems
(Figure 1c). Besides, the increased levels of zeaxanthin and abscisic acid
found in Alpine (Figure 1) and most resurrection plants (Rascio and Rocca,
2005) possibly illustrate the link between carotenoids and phytohormones.
Altogether, these observations in extremophile plants emphasise the pivotal
role for terpenes in stress signalling through hormonal responses, and
stress mitigation via the processing of excess ROS in response to extreme
temperatures and radiation levels, for instance.

4.2.3 Polyphenols
Polyphenols are another major group of secondary metabolites presenting
a wide biological diversity. Phenolics are synthesised from amino acids
like phenylalanine via the shikimic acid pathway and classified according
to their chemical structure. The five main classes, namely phenolic acids,
stilbenes, flavonoids, lignans, and others, have demonstrated pleiotropic
roles in both plant growth and resistance (López-Fernández et al., 2020).
Their contributions to extreme environmental stress responses are reflected
with the high polyphenol concentrations in plants of Alpine and desert
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environments, which cover a great part of abiotic stresses, ranging from
cold to high temperature, from nutrient deficiency to excess of salt, and
both present high light intensities (Figure 1c). Furthermore, phenolics
accumulated in a wide biodiversity of extremophile species (see Table S1
for references) and medicinal plants, some of which thrive under harsh
conditions (Li et al., 2020; Najjaa et al., 2020).

Complementarily, an increased concentration of flavonoids mainly
occurred in cold and high-light intensity or poor nutrient soil conditions
(Table S1). This observation corroborates with the fact that flavonoids, and
specially hydroxycinnamic acid derivatives (e.g. p-coumaric and ferulic acid)
or quercetin derivatives, hold an important antioxidant function improving
photoprotection and reducing damage caused by UV radiations and frost
(Agati and Tattini, 2010; Schulz et al., 2016). Recently, the UV-B protec-
tive function was extended to a global enhancement of ROS-processing
activity independently of the solar wavelength proportions, based on
the upregulation of flavonoids in response to ROS accumulation and an
imbalance of redox homeostasis (Di Ferdinando et al., 2012). In addition,
these same authors argue in favour of this hypothesis by highlighting the
interaction between cold and N stress that leads to the same flavonoid
upregulation profiles as for cold and high light conditions. Finally, the
comparison of flavonoid contents of several plants on different latitudes
reported a qualitative change in flavonoids in response to temperature
stress (Jaakola and Hohtola, 2010), which points the need of improving our
understanding about the distinct roles of flavonoid classes. On the other
hand, the accumulation of metabolites like cinnamic acid under extreme
conditions may have a role in the production of lignin compounds known to
be upregulated under abiotic stress to reinforce secondary cell walls (Le Gall
et al., 2015).

Finally, it is noteworthy that the biosynthesis of several phenolics, pro-
line, and polyols consume NADPH (Loescher and Everard, 2000; Szabados
and Savouré, 2010; Caretto et al., 2015), and thus participate in the control of
cellular redox homeostasis by limiting the excess of reducing power. Hence,
the increase of the NADP+/NADPH ratio would possibly enhance the oxida-
tive pentose phosphate pathway activity, which provides precursors for phe-
nolic compound production (Caretto et al., 2015). Altogether, these observa-
tions suggest that not only the proper function of each primary or secondary
compound matters but also both their biosynthesis and degradation, which
therefore emphasises the need of a more integrated approach to study the
metabolic features of extreme plants.

4.3 Tuning Redox Metabolism Upon Extreme Climates

Due to the presence of ground-state oxygen (O2) as a natural oxidant on
earth, reduction-oxidation (redox) processes generate ROS, which encompass
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highly reactive molecules that are partially reduced or excited forms of O2
(e.g. 1O2, H2O2, O2

•− and OH•) (Mittler, 2017). Fascinatingly, photosynthetic
organisms benefit from the redox potential of O2 to produce energy (ATP)
and reducing power (NAD(P)H) that fuel metabolic reactions. Hence, plant
central metabolism produces ROS mostly via three sources that include
chloroplastic photosynthesis, mitochondrial respiration, and peroxisomal
photorespiration (Schertl and Braun, 2014) (Figure 2a). In photosynthetic
tissues, ROS mainly originate from the photosynthetic electron transport
chain (Foyer, 2018), while other sources are important for different organs
such as fruit tissues (Decros et al., 2019). Study of redox metabolism in model
plant species outlined a dual function for ROS both as toxic by-products of
central metabolism and as powerful signals that modulate plant develop-
ment and environmental responses (Kalia et al., 2017; Smirnoff and Arnaud,
2019). Therefore, when redox homeostasis becomes unbalanced, a lack of
ROS or ROS accumulation leads to reductive or oxidative stress, respectively,
characterised by, for instance, DNA damages, oxidation of cysteine residues
in proteins and lipid peroxidation inducing retrograde signalling or in some
cases cell death (Figure 2b). Harmonious plant growth thus requires a finely
tuned redox homeostasis to avoid oxidative or reductive stress.

Due to their sessile lifestyle, plants have developed numerous antioxida-
tive defence pathways and strategies to control their redox state (Figure 2a).
Plants are natural biochemists that synthesise many different antioxidant
molecules, although most plant families have developed their own range of
specific antioxidant metabolites within their botanical taxa. Nevertheless,
some major redox buffers are ubiquitous, like ferredoxins, carotenoids,
vitamins (e.g. tocopherols), pyridine nucleotides, thioredoxins, glutathione,
and ascorbate, which play fundamental roles in the development of plants
and their responses to the environment (Geigenberger and Fernie, 2014;
Gupta et al., 2016; Gakière et al., 2018). Besides antioxidant compounds,
plants possess a common set of enzymes involved in ROS-processing
(i.e. superoxide dismutase (SOD), catalase (CAT), peroxidases), in the
control of the redox state (i.e. glutathione reductase (GR), dehydroascor-
bate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and
NAD(P)H-dehydrogenases), and signalling (e.g. glutaredoxins, thiore-
doxins) (Geigenberger et al., 2017; Martins et al., 2018). These redox
features interplay within the ascorbate–glutathione cycle, also known as
Foyer-Halliwell pathway, that involves a ménage-à-trois between ascorbate,
glutathione and NAD(P), thereby participating actively in ROS processing
and in controlling the cellular redox state (Foyer and Noctor, 2011; Decros
et al., 2019) (Figure 2a).

Redox metabolism is particularly responsive to environmental changes,
which has been extensively reviewed (Choudhury et al., 2017; Noctor et al.,
2018; Decros et al., 2019). In harsh environments, plants growing at high
elevation undergo extreme temperature variations, water limitation, nutrient
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Figure 2 Redox poise is pivotal to plant growth and acclimation. (a) Plants
produce ROS and other redox signals during growth and in response to environmental
stimuli. Redox homeostasis relies on the balance between ROS production (left side) and
processing (right side). This involves several enzymatic and non-enzymatic mechanisms,
including antioxidant metabolites and major redox buffers (NAD/P(H), ASC and GSH).
(b) Harmonious plant growth requires a finely tuned redox homeostasis to avoid
oxidative or reductive stress when the ROS/antioxidant balance is altered. ASC, ascorbate;
CAT, catalase; DHA, dehydroascorbate; GRX, glutaredoxins; GSH, glutathione; GSSG,
disulfide glutathione; mETC, mitochondrial electron transport chain; pETC,
photosynthetic electron transport chain; PRX, peroxiredoxins; ROS, reactive oxygen
species; SOD, superoxide dismutase; TRX, thioredoxins.

Annual Plant Reviews Online, Volume 4. Edited by Jeremy Roberts.
© 2021 John Wiley & Sons, Ltd. Published 2021 by John Wiley & Sons, Ltd.

