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Summary 

Objective: To critically analyze, simplify and implement a predictive radiocarcinogenesis model to 

estimate the risk of secondary cancer after RT which can effectively compare different radiotherapy 

treatment plans with the aim of having an additional element of information during the decision-making 

process for the best RT plan. 

Methodology: A Python software was developed that was able to implement the model proposed by 

Shuryak et al. (2009). Simplifications and minor corrections were made which allowed for more 

compactness and more efficient run times. The model was then reparametrized with newer data from 

the Surveillance, Epidemiology, and End Results Program (SEER) database and several epidemiological 

studies using Bayesian Inference. Uncertainty propagation studies were then conducted to understand 

their propagation better. Finally, the model with its new parameters was applied to a selection of 

prostate plans to determine if it could construct a risk hierarchy. 

Results: The model was successfully reparametrized with newer data. Although some parameters show 

significant deviation from Shuryak’s original parameters, they are mostly on the same order of 

magnitude, and the differences arise likely due to differences in fitted data and the fitting process itself. 

Shuryak’s model successfully built a risk hierarchy between prostate plans, although it deviated from the 

more simplistic linear non threshold BEIR VII model. It was also possible to simplify some complex 

mathematical equations, both in general and for particular cases, allowing for easier implementation 

and more efficient run times. 

Conclusions: Shuryak’s model was successfully reparametrized and implemented, showing potential to 

become clinically applicable. However, more comparisons between the model’s result and 

epidemiological data must be made to evaluate its accuracy better, and more concise and complete 

second primary cancer studies must be used before the model is reliable enough for clinical decision-

making.  
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Glossary 

• Absorbed dose: Quantity used to determine the amount of ionizing radiation a material has absorbed. 

Measures energy deposited per unit mass and has units: 

1 𝐺𝑟𝑎𝑦 ≡ 1 𝐺𝑦 =
1 𝐽𝑜𝑢𝑙𝑒

1 𝑘𝑔
 

• Premalignant cell: A cell that, although it is not yet fully malignant, has certain mutations that increase 

its likelihood of becoming malignant. They can arise due to DNA replication mistakes or when exposed to 

certain chemicals or ionizing radiation. 

• Mechanistic: In the context of secondary cancer risk, a mechanistic model is one that tries to model the 

microscopic phenomena that give rise to the macroscopic manifestation of cancer. 

• Long-term process: This is one that takes years to have noticeable effects. Example: The spontaneous 

apparition (i.e., not induced by an external agent) of premalignant cells and their posterior replication. 

• Short-term process: This process happens fast enough to be considered instantaneous. For example, 

cellular death or mutations induced by ionizing radiation during radiotherapy. 

• Activation: Process through which a normal cell becomes premalignant. If caused by radiation, we will 

call it “radiation-induced.” 

• Inactivation by radiation: Process in which a cell is considered to die. For healthy cells, this means the 

destruction of the cell itself. For premalignant cells, it suffices if it loses the ability to reproduce 

indefinitely. 

• Niche:  In this context, a niche is a microenvironment in a specific sector of the tissue in which it shares 

common traits with nearby cells. 

• Repopulation: Process through which cells in a tissue damaged by radiation replicate to mend the 

damage to its condition prior to irradiation.  

• Survival:  A cell is said to survive radiotherapy if it retains the capacity to replicate afterward. 

• Relative risk: Ratio of the risks for an event for the exposure group to the risks for the non-exposure 

group. Mathematically, it is calculated as 𝑅𝑅 =
𝑟𝑖𝑠𝑘 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑟𝑖𝑠𝑘 𝑜𝑓 𝑛𝑜𝑛−𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
. 
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• Excess Relative Risk: The proportional increase of risk of a population that is exposed to a specific 

treatment with respect to a population that has not been exposed to it. Mathematically, it is written as 

𝐸𝑅𝑅 = 𝑅𝑅 − 1. 

