
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

ALGORITHM DESIGN FOR THE

DISTRIBUTED AVERAGE CONSENSUS

PROBLEM OVER IOT ENVIRONMENTS

BORIS ENRIQUE ORÓSTICA NAVARRETE

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

FELIPE NÚÑEZ RETAMAL

Santiago de Chile, October 2018

c© 2018, BORIS ENRIQUE ORÓSTICA NAVARRETE

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

ALGORITHM DESIGN FOR THE

DISTRIBUTED AVERAGE CONSENSUS

PROBLEM OVER IOT ENVIRONMENTS

BORIS ENRIQUE ORÓSTICA NAVARRETE

Members of the Committee:

FELIPE NÚÑEZ RETAMAL

ANDRÉS GUESALAGA MEISSNER

CRISTIAN DURÁN FAÚNDEZ

PEDRO GAZMURI SCHLEYER

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, October 2018

c© 2018, BORIS ENRIQUE ORÓSTICA NAVARRETE

Gratefully to my parents, brother

and my sweet Mayerlaine

ACKNOWLEDGEMENTS

This project has been supported by the National Commission for Science and Technology

Research of Chile (Conicyt) under Fondecyt grant 1161039.

I want to thank the Pontificia Universidad Católica de Chile for its support and the op-

portunity of growing as a professional during all these years.

I would like to express my complete gratitude to my advisor Felipe Núñez, for his guid-

ance through this work and the teachings he has given me personally and professionally. I

feel grateful for what he has shared with me during these years.

Also thanks to the members of the review committee for their participation in evaluating

this work, and their comments and contributions during this investigation.

Finally, but most importantly, thanks to my parents Lorenzo and Marı́a, my brother Ro-

drigo and specially thanks to my sweet Mayerlaine who have given me support and encour-

agement during the process.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . viii

LIST OF TABLES . xv

ABSTRACT . xvi

RESUMEN . xvii

Chapter 1. Introduction . 1

1.1. Motivation . 1

1.2. Objectives, Contributions and Organization 4

1.3. Preliminaries . 6

Chapter 2. Problem Formulation and General Framework 12

2.1. Assumptions on the Communication Dynamics 13

2.2. Linear Updates and Asynchronous Transition Matrices 22

2.3. Non-Negativeness and Underlying Graphs 32

2.4. Practical Consensus and Average Consensus Goals 41

Chapter 3. Convergence of Infinite Matrix Products 46

3.1. Homogeneous Products . 47

3.2. Non-Homogeneous Products . 54

Chapter 4. Existing Algorithms . 68

4.1. Study Cases . 68

4.1.1. Vicsek’s Problem . 68

4.1.2. Gossip Approach . 71

4.1.3. Broadcast-Gossip . 75

4.1.4. Push-Sum . 78

v

4.2. Evaluation of Existing Multi-cast Algorithms 81

4.2.1. Numerical Simulations . 82

4.2.2. Hardware Implementation . 85

4.2.3. Observations . 88

Chapter 5. A New Algorithm for Distributed Averaging 90

5.1. Ideas behind the proposed algorithm . 91

5.2. Communication Process and Qualitative Analysis 97

5.2.1. Uni-cast Version . 97

5.2.2. Multi-cast Version . 100

5.2.3. Qualitative Analysis . 102

5.3. A Deeper Analysis . 104

5.3.1. Example: Asynchronous Matrices Induced by the Algorithm N = 2 . . 111

5.3.2. Example: Asynchronous Matrices Induced by the Algorithm N = 3 . . 112

5.4. Properties of Σ in the infinite product (M∞ · · ·M1M0) 115

5.4.1. Oblique Projections . 115

5.4.2. Conservation Property is Invariant . 115

5.4.3. Consensus is a Reachable Subspace 116

5.4.4. Consensus is the Unique Reachable Subspace 116

5.4.5. The System Converges . 117

Chapter 6. Evaluation of the Proposed Algorithms as Protocols 119

6.1. Uni-cast version . 119

6.1.1. Protocol for Implementation . 119

6.1.2. Hardware Implementation . 121

6.2. Multi-cast Version . 131

6.2.1. Protocol for Implementation . 131

6.2.2. Hardware Implementation over FIT IoTLab Testbed 131

6.3. Comparison of the Multi-cast Version with a recent Push-Sum Based Protocol 134

Chapter 7. Conclusions . 141

vi

REFERENCES . 147

vii

LIST OF FIGURES

2.1 The actions of a digital device are triggered by events. 14

2.2 Example of a strongly connected feasible communication topology. The dotted

arcs represent feasible links that will appear constantly during the deployment of a

distributed task. 16

2.3 Two ways of sending information: unicast and multicast. Either way needs the

unique identification of the agents and the knowledge of the out-neighbor set for

every node. 17

2.4 Events of data receptions are asynchronous. Even in the multicast transmission

case the receptions are asynchronous due to delays. 17

2.5 A node receiving information from multiple in-neighbors asynchronously and

synchronously. The asynchronous case is the one that occur in a real implementation

of communication via messages, the synchronous case only happens if a node

can sense states from the environment, which will be analyzed because it gives

important insights but is out the framework of this research. 18

2.6 The communication process is unreliable and therefore only the receiver is aware

of the message reception. 20

2.7 The communication process will be assumed delay-free in the theoretical framework.

Regarding assumption 2.1, the feasible communication link is always appearing as

the system evolves over time. 20

2.8 An example of a feasible communication topology and its possible asynchronous

reception events. The dynamics of the communication links is intricate and the

order in which they appear cannot be manipulated due to multi-rate behavior of the

timers and packet losses, however we will assume that every communication link

is always appearing during the evolution of the system which is reasonable as long

as all the nodes are turned on and non-defective. 21

viii

2.9 An example of synchronous multiple reception which naturally represents an

update when there are not delays. The self-loop, which indicates that the next

state of the node i = 2 depends on its present state was not added, neither the

feasible links by simplicity. Since it is a synchronous update, it does not represent

an adequate transition matrix under our framework. 23

2.10 An example of asynchronous reception which induces and adequate asynchronous

transition matrix in our framework. Just one node updates with its own state and

the information listened from one neighbor. 24

2.11 An example in which an agent updates its state based on its past state which is

depicted as a self-loop. Even though it is an asynchronous update, this is not a

advisable one since it does not regard information of the environment, i.e. it is a

non-cooperative decision. 25

2.12 Example in which the synchronous updates of a multi-cast transmission can be

decomposed into asynchronous receptions. The self-loop is not advisable since

represents a non-cooperative update. 27

2.13 Example in which the synchronous updates of a uni-cast transmission can be

decomposed into asynchronous receptions: an update due to a timer event an

another as a consequence of a reception event. The update due to a timer event

depicted as a self-loop is not advisable since represents a non-cooperative decision. 29

2.14 Example of a uni-cast transmission process in which the reception is successful

of failed due to packet loss phenomenon. Note that since the timer event does not

induces an update on the sender, the packet loss do not affect the state of the system

and therefore there are some degree of robustness. 30

2.15 Example of a strongly connected feasible communication topology where the

self-loops are omitted by simplicity. 35

2.16 Example of different asynchronous underlying graphs induced by asynchronous

transition matrices. 36

ix

2.17 Example in which two consecutive asynchronous updates can be viewed as one

synchronous update whose underlying graph possesses two links of the feasible

communication topology. 37

2.18 Example in which two consecutive asynchronous updates can be viewed as one

synchronous update whose underlying graph possesses two links of the feasible

communication topology and one additional link not in the feasible topology. . . 38

2.19 Example in which all the asynchronous updates of a strongly connected feasible

communication topology appears which can be viewed as a synchronous update.

Note that a new link not presented in the feasible topology appeared in the

equivalent synchronous underlying graph. 38

2.20 Example of feasible communication topologies rooted and sinked. The self-loops

are omitted. 40

2.21 Illustration of the behavior in the Vicsek’s Problem. At the beginning all the mobile

agents have different headings, after a certain time all the headings point at the same

direction, i.e. consensus is reached. The algorithm coded on each agent is linear

and just regards information sensed from its neighbor. This algorithm cannot be

implanted on our framework since the information is sensed and not obtained by a

transmission-reception process. 43

3.1 Example in which is shown a strongly connected feasible communication topology

and the synchronous updates performed every time the “clock of the whole

network” triggers, without presence packet losses. The updates are therefore

constant every time. Clearly, this is not the behavior in our framework. Note that

the underlying graph of the matrix induced by an update (non-negative with positive

diagonal entries) is strongly connected and after a finite time the underlying graph

of consecutive updates will be complete. 48

3.2 Classification of the eigenvalues according to its convergence behavior. The

convergence analysis of the powers of a matrix is straightforward by using the

Jordan decomposition. 51

x

3.3 Thanks to the Gershgorin theorem, any row-stochastic matrix, i.e. A1 = 1 and

A ≥ 0, with positive diagonal entries diag(A) > 0 has its eigenvalues inside the

unit circle or they are equal to one. 53

3.4 Example of a feasible communication topology and some of its possible communications.

Note that the communication can induce synchronous updates, but also they can

induce asynchronous updates as in our framework. 55

3.5 The convergence analysis of an infinite product matrices taken from a finite set Σ

can be analyzed by studying the joint spectral radius ρ(Σ). Just to illustrate, it is

shown the complex plane, however the joint spectral radius is defined as an absolute

value. Note that it is unknown if the system converges when the ρ(Σ) = 1. . . . 57

4.1 Example of the underlying graph induced by a matrix update of the algorithm to

solve the distributed consensus problem. The self-loop was added which represents

that the next state of the node depends on its actual state. 70

4.2 Example of the underlying graph induced by a matrix update of the algorithm to

solve the distributed average consensus problem with the gossip approach. Note

that it is assumed that the two agents involved in the communication update their

states at the same time, however in practice this is not possible. 73

4.3 Example of the underlying graph induced by a matrix update of broadcast gossip

protocol. Note that the self-loop was not added in node 2 because it does not

update its state, however the induced matrix is positive in the a22 position.

This synchronous update can be decomposed into three different asynchronous

communications where the order does not matter. 76

4.4 Example of the underlying graph induced by a matrix update of push-sum protocol.

In this case it is assumed that all the updates occur at the same time, however they

happen asynchronously. Note that the self loop is depicted since the timer event

makes an update on the node. 80

4.5 Consensus value vs. reception probability for 5-neighbors topology. 100 simulations

for each reception probability. (Red: broadcast gossip. Blue: push-sum). 84

xi

4.6 Consensus value vs. reception probability for 3-neighbors topology. 100 simulations

for each reception probability. (Red: broadcast gossip. Blue: push-sum). 85

4.7 Results of the implementation in BBB development boards. 87

5.1 Communicant vessels with a complete underlying graph every time the valve is

opened. As long as the valve is opened and closed indefinitely, every vessel will

reach the same height corresponding to the average of the initial states. 91

5.2 Communicant vessels with two different underlying graphs generated from a

strongly connected feasible communication topology. As long as both valves

are being opened and closed indefinitely the height of the vessels naturally will

reach the average consensus. 92

5.3 Communicant vessels with gossip underlying graphs generated from a strongly

connected feasible communication topology. As long as both valves are being

opened and closed indefinitely the height of the vessels naturally will reach the

average consensus. 93

5.4 Digital devices emulating the communication vessel process by using a transmission-

reception process. The ideal behavior of the gossip approach is not possible due to

the unreliability of the communication channel. 94

5.5 A particle system in which all agents have the same mass, the momentum is

preserved and collisions are induced between pairs of agents also serves as an

analogy of the gossip approach where naturally all the momentums will converge

to the momentum of the center of mass or the desired average. 95

5.6 Unicast version of the protocol. An agent must transmit a message type 1 to a

selected neighbor. If the neighbor receives then it updates its state and sends back a

message type 2. Finally, if the first node listen then updates its state and the process

ends. Note that if a message is lost, the conservation property is still preserved. . 98

5.7 Multicast version of the protocol. An agent must transmit a message to all its

neighbors. If they receive, then update their states. Note that if a message is lost,

the conservation property is still preserved. 101

xii

6.1 IoT environment deployed in an infrastructured LAN configuration. Only 5

agents are shown for simplicity, however in the implementation there are 22

agents deployed. Even though the router is a central entity, the processing of

the information in the network is totally distributed. 122

6.2 Protocol stack used to model the communication between agents and protocols

chosen for the evaluation in the IoT testbed. 124

6.3 Topologies used in the first set of experiments, which are based on a ring structure.

(a) Pure ring topology. (b) Ring topology with 2 extra links per agent corresponding

to the 2 next nearest neighbors. (c) Ring topology with 1 extra link per agent

corresponding to the farthest neighbor. (d) Ring topology with 6 extra links,

randomly chosen. 125

6.4 Communication topologies with time-varying structure. (a) IoT setup where

initially there are two isolated ring clusters, which are bridged at time t1. (b)

IoT setup where initially there are three separated ring clusters. At time t1 two of

them are bridged, and at time t2 > t1 the three clusters are bridged. 126

6.5 Results for the communication topologies based on a ring structure presented in

Figure 6.3. (a): Results for the ring topology, (b):Results for the ring topology plus

two links per agent, (c): Results for the ring topology plus one link per agent, (d):

Results for the ring topology plus 6 random links. 127

6.6 Results for the time-varying communication topologies shown in Figure 6.4. (a):

Results for the time-varying topology with two initial isolated clusters; (b): Results

for the time-varying topology with three initial isolated clusters. 128

6.7 Results for one realization of the uni-cast algorithm implemented on the IoT-LAB

in France with 285 A8 nodes. 130

6.8 Results of one realization where every agent had at most three neighbors. 133

6.9 Comparison between the proposed protocol gossip based and the push-sum based.

Every agent had 3 neighbors. 136

xiii

6.10 Comparison between the proposed protocol gossip based and the push-sum based.

Every agent had 15 neighbors. 137

6.11 Comparison between the proposed protocol gossip based and the push-sum based.

Every agent had 12 neighbors. 138

xiv

LIST OF TABLES

4.1 Simulation results for clock frequencies with same expected value and 10% error. 86

xv

ABSTRACT

As communication technologies have enlarged the set of devices with networking capa-

bilities, a new conception of the Internet of Things (IoT) is emerging. With the incorporation

of devices with advanced diagnosis and actuating capabilities, the IoT provides an appeal-

ing environment to control external processes using its sensing, actuating, and computational

power. In this setting, consensus algorithms are an appealing alternative to support the oper-

ation of the IoT and to enable its potential as distributed control network. In particular, the

problem of reaching a consensus to the average of some initial quantities is a challenging

problem with potential applications in IoT environments. Although consensus algorithms

are mature well studied strategies that naturally adjust to networks, their performance dete-

riorates when faced with phenomena such as stochastic delays, sequential transmissions and

receptions, and unreliability in the information exchanging process; all pervasive in an IoT

environment. In this work, a new algorithm for achieving average consensus over an IoT en-

vironment is designed. Theoretical analysis is developed in order to understand its working

principles. Furthermore, the algorithm is coded as a protocol on real hardware and is exten-

sively evaluated over a local low-scale network and over a public large-scale network. The

algorithm is inspired by gossips and converges to the average in all the experiments over a

real IoT environment facing non-ideal communication phenomena.

Keywords: Consensus Algorithms, Distributed Average Consensus, Internet of

Things, Multi-agent Control, Distributed Control, Non-Homogeneus Ma-

trix Products.

xvi

RESUMEN

A medida que las tecnologı́as de comunicación han ampliado el conjunto de disposi-

tivos con capacidades de red, está surgiendo una nueva concepción de la Internet de las cosas

(IoT). Con la incorporacin de dispositivos con diagnósticos avanzados y capacidades de ac-

tuación, el IoT proporciona un entorno atractivo para controlar procesos externos utilizando

sus capacidades de detección, actuación y computación. En este contexto, los algoritmos de

consenso son una alternativa atractiva para apoyar el funcionamiento del IoT y para habilitar

su potencial como red de control distribuido. En particular, el problema de llegar a un con-

senso al promedio de algunas cantidades iniciales es un problema desafiante con potencial

aplicaciones en el entorno IoT. Aunque los algoritmos de consenso son estrategias maduras

y bien estudiadas que se ajustan naturalmente a las redes, su desempeño se deteriora cuando

se enfrentan a fenómenos tales como retrasos estocásticos, transmisiones y recepciones se-

cuenciales y falta de fiabilidad en el proceso de intercambio de información; todo presente en

un entorno de IoT. En este trabajo, se diseña un nuevo algoritmo para lograr el consenso al

promedio en un entorno IoT. Se desarrolla un análisis teórico para comprender sus principios

de funcionamiento. Además, el algoritmo está codificado como un protocolo en hardware

real el cual se evalúa en una red local de baja escala y en una red pública de gran escala.

El algoritmo está inspirado en gossips y converge al promedio en todos los experimentos

realizados en un entorno real de IoT donde enfrenta las no idealidades de los fenómenos de

comunicación.

Palabras Claves: Algoritmos de Consenso, Consenso al Promedio Distribuido, Internet

de las Cosas, Control Multi-Agente, Control Distribuido, Producto No

Homogéneo de Matrices.

xvii

Chapter 1. INTRODUCTION

1.1. Motivation

Since its origin, the Internet of Things (IoT) has been usually referred to as a large-

scale network of heterogeneous objects with Internet connectivity, uniquely addressable us-

ing standard protocols, mainly IPv6 (Mukhopadhyay & Suryadevara, 2014). However, as

communication technologies have enlarged the set of devices with networking capabilities

up to objects as varied as keys, appliances, and cars, a new definition of the IoT is emerging

as a sparsely coupled, distributed system of interacting smart objects, or things. Smart ob-

jects are able to sense/actuate, store, and interpret information created within themselves and

around the neighboring external world where they are situated, take decisions, cooperate, and

exchange information with other objects and human users (Fortino & Trunfio, 2014).

The change in the conceptual view of the Internet of things has also been partnered with

an extension of its purpose. In its origin, the Internet of things was viewed as a data providing

network that promotes the appearance of data-driven services (Bessis & Dobre, 2014; Bor-

gia, 2014) in what is known as a cloud centric view (Gubbi, Buyya, Marusic, & Palaniswami,

2013), with an associated service-oriented layered architecture (Sarkar et al., 2015). How-

ever, with the incorporation to the network of devices with advanced diagnosis and actuating

capabilities, the IoT provides an appealing environment to control external processes using

its sensing, actuating, and computational power, more in the line of the control perspective of

a cyber-physical system (Borgia, 2014). However, to be able to perform control tasks, several

intrinsic operational issues must be solved first.

From a systems and control point of view, the IoT is a complex network that can be

abstracted using classical tools such as graph theory (Biggs, 1993; Godsil & Royle, 2013)

and hybrid systems (Goebel, Sanfelice, & Teel, 2009), which facilitates the synthesis of con-

trollers to support its operation. Among the existing control techniques, distributed multi-

agent control, in particular consensus algorithms, can be used to address several open prob-

lems in the operation of the IoT. Consensus algorithms are simple distributed protocols that

1

require only minimal computation and communication to reach a network-wide common

value for locally observed variables. The agreement, or consensus, value is a function of the

initial value at all the participating agents, with the specific function determined by the struc-

ture of the consensus protocol (Jadbabaie, Lin, & Morse, 2003; Saber & Murray, 2003; Xiao

& Boyd, 2004; Cao, Morse, & Anderson, 2005; Moreau, 2005; Ren & Beard, 2005; Olfati-

Saber, Fax, & Murray, 2007; Cao, Morse, & Anderson, 2008a, 2008b; Denantes, Benezit,

Thiran, & Vetterli, 2008; Aysal, Yildiz, Sarwate, & Scaglione, 2009; Iutzeler, Ciblat, &

Jakubowicz, 2012). The most popular formulation is the one ensuring convergence to the

average of the initial conditions: the average consensus algorithm. Consensus algorithms

have their origin in the analysis of Markov chains (Seneta, 2006) and have been applied since

by the computer science community for load balancing (J. Tsitsiklis & Athans, 1984; Ghosh,

Muthukrishnan, & Schultz, 1996) and by the linear algebra community for the asynchronous

solution of linear systems (Frommer & Szyld, 2000; Strikwerda, 2002). They have been re-

discovered and applied by the control, communications, and robotics communities (Jadbabaie

et al., 2003; Olfati-Saber et al., 2007; Bullo, Cortés, & Martı́nez, 2009). Some typical ap-

plications includes mobile agents such as vehicle formation (Fax & Murray, 2002; Eren,

Belhumeur, & Morse, 2002; Fax & Murray, 2004; Cao, Morse, Yu, Anderson, & Dasgu-

vta, 2007) rendezvous to a common point (Lin, Morse, & Anderson, 2003; Cortes, Martinez,

& Bullo, 2006; Lin, Morse, & Anderson, 2007a, 2007b) and flocking (Tanner, Jadbabaie,

& Pappas, 2003; Olfati-Saber, 2006; Tanner, Jadbabaie, & Pappas, 2007; Cucker & Smale,

2007). Also, consensus has been applied in the context of sensor fusion (Gupta, Hassibi, &

Murray, 2005; Olfati-Saber & Shamma, 2005; Spanos & Murray, 2005; Xiao, Boyd, & Lall,

2005), distributed Kalman filtering (Olfati-Saber, 2007; Carli, Chiuso, Schenato, & Zampieri,

2008) and even distributed optimization (Tsianos, Lawlor, & Rabbat, 2012a; Zhang & Kwok,

2014; Varagnolo, Zanella, Cenedese, Pillonetto, & Schenato, 2016).

Furthermore, the scientific community has tried to improve the performance of con-

sensus and average consensus algorithms specifically by fastening the convergence speed.

Classical analysis of this can be found in (Olfati-Saber, 2005; Kim & Mesbahi, 2006; Ol-

shevsky & Tsitsiklis, 2006, 2011) and even more sophisticated strategies have been developed

2

(Kokiopoulou & Frossard, 2007; Johansson & Johansson, 2008; Aysal, Oreshkin, & Coates,

2009; Kokiopoulou & Frossard, 2009; Xiong & Kishore, 2009; Cavalcante & Mulgrew, 2010;

Oreshkin, Coates, & Rabbat, 2010; Liu, Anderson, Cao, & Morse, 2013; Olshevsky, 2015).

As an example of the potential application of consensus algorithms to the IoT consider

network-wide time synchronization, which can be regarded as a consensus problem over an

heterogeneous network. Pulse-coupled synchronization (Schenato & Gamba, 2007; Wang,

Núñez, & Doyle III, 2012; Núñez, Wang, & Doyle III, 2012; Nunez et al., 2017), a consensus-

inspired technique which is naturally scalable and simple enough to be adopted by any smart

object in the network, and Average TimeSynch (Schenato & Fiorentin, 2011), which is a

double-consensus-based algorithm, have been applied with success in pilot-scale wireless

sensor networks. Another example of a critical operational aspect is scheduling, where a set

of agents compete for limited processing and networking resources (Longo, Su, Herrmann, &

Barber, 2013). Scheduling can also be viewed as a consensus problem where agents agree, in

a distributed manner, on processing and network access periods; a consensus-based solution

has been used in (He, Duan, Hou, Cheng, & Chen, 2015) to schedule work modes in wireless

sensor networks. It should be noted that in wireless sensor networks nodes usually have very

similar hardware specifications, common communication requirements and a shared goal.

While in IoT environments, the situation is drastically different. In fact, the following key

factors have been recognized as challenges to deal with for any IoT research (Sarkar et al.,

2015): heterogeneity, scalability, interoperability, security, and privacy.

Although consensus algorithms are mature well studied strategies that naturally adjust

to networks, their performance relies heavily on strong assumptions such as perfect synchro-

nization, instantaneous transmissions, concurrent updates, and nominally identical agent dy-

namics. Indeed, several works have been tried to address non-ideal phenomena such as packet

losses (Fagnani & Zampieri, 2006; Patterson, Bamieh, & Abbadi, 2007; Kar & Moura, 2007a,

2009), communication delays (Olfati-Saber & Murray, 2004; Blondel, Hendrickx, Olshevsky,

& Tsitsiklis, 2005; Sun, Wang, & Xie, 2008; Bliman & Ferrari-Trecate, 2008; Tsianos & Rab-

bat, 2011) and data quantization (Kashyap, Basar, & Srikant, 2006; Kar & Moura, 2007b;

Frasca, Carli, Fagnani, & Zampieri, 2008; Nedic, Olshevsky, Ozdaglar, & Tsitsiklis, 2009;

3

Lavaei & Murray, 2012). Hence, the usefulness of consensus techniques in real large-scale

complex networks is yet to be proven. In particular when the interaction between agents in-

volves a full-stack communication network, which introduces stochastic delays, sequential

transmissions and receptions, and unreliability in the information exchanging process. In

fact, recent experiments in IoT testbeds (Oróstica & Núñez, 2017) have shown that classi-

cal average consensus formulations like the broadcast gossip (Aysal, Yildiz, & Scaglione,

2008; Aysal, Yildiz, et al., 2009) based on the gossip strategy (Boyd, Ghosh, Prabhakar,

& Shah, 2005; Mehyar, Spanos, Pongsajapan, Low, & Murray, 2005; Boyd, Ghosh, Prab-

hakar, & Shah, 2006; Mehyar, Spanos, Pongsajapan, Low, & Murray, 2007; Bnzit, Blondel,

Thiran, Tsitsiklis, & Vetterli, 2010; Dimakis, Kar, Moura, Rabbat, & Scaglione, 2010; Liu,

Mou, Morse, Anderson, & Yu, 2011, 2018) and the push-sum algorithms (Kempe, Dobra, &

Gehrke, 2003; Liu & Morse, 2012; Iutzeler, Ciblat, Hachem, & Jakubowicz, 2012; Tsianos,

Lawlor, & Rabbat, 2012b; Iutzeler, Ciblat, & Hachem, 2013) deteriorate their performance

when faced with phenomena such as asynchronous transmissions, heterogeneity, multiple

transmission rates, and packet losses, all of which are present in an IoT environment.

In this work, the design of a new algorithm for achieving average consensus over an IoT

environment is presented. The proposed strategy is inspired by gossips and is able to deal

with several characteristic phenomena of the IoT as heterogeneity in terms of processing and

networking, packet losses, and time varying communication topologies, among others.

1.2. Objectives, Contributions and Organization

The main objective of this work is to gain a deep understanding of the principles leading

to average consensus in a multi-agent network subject to non-ideal communication phenom-

ena, and to combine these principles to design a distributed algorithm capable of solving the

average consensus problem over an IoT environment.

To achieve the main objective, several intermediate objectives must be met, among them

conducting a deep bibliographic revision on distributed consensus and average consensus

4

problems is one of the first tasks to do. In parallel, the understanding of the non-ideal phe-

nomena over an IoT environment must be gained in order to link the classical results with a

future hardware implementation. At this point, it is worth performing an evaluation of clas-

sical average consensus algorithms in order to evidence their poor performance over real IoT

environments due to non-ideal phenomena. To understand this poor performance, it is nec-

essary to make a theoretical analysis of the system focusing on the non-ideal phenomena of

asynchronicity and packet losses, which also can be used to properly design a new algorithm

to solve the average consensus problem considering not just asynchronicity and packet losses,

but also delays. Once the algorithm is designed, a theoretical convergence analysis is needed,

in which asynchronous updates and packet losses will be regarded. Also, numerical simu-

lations are performed in order to verify the theoretical reasoning with computational tools.

After that, the proposed algorithm will be evaluated over real IoT environments to demon-

strate the robustness even when all the pervasive non-ideal phenomena are present. Finally, a

comparison with another state-of-the-art protocol is presented to put in context the designed

algorithm with the latest results in the topic.

The thesis is organized as follows. In the remaining of the introduction chapter prelimi-

naries about the notation, graph theory and infinite products are exposed.

The second chapter treats the framework and the problem under study. Here, the context

of the problem is described and assumptions are clearly stated. It is worth emphasizing

that these assumptions try to represent what actually happens in a real environment. Three

non-ideal phenomena are considered in the communication process: asynchronous updates,

packet losses and delays. Notions of the communication topology and asynchronous linear

updates play a central role in modeling the dynamics of the system to later see how the

information is distributed over the whole network. Also insights about the consensus and

average consensus problem are discussed thinking on a future implementation over a real

environment and finally the distributed average consensus is formally defined.

5

The third Chapter makes clear that the convergence behavior will depend directly on the

infinite product of matrices, here the analysis is divided in the study of homogeneous and

non-homogeneous matrix products.

The fourth Chapter analyzes the convergence of some existing algorithms with the tools

shown in chapter three, an evaluation of the multi-cast protocols is conducted in both simu-

lations and over a real hardware implementation in which, due to packet losses, the average

consensus is not reached properly, thus some ideas from recent algorithms designed to face

an unreliable communication channel are exposed.

In the fifth Chapter is presented the design of the a new algorithm based on previous

ideas, the convergence analysis of the average consensus is done considering asynchronous

updates and unreliable communication channels but not delays.

The sixth Chapter evaluates the algorithm over real IoT environments with excellent re-

sults, it is worth mentioning that in the real evaluation delays and other unfavorable phenom-

ena are present and despite these disturbances the designed algorithm reaches the average;

furthermore, a comparison with a push-sum based state-of-the-art protocol also is presented,

in which our algorithm presents certain degree of superiority in terms of reliability to eventu-

ally faulty nodes.

Finally the final chapter closes the work by reviewing the insights developed throughout

this manuscript and also giving some guidelines for future research on the distributed average

consensus area.

1.3. Preliminaries

In this work, R denotes the real numbers, R≥0 the set of non-negative real numbers, Z≥0

the set of non-negative integers, Rn the Euclidean space of dimension n, and Rn×n the set of

n × n square matrices with real coefficients. I denotes the square identity matrix, 1 denotes

the vector of all ones of appropriate dimension. The canonical vector which has a one entry

in the i position and zero elsewhere is denoted as ei. For a countable set χ, |χ| denotes its

cardinality. For a complex number λ, |λ| denotes its absolute value. Let A, B be matrices

6

or vectors of the same dimension, we will say that A < B and A ≤ B if every entry of

(A − B) is strictly negative (A − B) < 0 and (A − B) ≤ 0 respectively, similarly we will

say that A > B and A ≥ B if every entry of (A − B) is strictly positive (A − B) > 0 and

(A−B) ≥ 0 respectively. The functions max{.} and min{.}whose argument can be a vector

or a row-vector gives as a result the maximum of the minimum entry of the corresponding

vector.

Let A ∈ RN×N , λi denotes one of its N eigenvalues. The eigenvalues will be indexed

according their magnitude, in particular the following inequalities always hold, |λN | ≤ . . . ≤

|λ2| ≤ |λ1|, where λ1 is one of the eigenvalues with maximum absolute value. An eigenvalue

λ is associated with an eigenvector υ as long as:

Aυ = λυ ,

since every eigenvector υ multiplied by a real scalar value αυ also gives an eigenvector as-

sociated with the eigenvalues λ, a subspace associated with an eigenvalue, which is called

λ-eigenspace, can be introduced. In particular, we are interested in the 1-eigenspace of a

matrix A, that represents all the fixed points of a matrix and is defined as:

E1(A) = {υ ∈ RN : Aυ = υ}

More about matrix analysis can be found in (Horn, Horn, & Johnson, 1990).

Vector norms have the standard notation ‖ . ‖. The p-norm is denoted by ‖ . ‖p. Corre-

spondingly, induced matrix norms use the same notation. Additionally, every induced matrix

norm used throughout this thesis is submultiplicative, i.e. ‖ AB ‖<‖ A ‖‖ B ‖. Particular

cases of induced p-norms are the following:

‖ A ‖1 = max{1T |A|}

‖ A ‖2 =
√
λ1 (ATA)

‖ A ‖∞ = max{|A|1} .

7

In this thesis, infinity products of matrices taken from a finite set Σ will be treated. A

finite set of matrices is denoted by Σ. Given a finite sequence of matrices A0, A1, . . . , Ak−1

taken from Σ, with k a finite integer, the expression (Ak−1 · · ·A1A0) represents the finite

product of length k of the particular finite sequence of matrices taken from Σ. We define

Σk as the union of all finite products of length k of matrices taken from Σ. Analogously,

given a infinite sequence of matrices A0, A1, . . . , Ak−1, . . . taken from Σ, the expression

(A∞ · · ·A1A0) denotes the infinite product of the particular infinite sequence of matrices

taken from Σ. We define Σ∞ as the union of all infinite products of matrices taken from Σ.