575



T Dussarrat et al.

deficiency and high levels of irradiation inducing a reduced photosynthetic
activity (see above), which results in a surplus of reducing power (NADPH)
and higher (photo)respiration (Fernández Marín et al., 2020). All these
abiotic stresses have been shown to exacerbate ROS production by central
metabolism in model or agronomical species grown under laboratory condi-
tions (Choudhury et al., 2017; Pandey et al., 2017). Generally, abiotic changes
trigger an accumulation of antioxidative metabolites (e.g. tocopherols,
carotenoids, ascorbate, and glutathione) associated with discrepancies in
enzymatic activities of the ascorbate–glutathione cycle (Geigenberger et al.,
2017; Noctor et al., 2018). A combination of water deficit, high irradiance,
and temperature changes may induce a desynchronisation between pho-
tosynthetic electron transport chain (pETC) and light-harvesting reactions
leading to electron sinks, which can result in photooxidation (Gollan
et al., 2017) (Figure 2a). On the other hand, abiotic stress also influences
the mitochondrial (photo)respiration level and thus mitochondrial ROS
production, but to a lesser extent than chloroplast activity in photosynthetic
tissues (Sevilla et al., 2015). Plant mitochondria possess alternative oxidases
(AOX) and uncoupling proteins (UCP) that deviate the electron flow from
mitochondrial complexes (Saha et al., 2016). Consequently, these proteins
prevent excess mitochondrial ROS production by dissipating energy as
heat, thus giving more adaptability to plant respiration and participation in
mitochondrial signalling processes. Regrettably, a great majority of studies
realised in extreme environments have reported redox responses that involve
chloroplastic activity and photoprotective mechanisms, whereas few details
on mitochondrial metabolism are available.

To adjust to the higher oxidative stress in extreme habitats, plants
exploit sophisticated antioxidant systems to balance the redox poise. For
instance, to prevent oxidative damages, Alpine plants adapt their photo-
synthetic defence machinery by increasing their free radical-scavenging
capacity through the accumulation of photoprotective metabolites such
as carotenoids, flavonoids, and phenolics (Ma et al., 2015; Cui et al., 2019;
Hashim et al., 2020). These specialised plant compounds are powerful
antioxidants that process ROS, consume reducing power and can also avoid
UV-induced damages (Stapleton and Walbot, 1994; Bieza and Lois, 2001;
Caretto et al., 2015; Young and Lowe, 2018) (Figure 2a). A first field study
of nine Alpine plants from different elevations described a higher content
in total leaf antioxidants, especially in ascorbate (Wildi and Lutz, 1996),
suggesting an important role of redox homeostasis in plant acclimation.
Besides, a comparative study of 18 steppes species (∼1000 m) and 11 moun-
tain species (∼2000 m) identified an augmented antioxidant capacity in
species growing at higher elevation, with specific respect to SOD activity
and content in ascorbate and carotenoids (Öncel et al., 2004). More recently,
biochemical and proteomic analysis of Tibetan plants highlighted a positive
correlation between the content of soluble antioxidants (ascorbate and
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phenolics), ROS-processing enzyme activity (SOD, CAT, and ascorbate
peroxidase (APX)) elevation (Ma et al., 2015; Cui et al., 2019; Hashim et al.,
2020). Altogether, these studies of endemic species from the Tibetan plateau
reported a strong correlation between the elevation gradient and the plant
redox metabolism, which was characterised by higher enzymatic and
non-enzymatic ROS processing capacities.

Likewise, desert species also harboured higher contents in carotenoids and
flavonoids, and increased enzymatic activities of the ascorbate–glutathione
cycle, particularly glutathione reductase, suggesting a more important
role of glutathione- and thiol-related signalling in the adaptation to desert
lands (Streb et al., 1997; Talbi et al., 2015; Wang et al., 2016). In addition,
the high oxidation state of glutathione and ascorbate have been correlated
with desiccation and rehydration tolerance in Myrothamnus flabellifolia and
Boea hygrometrica, two resurrection plants (Kranner et al., 2002; Jiang et al.,
2007). Finally, even though most studies on extremophile plants demon-
strated a higher antioxidant capacity related to the main redox metabolites
and enzymes (ascorbate–glutathione cycle), a comparative study between
the native Antarctic species Colobanthus quitensis and a genetically related
species Dianthus chinensis, reported a normal antioxidant enzyme activity but
a higher antioxidant capacity related to sulphur and secondary metabolisms
(Clemente-Moreno et al., 2020). Conversely with the observation made in
other extreme environments, CAT and APX activity did not increase in
any of these species as well as glutathione content and oxidation state.
Nonetheless, after cold exposure, C. quitensis harboured a total antioxidant
activity 20 times higher than D. chinensis combined with a twofold increased
respiration rate and activity of alternative oxidase. This illustrates the
plasticity of redox pathways to maintain the redox poise depending on the
environment and plant botanical taxa.

Hence, cellular redox homeostasis is a key factor that accompanies plant
growth and responses to the environment, more remarkably within the activ-
ity of the ascorbate–glutathione cycle. In addition, antioxidant secondary
metabolism (e.g. carotenoids, flavonoids, and phenols) further appears as
a relevant pathway to stimulate plant oxidative defence capacity and thus
participates in the acclimation of plants to harsh environments. Currently,
the paradigm of redox biology tends to display a bigger and clearer picture
of the redox network occurring in plants, where multiple sources of ROS
are possible and associated with many ‘ROS processing systems’ (Noctor
et al., 2018). Spatial, temporal, metabolic, and antioxidant specificities are
multiple factors that can influence redox signalling. While knowledge on
redox biology in plants living in extreme environments is still fragmentary,
the concepts that originate from model and agronomic species are useful to
study the redox metabolism for plant acclimation.

The study of plants subjected to extreme environments undoubtedly
demonstrates a reorchestration of plant metabolism for primary, secondary,
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and redox pathways. However, the metabolic data available so far only
provide a fragmentary knowledge and a more holistic, global overview of
plant metabolome would benefit our understanding of plant acclimation to
harsh climates. This could be addressed through untargeted metabolomics
approaches to encompass a greater diversity of plant compounds, more
specifically for specialised metabolites and redox compounds, which are
likely to be central to mitigate stress. More importantly, it is now crucial
to define the steps that should be further addressed to move from the
description of metabolic features towards (i) the identification of metabolic
divergences that could result from species-specific adaptation, and (ii) the
convergences between plant species and between ecosystems to pinpoint
generic mechanisms underpinning adaptive strategies.

5 Challenges and Perspectives

The fascinating ability of plants to survive and thrive under extreme con-
ditions has always attracted the curiosity of humans, who have discovered
and improved plant species capable of meeting our physiological needs
(Preece et al., 2017). Thus, the domestication of therophytes was central to
the beginning of agriculture that took place over 10 000 years ago in the
Fertile Crescent (Riehl et al., 2012), an area characterised by its extreme
environments (Dai et al., 2012). These ancestors, that were adapted to harsh
environmental conditions, led after many years of breeding and genetic
improvements to the modern wheat and barley, currently two of the major
sources of food for humans (Awika et al., 2011). We now rely on these
and a few other domesticated species for our survival, which increases the
pressure on our ability to reshape the best genetic ideotypes of these plants,
whose yield is stagnating and even threatened by climate change (Long
et al., 2015). It was, therefore, tempting to return to study extremophiles
in order to identify resistance mechanisms that could then be transferred
to cultivated plants. However, this strategy has not proven very successful
so far. Thus, it has been more than 50 years since the accumulation of
compatible solutes observed in many halophytic and drought-resistant
species (Flowers, 1972; Jones and Gorham, 1983) raised great hopes, but
the transfer of these metabolic properties into crops did not improve yield
under abiotic stress so far (Turner, 2018). In other words, the reductionist
approach of studying resistance mechanisms in isolation might not allow us
to understand metabolic adaptation to extreme environments.

The first challenge will therefore be to use systems biology approaches
by which the metabolic adaptations of extremophiles can be contextualised
(Figure 3). By systems biology, we mean an iteration between experimen-
tation and modelling (Engelhardt et al., 2016), the goal of which will be to
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Figure 3 Perspectives for a better understanding of plant adaptations to
extreme habitats. A comprehensive exploration of the metabolome of multiple species
in different environments combined with physiological and ecological data using systems
biology approaches can lead to new breakthroughs in the understanding of plant
adaptation to extreme environments.

identify and then understand the mechanisms used by extremophiles to
adapt. Because models are limited to transform input variables into output
variables, it will be particularly important to deal with the most interesting
models, especially when it comes to defining performance (Fernandez et al.,
2016).