• Life Attributable Risk: Additional cumulated probability of developing a specific cancer over the 

expected lifetime. It can be understood as the time integral of 𝐸𝑅𝑅. 

• Senescence: Phenomenon during which a cell loses the ability to replicate and, thus, produce a 

lineage. Senescence is usually considered one of the primary forms of cellular death. For the purpose of 

radiotherapy, a senescent malignant or premalignant cell will be considered to be controlled.  

• Attained Age: The age at which the second primary cancer manifests. 
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Chapter 1: Introduction 

The carcinogenic potential of ionizing radiation, especially at low doses, has been firmly 

established [1], as was observed by studying atomic bomb survivors [2]. With RT being one of the most 

widely used cancer treatments worldwide, it is of utmost importance to be able to quantify the risk that 

the treatment designed to heal the patient ends up causing second primary cancer on a nearby previously 

healthy tissue. This danger is especially relevant upon consideration of the longer life expectancies of 

cancer patients that have come as a consequence of recent technological advancements and the 

improvement of screening programs. Pediatric patients are at the highest risk of suffering radiation-

induced second primary cancer, given their higher radiosensitivity and the fact that their young age of 

exposure and long potential life span give ample opportunity for cancer to develop.  

Second primary malignancies arise when part of the radiation from the treatment is absorbed by 

healthy tissue near the tumor, which is why they tend to appear on or close to the edge of the tumoral 

volume[3]. Figure 1 shows the frequency of apparition of second primary malignancies in pediatric 

patients after radiotherapy as a function of the distance to the edge of the treatment field. 

 

Figure 1. Distribution of frequencies of the distances from the edge of the irradiated volume to the site of secondary malignancy 
apparition (Second Malignant Neoplasm, SMN), among 115 pediatric patients. Source: Diallo et al.2009[4] 
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Although the small yet significant risk of radiocarcinogenesis has been intensively studied since the onset 

of radiation therapy, there are limited resources available for medical professionals when optimizing a 

patient’s treatment. This scarcity is especially notable when comparing existing secondary cancer risk 

estimation models to those available for tumor control or normal tissue complication probabilities.  

Ideally, medical staff should be able to estimate the secondary cancer risk for each available treatment 

plan to make the most informed decision. In practice, this would involve ranking several treatment options 

with equal probability for tumor control based on their likelihood of radiocarcinogenesis. 

In principle, decisions of this nature could be based on available epidemiological data; observing a cohort 

of patients who have undergone a specific RT and tracking their development over a couple of decades 

could lead to a reasonably accurate risk estimation. However, unlike other fields of medicine, the 

prolonged latency periods before the appearance of second primary cancer and the relatively low 

likelihood of their occurrence require unrealistically long waiting periods and large cohorts. This is further 

complicated by the rapid development of cancer treatments, which basically ensures that by the time 

sufficient epidemiological data is available for a given treatment, that treatment will likely become 

obsolete. While it might be possible to extrapolate knowledge from an outdated treatment to a newer, 

albeit relatively similar one it is  far from a reliable approach. 

For that reason, there is a growing desire to develop a predictive mathematical model capable of 

estimating the second primary cancer risk of any given treatment, considering the radiobiological 

processes that occur inside the human body[4].  

It is one of the motivations of the present work not only to study these models, and Shuryak’s in particular, 

but also to critically analyze the latter to make the mathematical expressions more compact and more 

accessible to utilize while updating its parameters with newer epidemiological data for a more accurate 

clinical application.  
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Chapter 2: Objectives 

2.1 General Objectives 

The main objective of the present work is to analyze and implement a predictive mechanistic 

radiocarcinogenesis model to estimate the risk of second primary cancer after RT that can effectively 

compare two RT treatment plans. 

