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PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Abstract

Master in Theoretical Physics

by Alejandro Jiménez

Color centers in diamond are promising candidates for applications such as single photon

sources, color markers for biological applications, quantum information, quantum communi-

cations and quantum sensing at the nanoscale. Such applications depend on the dynamics of

the electronic spin of the center, but these dynamics are modified by different fields present

in the solid. A theoretical description of the electronic spin has proven difficult as well,

with different interpretations across different authors. Recent experiments have been able

to access degrees of freedom of singular subspaces of the electronic spin such as the ground

state, although its dynamics are affected by several other states in the system. In this thesis,

we present a procedure that encompasses the effect of all higher states in the system to

formulate a non-diagonal effective Hamiltonian of a particular sub Hilbert space. In this

case, the ground state triplet of the center. We start by using group theory to describe the

different states of the system in terms of the center symmetrize orbitals. Then we proceed to

describe the different interactions in the defect such as the Coulomb interaction, spin orbit

interaction, spin-spin interaction, electromagnetic field interaction and strain interaction.

An effective Hamiltonian of the ground state is obtained that considers the effect of higher

exited states. Finally, we compare the results with recent experimental data.

http:www.uc.cl
adjimenez@uc.cl
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Chapter 1

Introduction

During the last decades color centers in diamond have emerged as promising candidates for

applications such as electro-optical devices, single photon sources, fluorescent markers for

biological measurements, quantum sensing at the atom-scale resolution, quantum informa-

tion and quantum communications [2–7]. These technological applications can be realized

thanks to the optical properties and room temperature stability of color centers in diamond.

The existence of these possible applications have caused color centers to be the central topic

of several papers [8–18]. However, many of the properties of the centers, and in particular,

the ones that relate to the applications mentioned previously, are not yet understood in

detail. This is the case of the effect of strain in NV− centers.

In this thesis, we focus mainly on this problem. This chapter introduces to the general

concepts of group theory. Chapter 2 gives a detailed explanation of the NV− system, as

well as explaining the interactions that we consider for this work. Chapter 3 consists in

the explanation of the effective hamiltonian method and its use in the description we are

building. Chapter 4 exposes experimental results found in the literature and compares them

to our model. And Chapter 5 concludes this work with a summary of the main points this

thesis presents and proposes possible approaches to future research.

1.1 Effective Hamiltonians

In quantum mechanics, the properties of a certain system are determined by its Hamiltonian.

The Hamiltonian determines the energy and dynamics of the system. However, generally

1
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the complexity of the Hamiltonian exponentially increases as one increases the number of

states of the system. And in many studies, one is interested in a few particular states.

Since all the states interact with each other, to get the complete picture of the states of

interest, one would have to solve the Hamiltonian of the whole system, and then discard

the information of the other states. This is incredibly inefficient. Therefore, most of the

time, physicists look for methods that allow to summarize the effect of the other states in

one simpler Hamiltonian that involves only the states of interest. This is called an Effective

Hamiltonian.

As we will show in the next chapter, the NV center, despite having only four atoms, spawns

a system that has fifteen states. Therefore the objective of this work is to find an effective

Hamiltonian method that allows us to focus on a particular set of smaller states.



Chapter 2

Group Theoretical Description of the

Negatively Charged Nitrogen-Vacancy

Center and its Interactions

In the previous chapter we introduced the concept of effective Hamiltonians and underlined

their importance. In this chapter, we will introduce the concept of group theory and the

role of symmetry in describing a system. Then we will focus in our system of interest, the

NV− center, which possesses a particular set of symmetries. We will also explore how the

presence of these symmetries restricts the electronic structure of the center and shapes its

interactions.

2.1 Group Theory

In quantum mechanics, problems become exponentially difficult as one increases the number

of particles of the studied system. This renders the study of a system of several particles,

such as the study of solids (and more particulary, defects in solids) by a direct approach

practically impossible. In studying such systems, shortcuts and clever tricks are usually

employed to reduce the complexity of the task. One of those shortcuts is the exploitation of

the possible symmetries a system could have.

Certain systems have properties that remain unchanged when certain transformations are

applied. These transformations are associated to symmetries of the system. Group Theory

3
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Figure 2.1: Left: Structure of the NV center in diamond; The carbons of the structure and their
neighbours (cyan spheres) and the Nitrogen (blue sphere) are shown. The electronic distribution
(red lobes) and the bonds that form the defect levels (in yellow) are also shown (Image taken from
Ref. [1] without permission). The three orbitals σ1, σ2, σ3 and σn (which is near the nitrogen) form
linear combinations that produce the symmetrized single electron orbitals (equations 2.13-2.16).
Right: Same structure from a perspective perpendicular to the plane formed by the three carbons.
Note that applying the rotations C+

3 and C−3 (in orange) do not change the configuration of the
system. The same applies for the reflections over the planes σv, σ′v and σ′′v .

is a powerful method that takes advantage of these symmetries to characterize the system.

One of the properties that remain unchanged when a symmetry operator is applied is the

Hamiltonian. This also implies that the symmetry operator commutes with the Hamiltonian.

RH = HR, (2.1)

where R is the symmetry operator and H is the Hamiltonian. This equation is the basis of

group theory. On Appendix A we give a detailed development of this formalism and derive

properties that we use in following chapters.

2.2 The Negatively Charged Nitrogen Vacancy System

Diamonds are crystals formed by a tetrahedrical array of carbon atoms. An NV center on

the other hand, is a defect in diamond created when one of those carbon atoms is replaced

by a nitrogen atom, forming the structure shown in Figure 2.1. This figure also shows the

electronic distribution of the orbitals of the structure.
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In the diamond, when one of the carbons is replaced by a nitrogen, the structure rearranges

itself, changing the position of the atoms. The place where the lost carbon was is called

vacancy. And the axis that is formed between the vacancy and the nitrogen is referred to as

the NV-axis.

This color center remains unchanged if a rotation of 2π/3 radians along the NV-axis, either

clockwise or counterclockwise is performed, this is also true for reflections over the three

planes perpendicular to the plane that contains the three carbons, and that contain one of

the carbons and the nitrogen. These transformations are respectively called C+
3 , C−3 , σv, σ

′
v

and σ′′v .

In group theory, a group is a set of operations. These operations also have to follow certain

rules. The application of two operations within the set can be summarized by the applica-

tion of only one operation that is also within the set. Each element of the set must have an

inverse within the set. The application of operations must follow associativity. And the set

must contain the identity operation. In conjunction with the identity, C+
3 , C−3 , σv, σ

′
v and

σ′′v follow these rules. And these elements form the group known as C3v.

It is important to note that these transformations can be represented by matrices, but

they require a base. For example, we can express the three orbitals σ1, σ2, σ3 and σn by

the orthonormal vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively. The

representation of the C3v group elements in this orbital base is,

E =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 C+
3 =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

 C−3 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 , (2.2)

σv =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 σ′v =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 σ′′v =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 . (2.3)
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C3v E 2C3 3σv
A1 1 1 1 z, x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 x, y, Rx, Ry

Table 2.1: Character Table for C3v. In the top row, E is the identity, C3 are the two rotations,
and σv are the three reflextions. In the leftmost column, A1, A2 and E are the possible irre-
ducible representations. In the rightmost column we display some functions that transform as the
corresponding irreducible representation.