We say that a matrix A in Σ appears infinitely often in the infinite product (A∞ · · ·A1A0)

if there is a sub-sequence of matrix products A0, A1A0, A2A1A0, . . . with a leftmost factor

A, i.e., AB0, AB1, AB2, . . ., where the Bj’s are products of Ak’s. The infinite product

(A∞ · · ·A1A0) converges if the sequence of products A0, A1A0, A2A1A0, . . . of matrices

taken from Σ is a Cauchy sequence, note that convergence does not depend on the norm

used. Σ is LCP if for any infinite sequence of matrices taken from Σ the infinite product

(A∞ · · ·A1A0) converges. Σ is product bounded if there is a positive constant c such that

‖ Ak · A1A0 ‖≤ c for all k and all A0, A1, . . . , Ak ∈ Σ, i.e. for any sequence of matrices

the norm is upper bounded (regardless the norm used). Given a finite set of matrices Σ the

joint spectral radius ρ(Σ) is equal to the generalized spectral radius ρ̂(Σ) and they represent

the supreme absolute value among all the eigenvalues taken from all the products of matrices

taken from Σ (Berger & Wang, 1992). More about non-homogeneous matrix products can be

found in (Hartfiel, 2002) and related to the joint spectral radius in (Jungers, 2009).

In a network with N nodes, the communication topology is modeled as a directed graph

(or, for simplicity a graph) G = {V , E ,A}, where V = {1, . . . , N} is the node set; the arc

set is defined as (i, j) ∈ E ⊆ V × V if and only if node i receives information from the

node j, which sometimes will be referred as path of length one (i ← j) or (j → i); and

A = [aij] ∈ RN×N
≥0 is the adjacency matrix, for which aij = 1 if and only if (i, j) ∈ E and

0 elsewhere, note that aii = 1 corresponds to the presence of a self-loop which means that a

node receives information from itself. For a given node i, the set V(i)
in denotes its in-neighbor

set, i.e. all the nodes j ∈ V such that (i ← j), and the set V(i)
out denotes its out-neighbor set,

8

i.e. all the nodes j ∈ V such that (i→ j). In the case when communications are bidirectional

in the whole graph, i.e. if the arc (i ← j) exists then the arc (i → j) also exists, we just say

that a node i has a neighbor set V(i). Further treatment about graph theory can be found in

(Biggs, 1993; Godsil & Royle, 2013).

We say that there is a path to node i from node j if a sequence of arcs taken from E can

be formed, such that (i→ l1), (l1 → l2), . . ., (ln−1 → j), where l1, l2, . . . , ln−1 are nodes in

V , in such case the path has a length n. In particular, the arc (i← j) is a path of length one.

Some nodes in V from a graph G can be classified as:

• Sink: if there is a path of arbitrary length from every agent in the network to the

sink node including itself.

• Strong Sink: if there is a path of length one from every agent in the network to the

sink node including itself.

• Root: if there is a path of arbitrary length from the root node to every other agent

including itself.

• Strong Root: if there is a path of length one from the root node to every other

agent including itself.

Depending on the paths or the types of nodes, a graph can be classified as:

• Strongly Connected: if every node can receive information from all the agents in

the network including from themselves with a path of arbitrary length (or, all the

agents are sink nodes). This is equivalent to that every node can transmit informa-

tion to all the agents in the network including to themselves with a path of arbitrary

length (or, all the agents are root nodes).

• Rooted: if at least there is one node that can transmit information to all the agents

in the network including to itself with a path of arbitrary length. Equivalently, a

graph is rooted if at least has one root node.

• Sinked: if at least there is one node that can receive information from all the agents

in the network including from itself with a path of arbitrary length. Equivalently, a

graph is sinked if at least has one sink node.

9

• Complete: if every node receives information from all the agents in the network

including from themselves with a path of length one (or, all the agents are strong

sink nodes). This is equivalent to every node can transmit information to all the

agents in the network including to themselves with a path of length one (or, all the

agents are strong root nodes).

• Strongly Rooted: if at least there is one node that can transmit information to all

the agents in the network including to itself with a path of length one. Equivalently,

a graph is strongly rooted if at least has one strong root node.

• Strongly Sinked: if at least there is one node that can receive information from all

the agents in the network including from itself with a path of length one. Equiva-

lently, a graph is strongly sinked if at least has one strong sink node.

Dealing with a non-negative matrix A such that all the diagonal entries are positive, we

will say that the matrix A induces an underlying graph such that it has an adjacency matrix

γ(A) which is simply another matrix such that all the positive entries ofA are replaced by one

and the zero entries of A remain zero in γ(A). This underlying graph represents a directed

graph G = {V , E ,A} with the set of nodes V = {1, . . . , N}, the adjacency matrixA = γ(A)

and the set of arcs E = {(i, j) ∈ V × V : Aij = 1}.

The same characterization of a graph can be done for the underlying graph of a non-

negative matrix A with positive diagonal entries depending on the positive terms that appears

in the powers of A:

• Strongly Connected: if ∃k <∞ : Ak > 0.

• Rooted: if ∃k <∞, ∃i ∈ {1, . . . , N} : Ak ei > 0.

• Sinked: if ∃k <∞, ∃j ∈ {1, . . . , N} : eTj A
k > 0.

• Complete: if A > 0.

• Strongly Rooted: if ∃i ∈ {1, . . . , N} : Aei > 0

• Strongly Sinked: if ∃j ∈ {1, . . . , N} : eTj A > 0

Given a finite set of matrices Σ such that every matrix is non-negative with positive diag-

onal entries, sometimes we will say that the infinite product (A∞ · · ·A1A0) of matrices taken

10

from Σ can be separated into finite products of matrices whose underlying graph are com-

plete/strongly rooted/strongly sinked. This means that the infinite product can be viewed as

a infinite product of matrices which underlying graphs are complete/strongly rooted/strongly

sinked:

(A∞ · · ·A1A0) = · · · (Aq−1 . . . Ap+1Ap)︸ ︷︷ ︸
γ(.)=∗

(Ap−1 . . . Ak+1Ak)︸ ︷︷ ︸
γ(.)=∗

(Ak−1 . . . A1A0)︸ ︷︷ ︸
γ(.)=∗

where k < p < q and γ(.) = ∗ means that the underlying graph can be complete/strongly

rooted/strongly sinked. More about products of non-negative matrices can be found in (Seneta,

2006).

11

Chapter 2. PROBLEM FORMULATION AND GENERAL FRAMEWORK

This chapter states the system under study. It is organized in four sections. The first

section presents the communication dynamics, this includes assumptions over the topology,

the concept of treating the agents as digital devices which leads to asynchrony, the use of

internal clocks which implies the multi-rate behavior, the process of transmission-reception

of information which in practical IoT scenarios includes packet losses and delays; although

the theoretical analysis does not consider delays.

Since the theoretical framework does not include delays and assuming that the asynchro-

nous updates are linear, the dynamics of the whole system can be seen as a linear time varying

system in which the time step is not constant. This is presented in the second section. It will

be clear that in order to represent asynchronous updates, the matrix matters and possesses an

specific and limited structure related to the communication process from one node to another.

Also desired properties of the matrices involved in the asynchronous updates are pointed out.

The third section deals with the system under the assumption that every agent only has

one interval state and the coefficients of the linear updates are non-negative. Both assump-

tions make it possible to relate a matrix with an induced underlying graph, but not just that,

the matrix generated as the result of products of matrices induced during a period of time also

represents directly the underlying graph of communications performed synchronously, as if

it just were one update. Additionally, this section reveals that if the feasible communication

topology is strongly connected/rooted/sinked then the system will induce repeatedly com-

plete/strongly rooted/strongly sinked underlying graphs for every sequence of matrix product

under the multi-rate and packet losses behaviors, this property is the base to prove conver-

gence of many linear distributed algorithms.

Finally, the fourth section makes a discussion about useful distributed objectives in a net-

work of agents. It gives insights on the contrast between centralized and distributed solutions.

It also discusses on one hand that the consensus problem, since the point of convergence does

not matters, in practice can be solved with non-linear algorithms that can successfully over-

come all the non-ideal phenomenons of asynchronous updates, unreliable communication

12

channels and delays. On the other hand, the average consensus problem can not be solved

easily and it is challenging to design a rule to reach the average in a distributed way.

2.1. Assumptions on the Communication Dynamics

The first point of interest is the system under study. We are going to work with a group

of agents that have to cooperate distributively in order to accomplish a specific task. In this

work the task is to solve the distributed average consensus problem whose definition will be

introduced soon, however first it is necessary to characterize the system where the distributed

algorithm will be implemented.

In this work, an agent must be regarded as a digital device, for instance a computer or

a micro-controller, which has storage and computation capabilities, can communicate with

other agents and, in some other frameworks, can sense properties of the environment. One

immediate consequence of using a digital device as an agent is that any change in the system

state occurs when an action triggers the behavior of a node, that naturally can be due to an

internal timer or when the node detects a message from another agent, therefore the vari-

ables stored in the memory of the nodes cannot change continuously, evidently they change

asynchronously. Also, in order to not over complicate the problem, every time that an agent

changes its internal variables, the update will be a linear function that depends on its own

variables and other variables received from another node. These ideas are summarized in the

following definition, which is one of the cornerstones of the mathematical models that will

be presented soon:

Definition 2.1. A digital device i, also called agent or node, is an abstract object that

possesses internal variables, or internal states, grouped in a vector x(i) of eventually variable

dimension. Any action performed by the agent, including the change of its internal states and

transmission of them, happens as a consequence of a detection event. Only two types of events

can be detected by node: a timer event or a data reception event. Also, every change of the

internal variables of a node will be a linear function of its own states and the information

received from data reception events.

13

REMARK 2.1. Note that the abstract notion of a digital device actually can be materi-

alized using real hardware. For instance, every device in the IoT category such as micro-

controllers with communication capabilities, microcomputers and computers are regarded as

appealing digital devices to perform distributed algorithms.

The aforementioned definition will be considered as the general model of an agent that

can be deployed using real hardware, for example an IoT device, these ideas are depicted in

Figure 2.1. Note that under definition 2.1, our framework is not considering the case when an

agent senses states from other nodes, for instance with a position sensor, and the only way an

agent can detect information from its environment is by means of data reception events. How-

ever, it will be analyzed soon a distributed algorithm in the context of the Vicsek’s problem

in which indeed every agent senses instantaneously the states of its neighbor. Even though

this case is not within definition 2.1 of digital devices, its theoretical study gives important

insights about the consensus problem.

FIGURE 2.1. The actions of a digital device are triggered by events.

It is important to mention the process of transmission and reception of the information

among the nodes because this restricts the system under analysis, in particular some results

are not valid using one or another communication process and many times the analysis be-

comes easier if an unrealistic framework is used. In this work, we work with the idea of a

feasible communication topology, an example is shown in Figure 2.2. Basically, a feasible

communication topology can be described by a graph G = {V , E ,A}, where V is the set

of digital devices, E is the set of feasible communication links and A is its associated adja-

cency matrix. Note that qualifier “feasible” makes it explicit the idea that the communication

14

links can appear eventually during the dynamic of the system over time, i.e., the links are

not present continuously, yet they only appear at certain times when a node transmits a mes-

sage to another agent which detects an event of data reception. In the context of working

over a network with agents which sometimes can communicate thanks to periodic internal

clocks that make it possible transmissions of messages, the following assumption will be

used throughout this manuscript:

ASSUMPTION 2.1. The feasible communication topology G is given by external prop-

erties and processes, and its generation is out of the scope of this work, we consider it as

given and static. Moreover, G has self-loops, since each agent knows its internal state, and is

strongly connected. Also, but now dealing with connections over time, every communication

link always must appear eventually, i.e., there is a finite time in which every arc in E appears

during the evolution of the system.

REMARK 2.2. Assumption 2.1, which states that the feasible communication topology is

given, is imposed to lighten the difficulty of the distributed average consensus problem that

will be defined soon. However, making this is natural since the generation of a strongly con-

nected feasible communication topology and reaching the average consensus can be regarded

as separated problems. Also, note that since the information is being distributed repeatedly

all over the network, assumption 2.1 imposes that the feasible communication topology is

strongly connected and that every feasible link appears infinitely often during the evolution

of the system.

In the context of definition 2.1, the most suitable framework for the communication pro-

cess in a network of agents would be the following: the generation of a message from a node

is possible thanks to a timer event or a data reception event, the node j that desires to send

a message must decide to whom to transmit the message, for example it could choose just

one of its neighbors (unicast transmission) or can send information to all its neighbors (mul-

ticast transmission), as is depicted in Figure 2.3. Then if a neighbor i detects an event of data

reception from agent j then it should perform a certain action. Thus, every time there is a

15

FIGURE 2.2. Example of a strongly connected feasible communication topology.
The dotted arcs represent feasible links that will appear constantly during the de-
ployment of a distributed task.

event over a node a communication process can occur and the sequence of all communication

processes generates intricate dynamics all over the network.

Note that the agent which wants to transmit a message must know the receiver node or

nodes. Therefore, it is necessary that every digital device must posses a unique identification

in the network and every node needs to know the identification of its out-neighbors. This is

stated in the following assumption:

ASSUMPTION 2.2. Every agent i ∈ V knows its out-neighbor set V(i)
out. Also, at every

reception event agent i knows which agent sent information to it, based on the addressing

mechanism of the IoT environment.

REMARK 2.3. Note that, the knowledge of the out-neighbor sets follows from the gener-

ating process and network infrastructure mentioned in Assumption 2.1, which generates the

feasible communication topology G, e.g., a LAN with a DHCP server running on a router.

Since we are working with digital devices, every action performed by a node is a conse-

quence of the detection of an event, as depicted in Figure 2.1. In particular, internal timers

are the original sources that trigger any action in the network. These clocks have frequencies

that are not necessarily equal and, in a real deployment, rarely constant and likely out of

phase. This property will generate what we call a multi-rate behavior. Note that as a conse-

quence of the multi-rate and the communication process, any change in the state of any two

different nodes rarely will occur at the same time and even if so, the change in their states

16

FIGURE 2.3. Two ways of sending information: unicast and multicast. Either way
needs the unique identification of the agents and the knowledge of the out-neighbor
set for every node.

can be regarded as sequential updates, i.e., if two or more nodes update their states instanta-

neously, then it can be viewed as consecutive updates. Therefore, is natural to assume that

any change in the state is asynchronous, which means that every time there is an update just

the state of one node changes. An identical behavior happens when receiving information,

thus is improbable that multiple nodes detect events of data receptions exactly at the same

time and even if so, the receptions can be regarded as asynchronous sequential events. In

particular receptions from one source of multicast transmission probably will not reach its

neighbors simultaneously due to delays as it is shown in Figure 2.4, this fact reveals that the

communication process is fundamentally a transmission and a reception between two agents.

FIGURE 2.4. Events of data receptions are asynchronous. Even in the multicast trans-
mission case the receptions are asynchronous due to delays.

Note that receiving information on a node is a delicate process because in general a

digital device only can receive one message at a time and not multiple information from

17

other nodes. Even if that happens the processor should decide sequentially the processing of

the information received, thus the reception of information from multiple sources to one agent

are indeed asynchronous. A priori, the only way that a digital node can receive information

almost simultaneously from multiple sources is by using own sensors, probably triggered by

a timer, that detect information from its neighbors without waiting for transmission messages

from them, for instance the Vicsek’s problem assumes so (Vicsek, Czirók, Ben-Jacob, Cohen,

& Shochet, 1995) along with some other findings (Jadbabaie et al., 2003; Cao et al., 2005,

2008a, 2008b). These ideas of receiving information are depicted in Figure 2.5.

FIGURE 2.5. A node receiving information from multiple in-neighbors asyn-
chronously and synchronously. The asynchronous case is the one that occur in a
real implementation of communication via messages, the synchronous case only hap-
pens if a node can sense states from the environment, which will be analyzed because
it gives important insights but is out the framework of this research.

The above discussion can be summarized in the following assumption:

ASSUMPTION 2.3. Every detection event on a node is asynchronous which implies that

at certain time just one agent in the whole network is performing an action.

REMARK 2.4. An immediate consequence of assumption 2.3 is that just one node can

detect an event of data reception at a time and also just one node state can be updated at a

time. Note that the asynchronous behavior is what actually occurs in a real IoT environment.

In a real communication network there are some undesirable phenomena related to the

transmission-reception process between a source agent and a sink node, among them the

18

most evident are: packet losses and delays. In the previous figures we have shown this idea

implicitly by using dashed lines as communication links as is shown in Figure 2.6. We could

talk about this extensively, but in practice the transmission-reception process works in a “best

effort” way and there are some mechanisms that allow almost perfect communication in such

a way that is just highly probable that a message can be received exactly once at the expense

of more delay time. In order to privilege a shorter time and less communication congestion,

we consider that there are no such mechanisms for perfect reception of messages transmitted

and therefore packet losses is a phenomenon present in our framework. It is worth mentioning

that a practical way of implementing fast transmission with possible losses of messages is by

using the UDP protocol at the transport layer of an IoT stack. These ideas are stated in the

following assumption:

ASSUMPTION 2.4. The communication process is unreliable which means that can or

cannot occur packet losses in the transmission-reception process. A packet loss is the phe-

nomenon that happens when the data reception event associated with a transmission from

another agent never occurs.

REMARK 2.5. Since the communication process is unreliable, the focus will be on the

receiver instead of the transmitter. In particular, the design of any distributed algorithm

over the network should regard that any update of the state of a node is a consequence of a

reception event because otherwise (for instance, after a timer event) the change of the state

would just consider own non-cooperative decisions since it would not listen any neighbor in

the update. Therefore, timer events should just induce transmission actions and receptions

events can generate both transmissions or state updates. However, this is just an advice

to cope packet losses, because in general many distributed algorithms does not regard the

unreliability phenomenon.

In an IoT environment the communication process also will exhibit delays that are ob-

served if the time interval ∆t between a transmission and its associated event of data recep-

tion is a positive real value. The ideal case occurs when ∆t = 0 for all transmissions and

receptions and we will say that the communication channel is delay-free. In this work, the

19

FIGURE 2.6. The communication process is unreliable and therefore only the re-
ceiver is aware of the message reception.

theoretical analysis will assume that the communication is delay-free, however the practi-

cal implementation of distributed algorithms will be conducted over a real IoT environment,

which indeed presents communication delays. Regarding the delay-free theoretical assump-

tion, we will draw complete filled arrows or complete dashed arrow in order to make explicit

delay-free successful reception event or feasible communication link as depicted in Figure

2.7.

ASSUMPTION 2.5. The theoretical analysis will assume that the communication process

is delay-free which means that any transmission and its associated event of data reception is

instantaneous.

REMARK 2.6. The main consequence of delay-free assumption on the theoretical analy-

sis is that any update of a state of a node after a reception event which message contains the

state of a in-neighbor regards indeed the current state without delays of both the transmitter

and the receiver.

FIGURE 2.7. The communication process will be assumed delay-free in the theoreti-
cal framework. Regarding assumption 2.1, the feasible communication link is always
appearing as the system evolves over time.

One could think that the above assumption is too strong since delay is a characteristic

phenomena in wireless communications or in any real communication network; however,

many findings do not treat this problem for distributed algorithms, and neither the asynchro-

nous and packet losses phenomena, mainly because the theoretical analysis becomes quite

20

tough. Fortunately, we will see that the way to face the packet losses problem (by using some

extra variables that store all past information) also treats the delays problem at least experi-

mentally in a real environment. Therefore, the theoretical analysis throughout this manuscript

will focus on the treatment of asynchronous actions and packet losses phenomena without re-

garding delays. With this in mind, the feasible communication topology presents an intricate

dynamics which is depicted in Figure 2.8. We will see soon that the delay-free assumption is

required in order to make the next state of the whole network only dependent on the current

state and if the update rule is a linear function then the following state of the system will be

given by a transition matrix.

FIGURE 2.8. An example of a feasible communication topology and its possible
asynchronous reception events. The dynamics of the communication links is intricate
and the order in which they appear cannot be manipulated due to multi-rate behavior
of the timers and packet losses, however we will assume that every communication
link is always appearing during the evolution of the system which is reasonable as
long as all the nodes are turned on and non-defective.

21

Apart from the non-ideal communication phenomenons, another undesirable problem is

quantization of the data representation, which is an inevitable fact when we work with digital

devices. However, we will not treat this issue in this work theoretically, and in practice we

will evaluate the quantization phenomenon by testing the algorithm in a real IoT environment.

2.2. Linear Updates and Asynchronous Transition Matrices

In order to keep things simple but without losing the richness of the system dynamics, in

a first approach we will analyze the situation when every agent just has one internal variable,

or state, x(i)
k ∈ R, where i ∈ {1, . . . , N} is a label to index the agent and k ∈ N represents

certain instant of time. Here, the state x(i)
k intuitively represents the estimated consensus value

of the agent i at time k. If the agent receives information from its neighbors at the same time,

recall that this is highly unlikely unless the agent senses the state of its neighbors without

waiting for any message from them, a linear update of the state will be the following:

x
(i)
k+1 = aiix

(i)
k +

∑
j∈V(i)

in

aijx
(j)
k ,

where the aij ∈ R are the coefficients that weights the state of the involved agents which

must be determined by a designer and V(i)
in is the set of neighbors listened or sensed by the

agent i. In the above expression it is natural to think that the aii 6= 0 since it means that

the following state of the agent partly depends on its present state. Note that this case also

can be possible by assuming that all the neighbors send information to the agent i at the

same time and, as there are no delays, a unique event of data reception triggers the change

of the state x(i)
k+1 , which is an unrealistic situation. If any other agent do not update its

state, which is a reasonable assumption as it was stated in 2.3, the update of the whole state

xk = [x
(1)
k , . . . , x

(N)
k] can be calculated using a transition matrix, which has a diagonal with

ones except in the row i of the updated agent in which every component is different from

zero if the node i could receive information from some neighbors. It is important to highlight

that in this framework the packet losses can be included since if the agent could not receive

data from a neighbor j, then the coefficient related to that neighbor aij must be zero, which is

22

something that cannot be controlled by anyone and therefore the selection of the coefficients

is critical. However, delay phenomena cannot be included in this analysis since otherwise

the communicated states would not be the present states of the neighbors. To keep things

clean, the following shows the update of the agent i = 2, which receives information from

three neighbors j = {1, 3, 5}, where the number of agents are N = 5, the situation is also

depicted in Figure 2.9, note that this example is inadequate under our framework since it does

not represent an asynchronous update:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

a21 a22 a23 0 a25

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

.

FIGURE 2.9. An example of synchronous multiple reception which naturally repre-
sents an update when there are not delays. The self-loop, which indicates that the next
state of the node i = 2 depends on its present state was not added, neither the feasible
links by simplicity. Since it is a synchronous update, it does not represent an adequate
transition matrix under our framework.

As we mention before, if an agent i waits for data sent by a neighbor j it is unlikely

that the update triggered by the event of data reception can be performed by using more than

one neighbor, the natural update will be just a unique process of transmission from node

j and reception from agent i, which implies that the update of the listener node state x(i)
k+1

only depends on its own state x(i)
k and the state of the sender neighbor x(j)

k . Therefore, the

23

asynchronous update will have the form:

x
(i)
k+1 = aiix

(i)
k + aijx

(j)
k ,

and the transition matrix of the whole system will be a diagonal with ones (assuming that no

other agent in the network update at that instant k) except in the row of the updated state in

which there are two entries that can be different from zero aii and aij . Again, an example of

this is depicted in Figure 2.10 with the following transition matrix where the listener agent is

i = 4, the sender node j = 1 and the network is composed of N = 5 devices, this example

represents an adequate update under our framework:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

a41 0 0 a44 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

.

FIGURE 2.10. An example of asynchronous reception which induces and adequate
asynchronous transition matrix in our framework. Just one node updates with its own
state and the information listened from one neighbor.

The matrices with the form of the above example are the basic transition matrices and we

will say that they represent the best way to model the updates of the system if we assume that

the system is delay-free, the dimension of the state of each agent is one and the transmission-

reception process are made by digital devices that waits to receive information. It is worth

24

mentioning that the asynchronous phenomena is reflected in the form of these matrices and

the packet losses phenomena can be added to this framework.

Note that another possible asynchronous update valid in our framework could be the

result of a non-cooperative decision after a timer event without listening any neighbor. If the

agent i detects a timer event, then the linear update of its state would be:

x
(i)
k+1 = aiix

(i)
k ,

and the asynchronous transition matrix of the whole system would be a diagonal with ones

except in the aii entry. The Figure 2.11 shows an example in which agent i = 3 detects a

timer event and updates its state, the asynchronous update will be the following:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 1 0 0 0

0 0 a33 0 0

0 0 0 1 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

.

FIGURE 2.11. An example in which an agent updates its state based on its past state
which is depicted as a self-loop. Even though it is an asynchronous update, this is not
a advisable one since it does not regard information of the environment, i.e. it is a
non-cooperative decision.

It is necessary to highlight that a33 6= 1 is not a good value, since if we apply the same

update infinitely keeping constant the a33 coefficient, i.e., the agent i = 3 is producing con-

stantly a timer event without listening its neighbors (constant non-cooperative decisions),

25

then the state x(3)
k tends to zero if |a33| < 1 or infinity if |a33| > 1. It is clear that if a value

diverges it is not practical at all for any algorithm, however stability to zero in many contexts

is a desirable behavior. We will see that in the average consensus problem or in consensus in

general reaching zero is a not good property and convergence to another vector is an appeal-

ing behavior, therefore we should try to avoid designs that allow the states decrease to zero.

This analysis intuitively means that it is logical that if an agent does not have information of

the network then it should not change its internal state and should not take a decision at all,

but it should send its information to the rest of its neighbors. Therefore, updates that induces

diagonal matrices should be the identity in order to avoid non-cooperative behavior.

In the previous discussion we stated that it is highly improbable that two agents update

at the same time, therefore also is highly unlikely that several nodes update with the informa-

tion sent by one agent, i.e., a multi-cast transmission. The difference with the aforementioned

cases is that here the focus is on the agent which sends information. A multi-cast transmis-

sion can occur if after a timer event the sender node j, which may or may not update its

state x(j)
k , transmits its value to some neighbors which can perform proper updates and, if

there are no delays, all the states change simultaneously, which is highly unlikely in a real

environment due to delays. Thus, a transition matrix with a column with three o more entries

different from zero cannot be valid in our framework since it represents synchronous updates.

However, this can be viewed as consecutive asynchronous updates as long as is assumed a

delay-free channel, and no other updates are performed. Just to illustrate, we show an inade-

quate matrix that performs a multi-cast transmission update on the state of the system that can

be “asynchronized”, as an example we take a network of N = 5 agents in which the agent

j = 4 multi-casts its state, due to a timer event, and this is read by the neighbors i = {1, 5}.

Note that if a44 = 1, i.e., the non-cooperation is avoided, then the order in which the matrices

26

appears does not matter and only adequate asynchronous matrices are induced.

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

a11 0 0 a14 0

0 1 0 0 0

0 0 1 0 0

0 0 0 a44 0

0 0 0 a54 a55

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 a44 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 a54 a55

a11 0 0 a14 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

FIGURE 2.12. Example in which the synchronous updates of a multi-cast transmis-
sion can be decomposed into asynchronous receptions. The self-loop is not advisable
since represents a non-cooperative update.

Analogously, there is an uni-cast version of the last process. If there is a timer event on

a sender node j, first the next own state x(j)
k+1 can be updated with the own internal state x(j)

k

(not advisable) and then a message can be sent to one neighbor i, which detects an event of

data transmission and can update its state x(i)
k+1 by using its current state x(i)

k and the state of

27

the sender x(j)
k . Therefore, a transition matrix of the system’s state will be filled with ones

on the diagonal excepting in the jth row in which the ajj entry can be different from 1 and

excepting in the ith row, in which there are two entries that can be different from zero aii

and aij . Again, this matrix represents a synchronous update that can be decomposed into

two asynchronous updates. A simple example just to clarify is shown in Figure 2.13 where

N = 5, the node whose timer expires, can update its state and then send it is the agent j = 2,

and the receiver is the node i = 5. The update of the system and its asynchronous version for

the example are shown below:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 a22 0 0 0

0 0 1 0 0

0 0 0 1 0

0 a52 0 0 a55

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 a22 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 a52 0 0 a55

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

Note that transition matrices with the form of the example above are almost the same

as asynchronous reception matrices. Indeed, if we assume that the non-cooperative update

due to the timer event is avoided, i.e., a22 = 1, then the update in the uni-cast transmission

process induces an asynchronous reception matrix which is adequate for our framework as it

was previously discussed.

We have just discussed that the asynchronous reception matrix is the way that adequately

models an update of the network, what would happen if in this situation the message from

the sender node j was not received by the receiver node i, i.e., a packet loss, the answer is

nothing, because the agent i that should have updated its state could not detect the event of

28

FIGURE 2.13. Example in which the synchronous updates of a uni-cast transmission
can be decomposed into asynchronous receptions: an update due to a timer event
an another as a consequence of a reception event. The update due to a timer event
depicted as a self-loop is not advisable since represents a non-cooperative decision.

data reception and therefore it could not update the state, which is equivalent to thinking that

the transition matrix is the identity, and, although there was a packet loss, the system does not

gain or lose information. Thus, the system is robust to packet losses in the sense that does not

change values of the state, however this phenomenon indeed can slow down the convergence

rate of the system. An example of a successful reception contrasted with a packet loss is

depicted in Figure 2.14 and its respective updates are shown below:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

a41 0 0 a44 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

v/s

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

.

The lesson learned here is that since the communication network is affected by packet

losses and the transmission-reception process is conducted by digital devices, then not every

matrix is valid or adequate to represent the change of the system’s state. In particular, one

29

FIGURE 2.14. Example of a uni-cast transmission process in which the reception is
successful of failed due to packet loss phenomenon. Note that since the timer event
does not induces an update on the sender, the packet loss do not affect the state of the
system and therefore there are some degree of robustness.

could naively think that the whole state denoted by xk = [x
(1)
k , . . . , x

(N)
k]T could be updated

by a transition matrix dependent on the time instant Ak in the following way:

xk+1 = Ak xk,

however, not every matrix is a valid one in order to represent what actually happens in a

realistic transmission-reception process or desirable to keep good convergence properties.

Notwithstanding the aforementioned, this is what the literature extensively does, which is

a wrong perspective if the system is asynchronous, but reasonable if all the agents perform

changes synchronously for example by sharing the same clock. We will see soon that the

analysis for synchronous updates gives insights on convergence properties for algorithms

that try to solve the distributed consensus and average consensus problem.

Furthermore, in the previous analysis we saw that even though timer events and data

reception events could change the state of a node, just the latter is adequate to update the

state. Changes due to timer events without having information of the network it is just an au-

tonomous decision and have undesirable convergence behavior if these changes occur repet-

itively often, regardless whether there is a reliable communication transmission-reception

process or not. In the latter case the situation is even worse because the more selfish updates

without listening to the network, the more non-cooperative (non-distributed) results will yield

the algorithm. Note that this can happen as the result of the multi-rate behavior, i.e., internal

clocks triggers with different frequencies timer events on the agents, or due to packet losses

30

since in both cases selfish decisions could be taken more of less frequently by the agents.

Thus, changes in the internal state of an agent should happen when events of data reception

are detected, which naturally would make the updates non-dependent of the multi-rate and

packet losses phenomena. Just to generalize, we will regard that the adequate updates will

have the following form considering that the node i detects an event of data reception from

the agent j:

x
(1)
k+1

...

x
(i)
k+1

...

x
(j)
k+1

...

x
(N)
k+1

=

1 · · · 0 · · · 0 · · · 0
...

0 · · · aii · · · aij · · · 0
...

0 · · · 0 · · · 1 · · · 0
...

0 · · · 0 · · · 0 · · · 1

x
(1)
k

...

x
(i)
k

...

x
(j)
k

...

x
(N)
k

. (2.1)

Another appealing behavior is the following. Imagine that agent i receives the exact

same information from sender agent j twice or more, one next to the other. Once the first

state change occurs it should be reasonable that the following update do not represent any

change because there is not new information. This is equivalent to imposing that the in-

duced transition matrix, let us say A, is an oblique projection, i.e., A2 = A. This behavior

also makes the algorithm more robust to packet losses and multi-rate which is shown in the

following expression.

xk+2 = Axk+1 = AAxk = Axk

It is important to highlight that even though this analysis was made assuming that every

agent has only one internal state, the intuition of what should happen in the iteration matrix

when every agent has an state of larger dimension is the same as before, i.e., timer events

should not update states, just transmit messages and changes in the state occur only when a

data reception event is detected. The difference in this case is that the analysis should be made

thinking on “block matrices entries” that relates two agents. Again, in order to generalize, we

31

are thinking on adequate updates of the following form:

~x
(1)
k+1

...

~x
(i)
k+1

...

~x
(j)
k+1

...

~x
(N)
k+1

=

I · · · 0 · · · 0 · · · 0
...

0 · · · Aii · · · Aij · · · 0
...

0 · · · 0 · · · I · · · 0
...

0 · · · 0 · · · 0 · · · I

~x
(1)
k

...

~x
(i)
k

...

~x
(j)
k

...