2.2 Specific Objectives 

a) Develop a Python code that can successfully implement the mechanistic model proposed by Shuryak 

and estimate the risk of second primary cancer after RT.  

b) Reparametrize Shuryak’s model using more recent epidemiological data. 

c) Critically analyze the model’s parameters and their impact on carcinogenesis. 

d) Implement the model to compare a selection of alternative RT treatment plans and identify the one 

that minimizes the risk of developing a second primary cancer 

e) Compare the resulting conclusions utilizing Shuryak’s model to those obtained by using the BEIR VII 

and Schneider’s model to determine the congruency of their results. 
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Chapter 3: Theoretical Framework 

3.1 Premalignant cells 

Cancerous lesions form as a consequence of a cell’s genetic mutations, which can occur due to a genetic 

predisposition, environmental factors (such as exposure to asbestos or long-time smoking), and ionizing 

radiation. Whatever the cause, a cancerous cell is born once it accumulates a mutation and manages to 

evade the body’s cancer-detection systems. Once a cell has accomplished this, we will call it a 

𝑝𝑟𝑒𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 cell. This is a cell that has begun accumulating mutations and thus has the potential to 

become malignant in the future but still behaves similarly enough to normal, healthy tissue. The 

premalignant cell will become fully malignant after going through each of the Hallmarks of Cancer, as 

described by Douglas Hanahan and Robert Weinberg [5]. 

3.2 DNA damage and repair 

Understanding how radiation causes mutations or cell death requires understanding the structure of cell 

DNA and its response to ionizing radiation. There are two mechanisms through which the double-strand 

structure of DNA can be damaged: single and double-strand breaks. Single-strand breaks correspond to 

sub-lethal damage and can usually be repaired. However, there is a small probability of an error occurring 

during the reparation, which can transform the cell into a premalignant cell or cause it to fail one of the 

checkpoints during cell division, leading to its death. While double-strand breaks can also be repaired, 

they are more likely to lead to cell death. Since tumors repair much slower than healthy tissue, delivering 

the radiation across several fractions is beneficial to allow healthy tissue to repair, thus minimizing 

damage to it.  

3.3 State of the art of radiation induced risk models 

There are two main kinds of cancer estimation risk models. First, there are empirical models based on the 

observation of cancer incidence in the years following RT. An example is the linear response model 

developed from observations of atomic bomb survivors [6], which concluded that irradiation in the dose 

ranges between 1-2 Gy correlates linearly with secondary cancer risk. However, these are statistical 

results designed to be applied to populations rather than individuals. Furthermore, doses delivered to 

organs during RT often surpass this range and thus require a different approach. 
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The second type, the mechanistic model, leverages our existing understanding of radiobiological 

processes to estimate the risk of second primary cancers mathematically. However, achieving a purely 

mechanistic model would require perfect knowledge of every intracellular and radiobiological process, 

rendering such an approach unrealistic. Nevertheless, a more viable option involves combining both 

approaches into a semi-mechanistic model, offering a substantial advantage. By incorporating 

radiobiological processes, such a model can strive to deliver personalized results by considering patient- 

and treatment-specific characteristics, such as age, number of fractions, and organ doses. 

To construct a mathematical model, one must thus select the most relevant biological aspects and assign 

them a representative function whose parameters should consequently be fitted from epidemiological 

data.  

Alexandru Dasu and Iuliana Toma-Dasu [7] provide an insightful overview of mechanistic and semi-

mechanistic models, which I will briefly summarize here. It is important that the reader keeps in 

consideration the impact that the choice of parameters (and thus biological processes) has on the 

resulting risk curve. 