This is called a representation of the group. But it is not unique. Another representation

can be made using a coordinate system on which the z-axis is equivalent to the NV-axis and

the x-axis contains one of the carbons. The representation of this coordinate system in the

C3v group is as follows,

E =


1 0 0

0 1 0

0 0 1

 C+
3 =


−1

2
−
√
3
2

0
√
3
2
−1

2
0

0 0 1

 C−3 =


−1

2

√
3
2

0

−
√
3
2
−1

2
0

0 0 1

 , (2.4)

σv =


1 0 0

0 −1 0

0 0 1

 , σ′v =


−1

2
−
√
3
2

0

−
√
3
2

1
2

0

0 0 1

 σ′′v =


−1

2

√
3
2

0
√
3
2

1
2

0

0 0 1

 . (2.5)

From the last example we note that the matrices of that representation can be decomposed

in two block matrices that lie in the diagonal. One in the upper left corner of dimention

2, and another one in the bottom right corner of dimension 1. These block matrices are

representations of the group, and when a representation can be decomposed in such manner

it is said to be reducible.

It is possible to summarize most of the information of a representation in the traces of the

elements. In group theory, these traces are referred as to characters. And a table that con-

tains the characters of the irreducible representations of a group is called the character table

of a group. The group C3v possesses 3 irreducible representations, and its character table is

shown in Table 2.1.

When the C3v group is present in a system, it restricts the orbitals to form distributions that

are also symmetric. To calculate these distributions one uses the projection operator, that
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is related to one particular irreducible representation, and it is defined in Equation 2.6,

P(j) =
lj
h

∑
R

χ(j)(R)PR, (2.6)

where the index j refers to the irreducible representation related to the projection operator,

lj is the order of the irreducible representation, h is the number of symmetries present in

the system, R is an element of the representation, χ(j)(R) is the character associated with

the representation j; and PR is the operator related to R.

It is important to note that PR will depend on the nature of what is being projected. For

example, we could try to find which irreducible representation a rotation along the z axis

(Rz) transforms as. In this case, it is not difficult to see that E and C3 do not affect Rz.

However, σv does, as the inversion changes the rotation from clockwise to counter clockwise

and viceversa. Therefore,

PERz = Rz, (2.7)

PC3Rz = Rz, (2.8)

PσvRz = −Rz. (2.9)

And,

P(A1)Rz =
1

6
(Rz +Rz +Rz −Rz −Rz −Rz) = 0, (2.10)

P(A2)Rz =
1

6
(Rz +Rz +Rz +Rz +Rz +Rz) = Rz, (2.11)

P(E)Rz =
1

3
(2Rz −Rz −Rz) = 0. (2.12)

Therefore Rz transforms as the irreducible representation A2.
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Now, using the projection operator for all the irreducible representations in one of the or-

bitals, we can generate symmetrized single electron orbitals,

a =
α√
3

(σ1 + σ2 + σ3) + βσn, (2.13)

a′ = ασn +
β√
3

(σ1 + σ2 + σ3) , (2.14)

ex =
1√
6

(2σ1 − σ2 − σ3) , (2.15)

ey =
1√
2

(σ2 − σ3) , (2.16)

where a and a′ transform as A1, ex and ey transform as E (a visual representation of ex and

ey is shown in Figure 2.2), and α and β are constants whose value is set by the Coulomb

interaction. It is important to note that if we only apply group theory, α and β can acquire

any normalized value. However, the presence of the Coulomb interaction sets the values of

these constants [19].

Over these symmetrized orbitals, the electrons of the molecule are distributed, as shown

in figure 2.2. Now, if two more electrons were added to the system, the wavefunction of

the defect would be a singlet with a totally symmetric spatial wavefunction, equivalent to

the state of an atom with a filled shell [20][21]. Therefore, the electronic configuration

of this defect can be modelled by two holes occupying the orbitals in equations 2.13-2.16

(The presence of symmetry applies further restrictions in how these orbitals are filled. We

explore these restrictions in section 2.4). This hole formulation is equivalent to an electronic

formulation and it makes it easier to describe the system. However, we have to be careful

because in this formulation some interactions change sign [20]. This is because, as we are

using holes instead of electrons, the holes would actually behave as having a positive charge

instead of a negative one. This is not a problem for the interactions between the two holes,

as the multiplication would eliminate the change of sign. But in the interactions that affect

the holes separatedly, such as the Spin Orbit interaction, the change of sign would prevail.
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Figure 2.2: Left: Example of distribution of the electrons along the symmetrized orbitals. This
distribution is actually forbidden due to the effect of the symmetries, but it serves as a visual exam-
ple for the electrons occupying the orbitals. Right: A visual representation of how the symmetrized
orbitals ex and ey look like.

2.3 The configurations of the system

As we said in the previous section, the system can be modelled by holes in the symmetrized

orbitals, as opposed to a model based on electrons. In this description we can generate three

configurations. First, the ground state (e2), that exists when the two holes are on the ex and

ey orbitals. Second, the exited state (ae), that can be generated from the ground state by

promoting an electron from the a orbital to the ex or ey orbitals. This is equivalent to de-

moting a hole from the orbitals ex or ey, to the orbital a. Finally, we have the second exited

state (a2), that promotes another electron from the a orbital, or, in other words, demotes

another hole to the a orbital. Another configuration could also be made by considering the

a′ orbital, however, this is not considered because of the high energy separation between

this orbital and the others. Each of these configurations can form triplets or singlets, with

the exception of a2 which can only form a singlet. Therefore it is possible to have several

different wavefunctions for each configuration.

Now, we would like to study one of these configurations in isolation from the others. Par-

ticularly, we would like to find a Hamiltonian in terms of spin operators to describe the

triplet states of each configuration because many important optical properties could be de-

rived from it. One of the problems that arises when trying to describe the configurations

in isolation is that the configurations get mixed by interactions. Therefore, the states mix

and change their energies in the presence of different configurations. Then, to find an effec-

tive spin Hamiltonian of a configuration in isolation, we must consider the effect of all the
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configurations that compose the system, and effective Hamiltonians are used to take these

configurations into account.

2.4 States of the system

In order to find the symmetrized states of the system, we need to start with a possible

wavefunction of the system (from now it will be called test function), on which we will

apply the projection operator. This projection operator is different from the one we applied

before, because for the case of several electrons (or holes), each one with spin, the PR will

be different. Explicitely, if we apply the projection operator to a wavefunction of the form

|Ψ〉 = |ψ1 ⊗ χ1 ⊗ ψ2 ⊗ χ2〉, where ψ refers to an orbital function and χ refers to a spin

function, the result would be as follows[19],

P(j) |Ψ〉 = P(j) |ψ1 ⊗ χ1 ⊗ ψ2 ⊗ χ2〉 =
lj
h

∑
R

χ(j)(R) (TR |ψ1〉 ⊗ UR |χ1〉 ⊗ TR |ψ2〉 ⊗ UR |χ1〉) ,

(2.17)

where TR is the matrix representation of a tridimentional rotation (SO3), associated with

the C3v element R, and UR is the matrix representation of the rotation of the spins (SU2),

associated with the C3v element R.

