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ABSTRACT 

During the last decade there has been an accelerated adoption of smart meters, 

some of them with the potential to become the backbone of the Smart Grid. Several 

meters have the potential to help utilities characterizing their clients, motivating the use 

of Non-Intrusive Load Monitoring (NILM) and Identification (NILI). These techniques 

have been the target of research for nearly 30 years, but few advances have been made 

over the last decades. They have been characterized by very low accuracies, without 

achieving real applications in the market. This paper offers a critical review of these 

techniques and the most relevant literature, proposing a 4-stage steady state algorithm 

capable of being implemented with numerous low frequency smart meters. The 

algorithm shows good results that can be further improved with higher frequency 

techniques. Some implementation and evaluation issues are also presented. 
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RESUMEN 

Durante la pasada década ha habido una acelerada adopción e instalación de 

diversos tipos de medidores inteligentes, algunos de ellos con el potencial de 

convertirse en la piedra angular de las futuras redes inteligentes. Muchos de los nuevos 

medidores tienen la capacidad de ayudar a las empresas de distribución a caracterizar a 

sus clientes, motivando así el uso de tecnicas de detección de carga no intrusiva (NILI) 

y monitoreo no intrusivo (NILM). Estas técnicas han sido objeto de investigación por ya 

cas 30 años, pero pocos avances se han realizado al pasar los años, los cuales se han 

caracterizado por muy baja presición y ninguna aplicación seria a nivel de mercado. 

Esta investigación ofrece revisión crítica de las técnicas propuestas en la literatura 

existente, además de proponer un algoritmo de 4 etapas facilmente implementable en 

medidore inteligentes de baja frecuencia. El algoritmo muestra buenos resultados que 

pueden ser mejorados con técnicas de mayor frecuencia de muestreo. Algunos 

problemas de implmentación y evaluación también son presentados.  

 

 

 

 

 

 

 

 

 

Palabras Claves: Detección de carga no intrusiva, monitoreo de carga no intrusivo, 

Firmas de carga, Monitoreo de carga, Medición inteligente.  
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1 INTRODUCTION 

The current energy supply system is undergoing fundamental challenges. Systems 

are facing strong pressure to increase energy efficiency, accommodate large amounts of 

renewables, reduce local and global emissions, minimize their footprint, and at the same 

time become more cost effective and reliable.  Several smart grid technologies are 

expected to help meet these demands in the future, and those based on smart metering 

technologies are among those with the largest potential in the near term.   

1.1 Smart metering, consumption feedback and more 

Smart metering technologies promise to reduce residential energy consumption 

between 5 and 10% and to cut down CO2 emissions by around 2.5 million tons per year 

in the U.S. Advanced meters have the ability to effectively show the consumption 

information to customers so they can manage their consumption patterns and save 

energy (Houseman, 2005). More advanced features on meters can push these figures up 

considerably. The advanced metering infrastructure (AMI) offers the possibility of 

services such as demand side management (DSM), the realization of virtual power 

plants VPPs (van Gerwen, Jaarsma, & Wilhite, 2006), and many others, having the 

potential to boost reliability, while smoothly integrating large amounts of distributed 

resources without compromising reliability, dealing economically with non-

dispatchable natural resources such as wind and solar.  

Smart metering plays an important role in future power distribution networks for 

the efficient and effective management of distributed power resources, and for the 

control of smart houses and offices (Houseman, 2005). From telemetry to active control 
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of resources and demand, smart metering is the door to the future of the distribution 

networks. It allows the operator to manage the grid more efficiently, reduces costs and 

emissions, and offers an effective way of performing demand side management by only 

changing the architecture of the network to a more communicated an automated one, as 

shown in Figure 1-1. 

 

1.2 Smart metering beyond consumption feedback 

Smart metering technologies offer the potential ability for the utility company to 

characterize and know better its clients. For example, a utility could estimate (or even 

determine) which clients have a pool, and sell effective advertising on the monthly bill 

for pool products. Also, they could offer or recommend distributed generation solutions 

according to the consumption profile of the client to help him save money. Moreover, 

the utility could measure demand price elasticity of each client type (or even individual 

 

Figure 1-1: Advance Metering Architecture 



 3 

clients) in the long and short run and then assess the sources of those changes in 

consumption behavior. This could be pushed even harder and assess demand price 

elasticity associated with specific residential appliances and determine how certain 

policies or events could affect the energy consumption in a residential client or client 

type.  

While the potential for these technologies goes well beyond improving load 

profiles, estimating elasticities, detecting appliance disconnection and scheduling, 

pushing energy efficiency and residential energy management (Sawyer, Anderson, 

Foulks, Troxler, & Cox, 2009), this article has a more limited but fundamental scope. It 

focuses on the load characterization through nonintrusive load monitoring and 

identification, as these techniques are needed to perform all others accurately, requiring 

urgent further development.   

The structure of the rest of the thesis is the following: Section 2 provides some 

basic definitions; Section 3 shows the different families of load signatures and their 

classification. Section 4 presents our proposed methodology and its application to our 

field test, Section 5 contains the conclusion and Section 6 contains some 

recommendations for future work on the subject. 
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2 NILM, NALM, NILI 

While smart meters have been widely deployed in several areas, getting good use of 

their data and deriving meaningful information from it is still a pending task.  

Techniques such as non-intrusive load monitoring (NILM), non-intrusive appliance load 

monitoring (NALM) or non-intrusive load identification (NILI) have great potential 

nowadays. They all are based on a principle called disaggregation, in which the 

constituent parts of the load are extracted from an aggregated or total load signal, as 

shown in Figure 2-1. This total contains the components from all the devices or 

appliances within a client’s total load
1
.  This disaggregation process is quite simple in 

theory, but the diversity of appliances, their different uses and consumption patterns, the 

limitations on the meters’ capabilities and on their communication and data centers 

provides pending challenges such as how to perform accurate NILI and how to perform 

cost-effective and accurate NILI?   

 

Non-intrusive techniques yield detailed information about the load’s energy 

consumption without measuring each end device directly, so that fewer sensors are 

                                                

1 While loads can be residential, commercial or industrial, residential ones are simpler to deal with, and provide a large set of 

smart meters to take advantage of, but they also are the ones with the least capable smart meters. 

 

Figure 2-1: Non-Intrusive Load Monitoring Connection Architecture 
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needed and monitoring, storage and transmission gets cheaper (Marceau & Zmeureanu, 

2000). Another advantage of nonintrusive approaches is that consumers are not 

necessarily aware that they are being monitored, so psychological effects don’t affect 

their consumption profiles. 