One can construct a model to estimate second primary cancer risk after irradiation by considering the 

damage evolution of the DNA of irradiated cells, considering the possibility of both lethal and sub-lethal 

lesions, where the former results in cell killing and the latter in the potential for carcinogenesis (by 

initiating premalignant cells that can eventually become fully malignant and form a tumor). Cancer risk, 

as per such a model, becomes a competition between the initiation of malignant cells and their 

inactivation by radiation. As reported by the United Nations Scientific Committee on the Effects of Atomic 

Radiation (UNSCEAR)[8], it is possible to describe the risk as: 

 

𝑅𝑖𝑠𝑘 = (𝛼1𝐷 + 𝛽1𝐷2) exp[−(𝛼2𝐷 + 𝛽2𝐷2)]                 (1) 

Here, D is the radiation dose and 𝛼1, 𝛽1, 𝛼2, 𝛽2 are parameters related to the induction of mutations and 

cell survival, respectively. It is interesting to note the shape of the curve generated by this model. The risk 

increases as the delivered dose remains in a predominantly sub-lethal range, but as it continues to 

increase, we observe a falloff in risk as the cell-killing begins to dominate. 

Some authors [9][10] suggest no such decline in risk at higher doses, which leads to the formulation of 

the plateau model proposed by Robert Davis [11]:   
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𝑅𝑖𝑠𝑘 =
𝑐𝑁

𝑎
exp(1 − 𝑒−𝑎𝐷)              (2) 

Where 𝐷 is the radiation dose, 𝑐 the probability per unit dose of the development of a second cancer from 

a precancer cell, 𝑁 is the average number of initial precancer cells, and 𝑎 is the probability of radiation 

killing mutated cells.  

However, neither of these models has accounted for the known mechanism of interfraction cell repair, 

which plays a pivotal role in safeguarding healthy tissue during RT, which, unlike tumoral tissue, is known 

to repair. It is possible to modify the UNSCEAR model to account for interfraction repairs for 𝑛 fractions 

of RT: 

 

𝑅𝑖𝑠𝑘 = (𝛼1𝐷 +
𝛽1𝐷2

𝑛
) exp [− (𝛼2𝐷 +

𝛽2𝐷2

𝑛
)     (3) 

This expression also predicts a bell-shaped risk-dose relation, except it shows a slower falloff due to DNA 

repair. All four models are illustrated in Figure 1, where the different curves can be easily identified by 

their linear, bell, or plateau shape. 
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Figure 2. Illustration of the dose-risk dependence for risk models used in radiation therapy (Dasu et al 2017)[7]. Here, SD refers to the UNSCEAR 

report model (Equation 1), which does not consider dose fractionation. The plateau model corresponds to equation 2. FX refers to the modified 

UNSCEAR report that does consider it (Equation 3). 

Incorporating interfraction repair makes the models more realistic, yet several critical aspects remain 

unaccounted for. Sach and Brenner [12] proposed a model assuming that radiation-induced cell killing 

triggered accelerated repopulation to restore the steady-state number of functional cells in the irradiated 

tissue.  

𝐸𝑅𝑅 = 𝑁[exp(𝛾𝐷) − 1]𝐵                 (4) 

Here, 𝑁 is the number of functional cells before irradiation, 𝛾 the probability of mutation per unit dose, 

and B is the proportionality factor linking the yield of mutated cells to the risk. The risk here is given as 

Excess Relative Risk (ERR), a very important quantity that was defined in the glossary. 

Schneider [13] also proposed a risk model with similar considerations but allowing for the differentiation 

between carcinomas and sarcomas. 

𝑅𝑖𝑠𝑘𝑐𝑎𝑟𝑐𝑖𝑛𝑜𝑚𝑎𝑠 = 𝛼1

exp (−𝛼𝐷 −
𝛽𝐷2

𝑛 )

(𝛼 +
𝛽𝐷
𝑛 ) 𝑅

 {1 − 2𝑅 + 𝑅2 exp (𝛼𝐷 +
𝛽𝐷2

𝑛
 )

− (1 − 𝑅)2exp [−
𝑅

1 − 𝑅
(𝛼𝐷 +

𝛽𝐷2

𝑛
)]}      (5) 

𝑅𝑖𝑠𝑘𝑠𝑎𝑟𝑐𝑜𝑚𝑎𝑠 = 𝛼1

exp (−𝛼𝐷 −
𝛽𝐷2

𝑛
)