~x
(N)
k

, (2.2)

where the sender is agent j and the receiver is the node i, ~x(i)
k is the is state of node i at instant

k with possibly more than one component, the dimensions of each state among the agents are

not necessarily the same, and I (identity), Aii, Aij are matrices with adequate dimensions.

2.3. Non-Negativeness and Underlying Graphs

From the previous discussion, if we regard that every agent i has a unique state x(i)
k at

instant k and if the state of the network xk = [x
(1)
k , . . . x

(N)
k]T can change synchronously,

then any transition matrix Ak ∈ RN×N can represent the change of the state as long as there

are no delays:

xk+1 = Ak xk

However, if we consider the framework where just one agent i updates its state at certain

instant k when it senses information from its neighbors due to a timer event, which is not

under our framework but will be analyzed throughout this work, the change of the state will

be the following:

x
(i)
k+1 = aiix

i
k +

∑
j∈Vin

i

aijx
j
k

x
(r)
k+1 = x

(r)
k ,

32

which can be represented by a transition matrix with components different from zero in the

row of the updated agent. For example, in a network with N = 5 nodes, a timer event occurs

at node i = 4 and it senses the states of all the nodes:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

a41 a42 a43 a44 a45

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

.

Even though the above transition matrix represents an asynchronous update of the whole

state, it is not an adequate one for a real network in which there are asynchronous transmission-

reception processes where the updates are performed only when an agent i detects an event

of data reception from another node j. In this new framework, it is not allowed that the nodes

can sense its in-neighbors, thus when there is a timer event in the node j, it does not have

information from its neighbors, so it is not a good idea to change its state However, agent j

transmits its state to one of its out-neighbors i (uni-cast) or maybe many of them (multi-cast).

When the message produces an event of data reception on the node i and assuming delay-free,

the whole state changes as follows:

x
(i)
k+1 = aiix

i
k + aijx

j
k

x
(r)
k+1 = x

(r)
k ,

which again can be represented by a transition matrix. For instance, in a network with N = 5

nodes, a timer event occurs at node j = 5 and it sends information to agent i = 2, then the

33

update of the network state is:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 a22 0 0 a25

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

,

and these matrices are the ones to work with in our framework. They represent asynchronous

changes of the state when there are no delays. Thus, when we work with changes of the state

the model will be a linear time varying system of the form:

xk+1 = Ak xk,

however, not every matrix is a valid one. Only the matrices that represents asynchronous

updates of the form in equation 2.1 are adequate to represent our framework.

It is clear that when an update matrix appears, there is a natural relationship with the

communication topology. In fact, if agent i updates its state due to a data reception event

produced by agent j, then the arc i ← j appears in the network topology at that time, which

is directly related to the non-zero entry aij in the iteration matrix. Note that, the arc is not

always present, it appears only when a data reception event happens. Also note that with

this logic it is clear that the aii entry should be different from zero for every agent i, as long

as the update of the agent depends on its own state, thus at every time instant k an agent

knows its state regardless whether or not detects an event of data reception and if it receives

information and its updated state regards its past state, then in the communication topology

every time there is an update self-loops are present, i← i, for every node i.

To represent the data transferred directly from one node to another, we regard the set

of non-negative matrices A ≥ 0 such that the diagonal entries are positive diag(A) > 0.

Note that this set of matrices is closed under multiplication. Also, it is clear that the entries

different from zero of such matrices are related to the links formed in order to update the state

of a node, in particular if aij > 0, then the updated state of the i agent x(i)
k+1 at the instant

34

k+ 1 is the result of incorporating the state of the j agent x(j)
k at time k, this means that there

is a link i ← j of length 1 in the network topology at instant k. Note that we just want to

represent whether or not there is a communication link at certain instant then the value of the

coefficient aij is not relevant, therefore if aij > 0 at certain instant then there is a link i ← j

of length one and if aij = 0 then there is no link at all. Therefore, for any non-negative matrix

A ≥ 0 with positive diagonal diag(A) > 0 we can associate a communication topology or an

underlying graph γ(A) replacing all the positive entries by one and holding the zero entries

and then draw the nodes of the network and the corresponding links.

Note that if the transition matrices of the state are non-negative with positive diagonal

entries, then consecutive updates associated with consecutive products of matrices show up

the equivalent underlying graph with links of length one. To make this claim clearer, let us

regard an example of N = 4 nodes, and consider the following strongly connected feasible

communication topology depicted in Figure 2.15, i.e., the links which are possible to appear

after certain finite time which are induced thanks to the internal timers of the digital devices

as long as the reception is successful:

A =

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

 .

FIGURE 2.15. Example of a strongly connected feasible communication topology
where the self-loops are omitted by simplicity.

35

Regard that the finite set of four asynchronous update matrices such that A ≥ 0 and

diag(A) > 0 which are induced by the algorithm every time a timer triggers on j with its

respective data reception event on i:

A(21) =

1 0 0 0

a21 a22 0 0

0 0 1 0

0 0 0 1

 , A(32) =

1 0 0 0

0 1 0 0

0 a32 a33 0

0 0 0 1

 ,

A(43) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 a43 a44

 , A(14) =

a11 0 0 a14

0 1 0 0

0 0 1 0

0 0 0 1

 ,
these matrices not only represent asynchronous updates at certain time instants, but also rep-

resent communication links of length one of the underlying graphs shown in Figure 2.16.

FIGURE 2.16. Example of different asynchronous underlying graphs induced by
asynchronous transition matrices.

Now let us say that at time k agent 3 receives information from node 2 (3← 2), and after

that at time k + 1 agent 2 receives information from node 1 (2 ← 1), then the state at k + 2

36

would be:

xk+2 =
(
A

(21)
k+1A

(32)
k

)
xk

x
(1)
k+2

x
(2)
k+2

x
(3)
k+2

x
(4)
k+2

 =

1 0 0 0

a21 a22 0 0

0 a32 a33 0

0 0 0 1

x

(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

 ,

and then a new underlying graph was induced by the algorithm after two asynchronous

FIGURE 2.17. Example in which two consecutive asynchronous updates can be
viewed as one synchronous update whose underlying graph possesses two links of
the feasible communication topology.

updates shown in Figure 2.17. The important point here is that the resultant underlying graph

can be viewed as one synchronous change after two updates even though the two original

updates were asynchronous. But now, if we regard that the first update at time k is performed

when the agent 2 receives information from node 1 (2← 1), and after that at time k+ 1 agent

3 receives information from the node 2 (3← 2), then the state at k + 2 would be:

xk+2 =
(
A

(32)
k+1A

(21)
k

)
xk

x
(1)
k+2

x
(2)
k+2

x
(3)
k+2

x
(4)
k+2

 =

1 0 0 0

a21 a22 0 0

a32a21 a32a22 a33 0

0 0 0 1

x

(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

 ,

and again the resulting underlying graph can be viewed as one synchronous change after

two asynchronous updates shown in Figure 2.18. The difference in this case is that the link

of length one 3 ← 1 appeared, which was not in the feasible links of the original feasible

37

FIGURE 2.18. Example in which two consecutive asynchronous updates can be
viewed as one synchronous update whose underlying graph possesses two links of
the feasible communication topology and one additional link not in the feasible topol-
ogy.

communication topology. Thus, products of non-negative matrices with positive diagonal in-

duce new underlying graphs that even can generate more links of length one than the original

feasible links.

Now, let us make the following complete round of updates:

xk+4 =
(
A

(21)
k+3 A

(32)
k+2A

(43)
k+1A

(14)
k

)
xk

x
(1)
k+2

x
(2)
k+2

x
(3)
k+2

x
(4)
k+2

 =

a11 0 0 a14

a21a11 a22 0 a21a14

0 a32 a33 0

0 0 a43 a44

x

(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

 ,

again after four updates the algorithm induces synchronous communication links of length

FIGURE 2.19. Example in which all the asynchronous updates of a strongly con-
nected feasible communication topology appears which can be viewed as a synchro-
nous update. Note that a new link not presented in the feasible topology appeared in
the equivalent synchronous underlying graph.

one (see Figure 2.19) and furthermore a new arc 2 ← 4 appears although it was not present

in the feasible communication topology. Note that if at instant k + 5 the algorithm induces

38

the A(21) it will not induce new links but the former ones will not disappear either. Also

note that any of the remaining asynchronous updates A(32), A(43), A(14) will add at least

a new synchronous link of length one not present in the feasible communication topology.

Naturally, if each one of these matrices appears eventually, after a certain finite time every

entry of the induced synchronous matrix will be different from zero as long as the feasible

communication topology is strongly connected.

The previous discussion can be generalized, and thus for any product of asynchronous

iteration matrices non-negative and with positive diagonal entries, the induced synchronous

underlying graph will include the links presented in each one of the synchronous matrices

involved in the product (which also are presented in the feasible communication graph), but

that is not all, also new links of length one not present in the feasible communication links

may appear. Furthermore, as long as the algorithm induces eventually each one of the asyn-

chronous matrices and if the feasible communication topology is strongly connected then the

algorithm will induce a synchronous update matrix in finite time whose entries are all pos-

itive, i.e, complete underlying graphs. As the generation of complete underlying graphs is

in finite time, this implies that the updates induce repeatedly complete graphs as the system

evolves.

Similarly, if the feasible communication topology has at least one root/sink and if the

asynchronous updates non-negative and with positive diagonal entries appears infinitely of-

ten, then in finite time synchronous updates will be induced such that the equivalent under-

lying graph is strongly rooted/sinked and therefore the algorithm induces repeatedly rooted/

sinked graphs. It is proposed to the reader to analyze these ideas with the feasible communi-

cation topologies in Figure 2.20 with the following adjacency matrices:

Arooted =

1 0 0 0 0

1 1 0 1 0

1 0 1 0 0

0 0 1 1 0

0 0 1 0 1

, Asinked =

1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

1 1 0 1 0

0 0 0 1 1

39

FIGURE 2.20. Example of feasible communication topologies rooted and sinked.
The self-loops are omitted.

Note that the definition of the underlying graph could be extended to every transition

matrix with non-zero diagonal entries without the non-negativeness restriction, in this case

we could replace the non-zero elements by one and holding the zero entries and then draw the

corresponding topology, however in this case a zero entry can mean both the non-presence

of a link or multiple communications that as result gives a zero link, and therefore the

analysis in which the links of the asynchronous matrices do not disappear after a certain

number of products of matrices is not valid anymore and thus the resulting products of

asynchronous updates induced by the algorithm whose feasible communication topology is

strongly connected/rooted/sinked would not necessarily imply that the underlying graph is

complete/strongly rooted/strongly sinked in finite time.

By defining that a non-negative matrix with positive diagonal entries A is generated

from a feasible communication topology G as the matrix such that its underlying graph γ(A)

contains positive entries where the adjacency matrix of the feasible communication topology

A contains 1 values but some of the entries of A can be zero where the adjacency matrix is 1,

the discussed ideas for asynchronous matrices are summarized in the following theorem:

Theorem 2.1. Consider the finite set of all the asynchronous matrices Σ of the form 2.1

non-negative and with positive diagonal entries generated from a feasible communication

topology G. Also assume that in the infinite product (A∞ · · ·A1A0) of matrices taken from Σ

every matrix is appearing infinitely often. If the feasible communication topology is strongly

40

connected/rooted/sinked then the infinite product always can be separated by finite products

of matrices whose underlying graphs are complete/strongly rooted/strongly sinked.

Analogously, in the context of non-homogeneous products of non-negative matrices with

positive diagonal entries also we are interested in synchronous matrices. In this case we will

define that a finite set of matrices Σ is generated from a feasible communication topology G

if it satisfies that every matrix A in Σ is taken from the feasible topology G and the sum of

all the matrices in Σ gives an underlying graph equal to the adjacency matrix of the feasible

communication topology. With this definition, it is clear that the following theorem holds,

which represents an extension of theorem 2.1:

Theorem 2.2. Consider a finite set of matrices Σ non-negative and with positive diag-

onal entries which represent synchronous updates such that Σ is generated from a feasible

communication topology. Also assume that in the infinite product (A∞ · · ·A1A0) of matrices

taken from Σ every matrix is appearing infinitely often. If the feasible communication topol-

ogy is strongly connected/rooted/sinked then the infinite product always can be separated by

finite products of matrices whose underlying graphs are complete/strongly rooted/strongly

sinked.

2.4. Practical Consensus and Average Consensus Goals

In this chapter we have presented the framework we will work with. Basically, we have a

set of digital devices with an internal timer, possibly with different frequencies, that can trans-

mit and receive information to/from its neighbors, and under the unfriendly phenomenons of

asynchronous updates and packet losses (delays will not be regarded in the theoretical anal-

ysis, they will just be considered in the design of our new algorithm) they have to perform

distributively a goal. However, we have barely talked about the objective of the system.

Therefore, let us think about what would be good distributed goals. But before that, what do

we mean when we say that the algorithm is a distributed one?.

Reaching an objective in a distributed way means that the goal must be the result of the

cooperation among the agents involved without the use of a central entity. Behaviors like a

41

node receiving information from every agent in the whole network are not allowed since it

involves a central entity. Therefore, communication with only a few neighbors is desired in a

distributed algorithm. The distributed characteristic is not the same as decentralized since the

latter does not have necessarily cooperation and can even have competition among the agents.

A distributed algorithm in certain contexts is better than the centralized solution, for instance

having equally the control in different nodes should be more robust than the central solution

since in the case that a node disappears the network will continue working, in contrast to the

centralized solution where the central entity is a single point of failure. Another example is

information management, since the centralized solution has to store a large amount of data

an then process it, which many times is impossible to do; however, distributed solutions are

better because each agent could store an process just a few amount of data, but probably the

hardness of the implementation will be higher. In this work we are interested in reaching a

goal by using distributed algorithms, they are worth to be studied because it is a paradigm

shift in contrast to the classical centralized solution.

Consensus is the first goal that shows up in mind when we talk about a distributed al-

gorithm. The consensus objective considers that each agent on the network has a real value,

different at the beginning, then they communicate among them in a distributed way and after

a certain time every state has exactly the same value. Note that the consensus problem is not

very interesting if it is faced with the centralized approach, because the solution is quite sim-

ple, first the central agent chooses a certain value and then it sends it to every node, nothing

to analyze at all. However, the distributed linear approach has more richness in its dynamics,

is not that simple. One of the firsts analysis was made with the Vicsek’s problem (Vicsek et

al., 1995) which consists in a group of mobile agents that are moving with certain heading or

angle state and finally every node by sensing the headings of its neighbors and updating its

states by a linear combination eventually reach the same state and move to the same direc-

tion. The situation is illustrated in the Figure 2.21. This is a really interesting behavior that

was extensively studied, theoretically analyzed and tested using simulations. However, the

context of the Vicsek’s problem is different from an IoT environment in which the detection

42

of the information is by means of a transmission-reception process without sensing the states

from the environment.

FIGURE 2.21. Illustration of the behavior in the Vicsek’s Problem. At the beginning
all the mobile agents have different headings, after a certain time all the headings point
at the same direction, i.e. consensus is reached. The algorithm coded on each agent
is linear and just regards information sensed from its neighbor. This algorithm cannot
be implanted on our framework since the information is sensed and not obtained by a
transmission-reception process.

According to my point of view, a key issue with the consensus problem is that the final

state of the agents at the end just need to be equal but it does not care about what the final

value is. For instance, if we want to reach the zero value (or any other), then it is not necessary

to create any algorithm, it is enough to set the reference internally on each node and without

any necessity of communication every agent will reach the desired zero value. Another more

relevant example that regards initial conditions, if we want to calculate the maximum (or the

minimum) of the initial states of the nodes a simple algorithm performed by each node would

be the non-linear rule that if a node receives the state of another agent then it updates the state

keeping the maximum (or the minimum):

x
(i)
k+1 = max{x(i)

k , x
(j)
k },

naturally this rule will converge in finite time, the time of convergence depends on the largest

path that the information can be transferred from every to each another in the network, it

is even robust to packet losses, multi-rate, and even is intuitively resistant to delays since it

works based on a “greedy” logic. Another example of consensus is to follow the state of a

chosen leader (choosing a leader is a problem itself that could be solved for instance with the

43

aforementioned max-min algorithm), in this case every agent will get at the end the initial

state of the leader node, in this case a natural rule would be that the leader does not listen

to any state of other nodes and that the remaining agents just keep the state of the listened

neighbor:

x
(i)
k+1 = x

(j)
k ,

naturally, this rule will converge in finite time as we expected, again the time of convergence

depends on the largest path, and, due to its “greedy” logic, it is robust to multi-rate, packet

losses and delays, a property that is highly desirable in a real network and, in the design a our

new algorithm, we will use a rule with a similar logic. Therefore, reaching consensus is not

as challenging as we may think initially (clearly the above ideas should be analyzed in detail

but the essential is already understood).

From the above examples the objective of consensus is desirable, however maybe it is

better try to reach an specific value only dependent on the initial internal states, neither a

random value nor a predefined point as zero nor a unique initial value which could be spread

greedily on the whole network which beforehand can be solved satisfactorily over a really

unfavorable communication environment without thinking too much.

And here appears the average consensus problem which consist in the group of agents

reaching the average of the initial states in a distributed way. Note that average consensus is

not an interesting problem if we do not add the distributed behavior. In fact, we can think

in the centralized solution that would be to add a central entity, next recollect every initial

state, then calculate the average and finally send this value back to every node in the network.

Clearly this solution has the problem that there is a single point of failure and it has to process

probably a large amount of information. Another non-distributed solution would be that every

agent stores a table with each node in the network and then performs the average, which again

is as if there were many central entities. The distributed average consensus is not as easy as

you may think. Imagine for instance a group of people that only can access the information

of their neighbors, what would be the rule to perform the average of the initial values of the

whole system?, it is really a great question with a not easy answer and even more difficult if

44

the communication channel is unfriendly, and this is exactly the question that we will try to

answer in this work.

The following definition states formally what we mean when the distributed average

consensus problem is solved. Regard a set of non-defective nodes that can communicate

under a strongly connected feasible communication topology. Also consider that every node

i possesses at least one internal value z(i)
k ∈ R. Then:

Definition 2.2. A distributed algorithm achieves average consensus if and only if:

lim
k→∞

z
(i)
k =

1

N

N∑
k=1

z
(k)
0 ,∀i ∈ V .

Note that in the definition 2.2 an agent can store more than one internal variable, but at

least one of its entries must represent the value of the estimated average z(i)
k ∈ R. This is

pointed out because most of the examples where made considering that every node contains

only one value, however the general case can include other variables (which can be added

to a faster convergence response or in our case they will be added to cope the packet losses

phenomenon). Also, even though the linear behavior is not a restriction on the distributed

algorithm, we will work just with linear updates that makes the average consensus be reached

geometrically fast.

45

Chapter 3. CONVERGENCE OF INFINITE MATRIX PRODUCTS

In this chapter we will understand that the stability analysis of the system to a consensus,

including the average consensus, depends directly on an infinite non-homogeneous product

of matrices taken from a finite set Σ as long as the system is delay-free. However, as it was

discussed in the previous chapter with several examples, not every matrix that appears in the

infinite product is a valid one in order to model the asynchronous updates after information

reception. Soon, we will see that to cope with packet losses is necessary to add some extra

variables that store information which can be used if packet losses occur. The approach with

these new variables also is possible to analyze with a non-homogeneous infinite product of

matrices, however in this chapter packet losses will not be treated directly, notwithstanding

that, this phenomenon can be added easily to this theoretical framework.

This chapter will mention the main classical results in order to guarantee consensus and

average consensus in a distributed manner. Not all the results treat the asynchronous phe-

nomena directly, which is clear for instance in the section of Homogeneous Products, even

most of the results in the Non-Homogeneous section will not cover directly the asynchro-

nous phenomena (underlying graphs of matrices that are complete/rooted/sinked) but they

prepare for the results that regard finite products of matrices whose underlying graphs are

complete/strongly rooted/strongly sinked, which are formed naturally in a system with dig-

ital devices that performs asynchronous updates over a feasible communication topology

strongly connected/rooted/sinked.

The analysis here assumes that every agent just possesses a unique state and, in or-

der to proof convergence, it is imposed a strong assumption, but an intuitive one, which

makes it clear when the product of matrices is closer to a consensus matrix, in particular

non-negativeness of the coefficients and row sums equal to one make the state closer to the

consensus as long as the information is distributed all over the nodes.

46

This chapter is organized first with the analysis of Homogeneous Products and next with

Non-Homogeneous Products. The theorems that will be introduced here clarify the condi-

tions to reach both consensus and average consensus and they will be applied in the fol-

lowing chapter to show the convergence of existing algorithms as study cases. Even though

these results give insights to design an algorithm, they cannot be applied directly if we are

considering asynchronous updates and packet losses in the case of the average consensus

problem because some conditions are not valid in the framework that regards such non-ideal

phenomena.

3.1. Homogeneous Products

In the classical approach, the updates and the transference of information between agents

are reliable and occur instantaneously. It is clear that these assumptions in the model are quite

strong and do not represent what happens in a real network with digital devices. Even though,

there is a lot of research that works with this framework, mainly because it is relatively ease

to prove theoretical results.

The classical approach regards that updates in a graph are performed synchronously and

without communication delays, which means that there is a unique clock synchronized in

every agent and the change of the states in the nodes is done at the same time. It is clear

that in this case the distributed nature of the system is not entirely preserved. Furthermore,

communications are reliable and therefore the updates have always the same dynamics every

time the “clock of the whole network” triggers, which implies that linear protocols with

time invariant coefficients change the state of the network homogeneously, i.e., with just one

transition matrix at each step as is depicted with an example in Figure 3.1.

In this way, in the classical model we have the following update law:

xk+1 = Axk =⇒ xk = Akx0,

47

FIGURE 3.1. Example in which is shown a strongly connected feasible communica-
tion topology and the synchronous updates performed every time the “clock of the
whole network” triggers, without presence packet losses. The updates are therefore
constant every time. Clearly, this is not the behavior in our framework. Note that
the underlying graph of the matrix induced by an update (non-negative with positive
diagonal entries) is strongly connected and after a finite time the underlying graph of
consecutive updates will be complete.

where xk ∈ RN is the state of the system at a given time instant k ∈ R that contains the

individual states of all nodes, x0 is the initial state of the graph and A ∈ RN×N represents a

linear invariant transition matrix.

In classical control theory, the goal is to reach the zero state. However in the consensus

problem we are interested in reaching a vector of the form α1 where α ∈ R, and in the

average consensus α = x̄, where x̄ = 1
N
1Tx0 and N is the number of nodes, i.e., every

component has to be the same in the consensus case and additionally the average consensus

requires that the consensus must be equal to the average of the initial conditions. Note that in

this context each component of the state xk ∈ RN represents the estimated average of each

agent at certain time k, however we will see that we can add extra components to the state in

order to make the algorithm robust to packet losses, in this new case we will be interested in

the convergence to a vector of the form x̄
[
1T , 0T

]T for the average consensus case.

It is easy to show that lim
k→∞

xk → x̄ 1 for all initial states x0 if and only if lim
k→∞

Ak =

1
N
11T , and therefore the analysis of convergence to the average depends exclusively on the

convergence of the powers of the matrix A. Focusing on this, the following result was proven

in (Xiao & Boyd, 2004):

Theorem 3.1. lim
k→∞

Ak = 1
N
11T if and only if the next three statements are satisfied:

48

(i) 1TA = 1T ,

(ii) A1 = 1,

(iii) ρ(A− 1
N
11T) < 1,

where ρ(·) denotes the spectral radius of a matrix.

These conditions give us insights that we should have in mind when we treat with more

general non-homogeneus matrix products to reach the average consensus.

The first condition means basically that the sum, and therefore the average, is preserved

at each time for every value of the state vector, in fact 1Txk+1 = 1TAxk = 1Txk, in particular

this implies that 1Txk = 1TAkx0 = 1Tx0 and thus the average is conserved from the very

beginning. It should be thought as a “conservation” property which is invariant every time a

linear transformation is performed.

The second statement has an analogous analysis in the sense that it is another invariant

property related to the “reachability of the consensus”. Indeed, at each update is satisfied

xk+1 = Axk, therefore if the actual state is xk = α1, ∀α ∈ R then the next state is the same

xk+1 = α1, in particular xk = Anxk−n, ∀n < k, and if xk−n = α1 then xk = α1. Thus

the consensus vector 1 is a fixed or equilibrium point no matter how many updates have been

carried out. However, it may be possible that there are other equilibrium subspaces besides

the consensus subspace so there should be another condition that guaranties the uniqueness

of the equilibrium point, which, as you may guess, is the third one.

But before mentioning the spectral radius condition, there is another insight hidden in

the first two statements. Let’s assume that there is a unique eigenvalue of A with value

λ = 1, if the consensus is reachable (second condition), then the corresponding eigenvector

space is a line with the direction of the consensus vector 1, so a priori the system has a

subspace of dimension one with infinite equilibrium points and therefore if the powers of the

A matrix converges it must have the form A∞ = 1νT , with ν ∈ RN , i.e., every column of

A∞ can converge to any point in the consensus eigenvector space. However, if we append

the conservation property and still assuming that the powers converge, the columns of the

matrix A∞ must be equal to 1
N
1 and thus the convergence of the matrix must be of the form

49

A∞ = 1
N
11T , so the equilibrium point of the system is unique but depends on the initial

condition since it is equal to x̄ 1, something that is not usual in classical control frameworks

in which the equilibrium in general does not depend on the initial state. Therefore, if we just

regard the conservation property and that the consensus is the unique reachable subspace and

additionally we assume that the powers of A converge, then the convergence has to be to the

average matrix 1
N
11T .

Finally, the third condition along with the first and second statements imply that there

is a unique eigenvalue λ = 1 and every other eigenvalue is strictly less than one therefore

the convergence is guaranteed. The importance of the spectral radius condition is that it

guarantees convergence. If we add conservation and reachability of the consensus with a

unique one eigenvalue, then the average consensus is reached for every initial condition.

With the above result, we can make a simple analysis to define sufficient conditions

to reach average consensus in a system of the form xk+1 = Axk. Basically consist in the

analysis of the powers of A, and in a time invariant system, the Jordan decomposition is the

right tool to use. Let J be the Jordan decomposition of A, such that A = PJP−1, with P

a matrix whose columns are eigenvectors and J a block diagonal matrix with its associated

eigenvalues. Then the power of A satisfy:

Ak = PJkP−1,

therefore the convergence of A is equivalent to the convergence of J . From here, we see

that the convergence depends on the values of the eigenvalues. We can say that if λi is an

eigenvalue of A then we can classify the eigenvalues as follows, which is also depicted in

Figure 3.2:

(i) If |λi| < 1, then λi is an stable eigenvalue whose powers reach zero.

(ii) If λi = 1 and simple, then λi is a critical stable eigenvalue which powers are one.

(iii) If |λi| = 1 with λi 6= 1 and simple, then λi is a critical stable eigenvalue which

powers oscillate.

(iv) If |λi| = 1 and is not simple, then λi is an unstable eigenvalue.

50

(v) If |λi| > 1, then λi is an unstable eigenvalue.

FIGURE 3.2. Classification of the eigenvalues according to its convergence behavior.
The convergence analysis of the powers of a matrix is straightforward by using the
Jordan decomposition.

With the aforementioned in mind, the following conditions are sufficient to achieve av-

erage consensus: 1TA = 1T , A1 = 1 and |λn| ≤ . . . ≤ |λ2| < λ1 = 1,∀ i 6= 1, which

intuitively are the properties of conservation, consensus is a reachable subspace, the con-

sensus is the unique reachable subspace and the powers of A are convergent. Also, from the

Jordan decomposition, it is clear that the convergence speed has a geometrical rate and is lim-

ited by second largest eigenvalue of A. The previous analysis is formalized in the following

theorem:

Theorem 3.2. Let A ∈ RN×N be a pseudo-double-stochastic matrix, i.e., A1 = 1 and

1TA = 1T , such that its eigenvalues satisfy |λn| ≤ . . . ≤ |λ2| < λ1 = 1,∀ i 6= 1, then

lim
k→∞

Ak = 1
N
11T , and convergence is at geometrical rate bounded by the second largest

eigenvalue.

Note that a priori it is not necessary to force non-negative coefficients in the iteration

matrix A to design these values, in fact, faster convergence speed can be achieved by using

negative elements. However many findings assume that the sum of the entries of each row

are one and all are non-negative, i.e., A1 = 1 and A ≥ 0. This is a common and natural way

51

to design the coefficients since it means that the next state xk+1 is the result of a linear con-

vex combination of the states at time k and consequently it induces a row-stochastic matrix.

Nevertheless, the design beforehand only requires that A1 = 1 to ensure that the consensus

is a reachable subspace without the non-negative condition of the entries.

Notwithstanding the aforementioned, if we design with a row-stochastic transition ma-

trix, i.e., A1 = 1 and A ≥ 0, the analysis can be simplified. In fact, a priori it is known

that the module of the eigenvalues of A are less or equal to 1 since the powers of A are row-

stochastic matrices and thus every coefficient cannot be greater than one, so the powers are

bounded and the matrix A is not unstable. Clearly, there exists the eigenvalue λ = 1, so the

matrix A cannot be stable (cannot reach the zero). Even more, if we assume that all diagonal

entries are non-zero, which is natural since it represents that the next state of a node x(i)
k+1

depends on its own past state x(i)
k , then the unique eigenvalue with magnitude equal to one

is λ = 1 thanks to Gershgorin circle theorem as is shown in Figure 3.3. Thus, in order to

reach consensus it is just necessary to add that A has a unique eigenvalue with magnitude one

, which must be the trivial λ = 1. The latter can be obtained by appending the strongly con-

nectivity property of the underlying graph induced by the non-negative matrixA, which again

is a logical condition that must be presented in order to guaranty that the information is dis-

tributed in the whole network. Finally, if the conservation property 1TA = 1T is appended,

then not only the consensus is reached but also the value must be the average. The previous

analysis can be summarized in the following theorems (see for instance (Olfati-Saber et al.,

2007)):

Theorem 3.3. Let A ∈ RN×N be a row-stochastic matrix, i.e., A1 = 1 and A ≥ 0, with

positive diagonal entries diag(A) > 0 and with a strongly connected underlying graph γ(A),

then lim
k→∞

Ak = 1νT with ν ∈ RN .

Theorem 3.4. Let A ∈ RN×N be a double-stochastic matrix, i.e., A1 = 1, 1TA = 1T

and A ≥ 0, with positive diagonal entries diag(A) > 0 and with a strongly connected

underlying graph γ(A), then lim
k→∞

Ak = 1
N
11T .

52

FIGURE 3.3. Thanks to the Gershgorin theorem, any row-stochastic matrix, i.e.
A1 = 1 and A ≥ 0, with positive diagonal entries diag(A) > 0 has its eigenval-
ues inside the unit circle or they are equal to one.

In summary, according to Theorem 3.2 to achieve average consensus it is necessary the

conservation property, i.e., 1TA = 1T ; the consensus is the unique reachable subspace, i.e.,

A1 = 1 such that there is one eigenvalue λ = 1 and is the unique one with magnitude equal to

1; and convergence property, i.e., every other eigenvalue of A must be strictly less than one.

Also, if the transition matrix A is designed such that it is doubly stochastic (and therefore

each element is non-negative A ≥ 0) with strictly positive diagonal entries diag(A) ≥ 0,

convergence is guaranteed but still the uniqueness of the one eigenvalue is not necessarily

true, which can be achieved by forcing the mild assumption of strongly connectivity of the

underlying graph according to Theorem 3.4. Note that even though non-negativeness is not

a necessary condition, it simplifies the analysis. In particular, the notion of underlying graph

of a matrix is only well-defined for non-negative matrices and soon we will see that row-

stochastic matrices have and implicit “passivity” property.

From the last paragraph it is clear that there are two ways to obtain the average con-

sensus in the homogeneous case which are stated in theorems 3.2 and 3.4. Note that using

the latter, theorem 3.4, is easier to design the coefficients of the matrix A and still guarantee

convergence to the average since only requires that A is double-stochastic with positive di-

agonal entries, in contrast to the former, theorem 3.2, which requires an eigenvalue analysis

beforehand to obtain average consensus. Here appears the following question: is it possible

to establish a condition to guarantee both convergence and uniqueness of eigenvalue with

53

magnitude one with a pseudo-doubly-stochastic matrix, i.e., 1TA = 1T and A1 = 1, without

obtaining directly its eigenvalues?. This is still an open question.

In this section it was analyzed the convergence of the power of one single matrix which

does not represent the updates that actually occur in our framework, notwithstanding that,

many insights appeared in order to reach the average consensus. A theorem which imposes

mild assumptions on the updates and the non-negativeness of the entries establishes sufficient

conditions to design the coefficients on each agent. However, the matrices involved represent

synchronous updates. What would happen if only one agent updates its internal state by

sensing its neighbors an the others remain constant?. The intuition says that at least consensus

should be reached, since the conservation property does not hold in this case. What would

be the behavior if the updates where made by a transmission-reception process? This is a

more difficult question, but again intuitively the consensus should be reached in the same

way. The next section will treat the infinite product of non-homogeneous matrices in which

sufficient conditions will be announced to reach the average consensus, however, the design

of the coefficients cannot be applied on either of the two aforementioned contexts due to the

conservation property is no longer satisfied with asynchronous updates at least with the use

of one single internal variable per agent.