It is important to note that the resulting wavefunction will preserve its original configuration

because the application of the operators that belong to C3v do not mix a with ex and ey.

Hence, for each configuration we will need a different test function. This is also true for the

spin, if we start with a test function that has certain spin for an electron pair, we will not be

able to produce a symmetrized state that contains on its terms that electron pair coupled

with a different spin.

The final consideration that we have to make before finding the symmetrized states is that

the irreducible representation E has two partner functions associated for each test function.

However, the application of the projection operator only provides one of them. To find the

other one, it is possible to use the projection operator defined in Equation 2.18 in combina-

tion with the diagonal elements of a matrix representation of E (we use the one found in [22])
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P(i)
νκ =

li
h

∑
R

Γ(i)(R)νκPR. (2.18)

With this in mind, we find all the 15 states as shown in Table 2.2.

Configuration State Irreducible Representation
|3A2−〉 = |exey − eyex〉 ⊗ |↓↓〉 E1 + E2

e2(T ) |3A20〉 = |exey − eyex〉 ⊗ |↑↓ + ↓↑〉 A1

|3A2+〉 = |exey − eyex〉 ⊗ |↑↑〉 E1 − E2

|1E1〉 = |exex − eyey〉 ⊗ |↑↓ − ↓↑〉 E1

e2(S) |1E2〉 = |exey + eyex〉 ⊗ |↑↓ − ↓↑〉 E2

|1A1〉 = |exex + eyey〉 ⊗ |↑↓ − ↓↑〉 A1

|A1〉 = |E−〉 ⊗ |↑↑〉 − |E+〉 ⊗ |↓↓〉 A1

|A2〉 = |E−〉 ⊗ |↑↑〉+ |E+〉 ⊗ |↓↓〉 A2

ea(T ) |E1〉 = |E−〉 ⊗ |↓↓〉 − |E+〉 ⊗ |↑↑〉 E1

|E2〉 = |E−〉 ⊗ |↓↓〉+ |E+〉 ⊗ |↑↑〉 E2

|Ey〉 = |Y 〉 ⊗ |↑↓ + ↓↑〉 E1

|Ex〉 = |X〉 ⊗ |↑↓ + ↓↑〉 E2

ea(S) |1Ex〉 = |aex + exa〉 ⊗ |↑↓ − ↓↑〉 E1

|1Ey〉 = |aey + eya〉 ⊗ |↑↓ − ↓↑〉 E2

a2(S) |1A1〉 = |aa〉 ⊗ |↑↓ − ↓↑〉 A1

Table 2.2: All the symmetrized states of the NV− in terms of the orbitals found in equa-
tions 2.13-2.16. Here, |E±〉 = |ae± − e±a〉, |e±〉 = ∓ |ex ± iey〉, |X〉 = |E− − E+〉 /2 and
|Y 〉 = |E− + E+〉 i/2. The first column indicates the configuration of the states, which can be
e2 for the ground state, ea for the first exited state and a2 for the second exited state. The paren-
thesis represents the multiplicity character of the states,e.g singlet (S) or triplet (T ). Finally, the
third column indicates the irreducible representation the state transforms as. This table matches
the results found in [19].

An example of the derivation of one of these states is shown at the end of Appendix A.

2.5 Interactions

Now that we have found the symmetrized states, we can start describing the different inter-

actions in terms of their matrix elements. In general, we analyze element by element which

matrix element is 0 by looking at forbidden transitions with group theory. A matrix element

is 0 if an interaction M follows equation Equation 2.19

〈ψi|M |ψj〉 * A1. (2.19)
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2.5.1 Coulomb Interaction

Since it is the most relevant for this work as the energies related to it are of the order of

hundreds of Terahertz, we start with the Coulomb interaction (H0), which in its most ele-

mental form is (in cgs units),

H0 =
∑
j<j′

ZjZj′e
2

|Rj −Rj′ |
−
∑
i,j

Zje
2

|ri −Rj|
+
∑
i<i′

e2

|ri − ri′|
, (2.20)

where R reprensents the position of the ions, r represents the position of the electrons, Z is

the atomic number, j labels for the ions, and i is a label for the electrons.

Using equation 2.19, and the fact that this interaction transforms as A1, we deduce that the

only non-zero matrix elements are 〈1E1|H0|1Ex〉, 〈1E2|H0|1Ey〉 and 〈1A1(e
2)|H0|1A1(a

2)〉,
and the diagonal elements. As they share the same orbital part of the wavefunction, all the

diagonal elements from the ground state triplet share the same energy, as the first exited

state triplet and exited state singlet also does. Additionally, using equation 2.18, it can be

shown that E1 and E2 diagonal elements of the ground state singlet have the same energy

and that the A1 diagonal element has twice that energy. Finally, also using equation 2.18, it

can be shown that 〈1E1|H0|1Ex〉 = 〈1E2|H0|1Ey〉. This also makes sense considering that if

we expand |X〉 and |Y 〉, those two elements are an interaction of states with similar orbitals.

2.5.2 Spin-Orbit Interaction

The Spin-Orbit interaction is a relativistic interaction that arises from the relative motion

between the electrons and the nuclei. Its Hamiltonian is [19],

HSO =
∑
k

1

2c2m2
e

Ok · Sk, (2.21)

where c is the speed of light, me is the electron mass, Ok = ∇kV ×pk, V = eφ is the nuclear

potential energy, pk is the momentum operator of the k-th electron and Sk is the Spin

operator of the k-th electron. This description allows us to generate a matrix representation
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of the Hamiltonian just by finding the matrix elements of the O operator, since the Spin

operators are known.

Using equations 2.6, 2.18 and 2.19, we can find the matrix representation of the O operators

components in the basis {ex,ey,a}. For example, project the irreducible representation A1

on the element 〈a|Oz|a〉, taking in consideration that PR operates on Oz in the same manner

as a rotation in the z− axis, and that, when applied to an expectation value, it operates on

both states and the operator separatedly (PR 〈a|Oz|a〉 = (PR 〈a|)(PROz)(PR|a〉)), then,

P(A1) 〈a|Oz|a〉 =
1

6
(〈a|Oz|a〉+ 〈a|Oz|a〉+ 〈a|Oz|a〉 − 〈a|Oz|a〉 − 〈a|Oz|a〉 − 〈a|Oz|a〉) = 0.

(2.22)

Therefore, 〈a|Oz|a〉 does not belong to the A1 representation and it has a value of 0. Applying

the same process to every element, we get,

Ox =


0 iC 0

iC 0 iA

0 −iA 0

 , (2.23)

Oy =


iC 0 −iA
0 −iC 0

iA 0 0

 , (2.24)

Oz =


0 iB 0

−iB 0 0

0 0 0

 , (2.25)

where A and B are unknown real constants. C is also a real number, and to maintain

hermiticity, it must be 0. Also, the fact that different expectation values yield the same

results is because they are partners belonging to the same irreducible representation. And

partners have the same expectation values [23].

It is now possible to calculate the 15× 15 matrix representation of this interaction by using

the Kronecker product with the matrices we found and computing the expectation values
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using the states of table 2.2. This matrix can be found in Appendix B.