(𝛼 +
𝛽𝐷
𝑛

) 𝑅
 {1 − 2𝑅 + 𝑅2 exp (𝛼𝐷 +

𝛽𝐷2

𝑛
 )

− (1 − 𝑅)2 exp [−
𝑅

1 − 𝑅
(𝛼𝐷 +

𝛽𝐷2

𝑛
)] − 𝑅 (𝛼𝐷 +

𝛽𝐷2

𝑛
)}     (6) 

Here, 𝛼1 is the linear risk coefficient, 𝛼 and 𝛽 are the LQ parameters describing cell survival, 𝐷 is the total 

dose, 𝑛 is the number of fractions, and 𝑅 is a parameter characterising the ability of the tissue to 

repopulate. 

 

In the BEIR VII report, “Health risks from exposure to low levels of ionizing radiation” [35], models are 

presented to estimate risk expressions. In particular, the expression to estimate ERR is: 

𝐸𝑅𝑅 = exp(𝛾𝑒∗ ) 𝑎𝜂                     (7) 
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Where 𝑒∗ = 𝑒 − 30, with 𝑒 age at exposure in years when 𝑒 < 30 and equal to zero when 𝑒 > 30. 𝑎 is 

attained age in years, and 𝛾 and 𝜂 are parameters that quantify the dependence of the ERR on 𝑒 and 𝑎.  

 

3.3 Shuryak’s model 

From the vast array of semi-mechanistic models that exist, the one proposed by Shuryak[14][15][16] 

considers the largest number of biological processes, thus possessing great potential. Yet this model has 

been mostly overlooked in the decade since its original publication. 

Due to the proposed model’s complexity, I will use Figure 2 from Part I of Shuryak’s publication[14], which 

is a schematic representation of the proposed premalignant cell kinetics.  

 

Figure 3. Schematic representation of the proposed model. Source: Shuryak et al 2009 [14] 
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The model assumes that both normal and premalignant cells inhabit specific tissue niches, which are 

collections of cells that share characteristics and lineage. The carrying capacity and number of these niches 

are assumed to be homeostatically regulated. It is also assumed that premalignant cells gradually lose 

their carcinogenic potential with age so that they have a progressively smaller ability to transform into a 

purely malignant cell.   

In Figure 2, each color represents a different niche, with its carrying capacity represented by the size of 

the square. Subfigure A represents healthy tissue at the moment of birth, which assumes there are no 

premalignant cells present at this point, a reasonable assumption for most cancers. Subfigure B represents 

the phenomenon of spontaneous premalignant cell initiation, which occurs as a consequence of cell 

replication errors or environmental factors. The newly formed premalignant cell niches are represented 

in red and blue. It is assumed that these premalignant cell niches have the capacity to reproduce and 

invade adjacent niches, which is depicted in C, D, and E. It is also possible for the premalignant niche to 

divide into two daughter niches, as is the case with colon crypt fission [17][18][19], and the new colonies 

may have different mutations than the original one. However, the model does not distinguish between 

these processes, as both yield the same outcome. These processes occur over the course of decades, 

constituting a long-term process (Subfigures A to E).  

With these assumptions, one can mathematically model the number of premalignant cell niches as 

proportional to: 

 

𝐴𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 =
𝑎

𝑏
(𝑒𝑏𝑇𝑥 − 1)𝑒−𝑐𝑇𝑥

2
         (8) 

Here, 𝑎 is a parameter representing the spontaneous initiation rate of premalignant cell niches, 𝑏 is 

proportional to their replication rate, 𝑐 is an age-dependent premalignant cell senescence parameter, 

while 𝑇𝑥 is the age of the patient. 