3.2. Non-Homogeneous Products

As we mention before, if the the system is synchronous, without packet losses and with-

out delays then the model can be reduced to the analysis of an homogeneous matrix product

of the form xk+1 = Axk, which is also a discrete linear time invariant system in which the

time steps are not equally spaced. However, this is an unrealistic situation for a real IoT

environment where the communication is limited by a transmission-reception process. Some

authors have faced synchronism by thinking that the agents exchanging information at each

time can change, and even the parameters of the algorithm may vary. If the updates are linear,

then the change of the state can be performed by a transition matrix, which this time is not

constant as in the previous section, however we will assume that the matrices that appear due

to an update are taken from a finite set of matrices Σ. As an example, Figure 3.4 shows the

54

type of communications that can be performed in this context. Note that in the analysis of

this section it is allowed the use of synchronous updates, however it is possible just to re-

gard asynchronous matrices and equally use the results of this section for our asynchronous

framework.

FIGURE 3.4. Example of a feasible communication topology and some of its possible
communications. Note that the communication can induce synchronous updates, but
also they can induce asynchronous updates as in our framework.

Thus, the mathematical model can be expressed by:

xk+1 = Akxk =⇒ xk = (Ak−1 · · ·A1A0)x0,

where the meaning of each vector and matrix are the same as before, i.e., xk ∈ Rn is the state

of the graph at a given time instant k ∈ R that contains the individual states of all nodes, x0

is the initial state of the graph and Ak ∈ Rn×n represents different linear invariant transition

matrices which are taken from a finite set Σ.

55

As in the homogeneous case, we are interested in the consensus and average consensus

goals. Thus, in the consensus problem we focus on reaching a vector of the form α1 where

α ∈ R, and on the average consensus α = x̄, where x̄ = 1
N
1Tx0 and N is the number

of nodes and every component of the state represents the estimated average of the whole

network.

The update law can be seen as a time varying linear system with not equally spaced

time updates and the converge analysis of xk is equivalent to the convergence of the non-

homogeneous matrix product (Ak−1 · · ·A1A0). In fact, lim
k→∞

xk → x̄ 1 for all initial states x0

if and only if lim
k→∞

(Ak−1 · · ·A1A0) = 1
N
11T for every sequence of matrices taken from the

finite set Σ, and therefore the analysis of the average convergence depends exclusively on

the non-homogeneous matrix products. For more information about the relationship between

the linear system and the infinite matrix products see (Gurvits, 1995; Vladimirov, Elsner, &

Beyn, 2000)

In general, it is desired that for any infinite sequence of matrices A0, A1, . . . , Ak−1, . . .

taken from Σ, the infinite product (A∞ · · ·A1A0) converges to a certain matrix. This set of

matrices Σ is so called LCP . So far, only hard characterizations to prove if a set Σ is LCP

exist, some findings on this can be found in (Daubechies & Lagarias, 1992, 2001; Berger &

Wang, 1992; Hartfiel, 2002). In fact, there are results dealing with the convergence to zero

or divergence of the infinite product where the analysis is given by the generalized spectral

radius, which is equivalent to the joint spectral radius ρ(Σ) when the set of matrices Σ is finite

and represents the absolute value of the largest eigenvalue among all the possible products of

matrices in Σ. If the joint spectral radius is strictly less than one, then any infinite product

taken from Σ converges to zero. Also, if the joint spectral radius is strictly larger than one,

then the stability is not guaranteed for some product sequences. Finally, if the joint spectral

radius is equal to one, then it is uncertain if the infinite product taken from Σ converges or

not (Jungers, 2009). This joint spectral radius analysis for convergence of infinite products is

depicted in Figure 3.5.

56

FIGURE 3.5. The convergence analysis of an infinite product matrices taken from
a finite set Σ can be analyzed by studying the joint spectral radius ρ(Σ). Just to
illustrate, it is shown the complex plane, however the joint spectral radius is defined
as an absolute value. Note that it is unknown if the system converges when the ρ(Σ) =

1.

It is important to highlight that computing the joint spectral radius is a really hard task.

Researches have shown that obtaining its value from a finite set of matrices is a difficult

task, indeed, computing the joint spectral radius is an NP-hard problem and, even worst,

just to determine if the joint spectral radius is less than or equal to one is an undecidable

problem (J. N. Tsitsiklis & Blondel, 1997; Blondel & Tsitsiklis, 2000). However, even though

computing the joint spectral radius is difficult in general, in some cases obtaining its value is

easy to handle by exploiting the properties of the matrices involved.

In the context of the average consensus problem, the joint spectral radius must be exactly

one in order to converge to a state different from zero and not to diverge for some infinite

sequences of products, however, in this case nothing can be said about the convergence be-

havior of the infinite product of matrices taken from Σ (compare this with the homogeneous

case of eigenvalues with magnitude one in Figure 3.2). A simple analysis indicates that any

finite product taken from Σ must give as a result a matrix which possesses all its eigenvalues

inside the unit circle and at least one eigenvalue is equal to one and simple (Hartfiel, 2002),

and also that every infinite product A∞ · · ·A1A0 must converge to matrix with exactly one

eigenvalue equal to one an the remaining must be zero, which is a projection matrix.

57

The main reason why the analysis of non-homogeneous matrix products becomes really

hard is because there is not a clear decomposition as in the homogeneous case, where the

eigenvalue analysis is the key to understand the stability and even the convergence speed.

Note that in the homogeneous case for a convergent matrix A, i.e., eigenvalues are in the

unit circle or they are equal to one and simple, every time a new matrix is added to the

finite homogeneous product Ak, the eigenvalues of the resultant matrix Ak+1 are less than

or equal to the eigenvalues of Ak. However, in the non-homogeneous context, this property

does not hold and, therefore, for a finite sequence of matrices A0, A1, . . . , Ak−1, Ak the

eigenvalues of (AkAk−1 · · ·A1A0) are not necessarily less than or equal to the eigenvalues of

(Ak−1 · · ·A1A0). Soon we will use a “coefficient” that possesses a similar sub-multiplicative

property for the non-homogeneous products of row-stochastic matrices.

Let us recall the four properties discussed in the homogeneous case section that should be

satisfied by the unique transition matrix A in order to converge to the average consensus: the

sum is preserved 1TA = 1T , the consensus is a reachable subspace A1 = 1, the consensus is

the unique reachable subspace or equivalently there is a unique eigenvalue equal to one, and

the infinite product A∞ converges or every other eigenvalue is strictly less than one. From

here, it is reasonable that the conservation 1TA = 1T and the reachability of the consensus

A1 = 1 also should be necessary in the non-homogeneous case for every matrixA ∈ Σ finite.

Indeed, if the conservation is not preserved in each update then it would not be expected that

after a certain period of time the sum of the components of the state hold the same as the

sum of the initial conditions, also the reachability of the consensus is necessary because it

is desired that once the consensus is reached the state should remain permanently no matter

what update is applied to the system. However, the remaining two conditions of uniqueness

of the reachable subspace and convergence are characterized in the homogeneous case in

terms of eigenvalues properties; yet, they cannot be applied directly in infinite products of

non-homogeneous matrices taken from a finite set Σ since here the notion of eigenvalues

depends on different product sequences of matrices.

The uniqueness of the reachable subspace for the non-homogeneous case can be char-

acterized without using eigenvalue properties as long as some or all the matrices in Σ are

58

appearing in the infinite product (A∞ · · ·A1A0). Note that this assumption of repeating infin-

itely often the matrices in Σ is valid in our framework since it is consistent with the assump-

tion 2.1 which indicates that every asynchronous communication link is always appearing

as the system evolves. Also, it is worth pointing out that with this assumption we are not

regarding all the infinite sequences of matrix products since only a subset of them is being

considered (the subset in which all of the matrices in Σ appears infinitely often). Therefore,

it is not necessary to analyze if a finite set of matrices Σ is LCP , instead it is just necessary

to prove convergence of products of all infinite sequences of matrices which are repeated

infinitely often. Even though this is lighter problem, it is still very challenging. However,

the LCP property is desired because this shows certain degree of robustness since it implies

that every component of the state is bounded as the system evolves, which can be useful, for

instance, to estimate the size of the memory required for the digital devices.

The following result indicates the form of the resulting matrix of an infinite product.

This is directly concerned with the uniqueness of the consensus as a reachable subspace for

non-homogeneous matrix products, however it requires beforehand to know that the infinite

product converges, which is a very strong assumption, and that some matrices are repeated

infinitely often, something that is satisfied naturally in our context where the digital devices

are non-defective (Hartfiel, 2002):

Theorem 3.5. Let an infinite product (A∞ . . . A1A0) of matrices taken from a finite set

Σ, such that some matrices are repeated infinitely often in the product. If (A∞ . . . A1A0)

converges, then every column of the infinite matrix product must be in intersection of the

1-eigenspaces of the matrices that are repeated infinitely often.

Let us assume that the finite set of matrices Σ has the conservation property 1TA = 1T

and the reachability of the consensusA1 = 1 and also the intersection of the 1-eigenspaces of

the matrices in Σ is the trivial consensus subspace α1, ∀α ∈ R. Now consider that all the ma-

trices in Σ appears infinitely often for all the infinite sequences of matricesA0, A1, . . . , Ak−1,

What is the form of the infinite product (A∞ . . . A1A0) if it converges?. The answer is

quite straightforward because according to Theorem 3.5 every column of (A∞ . . . A1A0)

59

is in the consensus subspace α1 and thanks to the conservation property every column of

(A∞ . . . A1A0) must sum 1 and therefore αmust be equal to 1
N

. Consequently, (A∞ . . . A1A0) =

1
N
11T . This result is formalized in the following theorem:

Theorem 3.6. Consider an infinite product (A∞ . . . A1A0) of matrices taken from a finite

set Σ such that all matrices in Σ are repeated infinitely often in the product. Also, assume

that all the matrices A in Σ satisfies 1TA = 1T and A1 = 1 such that the intersection of the

1-eigenspaces of the matrices in Σ is the trivial consensus subspace α1. If (A∞ . . . A1A0)

converges, then (A∞ . . . A1A0) = 1
N
11T .

Theorem 3.6 gives sufficient conditions to reach the average consensus matrix as long as

the convergence is guaranteed. However, as we discussed, the convergence property is really

difficult to prove for general non-homogeneous matrix products.

Let us put aside for a while the average consensus goal and just think about the consensus

problem, be aware that this is done in order to discover convergence properties. It is evident

that in this case consensus must be a reachable subspace, so it is necessary thatA1 = 1 for all

A in Σ. What would happen if in addition we assume that every matrix in Σ is non-negative,

i.e., we regard a finite set of row-stochastic matrices?. The question is open, yet we can say

in advance that some convergence properties appear. For an extensive treatment of products

of row-stochastic matrices see (Seneta, 2006; Rhodius, 1997).

Indeed, since the product of row-stochastic matrices gives as a result a row-stochastic

matrix and that each entry of a row-stochastic matrix is between zero and one, it is clear that

the set Σ is product bounded and does not diverge. Also, since every row sums one, then the

infinite product of matrices taken from Σ cannot reach the zero matrix. Therefore, it is clear

that the joint spectral radius is equal to one. However, it is not clear if any infinite product

(A∞ . . . A1A0) of matrices taken from Σ converges to the consensus matrix of the form 1νT ,

i.e., a matrix with equal rows, which in the literature is sometimes called ergodicity property

(Seneta, 2006; Rhodius, 1997; Hartfiel, 2002).

60

According to Theorem 3.5, if we assume that in the infinite product all the matrices in

Σ appear infinitely often and the intersection of the 1-eigenspaces is exclusively the trivial

consensus subspace α1 and it is known that the infinite product converges, then the con-

vergence must be to the consensus matrix 1νT . Thus, it only remains to prove that for any

sequence of matrices the infinite product is not “oscillating” (convergence to zero and insta-

bility have already been ruled out). It is important to remark that the ergodicity property a

priori does not require that the matrices involved are non-negative, indeed, as we discussed, it

is just necessary that the consensus is the unique reachable subspace. However, the analysis

of convergence becomes easier if the matrices in Σ are non-negative, and even further, with

non-negative the notion of an underlying graph can be used.

One of the main reasons why the convergence analysis becomes less complicated is be-

cause there is a clear notion of “passivity” every time there is a change of the state when

non-negative coefficients are involved (Cao et al., 2008a). In fact, let Ak be a row-stochastic

matrix (Ak1 = 1, Ak ≥ 0) taken from Σ, a non-negative vector xk ≥ 0 (which can be

thought of as a column of the product of past matrices) and the following energy function

V (xk) = max{xk} − min{xk}. Then is easy to see that the next state xk+1 = Akxk is

bounded trivially by the maximum and minimum component of the past state xk:

min{xk}1 = min{xk}Ak1 ≤ Akxk = xk+1 = Akxk ≤ max{xk}Ak1 = max{xk}1,

min{xk}1 ≤ xk+1 ≤ max{xk}1 ,

then it must be true that the minimum grows and the maximum decreases monotonically:

min{xk} ≤ x
(i)
k+1 ≤ max{xk}, ∀i ∈ {1, . . . , N} ,

and therefore the energy function V (xk) decreases monotonically at every step:

V (xk+1) ≤ V (xk) .

Note that this energy function is quantifying the distance to the consensus vector. In

the case when all components are equal, both the maximum and the minimum are the same,

61

therefore the energy function is zero and once reached the consensus point is held forever.

However, there is still no guaranties that the energy is strictly decreasing.

Other functions similar to the above have been extensively studied but this time a row-

stochastic matrix is used as a domain with a real value range. They are called coefficients of

ergodicity and quantify how different the rows of a matrix are. The following coefficient of

ergodicity τ(A) is the most used:

τ(A) =
1

2
max
i,j
{‖(ei − ej)TA‖1}

which obtains a value comparing every two rows of the matrix A. Among its properties,

three of them are crucial to dealing with row-stochastic matrices. Let A, A1 and A2 be row-

stochastic matrices then:

• 0 ≤ τ(A) ≤ 1,

• τ(A) = 0 if and only if A = 1νT , and

• τ(A2A1) ≤ τ(A2)τ(A1).

We can think of the coefficient of ergodicity as an energy function as in the previous case.

The first property can be abstracted as every row-stochastic matrix is bounded by a energy

between zero and one, the second property indicates that the zero energy is given when all

the rows are equal or equivalently every column is in the consensus subspace, and finally, the

third property along with the first one implies that the product of two row-stochastic matrices

has an energy less than or equal to the product of the both energies separately. Note that this

coefficient is somehow replacing the use of the eigenvalues which are submultiplicative in

the homogeneous case and are not straightforward to use in the non-homogeneous context

where the ergodicity coefficient is indeed submultiplicative.

With the above in mind, it is clear that we would like the coefficient of ergodicity of

the infinite product converges to zero τ(A∞ . . . A1A0) → 0 in order to achieve consensus.

Obviously, a sufficient condition is that every row-stochastic matrix in the product taken from

62

a finite set Σ has a ergodicity coefficient with a value strictly less than one:

τ(A∞ . . . A1A0) ≤ . . . τ(Ak−1)︸ ︷︷ ︸
<1

. . . τ(A1)︸ ︷︷ ︸
<1

τ(A0)︸ ︷︷ ︸
<1

,

and therefore as . . . τ(Ak−1) . . . τ(A1)τ(A0) → 0 clearly τ(. . . Ak−1 . . . A1A0) → 0 too.

However, in the context of asynchronous updates, in general all the matrices in Σ has a

coefficient of ergodicity equal to one. In this case, it is possible to group in blocks some

matrix products such that a property making its energy strictly less than one is satisfied:

τ(A∞ . . . A1A0) ≤ · · · τ(As . . . Ar+1Ar)︸ ︷︷ ︸
<1

· · · τ(Aq . . . Ap+1Ap)︸ ︷︷ ︸
<1

· · · τ(Ak . . . A1A0)︸ ︷︷ ︸
<1

,

where k < p < q < r < s, and again as the right term tends to zero, the infinite product

(A∞ . . . A1A0) converges to the consensus matrix 1νT .

Therefore, it is necessary to find properties making the coefficient or ergodicity strictly

less than one. It is easy to prove that if a row-stochastic matrix has at least one row with

positive entries then its ergodicity coefficient is less than one, consequently a row-stochastic

matrix whose entries are all positive also has a coefficient strictly less than one. At this

point, the connection with underlying graphs induced by a non-negative matrix are relevant

because a row-stochastic matrix, which represents a synchronous update, with a positive

row means that all the nodes in the network receives information from one root agent, i.e.,

induces a strongly rooted graph. Similarly, a row-stochastic matrix with positive entries

means that the underlying graph is complete or equivalently every node receives information

from all the agents in the network at the same time. There is an equivalent characterization

to determine if a row-stochastic matrix A has a coefficient of ergodicity strictly less than one

τ(A) < 1, in this case A is called a scrambling matrix and in terms of underlying graphs

means that for every pair of distinct nodes there is an agent (that can be one of the pair)

that sends information to the pair, this also is called a neighbor-shared graph. Even though

neighbor shared graphs are equivalent to saying that τ(A) < 1, it is more intuitive to think in

terms of strongly rooted graphs or complete graphs, which are examples of neighbor-shared

topologies.

63

From the previous discussion, the following theorem appears naturally:

Theorem 3.7. Let Σ be a finite set of row-stochastic matrices whose underlying graphs

are neighbors-shared or strongly rooted or complete, then the infinite product (A∞ . . . A1A0)

of matrices taken from Σ converges to the consensus matrix 1νT .

Note that in the previous theorem 3.7 the convergence speed is geometrical and upper

bounded by the maximum value of the coefficients of the matrices in Σ, however, probably the

convergence rate is faster as more matrices with less values of the coefficients of ergodicity

appears in the first terms of the infinite product.

The problem with theorem 3.7 is that the matrices in Σ represent synchronous updates

which are not valid in our asynchronous framework. However, since the infinite product

can be separated by blocks of finite products and if these finite products have underlying

graphs strongly rooted or complete (also can be neighbor-shared but this case is not intuitive

to generate by matrix products), then the infinite product must converge to the consensus

matrix. This ideas are formalized in the following theorem:

Theorem 3.8. Let Σ be a finite set of row-stochastic matrices and assume that the infinite

product (A∞ . . . A1A0) of matrices taken from Σ is such that the product sequence can be

separated into finite products of matrices which are strongly rooted or complete, then the

infinite product (A∞ . . . A1A0) converges to the consensus matrix 1νT .

Note that in theorem 3.8 the upper bound of the convergence speed depends on the largest

coefficient of ergodicity among all the finite product of matrices taken from a particular infi-

nite product sequence of matrices. This is impractical since in general is unknown when the

matrices in Σ appear in the non-homogeneous product. Notwithstanding that, the stability

behavior is still guaranteed.

Also in theorem 3.8 it is clear that the convergence property relies on the generation of

underlying graphs which are either strongly rooted or complete, therefore it is necessary to

impose a condition for this to be satisfied. It is clear that, as long as the row-matrices in Σ

with positive diagonal entries are generated from a feasible communication topology which

64

is strongly connected and all the matrices in Σ appears infinitely often in the infinite product

(A∞ . . . A1A0), then every infinite sequence of matrix products can be separated by finite

products of complete graphs and therefore the consensus is reached:

Theorem 3.9. Let Σ be a finite set of row-stochastic matrices with positive diagonal

entries generated from a strongly connected feasible communication topology, and assume

that every matrix in Σ appears infinitely often in the infinite product (A∞ . . . A1A0), then

(A∞ . . . A1A0) converges to the consensus matrix 1νT .

Even when the previous results only focus on row-stochastic matrices, they hold when

the finite set Σ have only column-stochastic matrices, but the convergence of the infinite

product (A∞ · · ·A1A0) is to a matrix of the form ν1T . This is true since the transpose of a

left infinite product of row-stochastic matrices is a right infinite product of column-stochastic

matrices (Liu & Morse, 2012). The analogous results are the following:

Theorem 3.10. Let Σ be a finite set of column-stochastic matrices whose underlying

graphs are strongly sinked or complete, then the infinite product (A∞ . . . A1A0) of matrices

taken from Σ converges to the matrix ν1T .

Theorem 3.11. Let Σ be a finite set of column-stochastic matrices and assumes that the

infinite product (A∞ . . . A1A0) of matrices taken from Σ is such that the product sequence

can be separated by finite products of matrices which are strongly sinked or complete, then

the infinite product (A∞ . . . A1A0) converges to the matrix ν1T .

Theorem 3.12. Let Σ be a finite set of column-stochastic matrices with positive diagonal

entries generated from a strongly connected feasible communication topology, and assume

that every matrix in Σ appears infinitely often in the infinite product (A∞ . . . A1A0), then

(A∞ . . . A1A0) converges to the matrix ν1T .

Recall that we want convergence to the average matrix 1
N
11T . In order to do so, it

is necessary to have the properties of reachability of the consensus and conservation, i.e.,

every matrix A in Σ is such that A1 = 1 and 1TA = 1T . In fact, if the infinite product

65

(A∞ . . . A1A0) of matrices taken from Σ converges to the consensus matrix 1νT and since

every column of the infinite product must sum one, then every entry of ν has to be equal to 1
N

and consequently the consensus matrix takes the form of the average consensus one 1
N
11T :

Theorem 3.13. Let Σ be a finite set of double-stochastic matrices with positive diagonal

entries generated from a strongly connected feasible communication topology, and assume

that every matrix in Σ appears infinitely often in the infinite product (A∞ . . . A1A0), then

(A∞ . . . A1A0) converges to the average consensus matrix 1
N
11T .

In this section, the two main theorems 3.6 and 3.13 where stated for the infinite product

(A∞ · · ·A1A0), of matrices taken from a finite set Σ such that all the matrices in Σ appear

infinitely often in the infinite product, to converge to the average consensus matrix 1
N
11T .

Theorem 3.6 gives conditions to reach average consensus for general matrices, in which

the conservation property 1TA = 1T and the reachability of the consensus A1 = 1 are

needed, and, in order to make consensus the unique reachable subspace, the intersection of

the 1-eigenspaces of the matrices which are repeated infinitely often in the product has to be

the trivial consensus subspace α1. However, Theorem 3.6 also requires that the convergence

must be known beforehand, which is really hard to prove for general matrices.

On the other hand, in the case of Theorem 3.13 every matrix A in Σ is non-negative with

positive diagonal entries such that 1TA = 1T and A1 = 1. We saw that the convergence

analysis can be done by analyzing the coefficient of ergodicity of row-stochastic matrices, in

which the notion of “passivity” or non-increasing energy is satisfied every time a new matrix

is appended to the finite product of matrices and the energy is zero if and only if the consen-

sus matrix 1νT is reached. Here, convergence to the consensus is satisfied as long as finite

products of matrices whose underlying graphs are complete are repeatedly induced, since this

represents energy strictly less than one, which is true in the case that the finite set of matrices

Σ is generated from a strongly connected feasible communication and all the matrices in Σ

appears infinitely often in the infinite product (A∞ · · ·A1A0). Note that, in contrast to the

general case of theorem 3.6, it is not necessary to think in the property of uniqueness of the

consensus as reachable subspace since the coefficient of ergodicity naturally indicates zero

66

energy when consensus is reached, and also, and more importantly, theorem 3.13 guarantees

convergence, which in theorem 3.6 needs to be assumed.

67

Chapter 4. EXISTING ALGORITHMS

In this chapter we are going to discuss some existing algorithms to solve the consensus

and average consensus problems. Basically, we will establish the framework of each com-

munication network, then the rules that every agent must follow to reach the distributed goal

and, assuming that the communication channel is not subject to packet losses or delays. It

will be shown the form or the matrices induced by each algorithm and the properties that

satisfies, to finally invoke convergence results discussed in the previous chapter, in particular

theorems 3.9 and 3.13, which regard product of non-negative matrices with positive diagonal

entries. Also, insights when packet losses occur will be pointed out and we will see that, in

this unreliable context, the algorithms can reach the consensus but not to the average since

the conservation property is no longer satisfied.

Furthermore, in the second section of the chapter an evaluation of the broadcast-gossip

and push-sum algorithms will be conducted with numerical simulations using simulations

and in real hardware over a local pilot-scale network. This evaluation reveals that non-ideal

phenomena, mainly packet losses, are harmful to reach consensus to the average. In particu-

lar, some insights about the different behavior of the evaluated protocols will be revealed by

analyzing packet losses and multi-rate phenomena.

4.1. Study Cases

4.1.1. Vicsek’s Problem

This problem considers a group of N digital devices that can interact in a given feasible

strongly connected communication graph that is unchanged over time, each agent i has a

unique internal state x(i)
k ∈ R at a certain time instant k. Every node has an internal clock

with frequencies and phases that are not necessarily the same and therefore the multi-rate

property is present. Once in a while thanks to its internal clock, the digital device i can

sense the state of all its neighbors x(j)
k ∀j ∈ V

(i)
in included itself x(i)

k and then updates its state

x
(i)
k+1 as a function of them. It is assumed that just one agent changes its state at time k, also

68

the update rule on each node is a linear function with constant coefficients configured at the

beginning. The final goal is to reach consensus.

The algorithm configured on each agent i is the following, where x(i) is the state variable

of node i and x(j) is the state sensed from the in-neighbor j:

• Initialization:

x(i) = mi

• If node i generates a timer event: then it senses all the states of its neighbors and

performs the following update:

x(i) ← aiix
(i) +

∑
j∈V(i)

in

aijx
(j),

where aii > 0, aij ≥ 0, and
∑

j∈V(i)
in

⋃
{i}

aij = 1, i.e., is a convex linear combination

with positive coefficients.

Since there are not packet losses nor delays, the update of the states if the timer of node

i triggers at instant k, and j is an agent different from i:

x
(i)
k+1 = aiix

(i)
k +

∑
j∈V(i)

in

aijx
(j)
k

x
(j)
k+1 = x

(j)
k

x
(r)
k+1 = x

(r)
k ,

where r ∈ V , r 6= i, r 6= j is a node which does not perform any update, an therefore the

update of the system state xk+1 ∈ RN can be expressed as an iteration made by a transition

matrix. For instance, for the case when there are N = 5 nodes, the timer of the agent i = 2

69

triggers and its neighbors are j = {1, 4} the following update is generated:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

a21 a22 0 a24 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

,

which underlying graph is depicted in Figure 4.1.

FIGURE 4.1. Example of the underlying graph induced by a matrix update of the
algorithm to solve the distributed consensus problem. The self-loop was added which
represents that the next state of the node depends on its actual state.

Note that if for any reason a node cannot sense a neighbor after a timer event, in the

protocol the coefficients would be different from the ones considering all neighbors, however

the sum of the coefficients must be one. An example of an update law which satisfies the

aforementioned would be the following:

x
(i)
k+1 = 1

1+|V(i)
in |
x

(i)
k +

∑
j∈V(i)

in

1

1+|V(i)
in |
x

(j)
k .

The matrices that are generated every time there is an update have a limited number.

Also, due to the internal timer, we can assume that eventually all the matrices will appear

as the system evolves even with packet losses. Hence, it is possible to say that the system

xk+1 = Akxk can be analyzed as an infinite matrix product xk = (Ak−1 · · ·A1A0)x0 where

the order in which the matrices appear is unknown but all the matrices in the finite set Σ

are repeated infinitely often as the system evolves. Note that every matrix in Σ is such that

70

all their rows sum one and is non-negative with positive diagonal entries, so the notion of

underlying graph can be applied and furthermore, every time there is an update new links not

presented in the feasible communication topology can appear.

Since the finite set of matrices Σ is generated from a strongly connected feasible commu-

nication topology, then the infinite product (A∞ · · ·A1A0) always can be separated by finite

products of matrices whose underlying graphs are complete according to theorem 2.2. Now,

since every complete graph have a coefficient of ergodicity strictly less than one and they

are appearing infinitely often in the product, then the infinite product (A∞ · · ·A1A0) must

converge to the consensus matrix of the form 1νT according to theorem 3.9.

It is necessary to point out that in general only consensus is reached but not to the av-

erage since the preservation property does not hold, unless the matrices in Σ were assumed

column stochastic too. However, since the protocol only can be coded on every digital de-

vice independently, and asynchronous updates and multi-rate behaviors are present, there are

not control over the other coefficients of the matrix more than the ones in the row of the

“sensor” node. In particular, the columns of the non-updated sensed agents are larger than

one. Also, note that consensus is robust to packet losses since every agent can sense the state

of its neighbors, indeed the row-stochastic matrices induced can be controlled by the “sen-

sor” node. Finally, we highlight that these updates are not possible in our framework since

the updates are performed thanks to a transmission-reception process instead of sensing the

states.

4.1.2. Gossip Approach

Again, this problem considers a group of N digital devices that can interact in a given

feasible strongly connected communication graph that is constant over time. Each agent i

has a unique internal state x(i)
k ∈ R at certain time instant k. Every node has an internal

clock whose frequencies and phases are not necessarily the same and therefore the multi-rate

property is present. Once in a while thanks to its internal clock, the digital device i chooses

one of its neighbors j and then it transmits its state to j with a message labeled as type 1.

After that the node j detects an event of data reception that allows it to update its internal

71

state as the average of its own state and the state received from i, and then j sends back

the state with a message labeled as type 2. Finally i detects the associated event of data

reception and updates its state with the same value of the ith agent state. Every time a node

i generates a timer event, it chooses a different neighbor to transmit data to in such a way

that all neighbors are chosen after a certain finite time. It is assumed that the two agents that

exchange information update their states at the same time instant, even though there are two

sequential updates. The final goal is to reach the average consensus.

The algorithm configured on each agent i is the following, where x(i) is the state variable

of node i and x(j) is the state received from the in-neighbor j:

• Initialization:

x(i) = mi

• If node i generates an timer event:

1) Choose a neighbor j in such a way that every neighbor is chosen after a finite

time.

2) Transmit the state to agent j and labeled as type 1.

• If node i detects an event of data reception with type 1 label:

1) Update its own state as follows:

x(i) ← 1
2

(
x(i) + x(j)

)
2) Send the updated state back to the transmitter node j.

• If node i detects an event of data reception with type 2 label:

1) Update its own state as follows:

x(i) ← x(j)

Since there are not packet losses nor delays, and assuming that the updates in the nodes

involved in the communication occur at the same time k, the updates of the states at time k

when the timer of node i triggers and it chooses neighbor j, which thanks to the “instanta-

neous” assumption is equivalent to the timer of j triggering and choosing neighbor i, are as

72

follows:

x
(i)
k+1 = 1

2
x

(i)
k + 1

2
x

(j)
k

x
(j)
k+1 = 1

2
x

(i)
k + 1

2
x

(j)
k

x
(r)
k+1 = x

(r)
k ,

where r ∈ V is a node not involved in the gossip communication process, and therefore the

update of the system state xk+1 ∈ RN can be expressed as an iteration made by a transition

matrix. For instance, the case when there are N = 5 nodes, the timer of agent i = 3 triggers

and its neighbor chosen is j = 5, generates the following update:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 1 0 0 0

0 0 1/2 0 1/2

0 0 0 1 0

0 0 1/2 0 1/2

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

,

whose underlying graph is depicted in Figure 4.2.

FIGURE 4.2. Example of the underlying graph induced by a matrix update of the al-
gorithm to solve the distributed average consensus problem with the gossip approach.
Note that it is assumed that the two agents involved in the communication update their
states at the same time, however in practice this is not possible.

The matrices that are generated every time there is an update have a limited number.

Also, due to internal timers, we can assume that eventually all the matrices will appear as the

system evolves. So again the analysis of the system is based on the convergence of the infinite

product (A∞ · · ·A1A0) of matrices taken from a finite set Σ, where the order in which the

73

matrices appear is unknown but all the matrices in the finite set Σ are repeated infinitely often

as the system evolves. Note that every matrix in Σ is such that all are double-stochastic with

positive diagonal entries, so the notion of underlying graph can be applied and furthermore,

every time there is an update new links not present in the feasible communication topology

can appear.

Since the finite set of matrices Σ is generated from a strongly connected feasible commu-

nication topology, then the infinite product (A∞ · · ·A1A0) always can be separated into finite

products of matrices whose underlying graphs are complete according to theorem 2.2. Now,

since every complete graph have a coefficient of ergodicity strictly less than one and they are

infinitely appearing in the product, then the infinite product (A∞ · · ·A1A0) must converge to

the average consensus matrix of the form 1
N
11T according to theorem 3.13.