The basic principle for data collection is measuring the waveforms or RMS values 

of both voltage and current, and computing other variables of interest from them 

(real/reactive power, power factor, etc.). Obtaining accurate and frequent measurements 

of these parameters is crucial for the identification of the load. The sampling frequency 

and the level of detail of the signal (waveform or rms value) will depend on the kind of 

algorithm to be implemented; the goal is often to do more with less resources.  

2.1 Basic definitions 

Some basic definitions are introduced next. They are necessary to allow for 

understanding and classifying the methodologies presented in the literature review. 

2.1.1 Load identification and monitoring 

While load identification (LI) and load monitoring (LM) may seem to be 

equivalent, they are not and it is worth understanding the difference: 

• LI and State: The identification of a load, e.g. an electrical appliance in a 

house, is the ability of a system to successfully detect the state (that could 

be on/off or an intermediate state in the operation of the load) in which the 

appliance is operating.  
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• LM and Consumption: The monitoring of the load is the following of all 

the loads or appliances inside an aggregated load and the estimation of the 

energy consumed by each one of them, and of all the loads together.  

They are closely related, as load monitoring has to use load identification to 

estimate the energy consumed by each one of the appliances. Load monitoring can also 

be used for characterizing load types in different profiles (Gavrilas, Sfintes, & Filimon, 

2001), which could be very useful for utility companies and load forecasters. 

2.1.2 Load signature: Intrusive and Non-intrusive 

A load signature is a characteristic that makes a load unique (e.g. real power 

consumption, in-rush current, admittance, etc.). Signatures can be classified according 

to their sources (or the level of disruption required for observing the signature) into two 

families, these are intrusive and nonintrusive.  

Intrusive signatures require significant levels of intrusion or distortion at the 

client’s facility, and they can be further classified according to the media used to assess 

the signature into two families: physically intrusive and electrically intrusive. 

Physically intrusive signatures can be generated by a sensor located on the electric 

cord of each of the appliances in a residence or by placing presence-activated sensors in 

the rooms of a house or also the generation of a unique signal that is emitted by a circuit 

present in each appliance at the moment it is turned on. An electrically intrusive 

signature is, for example, the injection of a signal at the energy meter to observe the 

system response signal. Evaluating the distortion of the signal could give useful 

information on the appliances that are operating at that time (Hart, 1992; Marceau & 

Zmeureanu, 2000). 
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Nonintrusive signatures are those signatures that don’t require intrusion or 

disruption into clients’ physical and electrical facilities. There are two main families of 

nonintrusive (electrical) signatures: transient and steady state ones. The former refers 

to short-run transitory changes in consumption patterns associated to an electrical 

appliance, while the latter refers to their steady state changes; this is when transient 

changes have died out.  These signature families are described in more detail next.  
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3 FAMILIES OF LOAD SIGNATURES 

Load signatures can be obtained by intrusive and nonintrusive methods.  George W 

Hart (Hart, 1992) was the pioneer of nonintrusive load monitoring (NILM). He 

introduced the concept of load signature in the mid 80’s and developed a nonintrusive 

appliance load monitor (NALM) aiming to determine the energy consumption of every 

appliance inside a house. His algorithm is based on the evaluation of the steady state 

change of real and reactive (admittance-corrected) power.  

3.1 PQ Clustering 

Every appliance has a positive and a negative real power variation, which 

corresponds to it being either turned on or turned off. This is shown in Figure 3-1 for 

some of the appliances we tested. Other appliances, such as a washing machine, have 

multiple state changes in their cycles, and because of that do not lie fixed in the PQ 

map, but cycle on it instead. This is why they are not shown in the PQ cluster map, 

where they would show a denser state trajectory or cycle. This simplified cluster map 

shows a group of 8 appliances, in which resistive loads, such as an iron or water heater 

are near the real axis (active power axis), while devices with some reactive nature (due 

to motor use for instance) move away from the real power axis, adding a significant 

reactive power dimension. 
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3.1.1 Hart’s algorithm 

Hart’s algorithm constructs on this idea. Steady state is defined (in his algorithm) as 

three or more data intervals where consumption does not vary more than 15W or 

15VArs. The values within the steady state period are averaged for minimizing the 

effect of noise on the signal. A step change in this context is a change in the power 

consumption of the appliance with respect to two consecutive data samples. Hart 

proposes that step changes should be grouped into clusters, which contain the variations 

of the power consumption of each individual appliance.  

Since the first applications of nonintrusive load monitoring and identification, 

different approaches have been proposed. The general basis for most of them follows a 

simple, but economic and meaningful steady state approach as proposed by Hart. A 

more formal and detailed classification is provided next. 

 

Figure 3-1: Cluster Map of Appliances Present in the Test Residence 
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3.2 Load signature classification 

Hart (Hart, 1992) made an initial classification of load signatures in the year 1992. 

We extended/updated it to include two additional signatures, steady state shape and 

distortion index ones. The following figure shows this classification of energy 

signatures, where the main two families are steady state and transient ones, as we 

explain and compare next. 

 

3.2.1 Steady state signatures 

The steady state (SS) signatures are based on changes of the power consumption 

level (state) of a particular appliance in the steady state. These are mainly due to turning 

on or turning off the appliance, or due to energy changes in its cycle. Steady state 

changes are very informative of the nature of the load and they are easier to detect than 

 

Figure 3-2: Classification of Energy Signatures 
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a transient change.  The sampling frequency of the SS meter needs to be far less than 

the one targeted to measure transient signatures. Another advantage of steady state 

signatures over transient state ones is that they are additive, that is, if two appliances of 

2kW connect, then the total power consumption is 4kW. Transient state signatures are 

not additive. 

3.2.1.1 Fundamental frequency signatures 

The measurement of the power network’s voltage and current at a fundamental 

frequency of 50Hz (or 60Hz) can lead to obtaining real, reactive and apparent power, as 

well as the load’s admittance. 

Due to local legislation, often the variation in a low voltage network cannot exceed 

±10% of the nominal voltage, which is 220V (110V in other areas). Therefore, in linear 

loads a ±10% variation in the current and, consequently, a ±20% variation in the power, 

is possible. Hart proposes that instead of using a signature based on the power, which 

relies too much on the voltage, this signature should be corrected by the admittance, 

which is a voltage invariable feature of the load. Unfortunately, the load’s admittance is 

an unfamiliar characteristic if one lacks engineering intuition, so Hart proposes the 

admittance-corrected power as a signature, as shown in (1):  

  P
Norm
(t) = 220

2
Y (t) =

220

V (t)

!