The second challenge will be to make the most relevant observations
possible. It is probably useful to define performance first, then to choose
the species to be studied accordingly. Thus, if one is interested in the ability
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to maintain high growth under salt stress, it will be interesting to pick
fast-growing halophytes. More generally, it will be important to clearly
distinguish the ability to produce biomass, which is an important concept for
agronomy, and fitness or reproductive performance, which is an ecological
concept (Körner, 2018). Ecological and physiological optima can indeed
be very different. Related to that, an important question will be to decide
whether studies will be performed in the natural environment (Kumari
et al., 2020) or under controlled growth conditions. Moving plants from
their natural environment to controlled conditions provides the possibility
to achieve reproducible experiments in which factors such as water supply
or temperature can be tested (Figure 3). However, such an approach is likely
to cause an acclimation process that could hide adaptive traits, unless the
natural context is perfectly reproduced (e.g. soil composition, atmospheric
pressure, environmental variable interactions). In contrast, ecosystems
could be used as natural laboratories, in which the environment would
be thoroughly monitored by characterising a maximum of environmental
variables and by defining the analysis period (e.g. season, time of the day,
plant organ, and developmental stage). However, even if given factors could
vary (e.g. adding fertiliser or watering), a major threat here lies in poor
reproducibility of the growth conditions. Thus, field experiments require
an in-depth analysis of the environment, in which climate and edaphic
variables and species biodiversity are monitored over different seasons or
even years (Díaz et al., 2016, 2019). Plant phenology can also represent an
issue when biomass and biodiversity are constantly fluctuating with seasons
and weather conditions that regulate plant development and physiology
(Nicotra et al., 2010) (Figure 3). Once these design steps have been tack-
led, the description of metabolic adaptations from both therophytes and
perennial extreme plants has greatly improved (See Table S1 for references.)
Interestingly, as knowledge of the environment increases, more and more
metabolic convergence is found between plant species (Figure 2b), but also
distinct strategies. Thus, the orchestration of primary pathways that leads to
the accumulation of amino acids or their use as precursors of a range of sec-
ondary metabolites appears to be universally shared between extremophile
plants (Lugan et al., 2010; Arbelet-Bonnin et al., 2020). Then, relatively high
levels of the N-rich polyamines (e.g. putrescine, spermidine, and spermine),
which can be conjugated to a range of secondary metabolites (Alcázar
et al., 2010; Burt et al., 2019), and quaternary ammonium metabolites have
been found in a wide range of extremophiles. Strikingly, these groups of
metabolites are often negatively correlated with other stress markers such
as proline (Tipirdamaz et al., 2006) and could even decrease performance in
non-accumulating species (Gibon et al., 1997). Besides, increased amounts of
isoprenoids like photosynthetic pigments and phenolics such as flavonoids
were observed in harsh ecosystems (Yobi et al., 2012, 2013) and their levels
correlated with elevation in alpine regions (Cui et al., 2019). Finally, a
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central role has been suggested for redox metabolism, independently of
plant species and environments (Eshel et al., 2017; Zhao et al., 2019; Hashim
et al., 2020). However, the high biochemical diversity of metabolites that
are abundant in extremophiles (Peters et al., 2018) including many that are
still unknown (Gagneul et al., 2007; Sanchez et al., 2011), and the absence
of success in engineering the accumulation of compatible solutes in crops
(Turner, 2018), are still making the understanding of metabolic adaptations
to extreme environments very difficult. Consequently, we now need to
enlarge the coverage of the metabolome when studying extremophiles, in
particular by using untargeted analytics and improve our annotation capac-
ities (Allard et al., 2017) (Figure 3). Then, data should be integrated by using
both unsupervised and supervised statistical approaches to highlight and
then confirm hypotheses linking metabolism and adaptation (e.g. relations
between metabolic traits and performance). These efforts will directly enrich
the basis of the metabolic features from extremophile organisms that will
thereafter be crucial to moving from their description to the comprehension
of adaptive mechanisms harboured by both therophytes and perennial
plants.

The third challenge will be to reconsider the concept of model species
(Figure 3). Traditionally, physiological studies and later functional genomics
have focused on a given species to study adaptation, betting that mechanisms
found in one species could be relevant to others and transferred to crops
(Cushman and Bohnert, 2000). More recently, the use of intra-species genetic
diversity has emerged as a powerful tool to study metabolism and better
understand how it participates in plant performance (Clancy et al., 2018;
Tůmová et al., 2018). The so-called metaphenomics approach goes even fur-
ther by researching mechanisms within panels of species (Poorter et al.,
2010; Sardans et al., 2020) (Figure 3). Metaphenomics allows the integration
of phenotypic traits (e.g. senescence, plant resistance, biomass production
and allocation) and environmental data for a wide range of species via
meta-analyses (Poorter et al., 2010). This approach has been performed
to quantify combinations of phenotypic performance in different stressful
environments (Wright et al., 2004; Poorter et al., 2010), and to analyse the
biomass allocation in multiple species, in response to the environment
(Poorter et al., 2012, 2015). Strikingly, the introduction of biological functions
such as photosynthesis within these meta-analyses has provided promising
results by correlating the plasticity to light intensity, plant density and plant
environments (Poorter et al., 2019). Besides, the integration of data gathered
from multiple species could be very useful for studying metabolism. For
instance, a study carried out with ten species of fruit has shown a close
link between fruit relative growth rate and the composition of the biomass
(Roch et al., 2020). This approach could be particularly useful for studying
the metabolic adaptations of extremophiles, which indeed seem to use
convergent metabolic mechanisms to adapt. A more systematic approach
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based on the comparison of the metabolome and other metabolic traits
of panels of extremophile and non-extremophile species will allow us to
address better the contributions of generic or specific mechanisms involved
in metabolic adaptation. Fortunately, hostile ecosystems not only offer
the opportunity to investigate physiological mechanisms under realistic
conditions but also provide the possibility of coupling metabolomics to
ecology (i.e. to connect metabolism with performance defined as fitness).
Eco-metabolomics has been defined as ‘the application of metabolomics
techniques in ecological studies to characterise biochemical mechanisms
underlying interactions of organisms with the environment and with other
organisms across different spatial and temporal scales’ (Peters et al., 2018)
and appears as another great opportunity to move from model systems
to native populations in the field (Nagler et al., 2018; figure 3). Evolution
has led to a huge diversity of metabolites estimated at around one million
compounds that have different or common functions and various levels of
interaction (Kroymann, 2011; Afendi et al., 2012). Eco-metabolomic studies
would allow employing this biodiversity as an advantage by investigating
the adaptive metabolic features on a multi-species level, which would
therefore emphasise the research on convergent adaptive mechanisms to
cope with both biotic and abiotic stresses (Hennion et al., 2012; Sardans et al.,
2020).

Finally, the discovery of convergent and divergent metabolic adaptations
to extreme environments should be complemented by a better understand-
ing of developmental processes that allow survival, growth and ultimately
fitness. As an example, both flowering deserts of Atacama and Namaqualand
after the rainy season offer a good representation of what plant evolution
allowed in terms of structural, physiological, and metabolic responses to
extreme conditions (Cowling et al., 1999; Vidiella et al., 1999). Indeed, while
several annual plants have developed spectacular capacities of providing an
entire life cycle in a short-time period under extreme conditions, suggesting
both adequate sensors and efficient biological systems from uptake to devel-
opment, perennial plants have to face a stressful decision between plant
growth, energy storage, and plant defence. Watering and N-fertilisation
experiments performed with desert extremophiles have shown the positive
relationship between water and/or N supply and biomass production and
further traits involved in plant performance (Gutierrez and Whitford, 1987;
Brooks, 2003; Zhou et al., 2011). Moreover, the role played by metabolism in
this gap between the ecological optimum and the physiological optimum
remains very little explored. Also, an experiment performed with the apple
of Sodom (Calotropis procera) in the Negev desert nicely provided new
insights into the activity of both primary and secondary pathways following
water input and pinpointed the challenge of linking plant performance,
environmental perturbations, and metabolic responses (Ramadan et al.,
2014). Finally, the multiplication of this type of experiment, in a wide range
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of species, with an exhaustive collection of environmental and physiological
data (in particular performance descriptors) as well as a deep exploration of
the metabolome, should lead to the uncovering of many mechanisms and
at the end a better understanding of adaptation (Figure 3). In this context,
we can already speculate on the importance that the interoperability of
metabolomics data and the annotation of metabolomes will have on the
discovery process.