Note that sequential unreliable communication is what happens in real life. If there is a

packet loss in the type 1 message, then there is not update at all, thus the transition matrix can

be regarded as the identity and there are not problems. If the type 1 message is successfully

received by j but the associated message type 2 never reaches the i node, then the transition

matrix is not doubly-stochastic anymore, instead is just row-stochastic. In the above example

the matrix with a type 2 packet loss would be:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 1/2 0 1/2

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

,

thus, the average is not preserved when there is a packet loss, however the consensus is

still an invariant reachable subspace because the matrices are row-stochastic and have the

asynchronous form as in 2.1. If in this case the finite set of matrices Σ are generated from a

strongly connected feasible communication topology and all the other assumptions remains

unalterable, then by invoking the theorems 2.2 and 3.9 consensus is reached.

74

Note that if only messages type 1 are used in the protocol, the finite set Σ only contains

asynchronous matrices of the form 2.1. Therefore, this is consistent with our framework of

asynchronous updates, however it only achieves the consensus goal when faces packet losses

and multi-rate phenomena.

It is important to highlight that average consensus cannot be reached with this approach

due to packet losses. There are mechanisms that try to make the gossip process “reliable”

in which the node that sends the type 1 message must wait the associated type 2 message.

However these mechanisms have the dead-lock problem and produce slower convergence

rate. Some of these mechanisms are treated in (Mehyar et al., 2005, 2007; Liu et al., 2018).

4.1.3. Broadcast-Gossip

This problem considers a group of N digital devices that can interact in a given strongly

connected feasible communication graph that is constant over time, each agent i has a unique

internal state x(i)
k ∈ R at a certain time instant k. Every node has an internal clock whose

frequencies and phases are not necessarily the same and therefore the multi-rate property is

present. Once in a while thanks to its internal clock, the digital device j transmits its state

to every out-neighbor i ∈ V(j)
out, which detect an event of data reception that allow to update

their internal state as a convex linear combination with positive coefficients between the own

state and the state received from j. The final goal is to reach consensus, however it has been

proven that under certain statistical properties that the average is reached in expected value

(Aysal, Yildiz, et al., 2009; Aysal et al., 2008).

The algorithm configured on each i agent is the following, where x(i) is the state variable

of node i and x(j) is the state received from the in-neighbor j:

• Initialization:

x(i) = mi

• If node i generates an timer event: then it sends its state to all its out-neighbors.

• If node i detects a data reception event: then update its state as follows:

x(i) ← αx(i) + (1− α)x(j),

75

where 0 < α < 1.

Since there are not packet losses nor delays, the update of the states if the timer of node

j triggers at instant k and i ∈ Voutj are as follows:

x
(i)
k+1 = αx

(i)
k + (1− α)x

(j)
k

x
(j)
k+1 = x

(j)
k

x
(r)
k+1 = x

(r)
k ,

where r ∈ V is a node which does not receive information, and therefore the update of the

system state xk+1 ∈ RN can be expressed as an iteration made by a transition matrix. For

instance, the case when there are N = 5 nodes, the timer of the agent j = 2 triggers and its

out-neighbors are j = {1, 4, 5}, generates the following update:

x
(1)
k+1

x
(2)
k+1

x
(3)
k+1

x
(4)
k+1

x
(5)
k+1

=

α (1− α) 0 0 0

0 1 0 0 0

0 0 1 0 0

0 (1− α) 0 α 0

0 (1− α) 0 0 α

x
(1)
k

x
(2)
k

x
(3)
k

x
(4)
k

x
(5)
k

,

whose underlying graph is depicted in the Figure 4.3.

FIGURE 4.3. Example of the underlying graph induced by a matrix update of broad-
cast gossip protocol. Note that the self-loop was not added in node 2 because it does
not update its state, however the induced matrix is positive in the a22 position. This
synchronous update can be decomposed into three different asynchronous communi-
cations where the order does not matter.

76

Note that the iteration matrix of the above example is the result of the product of the

three following matrices:

α (1− α) 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

,

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 (1− α) 0 α 0

0 0 0 0 1

,

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 (1− α) 0 0 α

,

independent of the order of the product, which is also true for the general case. Thus, the

iteration matrices this algorithm induces can be though of as the asynchronous shown just

above with the form of 2.1.

Since the set of matrices Σ is finite and taken from a strongly connected feasible commu-

nication topology, and also every matrix is row-stochastic with positive diagonal entries, and

further, it can be regarded that the evolution of the system is an infinite product (A∞ · · ·A1A0)

of matrices taken from Σ in which every matrix in Σ is repeated infinitely often in the prod-

uct. By invoking theorem 2.2, the infinite product (A∞ · · ·A1A0) can by separated into finite

products of matrices whose underlying graph is complete. Finally, by using theorem 3.9 the

infinite product (A∞ · · ·A1A0) converges to the consensus matrix of the form 1νT .

Note that if there is a packet loss and since the iteration matrices can be regarded as

asynchronous, it is as if an update never happens and therefore the induced iteration matrix

can be regarded as the identity. With this in mind, it is clear that every matrix involved in this

algorithm is row-stochastic even if there are packet losses. As long as all these asynchronous

matrices are generated from a strongly connected feasible communication topology and they

appear infinitely often in the infinite product, theorem 2.2 and 3.9 are still valid and therefore

consensus is reached. However, even though in the findings (Aysal, Yildiz, et al., 2009; Aysal

et al., 2008) the expected value of the consensus is in fact the average, there are not guaranties

that for every realization of the algorithm the average is reached.

77

4.1.4. Push-Sum

This problem considers a group of N digital devices that can interact in a given strongly

connected feasible communication graph that is constant over time. Each agent i has two

internal states z(i)
k ∈ R and s(i)

k ∈ R at certain time instant k, which are updated under the

same rule in parallel, and the estimated consensus value x(i)
k at each node is calculated by

the division between the two internal states, i.e., x(i)
k =

z
(i)
k

s
(i)
k

. Every node has an internal

clock whose frequencies and phases are not necessarily the same and therefore the multi-rate

property is present. Once in a while thanks to its internal clock, the digital device j updates its

own states dividing by the number of out-neighbors plus itself (1 + |V(j)
out|) and then transmits

this updated states to every out-neighbor i ∈ V(j)
out which consequently detect an event of data

reception that allows to update their internal state as the sum between its actual states and the

states received from j. The final goal is to reach the average consensus.

The algorithm configured on each agent i is the following, where z(i) and s(i) are the state

variables of node i and z(j) and s(j) are the states received from the in-neighbor j:

• Initialization:

z(i) = mi

s(i) = 1

• If node i generates a timer event:

1) Update their own states as follows:

z(i) ← 1
1+|Vout

i | z
(i)

s(i) ← 1
1+|Vout

i | s
(i)

2) Transmit its updated states to every out-neighbor.

• If node i detects a data reception event from j: then update their states as follows:

z(i) ← z(i) + z(j)

s(i) ← s(i) + s(j)

78

Since there are not packet losses nor delays, the update of the states if the timer of node

j triggers at instant k and i ∈ Voutj , for the z variables is as follows:

z
(i)
k+1 = z

(i)
k + 1

1+|Vout
j | z

(j)
k

z
(j)
k+1 = 1

1+|Vout
j | z

(j)
k

z
(r)
k+1 = z

(r)
k ,

where r ∈ V , r 6= i, r 6= j is a node which does not performs any update, and the s variables

have the same updates in parallel. Then the estimated consensus value on every node x(i)
k is

determined by:

x
(i)
k =

z
(i)
k

s
(i)
k

.

Therefore, the updates of the system state zk+1 ∈ RN and sk+1 ∈ RN can be expressed

as two iterations made by the same transition matrix. For instance, the case when there are

N = 5 nodes, the timer of the agent j = 3 triggers and its out-neighbors are j = {1, 2, 5},

generates the following update for the s variables:

s
(1)
k+1

s
(2)
k+1

s
(3)
k+1

s
(4)
k+1

s
(5)
k+1

=

1 0 1/4 0 0

0 1 1/4 0 0

0 0 1/4 0 0

0 0 0 1 0

0 0 1/4 0 1

s
(1)
k

s
(2)
k

s
(3)
k

s
(4)
k

s
(5)
k

,

whose underlying graph is depicted in the Figure 4.4.

Since the set of matrices Σ is finite and taken from a strongly connected feasible commu-

nication topology and also every matrix this time is column-stochastic with positive diagonal

entries, and further, it can be regarded that the evolution of the system is an infinite product

(A∞ · · ·A1A0) of matrices taken from Σ in which every matrix in Σ is repeated infinitely

often in the product. By invoking theorem 2.2, the infinite product (A∞ · · ·A1A0) can by

separated into finite products of matrices whose underlying graph is complete. Finally, by

79

FIGURE 4.4. Example of the underlying graph induced by a matrix update of push-
sum protocol. In this case it is assumed that all the updates occur at the same time,
however they happen asynchronously. Note that the self loop is depicted since the
timer event makes an update on the node.

using theorem 3.12 the infinite product (A∞ · · ·A1A0) converges to a matrix of the form

ν1T .

Note that even when the z and s do not reach consensus independently, at the end all the

estimated consensus variables x(i)
∞ reach the average. Indeed:

zk → ν1T z0 =

(
N∑
i=1

mi

)
ν

sk → ν1T1 = (N) ν

and therefore by using a division between two vectors as a component-wise division:

xk =
zk
sk
→

(
N∑
i=1

mi

)
ν

(N) ν
=

(
1

N

N∑
i=1

mi

)
1

which means that all the states converge to average consensus.

Note that the matrices induced by this algorithm are column-stochastic. However, what

would happen if there is a packet loss?. Let us say that in the previous example the i = 2

80

agent never listen the state from j, then the matrix would be the following:

s
(1)
k+1

s
(2)
k+1

s
(3)
k+1

s
(4)
k+1

s
(5)
k+1

=

1 0 1/4 0 0

0 1 0 0 0

0 0 1/4 0 0

0 0 0 1 0

0 0 1/4 0 1

s
(1)
k

s
(2)
k

s
(3)
k

s
(4)
k

s
(5)
k

.

and thus the column-stochastic or conservation property does not hold anymore. Even if the

communication channel is reliable, there is another problem related with the resolution of the

numbers that can be stored in a digital device. What would happen if node j = 3 triggers its

timer very fast, then the updates in the reliable above example when the update is repeated 4

times would be:

s
(1)
k+1

s
(2)
k+1

s
(3)
k+1

s
(4)
k+1

s
(5)
k+1

=

1 0 85/256 0 0

0 1 85/256 0 0

0 0 1/256 0 0

0 0 0 1 0

0 0 85/256 0 1

s
(1)
k

s
(2)
k

s
(3)
k

s
(4)
k

s
(5)
k

,

and the s(3) state would tend to zero, which is a problem since the estimated consensus value

is calculated by a division. Even though the value would never reach zero theoretically, in a

digital device the case is different since the maximum storage of a number. Thus, multi-rate

should be avoided in this algorithm. Note also that the issue would persist in the case when

a node could not detect information from its in-neighbors and therefore packet losses are

harmful too.

4.2. Evaluation of Existing Multi-cast Algorithms

In this section an evaluation of the two multicast formulations is presented, they are the

Broadcast-Gossip and the Push-Sum algorithms. The objective is to study how characteristic

phenomena, such as multi-rate and unreliable communication, impact the properties of the

algorithms in terms of accuracy and convergence to the average. Numerical simulations and

81

a hardware implementation in microprocessor-based development boards are presented as

study case. We will see that in simulations and in the wireless testbed, the consensus value

changes from the desired average due to packet losses. In general, by using just one internal

value per agent is not possible to reach the average consensus. For further information about

the simulation, the hardware code and some results, please refer to (Beorostica Github, 2018).

4.2.1. Numerical Simulations

Simulations were conducted using the HyEq Matlab-Simulink toolbox (Ricardo Sanfe-

lice, 2017) to test the performance of both the broadcast gossip and the push sum algorithms.

Two feasible communication topologies were considered, with N = 6: 1) an all-to-all net-

work (five neighbors per agent), and 2) a sparse network where each agent has three neigh-

bors. To account for possible heterogeneity of the agents, the timer frequencies were fixed

according to four different scenarios: i) the agents have the same clock frequency (ideal case),

ii) all timer frequencies have the same expected value with an error of 10% (similar to a real

hardware implementation), iii) the agents with lower initial condition value have much lower

constant frequencies, and iv) the agents with lower initial condition values have the higher

constant frequencies (to simulate a possible failure or extreme heterogeneity in the network

adapters). Moreover, to consider packet losses, different scenarios per topology were defined

based on the value of the reception probability p. In fact, communication failures represent

a source of inaccuracy that have been studied for the average consensus problem (Fagnani &

Zampieri, 2006; Patterson et al., 2007).

For each simulation, the initial condition of the timer values are randomly chosen. The

simulation finishes when the values among agents are sufficiently similar (a difference lower

than 0.01). For all the simulations, the initial values of the initial states mi are 10, 25, 40, 60,

75 and 90, respectively, which gives an average consensus value of r̄ = 50. For all cases, 100

realizations are executed per each reception probability. Finally, the chosen α parameter in the

broadcast gossip algorithm is equal to 1/6 since it gave the best performance in preliminary

simulations.

82

Figure 4.5 shows plots of the consensus values reached by the agents at the end of simu-

lation as a function of the reception probability, for the five neighbors topology and for each

type of clock frequency considered. In all cases, the push-sum protocol has better perfor-

mance with less dispersion and better accuracy for reception probabilities larger than 0.7.

For the cases in which the timer frequencies have the same expected value (plots a) and b) of

Figure 4.5), the dispersion of the consensus in both protocols are practically indistinguishable

for reception probabilities lower than 0.7. It should be noted that, when the agents with lower

initial measurements have lower frequencies (plotc c) of Figure 4.5), the expected consensus

value in the broadcast gossip protocol is above the average and in push-sum the expected

consensus decays below the average as packet losses increase. An analogous analysis can be

made for plot d) of Figure 4.5.

Figure 4.6 shows plots of the consensus values as a function of the reception probability,

for the three neighbors topology and for each type of clock frequency considered. As in Fig-

ure 4.5, the accuracy and dispersion of consensus values have a similar behavior despite the

fact that the graph connectivity is different, which suggests that the qualitative performance

does not depend on the particular network graph.

Table 4.1 summarizes the simulation results in terms of the Mean Absolute Error (MAE)

and the Root Mean Squared Error (RMSE) indicators for clock frequencies with same ex-

pected value and an error of 10%. The MAE indicator is defined as:

MAE :=
1

U

U∑
u=1

|xu − x̄| (4.1)

and the RMSE as:

RMSE :=

√√√√ 1

U

U∑
u=1

|xu − x̄|2 , (4.2)

where all consensus values of the six agents are considered for calculation purposes, thus U

is equal to number of simulations multiplied by |V|.

83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

a) Agent with same clock frequencies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

b) Frequencies with same expected value and 10% of error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

c) Agents with lower measurements have lower frequencies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

d) Agents with lower measurements have higher frequencies

FIGURE 4.5. Consensus value vs. reception probability for 5-neighbors topology.
100 simulations for each reception probability. (Red: broadcast gossip. Blue: push-
sum).

As with Figures 4.5 and 4.6, similar conclusions can be drawn from Table 4.1. It is clear

that the push-sum algorithm has better performance with less MAE and RMSE within the re-

ceive probability interval between 0.6 and 1. It should be noted that without packet losses, the

push-sum converges to the average value irrespective of differences in the clock frequencies,

unlike the broadcast gossip that presents an error in all cases. When the reception probability

is lower than 0.5, the broadcast gossip has an error lower than push-sum; however, these cases

are not of practical interest since in most wireless channels the reception probability is close

to 0.9 (Lee & Chanson, 2002).

84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

a) Agent with same clock frequencies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

b) Frequencies with same expected value and 10% of error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

c) Agents with lower measurements have lower frequencies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Reception Probability

20

40

60

80

C
on

se
ns

us

d) Agents with lower measurements have higher frequencies

FIGURE 4.6. Consensus value vs. reception probability for 3-neighbors topology.
100 simulations for each reception probability. (Red: broadcast gossip. Blue: push-
sum).

4.2.2. Hardware Implementation

To test the performance of the consensus algorithms in a real environment, they were

implemented in a testbed consisting of 6 BeagleBone Black (BBB) development boards

(BeagleBoard.org Foundation, 2017a). The BBB board is a low-cost, fully open-source,

community-supported development platform, powered by a Texas Instruments Sitara AM3358

ARM Cortex-A8 processor running at 1 GHz, with 4 GB of onboard flash memory, 512 MB

85

TABLE 4.1. Simulation results for clock frequencies with same expected value and
10% error.

Top. Prob. broadcast gossip push-sum
Rx MAE RMSE MAE RMSE

5-
ne

ig
hb

or
s

1.0 3.19 3.78 3.6e−14 4.2e−14
0.9 3.60 4.23 1.03 1.37
0.8 3.37 4.19 1.40 1.74
0.7 3.21 3.90 2.16 2.72
0.6 3.22 3.95 2.73 3.40
0.5 3.26 4.07 3.17 4.07
0.4 3.43 4.39 4.20 5.22
0.3 4.33 5.11 4.92 5.96

3-
ne

ig
hb

or
s

1.0 2.63 3.18 2.5e−9 3.5e−9
0.9 2.85 3.46 1.18 1.44
0.8 2.86 3.58 2.07 2.64
0.7 2.93 3.62 2.35 2.93
0.6 3.11 3.85 2.98 3.70
0.5 3.61 4.47 3.49 4.23
0.4 3.39 4.31 4.97 6.06
0.3 3.74 4.70 5.61 7.15

of DDR3L DRAM, and a 3-D graphics accelerator. The BBB supports several Linux distribu-

tions, Debian, Angstrom, and Ubuntu among them. For the evaluation, Debian was selected

as operating system. To enable WiFi communication, a TP-Link TL-WN722N USB dongle

is attached to each board to create a IEEE802.11n ad-hoc network.

The protocols were coded in user space at the application layer using internal timers to

trigger the transmissions periodically. The state values of the agents are sent via UDP data-

grams that are multicasted after a timer event. The Cloud9 IDE programming environment

on Node.js language is used for these purposes.

In the hardware implementation the agents have the same initial conditions as in the

numerical simulations. The sensing event that starts the protocols consists in a UDP packet

sent by an external computer able to reach every node in the network. The stop condition

of the algorithms is triggered in each agent when an stop signal transmitted by the external

computer is received by every node. The explicit protocols are the same as the shown in the

past section.

86

Figure 4.7 presents the results of the hardware implementation for the five neighbors

per agent topology. A total of 20 executions of the protocols are performed. MAE and

RMSE indicators are calculated to evaluate accuracy of the broadcast gossip and push-sum

algorithms.

0 5 10 15 20

Execution

35

40

45

50

55

60

65

C
on

se
ns

us

Hardware Implementation: 5-Neighbors Topology
broadcast gossip: MAE =3.56 RMSE =3.97
push-sum: MAE =0.78 RMSE =1.05

broadcast gossip
push-sum
real average

FIGURE 4.7. Results of the implementation in BBB development boards.

Comparing against the results obtained in the numerical simulations, it can be seen that

the same expected timer frequencies for each agent and a reception probability of approx-

imately 90% represents what happens in the real environment. Comparing the Table 4.1

and indicators shown in Figure 4.7, the model proposed and its simulation executions agree

with the hardware implementation results, both have similar MAE and RMSE values and the

qualitative behavior resembles plot three of Figure 4.5 at 0.9 reception probability.

Finally, it can be seen in Figure 4.7 that in some realizations not all agents converge close

enough (the plot contains six consensus values for each realization and protocol), this is due

to the time was not enough at least for the broadcast gossip protocol that should reach the

87

consensus, in contrast to the pus-sum protocol which not necessarily should reach it. Note

that the push-sum algorithm should have an agreement period as short as possible since zi

and si variables approach zero due to packet losses (intuitively, the conservation property is

not longer valid). The broadcast gossip algorithm does not present this problem since the

agent that sends the data does not update its own state.

4.2.3. Observations

The performance evaluation of two average consensus algorithms was shown: broadcast

gossip and push-sum, in pure-broadcasting infrastructure-free networks.

Asynchronous data transfer and unreliable communication are main issues that are con-

fronted in numerical simulations to test average consensus convergence. In all cases where

the probability of reception has a practical value, the push-sum protocol has better qualitative

performance with better accuracy and less dispersion, also the MAE and RMSE indicators

reveal the superiority of this algorithm over the broadcast gossip algorithm. It is emphasized

that push-sum always reaches the average as consensus value in the absence of packet losses.

However, the push-sum algorithm presents the extra requirement of knowing the cardinality

of the out-neighbor set |V(i)
out|.

A testbed in real hardware was implemented to check the performance of the algorithms

in a real environment. The results obtained for both protocols are consistent with the numer-

ical simulations for a given practical reception probability. Although push-sum shows better

performance, it needs to perform the algorithm in a shorter period of time since the variable

zi and si approach to zero due to packet losses, unlike broadcast gossip that does not require

this practical consideration.

We have seen that one of the main reasons why the average consensus is not reached

is because the preservation property is not invariant over time and this happens because the

packet losses phenomenon. There have been some recent findings (Chen, Tron, Terzis, &

Vidal, 2010, 2011; Bof, Carli, & Schenato, 2017) which proposes to add extra variables that

store the quantities exchanged to use when packet losses occur. An extensive treatment of

88

this approach will be discussed in the following chapter in which the ideas of these authors

are used to develop a new algorithm to solve the distributed the average consensus problem.

89

Chapter 5. A NEW ALGORITHM FOR DISTRIBUTED AVERAGING

We have seen that classical approaches for distributed averaging use quite strong assump-

tions which are not valid in our framework. Many of the analysis made was only possible

because the formulations of the problem regard synchronous transmissions and receptions or

do not take packet losses into account. We know that there are other non-ideal issues when

the formulation problem faces transmissions delays and data quantization and, even though

some authors cope with these facts (Olfati-Saber & Murray, 2004; Blondel et al., 2005; Sun

et al., 2008; Bliman & Ferrari-Trecate, 2008; Tsianos & Rabbat, 2011; Kashyap et al., 2006;

Kar & Moura, 2007b; Frasca et al., 2008; Nedic et al., 2009; Lavaei & Murray, 2012), the

analysis of stability and convergence rate is really a difficult task.

The latest state-of-the-art findings can face the distributed average consensus problem

regarding asynchronism and packet losses in order to prove stability and convergence rate

and give convincing simulation results(Chen et al., 2010, 2011; Bof et al., 2017) . However

the analysis in presence of delays and quantization is yet to be developed. Even the protocol

that we will expose in this thesis will not treat formally these two latter non-ideal issues,

but it will show the success of reaching averaging in a real IoT environment and it will give

theoretical insights dealing with asynchronism and packet losses.

In this chapter, the most important contribution of this thesis will be presented. It is a

new protocol based on gossip data exchanges and the use of corrective variables that store

information in case of packet losses. It will be explained the way in which the algorithm was

designed, with focus on the principles of its operation facing asynchronism and data losses

and even some degree of robustness to delays. Since the logic of the algorithm relies on that

eventually every node listen to all its local neighbors and that exists a convergence property,

two versions of the algorithm could be formulated: a unicast version in which a node must

select a neighbor and transmit information, once it is received the receiver updates and sends

back another packet to finally the first node updates; and a multicast version, in which a node

simply transmit to all its neighbors information and the receiver updates in case it successfully

detects an event of data reception.

90

5.1. Ideas behind the proposed algorithm

Let us try to solve the average consensus problem from an intuitive point of view. The

problem regards a set of agents that can communicate without a predefined order and some-

how they need to reach a consensus but not to any value, it must be the average of their initial

states. One way to think in the solution of this problem is to imagine that each agent as a ves-

sel of equal dimensions but each one contains a certain (probably different) quantity of water

at the beginning and they can transfer water to other vessels thanks to pipes on the ground

that connect all the vessels. Assuming that the water in the pipes is negligible and at the

beginning the pipes are closed by a valve, it is clear that once the valve is open every vessel

will have the same height of water after a certain time and this value must be the average of

the original heights because the quantity of water was preserved in the process. The situation

is somewhat depicted in Figure 5.1.

FIGURE 5.1. Communicant vessels with a complete underlying graph every time the
valve is opened. As long as the valve is opened and closed indefinitely, every vessel
will reach the same height corresponding to the average of the initial states.

This process can be changed a little and equally can solve the average consensus problem.

This time we could open and close the valve intermittently without waiting for the complete

establishment of the heights, every time the valve is open the heights are, in a way, nearer

(closer to the consensus) and the water that is lost in some vessels are added into other vessels

91

(total water is preserved). The same Figure 5.1 illustrates the situation. Note that once the

average consensus is reached, heights cannot be changed by the valve. Therefore, it is natural

to think that any discrete step of a solution for the average consensus problem should have a

conservation property (1TAk = 1T) and also every step should recognize that if the average

consensus is reached then the state should be held (Ak1 = 1).

The aforementioned processes only considers one valve that connects or disconnects all

the agents at the same time. We could join with pipes subsets of vessels with one valve, and

open and close the different valves intermittently without any predefined order and as long as

all the valves are being opened indefinitely (every Ak appear infinitely often in the product)

and if the pipes allow that all the vessels are connected when all the valves are open (the

feasible communication topology is strongly connected) then the average consensus will be

reached naturally. The Figure 5.2 illustrates the situation.

FIGURE 5.2. Communicant vessels with two different underlying graphs generated
from a strongly connected feasible communication topology. As long as both valves
are being opened and closed indefinitely the height of the vessels naturally will reach
the average consensus.

However the above solution is assuming that in the communication many neighbors are

involved in the exchange of information, and in an asynchronous process only two agents can

communicate at certain instant. Therefore we should put pipes with valves between every two

92

pair of nodes that can communicate and again if the pipes can connect all the vessels when the

valves are open and if the all the valves are opened and closed indefinitely then logically the

average consensus will be reached eventually. Figure 5.3 illustrates the situation. Clearly, this

process is what gossip algorithms do in which one half of the total water of the two vessels

is transferred from the vessel with more water to the vessel with less water when a valve is

opened, thus one half of water is added into one agent and another half is removed from the

another involved node.

FIGURE 5.3. Communicant vessels with gossip underlying graphs generated from
a strongly connected feasible communication topology. As long as both valves are
being opened and closed indefinitely the height of the vessels naturally will reach the
average consensus.

Note that the update of the water heights is performed thanks to continuous laws (gravity

forces and mass conservation) that are enabled by the valves. Because of that, doing an

exchange of water between two agents can be done at once, however in a communication

process with digital devices it is not possible to do an exchange of information at once, just

is possible to emulate this process. The way would be the following, when the timer of a

node expires then it sends the information of its quantity of water to another node, when the

second agent receives the information it can remove or add the half of water in its state and

then sends back the information to the first node and finally the last one can properly add or

93

remove the half of water in order to preserve the quantity of water as it is illustrated in Figure

5.4. The problem here is that sometimes there are packet losses and if the second message is

lost, then some quantity of water will be added or removed and therefore the initial quantity

of water will be lost.

FIGURE 5.4. Digital devices emulating the communication vessel process by using
a transmission-reception process. The ideal behavior of the gossip approach is not
possible due to the unreliability of the communication channel.

Note that in this explanation it does not matter if the quantity of water is positive or neg-

ative, intuitively the average consensus will be equally reached too. However the analogy

of the communicating vessels is quite straightforward and clearly shows the desired average

consensus result. Because of this, we rather talk about another analogy that has a conserva-

tion property, in this new situation we regard a group of particles with unit mass in the free

space with certain quantity of momentum at the beginning and then, regardless where the

particles are, collisions are induced intermittently and indefinitely, in this system the quantity

of momentum is preserved every time a collision is induced and if in each collision the veloc-

ities are closer, then average consensus will be reached. The situation is depicted in Figure

5.5. In this case if we use digital devices as agents the total quantity of momentum will be

lost too in the presence packet losses.

Therefore it is necessary to preserve the momentum every time there is a change of the

state which is equivalent to say that in a linear update every column of the transition matrix

induced sums one (1TAk = 1T). The first time when the i agent sends its state to another j

neighbor there is not update at all, thus if the packet is lost then the momentum is not altered

and there is no problem, just left to wait the next timer event. If the first message is successful,

then the second agent j received the state from the first one i and node j changes its state with

94

FIGURE 5.5. A particle system in which all agents have the same mass, the momen-
tum is preserved and collisions are induced between pairs of agents also serves as an
analogy of the gossip approach where naturally all the momentums will converge to
the momentum of the center of mass or the desired average.

the form of equation 2.1 which represents an asynchronous update and is once again written

below:

x
(1)
k+1

...

x
(i)
k+1

...

x
(j)
k+1

...

x
(N)
k+1

=

1 · · · 0 · · · 0 · · · 0
...

0 · · · aii · · · aij · · · 0
...

0 · · · 0 · · · 1 · · · 0
...

0 · · · 0 · · · 0 · · · 1

x
(1)
k

...

x
(i)
k

...

x
(j)
k

...

x
(N)
k

,

however the only way, in order to preserve the average, is that aii = 1 and aij = 0, i.e., there

is no update at all. According to this, it would not be possible to preserve the momentum

with linear asynchronous updates. However we can add internal states, some of them will

represent the momentum that the agent possesses as always and the added states will serve

to preserve the mass at each iteration. Thus, the linear asynchronous update will have the

95

following form of the expression 2.2:

~x
(1)
k+1

...

~x
(i)
k+1

...

~x
(j)
k+1

...

~x
(N)
k+1

=

I · · · 0 · · · 0 · · · 0
...

0 · · · Aii · · · Aij · · · 0
...

0 · · · 0 · · · I · · · 0
...

0 · · · 0 · · · 0 · · · I

~x
(1)
k

...

~x
(i)
k

...

~x
(j)
k

...

~x
(N)
k

here we can see that it is possible to preserve the momentum, however, if we want an update

different from the identity matrix it is necessary to add some negative coefficients, which is

something that is not good because the theory of non-homogeneous products of matrices is

developed mainly with non-negative matrices, even worst, here the idea of passivity is not

longer valid because in order to preserve the momentum some quantities must be created

with positive sign and others with negative sign in order to compensate the asynchronous

phenomenon.

The new variables added to the algorithm are based on the ideas of previous findings

(Chen et al., 2010, 2011; Bof et al., 2017) and, in order to understand the logic of them, first

let us introduce the states involved. Every agent i stores three types of variables that evolve

over time:

z(i) , Σ∆z(ij) , Σ̂∆z(ji),

for all j ∈ V(i), where V(i) is the neighbor set of agent i. We will soon see that the commu-

nication needs to be bidirectional in order to exchange momentum between two agents, and

therefore it is not necessary to distinguish between V(i)
out and V(i)

in , however we are going to

keep the in-out notation of the neighbor sets in some cases to make it clear the distinction for

future implementations. Also note that the dimension of an agent state depends on the cardi-

nality of the neighbor set, so different agents possibly store a different number of variables,

and in general if the number of agents in the network N is large we expect that the number of

neighbors for each node |V(i)| be much smaller in the design |V(i)| � N in order to privilege

96

the distributed nature of the solution. The aforementioned variables represent the following:

z(i) : the momentum of the agent.

Σ∆z(ij) : the total momentum agent i loses because all the collisions that

node k induced over i.

Σ̂∆z(ji) : the total momentum that i gains because all the collisions that

node i believes that induced over agent k.

In order to understand why these variables represent the above quantities, we have to

describe the updates done during the algorithm. The following section will describe the

process. We will see that due to the preservation property of this algorithm, and thanks to an

unravel convergence property, this algorithm can be implemented in two versions: uni-cast or

multi-cast. The convergence analysis in these two versions is the same so first we are going

explain the uni-cast process in order to understand why this algorithm works.

5.2. Communication Process and Qualitative Analysis

5.2.1. Uni-cast Version

The ideal flow of the algorithm in the uni-cast version is as follows: when the timer of

agent i expires, it sends data to a selected agent j, which upon reception updates its state and

sends back information to i, finally if agent i receives that response, it updates its internal

state. In terms of events, the flow is the following: if a timer event occurs in agent i, then it

sends its state to agent j, as long as agent j detects the event of data reception it updates its

state with the received information and as fast as possible it sends information to agent i, then

if agent i detects an event of data reception in response to its first message, it updates its own

state. Note that this communication sequence is possible only if the feasible communication

topology is bidirectional.