The end result is that the diagonal elements are largely unaffected, with the exception of

the elements associated to the states |A1〉, |A2〉, |E1〉 and |E2〉, which acquire an energy of

B for the first two, and −B for the latter two. Other than that, the states with non zero

magnetic moment of the ground state mix with the exited singlet states and with the states

|Ex〉 and |Ey〉. There is also mixings among |3A20〉, |1A1(e
2)〉 and |A1〉. |1E1〉 and |1E2〉 mix

with |E1〉 and |E2〉 respectively. And finally, |A1(e
2)〉 mixes with |1A1(a

2)〉.

2.5.3 Spin-Spin Interaction

The Spin-Spin interaction is a two-particle interaction that arises from the magnetic field

generated by the Spin of one of the particles acting upon the Spin of the other particle. As it

was the case for the Spin-Orbit interaction, the Spin-Spin Hamiltonian in terms of position

and Spin operators is known [24],

HSS = −µ0g
2µ2

B

4πr3
(3 (s1 · r̂) (s2 · r̂)− s1 · s2) , (2.26)

where µ0 is the magnetic permeability of free space, g is the Landé factor for the electron,

µB is the Bohr magneton and r = rr̂ is the relative position between electrons.

As the interaction is a two-particle interaction, it is not possible to find matrices involving

one orbital as we did with the Spin-Orbit interaction, but it is possible to find the matrix

elements of this interaction analysing each of the 15 × 15 elements one by one. It is also

possible to separate the part involving the orbital operators and the spin operators, and

reordering in terms that transform as the irreducible reprensentations, as shown in the

following equation,

hss = −µ0g2µ2B
4π

[
1−3ẑ2
4r3

(S1+S2− + S1−S2+ − 4S1zS2z) + 3
4
x̂2−ŷ2
r3

(S1−S2− + S1+S2+) (2.27)

+i3
2
x̂ŷ
r3

(S1−S2− − S1+S2+) + 3
2
x̂ẑ
r3

(S1−S2z + S1zS2− + S1+S2z + S1zS2+)

+ i3
2
ŷẑ
r3

(S1−S2z + S1zS2− − S1+S2z − S1zS2+)
]
.
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In this equation, the position operator of the first term transforms as A1. The position

operators of the second and third terms transform as E1, E2. And the rest transform as E

as well. Using the first term as an example, we can see that PR will not affect ẑ2 for any

R. Therefore, after applying the projection operator, it is deduced that it transforms as A1.

This allows us to further improve the matrix elements of this interaction. The Spin-Spin

Hamiltonian matrix can be found in Appendix B.

In contrast with the Spin-Orbit interaction, all of the diagonal elements of the matrix are

non zero, acquiring a different energy for every configuration. In the ground state triplet,

an energy shift takes place between the states |3A20〉 and |3A2±〉 that is associated with the

zero-field splitting. Shifts also happen in the exited state triplet, however, they are also

accompanied with a mixing between the states that transform as the irreducible representa-

tion E. The singlets change their energy but they do not suffer from splitting, although a

separation may still occur if we consider that the |1A1〉 states from both the e2 and a2 con-

figurations mix. Finally, the states with non-zero magnetic momentum of the ground state

triplet mix with the elements of the exited state triplet that transform as the irreducible

representation E.

2.5.4 Strain Field Interaction

Strain refers to a change in the distance of the orbitals relative to the original distance

between them due to an external force. This means it is a dimensionless tensor expressing

the fractional change under stretching,

εij =
1

2

(
∂(δRi)

∂Rj

+
∂(δRj)

∂Ri

)
, (2.28)

where δRi is the change in longitude in the i direction, and Ri is the variable related to

the axis in the same direction. It can be produced by stress (forces applied to the solid

structure), electric field (via the piezoelectric effect) or temperature.

As this deformation modifies the distance between the nuclei, it also modifies the interactions

that depend on them, namely, the Coulomb interaction. This interaction was previously

defined in Equation 2.20. This equation can be rewritten as,
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H = HN +He +He−N +Hs, (2.29)

where HN represents the nuclear part of the Hamiltonian, He represents the electronic part

of the Hamiltonian and He−N represents the interaction between nuclei and electrons con-

sidering the nuclei as fixed on one point and finally Hs is the interaction that arises from the

perturbation in the equilibrium position and it can be written as a Taylor approximation.

Therefore, considering R = R0 + δR

Hs =
∑
i

[
∂(HN +He−N)

∂Ri

∣∣∣∣
Ri0

δRi

]
+O(δR2). (2.30)

Now we can add an antisymmetric part to the strain tensor,

fij =
1

2

(
∂(δRi)

∂Rj

− ∂(δRj)

∂Ri

)
. (2.31)

then εij + fij = ∂(δRi)
∂Rj

, and as both terms do not depend on the position, we can integrate

formally on both sides,

δRi = (εij + fij)Rj, (2.32)

replacing on Equation 2.30,

Hs =
∑
ij

∂(HN +He−N)

∂Ri

∣∣∣∣
Ri0

Rj(εij + fij). (2.33)

We are only interested in the symmetrical part of the tensor ε because the antisymmetrical

part f transforms as a generator of the rotational group causing only a rotation in the

structure as a whole. A rotation should not affect the eigenvalues or eigenvectors of the

system.

We now conclude that the strain Hamiltonian can be modelled by,
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Hs =
∑
ij

∂(HN +He−N)

∂Ri

∣∣∣∣
Ri0

Rjεij. (2.34)

Considering now the NV center and the 3 nearest neighbor carbon atoms, with equilibrium

coordinates,

#»

R10 = d

(
1, 0,

d0
d

)
, (2.35)

#»

R20 = d

(
−1

2
,

√
3

2
,
d0
d

)
, (2.36)

#»

R30 = d

(
−1

2
,−
√

3

2
,
d0
d

)
, (2.37)

#»

R40 = d1 (0, 0,−1) , (2.38)

where the indices 1,2 and 3 represent the carbons and the index 4 represents the nitrogen,

d0 is the distance from the vacancy to the carbon plane, d is the distance from the projected

vacancy in the carbon plane to each carbon and d1 is the distance from the nitrogen to the

vacancy as shown in Figure 2.3.

Figure 2.3: Definition of the coordinate system for the NV center. The z-axis aligns itself with
the invisible line that connects the nitrogen (blue) and the vacancy (transparent). The origin of
the system of coordinates is set to the vacancy and one of the carbons (grey), is set to the x-axis.

For the four atoms of the molecule we have to add a sum over α which will label the carbons

and the nitrogen:

Hs =
∑
αij

∂(HN +He−N)

∂xαi

∣∣∣∣
Rα0

Rαjεij. (2.39)
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We note that the complexity in calculating the operator that accompanies the Strain Tensor

resides in calculating the derivatives of HN + He−N , but there is a much simpler way of

calculating them as group theory allows to rewrite any function in a linear combination of

terms that transform as irreducible representations. Then we define,

Hij ≡
∑
α

∂(HN +He−N)

∂xαi

∣∣∣∣
Rα0

Rαj. (2.40)

Therefore,

Hs =
∑
ij

Hijεij. (2.41)

Now, as this equation does not depend on spin, and does not involve terms with more than

one orbital function, we can reduce the dimensionality of the problem,

Hs = (ε⊗ 13×3 + 13×3 ⊗ ε)⊗ 14×4, (2.42)

where ε will have the same structure as Equation 2.41. The 3× 3 identity matrices act upon

each orbital (with the exception of a′) and the 4×4 identity matrix acts upon both the spins.