6 Concluding Remarks

Natural habitats are underpinned by numerous constraints, which often
occur simultaneously. The interaction of these environmental pressures
could result in adverse conditions that ultimately alter plant physiology.
Nevertheless, plants, most particularly Angiosperms, have the captivating
capacity to invade some of the most extreme and dynamic environments,
including arid and cold biomes (Folk et al., 2020). Extremophile plants have
been studied for decades and exciting progress has been made in the iden-
tification of the plant responses to some hostile habitats. Plant resistance to
these challenging conditions was allowed by temporal avoidance strategies
(e.g. short life-cycle), while other sessile organisms have developed a wide
range of structural and physiological features complemented by adaptive
metabolic mechanisms to adapt, therefore, through space. However, research
was mostly restricted to selective approaches based, for instance, on the
analysis of known adaptive mechanisms in a small number of species,
thus addressing only facets of the total. Hence, further investigations from
anatomical, physiological and molecular angles are necessary to enable
comprehensive, systems-wide approaches (Figure 3). To a greater extent,
metaphenomics allows an unprecedented connection between such anal-
yses and will therefore provide novel insight into the exploration and
understanding of the general strategies of plant adaptations.

Besides, the implementation of omics strategies based on high-throughput
and holistic analytical techniques holds great promise for the study of
multiple species, in various habitats, and through complementary, multi-
scale aspects. This would help provide a better understanding of adaptive
traits and address the question of acclimation in the context of adaptation.
Indeed, the fact that extremophile plants rarely perform at their physi-
ological optimum (Ramadan et al., 2014) raises the question of whether
their capacity to thrive results from efficient metabolic responses to abi-
otic stress, replacing adaptation as the capacity to acclimate to changing
environmental conditions? Furthermore, high-coverage metabolomics data,
obtained from multiple platforms, provide a unique opportunity to gain
fundamental insights into metabolic and even cellular regulations, which
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occupy a critical place for plant adaptation. Likewise, other levels of omics,
like transcriptomics and proteomics, will provide a significant boost to the
study and the comprehension of the adaptive molecular processes of plants
to extreme environments.

Acknowledgements

The authors would like to thank Dr Timothy Tranbarger (IRD, France) for
his invitation to contribute a review article for Annual Plant Reviews online.
The Pontifical Catholic University of Chile in Santiago (Chile) and the Uni-
versity of Bordeaux (France) are also acknowledged for providing financial
support through doctoral grants to Thomas Dussarrat and Guillaume Decros,
respectively.

List of Abbreviations

AOX alternative oxidase
APX ascorbate peroxidase
As arsenic
C carbon
CAT catalase
Cd cadmium
Co cobalt
Cr chrome
Cu copper
DHAR dehydroascorbate reductase
GR glutathione reductase
H2O2 hydrogen peroxide
MDHAR monodehydroascorbate reductase
Mo molybdenum
Mn Manganese
N nitrogen
NAD Nicotinamide adenine dinucleotide
NADP NAD phosphate
NADP(H) refers to both NADP+ and NADPH
Ni nickel
P phosphorous
Pb lead
ROS reactive oxygen species
SOD superoxide dismutase
Zn zinc

Annual Plant Reviews Online, Volume 4. Edited by Jeremy Roberts.
© 2021 John Wiley & Sons, Ltd. Published 2021 by John Wiley & Sons, Ltd.

584



Another Tale from the Harsh World: How Plants Adapt to Extreme Environments

Related Articles

Introduction: Biochemistry, Role and Biotechnology of Secondary Metabo-
lites (From APR Volume 2)
Modes of Action of Defensive Secondary Metabolites
Plant Pigments and Protection against UV-B Radiation
Abiotic Stress and Metabolomics
Abiotic Stress Responses are Governed by Reactive Oxygen Species and Age
Signalling Interactions in Flooding Tolerance
Regulating Root Aquaporin Function in Response to Changes in Salinity
Plant Desiccation Tolerance: A Survival Strategy with Exceptional Prospects
for Climate-Smart Agriculture
Multi-omics Insights into the Evolution of Angiosperm Resurrection Plants
Leaf Trait Plasticity and Evolution in Different Plant Functional Types
To Coldly Go where No Grass has Gone Before: A Multidisciplinary Review
of Cold Adaptation in Poaceae
Impact of Cell-wall Structure and Composition on Plant Freezing Tolerance

Supporting Information

Additional supporting information may be found online in the Supporting
Information section in the HTML rendition of this article.

References

Afendi, F.M., Okada, T., Yamazaki, M. et al. (2012). KNApSAcK family databases: inte-
grated metabolite-plant species databases for multifaceted plant research. Plant &
Cell Physiology 53 (2): e1. doi: 10.1093/pcp/pcr165.

Agati, G. and Tattini, M. (2010). Multiple functional roles of flavonoids in photo-
protection: Letters. New Phytologist 186 (4): 786–793. doi: 10.1111/j.1469-8137.2010
.03269.x.

Akram, M.A., Wang, X., Hu, W. et al. (2020). Convergent variations in the leaf traits of
desert plants. Plants 9 (8): 990. doi: 10.3390/plants9080990.

Akula, R. and Ravishankar, G.A. (2011). Influence of abiotic stress signals on
secondary metabolites in plants. Plant Signaling & Behavior 6 (11): 1720–1731. doi:
10.4161/psb.6.11.17613.

Alcázar, R., Altabella, T., Marco, F. et al. (2010). Polyamines: molecules with regu-
latory functions in plant abiotic stress tolerance. Planta 231 (6): 1237–1249. doi:
10.1007/s00425-010-1130-0.

Allard, P.-M., Genta-Jouve, G., and Wolfender, J.-L. (2017). Deep metabolome
annotation in natural products research: towards a virtuous cycle in metabolite
identification. Current Opinion in Chemical Biology 36: 40–49. doi: 10.1016/j.cbpa
.2016.12.022.

Annual Plant Reviews Online, Volume 4. Edited by Jeremy Roberts.
© 2021 John Wiley & Sons, Ltd. Published 2021 by John Wiley & Sons, Ltd.

585



T Dussarrat et al.

Allbed, A. and Kumar, L. (2013). Soil salinity mapping and monitoring in arid and
semi-arid regions using remote sensing technology: a review. Advances in Remote
Sensing. doi: 10.4236/ars.2013.24040.

Alleman, L.K. and Hester, M.W. (2011). Reproductive ecology of Black Mangrove
(Avicennia germinans) along the Louisiana coast: propagule production cycles,
dispersal limitations, and establishment elevations. Estuaries and Coasts 34 (5):
1068. doi: 10.1007/s12237-011-9404-8.

An, H., Tang, Z., Keesstra, S. et al. (2019). Impact of desertification on soil and
plant nutrient stoichiometry in a desert grassland. Scientific Reports 9 (1): 9422. doi:
10.1038/s41598-019-45927-0.

Anjum, N.A., Sofo, A., Scopa, A. et al. (2015). Lipids and proteins—major targets of
oxidative modifications in abiotic stressed plants. Environmental Science and Pollu-
tion Research 22 (6): 4099–4121. doi: 10.1007/s11356-014-3917-1.

Antonovics, J., Bradshaw, A.D., and Turner, R.G. (1971). Heavy metal tolerance in
plant. Advances in Ecological Research: 1–85. doi: 10.1016/S0065-2504(08)60202-0.