If agent i generates a timer event then it sends the internal variables z(i), Σ∆z(ij), Σ̂∆z(ji)

to a selected agent j. If agent j detects its associated event of data reception, then it creates

97

FIGURE 5.6. Unicast version of the protocol. An agent must transmit a message type
1 to a selected neighbor. If the neighbor receives then it updates its state and sends
back a message type 2. Finally, if the first node listen then updates its state and the
process ends. Note that if a message is lost, the conservation property is still pre-
served.

auxiliary variables that represent the corrected momentums due to changes of state between

the agents i and j:

z(j)
corr = z(j) +

(
Σ∆z(ij) − Σ̂∆z(ij)

)
(5.1)

z(i)
corr = z(i) +

(
Σ∆z(ji) − Σ̂∆z(ji)

)
, (5.2)

and also node j creates a manipulated variable ∆z(ji) defined as:

∆z(ji) =
1

2

(
z(j)
corr − z(i)

corr

)
Then, agent j updates its internal variables as follows:

z
(j)
next = z(j)

corr −∆z(ji) (5.3)

Σ∆z
(ji)
next = Σ∆z(ji) + ∆z(ji) (5.4)

Σ̂∆z
(ij)
next = Σ∆z(ij) (5.5)

and transmits back a message with the variables ∆z(ji) and Σ∆z(ji) (values not updated).

If the agent i detects its associated event of data reception, then it corrects its momentum due

to i-j communications:

z(i)
corr = z(i) +

(
Σ∆z(ji) − Σ̂∆z(ji)

)
.

98

Then i updates its internal state as:

z
(i)
next = z(i)

corr + ∆z(ji)

Σ∆z
(ij)
next = Σ∆z(ij)

Σ̂∆z
(ji)
next = Σ∆z(ji) + ∆z(ji)

Note that the idea behind this algorithm is to induce “gossip collisions” between two

agents such that the momentums of both agents after the collision will be the same and the

total momentum remains constant, just like in the gossip approach. In fact, it is easy to see

that if the communication channel is reliable, there is no need to add the variables Σ∆z and

Σ̂∆z and neither is necessary to make the corrections of the momentums and the variation of

the momentum would be:

∆z(ji) =
1

2

(
z(j) − z(i)

)
,

and the updates of the agents involved in the collision induced by i would be:

z
(j)
next = z(j) −∆z(ji)

z
(i)
next = z(i) + ∆z(ji),

where is clear that z(i)
next = z

(j)
next = 1

2

(
z(i) + z(j)

)
which is exactly what the gossip approach

does. Note that from here we could change the 1
2

factor in the manipulated variable ∆z(ji)

by one between zero and one and the algorithm would converge to the average, however, as

we have discussed before, if two consecutive updates of the same two nodes happens then

the momentums will change again and if just this update occurs indefinitely then eventually

the nodes will converge to the average of the momentums of these two nodes. Since it is not

logical that the state changes if the two agents do not have new external information, we will

set the 1
2

factor in the design of the algorithm.

However, since there are packet losses the variables Σ∆z and Σ̂∆z are necessary in order

to preserve the total momentum of the system. In fact, note that separately the two updates

99

preserve a quantity invariant. If the first update of the agent j happens, then:

z
(j)
next +

(
Σ∆z

(ji)
next − Σ̂∆z

(ij)
next

)
= z(j)

corr + Σ∆z(ji) − Σ∆z(ij)

= z(j) +
(

Σ∆z(ji) − Σ̂∆z(ij)
)
,

and something equivalent occurs with the second update of the agent i:

z
(i)
next +

(
Σ∆z

(ij)
next − Σ̂∆z

(ji)
next

)
= z(i)

corr + Σ∆z(ij) − Σ∆z(ji)

= z(i) +
(

Σ∆z(ij) − Σ̂∆z(ji)
)
,

which, by the way, is regardless the value of the manipulated variable ∆z(ji). This fact is what

makes work the conservation property whatever is the listened value, and therefore intuitively

the algorithm should have a certain degree of robustness to delays, however the convergence

is not a clear property assuming or not the delay phenomena.

5.2.2. Multi-cast Version

The multi-cast version appears as a variation of the uni-cast version. The flow in the

multi-cast version is different from the former one in two main terms: first the communication

process does not try to generate “gossip collisions” immediately, instead pairs of nodes rely

on the fact that eventually they will receive information from each other, so effective ”gossips

collision” will occur eventually, this is possible because intuitively every time there is an

update there is a natural local convergence property and conservation property; and second,

the information can be sent in a multi-cast way since it is not necessary to rely on the second

reply message.

The ideal flow of the algorithm in the multi-cast version is as follows: when the timer

of agent i expires (a timer event), it sends data to every neighbor which upon reception (a

data reception event) update their states. Note that probably the receptions will not occur at

the same time, also is necessary that the feasible communication topology be bidirectional to

“gossip collisions” happen eventually.

100

FIGURE 5.7. Multicast version of the protocol. An agent must transmit a message to
all its neighbors. If they receive, then update their states. Note that if a message is
lost, the conservation property is still preserved.

The updates are the same as in the uni-cast approach but they just regards the first mes-

sage. To make it clearer, we will show explicitly the updates. If agent i generates a timer

event, then it sends the internal variables z(i), Σ∆z(ij), Σ̂∆z(ji) to all its neighbors. If neigh-

bor j detects its associated event of data reception, then it creates auxiliary variables that

represent the corrected momentums:

z(j)
corr = z(j) +

(
Σ∆z(ij) − Σ̂∆z(ij)

)
z(i)
corr = z(i) +

(
Σ∆z(ji) − Σ̂∆z(ji)

)
,

and also node j creates the manipulated variable ∆z(ji) defined as:

∆z(ji) =
1

2

(
z(j)
corr − z(i)

corr

)
Then, agent j updates its internal variables as follows:

z
(j)
next = z(j)

corr −∆z(ji)

Σ∆z
(ji)
next = Σ∆z(ji) + ∆z(ji)

Σ̂∆z
(ij)
next = Σ∆z(ij)

101

And as in the uni-cast version, the update preserves a quantity invariant:

z
(j)
next +

(
Σ∆z

(ji)
next − Σ̂∆z

(ij)
next

)
= z(j)

corr + Σ∆z(ji) − Σ∆z(ij)

= z(j) +
(

Σ∆z(ji) − Σ̂∆z(ij)
)
.

5.2.3. Qualitative Analysis

Note that regardless the value of the state read from a message, the preservation property

is invariant. Therefore, if there are delays the total quantity of momentum is equally pre-

served, however, convergence is not clear beforehand. The previous discussion showed that

regardless the version of the algorithm the quantity:

z(i) +
(

Σ∆z(ij) − Σ̂∆z(ji)
)

is invariant when node i updates its state. As all the other states do not change while this

update happens, then the following quantity:

z(i) +
∑
j∈V(i)

(
Σ∆z(ij) − Σ̂∆z(ji)

)
holds constant too, and even this is true whether or not there is an update at node i. And as

this quantity is constant between steps, then it must be invariant since the very beginning.

Thus, thanks to the initial states are set zero for the total momentums exchanged (variables

Σ∆z and Σ̂∆z(ji)) and mi for the initial momentum of the agent (variables z(i)), we have:

z(i) +
∑
j∈V(i)

(
Σ∆z(ij) − Σ̂∆z(ji)

)
= mi (5.6)

and by rearranging this equation:

z(i) = mi −
∑
j∈V(i)

(
Σ∆z(ij)

)
+
∑
j∈V(i)

(
Σ̂∆z(ji)

)
(5.7)

which means that the actual momentum of the agent is given by all the momentums gained

minus all the momentums lost due to collisions with neighbors. Also, as the variables in-

volved in the above expression just regard own states of the i agent, then it is possible that the

102

agents independently reset their states to the initial condition without any harm to the invari-

ant conservation property. Furthermore, if an agent decides not to listen anymore a neighbor

and had not wanted to exchange any momentum with it, this can be done setting to zero the

corresponding variables Σ∆z and Σ̂∆z(ji) and updating the state with the above expression,

and still the conservation property remains unalterable.

Since equation (5.6) implies that a certain quantity is invariant over time on each node,

this fact must be true in the whole system. Thus, if we sum the equation (5.6) over every node

in the network we have:

N∑
i=1

z(i) +
∑
j∈V(i)

(
Σ∆z(ij) − Σ̂∆z(ji)

) =
N∑
i=1

mi

and, by rearranging terms of the double-sum and because communication links are bidirec-

tional, it is equivalent to:

N∑
i=1

z(i) +
N∑
i=1

∑
j∈V(i)

(
Σ∆z(ji) − Σ̂∆z(ji)

)
=

N∑
i=1

mi (5.8)

Since the protocol always is trying that the momentums of the nodes are together after a

collision, which are distributed in the whole network, and also that the errors of momentums

exchanges are zero after an exchange, it is natural to expect that zi∞ = zj∞ = z∞ and that(
Σ∆z

(ji)
∞ − Σ̂∆z

(ji)
∞

)
= 0 for all nodes i and j. And therefore replacing the values in the

global conservation equation 5.8:

N∑
i=1

z∞ =
N∑
i=1

mi

or equivalently:

z∞ =
1

N

N∑
i=1

mi, (5.9)

which means that average consensus would be reached, however the intuition that the algo-

rithm converges is yet to be proven.

103

5.3. A Deeper Analysis

First of all, we are going to define the complete state of the network x. The dimension

of such state will depend on the feasible communication topology regarded. At this point

it is important to highlight that the analysis from now on will assume that all the nodes are

reliable, i.e., they are always running the algorithm once it begins, this is because if suddenly

an agent disappears then at least two problems arise: first the definition of the average could

change, indeed, which average we desire? the one that regards the lost node, or the one that

does not; and secondly, a more immediate problem, the momentum that the agent gains or

loses would be retained in the failed node so the average consensus would not be obtained

beforehand. In particular, and since every node can get the actual momentum regarding the

initial momentum and the exchange of momentums with its neighbors according to equation

5.7, we could add a mechanism in the algorithm to face the problem in which the desired

average is the one that does not regard the faulty nodes, such mechanism would consist in

that the node still alive would not regard the exchanged momentums with the failed node as

long as the former one could not listen the defective node after a certain time. By the time

being, we will assume that all the nodes are reliable and thus we will not have the above

problems, and furthermore we will not need to change the dimensions of the state of the

transition matrices of the updates.

For analysis, we will say that an agent i possesses the states: its momentum z(i), the total

lost momentum due to its neighbors Σ∆z(ij), ∀j ∈ V(i), and the total gained momentum

due to its neighbors Σ̂∆z(ji), ∀j ∈ V(i). Since in principle the variables that represent the

exchange of momentum could have different convergence values at the end, it should be

desirable not to work directly with them, instead we will use “error” variables that should

converge to zero as time tend to infinity.

Let’s define the following error variable:

e(ij) := Σ∆z(ij) − Σ̂∆z(ij), (5.10)

104

this variable represent the error that should be added to the state zj in order to correct it due

to i-j communications according to the equations 5.1 and 5.6. Note that the error variable is

zero if the message type 2 is successfully received in the uni-cast version or if the consecutive

communications (i → j, j → i) or (j → i, i → j) happens. Also note that in the error

definition the Σ∆z(ij) variable is from agent i, and the Σ̂∆z(ij) variable is from agent j, so

here we are combining the original states in order to represent something like an state of the

communication link between two agents. Actually, there are two error variables that indicate

the state of the i-j link, the first one is shown in the right above equation 5.10 and the second

one is the following:

e(ji) := Σ∆z(ji) − Σ̂∆z(ji), (5.11)

and every time there is a i-j communication, i.e., i sends information and j updates, or j

sends information and i updates, one of them (e(ij) or e(ji)) becomes zero. Thus, it is logical

to introduce a new error variable that considers completely the i-j link as follows:

ε(ij) := e(ij) + e(ji), ∀i < j. (5.12)

Let us regard the case when the timer event on agent i triggers and sends a message

to agent j, which updates upon the detection of the data reception event. This case is valid

regardless the version of the protocol used since a successful “gossip collision” in the uni-cast

version can be regarded as a two consecutive update of the same pair of agents in the multi-

cast version. From equation 5.3 or 5.6 and replacing the value of the manipulated variable

∆z(ji) and the corrected states z(j)
corr and z(i)

corr we have:

z
(j)
next = 1

2

[
z(j) +

(
Σ∆z(ij) − Σ̂∆z(ij)

)]
+ 1

2

[
z(i) +

(
Σ∆z(ji) − Σ̂∆z(ji)

)]
Σ∆z

(ji)
next = Σ∆z(ji) + ∆z(ji)

Σ̂∆z
(ij)
next = Σ∆z(ij),

105

and regarding the next state of agent i that did not perform any update:

z
(i)
next = z(i)

Σ∆z
(ij)
next = Σ∆z(ij)

Σ̂∆z
(ji)
next = Σ̂∆z(ji),

we can subtract some equations an obtain the following expressions:

z
(j)
next = 1

2

[
z(j) +

(
Σ∆z(ij) − Σ̂∆z(ij)

)]
+ 1

2

[
z(i) +

(
Σ∆z(ji) − Σ̂∆z(ji)

)]
z

(i)
next = z(i)(

Σ∆z
(ji)
next − Σ̂∆z

(ji)
next

)
=

(
Σ∆z(ji) − Σ̂∆z(ji)

)
+ ∆z(ji)(

Σ∆z
(ij)
next − Σ̂∆z

(ij)
next

)
= 0,

and replacing the remaining manipulated variable ∆z(ji) and using the error variables:

z
(j)
next = 1

2
z(j) + 1

2
z(i) + 1

2
e(ij) + 1

2
e(ji)

z
(i)
next = z(i)

e
(ji)
next = 1

2
z(j) − 1

2
z(i) + 1

2
e(ij) + 1

2
e(ji)

e
(ij)
next = 0,

finally, using the total error variable of the i-j link and assuming that i < j (in the opposite

case j < i simply we replace ε(ij)next by ε(ji)next) we have:

z
(j)
next = 1

2
z(j) + 1

2
z(i) + 1

2
ε(ij) (5.13)

z
(i)
next = z(i) (5.14)

ε
(ij)
next = 1

2
z(j) − 1

2
z(i) + 1

2
ε(ij), (5.15)

106

and for completeness and in order to clearly see the asynchronous updates matrices, if the

timer of the agent j triggers and the agent i detects an event of data reception:

z
(j)
next = z(j) (5.16)

z
(i)
next = 1

2
z(j) + 1

2
z(i) + 1

2
ε(ij) (5.17)

ε
(ij)
next = −1

2
z(j) + 1

2
z(i) + 1

2
ε(ij). (5.18)

Now, let us define the state of the network as follows:

xk =

 zk

εk

 ,

where zk ∈ RN is the vector that contains all the momentums of the N nodes in the network

at time k and ε ∈ RE is the vector which entries are the E errors of every bidirectional link

between at instant k. Note that the order of the entries indexed in the vectors z and ε does not

matter, but once is defined then it must be unalterable in the analysis.

With the above definitions it is possible to define an asynchronous transition matrix of

the state of the system depending on the pair of agents involved and on the agent that detects

the reception event. Thus, the dynamics of the system between the instants k and k + 1 can

be expressed as:

xk+1 = Mkxk , (5.19)

where Mk is one of the asynchronous matrices induced by the algorithm when someone

detects an event of data reception given by the expressions in 5.13 or 5.16 and considering

that all other states in the network remain unalterable due to asynchronicity.

Since the state of the system xk is formed by the momentum vector zk and the error of

the links εk, we can separate the matrices by components and have the following updates: zk+1

εk+1

 =

 Ak Bk

Ck Dk

 zk

εk

 Mk :=

 Ak Bk

Ck Dk

 ,
where Ak ∈ R(N×N), Bk ∈ R(N×E), Ck ∈ R(E×N) and Dk ∈ R(E×E) for all k ∈ N0.

107

In general, if agent j updates its state due to the expiration of timer i, the update matrix

will have the form in the expression 5.20.

ith jth qth

ith

jth

1 · · · 0 · · · 0 · · · 0
...

...
...

0 · · · 1 · · · 0 · · · 0
...

...
...

0 · · · 1/2 · · · 1/2 · · · 0
...

...
...

0 · · · 0 · · · 0 · · · 1

0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0
...

...
...

0 · · · 1/2 · · · 0
...

...
...

0 · · · 0 · · · 0

qth

0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · −1/2 · · · 1/2 · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0

1 · · · 0 · · · 0
...

...

0 · · · 1/2 · · · 0
...

...

0 · · · 0 · · · 1

, (5.20)

where q is the position of the error variable εij .

For the sake of completeness, if the agents involved in the collision are the same but this

time node i updates due to expiration of timer at j, the transition matrix is the one in the

expression 5.22.

Note that these set of matrices does not have the form of 2.2 since these new matrices

combine the separated states of the agents to form states of the communication links, however

they indeed represent asynchronous updates of the complete state of the network.

As we have discussed before, from equation 5.19 it is easy to obtain the state as a function

of the initial condition, which can be expressed as:

xk = Mk−1 · · ·M1M0x0 , (5.21)

108

ith jth qth

ith

jth

1 · · · 0 · · · 0 · · · 0
...

...
...

0 · · · 1/2 · · · 1/2 · · · 0
...

...
...

0 · · · 0 · · · 1 · · · 0
...

...
...

0 · · · 0 · · · 0 · · · 1

0 · · · 0 · · · 0
...

...
...

0 · · · 1/2 · · · 0
...

...
...

0 · · · 0 · · · 0
...

...
...

0 · · · 0 · · · 0

qth

0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · 1/2 · · · −1/2 · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0

1 · · · 0 · · · 0
...

...

0 · · · 1/2 · · · 0
...

...

0 · · · 0 · · · 1

. (5.22)

and the state as time tend to infinity is:

x∞ = M∞ · · ·M1M0x0 , (5.23)

where the matrices that appear in the product are taken from the set of asynchronous matrices

induced by the algorithm Σ. Note that since we are assuming that the nodes never failed

and that the feasible communication topology is unalterable, the dimension of the matrices

in the set is finite, also it is clear that the number of matrices in the set Σ is finite too and

furthermore each one of these matrices appears indefinitely in the generated product of the

expression 5.21 as time tends to infinity, however the order in which the matrices in Σ appears

is unknown and depends on the frequency and phase of the internal timers and if the messages

are effectively received.

With the above discussion in mind, we will focus on the behavior of the infinite product

of matrices:

(M∞ · · ·M1M0)

109

where every matrix that appears in the infinite product is in a finite set Σ of asynchronous

matrices induced by the algorithm, and also each matrix in Σ appears infinitely often in such

product. It is expected that regardless the order in which the matrices appear, the infinite

product should converge to an average consensus matrix. According to the expression 5.23

and considering that the initial state is:

x0 =

z
(1)
0

z
(2)
0

...

z
(N)
0

ε0

=

m1

m2

...

mN

0

,

the infinite product should converge to a matrix which performs the following update:

z
(1)
∞

z
(2)
∞
...

z
(N)
∞

ε∞

=

1/N 1/N · · · 1/N ?

1/N 1/N · · · 1/N ?
...

... ?

1/N 1/N · · · 1/N ?

? ?
... ? ?

m1

m2

...

mN

0

in which it is easy to see that the momentums of the agents converge to the average of the ini-

tial momentums. Since in the design of the algorithm the error variables represent the quantity

of momentum that the communication link retains in order to preserve the momentum, and

since all the agents have the total momentum of the system stored in their momentum vari-

ables, if they converge to the average the error variables should converge to zero as time tends

to infinity regardless the initial state, and therefore we should expect that:

z
(1)
∞

z
(2)
∞
...

z
(N)
∞

ε∞

=

1/N 1/N · · · 1/N ?

1/N 1/N · · · 1/N ?
...

... ?

1/N 1/N · · · 1/N ?

0 0 · · · 0 ?

m1

m2

...

mN

0

110

We will discover the unknown entries of the infinite product as long as it converges,

however we need to exploit some properties of the structure of the asynchronous matrices

induced by the algorithm. Before to do that, we will make explicit the asynchronous matrices

induced in the case when there are two and three nodes in the network with the objective of

understanding properly the model of the system, which regards asynchronicity and packet

losses, but not delays.

5.3.1. Example: Asynchronous Matrices Induced by the Algorithm N = 2

The set of nodes is V = {1, 2}. The feasible communication graph is straightforward

and limited by the assumptions of the formulation, so agent 1 can send information to agent

2 and vice versa. The state of the network is:

x =

z(1)

z(2)

ε(12)

 .

The asynchronous update when agent 2 updates due to node 1 is xk+1 = M (21)xk:
z

(1)
k+1

z
(2)
k+1

ε
(12)
k+1

 =

1 0 0

1/2 1/2 1/2

−1/2 1/2 1/2

z
(1)
k

z
(2)
k

ε
(12)
k

 ,

and the asynchronous update when agent 1 updates due to node 2 is xk+1 = M (12)xk:
z

(1)
k+1

z
(2)
k+1

ε
(12)
k+1

 =

1/2 1/2 1/2

0 1 0

1/2 −1/2 1/2

z
(1)
k

z
(2)
k

ε
(12)
k

 ,

and the finite set of matrices Σ = {M (21), M (12)} is:

Σ =

M
(21) =

1 0 0

1/2 1/2 1/2

−1/2 1/2 1/2

 , M (12) =

1/2 1/2 1/2

0 1 0

1/2 −1/2 1/2

111

Trivially, infinite product (M∞ · · ·M1M0) in which every matrix in Σ is repeated infin-

itely often converges to:

(M∞ · · ·M1M0) =

1/2 1/2 1/2

1/2 1/2 1/2

0 0 0

which happens in finite time whenever the first and the second agent updates at least once,

and thus the average consensus is reached.

5.3.2. Example: Asynchronous Matrices Induced by the Algorithm N = 3

The set of nodes is V = {1, 2, 3}. The feasible communication graph can vary depend-

ing on which bidirectional strongly connected graph we choose. If the graph is complete the

state of the network is as follows:

x =

z(1)

z(2)

z(3)

ε(12)

ε(23)

ε(13)

,

112

and the finite set of matrices Σ = {M (21), M (12), M (32), M (23), M (31), M (13)} is:

Σ =

M (21) =

1 0 0 0 0 0

1/2 1/2 0 1/2 0 0

0 0 1 0 0 0

−1/2 1/2 0 1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

, M (12) =

1/2 1/2 0 1/2 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1/2 −1/2 0 1/2 0 0

0 0 0 0 1 0

0 0 0 0 0 1

,

M (32) =

1 0 0 0 0 0

0 1 0 0 0 0

0 1/2 1/2 0 1/2 0

0 0 0 1 0 0

0 −1/2 1/2 0 1/2 0

0 0 0 0 0 1

, M (23) =

1 0 0 0 0 0

0 1/2 1/2 0 1/2 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1/2 −1/2 0 1/2 0

0 0 0 0 0 1

,

M (31) =

1 0 0 0 0 0

0 1 0 0 0 0

1/2 0 1/2 0 0 1/2

0 0 0 1 0 0

0 0 0 0 1 0

−1/2 0 1/2 0 0 1/2

, M (13) =

1/2 0 1/2 0 0 1/2

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1/2 0 −1/2 0 0 1/2

In the case when the feasible communication topology is only strongly connected but

not complete and with bidirectional links, one option would be to chose the links 1↔ 2 and

113

2↔ 3 and the state would be as follows:

x =

z(1)

z(2)

z(3)

ε(12)

ε(23)

,

and the finite set of matrices Σ = {M (21), M (12), M (32), M (23)} would be:

Σ =

M (21) =

1 0 0 0 0

1/2 1/2 0 1/2 0

0 0 1 0 0

−1/2 1/2 0 1/2 0

0 0 0 0 1

, M (12) =

1/2 1/2 0 1/2 0

0 1 0 0 0

0 0 1 0 0

1/2 −1/2 0 1/2 0

0 0 0 0 1

,

M (32) =

1 0 0 0 0

0 1 0 0 0

0 1/2 1/2 0 1/2

0 0 0 1 0

0 −1/2 1/2 0 1/2

, M (23) =

1 0 0 0 0

0 1/2 1/2 0 1/2

0 0 1 0 0

0 0 0 1 0

0 1/2 −1/2 0 1/2

In both cases it is not clear if the infinite product (M∞ · · ·M1M0) in which every matrix

in Σ repeats infinitely always converges, and only we are analyzing the case N = 3. The

results presented in the previous chapters can prove convergence in the case when the matrices

involved in the infinite product are non-negative and each row of them sum one, and, although

consensus is still a reachable subspace (which is α[1T 0T]T), in this algorithm the matrices

induced have entries with negative signs. Therefore, there are no well developed tools to

prove converge of the designed algorithm. In the following we will mention some interesting

properties that the matrices in the finite subset Σ satisfies.

114

5.4. Properties of Σ in the infinite product (M∞ · · ·M1M0)

Recall that Σ is the finite set of asynchronous matrices induced by the algorithm. Every

matrix M ∈ Σ satisfies various construction properties that makes them invariant under

multiplication and with good convergence properties.

5.4.1. Oblique Projections

Every matrix M ∈ Σ is an oblique projection which means that:

M2 = M , ∀M ∈ Σ

or equivalently each eigenvalue of M is λ = 1 or λ = 0 and simple. This implies that the

state does not change if the same communication happens twice or more times consecutively.

Note that the rank of M is (N + E − 1) and the nullity is 1, so there is just one eigenvalue

λ = 0 for all M ∈ Σ. Also, thanks to the oblique projection property, the 1-eigenspace is the

same as the range of M .

Note that with this in mind, the algorithm is a system that every time that updates:

xk+1 = Mkxk

is applying an oblique projection over a range with less dimension. Through the time an if

the system converges, the infinite product in the expression:

x∞ = (M∞ · · ·M1M0)x0

should converge to a projection matrix of rank 1, i.e., with a unique eigenvalue λ = 1 and the

remaining (N + E − 1) eigenvalues equal to zero.

5.4.2. Conservation Property is Invariant

For every matrix M ∈ Σ there is a left-eigenvalue λ = 1 corresponding to the left-

eigenvector 1T , which means that the momentum is preserved during an update:

1TM = 1T ,∀M ∈ Σ

115

Furthermore, for every product of matrices (Mk · · ·M1M0) taken from Σ, it also satisfies

the above property, which means that the conservation property is invariant over time:

1T (Mk · · ·M1M0) = 1T ,∀Mi ∈ Σ, ∀k ∈ N

5.4.3. Consensus is a Reachable Subspace

For every matrix M ∈ Σ there is a right-eigenvalue λ = 1 corresponding to the right-

eigenvector
[
1T 0T

]T
, where 1 has N entries and 0 has E entries, which means that the

consensus is an equilibrium point:

M

1
0

 =

1
0

 ,∀M ∈ Σ

Furthermore, every product of matrices (Mk · · ·M1M0) taken from Σ also satisfies the

above property, which means that if consensus is reached then the state cannot be moved

from there no matter how many updates happen:

(Mk · · ·M1M0)

1
0

 =

1
0

 ,∀Mi ∈ Σ, ∀k ∈ N

5.4.4. Consensus is the Unique Reachable Subspace

By construction it is possible to see that the intersection of the 1-eigenspaces of the

matrices in Σ, which is the same as the intersection of the ranges, is the consensus subspace:

⋂
M∈Σ

E1(M) = α

1
0

 ,∀α ∈ R

This implies that if the infinite matrix product (M∞ · · ·M1M0) in which every matrix in

Σ appears infinitely often converges, then the columns are in the reachable subspace. Since

the conservation property is invariant, the sums of the columns of (M∞ · · ·M1M0) are equal

116

to one. Therefore, if the infinite product converges, it must converge to a matrix of the form:

(M∞ · · ·M1M0) =
1

N

 1

0

[1T 1T
]

=

1/N · · · 1/N 1/N · · · 1/N
...

...
...

... · · · ...

1/N · · · 1/N 1/N · · · 1/N

0 · · · 0 0 · · · 0
...

...
...

...

0 · · · 0 0 · · · 0

5.4.5. The System Converges

The convergence property could not be proven. As we have discussed before, no many

mathematical tools have been developed with infinite matrix products without considering

non-negative matrices. However, extensive simulations where performed with excellent re-

sults. The simulations consist in multiplying randomly the matrices induced by the algorithm

and, as long as every matrix in Σ appears infinitely often, the infinite product converges to

the average consensus matrix. Even if just a subset of them appear in the infinite product

infinitely often, every entry is bounded by one and apparently the product always converges

and therefore the finite set Σ would have the LCP property. Furthermore, the same simula-

tions but performing the right product of matrices always converges, and if the matrices in Σ

appear indefinitely the average consensus matrix is achieved, therefore apparently Σ is RCP

too. Recall that the LCP property is stronger than the infinite product (M∞ · · ·M1M0) in

which every matrix in Σ appear indefinitely converges, however LCP is desirable in a sense

of robustness because this bounds the states of the agents.

Here is shown an example for N = 4 agents in which the feasible communication topol-

ogy is complete where clearly the system converges to the desired average consensus matrix.

The code can be found in (Beorostica Github, 2018).

After 10 iterations:

117

0.5000 0.2500 0.1250 0.1250 0.5000 0 0.2500 0 0 0.1250

0.5000 0.2500 0.1250 0.1250 0.5000 0 0.2500 0 0 0.1250

0 0 0.5000 0.5000 0 0 0 0 0 0.5000

0.3750 0.1250 0.0625 0.4375 0.3750 0 0.1250 0.2500 0.3750 0.0625

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0.5000 -0.2500 -0.2500 0 0 0.5000 0 0 -0.2500

-0.2500 0 0 0.2500 -0.2500 0 0 0.5000 0.2500 0.0000

-0.1250 -0.1250 0.0625 0.3125 -0.1250 0 -0.1250 0.2500 0.3750 -0.0625

0 0 0.5000 -0.5000 0 0 0 0 0 0.5000

After 40 iterations:
0.2038 0.1936 0.3476 0.2550 0.2038 0.3225 0.1936 0.2831 0.2168 0.3476

0.2703 0.3015 0.1678 0.2604 0.2703 0.2002 0.3015 0.2704 0.2816 0.1678

0.2174 0.2142 0.3263 0.2421 0.2174 0.3067 0.2142 0.2610 0.2199 0.3263

0.2148 0.1995 0.3383 0.2474 0.2148 0.3120 0.1995 0.2615 0.2180 0.3383

0.0313 -0.0313 -0.0156 0.0156 0.0313 0.0000 -0.0313 -0.0625 0.0313 -0.0156

0.0239 0.0216 -0.0267 -0.0187 0.0239 -0.0245 0.0216 -0.0434 0.0037 -0.0267

0.0137 0.0020 0.0166 -0.0322 0.0137 -0.0313 0.0020 -0.0430 -0.0332 0.0166

-0.0111 -0.0059 0.0094 0.0076 -0.0111 0.0105 -0.0059 0.0215 -0.0012 0.0094

0.0334 0.0901 -0.1517 0.0282 0.0334 -0.0908 0.0901 0.0519 0.0612 -0.1517

0.0026 0.0147 -0.0120 -0.0053 0.0026 -0.0053 0.0147 -0.0005 0.0020 -0.0120

After 100 iterations:
0.2498 0.2503 0.2504 0.2495 0.2498 0.2499 0.2503 0.2500 0.2494 0.2504

0.2502 0.2505 0.2495 0.2498 0.2502 0.2495 0.2505 0.2499 0.2500 0.2495

0.2501 0.2505 0.2499 0.2496 0.2501 0.2496 0.2505 0.2499 0.2497 0.2499

0.2506 0.2499 0.2492 0.2502 0.2506 0.2496 0.2499 0.2491 0.2506 0.2492

-0.0003 -0.0002 0.0009 -0.0003 -0.0003 0.0004 -0.0002 0.0000 -0.0006 0.0009

0.0004 0.0001 -0.0009 0.0003 0.0004 -0.0004 0.0001 -0.0003 0.0006 -0.0009

0.0002 0.0000 -0.0003 0.0000 0.0002 -0.0002 0.0000 -0.0002 0.0002 -0.0003

-0.0005 0.0002 0.0007 -0.0004 -0.0005 0.0002 0.0002 0.0005 -0.0008 0.0007

0.0004 -0.0005 -0.0002 0.0004 0.0004 0.0000 -0.0005 -0.0007 0.0006 -0.0002

-0.0009 -0.0008 0.0009 0.0008 -0.0009 0.0015 -0.0008 0.0017 0.0001 0.0009

And after 10000 iterations:
0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

-0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000

0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000

-0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000

0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000

118

Chapter 6. EVALUATION OF THE PROPOSED ALGORITHMS AS PROTOCOLS

As we could see, two versions were developed thanks to the creation of new variables

that store the momentum that the bidirectional link retains from the beginning. On one hand,

in the uni-cast version a node needs to choose another agent from its neighbors every time it

detects a timer event and hopefully to receive a message in response in a short time, also two

types of messages must be labeled. On the other hand, in the multi-cast version an agent does

not need to choose an agent since it sends the information to all its neighbors when the timer

expires, and also it is not necessary to add a second type of message.