As mentioned before, the ε tensor can be decomposed into terms that transform as each of

the irreducible representations [19]. Furthermore, it is possible to find this decomposition in

the basis {ex,ey,a}. Then,

ε = δaA1
Aa1 + δbA1

Ab1 + δaE1
Ea

1 + δaE2
Ea

2 + δbE1
Eb

1 + δbE2
Eb

2, (2.43)

where δaA1
= (εxx + εyy)/2, δbA1

= εzz, δ
a
E1

= (εxx − εyy)/2, δaE2
= (εxy + εyx)/2, δbE1

=

(εxz + εzx)/2, δbE2
= (εyz + εzy)/2, and,
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Aa1 =


1 0 0

0 1 0

0 0 0

 Ea
1 =


1 0 0

0 −1 0

0 0 0

Ea
2 =


0 1 0

1 0 0

0 0 0

 , (2.44)

Ab1 =


0 0 0

0 0 0

0 0 1

 Ea
1 =


0 0 1

0 0 0

1 0 0

Ea
2 =


0 0 0

0 0 1

0 1 0

 . (2.45)

The strain 15× 15 interaction Hamiltonian matrix can be found in Appendix B.

2.5.5 Electromagnetic Field Interaction

We can separate the electromagnetic field in an electric part and in a magnetic part. As we

stated in the previous subsection, an electric field can cause strain. Furthermore, the total

effect caused by the presence of an electric field can be expressed in terms of a strain field.

And the strain tensor produced by it is known [25],

eE =


aEx + bEz −aEy cEx

−aEy −aEx + bEz cEy

cEx cEy dEz

 , (2.46)

where eE is the strain tensor generated by the electric field, E is the electric field vector,

a ≈ b ≈ c ≈ 0.3× 10−6(MVm−1)−1 and d ≈ 3× 10−6(MVm−1)−1[19].

The magnetic field can be incorporated with the Zeeman effect [24],

HZeeman =
µB
~

(L ·B + gS ·B) , (2.47)

where B is the magnetic field vector. As we have already calculated the matrices of L, we

only have to incorporate them and we can deduce a 15×15 Hamiltonian matrix. This matrix

is shown in Appendix B.

Now that we have a full Hamiltonian description of the system, we want to find a method

to study a subspace in isolation. Therefore, in the next chapter we will focus on this.





Chapter 3

Effective Hamiltonian method

In the last chapter we found the states of the system and described its interactions. Now,

we want to describe a particular configuration of the system. In this chapter we will present

a method for generating an effective Hamiltonian with the dimension of the configuration

we want to describe and that has the effective effect of the full Hamiltonian. We show the

validity of the method by comparing the diagonalized expectation values of both the method

and the full Hamiltonian.

3.1 Effective Hamiltonians

As we discussed, we need a method for taking all the states of the system into consideration

when attempting to describe one configuration in isolation. In order to do this we will

introduce an effective Hamiltonian method. As we will show, this method will produce

a description of a configuration that is approximately equivalent to the description of the

complete system. Therefore the expectation values of the effective Hamiltonian, and the

original Hamiltonian will approximately be the same for a particular configuration.

In this chapter we will explore how these effective Hamiltonians are derived. We will describe

the Hamiltonian of the complete system in the base of the symmetrized states. Finally, we

will find an effective Hamiltonian for the ground state triplet of the system.

To find an effective Hamiltonian as described before, we have to start from the time-

independent Schrödinger equation [24],

21
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Hψi = Eiψi, (3.1)

where H is the complete Hamiltonian in a Hilbert space of dimension N , ψi is one of its

eigenvectors, and Ei its eigenvalue.

As we have a full matrix description of the Hamiltonian, it is possible to separate this matrix

into blocks

H =

(
Haa Hab

Hba Hbb

)
, (3.2)

where the sub-index a refers to the configuration we are interested to describe and the sub-

index b refers to the rest of the configurations. Therefore, Haa is a square matrix of dimension

Ma equal to the configuration we want to study and Hbb is also a square matrix of dimensions

Mb = N −Ma.

The main requirement that this method needs to work is that the energy of each state in

the configuration a must be the same, and as expected, this is not the case. However, it is

possible to create a series expansion around an interaction that affects the configuration a

uniformly and that is greater than the other interactions. The Coulomb interaction satisfies

both conditions and allows us to develop this method without further complications. Now,

to develop a formula for the effective Hamiltonian, we solve the eigenvalue problem for

Equation 3.2,

(
Haa Hab

Hba Hbb

)(
ψi,a

ψi,b

)
=

(
Eiψi,a

Eiψi,b

)
, (3.3)

where the sub indices represent the subspaces previously defined. Now, solving for ψi,b

Hbaψi,a +Hbbψi,b = Eiψi,b,

ψi,b = (EiIbb −Hbb)
−1Hbaψi,a, (3.4)
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where the exponent represent the inverse of the matrix and Ibb is the identity matrix of

dimension equal to Hbb.

Now for the equation of the a subspace,

Haaψi,a +Habψi,b = Eiψi,a,

(Haa +Hab(EiIbb −Hbb)
−1Hba)ψi,a = Eiψi,a. (3.5)

Comparing to the Schrödinger equation, we get,

Heff (Ei) = Haa +Hab(EiIbb −Hbb)
−1Hba. (3.6)

Note that this effective Hamiltonian has Ei as a parameter, making several different effective

Hamiltonians for one subspace. We solve this by writing the total Hamiltonian as H =

H0+Hint, where H0 is the coulomb interaction, which is greater than any of the interactions.

If we expand the energy with perturbation theory, the energies at order 0 are degenerate for

the individual subspaces we want to study. Therefore we can expand equation (3.6) to any

order in Ei,0 to get different effective Hamiltonians. For order zero we have,

Heff = Haa +Hab(Ei,0Ibb −Hbb)
−1Hba. (3.7)

We can also expand equation 3.6 to the first order in Ei,0,

Heff (Ei) = Haa+Hab(Ei,0Ibb−Hbb)
−1Hba−Hab(Ei,0Ibb−Hbb)

−2Hba(Ei−Ei,0)+O(2). (3.8)

If we apply this equation to the eigenvector ψi,a, in the last term, due to the Schrödinger

equation, we can replace Ei with Heff (Ei). Therefore,

Heff (Ei) = Haa +Hab(Ei,0Ibb −Hbb)
−1Hba −Hab(Ei,0Ibb −Hbb)

−2HbaHeff (Ei) · · ·

+ Hab(Ei,0Ibb −Hbb)
−2HbaEi,0 +O(2). (3.9)
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Solving for Heff (Ei),

Heff = (Iaa+Hab(Ei,0Ibb−Hbb)
−2Hba)

−1(Haa+Hab(Ei,0Ibb−Hbb)
−1Hba+Hab(Ei,0Ibb−Hbb)

−2HbaEi,0).

(3.10)

Which is independent of the possible non-degeneracy of the final levels. This same procedure

could be applied to get more precise Effective Hamiltonians.