Arbelet-Bonnin, D., Blasselle, C., Rose Palm, E. et al. (2020). Metabolism regulation
during salt exposure in the halophyte Cakile maritima. Environmental and Experimen-
tal Botany 177: 104075. doi: 10.1016/j.envexpbot.2020.104075.

Aschi-Smiti, S., Chaibi, W., Brouquisse, R. et al. (2003). Assessment of enzyme induc-
tion and aerenchyma formation as mechanisms for flooding tolerance in Trifolium
subterraneum “Park”. Annals of Botany 91 (2): 195–204.

Ashraf, M. and Foolad, M.R. (2007). Roles of glycine betaine and proline in improving
plant abiotic stress resistance. Environmental and Experimental Botany 59 (2): 206–216.
doi: 10.1016/j.envexpbot.2005.12.006.

Awika, J.M., Piironen, V., and Bean, S. (2011). Major cereal grains production and use
around the world. In: Advances in Cereal Science: Implications to Food Processing and
Health Promotion (eds. J.M. Awika, V. Piironen and S. Bean), 1–13. American Chem-
ical Society: Washington, DC. doi: 10.1021/bk-2011-1089.ch001.

Bagni, N. and Tassoni, A. (2001). Biosynthesis, oxidation and conjugation of
aliphatic polyamines in higher plants. Amino Acids 20 (3): 301–317. doi: 10.1007/
s007260170046.

Baker, A.J.M. (1981). Accumulators and excluders -strategies in the response of
plants to heavy metals. Journal of Plant Nutrition 3 (1–4): 643–654. doi: 10.1080/
01904168109362867.

Ball, M.C. (1988). Ecophysiology of mangroves. Trees 2 (3): 129–142. doi: 10.1007/
BF00196018.

Barrero-Sicilia, C., Silvestre, S., Haslam, R.P. et al. (2017). Lipid remodelling: unravel-
ling the response to cold stress in Arabidopsis and its extremophile relative Eutrema
salsugineum. Plant Science 263: 194–200. doi: 10.1016/j.plantsci.2017.07.017.

Battisti, D.S. and Naylor, R.L. (2009). Historical warnings of future food insecurity
with unprecedented seasonal heat. Science 323 (5911): 240–244. doi: 10.1126/science
.1164363.

Berry, J. and Bjorkman, O. (1980). Photosynthetic response and adaptation to tem-
perature in higher plants. Annual Review of Plant Physiology 31 (1): 491–543. doi:
10.1146/annurev.pp.31.060180.002423.

Bhandari, K. and Nayyar, H. (2014). Low temperature stress in plants: an overview
of roles of cryoprotectants in defense. In: Physiological Mechanisms and Adaptation

Annual Plant Reviews Online, Volume 4. Edited by Jeremy Roberts.
© 2021 John Wiley & Sons, Ltd. Published 2021 by John Wiley & Sons, Ltd.

586



Another Tale from the Harsh World: How Plants Adapt to Extreme Environments

Strategies in Plants Under Changing Environment (eds. P. Ahmad and M.R. Wani),
193–265. New York: Springer. doi: 10.1007/978-1-4614-8591-9_9.

Bickford, C.P. (2016). Ecophysiology of leaf trichomes. Functional Plant Biology 43 (9):
807–814.

Bieza, K. and Lois, R. (2001). An arabidopsis mutant tolerant to lethal ultraviolet-B lev-
els shows constitutively elevated accumulation of flavonoids and other phenolics.
Plant Physiology 126 (3): 1105–1115. doi: 10.1104/pp. 126.3.1105.

Blom, C.W.P.M., Bögemann, G.M., Laan, P. et al. (1990). Adaptations to flooding
in plants from river areas. Aquatic Botany 38 (1): 29–47. doi: 10.1016/0304-
3770(90)90097-5.

Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine
in support of plant production. Plant, Cell & Environment 40 (1): 4–10. doi:
10.1111/pce.12800.

Boojar, M.M.A. and Tavakkoli, Z. (2011). New molybdenum-hyperaccumulator
among plant species growing on molybdenum mine – a biochemical study on
tolerance mechanism against metal toxicity. Journal of Plant Nutrition 34 (10):
1532–1557. doi: 10.1080/01904167.2011.585209.

Borowitzka, M.A. (2018). The “stress” concept in microalgal biology—homeostasis,
acclimation and adaptation. Journal of Applied Phycology 30 (5): 2815–2825. doi:
10.1007/s10811-018-1399-0.

Bowne, J., Bacic, A., Tester, M. et al. (2018). Abiotic stress and metabolomics. Annual
Plant Reviews Online: 61–85. American Cancer Society. doi: 10.1002/9781119312994.

Brooks, M.L. (2003). Effects of increased soil nitrogen on the dominance of alien
annual plants in the Mojave Desert: nitrogen effects on alien annual plants. Journal
of Applied Ecology 40 (2): 344–353. doi: 10.1046/j.1365-2664.2003.00789.x.

Brown, J.H. (1990). Species diversity. In: Analytical Biogeography (eds. A.A. Myers and
P.S. Giller), 57–89. The Netherlands: Springer. doi: 10.1007/978-94-009-0435-4_3.

Bundy, J.G., Davey, M.P., and Viant, M.R. (2008). Environmental metabolomics: a crit-
ical review and future perspectives. Metabolomics 5 (1): 3. doi: 10.1007/s11306-008-
0152-0.

Burt, A.J., Arnason, J.T., and García-Lara, S. (2019). Natural variation of hydroxy-
cinnamic acid amides in maize landraces. Journal of Cereal Science 88: 145–149. doi:
10.1016/j.jcs.2019.06.002.

Caldwell, M.M., Teramura, A.H., and Tevini, M. (1989). The changing solar ultravio-
let climate and the ecological consequences for higher plants. Trends in Ecology &
Evolution 4 (12): 363–367. doi: 10.1016/0169-5347(89)90100-6.

Caldwell, M.M., Bornman, J., Ballaré, C. et al. (2007). Terrestrial ecosystems, increased
solar ultraviolet radiation, and interactions with other climate change factors. Pho-
tochemical & Photobiological Sciences 6 (3): 252–266.

Callaway, R.M., Brooker, R.W., Choler, P. et al. (2002). Positive interactions among
alpine plants increase with stress. Nature 417 (6891): 844–848. doi: 10.1038/
nature00812.

Caretto, S., Linsalata, V., Colella, G. et al. (2015). Carbon fluxes between primary
metabolism and phenolic pathway in plant tissues under stress. International
Journal of Molecular Sciences 16 (11): 26378–26394. doi: 10.3390/ijms161125967.

Chaves, M.M., Costa, J.M., Zarrouk, O. et al. (2016). Controlling stomatal aperture in
semi-arid regions—The dilemma of saving water or being cool? Plant Science 251:
54–64. doi: 10.1016/j.plantsci.2016.06.015.

Annual Plant Reviews Online, Volume 4. Edited by Jeremy Roberts.
© 2021 John Wiley & Sons, Ltd. Published 2021 by John Wiley & Sons, Ltd.

587



T Dussarrat et al.

Chen, T.H.H. and Murata, N. (2002). Enhancement of tolerance of abiotic stress by
metabolic engineering of betaines and other compatible solutes. Current Opinion in
Plant Biology 5 (3): 250–257. doi: 10.1016/S1369-5266(02)00255-8.

Chen, D., Shao, Q., Yin, L. et al. (2019). Polyamine function in plants: metabolism,
regulation on development, and roles in abiotic stress responses. Frontiers in Plant
Science 9: 1945. doi: 10.3389/fpls.2018.01945.

Cheng, A.-X., Lou, Y.-G., Mao, Y.-B. et al. (2007). Plant terpenoids: biosynthesis
and ecological functions. Journal of Integrative Plant Biology 49 (2): 179–186. doi:
10.1111/j.1744-7909.2007.00395.x.