In the following, an evaluation over real IoT environments will be exposed where the

robustness of the protocol will be tested with all the unfavorable phenomena that a real com-

munication channel presents, in particular not only asynchronous updates or packet losses,

but also delays. Two infrastructured communication networks will be tested: a local lab-

oratory with wireless capabilities (22 nodes) and in the public network FiT IoT laboratory

(270 nodes). Furthermore, comparisons with the recent push-sum based algorithm (Bof et

al., 2017) with the ideas of adding storage variables in case of packet losses will be made

and we will show some practical aspects in which our algorithm is superior. Note that, in

general, these protocols are rarely implemented over real environments but extensively simu-

lated, therefore the hardware implementation is really a valuable contribution in order to test

the performance and robustness of these algorithms. For further details about the code, please

refer to (Beorostica Github, 2018) where it is possible to find the necessary files to run the

protocol over the open IoT-LAB in France (FIT IoT-LAB, 2018).

6.1. Uni-cast version

6.1.1. Protocol for Implementation

In the following, we will state uni-cast version of the protocol as an algorithm suitable

for coding on each agent.

119

• Initial conditions:

z(i) ← mi , Σ∆z(ij) ← 0 , Σ̂∆z(ji) ← 0 ,

for all i ∈ V and for all j ∈ V(i).

• If agent i generates a timer event:

(1) Select an agent j in such a way all the neighbor are covered after a finite time.

(2) Transmit a message to agent j with the actual momentum z(i), Σ∆z(ij), Σ̂∆z(ji)

and labeled as type 1.

• If agent i detects an event of data reception of type 1 from agent j with the variables

z(j), Σ∆z(ji) and Σ̂∆z(ij), then it defines:

z(i)
corr = z(i) +

(
Σ∆z(ji) − Σ̂∆z(ji)

)
z(j)
corr = z(j) +

(
Σ∆z(ij) − Σ̂∆z(ij)

)
∆z(ij) = 1

2

(
z(i)
corr − z(j)

corr

)
(1) Update own internal state:

z(i) ← z(i)
corr −∆z(ij)

Σ∆z(ij) ← Σ∆z(ij) + ∆z(ij)

Σ̂∆z(ji) ← Σ∆z(ji)

(2) Send a message to agent j with the total momentum exchanged updated Σ∆z(ij)

and labeled as type 2.

• If agent i detects an event of data reception of type 2 from agent j with the variable

Σ∆z(ji):

(1) Update own internal states:

z(i) ← z(i) + Σ∆z(ji) − Σ̂∆z(ji)

Σ̂∆z(ji) ← Σ∆z(ji)

120

REMARK 6.1. Note that packet labeling as type 1 or type 2 is straightforward in an IoT

environment, where agents usually implement full stack communication. Also note that in an

IoT environment unique addressing schemes are present.

6.1.2. Hardware Implementation

6.1.2.1. IoT Local Laboratory Testbed

In order to evaluate the performance of the uni-cast version of proposed protocol, an IoT

environment of 22 agents was implemented on our local laboratory. The IoT environment is

realistic in the sense that real hardware, heterogeneous in nature, was used, which leads to

asynchronism and multi-rate behavior associated with using digital event-triggered devices.

The IoT environment also suffers from real phenomena in the communication channel, such

as packet losses and delays.

The testbed network consist of a set of 22 heterogeneous devices and a router that serves

as network manager, with the potential of implementing infrastructured Local Area Networks

(LANs) or ad-hoc (peer-to-peer) networks. We pre-set the feasible communication links or,

more precisely, each agent knows its neighborhood of agents. In particular, for all the follow-

ing experiments, each agent has at most 4 neighbors. Figure 6.1 shows a conceptual cartoon

of the IoT environment deployed in an infrastructured LAN configuration. The heterogeneity

of the agents is made explicit in the Figure.

The hardware involved are all considered within the class of embedded IoT development

platforms (Singh & Kapoor, 2017), except for one laptop that was included in the network to

represent the interaction between human-oriented devices and embedded sensors/actuators.

It is important to emphasize that another shared characteristic is that every device has a pro-

cessor which runs a derivative Debian distribution of Linux Operative System (OS) such as

Ubuntu, Debian for BeagleBone and Raspbian, that, by the way, has the special feature of be-

ing open source. Working with an OS allows to easily set-up and manage a communication

network and also allows to execute practically any source code.

The technical specs of the hardware used are the following.

121

FIGURE 6.1. IoT environment deployed in an infrastructured LAN configuration.
Only 5 agents are shown for simplicity, however in the implementation there are 22
agents deployed. Even though the router is a central entity, the processing of the
information in the network is totally distributed.

• Router LINKSYS WRT1900AC (Belkin International, Inc., 2017): acts as network

manager. Its main features are a 1.3GHz dual-core processor, and that it supports

dual band operation at 2.4GHz and 5GHz with transfer rate up to 1.9Gbps.

• Raspberry Pi 3 (Raspberry Pi Foundation, 2017): it is powered by a 1.2-GHz 64-bit

quad-core ARM Cortex-A53 CPU, with 1.2GB of RAM and an integrated 802.11n

2.4GHz wireless transceiver. It runs the Raspian operating system. The IoT testbed

contains 4 Raspberry Pi 3 boards.

• Laptop HP Mini series 210-3000 (HP Development Company, L.P., 2017): it has

a 1.66 GHz Intel Atom N570 processor, 1GB of DDR3 RAM and a 802.11 b/g/n

2.4GHz wireless transceiver. It runs Ubuntu 16.04 LTS as operating system.

• Beagle Bone Green Wireless (BeagleBoard.org Foundation, 2017b): it is based on

the Texas Instruments AM335x 1GHz ARM Cortex-A8 processor, it has 512MB

of DDR3 RAM and an integrated 802.11 b/g/n 2.4GHz wireless transceiver. It runs

the Debian Jessie operating system. The IoT testbed contains 2 Beagle Bone Green

Wireless boards.

• Beagle Bone Black (BeagleBoard.org Foundation, 2017a): it is powered by the

Texas Instruments AM335x 1GHz ARM Cortex-A8 processor, it has 512MB of

DDR3 RAM. The IoT testbed contains 15 Beagle Bone Black boards. Out of the

122

15 boards, 13 boards run the Debian Jessie operating system and have attached a

TP-Link TL-WN722N USB dongle (TP-Lnk Technologies Co., Ltd., 2017), which

enables 802.11n connectivity in the 2.4GHz band. The other two boards run the

Debian Wheezy operating system and have attached a TP-Link Archer-T2UH USB

dongle (TP-Link Technologies Co., Ltd., 2017), which enables 802.11ac connec-

tivity in the 5GHz band.

Since all the agents run a complete operating system, the protocol operates in the agents

by making use of a full protocol stack implemented in each of them, to enable transpar-

ent communication. Although consensus on a protocol stack for IoT systems has not been

reached, we resort to a classical 4-layered stack to represent the communication processes.

The layers are, from higher to lower: Application, Transport, Network and Network Interface.

For the Network Interface, the testbed includes agents implementing the 802.11n proto-

col at 2.4GHz and the 802.11ac protocol at 5GHz. Since the router supports dual band op-

eration, it bridges both subnetworks whenever needed. For the Network layer, all the agents

implement the Internet Protocol (IP) version 4. When operating in infrastructure mode, a

DHCP server running at the router is in charge of address management, while when operat-

ing in ad-hoc mode, pre-set addresses hard coded in the agents are used. At the Transport

layer, the User Datagram Protocol (UDP) was chosen instead of others such as the Transmis-

sion Control Protocol (TCP) since for control-oriented tasks, speed is more important than

quality of service in terms of reliability. Note that since UDP is used, retransmissions for

packet not correctly delivered are not present, hence the protocol indeed needs to correct for

momentum losses in the following experiments. Finally, the Application layer is not fully de-

termined by the protocol, since we are working in between the application and the transport

layers, where each agent opens a socket over in order to transmit and receive UDP datagrams.

Figure 6.2 summarizes the protocols used in each layer of the 4-layered protocol stack in our

IoT testbed.

123

FIGURE 6.2. Protocol stack used to model the communication between agents and
protocols chosen for the evaluation in the IoT testbed.

For each agent, the protocol was coded in the user space where timer events and data

reception events are handled. Specially suitable for these purposes is Node.js due to its asyn-

chronous even driven nature. Also, the Cloud9 IDE server was made use of in all the agents

since it facilitates coding and debugging.

For all the experiments, the initial state of the consensus values or momentums are dif-

ferent for each agent and they are: 12, 55, 25, 70, 100, 65, 35, 75, 45, 78, 15, 85, 57, 95, 13, 0,

5, 10, 60, 88, 90, 22, which give an average of 50. To increase the heterogeneity, a multi-rate

feature was added in the frequency of the timers such that 5 agents have a timer with period

of 0.5 [s], 6 agents with period 1 [s], 5 agents with period 1.5 [s], and 6 agents with period

2 [s].

At the beginning of the experiment, each device is in idle mode not communicating data

with anyone. In order to start the data exchange, an external device sends repeatedly an

start signal until all agents are enabled to communicate information. After that, the protocol

develops naturally.

The feasible communication topologies used are shown in Figure 6.3 and Figure 6.4.

Figure 6.3 shows four different topologies, all are based on a ring structure. The idea behind

the chosen topologies is to test the performance of the protocol for the minimum quantity of

links, i.e., the ring structure, and then to evaluate its behavior as links are added over the ring

124

structure. It should be noted that for a ring topology, packet losses are prone to disconnect

the network, hence they are more harmful than in other configurations.

FIGURE 6.3. Topologies used in the first set of experiments, which are based on a
ring structure. (a) Pure ring topology. (b) Ring topology with 2 extra links per agent
corresponding to the 2 next nearest neighbors. (c) Ring topology with 1 extra link per
agent corresponding to the farthest neighbor. (d) Ring topology with 6 extra links,
randomly chosen.

Additionally, Figure 6.4 shows two different feasible communication topologies that are

time-varying by means of pseudo-switches. These pseudo-switches open and close at dif-

ferent time instants. The idea behind these topologies it to emulate networks with mobility

where disconnected clusters are likely to be found from time to time. An also to emulate IoT

environments with multiple interfaces, where an agent bridges two subnetworks with differ-

ent technologies in the physical layer of the protocol stack, e.g., an IEEE802.11 network and

an IEEE802.15.4 network.

The dynamics of the communication topology shown in Figure 6.4 (a) is the following.

At the beginning, the clusters of 14 and 8 agents does not have any communication link

125

FIGURE 6.4. Communication topologies with time-varying structure. (a) IoT setup
where initially there are two isolated ring clusters, which are bridged at time t1. (b)
IoT setup where initially there are three separated ring clusters. At time t1 two of
them are bridged, and at time t2 > t1 the three clusters are bridged.

between them but the agents of the same cluster can exchange information, after a time t1

the pseudo-switch is closed by an external device and consequently the final feasible graph is

strongly connected.

For the communication topology shown in Figure 6.4 (b), at the beginning there are three

isolated clusters where internal agents interact from the beginning, at time t1 the clusters of

4 and 6 agents are bridged by an external device and form a cluster of 10 agents, then at time

t2 the two remaining clusters are bridged together at two points forming a strongly connected

feasible communication graph.

126

0 5 10 15
0

50

100

(a
)

0 5 10 15
0

50

100

(b
)

0 5 10 15
0

50

100

(c
)

0 5 10 15
Time [sec]

0

50

100

(d
)

FIGURE 6.5. Results for the communication topologies based on a ring structure
presented in Figure 6.3. (a): Results for the ring topology, (b):Results for the ring
topology plus two links per agent, (c): Results for the ring topology plus one link per
agent, (d): Results for the ring topology plus 6 random links.

Figure 6.5 and Figure 6.6 show the results obtained for the experiments involving the

communication topologies in Figure 6.3 and Figure 6.4 respectively. In Figure 6.5 it can be

seen that the protocol achieves the average consensus of 50. Also, can be pointed out that the

consensus trajectory have an envelope that decreases with an exponential shape, which was

expected since this is a convergent linear system, an also the convergence rate is faster for

certain topologies than others.

Similar results can be seen in Figure 6.6, where for both topologies the average con-

sensus is achieved with a trajectory bounded by a decaying exponential. However, the most

remarkable result in these cases is the robustness of the protocol to deal with time-varying

127

0 50 100 150 200 250
0

20

40

60

80

100

(a
)

Real Average

0 20 40 60 80 100 120 140 160 180 200
Time [sec]

0

20

40

60

80

100

(b
)

Real Average

FIGURE 6.6. Results for the time-varying communication topologies shown in Fig-
ure 6.4. (a): Results for the time-varying topology with two initial isolated clusters;
(b): Results for the time-varying topology with three initial isolated clusters.

interaction topologies. In particular, in Figure 6.6 plot (a) before the pseudo-switch is closed,

the agents inside the two clusters achieve the average consensus of its own clusters and then,

when interaction among clusters takes place, all the agents achieve the desired global average

consensus value. An analogous behavior is shown in Figure 6.6 plot (b), where before time t1

the agents inside each of the three clusters tend to its local cluster average, between t1 and t2

the new formed cluster of 10 agents mix and the agents achieve the combined average value,

and finally, after time t2, the IoT network as a whole is strongly connected and consequently

achieves average consensus.

It should be noted that, although the IoT environment used as testbed has several non-

ideal phenomena known to deteriorate the performance of traditional average consensus al-

gorithms (Oróstica & Núñez, 2017) , such as packet losses, delays, multi-rate behavior and

128

asynchronous events, the proposed protocol achieves the desired objective in all cases, even

when faced with time-varying communication topologies, as long as the feasible communi-

cation topology is strongly connected.

6.1.2.2. FiT IoT LAB Deployment

One of the goals of the proposed protocol is that it should be scalable, so an evaluation

over a large network would be ideal. However, we just had a small quantity of nodes in our

facilities. Fortunately, there exits the open IoT-LAB in France which provides a very large

scale infrastructure suitable for testing heterogeneous communicating devices (FIT IoT-LAB,

2018). In this tested was possible to use more than 270 nodes for all the realizations. It is

worth to mention that for each different experiment some nodes could not boot properly at

the beginning, so we scheduled a high number of agents but only some of them were in fact

running code.

Here we will show a realization in which 285 agents booted properly. All the devices

used were A8 nodes which are based on a high-performance ARM Cortex-A8 microprocessor

and allows to run high-level OS like Linux. Nodes from Grenoble, Saclay, Strasbourg and

Paris, were used. Every agent had a protocol stack similar to the one implemented in our

local laboratory, however the physical layer was the standard IEEE 802.3, better known as

Ethernet, and in the network layer it was used the public Internet Protocol version 6 (IPv6).

In the transport layer the UDP protocol is still used. It is important to emphasize that this

network has the typical realistic issues such as packet losses and delays, therefore it really is

a good place to test the effectiveness of the proposed protocol.

Several experiments were executed, the initial values, the timer period and the neighbors

of each agent were determined by a central computer placed in our installations. The process

was automatized and can be summarized as follows: first the manager computer in Chile

creates a file with the topology of the network and the initial conditions and parameters of

the agents, then the file is sent and read by every node in France, subsequently the manager

sends a signal to every agent to run the protocol, meanwhile each node fills a file with the

information of their states, after a certain amount of time the central computer sends a stop

129

signal and each node in France sends back the file with the information of the state, finally

the central computer can process the results.

The initial momentum of every agent is a uniform random value between 0 and 100, thus

the real average can be calculated by the Chilean central computer in order to be compared

with the results of the protocol deployed in France. The period of the timer also was chosen

randomly and could have the value of 0.5, 1 or 1.5 seconds. The topology has total number

of 285 nodes, the communication graph was random, connected and such that every node had

a maximum of 4 neighbors.

The results of one realization is shown in the Figure 6.7. As we can see, the protocol

achieves the average consensus as we expected. Several tests have been executed with the

same excellent results. The most outstanding feature of this distributed algorithm is its ro-

bustness since it has been tested under real and not desirable conditions as asynchronism,

packet losses and delays, and in all the cases the average consensus is successfully reached.

FIGURE 6.7. Results for one realization of the uni-cast algorithm implemented on
the IoT-LAB in France with 285 A8 nodes.

130

6.2. Multi-cast Version

6.2.1. Protocol for Implementation

In the following, we will state the multi-cast version of the protocol as an algorithm

suitable for coding on each agent.

• Initial conditions:

z(i) ← mi , Σ∆z(ij) ← 0 , Σ̂∆z(ji) ← 0 ,

for all i ∈ V and for all j ∈ V(i).

• If agent i generates a timer event:

(1) Transmit a message to each neighbor j with the actual momentum z(i), Σ∆z(ij),

Σ̂∆z(ji).

• If agent i detects an event of data reception from agent j with the variables z(j),

Σ∆z(ji) and Σ̂∆z(ij), then it defines:

z(i)
corr = z(i) +

(
Σ∆z(ji) − Σ̂∆z(ji)

)
z(j)
corr = z(j) +

(
Σ∆z(ij) − Σ̂∆z(ij)

)
∆z(ij) = 1

2

(
z(i)
corr − z(j)

corr

)
(1) Update own internal state:

z(i) ← z(i)
corr −∆z(ij)

Σ∆z(ij) ← Σ∆z(ij) + ∆z(ij)

Σ̂∆z(ji) ← Σ∆z(ji)

6.2.2. Hardware Implementation over FIT IoTLab Testbed

As in the uni-cast version, the IoT Lab facilities were used in order to test the perfor-

mance of the multi-cast version of the algorithm. It was used the same communication in-

frastructure, the same digital devices (A8) and the same protocol stack as in Figure 6.2 in

131

which the physical layer is ethernet, over the Network layer is the public IPv6 and the Trans-

port layer uses UDP datagrams.

Several experiments were executed in the same way as it was described in the automa-

tized process of the uni-cast version, however it was added an additional change to test the

robustness of the protocol to the starting time in which the algorithm begins to run on every

node. In order to do so, the central manager computer additionally split into three groups, of

approximately the same quantity of agents, from the total number of nodes in the network.

Every group had a different average, in particular values of the initial momentums of the first

groups was chosen with a uniform distribution in a range between 0 and 33, the second group

between 33 and 66 and the third group the initial momentums where taken from the range

between 66 and 100. Thus, the random value of the real average was always close to 50.

After that, just before the nodes start the protocol, the central manager computer send a start

signal for the first group which runs the protocol while the manager awaits for 30 seconds and

then send another start signal for the second group, again it awaits for 30 seconds and finally

the third group receives the start signal from the chilean manager computer. Finally, after a

reasonable quantity of time when the average consensus is achieved, a stop signal is sent, the

nodes in France stop the algorithm and return the information to our chilean facilities.

Since the experiments were indeed a real implementation of the algorithm, some issues

occurred dealing with measuring time. In particular there was not an absolute notion of time

of the whole network (not necessarily all nodes has the same universal time), however every

node can count locally certain number of milliseconds after a flag signal. Therefore, in order

to display the results of the evolution of the momentums of the agents along the time, before

any aforementioned start signal was sent, the chilean manager computer transmit a flag signal

which indicates to each agent in France a zero reference point to begin to count the time. Note

that this problem does not affect the algorithm at all, it just affects the way in which the states

of all agents are displayed over the time on the plots that we will show soon. Thus, in the

future displayed results the axis of the time in not absolute, it is the local time of each agent

instead. Due to the realistic IoT network used, we indeed will see that the duration of the

algorithm in each node is different, which theoretically should have same same length, but

132

FIGURE 6.8. Results of one realization where every agent had at most three neighbors.

this is not the case due to delays. With this in mind, it is important to note that we do not

know the time when an agent starts the protocol and neither when it stop it, however they do

not start or stop the algorithm synchronously. Thus, even thought in future figures we will

see that all agents starts at time zero, this zero relative to the first received time flag, i.e., the

zero is local not absolute.

The results of one realization are shown in the Figure 6.8 in which every agent had at

most three neighbors. The first plot shows the evolution of the momentum of every agent z(i).

In the second plot are displayed the error variables ε(ij) of every agent for all agents. The

133

third plot shows all the elapsed times in which an agent do not receive information from a

neighbor. Finally, the fourth graph displays the duration time of the algorithm on each node.

Figure 6.8 shows in the first plot that the average consensus is achieved successfully.

Note that, since the three groups start at different times, they are trying to converge respec-

tively to local averages at the beginning separated by 30 seconds, thus after the first start signal

the first group converges to a number close to 15, after the second start signal the first two

groups are running the protocol so they try to converge approximately to a momentum of 33,

and finally when the third group receives the start signal all the network try to converge to the

average close to 50. However, and due to delays in the messages, the shape of the envelopes

of the momentums in the first graph is not a clear exponential as we expected, sometimes

the values of the momentums (first plot) and the errors (second plot) change abruptly, which

occurs at the times when a node listens to a neighbor that could not listen during a long time

according to the third plot. Thus, even though the real implementation has a all the unfavor-

able phenomena, in this case and in all others experiments conducted the algorithm always

achieves average consensus.

6.3. Comparison of the Multi-cast Version with a recent Push-Sum Based Protocol

We wanted to compare the multi-cast version of our algorithm with a recent push-sum

based protocol which has the same ideas of adding additional variables to cope with packet

losses. Note that the push-sum based protocol only was extensively simulated in (Bof et al.,

2017), but here we test this algorithm over a large real network of digital devices and we will

see some practical issues of this approach. The push-sum based protocol for implementation

is the following:

• Initial conditions:

y(i) ← mi

Σ∆y(ij) ← 0

Σ̂∆y(ji) ← 0

s(i) ← 1

Σ∆s(ij) ← 0

Σ̂∆s(ji) ← 0

z(i) = y(i)

s(i)

134

for all i ∈ V and for all j ∈ V(i).

• If agent i generates a timer event:

(1) Create auxiliary variables:

∆y = 1
1+|V(i)|y

(i)

∆s = 1
1+|V(i)|s

(i)

(2) Update own state:

y(i) ← ∆y

Σ∆y(ij) ← Σ∆y(ij) + ∆y

s(i) ← ∆s

Σ∆s(ij) ← Σ∆s(ij) + ∆s

z(i) = y(i)

s(i)

(2) Transmit a message to each neighbor j with the variables y(i), Σ∆y(ij) and

s(i), Σ∆s(ij).

• If agent i detects an event of data reception from agent j with the variables y(j),

Σ∆y(ji) and s(j), Σ∆s(ji), then:

(1) Update own internal state:

y(i) ← y(i) + (Σ∆y(ji) − Σ̂∆y(ji))

Σ̂∆y(ji) ← Σ∆y(ji)

s(i) ← s(i) + (Σ∆s(ji) − Σ̂∆s(ji))

Σ̂∆s(ji) ← Σ∆s(ji)

z(i) = y(i)

s(i)

Again, the public FiT IoT facilities were used. The exactly automatized process was

made as in the previous section. In order to have a fair comparison, both algorithms were

executed in parallel. This was possible simply by adding states in the UDP datagram, thus

every agent execute the commands of both protocols every time a timer event or an reception

event happens and the updates were stored in different variables and when a UDP message

needed to be sent, the message contained the states of both protocol in different sections of

135

the UDP datagram. This implies that every time is executed a realization of both algorithms

they can be compared under exactly the same environment, both have the same feasible com-

munication topology, both protocols loss the same packets, they have exactly the same delays

and so on.

Figure 6.9 shows the results for a realization in which the feasible communication topol-

ogy every agent had at most three neighbors. The unique difference between the displayed

results of the multi-cast version and the push-sum based algorithm is that in the second graph

of the later protocol is plotted the s variables instead of the errors. In general, from the plots

of the evolution of the momentums we can see that both protocols achieve the average con-

sensus, however some nodes in the push-sum based present a weird behavior at almost the

end of the experiment.

FIGURE 6.9. Comparison between the proposed protocol gossip based and the push-
sum based. Every agent had 3 neighbors.

In Figure 6.10 are displayed the results for a realization where every node had at most

15 neighbors. Again the average consensus is achieved successfully in both protocols and

the weird behavior still persists in the push-sum based algorithm at almost the end. However

here, when every agent has 15 neighbors, there is a clear faster convergence speed than the

136

in the case when every node had 3 neighbors at least in the intervals where the nodes are at

last listened (see third row). Between those intervals of time the convergence has qualita-

tively an exponential shape which occur repeatedly after all communications are performed

regularly and finally after the average consensus is reached there are no abrupt changes of the

momentums.

FIGURE 6.10. Comparison between the proposed protocol gossip based and the
push-sum based. Every agent had 15 neighbors.

By performing more experiments the weird behavior of the push-sum based protocol

always appears. The explanation of this is the following: after the stop signal is sent to every

agent, the nodes do not stop immediately the protocol (as it is shown in the fourth row plots),

so probably some agents, still operating, update their states due to timer events but they did

not receive information from its neighbors which some of them or every one of them were

turned off, this implies that the variables y and s tend to zero since both states just decrease

their values, indeed by reviewing the states of every agent at the end, the weird nodes have

the s value equal to zero which makes the momentum z = y
s

undefined. This behavior

happens because of the stop signal, however it eventually can occur if a node for any reason

can not receive information from its neighbor during a certain finite period of time. Note

137

that this problem does not happen in the proposed multi-cast gossip based protocol which

do not perform updates after a timer event and the changes of the state occur when receives

information from its neighbors. Therefore, if a node is isolated our protocol is more robust

than the push sum based because the former will not present an undefinition of the state unlike

the latter one which decreases the variables y and s. Note that this is a issue related to the

quantization of the values on digital devices.

Another practical issue was detected for the push-sum based protocol which was not

witnessed in our gossip based algorithm. The situation occurred some times when a node

never turned on, i.e., there was a defective node since the very beginning. This anomaly was

rather weird but appears more frequently when the public FiT IoT laboratory was under heavy

load due to other users using the facilities. Figure 6.11 shows the results for one realization

of the experiment in a topology in which every agent had at most 12 neighbors.

FIGURE 6.11. Comparison between the proposed protocol gossip based and the
push-sum based. Every agent had 12 neighbors.

Note that Figure 6.11 shows the same qualitative behavior as the previous results and

apparently both protocol achieves the average consensus. However the third row of plots

indicates that a some agents never detected the information from a neighbor. By reviewing

138

the results carefully, the information was never received from one singular node which never

runs the algorithm. Furthermore, the values of the consensus of the gossip based and push-

sum based where different. However, our gossip based protocol achieved successfully the

real average consensus without considering the initial momentum of the defective node, but

the push-sum based, even with the same logic of adding storage variable in case of packet

losses, did not achieve the average. The explanation is of this is that the push-sum based

protocol relies on the topology of the network to preserve the total momentum, in particular

when a timer expires it divides theirs variables y and s in equal parts 1
1+|V(i)| among their

neighbors, and then it is expected that eventually every neighbor add the same part to its

state, however if a neighbor is never present the partition of the state will never be an equal

repartition among the neighbors and thus the average is not preserved. This indicates that

the push sum based requires information about the topology of the network in order to work

properly. Note that our gossip-based algorithm does not have this issue since the momentum

conservation property is valid every time there is a change of the state, even if there are packet

losses or delays, and do not depend on the number of neighbors of every agent.

Thus, there are some practical issues that makes our gossip-bassed protocol more robust

than the push-sum based. In particular, if a node is isolated for any reason since the beginning

of the process it achieves successfully the average consensus as long as the feasible commu-

nication topology is still strongly connected and also if a node is isolated during a certain

period of time there is no quantization issues, unlike the push-sum based protocol which in

the former case cannot reach the desired average and in the latter situation the state becomes

undefined.

However, it appears the following problem for our gossip based algorithm: what happens

if a node at the beginning works properly but suddenly it disappears?. This point was barely

treated before because it was assumed that every node is non-defective, but this issue can be

fixed by adding some extra steps in the algorithm, the trick can be done thanks that every

node can easily determine the momentum without regarding the exchanges performed with

139

any of their nodes (in our case a defective node) according to the equation:

z(i) = mi −
∑
j∈V(i)

(
Σ∆z(ij)

)
+
∑
j∈V(i)

(
Σ̂∆z(ji)

)
in which only internal states of agent i are involved. Thus, if a node detects that a neighbor

never sends information, then it can calculate its momentum without exchanging any momen-

tum with the defective node by setting to zero the variables of momentum gained of lost due

to the defective node, and even with this change the preservation property is still valid. With

this modification in the protocol, the algorithm is robust to a changing feasible communica-

tion topology as long as there is still an underlying strongly connected graph. However the

convergence analysis with this additional change is rather difficult to treat analytically even

if we do not regard delays.

With this last observation pointed out, in order to implement the algorithm as a protocol

for either uni-cast version or multi-cast version, the extra steps needed to add on the protocol

on each agent are the following:

• If agent i do not receive information from the j agent after a certain T finite time,

then updates the own internal state as:

z(i) ← z(i) + Σ∆z(ij) − Σ̂∆z(ji)

Σ∆z(ij) ← 0

Σ̂∆z(ji) ← 0

140

Chapter 7. CONCLUSIONS

In this thesis the distributed average consensus problem was treated for a proper imple-

mentation over a real IoT environment. The main two contributions of this manuscript are

the design of a new algorithm to solve the distributed average consensus problem and the

evaluation of this protocol over a large real IoT environment. Extensive realizations over the

testbed indicate that the protocol always achieves the average consensus.

In order to create the algorithm for a real implementation, we always had in mind the

non-idealities of the system elements (digital devices and the communication channel) which

are asynchronous updates, quantization, packet losses and delays. However, with the ob-

jective of making a comprehensive analysis the theoretical framework only considered the

asynchronous and the packet losses issues and also assumes that the feasible communication

topology was invariant over time.

We saw that, without delays or quantization problems, the change of the state of the

network can be analyzed by using a linear time varying model, whose convergence can be

analyzed equivalently by an infinite product of matrices from a finite set Σ.

The analytical results presented show that a product of a finite set of row-stochastic

matrices with positive diagonal entries such that in the product always are being generated

sequences of rooted underlying graphs, converges to a matrix of the form 1νT which is useful

for the gossip based algorithm. Analogously, if the finite set of matrices are column-stochastic

with positive diagonal entries, then the infinite product of them such that always are being

generated sequences of sinked underlying graphs converges to a matrix of the form ν1T ,

which is useful for the push-sum based algorithm. Finally, if the matrices involved are double-

stochastic with positive diagonal entries and always are being generating sequences of rooted

or sinked or complete underlying graph then the infinite product converges to a matrix of the

form 1
N
11T .

In the context of asynchronous updates with a unique real state for each agent, only the

convergence to a matrix of the form 1νT is possible, which means that the consensus problem

can be solved. However it is not possible to generate a column-stochastic matrix with positive

141

diagonal entries that generates sinked underlying graphs (the only matrix that satisfies this is

the identity) unless further assumptions are made and therefore convergence to a matrix of

the form ν1T would not be reachable, which means that is not possible to conserve the sum

of the initial conditions over time, and thus the average consensus could not be solved using

this approach.

In order to only reach consensus to an undefined value over a network of digital devices,

only considering asynchronous updates and packet losses with one real state per node, it is

sufficient that the asynchronous row-stochastic matrices with positive diagonal entries in-

duced by the algorithm Σ are repeated infinitely often over a feasible communication topol-

ogy strongly connected, i.e., every agent is always updating its state due to its neighbors,

which is incidentally a mild assumption. This makes that the infinite product of matrices is

always generating sequences of complete graphs, which implies rooted graphs, and therefore

the consensus problem is solved.

With the aforementioned analysis of convergence of matrix products is possible to ana-

lyze some classical problems like the Vicsek’s Problem, the gossip algorithm, the broadcast-

gossip and the push-sum. However, the analysis and extensive simulation indicates that just

the consensus can be reached but not the average which is lost due to packet losses. Some

recent findings have treated the problem of packet losses by adding some extra variables to

the state of each agent that stores all the exchanges performed with its neighbors in order to

compensate the lost information when necessary.

Thus, with all the learned on the non-idealities of the network, the converge properties

and the new ideas from recent state-of-the-art algorithms, a new protocol was designed based

on gossips. This new algorithm tries to induce collisions between two agents such that after

the collision the agents are close and the momentum is invariant, however due to the asyn-

chronous communication process and the packet losses, the momentum must be preserved on

every agent individually when makes an update of its momentum which happens only if the

node receives an induced collision. With this logic every agent can calculate its momentum

every time it receives information from other neighbor but also can compute its momentum

142

regarding just the initial momentum and the actual variables that stored the total exchange

of momentum with its neighbors. This preservation property is valid even if there are delays

since the agent that receives information conserve a quantity invariant whatever is the infor-

mation received, however analyze convergence is a not clear by using a qualitative analysis.

In order to try to prove convergence, the delay phenomena was neglected, as in the most

theoretical findings, but the asynchronous and packet losses phenomenons are still regarded

and therefore the analysis can be reduced to the convergence of an infinite matrix product of

asynchronous matrices induced by the algorithm Σ in which every matrix is appears indefi-

nitely in the infinite product. The set of matrices Σ is finite and the feasible communication

topology is assumed to be unchanged over the time with the objective that the dimensions of

the matrices involved do not change.