3.2 Effective Hamiltonian Example

To give an example, let H0 be a Hamiltonian given by,

H0 =


a 0 0

0 a 0

0 0 b

 . (3.11)

And Hint an interaction much weaker than H0 of the form,

Hint =


0 0 c

0 0 0

c∗ 0 0

 . (3.12)

Assuming that a ≤ b, let us imagine that we want to calculate the effect of Hint on the two

lower energy states. Towards this we can use Equation 3.7. Applying it to H0 + Hint, we

get,

Heff =

(
a+ |c|2

a−b 0

0 a

)
. (3.13)

This is a known result of an adiabatic elimination process.



Master Thesis Alejandro Jiménez 25

3.3 Spin Hamiltonian

We now describe the Spin Hamiltonian of the ground state triplet. This is done by decom-

posing the effective Hamiltonian matrix for the e2 configuration into Spin operators. Since

the symmetrized spin operators form a complete basis, the decomposition is achieved by

projecting the Hamiltonian in those operators (with an inner product defined by the trace

of the matrix dot product). By applying this procedure in a Mathematica script, we get,

H = E01 + αS2
z + β(S2

x − S2
y) + γ(SxSy + SySx)

+ δ(SxSz + SzSx) + ε(SySz + SzSy) + ζSx + ηSy + γeB · S, (3.14)

where, E0 is the base energy of the system and does not cause a splitting in the energy levels,

α = D = 2.87 GHz ε =

√
2(δbE1 + cEx)∆xy

Eet
,

β =
2(δbE2 + cEy) Re(∆+) + 4

√
2AMBx Im(∆+)

Eet
ζ =

8AAMBx − 4AMBy∆xy

Eet
,

γ = −2(δbE1 + cEx) Re(∆+)− 4
√

2AMBy Im(∆+)

Eet
η =

8AAMBy − 4AMBx∆xy

Eet
,

δ =

√
2(δbE2 + cEy)∆xy

Eet
,

where, AM = ~
2m2

ec
2µB

A, BM = ~
2m2

ec
2µB

B, A and B are elements of the Spin Orbit operator

(A = 7.3 GHz and B = 5.475 GHz[19]), ∆ij, ∆+ and ∆− refer to the matrix elements of the

Spin Spin interaction, the δ’s are strain parameters, Eet is the Coulomb energy of the exited

state, Ei is an electric field in the i direction, Bj is a magnetic field in the j direction and

c = 0.3× 10−6(MVm−1)−1.

3.4 Comparison between the effective Hamiltonian and

the full Hamiltonian

As we said in the previous section, the effective Hamiltonian method is a perturbative method

and therefore, its validity needs to be contrasted against the original full Hamiltonian. For

that we need numerical values for the elements of the Spin Spin interaction. The values for
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∆, ∆′, and ∆′′ are given by 0.5 GHz, 0.825 GHz and 0.26 GHz respectively[19]. We can

also calculate ∆1 = −0.32 GHz by the zero field splitting. Other values are picked randomly

with a similar order of magnitude as the previous ones (the effect of varying these values in

the error is negligible).

We make a comparison of the lowest energy level versus strain in Figure 3.1. As it can

be appreciated, the percentage error in the energy of the full Hamiltonian and the effective

Hamiltonian is of the order of 10−6, which is neglectable. The figure also includes a com-

parison of the lowest energy level as the magnetic field varies in Figure 3.1. The effect of

a magnetic field variation is more noticeable, however the error is still small even for large

magnetic fields.

Figure 3.1: Left: Error in the comparison between the lowest energy level in the full Hamiltonian
and in the effective Hamiltonian of the ground state triplet as strain varies. It is not a smooth
function due to the computational method used to calculate it and the behaviour near zero strain
is not asymptotic. Here the strain variable can be either δbE1

or δbE2
as both of them have the same

effect on the energy level. Right: Error in the comparison between the lowest energy level in the full
Hamiltonian and in the effective Hamiltonian of the ground state triplet as a magnetic field aligned
with the NV axis varies. In both cases, the error is calculates as Error= (∆Ei − ∆Ei,eff )/∆Ei,
where ∆Ei is the difference between the eigenvalue of the complete Hamiltonian of the state i and
the eigenvalue of the isolated ground state (e2) configuration of the state i, and ∆Ei,eff is the
difference between the eigenvalue of the effective Hamiltonian of the state i and the eigenvalue of
the isolated ground state (e2) configuration of the state i.

Now that we have found the Spin Hamiltonian for the ground state triplet, in the next

chapter we make a comparison to experimental results.



Chapter 4

Experimental Comparison

4.1 Introduction

In the last chapter we developed a tool to find an effective Hamiltonians and used it to model

the ground state triplet, also decomposing it in a Spin Hamiltonian, which is the final goal

of this work. However, we still have to contrast our results against experimental findings.

To do this we tabulate several results of different works regarding the effect of strain in the

NV center in Table 4.1 and Table 4.2.
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Table 4.1: Part 1 of the different results of strain in NV centers. The first column shows the
Hamiltonian used to model the strain effect. The second column displays the parameters found
by the experiments. The third column adds commentaries relevant for the discussion and the last
column labels the results according to their authors.

Hamiltonian Parameters Comment Reference

Hstr =A1(sxx + syy + szz)
+A′

1(syz + szx + sxy)
+Ex(sxx + syy + 2szz)

+Ey

√
3(sxx − syy)

+E′
x(syz + szx − 2sxy)

+E′
y

√
3(syz − szx)

A1 =〈E|A1|E〉 − 〈A|A1|A〉
2A2 =〈E|A′

1|E〉 − 〈A|A′
1|A〉√

2B=〈E|E|E〉√
2C=〈E|E′|E〉

A1=1.68× 10−12 eV
Pa

A2=3.99× 10−12 eV
Pa

B =1.06× 10−12 eV
Pa

C =1.62× 10−12 eV
Pa

A1, A′
1, etc. are

matrix opera-
tors in the base
{|3A20〉 , |Ex〉 , |Ey〉}
of Table 2.2 that
transform as A1 or
E. Here, |E〉 could
be either |Ex〉 or |Ey〉
and |A〉 is |3A20〉.
sij is an element of
the strain tensor.
The experiment was
performed at room
temperature applying
uniaxial stress with a
push-rod driven by oil
pressure.

Davies
1976[26]

~2Hstr=d‖ΠzS
2
z

−d⊥Πx(S
2
x − S2

y)
+d⊥Πy(SxSy + SySx)

d‖/h=0.35± 0.02 Hz cm/V
d⊥/h=17± 3 Hz cm/V

Π is the addition of
the electric field and
the effective electric
field produced by the
strain. The spin oper-
ators S are redefined.
The work cites Do-
herty 2011[18], how-
ever there is no men-
tion to the values in
that reference.

Doherty
2012[27]

Hstr=d‖δz(S
2
z − S(S + 1)/3)

+d⊥δx(S
2
x − S2

y)
+d⊥δy(SxSy + SySx)

d‖ =0.35± 0.02 Hz cm/V
d⊥=17± 3 Hz cm/V

These results are not
derived in this paper,
they are cited from
Van Oort 1990[28],
however, the results
of that work are for
electric fields, and Do-
herty argues they ap-
ply to strain as well.
There is a difference in
sign compared to Do-
herty 2012.