"
#

$

%
&

2

P(t)  (3.1) 

This correction can be used for both active (P) and reactive power (Q).  It can be 

seen that (1) is only the admittance correction by a constant scale factor, where the 

normalized watts and vars reflect the changes in impedance over time normalized to a 

constant ideal voltage supply (Cole & Albicki, 1998b). The quadratic expression is 
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only true when assuming that the load is linear, which is unlikely because most of the 

loads in a residence are of a nonlinear nature. In the case of nonlinear loads, the formula 

is corrected by a ! factor (2), which doesn’t fit nonlinear loads perfectly but it makes a 

better approximation than a quadratic exponent. The problem with this is that ! factors 

for P and Q must be calculated isolating every device preferably in a laboratory, which 

is not possible most of the time. Due to this difficulty in determining ! factors, the 

admittance corrections are usually done using a quadratic exponent or extrapolating 

factors estimated for similar loads. 

 P
Norm
(t) =

220

V (t)

!

"
#

$

%
&

!

P(t)  (3.2) 

Although the effects of this normalization do not make a notable difference for the 

visualization of the signal, they help to clean the signal from noise effects, especially in 

moments where there is a large amount of step changes, as in the operation of the 

washing machine, which has many cycles due to the irregular operation of the motor. 

A linear load, such as a water heater, has a linear relationship between the voltage 

and the current, while a nonlinear load, such as a microwave, has a relation that 

describes a trajectory particular or specific to that device, and where the current doesn’t 

follow the voltage linearly. In the case of the microwave, for instance, the relation 

between the voltage and the current describes something similar to an elliptical cycle 

around the origin. Our measurements comparing a linear and nonlinear load are shown 

in Figure 3-3. 
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The most common fundamental frequency signature is the PQ signature, which 

corresponds to the variation of real and reactive power in the steady state operation of 

the specific appliance. They use a slow sampling frequency and they are relatively 

cheap in the use of computational resources. The sampling frequencies can go from 1 

PQ sample per second to 1 PQ sample per minute, being 1 second and 16 seconds (used 

in (Farinaccio & Zmeureanu, 1999; Marceau & Zmeureanu, 2000)) the most common 

choices in the literature. On the other hand, transient signatures are very demanding 

regarding computational resources: they usually capture 256 (Chang, Lin, & Lee, 

2010) or 128 (Shaw & Laughman, 2007) samples per cycle, which require sampling 

frequencies between 6kHz and 13kHz. 

 

Figure 3-3: Difference between nonlinear and linear load 
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3.2.1.2 Harmonic current signatures 

Harmonic signatures provide additional information when used together with 

fundamental frequency signatures and may be useful for increasing the algorithm’s 

effectiveness. Most residential appliances have non-linear characteristics, which 

generate significant third, fifth and seventh harmonics. These harmonics can be easily 

identified by specialized sensors for particular frequencies and then treated as a steady 

state signature. This kind of signature can be very useful for detecting small appliances 

such as low power bulbs (Laughman, 2003).  

In this area AL-Kandari (Al-Kandari & El-Naggar, 2006) proposes a recursive 

algorithm for the identification of harmonic admittance of the load. The advantage of 

this method is that it offers a fast estimation of the harmonic admittance even if the 

harmonic content varies with time. The disadvantage of this method is that it is based on 

complex signal analysis in which the parameters must be calibrated to a particular case. 

In Figure 6-1 we show the harmonic content of measurements we obtained from 

different appliances. It is clear that it can offer a very good tool to differentiate between 

them. 

3.2.1.3 DC currents 

DC consumption is another non-linear feature that makes an appliance unique. For 

example, some blenders have a diode for speed control (only half wave) and they 

generate a DC component that can be detected. However, Hart points out that they 

haven’t encountered yet an appliance with a significant DC power flow that could be of 

interest to utilities. 
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3.2.1.4 Shape & Others 

There are other types of signatures that can provide information for differentiating 

between appliances, but they are rather specific. One example could be a 1Hz ripple due 

to the cyclic reversal of the tub in washing machines. This would be a steady state shape 

signature. 

3.2.2 Transient state signatures 

In addition to steady state approaches, others (Leeb, 1993; Shaw & Laughman, 

2007; Shaw, Leeb, Norford, & Cox, 2008), have used transient approaches to NILM.  

These algorithms are more complex and require more computational resources, but they 

have demonstrated to be very helpful by providing valuable extra information that can 

be used together with steady state signatures to improve the algorithm’s effectiveness.  

Transient signatures are more difficult to detect and require more complex and 

expensive data acquisition systems. The objective in using transient signatures is to help 

differentiate between two very similar loads to each other (Chang, et al., 2010; Leeb, 

1993) or identifying low power consumption devices (Leeb, 1993). They may be useful 

for differentiating between two appliances that have similar power consumption in a 

steady state, but may look quite different during the transient period, for instance having 

different in-rush currents. However, a transient signature would not be useful to 

determine which of the two appliances turned off, because transients are usually present 

when appliances are turned on only. Hart classifies transients in three main categories:  

a) Flat character with a sudden step power drop to the steady state operating 

level. 
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b) Large initial increase in the power, followed by an exponential drop lasting 

several seconds. 

c) Transients lasting a few cycles, which are transients as defined in the linear 

circuit theory. 

There are more parameters to characterize transients, like time constants, duration, 

size or parametric variables in models, which can be fitted to the observed waveform. 

Nowadays, a combination mainly composed of shape, size and duration of the transient 

is applied to recognize loads. As seen in (Chang, 2010; Leeb, 1993; Shaw, et al., 2008), 

where the measured wave transient is fitted to a stored transient wave, and the 

waveform that presents the minimum quadratic error with the measured one is assigned 

as the most likely one and is chosen. 

Chang (Chang, 2010) states that the main problem with power signatures is that 

many devices have different consumption levels, like a refrigerator, which has only one 

load, a compressor, but it has different physical components for refrigerating and 

freezing. He states that the envelopes of transient behavior when appliances are turned 

on could offer a better tool for discriminating between similar loads (Chang, 2010; 

Chang, et al., 2010; Leeb, 1993; Shaw & Laughman, 2007; Shaw, et al., 2008), which 

is very typical in industrial loads. Current in-rush’s when appliances are turned on offer 

a very unique and distinguishable parameter to accurately differentiate between two 

very similar steady state loads (Chang, 2010). 