Chia, D.W., Yoder, T.J., Reiter, W.-D. et al. (2000). Fumaric acid: an overlooked form
of fixed carbon in Arabidopsis and other plant species. Planta 211 (5): 743–751. doi:
10.1007/s004250000345.

Choudhury, F.K., Rivero, R.M., Blumwald, E. et al. (2017). Reactive oxygen species,
abiotic stress and stress combination. The Plant Journal 90 (5): 856–867. doi: 10.1111/
tpj.13299.

Chouhan, S., Sharma, K., Zha, J. et al. (2017). Recent advances in the recombinant
biosynthesis of polyphenols. Frontiers in Microbiology 8: 2259. doi: 10.3389/fmicb
.2017.02259.

Cirak, C., Radusiene, J., Jakstas, V. et al. (2017). Altitudinal changes in secondary
metabolite contents of Hypericum androsaemum and Hypericum polyphyllum.
Biochemical Systematics and Ecology 70: 108–115. doi: 10.1016/j.bse.2016.11.006.

Clancy, M.V., Zytynska, S.E., Moritz, F. et al. (2018). Metabotype variation in a
field population of tansy plants influences aphid host selection: plant chemical
diversity in a plant-aphid system. Plant, Cell & Environment 41 (12): 2791–2805. doi:
10.1111/pce.13407.

Clemente-Moreno, M.J., Omranian, N., Sáez, P. et al. (2020). Cytochrome respiration
pathway and sulphur metabolism sustain stress tolerance to low temperature in
the Antarctic species Colobanthus quitensis. New Phytologist 225 (2): 754–768. doi:
10.1111/nph.16167.

Cohen, D. (1966). Optimizing reproduction in a randomly varying environment.
Journal of Theoretical Biology 12 (1): 119–129.

Cowling, R.M., Esler, K.J., and Rundel, P.W. (1999). Namaqualand, South Africa – an
overview of a unique winter-rainfall desert ecosystem. Plant Ecology 142 (1): 3–21.
doi: 10.1023/A:1009831308074.

Cui, G., Ji, G., Liu, S. et al. (2019). Physiological adaptations of Elymus dahuricus to
high altitude on the Qinghai–Tibetan Plateau. Acta Physiologiae Plantarum 41 (7):
115. doi: 10.1007/s11738-019-2904-z.

Cunningham, S.D., Berti, W.R., and Huang, J.W. (1995). Phytoremediation of
contaminated soils. Trends in Biotechnology 13 (9): 393–397. doi: 10.1016/S0167-
7799(00)88987-8.

Cushman, J.C. and Bohnert, H.J. (2000). Genomic approaches to plant stress tolerance.
Current Opinion in Plant Biology 3 (2): 117–124. doi: 10.1016/S1369-5266(99)00052-7.

Dai, F., Nevo, E., Wu, D. et al. (2012). Tibet is one of the centers of domestication of
cultivated barley. Proceedings of the National Academy of Sciences of the United States
of America 109 (42): 16969–16973. doi: 10.1073/pnas.1215265109.

Dassanayake, M. and Larkin, J.C. (2017). Making plants break a sweat: the structure,
function, and evolution of plant salt glands. Frontiers in Plant Science 8. doi: 10.3389/
fpls.2017.00406.

Annual Plant Reviews Online, Volume 4. Edited by Jeremy Roberts.
© 2021 John Wiley & Sons, Ltd. Published 2021 by John Wiley & Sons, Ltd.

588



Another Tale from the Harsh World: How Plants Adapt to Extreme Environments

Davidson, A.M., Jennions, M., and Nicotra, A.B. (2011). Do invasive species show
higher phenotypic plasticity than native species and, if so, is it adaptive? A
meta-analysis: Invasive species have higher phenotypic plasticity. Ecology Letters
14 (4): 419–431. doi: 10.1111/j.1461-0248.2011.01596.x.

Decros, G., Baldet, P., Beauvoit, B. et al. (2019). Get the balance right: ROS homeostasis
and redox signalling in fruit. Frontiers in Plant Science 10. doi: 10.3389/fpls.2019
.01091.

Di Ferdinando, M., Brunetti, C., Fini, A. et al. (2012). Flavonoids as antioxidants in
plants under abiotic stresses. In: Abiotic Stress Responses in Plants (eds. P. Ahmad and
M.N.V. Prasad), 59–179. New York: Springer. doi: 10.1007/978-1-4614-0634-1_9.

Díaz, F.P., Frugone, M., Gutiérrez, R.A. et al. (2016). Nitrogen cycling in an extreme
hyperarid environment inferred from δ15N analyses of plants, soils and herbivore
diet. Scientific Reports 6: 22226. doi: 10.1038/srep22226.

Díaz, F.P., Latorre, C., Carrasco-Puga, G. et al. (2019). Multiscale climate change
impacts on plant diversity in the Atacama Desert. Global Change Biology 25 (5):
1733–1745. doi: 10.1111/gcb.14583.

Dodd, G.L. and Donovan, L.A. (1999). Water potential and ionic effects on germination
and seedling growth of two cold desert shrubs. American Journal of Botany 86 (8):
1146–1153. doi: 10.2307/2656978.

Dong, X. and Zhang, X. (2000). Special stomatal distribution in Sabina vulgaris in rela-
tion to its survival in a desert environment. Trees 14 (7): 369–375.

Drenovsky, R.E., James, J.J., and Richards, J.H. (2010). Variation in nutrient resorp-
tion by desert shrubs. Journal of Arid Environments 74 (11): 1564–1568. doi:
10.1016/j.jaridenv.2010.05.030.

Dürr, C., Dickie, J.B., Yang, X.-Y. et al. (2015). Ranges of critical temperature and
water potential values for the germination of species worldwide: contribution
to a seed trait database. Agricultural and Forest Meteorology 200: 222–232. doi:
10.1016/j.agrformet.2014.09.024.

Edwards, A.C., Scalenghe, R., and Freppaz, M. (2007). Changes in the seasonal snow
cover of alpine regions and its effect on soil processes: a review. Quaternary Inter-
national 162–163: 172–181. doi: 10.1016/j.quaint.2006.10.027.

Eggli, U. and Nyffeler, R. (2009). Living under temporarily arid conditions - succu-
lence as an adaptive strategy. Bradleya: 13–36. British Cactus and Succulent Society.
doi: 10.25223/brad.n27.2009.a10.

ElSayed, A.I., Rafudeen, M.S., and Golldack, D. (2014). Physiological aspects of
raffinose family oligosaccharides in plants: protection against abiotic stress. Plant
Biology 16 (1): 1–8. doi: 10.1111/plb.12053.
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Monschein, M., Jaindl, K., Buzimkić, S. et al. (2015). Content of phenolic compounds
in wild populations of Epilobium angustifolium growing at different altitudes. Phar-
maceutical Biology 53 (11): 1576–1582. doi: 10.3109/13880209.2014.993039.

Moon, G., Clough, B., Peterson, C. et al. (1986). Apoplastic and symplastic pathways in
Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes. Functional
Plant Biology 13 (5): 637–648.

Munns, R. (2002). Comparative physiology of salt and water stress: comparative
physiology of salt and water stress. Plant, Cell & Environment 25 (2): 239–250. doi:
10.1046/j.0016-8025.2001.00808.x.

Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M. (2010). Heavy metals, occurrence
and toxicity for plants: a review. Environmental Chemistry Letters 8 (3): 199–216. doi:
10.1007/s10311-010-0297-8.

Nagler, M., Nägele, T., Gilli, C. et al. (2018). Eco-metabolomics and metabolic mod-
eling: making the leap from model systems in the lab to native populations in the
field. Frontiers in Plant Science 9: 1556. doi: 10.3389/fpls.2018.01556.

Najjaa, H., Abdelkarim, B.A., Doria, E. et al. (2020). Phenolic composition of some
Tunisian medicinal plants associated with anti-proliferative effect on human
breast cancer MCF-7 cells. The EuroBiotech Journal 4 (2): 104–112. doi: 10.2478/
ebtj-2020-0012.