Doherty
2013[29]

Hstr=ε‖σ‖S
2
z

−ε⊥σx(S2
x − S2

y)
+ε⊥σy(SxSy + SySx)

ε⊥ = 0.03 MHz
MPa

The value of ε‖ is not
derived nor cited in
this paper, and the
value of ε⊥ is cited
from Bennett 2013[30]
where it was obtained
at low temperature
in a mechanical res-
onator.

MacQuarrie
2013[31]
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Table 4.2: Part 2 of the different results of strain in NV centers.

Hstr=d̃‖εzS
2
z

−d̃⊥(ε+S
2
+ + ε−S

2
−)/2

ε± =−εy ∓ iεx

d̃‖ =5.46± 0.31 GHz

d̃⊥=19.63± 0.40 GHz

εi is the strain on
the center along the
coordinate i. The
results were obtained
at room tempera-
ture measuring the
mechanical displace-
ment of a cantilever
and by diagonalizing
the Hamiltonian of
the model to fit the
parameters.

Teissier
2014[32]

Hstr =d‖ε‖S
2
z

−d⊥ε⊥
2

(e−iφsS2
+ + eiφsS2

−)
ε‖ =εz
ε⊥ =

√
ε2x + ε2y

tan (φs)=εy/εx

d‖ =13.4± 0.8 GHz
d⊥=21.5± 1.2 GHz

The Hamiltonian is
exactly the same as
Teissier 2014 and the
experiment is simi-
lar (the only differ-
ence in setup is that
Ovartchaiyapong uses
a vacuum of 10−5

Torr) and yet the re-
sults are different.

Ovartchaiyapong
2014[33]

H = DS2
z + E(S2

x − S2
y) + γB · S dD/dσ=15 KHz/MPa

d∆/dσ=17 MHz/MPa

∆ is the shift in op-
tically detected mag-
netic resonance spec-
tra and σ is the stress.
It is stated that the
variation in D is only
slightly affected by the
stress. The exper-
iment was made at
room temperature and
the application of uni-
axial pressure. The
usage of a piezomag-
netic material in the
sample is also noted.

Cai
2014[34]

Hstr=ε‖σ‖S
2
z

−ε⊥σx(S2
x − S2

y)
+ε⊥σy(SxSy + SySx)

ε‖/2π =13.3 GHz/Strain
ε⊥/2π=21.5 GHz/Strain

Values for the cou-
plings are cited from
Ovartchaiyapong
2014[33] and the
stiffness tensor is used
to change from strain
to stress.

MacQuarrie
2015[35]

H =(D +Mz)
(
S2
z − 2

3

)
+γeB · S−Mx(S

2
x − S2

y)
+My(SxSy + SySx)

Mx=b(2σZZ − σXX − σY Y )
+c(2σXY − σY Z − σZX)

My=
√

3(b(σXX
−σY Y ) + c(σY Z − σZX))

Mz=a1(σXX + σY Y + σZZ)
+2a2(σY Z + σZX + σXY )

a1=4.86 MHz/GPa
a2=−3.7 MHz/GPa
b =−2.3 MHz/GPa
c =3.5 MHz/GPa

D is the zero field
splitting and σij is
the ij element of the
stress tensor in the
diamond lattice coor-
dinate system. The
results were obtained
by applying uniaxial
strain at room tem-
perature.

Barson
2017[36]
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4.2 Discussion of the comparison between the model

and the literature

As we have presented in the previous section, there are various different results available

for the parametric constants. However, there is a step in-between the raw data of the

experiments and the fitting of the constants, which is the diagonalization of the Hamiltonian,

and since the Hamiltonian used for the showcased models are different, it would lead to

different parameters compared to us.

One of the main differences in our model compared to previous models is the lack of de-

pendence of the S2
z parameter related to strain parallel with the NV axis. And even after

comparing the results in the table after diagonalizing every one of its Hamiltonians and our

own, there is a difference that remain unexplained.

The difference might be attributed to the fact that we are not taking into account the change

of the spin-spin interaction with strain. The spin-spin interaction depends on the relative

position between electrons, which in turn, depend on the position of the ions and the electron

cloud follows the ions.

The application of the Taylor expansion on the Coulomb interaction and not in the others is

done because the Coulomb interaction is the only one that has a dependency on the position

operator of the ions. Therefore, in order to capture the effect of the motion of the ions

on the interactions where the Hamiltonians do not show an explicit dependency on the ion

positions, we need to consider the effect on the electron wavefunctions as electrons rapidly

follow the motion of the ions.

Formally, this effect might be modelled by considering the change of the matrix elements

with respect to a displacement of a given ion.

∂ 〈Ψi(r, R)|H(r, R)|Ψj(r, R)〉
∂R

. (4.1)

We leave this as future work.



Chapter 5

Conclusions

We have described the NV− system, characterizing its states in terms of symmetrized orbitals

and how the interactions affect these states. Then, we applied a method for isolating the

subspaces of a system by creating an effective Hamiltonian for a subspace. Finally, we found

a Spin Hamiltonian for the ground state triplet and compared it to experimental results.

The conclusion of the comparison is that our model and experimentation do not match. We

believe this is due to not considering the effect of the strain field on the interactions that do

not show an explicit dependence on ion positions. Therefore, the next step is to transfer the

dependency of ionic position operators to the electronic orbital states by modelling them as

functions centered at the expectation value of the ion positions.
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Appendix A

Introduction to Molecular Group

Theory

In this appendix we will give a brief introduction to molecular group theory, following closely

the derivation given in [23].

Assume you have a set of operators PR which commute with the Hamiltonian of the system,

now to be called symmetry operators. Therefore, applying this to the Schrödinger equation,

PRHψi = PREiψi, (A.1)

HPRψi = EiPRψi. (A.2)

From this result we conclude that any function PRψi obtained by operating on an eigenfunc-

tion ψi by a symmetry operator from the group of the Schrödinger equation will also be an

eigenfunction having the same energy as the original one. Thus, given any eigenfunction,

we can generate other eigenfunctions degenerate with it by application of all the symmetry

operators which commute with H.

Now, let us assume that Ei is li-fold degenerate. Then there are li orthonormal functions

with energy Ei. By our previous result, if we operate PR on any of these functions, the result

must be expressed as a linear combination of these functions. This means,

PRψ
(i)
ν =

li∑
κ=1

ψ(i)
κ Γ(i)(R)κν , (A.3)
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where Γ(i)(R) is a transformation matrix. These matrices form a group, which means that

if we multiply any pair of them, the result will also be in the group, there is an identity

matrix in the group and every matrix in the group has its inverse also in the group. Also,

these representations are irreducible since there is always an operator in the group which

transforms each function into any other degenerate with it. Thus no smaller matrices could

express the most general transformation.

These matrices also follow what is called the great orthogonality theorem [23], which states,

∑
R

Γ(i)(R)∗µνΓ
j(R)αβ =

h

li
δijδµαδνβ, (A.4)

where h is the number of elements in the group and the δ’s are Kronecher deltas. Now, we

multiply equation A.3 by Γ(j)(R)∗κ′ν′ and sum over R, then,

∑
R

Γ(j)(R)∗κ′ν′PRψ
(i)
κ =

h

li
δijδκκ′ψ

(i)
ν′ . (A.5)

From this equation we conclude that the application of the operator,

P(i)
νκ =

li
h

∑
R

Γ(i)(R)νκPR, (A.6)

to a basis function has the property of yielding zero unless the function being operated on

belongs to the κ-th row of Γ(i). Moreover, if this condition is satisfied, then the result of the

operation is ψ
(i)
ν . Also it is important to remark that the application of this operator will

result in functions with the same energy, as the superindex (i) does not change.