Some approaches to accommodate the power transient signal to a signal that is 

easier to process, obtain the envelope of the signal through signal processing, which is 

sometimes complex and requires additional information about the load, like parametric 
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models of some appliances that are present in it (Shaw & Laughman, 2007; Shaw, et al., 

2008).  Shaw (Shaw & Laughman, 2007), proposed a Kalman-filter approach to 

compute spectral envelopes of current waveforms, but is complex and uses excessive 

computational resources.  
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4 ALGORITHM, LOAD CHARACTERIZATION AND FIELD TESTS 

We developed and applied a steady state fundamental frequency algorithm, being 

the most traditional family of algorithms, well documented by Hart and others. The 

benefits of this are its low cost, low computational requirements and simplicity. These 

are ideal characteristics to combine it with low cost smart meter deployments in 

developing countries.   

4.1 4 State algorithm 

The proposed algorithm builds strongly on Hart and Farinaccio and is divided into 

four main stages; these are measurements, normalization, de-noising and appliance-

specific algorithms and rules. After that, individual results are summed up and the total 

aggregated consumption is estimated and eventually compared with the original 

measurements. Figure 4-1 shows the flow chart of the implemented algorithm. 

 

 

Figure 4-1: Algorithm's flow diagram 
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4.1.1 Measurement 

The first step of the algorithm is the measurement, which is done at the utility 

meter, where the aggregated power demand of the residence is acquired.  

4.1.2 Normalization 

The following stage is the normalization, where the acquired data is admittance 

corrected by means of (3.1). This is well described in our literature review. 

4.1.3 De-noising: Border detection 

The third stage is a de-nosing stage that is performed in order to clean the data from 

its power transients, as they make the signal dirtier, complicating the identification 

process; this is done by applying (4.1). This softening of the signal must be performed 

before applying appliance-specific rulings onto the normalized aggregated 

measurement. This process is realized by an algorithm called “border detection”. A very 

useful border detection algorithm can be found in (Farinaccio & Zmeureanu, 1999). 

This reference proposed that instead of analyzing the variations of power (!P and !Q), 

the sum of the differences between adjacent data should be analyzed, as shown in (4.1): 

 
111

1

!++

!

!=+=

!=

iiii

iii

PPxxstep

PPx
 (4.1) 

As seen in (3), the term Pi is eliminated which proves to be very useful for 

eliminating steady state in-rushes, which contaminate the signal. This is shown in 

Figure 4-2, which corresponds to the comparison between the actual power 

consumption signal on the test residence with and without the border detection 

algorithm applied.  
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4.1.4 Rule-based appliance identification 

Finally, individual algorithms are applied to each one of the appliances present in 

the residence. We developed and applied special or appliance-specific rules and 

thresholds that work in different ways for the different appliances. These rules are 

derived from careful observation of consumption patterns and appliance usage patterns 

and can be further improved on by simple automated learning techniques.    

For all appliances there are thresholds for variations of active and reactive power 

consumption, !P and !Q. Some of them also have thresholds for the length of 

continuous use (e.g. a few minutes for a toaster, water heater, several minutes for a dish 

washer, etc) or the timing of its use (toaster typically used in the morning and 

afternoon). 

 

Figure 4-2: Signal without and with border detection 
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The application presented here did not derive timing specific rules for pool motors, 

ironing, TV, dishwashers, etc., to avoid achieving a 100% identification based on 

studying a specific subject, rather than facing a more general subject.  However, it is 

possible (and we are working on it) to develop web-based personal and shared 

databases on appliance use on order to achieve extremely high identification levels. For 

instance, the household of study has lunch at 13:30 hrs and runs the dishwasher at 15:00 

hrs after lunch time.  We didn’t factor in this valuable information, because other 

families could wait until late at night to run the dishwasher. 

Other appliances such as clothes washing machine pose larger challenges as they 

have multiple customizable complex cycles (wash, rinse, centrifuge, hard centrifuge, 

and cycles of different length, power and sequences). In this case, salient features of the 

cycle are detected and the signal is reconstructed. 

4.2 Dealing with residuals 

The consumption not recognized by this algorithm can further be allocated to 

specific appliances through a maximum likelihood stage. Others, like Farinaccio, do this 

by using a scoring system instead. Here we don’t present this allocation stage because 

the proposed algorithm provides good results, thus, making this approximation 

unnecessary. We also need a measure of performance for the overall algorithm and the 

residual is the best available measure. 

4.3 Results: Appliances consumption disaggregation 

The application of the proposed algorithm provides good results. While we didn’t 

have records, sensors and data registers for about a hundred connected devices to know 
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the ground truth or actual individual consumption, we did have access to the total 

consumption measurement. We found an aggregate error, or unexplained consumption 

of approximately 2%.   

 We classified appliances into 17 different major appliance families which are: 

refrigerator, lighting, garage door, TV, dishwasher, sprinkler, Nintendo wii, pool motor, 

hair dryer, iron, clothes washer, microwave, toaster, water heater, computer, water and 

ice from the refrigerator and clothes dryer. Figure 4-3 shows power consumption from 

each family over a sample day. 

After the disaggregation among appliance families is done, it is possible to compute 

the distribution of energy consumption between them at any point of time or based on 

overall energy usage, as shown in Figure 4-3. The two main appliances in power 

consumption are the refrigerator and the pool motor. 

According to the observers, the algorithm performed very bad on TV detection, 

probably because of its low power consumption and irregular usage. For the iron and 

computer some observed events were not detected. Again, low power consumption, 

irregular usage, together with no additional or specific ruling in the detection algorithm 

provide the basis for the errors. However, larger devices are nicely detected as well as 

others where specific rules where designed, achieving great results in terms of energy 

error (2%).  

Further calibration of the algorithm to the specific household would improve this 

error, but the algorithm was not conceived only for that specific house, but for a more 

general house.  It is not meant to show 100% by over-calibrating the algorithm. A 

disadvantage with this algorithm is that it is very accurate for the cases for which it is 
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calibrated, but in other cases it may achieve lower accuracies. For example, an 

algorithm calibrated to achieve a high degree of accuracy in one house would provide a 

worse result when applied to the neighbor’s house. Keeping high accuracy requires 

using the house-specific equipment inventory and building a database to store load 

signatures of a variety of equipment from different homes. This means applying the 

algorithm to different houses, calibrating models to different appliances, saving the data 

into a database and using that data in other houses. 