Nakabayashi, R. and Saito, K. (2015). Integrated metabolomics for abiotic stress
responses in plants. Current Opinion in Plant Biology 24: 10–16. doi: 10.1016/j.pbi
.2015.01.003.

Neuner, G. and Hacker, J. (2012). Ice formation and propagation in alpine plants.
In: Plants in Alpine Regions: Cell Physiology of Adaption and Survival Strategies
(ed. C. Lütz), 163–174. Springer: Vienna. doi: 10.1007/978-3-7091-0136-0_12.

Nevo, E. (2001). Evolution of genome-phenome diversity under environmental stress.
Proceedings of the National Academy of Sciences 98 (11): 6233–6240. doi: 10.1073/
pnas.101109298.

Nicotra, A.B., Atkin, O.K., Bonser, S.P. et al. (2010). Plant phenotypic plasticity in
a changing climate. Trends in Plant Science 15 (12): 684–692. doi: 10.1016/j.tplants
.2010.09.008.

Noctor, G., Reichheld, J.-P., and Foyer, C.H. (2018). ROS-related redox regulation
and signaling in plants. Seminars in Cell & Developmental Biology 80: 3–12. doi:
10.1016/j.semcdb.2017.07.013.

Noy-Meir, I. (1973). Desert ecosystems: environment and producers. Annual Review of
Ecology and Systematics 4 (1): 25–51. doi: 10.1146/annurev.es.04.110173.000325.
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Environmental data.   

Elevation (m.a.s.l)Ca (meq/100gr) Fe (mg/kg) K (meq/100gr) NH4 (mg/kg) NO3 (mg/kg) Ntot (mg/kg) P (mg/kg) pH (mg/kg) S (mg/kg) p_Radiation (W/m2) p_Temp (°C) p_Soil_water_content (mm3)

2470 4.552204327 1.846010029 226.1249186 5.291873964 1.116086235 6.407960199 2.333333333 8.65 16.7 317.09567 19.384651 0.8623748

2770 22.96237462 1.092581953 402.9629517 4.016583748 4.2039801 7.220563847 3.666666667 8.32 127.7 313.57067 16.634851 0.9452648

2870 2.854845171 1.413868635 228.6780904 5.119402985 3.898839138 9.018242123 3.666666667 8.153333333 8.266666667 312.39567 15.718251 0.9728948

2970 7.497274494 1.172366079 323.8258464 4.829187396 5.116086235 9.611940299 3.666666667 8.253333333 16.26666667 311.22067 14.801651 1.0005248

3070 3.365178886 1.885883032 290.6345978 3.189054726 3.072968491 6.262023217 5.666666667 7.936666667 6.09 310.0518467 13.88543369 1.0283

3170 5.556387794 2.341530636 258.3445028 4.059701493 3.174129353 7.233830846 7 7.63 27.38333333 308.87067 12.968451 1.0557848

3270 5.050877506 3.433810225 411.7142639 6.714759536 3.900497512 10.61525705 9.333333333 7.526666667 68.24 307.69567 12.051851 1.0834148

3370 5.27640905 3.888071674 305.0968424 3.041666667 4.466666667 7.841666667 11 7.626666667 12.02 306.52067 11.135251 1.1110448

3470 3.873471628 5.185174478 338.7590332 9.482587065 3.305140962 13.12106136 13.66666667 7.163333333 11.09333333 305.34567 10.218651 1.1386748

3670 1.959800455 12.35046099 129.9266917 6.379767828 3.348258706 10.06135987 14.33333333 6.056666667 6.993333333 302.99567 8.385451 1.1939348

3770 4.502046203 13.5444334 175.3853505 3.132669983 2.855721393 5.32172471 19.66666667 6.156666667 11.84 301.82067 7.468851 1.2215648

3870 2.036291106 20.61006025 129.58756 10.71310116 3.724709784 14.10447761 22.33333333 5.463333333 9.043333333 300.64567 6.552251 1.2491948

3870 1.863406365 21.60100975 129.58756 7.814262023 2.885572139 10.0331675 20 5.543333333 7.53 300.64567 6.552251 1.2491948

3970 1.208842917 23.40028833 94.48894755 6.744610282 3.739635158 9.817578773 23 5.39 5.2 299.47067 5.635651 1.2768248

4072 1.594578703 24.5208257 107.2563629 6.248756219 2.565505804 8.48092869 26.33333333 5.376666667 8.203333333 298.2803626 4.701226455 1.3052

4174 3.368670647 20.12390442 90.35840861 8.250414594 3.724709784 11.64179104 18.33333333 5.25 20.22333333 297.07367 3.765787 1.33319

4270 1.246868199 14.8021601 91.01326243 6.16252073 3.087893864 8.91708126 14.33333333 5.803333333 3.536666667 295.94567 2.885851 1.3597148

4370 2.262449682 18.24161733 142.9424337 8.484245439 4.058043118 12.87562189 18.33333333 5.68 10.85333333 294.77067 1.969251 1.3873448

4480 1.170737034 15.06143303 80.57911174 5.409618574 4.087893864 9.830845771 13.33333333 5.343333333 7.03 293.47817 0.960991 1.4177378

Elevation (m.a.s.l) CEext (mS/cm) CEsusp (mS/cm) Mn (mg/kg) Cu (mg/kg) Mo (mg/kg) Mg (meq/100gr) Cl (meq/L) HCO3 (meq/L) SO4 (meq/L) Zn (mg/kg) Na (meq/100gr) B (mg/kg)

2470 0.650333333 0.135033333 0.397396392 1.448511433 2.011315058 0.801980652 1.25034517 2.628500271 3.229085591 0.1950541 0.302108155 3.673333333

2770 4.783333333 0.994333333 2.076129379 2.468382972 22.53898931 3.107199722 17.81692918 2.310896274 26.1768468 0.350999713 10.76401191 33.78666667

2870 0.4768 0.0788 1.634495296 2.621676601 1.82990847 0.702653889 0.762514051 1.644180804 1.839742607 0.300749448 1.061638545 2.523333333

2970 2.038 0.336333333 2.317031884 2.217274076 2.987919964 2.716741248 13.09146796 2.257750407 4.257776832 0.291051002 2.403141639 7.813333333

3070 0.538333333 0.099766667 2.818444007 3.112399853 1.400873527 1.254452258 1.111429611 2.309673871 2.035071554 0.342446334 0.794225683 2.983333333

3170 1.007 0.1664 4.140291122 3.095656875 2.943333333 2.714862012 3.502232361 1.792021071 5.084052686 0.404770343 1.059790528 3.743333333

3270 2.23 0.427 6.494634101 4.259703569 1.657085207 2.126035371 6.842191364 2.535028275 13.60602484 0.469483815 1.330679122 5.873333333

3370 0.961666667 0.164466667 5.987357286 3.991946934 1.395852965 2.640907851 1.675204655 3.455737083 4.072928879 0.484097257 0.787563914 4.056666667

3470 0.585333333 0.124566667 8.465660184 4.432047353 1.912534475 2.012301144 0.749622429 2.153292277 2.481037648 0.568404948 0.496685991 3.306666667

3670 0.421666667 0.073533333 11.63827508 4.887228661 1.176850944 0.524939868 0.71825696 0.504930669 3.127135866 0.5747853 0.269340641 2.04

3770 0.616333333 0.089 10.86233117 4.632271067 1.594117804 1.34303413 0.722192687 2.455916802 3.250429551 0.673536909 0.334090418 2.476666667

3870 0.452333333 0.084366667 6.489174693 2.342886184 1.33406522 0.790453488 0.825686702 0.56554187 2.60379154 0.629852427 0.270664329 1.55

3870 0.430333333 0.072533333 3.675167516 2.650500595 1.605650359 0.698181306 0.894923626 0.482583469 2.346283031 0.600516503 0.295324826 1.45

3970 0.339666667 0.061033333 5.62268913 2.742854664 0.982114469 0.384196145 0.689622429 0.441597335 1.939358464 0.770730491 0.2191604 1.05

4072 0.498566667 0.079733333 6.521607787 2.048113879 0.964870906 0.632230382 0.712353369 0.391597335 2.716114379 0.795305117 0.15455429 1.27

4174 0.577333333 0.091233333 6.127096395 3.444384753 1.09516019 0.831382145 0.936128414 0.577139205 4.671532772 0.818006338 0.262465036 1.29

4270 0.228333333 0.034133333 6.276561483 3.170670923 0.917149535 0.348377946 0.600987899 0.366902936 1.411802274 0.610398816 0.187205977 1.323333333

4370 0.4715 0.069866667 9.041746855 3.700310179 1.405769871 0.625924992 0.782353369 0.255916802 2.97205266 0.618663662 0.327608353 2.053333333

4480 0.497666667 0.072866667 12.01359178 4.694455457 1.212731149 0.32962435 1.224762944 0.334555736 2.739009236 0.696335449 0.192947024 1.403333333
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Additional information on the 24 Atacama plant species studied at the metabolic level.  