Now, if ν = κ and we sum over ν, the equation will not depend on the Γ matrices, but on

the traces, otherwise known as characters χ instead,

P(j) =
lj
h

∑
R

χ(j)(R)PR. (A.7)

Finally, it is important to note that two functions belonging to different irreducible represen-

tations or representation rows are orthogonal. This again is due to the great orthogonality
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theorem. Moreover, if two functions have the same irreducible representation, then the

multiplication will transform as the trivial irreducible representation A1. In other words, a

matrix element will be 0 if,

〈ψi|M |ψj〉 * A1. (A.8)

As an example, let us say that we want to find the states that transform as E and belong to

the e2(S) representation. As it is a singlet, it only allows wavefunctions of total spin 0 and

belonging to the e2 configuration means we can only use ex and ey. Then, the test function

to generate all possible terms should be,

|Ψtest〉 = |exey〉⊗|↑↓〉+ |exey〉⊗|↓↑〉+ |exex〉⊗|↑↓〉+ |exex〉⊗|↓↑〉+ |eyey〉⊗|↑↓〉+ |eyey〉⊗|↓↑〉
(A.9)

If we use Equation A.6 on |Ψtest〉, with ν = κ = 1, with Γ taken from Ref. [22], the result is,

|exex − eyey〉 ⊗ |↑↓ − ↓↑〉 , (A.10)

which is the state that transforms as E1 and belongs to e2(S) in Table 2.2. Now, if we apply

the projection operator to |Ψtest〉 again, but now with κ = ν = 2, we get,

|exey + eyex〉 ⊗ |↑↓ − ↓↑〉 (A.11)

Which is the state that transforms as E2 and belongs to e2(S) in Table 2.2.





Appendix B

Supplementary material for Chapter 2

In this appendix we will show the complete matrices of the interactions that act on the NV

system and give a small explanation for them.

37



Master Thesis Alejandro Jiménez 38

B.1 Coulomb interaction

The Coulomb interaction is straightforward and given by,

H e2 ae a2

Triplet Singlet Triplet Singlet
3A2−

3A20
3A2+

1E1
1E2

1A1 A1 A2 E1 E2 Ey Ex
1Ex

1Ey
1A1

3A2−
3A20

3A2+

1E1 Egs Ess
1E2 Egs Ess
1A1 2Egs Ese

A1 Eet

A2 Eet

E1 Eet

E2 Eet

Ey Eet

Ex Eet
1Ex E∗ss Ees
1Ey E∗ss Ees
1A1 E∗se Eee
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B.2 Spin-Orbit interaction

The full Spin-Orbit matrix interaction is given by,

HSO e2 ae a2

Triplet Singlet Triplet Singlet
3A2−

3A20
3A2+

1E1
1E2

1A1 A1 A2 E1 E2 Ey Ex
1Ex

1Ey
1A1

3A2− A −iA −iA A
3A20 2iB −2iA
3A2+ −A −iA iA A
1E1 −2A
1E2 2iA
1A1 −2iB −2A

A1 2iA −2A B −2
√

2A

A2 B

E1 −2A −B
E2 −2iA −B
Ey A −A iB

Ex iA iA −iB
1Ex iA −iA −iB
1Ey A A iB
1A1 −2

√
2A

B.3 Spin-Spin interaction

The method that is used to find the Spin-Spin interaction matrix is first to develop equation

2.26 in terms that transform as irreducible representations,

HSS = −µ0g2µ2B
4π

[
1−3ẑ2
4r3

(S1+S2− + S1−S2+ − 4S1zS2z) + 3
4
x̂2−ŷ2
r3

(S1−S2− + S1+S2+) (B.1)

+i3
2
x̂ŷ
r3

(S1−S2− − S1+S2+) + 3
2
x̂ẑ
r3

(S1−S2z + S1zS2− + S1+S2z + S1zS2+)

+ i3
2
ŷẑ
r3

(S1−S2z + S1zS2− − S1+S2z − S1zS2+)
]
.

The position part of the first term transforms as A1 and the others transform as E. We then

figure out each of the matrices for the position part and then multiply with the spin part,

the result is,
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HSS e2 ae a2

Triplet Singlet Triplet Singlet
3A2−

3A20
3A2+

1E1
1E2

1A1 A1 A2 E1 E2 Ey Ex
1Ex

1Ey
1A1

3A2− −4∆1 ∆+ −∆+ i∆xy ∆xy

3A20 5∆1

3A2+ −4∆1 ∆+ ∆+ i∆xy −∆xy

1E1 ∆1 ∆1x

1E2 ∆1 ∆1x

1A1 ∆1 ∆1e

A1 ∆−∆′

A2 ∆ + ∆′

E1 ∆∗+ ∆∗+ ∆ ∆′′

E2 −∆∗+ ∆∗+ ∆ −i∆′′

Ey −i∆xy −i∆xy ∆′′ −2∆

Ex ∆xy −∆xy i∆′′ −2∆
1Ex ∆∗1x ∆es

1Ey ∆∗1x ∆es

1A1 ∆∗1e ∆2e

B.3.1 Strain field

The full matrix for the Strain Hamiltonian is,

HStrain e2 ae a2

Triplet Singlet Triplet Singlet
3A2−

3A20
3A2+

1E1
1E2

1A1 A1 A2 E1 E2 Ey Ex
1Ex

1Ey
1A1

3A2− δ3
1
2
iδbE −1

2
iδbE −1

2
iδbE −1

2
iδbE

3A20 δ3 δbE
3A2+ δ3 −1

2
iδbE −1

2
iδbE

1
2
iδbE −1

2
iδbE

1E1 δ3 δ′3 δbE
1E2 δ3 δ′′3 δbE
1A1 δ′3 δ′′3 δ3 δbE

A1 −1
2
iδbE

1
2
iδbE δ′′ 1

2
δ′3 −1

2
iδ′′3

A2
1
2
iδbE

1
2
iδbE δ′′ 1

2
iδ′′3 −1

2
δ′3

E1
1
2
iδbE −1

2
iδbE

1
2
δ′3 −1

2
iδ′′3 δ′′

E2
1
2
iδbE

1
2
iδbE

1
2
iδ′′3 −1

2
δ′3 δ′′

Ey δbE δ′′ − 1
2
δ′3

1
2
δ′′3

Ex
1
2
δ′′3 δ′′ + 1

2
δ′3

1Ex δbE δbE δ′′ + 1
2
δ′3

1
2
δ′′3

√
2δbE

1Ey δbE
1
2
δ′′3 δ′′ − 1

2
δ′3

1A1

√
2δbE 2δbA1

where, δ3 = 2δaA1
, δ′3 = 2δaE1

, δ′′3 = 2δaE2
, δbE = δbE1

+ δbE2
and δ′′ = δaA1

+ δbA1
.
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