 

 

Figure 4-3: Energy disaggregation by appliance families and energy consumption by 
appliance family 
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5 CONCLUSIONS AND DISCUSSIONS 

Residential smart meters, especially those used in developing countries, have 

limited computational power and communication capabilities. It is customary to obtain 

most of them, and techniques such as NILM and NILI have great potential to be 

implemented on them, to characterize clients, their appliances use and their 

performance. This paper presents a critical review of the different families of methods 

used for detecting, identifying and monitoring electric loads; starting from its pioneer 

and most cited work, Hart (Hart, 1989, 1992), to the newest approaches using steady 

state and transient analysis.  

We find that the most common way to detect and identify loads is to use a steady 

state approach, but in the most contemporary literature, it is suggested to combine it 

with others, such as transient analysis, in order to improve the algorithm’s performance.  

We conclude that steady state algorithms must be the base for any NILM or NILI 

development, as they are low cost and require minimal computational power and 

metering frequency, being compatible with several smart meter deployments.  However, 

there is still a long way to go to obtain accurate and reliable steady state algorithms. 

Transient algorithms are useful and have the potential to improve performance when 

used together with steady state techniques, but impose higher costs and measuring and 

computational burdens, not always attainable for basic smart meters.   

From the literature review we conclude that most of the algorithms have been 

applied in very special and favorable environments, either in a bundle of a few loads, in 

simple test houses in which no information about the inside appliances is given to the 

reader, or in laboratories with too few appliances, which are very easy to differentiate 
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and therefore to disaggregate. Literature is quite limited (nearly empty) on the 

application of algorithms to more challenging setups such as the one proposed here. 

In non-ideal environments, like a total aggregated load inside a large house, it is 

very difficult to identify small appliances that are very alike between each other, like 

illumination devices, such as light bulbs or high efficiency light bulbs. Due to this, 

errors in the identification of low consumption appliances are very high, but 

surprisingly they aren’t too high in monitoring. This is mainly because the identification 

of bulk energy consumption appliances, like the pool motor or the washing machine is 

more precise than that of appliances that don’t have a high energy consumption, and 

also because the errors in monitoring of low power appliances tend to have a cancelling 

tendency, i.e., while some low power appliances are estimated to consume more than 

they do, others are estimated to consume less. 

Even though it seems very easy to achieve accurate load disaggregation (after all 

it’s just adding up and subtracting), parameters such as the nonlinearity of the loads, the 

simultaneous operation of appliances, loads with variable cycles, electric noise 

produced by the network or the same appliances (that alter the measurements and the 

process of disaggregation), and many other issues, complicate the analysis considerably. 

This explains why we found no reference on these techniques applied to industrial 

loads, where all these issues scale up considerably.  

Besides a complete comparative and critical review of the existing literature and 

their proposed algorithms, some improvements over these algorithms are proposed and 

the new algorithm is implemented in a challenging environment. The approach selected 

by us is a nonintrusive steady-state rule-based detection algorithm.   In our work we 
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applied a steady state algorithm enhanced with a system of specific rules to individual 

appliances, proving to be much more effective than applying a general algorithm for 

detecting all the appliances at once.  We achieved a very high accuracy in a house 

chosen for its complexity and variety of loads.  

5.1 Self-learning limited by lack of intrusive measurements and limitations 

Another challenge with these techniques is that in the implementation of a self-

learning network for NILM, obtaining validation data isn’t as simple as it looks. If the 

washing machine is identified, there are no individual sensors that could help us 

determine if the washing machine really entered in operation. Although we could 

determine if it is really the washing machine by waiting for the turn off event, if we 

missed the turn on event, we wouldn’t have a teacher for training the network. That 

seems to be one of the main challenges in automatic setup of NILM. Invasive 

approaches in some test houses could serve as teachers for self-learning networks. 
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6 FUTURE WORK 

The next steps for this project are a) embedding this algorithm into the smart meters 

system developed by our group (HappyVolt.Com), b) developing more powerful 

algorithms that allow us to scale up into more numerous and complex loads in a single 

wire. The proposed algorithm is quite capable of facing complex industrial loads, but 

applying it to each individual feeder and adding up the results, instead of applying it to 

the connection to the utility. c) Developing a database and multiple houses and trying 

the algorithm with houses out of the sample. Our group is applying for funding for this.  

A transient state envelope and harmonic distortion index (HDI) detection 

algorithms were also explored and evaluated, and although they are not fully described 

here due to space limitations. It can be seen from Fig 9 that harmonic content can offer 

a useful tool to discriminate between high efficiency and normal light bulbs and several 

other different appliances. We propose a simple HDI based on the RMS value of the 

normalized harmonic indexes (ai) to take advantage of this. 

  
)1(

/
12

2

1

!

"

=

#
=

n

aak

HDI
n

ii

NILM

 }12,...,2{1 !"# ik
i

 (6.1) 



 28 

 

We find preliminarily that envelope and HDI could become a critical tool for future 

discrimination between similar loads in a more complex environment, such as the 

industrial one. However, in our test bed, results were already very good and assessing 

the potential of additional algorithms has limited use. Its serious assessment requires a 

more challenging test bed. 

A proposed solution for increasing NILM accuracies, by cleaning the signal, is to 

measure from the electric panel, separated into the individual circuits instead of 

measuring at the main meter. Just isolating the illumination of the residence from the 

other appliances would greatly improve the algorithm’s accuracy. With this the 

differentiation between different load families could be much more effective. Our recent 

meter ekeeper (Happyvolt.Com) is implementing this. 

 

Figure 6-1: Current harmonics: (a) Microwave, (b) Vacuum Cleaner, (c) High 
Efficiency Light Bulb and (d) Normal Light Bulb 
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Finally, we see that the weakest link in NILM techniques is training, so future 

studies should focus on how to implement systems that require less training or on 

systems that are able to be learn by themselves, based on artificial neural networks 

(ANN) or on regression models. Having the training and self-learning issues resolved 

would help develop viable commercial products for NILM.  
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7 APPENDIX A: ALGORITHM RESULTS 

We did have a couple of observers that manually registered the events (not the 

consumption) and found no error on the pool motor and cloth drier. When higher 

frequency and computational power is available, the accuracy for other appliances can 

be incremented. 