  

Species Family Life form Lifespan Endemism Carbon 

Adesmia spinosissima Vogel Fabaceae shrub perennial endemic C3

Aloysia deserticola (Phil.) Lu-Irving & O'Leary Verbenaceae shrub perennial native non-endemic C3

Ambrosia artemisioides Meyen & Walp. Asteraceae herb perennial native non-endemic C3

Aristida adscensionis L. Poaceae shrub perennial native non-endemic C4

Atriplex imbricata (Moq.) D. Dietr. Amaranthaceae  grass annual native non-endemic C4

Azorella atacamensis G.M. Plunkett & A.N. Nicolas Apiaceae shrub perennial Native non-endemic C3

Baccharis tola Phil. Asteraceae shrub perennial endemic C3

Calamagrostis crispa (Rugolo & Villav.) Govaerts Poaceae grass perennial native non-endemic C3

Chorizanthe commissuralis J. Rémy Polygonaceae herb annual native non-endemic C3

Ephedra americana Humb. & Bonpl. ex Willd. Ephedraceae shrub perennial native non-endemic C3

Fabiana denudata Miers Solanaceae shrub perennial endemic C3

Fagonia chilensis Hook & Arn. Zygophyllaceae shrub perennial native non-endemic C3

Hoffmannseggia doellii subsp. argentina    Fabaceae herb annual native C3

Jarava frigida (Phil.) F.Rojas Poaceae grass perennial native non-endemic C3

Lupinus subinflatus C.P. Sm. Fabaceae herb perennial native non-endemic C3

Maihueniopsis camachoi Cactaceae Cactus perennial NA CAM

Moschopsis monocephala (Phil.) Reiche Calyceraceae herb perennial native non-endemic C3

Parastrephia quadrangularis (Meyen) Cabr. Asteraceae shrub perennial native non-endemic  C3

Phacelia pinnatifida Griseb. Ex Wedd Boraginaceae herb perennial native non-endemic C3

Pycnophyllum bryoides (Phil.) Rohrb. Caryophyllaceae cushion perennial native non-endemic C3

Solanum chilense Dunal Solanaceae herb perennial endemic C3

Solanum metarsium C.V.Morton, Solanaceae herb annual NA C3

Tagetes multiflora Kunth Asteraceae herb annual native non-endemic C3

Tiquilia atacamensis (Phil.) A.T.Richardson Boraginaceae herb perennial native C3
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Dilution and volume of ethanolic extract used for robotised biochemical assays.  

D : Dilution V : Volume of extract (µL)

Sample species Starch Proteines Polyphenol Malate Carbohydrates Amino_acids Chloro_V50 CitrateV20uL

P.quadrangularis No_dil_V10uL No_dil_V5 D10_V2.5 No_dil_V2 No_dil_V2 D2_V2 No_dil_V50 No_dil_V2

C.commissuralis No_dil_V10uL No_dil_V2.5 D5_V5 No_dil_V10 No_dil_V4 D2_V2 No_dil_V50 No_dil_V4

H.doellii No_dil_V10uL No_dil_V2.5 D5_V5 No_dil_V2 No_dil_V10 D2_V2 No_dil_V25 No_dil_V4

A.erinacea No_dil_V10uL No_dil_V5 D5_V5 No_dil_V5 No_dil_V10 D2_V2 No_dil_V25 No_dil_V4

J.seriphioides No_dil_V20uL No_dil_V5 D5_V5 No_dil_V5 No_dil_V10 D2_V2 No_dil_V25 No_dil_V4

T.atacamensis No_dil_V10uL No_dil_V2.5 D5_V5 No_dil_V2 No_dil_V10 D2_V2 No_dil_V25 No_dil_V4

S.puchii No_dil_V20uL No_dil_V2.5 D5_V5 No_dil_V2 No_dil_V4 D2_V2 No_dil_V25 No_dil_V4

E.americana No_dil_V10uL No_dil_V5 D5_V5 No_dil_V2 No_dil_V2 D2_V2 No_dil_V50 No_dil_V4

A.deserticola No_dil_V10uL No_dil_V5 D5_V5 No_dil_V2 No_dil_V4 D2_V2 No_dil_V50 No_dil_V4

S.chilense No_dil_V10uL D5_V5 D5_V5 No_dil_V2 No_dil_V4 D10_V2 No_dil_V25 No_dil_V2

A.spinossisima No_dil_V10uL No_dil_V5 D5_V5 No_dil_V10 No_dil_V10 D2_V2 No_dil_V50 No_dil_V4

S.metarsium No_dil_V10uL D5_V5 D5_V5 No_dil_V2 No_dil_V4 D10_V2 No_dil_V25 No_dil_V2

B.tola No_dil_V10uL No_dil_V5 D5_V5 No_dil_V5 No_dil_V2 D2_V2 No_dil_V50 No_dil_V2

C.crispa No_dil_V20uL No_dil_V5 D5_V5 No_dil_V5 No_dil_V4 D2_V2 No_dil_V50 No_dil_V2

P.bryoides No_dil_V10uL No_dil_V5 D5_V5 No_dil_V10 No_dil_V10 D2_V2 No_dil_V50 No_dil_V4

A.atacamensis No_dil_V20uL No_dil_V5 D5_V5 No_dil_V2 No_dil_V2 D2_V2 No_dil_V25 No_dil_V4

A.imbricata No_dil_V10uL D5_V5 D5_V5 No_dil_V10 No_dil_V2 D2_V2 No_dil_V50 No_dil_V4

T.multiflora D5_V20uL No_dil_V2.5 D5_V5 No_dil_V5 No_dil_V2 D5_V2 No_dil_V25 No_dil_V4

Opuntia.sp No_dil_V10uL No_dil_V2.5 D5_V5 No_dil_V2 No_dil_V10 D2_V2 No_dil_V25 No_dil_V4

J.frigida No_dil_V10uL No_dil_V2.5 D5_V5 No_dil_V5 No_dil_V2 D2_V2 No_dil_V25 No_dil_V4

A.artemisioides No_dil_V10uL No_dil_V2.5 D5_V5 No_dil_V2 No_dil_V4 D5_V2 No_dil_V25 No_dil_V4

L.subinflatus No_dil_V10uL D5_V5 D5_V5 No_dil_V2 No_dil_V4 D5_V2 No_dil_V25 No_dil_V4

A.adscensionis D5_V20uL No_dil_V5 D5_V5 No_dil_V2 No_dil_V4 D5_V2 No_dil_V25 No_dil_V4

M.monocephala No_dil_V10uL No_dil_V2.5 D5_V5 No_dil_V2 No_dil_V4 D2_V2 No_dil_V25 No_dil_V4

F.denudata No_dil_V10uL D5_V5 D5_V5 No_dil_V2 No_dil_V2 D2_V2 No_dil_V25 No_dil_V2

P.pinnatifida No_dil_V10uL No_dil_V5 D5_V5 No_dil_V2 No_dil_V4 D2_V2 No_dil_V25 No_dil_V2

F.chilensis No_dil_V10uL No_dil_V5 D5_V5 No_dil_V5 No_dil_V10 D2_V2 No_dil_V25 No_dil_V2
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