Some interesting construction properties have the asynchronous matrices induced by the

algorithm, one of them is that they are oblique projections which implies that a node do not

change its momentum due to a neighbor if it already had the same information from that

neighbor, this makes the algorithm in a sense robust to multirate and packet losses. Other

property is that the vector [1T 0T]T is a right-eigenvector which means that the consensus

is a reachable subspace with zero momentums stored in the links. Also the matrices in Σ

satisfies that [1T 1T] is a left-eigenvector which implies that the sum of the initial condition

is preserved all over the time. The final showed property is that since in the infinite product

the matrices of the protocol are repeated infinitely often the consensus is the unique reach-

able subspace as long as the infinite product converges, this property is clear by intersecting

the images of the matrices in Σ. However the convergence property could not be proved,

even when there is theory on converge of infinite matrix products, the theoretical tools are

well developed mainly when the matrices involved are non-negative, however the asynchro-

nous matrices induced by our the protocol have some negative entries. Notwithstanding the

aforementioned, simulations of random products of the matrices in Σ shows that the average

consensus is always reached, so at least is expected that the infinite product converges to a

matrix of the form 1
N

[1T 0T]T [1T 1T].

143

Due to the unravel convergence property, two versions of the algorithm could be devel-

oped: a uni-cast version in which pair of agents tries to make “gossip collisions” in a best

effort way and a multi-cast version in which a node induces changes of momentums to all

its neighbors and eventually each of them induces the momentum back to the the first node

when the respective timers expires. It is important to highlight that this gossip based algo-

rithm does not have the problem of dead locks in order to perform an successful “gossip

collision” since that the protocol relies on that eventually there is an bidirectional exchange

of information. Since the simulation results of the infinite product of the asynchronous ma-

trices induced by the protocols, which are the same in both algorithm, always converged to

the average consensus matrix no matter what the order was as long as all the matrices were

repeated infinitely often, the protocols were implemented over a local low-scale testbed and

over a public large-scale network with more than 270 nodes by using the facilities of the

public FiT IoT Laboratory.

The testing over real hardware has all the unfavorable phenomena present in a real IoT

environment, in particular our model of infinite products of matrices in Σ only is valid when

there are no delays, however in the testbed the algorithms face this unmodeled phenomenon.

Implementation results show that average consensus is always reached as long as the nodes

work properly during the process. In the case a node is defective, the feasible communication

topology changes and the exchanges of momentum due to defective agents would not be

regarded. We saw that an additional modification to the algorithms can be made in order to

recover convergence to the correct average, which is possible since every agent can compute

its momentum considering only the initial momentum and the variables that stored the total

exchange of momentum with neighbors. Notwithstanding the aforementioned, in all our

experiments was detected that once a node runs the protocol, it never stopped suddenly so the

last modification never was performed and average consensus always was reached in all the

realizations.

Finally, the new designed multi-cast version of the gossip based protocol was compared

against a state-of-the-art push-sum based protocol. For every realization, both algorithms

were executed in parallel taking advantage from the fact that the states of both protocols can

144

be sent in the same UDP datagram and, therefore, the comparison was fair in the sense that

both algorithms have exactly the same topology, the same communication over time, the same

packet losses and delays. We could see that our gossip-based algorithm is more robust in some

practical scenarios, in particular the push-sum based algorithm has a problem when a node is

isolated from its neighbors for a long time in which due to quantization some states become

zero and the momentum is undefined, and also has the problem that the conservation property

depends on the number of neighbors to divide the information, thus if a node fails, the average

is not preserved. Thus, our gossip based protocol shows certain degree of superiority.

In summary, this work faced the distributed average consensus problem by means of the

design of a new protocol. Extensive real hardware experiments, with all the unfavorable phe-

nomena as asynchronicity, packet losses and delays, show that our protocol always achieves

average consensus. Numerical simulations of infinite matrix products, which model the sys-

tem when delays are neglected, also shows that average consensus is achieved. Even though

a lot of effort was put on the properties of the matrices to prove a convergence property, it was

not possible to find a way to prove the converge of the infinite matrix product. The most that

we could show was that if the product converges, then it converges to the average consensus

matrix. One of the main constraints was that most of the theory on convergence of non-

homogeneus matrix products is developed for non-negative matrices, which is not satisfied

by our asynchronous matrices induced by our algorithm.

Therefore, one of the first aspects to focus on for future research would be the analysis

of convergence of the algorithm, in particular simulations indicate that not only the infinite

product of matrices from the finite set Σ in which all the matrices are repeated infinitely often

in the product converges to the average consensus matrix of the form 1
N

[1T 0T]T [1T 1T], but

also they show that the set Σ has a stronger property, LCP , and moreover, Σ is RCP too.

The work in (Vladimirov, 2016) and the references there in could be a good starting point for

developing on this aspect.

Another point for future research would be the development of a new model that regards

the unfavorable phenomenon of delays, however beforehand this is a really difficult task.

145

Dynamical hybrid systems (Goebel et al., 2009) could be a suitable framework in order to

include delays. Note that the practical implementation over a real IoT environment suggests

that even with delays the convergence property still persists, therefore, it would be interesting

to verify this behavior with a theoretical model.

Further experiments are needed to verify the behavior of the proposed protocol over a dy-

namically changing feasible communication topology or with defective nodes. The analysis

indicates that the conservation property is invariant with the modification of the algorithm by

not considering the total exchanges of momentums with the defective agents, however there

were not tests performed during the development of this thesis to verify this behavior. These

experiments would require that a central manager dynamically changes the communications

links of the agents involved during the process in which the distributed algorithm tries to con-

verge, and the development of these experiments would require a long design time in order

to make the experiment scalable with the number of agents.

Even though the proposed solution to solve the average consensus problem is distributed,

it still requires a certain level of central management in order to generate the feasible com-

munication topology. More research about the a distributed strategy to generate strongly

connected graphs over a network would be a good topic in order to complement the proposed

protocol and thus the average consensus problem would be solved totally in a distributed way.

146

REFERENCES

Aysal, T. C., Oreshkin, B. N., & Coates, M. J. (2009, April). Accelerated distributed

average consensus via localized node state prediction. IEEE Transactions on Signal

Processing, 57(4), 1563-1576.

Aysal, T. C., Yildiz, M. E., Sarwate, A. D., & Scaglione, A. (2009, July). Broad-

cast gossip algorithms for consensus. IEEE Transactions on Signal Processing, 57(7),

2748-2761.

Aysal, T. C., Yildiz, M. E., & Scaglione, A. (2008, May). Broadcast gossip algorithms.

In 2008 ieee information theory workshop (p. 343-347).

BeagleBoard.org Foundation. (2017a, July). Beaglebone black. Retrieved from

https://beagleboard.org/black

BeagleBoard.org Foundation. (2017b, July). Seeedstudio beaglebone green wireless.

Retrieved from https://beagleboard.org/green-wireless

Belkin International, Inc. (2017, July). Linksys wrt1900ac ac1900 dual-band

smart wi-fi wireless router. Retrieved from http://www.linksys.com/us/p/

P-WRT1900AC/

Beorostica Github. (2018, September). Beorostica thesis: Distributed average con-

sensus. Retrieved from https://github.com/beorostica/Beorostica

Thesis Distributed Average Consensus

Berger, M. A., & Wang, Y. (1992). Bounded semigroups of matrices. Linear Algebra

and its Applications, 166, 21 - 27.

Bessis, N., & Dobre, C. (2014). Big data and internet of things: a roadmap for smart

environments. Springer International Publishing.

147

https://beagleboard.org/black
https://beagleboard.org/green-wireless
http://www.linksys.com/us/p/P-WRT1900AC/
http://www.linksys.com/us/p/P-WRT1900AC/
https://github.com/beorostica/Beorostica_Thesis_Distributed_Average_Consensus
https://github.com/beorostica/Beorostica_Thesis_Distributed_Average_Consensus

Biggs, N. (1993). Algebraic graph theory. Cambridge University Press.

Bliman, P.-A., & Ferrari-Trecate, G. (2008). Average consensus problems in networks

of agents with delayed communications. Automatica, 44(8), 1985 - 1995.

Blondel, V. D., Hendrickx, J. M., Olshevsky, A., & Tsitsiklis, J. N. (2005, Dec). Con-

vergence in multiagent coordination, consensus, and flocking. In Proceedings of the

44th ieee conference on decision and control (p. 2996-3000).

Blondel, V. D., & Tsitsiklis, J. N. (2000). The boundedness of all products of a pair of

matrices is undecidable. Systems & Control Letters, 41(2), 135 - 140.

Bnzit, F., Blondel, V., Thiran, P., Tsitsiklis, J., & Vetterli, M. (2010, June). Weighted

gossip: Distributed averaging using non-doubly stochastic matrices. In 2010 ieee inter-

national symposium on information theory (p. 1753-1757).

Bof, N., Carli, R., & Schenato, L. (2017). Average consensus with asynchronous up-

dates and unreliable communication. IFAC-PapersOnLine, 50(1), 601 - 606. (20th

IFAC World Congress)

Borgia, E. (2014). The internet of things vision: Key features, applications and open

issues. Computer Communications, 54, 1-31.

Boyd, S., Ghosh, A., Prabhakar, B., & Shah, D. (2005, March). Gossip algorithms:

design, analysis and applications. In Proceedings ieee 24th annual joint conference of

the ieee computer and communications societies. (Vol. 3, p. 1653-1664 vol. 3).

Boyd, S., Ghosh, A., Prabhakar, B., & Shah, D. (2006, June). Randomized gossip

algorithms. IEEE Transactions on Information Theory, 52(6), 2508-2530.

Bullo, F., Cortés, J., & Martı́nez, S. (2009). Distributed control of robotic networks:

A mathematical approach to motion coordination algorithms. Princeton University

Press.

148

Cao, M., Morse, A., & Anderson, B. (2005). Coordination of an asynchronous multi-

agents system via averaging. IFAC Proceedings Volumes, 38(1), 17 - 22. (16th IFAC

World Congress)

Cao, M., Morse, A., & Anderson, B. (2008a). Reaching a consensus in a dynamically

changing environment: A graphical approach. SIAM Journal on Control and Optimiza-

tion, 47(2), 575-600.

Cao, M., Morse, A., & Anderson, B. (2008b). Reaching a consensus in a dynami-

cally changing environment: Convergence rates, measurement delays, and asynchro-

nous events. SIAM Journal on Control and Optimization, 47(2), 601-623.

Cao, M., Morse, A. S., Yu, C., Anderson, B. D. O., & Dasguvta, S. (2007, Dec).

Controlling a triangular formation of mobile autonomous agents. In 2007 46th ieee

conference on decision and control (p. 3603-3608).

Carli, R., Chiuso, A., Schenato, L., & Zampieri, S. (2008, May). Distributed kalman

filtering based on consensus strategies. IEEE Journal on Selected Areas in Communi-

cations, 26(4), 622-633.

Cavalcante, R. L. G., & Mulgrew, B. (2010, March). Adaptive filter algorithms for

accelerated discrete-time consensus. IEEE Transactions on Signal Processing, 58(3),

1049-1058.

Chen, Y., Tron, R., Terzis, A., & Vidal, R. (2010, Dec). Corrective consensus: Con-

verging to the exact average. In 49th ieee conference on decision and control (cdc)

(p. 1221-1228).

Chen, Y., Tron, R., Terzis, A., & Vidal, R. (2011, June). Accelerated corrective con-

sensus: Converge to the exact average at a faster rate. In Proceedings of the 2011

american control conference (p. 3417-3422).

149

Cortes, J., Martinez, S., & Bullo, F. (2006, Aug). Robust rendezvous for mobile au-

tonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on

Automatic Control, 51(8), 1289-1298.

Cucker, F., & Smale, S. (2007, May). Emergent behavior in flocks. IEEE Transactions

on Automatic Control, 52(5), 852-862.

Daubechies, I., & Lagarias, J. C. (1992). Sets of matrices all infinite products of which

converge. Linear Algebra and its Applications, 161, 227 - 263.

Daubechies, I., & Lagarias, J. C. (2001). Corrigendum/addendum to: Sets of matrices

all infinite products of which converge. Linear Algebra and its Applications, 327(1),

69 - 83.

Denantes, P., Benezit, F., Thiran, P., & Vetterli, M. (2008, April). Which distributed

averaging algorithm should i choose for my sensor network? In Ieee infocom 2008 -

the 27th conference on computer communications (p. 986-994).

Dimakis, A. G., Kar, S., Moura, J. M. F., Rabbat, M. G., & Scaglione, A. (2010, Nov).

Gossip algorithms for distributed signal processing. Proceedings of the IEEE, 98(11),

1847-1864.

Eren, T., Belhumeur, P. N., & Morse, A. S. (2002, Dec). Closing ranks in vehicle

formations based on rigidity. In Proceedings of the 41st ieee conference on decision

and control, 2002. (Vol. 3, p. 2959-2964 vol.3).

Fagnani, F., & Zampieri, S. (2006, Dec). Average consensus with packet drop commu-

nication. In Proceedings of the 45th ieee conference on decision and control (p. 1007-

1012).

Fax, J. A., & Murray, R. M. (2002). Graph laplacians and stabilization of vehicle

formations. IFAC Proceedings Volumes, 35(1), 55 - 60. (15th IFAC World Congress)

150

Fax, J. A., & Murray, R. M. (2004, Sept). Information flow and cooperative control of

vehicle formations. IEEE Transactions on Automatic Control, 49(9), 1465-1476.

FIT IoT-LAB. (2018, August). Iot-lab: a very large scale open testbed. Retrieved

from https://www.iot-lab.info/

Fortino, G., & Trunfio, P. (2014). Internet of things based on smart objects: technol-

ogy, middleware and applications. Springer International Publishing.

Frasca, P., Carli, R., Fagnani, F., & Zampieri, S. (2008, Dec). Average consensus

by gossip algorithms with quantized communication. In 2008 47th ieee conference on

decision and control (p. 4831-4836).

Frommer, A., & Szyld, D. B. (2000). On asynchronous iterations. Journal of Compu-

tational and Applied Mathematics, 123(1-2), 201-216.

Ghosh, B., Muthukrishnan, S., & Schultz, M. H. (1996). First and second order diffu-

sive methods for rapid, coarse, distributed load balancing (extended abstract). In Pro-

ceedings of the eighth annual acm symposium on parallel algorithms and architectures

(pp. 72–81). New York, NY, USA: ACM.

Godsil, C., & Royle, G. (2013). Algebraic graph theory. Springer New York.

Goebel, R., Sanfelice, R. G., & Teel, A. R. (2009). Hybrid dynamical systems. IEEE

Control Systems, 29(2), 28-93.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT):

A vision, architectural elements, and future directions. Future Generation Computer

Systems, 29(7), 1645-1660.

Gupta, V., Hassibi, B., & Murray, R. M. (2005, Dec). On sensor fusion in the presence

of packet-dropping communication channels. In Proceedings of the 44th ieee confer-

ence on decision and control (p. 3547-3552).

151

https://www.iot-lab.info/

Gurvits, L. (1995). Stability of discrete linear inclusion. Linear Algebra and its Ap-

plications, 231, 47 - 85.

Hartfiel, D. (2002). Nonhomogeneous matrix products. World Scientific.

He, J., Duan, L., Hou, F., Cheng, P., & Chen, J. (2015). Multiperiod scheduling for

wireless sensor networks: A distributed consensus approach. IEEE Transactions on

Signal Processing, 63(7), 1651-1663.

Horn, R., Horn, R., & Johnson, C. (1990). Matrix analysis. Cambridge University

Press.

HP Development Company, L.P. (2017, July). Hp mini 210-3000 pc series - product in-

formation. Retrieved from https://support.hp.com/us-en/product/hp

-mini-210-3000-pc-series/5082191/product-info

Iutzeler, F., Ciblat, P., & Hachem, W. (2013, June). Analysis of sum-weight-like al-

gorithms for averaging in wireless sensor networks. IEEE Transactions on Signal Pro-

cessing, 61(11), 2802-2814.

Iutzeler, F., Ciblat, P., Hachem, W., & Jakubowicz, J. (2012, March). New broad-

cast based distributed averaging algorithm over wireless sensor networks. In 2012 ieee

international conference on acoustics, speech and signal processing (icassp) (p. 3117-

3120).

Iutzeler, F., Ciblat, P., & Jakubowicz, J. (2012, Nov). Analysis of max-consensus al-

gorithms in wireless channels. IEEE Transactions on Signal Processing, 60(11), 6103-

6107.

Jadbabaie, A., Lin, J., & Morse, A. S. (2003, June). Coordination of groups of mo-

bile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6), 988-1001.

152

https://support.hp.com/us-en/product/hp-mini-210-3000-pc-series/5082191/product-info
https://support.hp.com/us-en/product/hp-mini-210-3000-pc-series/5082191/product-info

Johansson, B., & Johansson, M. (2008). Faster linear iterations for distributed averag-

ing. IFAC Proceedings Volumes, 41(2), 2861 - 2866. (17th IFAC World Congress)

Jungers, R. (2009). The joint spectral radius: Theory and applications. Springer

Berlin Heidelberg.

Kar, S., & Moura, J. M. F. (2007a, April). Distributed average consensus in sensor

networks with random link failures. In 2007 ieee international conference on acoustics,

speech and signal processing - icassp ’07 (Vol. 2, p. II-1013-II-1016).

Kar, S., & Moura, J. M. F. (2007b). Distributed consensus algorithms in sensor

networks: Quantized data. CoRR, abs/0712.1609. Retrieved from http://arxiv

.org/abs/0712.1609

Kar, S., & Moura, J. M. F. (2009, Jan). Distributed consensus algorithms in sensor

networks with imperfect communication: Link failures and channel noise. IEEE Trans-

actions on Signal Processing, 57(1), 355-369.

Kashyap, A., Basar, T., & Srikant, R. (2006, July). Quantized consensus. In 2006 ieee

international symposium on information theory (p. 635-639).

Kempe, D., Dobra, A., & Gehrke, J. (2003, Oct). Gossip-based computation of aggre-

gate information. In 44th annual ieee symposium on foundations of computer science,

2003. proceedings. (p. 482-491).

Kim, Y., & Mesbahi, M. (2006, Jan). On maximizing the second smallest eigenvalue

of a state-dependent graph laplacian. IEEE Transactions on Automatic Control, 51(1),

116-120.

Kokiopoulou, E., & Frossard, P. (2007, Oct). Accelerating distributed consensus using

extrapolation. IEEE Signal Processing Letters, 14(10), 665-668.

Kokiopoulou, E., & Frossard, P. (2009, Jan). Polynomial filtering for fast convergence

in distributed consensus. IEEE Transactions on Signal Processing, 57(1), 342-354.

153

http://arxiv.org/abs/0712.1609
http://arxiv.org/abs/0712.1609

Lavaei, J., & Murray, R. M. (2012, Jan). Quantized consensus by means of gossip

algorithm. IEEE Transactions on Automatic Control, 57(1), 19-32.

Lee, K. K., & Chanson, S. T. (2002). Packet loss probability for real-time wireless

communications. IEEE Transactions on Vehicular Technology, 51(6), 1569-1575.

Lin, J., Morse, A., & Anderson, B. (2007a). The multi-agent rendezvous problem. part

1: The synchronous case. SIAM Journal on Control and Optimization, 46(6), 2096-

2119.

Lin, J., Morse, A., & Anderson, B. (2007b). The multi-agent rendezvous problem.

part 2: The asynchronous case. SIAM Journal on Control and Optimization, 46(6),

2120-2147.

Lin, J., Morse, A. S., & Anderson, B. D. O. (2003, Dec). The multi-agent rendezvous

problem. In 42nd ieee international conference on decision and control (ieee cat.

no.03ch37475) (Vol. 2, p. 1508-1513 Vol.2).

Liu, J., Anderson, B. D., Cao, M., & Morse, A. S. (2013). Analysis of accelerated

gossip algorithms. Automatica, 49(4), 873 - 883.

Liu, J., & Morse, A. S. (2012, June). Asynchronous distributed averaging using double

linear iterations. In 2012 american control conference (acc) (p. 6620-6625).

Liu, J., Mou, S., Morse, A. S., Anderson, B. D., & Yu, C. B. (2018). Request-based

gossiping without deadlocks. Automatica, 93, 454 - 461.

Liu, J., Mou, S., Morse, A. S., Anderson, B. D. O., & Yu, C. (2011, Sept). Determin-

istic gossiping. Proceedings of the IEEE, 99(9), 1505-1524.

Longo, S., Su, T., Herrmann, G., & Barber, P. (2013). Optimal and robust scheduling

for networked control systems. CRC Press.

154

Mehyar, M., Spanos, D., Pongsajapan, J., Low, S. H., & Murray, R. M. (2005, Dec).

Distributed averaging on asynchronous communication networks. In Proceedings of

the 44th ieee conference on decision and control (p. 7446-7451).

Mehyar, M., Spanos, D., Pongsajapan, J., Low, S. H., & Murray, R. M. (2007, June).

Asynchronous distributed averaging on communication networks. IEEE/ACM Trans-

actions on Networking, 15(3), 512-520.

Moreau, L. (2005, Feb). Stability of multiagent systems with time-dependent commu-

nication links. IEEE Transactions on Automatic Control, 50(2), 169-182.

Mukhopadhyay, S. C., & Suryadevara, N. (2014). Internet of things: Challenges and

opportunities. Springer International Publishing.

Nedic, A., Olshevsky, A., Ozdaglar, A., & Tsitsiklis, J. N. (2009, Nov). On distributed

averaging algorithms and quantization effects. IEEE Transactions on Automatic Con-

trol, 54(11), 2506-2517.

Núñez, F., Wang, Y., & Doyle III, F. J. (2012). Bio-inspired hybrid control of pulse-

coupled oscillators and application to synchronization of a wireless network. In 2012

american control conference (acc) (p. 2818-2823).

Nunez, F., Wang, Y., Grasing, D., Desai, S., Cakiades, G., & III, F. J. D. (2017). Pulse-

coupled time synchronization for distributed acoustic event detection using wireless

sensor networks. Control Engineering Practice, 60, 106 - 117.

Olfati-Saber, R. (2005, June). Ultrafast consensus in small-world networks. In Pro-

ceedings of the 2005, american control conference, 2005. (p. 2371-2378 vol. 4).

Olfati-Saber, R. (2006, March). Flocking for multi-agent dynamic systems: algorithms

and theory. IEEE Transactions on Automatic Control, 51(3), 401-420.

Olfati-Saber, R. (2007, Dec). Distributed kalman filtering for sensor networks. In

2007 46th ieee conference on decision and control (p. 5492-5498).

155

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007, Jan). Consensus and cooperation

in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215-233.

Olfati-Saber, R., & Murray, R. M. (2004, Sept). Consensus problems in networks

of agents with switching topology and time-delays. IEEE Transactions on Automatic

Control, 49(9), 1520-1533.

Olfati-Saber, R., & Shamma, J. S. (2005, Dec). Consensus filters for sensor networks

and distributed sensor fusion. In Proceedings of the 44th ieee conference on decision

and control (p. 6698-6703).

Olshevsky, A. (2015). Linear time average consensus on fixed graphs. IFAC-

PapersOnLine, 48(22), 94 - 99. (5th IFAC Workshop on Distributed Estimation and

Control in Networked Systems NecSys 2015)

Olshevsky, A., & Tsitsiklis, J. (2011). Convergence speed in distributed consensus and

averaging. SIAM Review, 53(4), 747-772.

Olshevsky, A., & Tsitsiklis, J. N. (2006, Dec). Convergence rates in distributed con-

sensus and averaging. In Proceedings of the 45th ieee conference on decision and con-

trol (p. 3387-3392).

Oreshkin, B. N., Coates, M. J., & Rabbat, M. G. (2010, May). Optimization and anal-

ysis of distributed averaging with short node memory. IEEE Transactions on Signal

Processing, 58(5), 2850-2865.

Oróstica, B., & Núñez, F. (2017, Aug). Evaluation of asynchronous average consensus

algorithms in pure broadcasting infrastructure-free networks. In 2017 ieee conference

on control technology and applications (ccta) (p. 61-66).

Patterson, S., Bamieh, B., & Abbadi, A. E. (2007, Dec). Distributed average consensus

with stochastic communication failures. In 2007 46th ieee conference on decision and

control (p. 4215-4220).

156

Raspberry Pi Foundation. (2017, July). Raspberry pi 3 model b. Retrieved from

https://www.raspberrypi.org/products/raspberry-pi-3-model

-b/

Ren, W., & Beard, R. W. (2005, May). Consensus seeking in multiagent systems under

dynamically changing interaction topologies. IEEE Transactions on Automatic Con-

trol, 50(5), 655-661.

Rhodius, A. (1997). On the maximum of ergodicity coefficients, the dobrushin ergod-

icity coefficient, and products of stochastic matrices. Linear Algebra and its Applica-

tions, 253(1), 141 - 154.

Ricardo Sanfelice. (2017, March). Hybrid equations toolbox v2.03. Retrieved

from https://www.mathworks.com/matlabcentral/fileexchange/

41372-hybrid-equations-toolbox-v2-03

Saber, R. O., & Murray, R. M. (2003, June). Consensus protocols for networks of

dynamic agents. In Proceedings of the 2003 american control conference, 2003. (Vol. 2,

p. 951-956).

Sarkar, C., Nambi, A., Prasad, R., Rahim, A., Neisse, R., & Baldini, G. (2015). DIAT:

A Scalable Distributed Architecture for IoT. IEEE Internet of Things Journal, 2(3),

230-239.

Schenato, L., & Fiorentin, F. (2011). Average TimeSynch: A consensus-based proto-

col for clock synchronization in wireless sensor networks. Automatica, 47(9), 1878-

1886.

Schenato, L., & Gamba, G. (2007, Dec). A distributed consensus protocol for clock

synchronization in wireless sensor network. In 2007 46th ieee conference on decision

and control (p. 2289-2294).

Seneta, E. (2006). Non-negative matrices and markov chains. Springer New York.

157

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.mathworks.com/matlabcentral/fileexchange/41372-hybrid-equations-toolbox-v2-03
https://www.mathworks.com/matlabcentral/fileexchange/41372-hybrid-equations-toolbox-v2-03

Singh, K. J., & Kapoor, D. S. (2017). Create your own internet of things: A survey of

IoT platforms. IEEE Consumer Electronics Magazine, 6(2), 57-68.

Spanos, D., & Murray, R. M. (2005). Distributed sensor fusion using dynamic consen-

sus..

Strikwerda, J. C. (2002). A probabilistic analysis of asynchronous iteration. Linear

Algebra and its Applications, 349(1), 125 - 154.

Sun, Y. G., Wang, L., & Xie, G. (2008). Average consensus in networks of dynamic

agents with switching topologies and multiple time-varying delays. Systems & Control

Letters, 57(2), 175 - 183.

Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003). Stability of flocking motion

(Tech. Rep.). The GRASP Laboratory, Univ. Pennsylvania.

Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2007, May). Flocking in fixed and

switching networks. IEEE Transactions on Automatic Control, 52(5), 863-868.

TP-Link Technologies Co., Ltd. (2017, July). Ac600 high gain wireless dual

band usb adapter archer t2uh. Retrieved from http://www.tp-link.com/us/

products/details/cat-5520 Archer-T2UH.html

TP-Lnk Technologies Co., Ltd. (2017, July). 150mbps high gain wireless

usb adapter tl-wn722n. Retrieved from https://www.tp-link.com/us/

products/details/cat-5520 TL-WN722N.html

Tsianos, K. I., Lawlor, S., & Rabbat, M. G. (2012a, Oct). Consensus-based distributed

optimization: Practical issues and applications in large-scale machine learning. In 2012

50th annual allerton conference on communication, control, and computing (allerton)

(p. 1543-1550).

158

http://www.tp-link.com/us/products/details/cat-5520_Archer-T2UH.html
http://www.tp-link.com/us/products/details/cat-5520_Archer-T2UH.html
https://www.tp-link.com/us/products/details/cat-5520_TL-WN722N.html
https://www.tp-link.com/us/products/details/cat-5520_TL-WN722N.html

Tsianos, K. I., Lawlor, S., & Rabbat, M. G. (2012b, Dec). Push-sum distributed dual

averaging for convex optimization. In 2012 ieee 51st ieee conference on decision and

control (cdc) (p. 5453-5458).

Tsianos, K. I., & Rabbat, M. G. (2011, Sept). Distributed consensus and optimization

under communication delays. In 2011 49th annual allerton conference on communica-

tion, control, and computing (allerton) (p. 974-982).

Tsitsiklis, J., & Athans, M. (1984, January). Convergence and asymptotic agreement

in distributed decision problems. IEEE Transactions on Automatic Control, 29(1), 42-

50.

Tsitsiklis, J. N., & Blondel, V. D. (1997, Mar 01). The lyapunov exponent and joint

spectral radius of pairs of matrices are hard—when not impossible—to compute and to

approximate. Mathematics of Control, Signals and Systems, 10(1), 31–40.

Varagnolo, D., Zanella, F., Cenedese, A., Pillonetto, G., & Schenato, L. (2016, April).

Newton-raphson consensus for distributed convex optimization. IEEE Transactions on

Automatic Control, 61(4), 994-1009.

Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995, Aug). Novel

type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75, 1226–

1229.

Vladimirov, A. (2016, March). Continuous products of matrices. ArXiv e-prints.

Vladimirov, A., Elsner, L., & Beyn, W.-J. (2000). Stability and paracontractivity of

discrete linear inclusions. Linear Algebra and its Applications, 312(1), 125 - 134.

Wang, Y., Núñez, F., & Doyle III, F. J. (2012). Energy-efficient pulse-coupled syn-

chronization strategy design for wireless sensor networks through reduced idle listen-

ing. IEEE Transactions on Signal Processing, 60(10), 5293-5306.

159

Xiao, L., & Boyd, S. (2004). Fast linear iterations for distributed averaging. Systems

& Control Letters, 53(1), 65 - 78.

Xiao, L., Boyd, S., & Lall, S. (2005, April). A scheme for robust distributed sensor

fusion based on average consensus. In Ipsn 2005. fourth international symposium on

information processing in sensor networks, 2005. (p. 63-70).

Xiong, G., & Kishore, S. (2009, Aug). Linear high-order distributed average consen-

sus algorithm in wireless sensor networks. In 2009 ieee/sp 15th workshop on statistical

signal processing (p. 529-532).

Zhang, R., & Kwok, J. T. (2014). Asynchronous distributed admm for consensus opti-

mization. In Proceedings of the 31st international conference on international confer-

ence on machine learning - volume 32 (pp. II-1701–II-1709). JMLR.org.

160

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Objectives, Contributions and Organization
	1.3. Preliminaries

	Chapter 2. Problem Formulation and General Framework
	2.1. Assumptions on the Communication Dynamics
	2.2. Linear Updates and Asynchronous Transition Matrices
	2.3. Non-Negativeness and Underlying Graphs
	2.4. Practical Consensus and Average Consensus Goals

	Chapter 3. Convergence of Infinite Matrix Products
	3.1. Homogeneous Products
	3.2. Non-Homogeneous Products

	Chapter 4. Existing Algorithms
	4.1. Study Cases
	4.1.1. Vicsek's Problem
	4.1.2. Gossip Approach
	4.1.3. Broadcast-Gossip
	4.1.4. Push-Sum

	4.2. Evaluation of Existing Multi-cast Algorithms
	4.2.1. Numerical Simulations
	4.2.2. Hardware Implementation
	4.2.3. Observations

	Chapter 5. A New Algorithm for Distributed Averaging
	5.1. Ideas behind the proposed algorithm
	5.2. Communication Process and Qualitative Analysis
	5.2.1. Uni-cast Version
	5.2.2. Multi-cast Version
	5.2.3. Qualitative Analysis

	5.3. A Deeper Analysis
	5.3.1. Example: Asynchronous Matrices Induced by the Algorithm N=2
	5.3.2. Example: Asynchronous Matrices Induced by the Algorithm N=3

	5.4. Properties of in the infinite product (M@let@token M1M0)
	5.4.1. Oblique Projections
	5.4.2. Conservation Property is Invariant
	5.4.3. Consensus is a Reachable Subspace
	5.4.4. Consensus is the Unique Reachable Subspace
	5.4.5. The System Converges

	Chapter 6. Evaluation of the Proposed Algorithms as Protocols
	6.1. Uni-cast version
	6.1.1. Protocol for Implementation
	6.1.2. Hardware Implementation

	6.2. Multi-cast Version
	6.2.1. Protocol for Implementation
	6.2.2. Hardware Implementation over FIT IoTLab Testbed

	6.3. Comparison of the Multi-cast Version with a recent Push-Sum Based Protocol

	Chapter 7. Conclusions
	REFERENCES