The results of the algorithm were very varied. Fortunately, the identification and 

monitoring of appliances that translate in large amounts of energy consumption is far 

better and precise than appliances that signify a low power consumption. TABLE 7.1 

shows some of our results. It is important to say, that, since the comparison in all the 

cases (except for the total) were realized between the algorithm estimated and the 

surveillance estimated, we don’t have an actual precise number of the algorithm’s 

accuracy by appliance, and in some cases the algorithm was even more precise that the 

people surveillance, allowing us to find data that was lost in our surveillance (e.g. Iron). 

 

TABLE 7.1. NILM Algorithm Results 

Appliance Manual Error Estimate Real Error
*
 

Dish Washer 0.0943% ? 

Refrigerator 0.5358% ? 

Washing Machine 14.998% ? 

Pool Motor 0% ? 

Cloth Dryer 0% ? 

Microwave 14.706% ? 

Computer 14.636% ? 

Iron 216.67% ? 

Toaster 28.56% ? 

Kettle 33.985% ? 

TV 42.723% ? 

Total - 2.1% 

 
*Real error is the relation between algorithm estimated and actual appliance measure, which requires 

invasive approach, which we didn’t do, we only measured the total power consumption at the main meter, 

with an error of only 2.1%. People showed to be bad at performing estimations and surveillance of appliances 

usage. 
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8 APPENDIX B: TYPES OF INTRUSIVENESS 

We can classify the intrusiveness and the requirements of a load identification 

monitor in four main quadrants, which are delimited by two main limits, if the system is 

intrusive or not, which corresponds to the base differentiation, and if the kind of 

intrusion is physical or electrical.  Physical intrusive signatures are the most intrusive 

type of signatures, the consumer notices them, and they can eventually produce 

discomfort. They are usually characterized by the presence of sensors, such as 

proximity sensors or by devices attached to the power cords of some appliances, called 

tags. These tags would allow identifying appliances such as a vacuum cleaner, 

regardless the part of the house in which where they are plugged. They could be very 

useful to differ between similar appliances or as a teacher for a self-learning algorithm. 

Lots of equipment is needed at the consumer premises and an intrusive stage is needed 

for the installation of sensors and tags. On the other hand, electrical intrusive monitors, 

is a less intrusive approach in which an electric signal is injected at the utility premises 

and the variation of that signal at the customers residence is an indicator of the number 

and type of appliances in operation at the moment. This electric signal could be a 

current harmonic or a transient, however they are a concern to utilities, because they 

could compromise the quality of service.  In contrast with physically intrusive monitors, 

few hardware is needed, in fact, only a smart meter with the ability of generating and 

injecting a signal into the residence is needed. In the case of nonintrusive electrical 

monitors, there are many approaches, but they all have the same basic characteristics, 

which are that a load disaggregation algorithm is applied to the consumption and it 

separates it into it’s main appliances, without having much information about what is 
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happening at the interior of the house. For this, an intelligent meter with advanced 

processing and communications capabilities is needed. Finally, there are some unusual 

practices that could be applied for making more accurate estimations of what is 

happening at the interior of a house. Physically nonintrusive practices could include the 

analysis of environmental data, such as ambient temperature for estimating the 

feasibility of occurrence of an event, like turning the AC on a snowy day. Also, satellite 

images, combined with image processing algorithms could be used for determinate if a 

house has a pool, which would explain the operation of a motor in the residence or 

thermal cameras could help determine which are the weakest links in a consumption 

and what makes it operate do inefficiently. The main disadvantage is that in many cases 

interpretation is needed, for example satellite images are some times damaged and a 

blind spot could be interpreted as a pool, also, they provide limited information, because 

we only realize once that a residence has a pool, and the ability of knowing doesn’t tell 

us what is the operating time. Figure 8-1 shows a classification of the types of 

intrusiveness in the monitoring. 
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Figure 8-1: Types of Intrusiveness 
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9 APPENDIX C: LARGE SCALE APPLICATIONS 

Our main concern in this investigation was how to apply this technique in large 

scale. Even though our application was a one case, test residence scenario, the further 

application to many houses could be achieved by well known and used today’s 

practices. Clusterization of different residence types is done by utilities today in order to 

characterize and group different client types. This same clusterization could be applied 

to help the setup of a NILM system, or to train and teach a self-learning network. For 

example, a self-learning network could detect and learn that there are new appliances 

present in the residence due to replacement. Even more, the clusterization of clients 

could help respond not only to those specific changes in a house, like replacing old 

appliances, but also detect structural changes, like, learning from a new inhabitant in the 

house, with completely different consumption pattern, by simply comparing his profile 

to a general database, obtained from laboratory data of all the appliances (refrigerators, 

hair dryers, kettles, etc.) available in the market, or by comparing it to a database 

obtained from clustered type clients. In brief, we can characterize the profiles into three 

main databases, a general, which contains all the possibilities available in the market, a 

clustered, which is obtained from different client types in function of their socio-

economical, geographical, educational characteristics and a local database that has to do 

specifically with the consumption of the client and his life habits. 

Database information for large-scale implementation can be very useful at the time 

of setting rules for appliances algorithms based on the lifestyle and habits of a particular 

inhabitant. For example we can characterize habits such as toasting bread all mornings, 

so when the client stops toasting his bread we will know that something is happening, 
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maybe the toaster was changed, the client went on vacation, or the house became 

abandoned. 

Figure 9-1 shows the way in which the algorithm by being complemented by these 

databases could achieve to reduce the error and achieve 100% accuracy for load 

monitoring. 

 

 

Figure 9-1: NILM algorithm with clustering integration 
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10 APPENDIX D: REFERENCES COMPARISSON 

This section organize the references critically, first addressing the methodologies 

chosen by the authors, then the sampling period if mentioned and finally summarizing 

these two and presenting the scale of the field tests and its accuracy. 

10.1 Signatures used 

Even though there is a large number of families of load signatures, as defined by 

Hart, almost all methodologies followed by authors have been limited mainly to steady 

state fundamental frequency analysis, current harmonics, and transient event detection 

algorithms. Figure 10-1 shows a classification of the signatures used by the different 

references. 

 

 

Figure 10-1: Classification of Signatures that are actually used for load identification 
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10.2 Sampling period and frequency 

When it comes to sampling periods there doesn’t seem to be a consensus, it 

depends mainly in the accuracy being looking for, with respect to the events inside the 

residence or load. A high sampling period, e.g. 1 minute, provide a very clean signal, 

with relatively low probability of sampling when multiple events occur simultaneously 

or when a transient occur, but may miss lots of important events (microwave is often on 

for less than 1 minute). On the other hand, a small sampling period (e.g. 1 second), 

would avoid missing events, but provides a noisy signal with many transients and 

simultaneous events. Figure 10-2 shows a classification of the sampling periods used in 

some of the references. 