At some point, the patient is subjected to radiotherapy in a tissue nearby. As a consequence, the healthy 

tissue we are currently observing is irradiated, and we will observe both the effects of inactivation and 

initiation. Niches become smaller in size as they lose a fraction of their cells. Some may be wiped out 

entirely. At the same time, there exists a possibility of radiation-induced initiation, which is represented 

by the newly formed green and dark red premalignant niches.  
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This short-term process is considered instantaneous compared to the decades it takes premalignant cells 

to form and replicate. The three main aspects of the short-term process are initiation, inactivation, and 

repopulation. The model allows for custom fractionization (i.e., it provides freedom to choose the spacing, 

number, and dose per fraction), and considers cell repopulation between fractions. There are three key 

mathematical quantities that will represent each one of the aforementioned mechanisms. 𝑆𝑓(𝑍, 𝐷) will 

be the probability that at least a single premalignant cell in a niche with a carrying capacity of 𝑍 will survive 

a dose 𝐷 in 𝑛 fractions: 

𝑆𝑓(𝑍, 𝐷) = 1 − [1 − 𝐹(0)]𝑍         (9) 

 𝐹(𝑘) is the probability that a premalignant cell present before irradiation will produce a lineage that 

survives all dose fractions, and is given by: 

𝐹(𝑘) = (1 + ∑ [
𝑆(𝑘−𝑗)(1−𝑆)

∏
𝑛−(𝑖+1)

𝑆𝑛−(𝑖)
𝑗−1
𝑖=𝑘

]𝐾
𝑗=𝑘+1 )

−1

       (10) 

Here, 𝑛−(𝑖 + 1) is the number of premalignant cell niches present right before the (𝑖 + 1)𝑡ℎ dose 

fraction. This quantity can be found recursively using the formula provided in the errata to Shuryak’s 

publication[16]: 

 

𝑛−(𝑖 + 1) =
νSn−(𝑖)

{𝑆𝑛−(𝑖) + [ν – 𝑆𝑛−(𝑖)] exp[–λ(ΔT(i))]}
          (11) 

Here, 𝜈 is the number of cells present before irradiation, 𝜆 is the maximum net cell repopulation rate, 

and Δ𝑇(𝑖) is the time interval in days between the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ fractions, while 𝑆 = 𝑒−𝛼𝑑−𝛽𝑑2
 is 

the standard LQ survival fraction. 

The second relevant quantity is 𝐼𝑆𝑓(𝐷), which is the net probability outcome of inactivation, initiation 

and repopulation during radiation exposure, and is given by: 

𝐼𝑆𝑓(𝐷) = ∑ 𝐼(𝑘)𝐹(𝑘)𝐾
𝑘=1 = ∑

𝑑𝑆𝑛−(𝑘)

𝜈
𝐹(𝑘)𝐾

𝑘=1      (12) 

𝐼𝑆𝑓(𝐷) can be understood as the probability of a niche being initiated in a given dose fraction 𝑘 times 

the probability of that niche surviving all remaining fractions. The final contribution of premalignant cells 

initiated during radiotherapy can be determined by assuming that it is Poisson distributed, with an 

average of 𝑎𝑋𝐼𝑆𝑓(𝐷). 
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The last term to consider is related to the process in which promoted or initiated cell niches increase 

their carrying capacity Z after radiotherapy, as shown in subfigure G of Figure 2. This initial excess is 

assumed to be linearly dependent on the radiation dose, with the coefficient being parameter 𝑌. In the 

months following radiotherapy (H), it is assumed that these niches return to their normal carrying 

capacities. Both extinction of niches and shrinkage are combined into a single adjustable parameter 𝛿, 

which allows us to find the average normalized number of premalignant cells per surviving niche at any 

given time 𝑇𝑦 after exposure: 

𝐶𝑟𝑎𝑑(𝑇𝑦) =
1 + 𝑌 ∙ 𝐷

[1 + 𝑌 ∙ 𝐷(1 − 𝑒−𝛿𝑇𝑦)]
       (13) 

Finally, the model considers that premalignant cell niches can continue to be spontaneously initiated 

and replicate in the years following radiotherapy. 

With this, the number of premalignant cells in a patient treated with radiotherapy at age 𝑇𝑥 at a time 𝑇𝑦 

after treatment is given by: 

𝐴𝑟𝑎𝑑 =
𝑎

𝑏
(

1 + 𝑌 ∙ 𝐷

[1 + 𝑌 ∙ 𝐷(1 − 𝑒−𝛿𝑇𝑦)]
((𝑒𝑏𝑇𝑥 − 1)𝑆𝑓(𝑍, 𝐷) + 𝑏 ∙ 𝑋 ∙ 𝐼𝑆𝑓(𝐷)) 𝑒𝑏𝑇𝑦

+ (𝑒𝑏𝑇𝑦 − 1)) 𝑒−𝑐(𝑇𝑥+𝑇𝑦)
2

         (14) 

It is important to note that the age of the patient is written here as the sum of the age at RT 𝑇𝑥 and the 

time since radiotherapy 𝑇𝑦. 

To be able to quantitatively estimate risk, Shuryak compares this number to the number of premalignant 

cells present in a healthy individual of the same age who has not been exposed to radiotherapy 

(equation 1): 

𝐸𝑅𝑅 =
𝐴𝑟𝑎𝑑

𝐴𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
− 1

=

1 + 𝑌𝐷

[1 + 𝑌𝐷(1 − 𝑒−𝛿𝑇𝑦)]
((𝑒𝑏𝑇𝑥 − 1)𝑆𝑓(𝑍, 𝐷) + 𝑏 ∙ 𝑋 ∙ 𝐼𝑆𝑓(𝐷)) 𝑒𝑏𝑇𝑦 + (𝑒𝑏𝑇𝑦 − 1)

𝑒𝑏(𝑇𝑥+𝑇𝑦) − 1
      (15) 

The parameters 𝑎 and 𝑐 have canceled out and are thus not required for the estimation of ERR. 

Parameters for selected organs are given by Shuryak in the second part of his publication after fitting his 
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expressions to epidemiological data. The parameters 𝛼 and 𝛽, and 𝜆 are taken from literature 

[20][21][22][23]. 

Thus, to estimate the ERR after a particular RT, one must know the dose absorbed by each relevant 

organ, the number of fractions, the patient’s age, and the parameters for each organ. A summary of 

each parameter and its meaning can be found in Table 1. 

 

Table 1. Summary of model parameters defined in Shuryak’s original publication [14]. 

Although Shuryak’s model is by far the one that considers the largest number of radiobiological processes 

and thus is most likely to represent reality accurately, it has seen very little use since its publication, likely 

due to the difficulty of applying it. This has been a big motivator behind the desire to analyze, simplify, 

and reparametrize the model and make it more accessible.  
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Chapter 4: Methods 

4.1 Reparametrization  

A Python script was written to execute the model using the parameters found in his original 

publication[15] and reproduce the graphs presented there. After confidence in the correct functioning of 

the model was established, it was necessary to reparametrize it to update it with newer epidemiological 

data. Given that the parameter 𝑏 appears both in the background cancer incidence as well as in the 

secondary cancer model, it is convenient to do a two-step fitting process since there are more available 

data for background cancer than for second primary cancer. This ensures the best possible fit for 𝑏 before 

fitting the rest of the parameters to the much less certain second primary cancer studies.  

Background cancer incidence data was obtained from the Surveillance, Epidemiology, and End Results 

Program (SEER)[24] software (SEERStat). Incidence rates were obtained for the years 2015 to 2020 for 

ages 2 to 87 at 5-year intervals. The background risk was fitted to data from the SEER database. The sex 

of the subjects was chosen to fit the sex of the epidemiological studies that would be used for the second 

phase. It is important to note that parameters a and c cancel out from the final expression for ERR, which 

is why the discussion will only concern b. 