 

There is a tradeoff regarding the sampling frequency to use. When using 1 second 

or less, there is a huge data density were it could be possible to identify all the 

appliances in a house, even those who have a very short time of usage, like a garage 

door opener, but it would provide a very noisy signal, with many steady state transients 

 

Figure 10-2: Sampling period classification 
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due to in-rush currents at the turn-on of the appliances. If a long sampling period is 

used, e.g. 1 minute, there would be low data density, and a very clean signal, because 

the probability of sampling a turn-on event would be very low, but it would be missing 

lots of events that last less than a minute, like the microwave, a blender, or the vacuum 

cleaner in some cases. The frequency depends also on the algorithm type, i.e. for 

algorithms based on transient event detection a higher sampling frequency should be 

used, between 7 and 15 kHz, and for steady state algorithms frequencies of less than 

one Hz are very common. 

Field experience in the existing literature on nonintrusive load identification is 

often invalid, because experiments are done in isolated environments (e.g. laboratories 

with few loads), seldom field tests are performed with an actual residential load, with 

many appliances on it and working at the same time. We organized the main references 

in TABLE 17.1 for better and easier visualization of the characteristics of each research.  

We emphasize the low accuracy achieved by these approaches.   



 42 

11 APPENDIX E: HARMONIC DISTORTION INDEX 

Although harmonic signatures fit in the definition of steady state signature, they 

provide additional information to fundamental frequency algorithms, increasing their 

detection accuracy as transient signatures. The main objective of harmonic signatures is 

to differentiate between devices with similar P and Q consumption in steady state. 

According to (Laughman, 2003), appliances that show a similar behavior in 

fundamental frequency power consumption can show differences in higher harmonics 

power consumption, which could be decisive for their differentiation. As seen in Figure 

11-1 harmonic content in a signal may be a very good parameter for its differentiation, 

this figure shows the difference between the harmonic content of two appliances, a 

microwave, and a vacuum cleaner. The microwave has a harmonic content more present 

in the third and fifth harmonic, while the vacuum cleaner has a harmonic content more 

present in the second harmonic. 

The differentiation in the harmonic content of a signal is mainly due to its non 

linearity, while linear loads have a simple relation between the voltage and the current 

in which those two parameters oscillate at the fundamental frequency, in nonlinear 

loads, there is a relation in which the current has other components than the 

fundamental one, that generates current harmonics, which make a huge difference 

between appliances. 
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It can be seen in Figure 11-1, that harmonic content can offer a useful tool to 

discriminate between high efficiency and normal light bulbs.  As part of our research, 

we propose a simple harmonic distortion index based on the RMS value of the 

normalized harmonic indexes as shown in (12.1). 
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Figure 11-1: Current harmonics: (a) Microwave, (b) Vacuum Cleaner, (c) High 
Efficiency Light Bulb and (d) Normal Light Bulb 
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ki is a multiplier, which main purpose is to give more importance to the more 

significant harmonics, i.e. in the case of the microwave, harmonics indexes 1, 3 and 5, 

and in the case of the vacuum cleaner, indexes 1 and 2. 

In a preliminary study on harmonic signatures using ki=1 for every i, our distortion 

index proved to be very successful. The tests included a comparison between three 

different appliances, a refrigerator, a water heater and a microwave. Between these 

appliances the differences shown were of nearly a 70% between the heater and the 

refrigerator, of a 90% between the heater and the microwave, and the differences 

between the refrigerator and the microwave were of 65%. These differences could 

certainly be of great value to be used in addition with steady state fundamental 

frequency signatures.  
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12 APPENDIX F: DATA EXTRACTION AND EQUIPMENT 

The data extraction for our field test was done on a single and fairly large 

residential load, and the instrument we used for our measurements was a Hioki 3197 

power analyzer and ekeeper (by Happyvolt.com), a proprietary smart meter we 

developed that is capable of measuring mean, maximum and minimum of voltage (rms 

value), current (rms), frequency, among other parameters, every two seconds.  

12.1 Limited memory 

The internal memory of the network analyzer is filled every one and a half hour, so 

it required frequent oversight of instrument’s memory and 24 hours almost fully 

devoted to this. 

Our equipment database was obtained in the field, where we used the same 

instrument (Hioki 3197 and our Ekeeper - HappyVolt) to measure every appliance 

individually. The true load information was obtained performing a fast equipment 

inventory, while for the lighting of the house (mounted and with data not always 

available), the information was obtained through an estimate based on the number and 

type of bulbs that each illumination electrical circuit of the house. 
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13 APPENDIX G: GETTING THE GROUND TRUTH 

As we didn’t have the possibility of having individual sensors for every appliance 

to recover the ground truth, we used a record workbook which was posted in every 

circuit in the house (switch and appliance). Its purpose was to register every on and off 

event in the testing period. On Figure 13-1 we can see an example of the generic sheet 

used for this purposes, this sheet has 60 columns with corresponding to each minute in 

an hour, and 24 hours corresponding to a day. Every time an appliance or switch is 

turned on, the symbol “/” is placed in the coordinate correspondent to the actual time, 

and an “X” is placed when the appliance is turned off. 

 

While the operation of the appliances was determined through the worksheet shown 

in Figure 13-1, the real and reactive power database was determined measuring each 

appliance independently, except for the lighting, which was determined from the 

nominal value of each bulb. 

 

Figure 13-1: Sample worksheet for registration of events 
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Given our measured data, we wrote an algorithm in Matlab for the comparison 

between the measured data and the energy profile estimated from the record workbooks. 

Figure 13-2 shows this comparisson. 

 

Before the comparison is performed, a previous softening of the signal must be 

realized. 

The differences between the estimated energy consumption, and the actual energy 

consumption using this practice was of approximately 5%, Which is a number much 

bigger than the one that we should obtain placing sensors in each individual appliance. 

 

Figure 13-2: Comparison between estimated power profile (red) and measured power 
profile 
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14 APPENDIX H: PILOT HOUSE STATISTICS 

The pilothouse is subscribed to Chilean regulated tariff BT1. The main 

characteristics of the residence and the field test day are: 

• Total installed capacity: 20.98 kW. 

• Point of connection contracted power: 9.9 kW. 

• Max. power demand on field test: 4.95 kW. 

• Energy consumption on field test: 19.39 kWh. 

• Load factor: 18.65%
1
 

• Capacity factor: 4.4%
2
 

                                                

1 The load factor corresponds to the energy consumption on the field test divided by the maximum power demand on the field 

test multiplied by the number of test hours (21).  
2 The capacity factor corresponds to the energy consumption on the field test divided by the total installed capacity multiplied by 

the number of test hours (21). 
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15 APPENDIX I: ENERGY SHARE BY APPLIANCE 

The following pie charts show the energy share and which are the appliances that 

signify higher energy consumption throughout the day. 

 

 

Figure 15-1: Energy cake 
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16 APPENDIX J: INVENTORY AND DATABASE 

This is solved entering an equipment inventory to the meter or database system 

and/or with a database with consumption features of typical appliances. The pilothouse 

inventory consists of 97 devices, which are classified as follows: 

16.1 Kitchen 

 

16.2 Washing room 

 

 
TABLE 16.1. Kitchen Inventory 

Quantity Device Aggregated Power (W) 

2 Circular fluorescent tube 80 

1 Light bulb 75 

3 Fluorescent tube 120 

1 Electric oven 650 

1 Microwave (Daewo) 1,400 

1 Kettle (Black & Decker) 2,000 

1 
Toaster (Black and 

Decker) 
1,320 

1 Television (RCA) 100 

1 Refrigerator (GE) 150 

1 Diswasher 2,000 

 

 
TABLE 16.2. Washing Room Inventory 

Quantity Device Aggregated Power (W) 

2 Circular fluorescent tube 80 

1 Halogen Bulb 150 

1 Washing Machine 2,200 

1 Cloth Dryer 2,300 

1 Iron 2,000 
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16.2.1 Others 

 

 
TABLE 16.3. Rest of the House Inventory 
Device Quantity Aggregated Power (W) 

Normal Light Bulbs 15 1,125 

Halogen Light Bulbs 2 300 

Efficient Light Bulbs 7 140 

Candle Light Bulbs 8 320 

Dichroic Light Bulbs 27 1,350 

Low Power Light Bulbs 5 100 

Mini Halogen 2 40 

Ventilator 3 150 

Hair Dryer 1 2,000 

Television 3 450 

Nintendo Wii 1 50 

Computer 2 300 

Printer 1 30 
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16.3 Total 

 

 
TABLE 16.4. Total Inventory 

Device Total Installed Power 

Normal Light Bulbs 1,125 

Halogen Light Bulbs 300 

Efficient Light Bulbs 140 

Candle Light Bulbs 320 

Dichroic Light Bulbs 1,350 

Low Power Light Bulbs 100 

Mini Halogen 40 

Ventilator 150 

Hair Dryer 2,000 

Television 450 

Nintendo Wii 50 

Computer 300 

Printer 30 

Circular fluorescent tube 80 

Halogen Bulb 75 

Washing Machine 120 

Cloth Dryer 650 

Iron 1,400 

Circular fluorescent tube 2,000 

Light bulb 1,320 

Fluorescent tube 100 

Electric oven 150 

Microwave (Daewo) 2,000 

Kettle (Black & Decker) 80 

Toaster (Black and Decker) 150 

Television (RCA) 2,200 

Refrigerator (GE) 2,300 

Diswasher 2,000 

Total 20,980 
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17 APPENDIX K: REFERNCE CLASIFFICATION 

TABLE 17.1. Reference Classification 

Reference Signature 

Sampling 

Period or 

Frequency 

Lab or Field Test Accuracy 
Number of 

Appliances 
Observations 

Hart 1989 (Hart, 

1989) 

Steady State 

Fundamental 

Frequency 

1 second Field: 3 Houses 
75 to 

90% 
25 

Pioneer on the 

subject 

Marceau 2000 

(Marceau & 

Zmeureanu, 2000) 

Steady State 

Fundamental 

Frequency 

16 seconds Field: Single house > 90%1 72  

Berges 2010 

(Berges, 

Matthews, & 

Soibelman, 2010) 

Steady State 

Fundamental 

Frequency 

- Field: Refrigerator 85% 1  

Chang 2010a 

(Chang, et al., 

2010) 

Steady State and 

Turn on 

Transient 

15 kHz Lab: Between 3 loads 100% 3  

Cole 1998a (Cole 

& Albicki, 1998a) 

Steady State 

Fundamental 

Frequency 

1 second Field: 8 Houses > 99% 7  

Hart 1992 (Hart, 

1992) 
Steady State 

Fundamental 

Frequency 

1 second 

Field: 1 MS-NALM, 3 

first generation AS-

NALM and 10 second 

generation AS-NALM3 

90% 

Every 

household 

appliance 

 

Farinaccio 1999 

(Farinaccio & 

Zmeureanu, 1999) 

Steady State 

Fundamental 

Frequency 

16 seconds Field: 1 test house 85% 24 
Rule Based 

Algorithm 

Cole 1998b (Cole 

& Albicki, 1998b) 

Steady State 

Fundamental 

Frequency 

1 seconds Not specified > 90%5 
2, washer and 

hp compressor 
 

El-Ferik 2006 (El-

Ferik, Hussain, & 

Al-Sunni, 2006) 

Steady State 

Fundamental 

Frequency 

- Lab: Pilot house 99% 

Air-

conditioning 

system 

AC6 Physical model 

required 

AL-Kandari 2006 

(Al-Kandari & El-

Naggar, 2006) 
Harmonic 

Varies between 

10 and 400 

samples per 

cycle 

Lab - - 

Estimates harmonics 

from distorted 

current and voltage 

waves 

Leeb 1993 (Leeb, 

1993) 
Transient - Lab - 3  

Shaw 2008 

(Shaw, et al., 

2008) 

Transient - Lab 99%7 8 

Parametric models 

are needed, and hand 

modification of data 

Laughman 2003 

(Laughman, 2003) 

Transient and 

Harmonic 
8 kHz 

Field: Buildings and 

transportation systems 
- - No results are shown 

Chang 2010b 

(Chang, 2010) 

Turn-on 

Transient 
15kHz Lab 100% 3  

 

                                                

1 For most evaluation scenarios. 
2 7 Major end use appliances with individual clamp-on current sensors. 
3 In the first two cases, there was no parallel instrumentation, so the detection of events was using criterion, and in the third case 

the field test were not fully analyzed. 
4 Rule based algorithms for two appliances, a domiciliary water heater (DWH) and a refrigerator. 
5 Comparison made between energy estimation and energy consumption in 15 minute intervals 
6 Air-conditioning system 
7 For induction motor 