Once ranges for 𝑏 were determined, Bayesian inference was used to find the best fit for selected organs 

to epidemiological data found in the literature. It is important to note that these studies had to include 

information about the subject’s age at exposure, attained age, and dose to organ, as well as have the risk 

reported as either relative risk, excess relative risk, or a quantity that could be reliably converted to these. 

Some of these quantities, especially dose to organ and the relevant ages were usually reported as 

averages of the studied cohorts, thus obscuring some of the data. Bayesian inference was chosen due to 

its ability to include the uncertainty ranges in 𝑏 and the ERR values found in the literature. 

Organs were chosen based on the availability of the required data. In the end, parameters for the lung, 

stomach, colon, rectum, pancreas, bladder, breast, central nervous system, and thyroid were chosen and 

reparametrized, as they were in Shuryak’s original publication. Additionally, parameters for the esophagus 

were also calculated. Preston’s work on the second primary cancer incidences following the atomic bomb 

[6] was used in the low-dose range for every organ. The reported ERR/Gy ranges reported by Preston were 

used in the linear, low dose range, in which 5 sample points were chosen for each case, assuming that 

𝐸𝑅𝑅 =
𝐸𝑅𝑅

𝐺𝑦
× 𝐷𝑜𝑠𝑒. A literature review was conducted to find additional studies to the ones used by 
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Shuryak. All studies used to fit the model parameters can be found in Table 2. Two additional studies were 

found to be suitable for the fitting process.   

To fit the data, Bayesian inference was used in which priors were given uniform distribution within the 

biologically plausible range. The likelihood, or observed data, included their respective uncertainties. It is 

important to note that these uncertainties varied widely and, in some cases, were large enough to obscure 

a meaningful conclusion. To visualize the propagation of these uncertainties, each parameter’s 

distribution was assumed to be normal, and 10.000 synthetic data sets were generated, from which the 

ERR for a given dose was computed 500 times by randomly drawing parameter samples from the 

generated distributions. This process was done for all the original nine organs in Shuryak’s publication 

(stomach, lung, colon, rectum, pancreas, bladder, breast, central nervous system, and thyroid), as well as 

the esophagus, which was additionally parametrized during the present work.  
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Table 2. Selected studies and the organs they were used for.[9][25-33][37] Studies marked with ∗ were found during the present work and not 

originally included in Shuryak’s original publication.  
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4.2 Uncertainty Propagation 

To better understand some of the uncertainties obscured by the averaging done by the studies, several 

plots were made varying the age at exposure and attained age.  

With confidence in understanding the model’s uses and limitations, it was relevant to test whether 

parameter uncertainties hinder the main objective: to be able to distinguish between two otherwise 

identical plans and select the one with the lowest second cancer probability.  

For this purpose, a comparison between 36 prostate plans, as published by Sanchez-Nieto[34] was chosen. 

Plans of over 6 MV were eliminated in order to avoid dose contributions from neutrons. The present 

model was then implemented by picking one hundred random parameter combinations from within their 

possible range and estimating the resulting ERR distribution for each plan.  

These results were compared to those obtained using the BEIR VII mechanistic model [35] to verify 

whether both models agree on the ranking of the plans in terms of most to least risk, which would be the 

deciding criteria when making a clinical decision. The results were also compared to those reported in the 

paper obtained using Schneider’s model. It is essential to consider that Schneider’s model reports the Life 

Attributable Risk (LAR) rather than ERR, and comparing both quantities is not straightforward. For that 

reason, the aim is to compare the hierarchy of the plans, which is, after all, the relevant result that one 

wishes to obtain in order to allow the health professionals to choose the plan with the least risk. 
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Chapter 5: Results 

5.1 Improvements to Shuryak’s model 

The implementation of Shuryak’s model gave rise to a series of challenges. First was the quantity  𝜈, 

defined as the number of normal cells present before irradiation. Although defined in his publication and 

explicitly used in the model in equations 11 and 12, there was no mention of the values of 𝜈 for the 

different organs. It was noticed after testing with arbitrary values that the risk did not depend, in fact, on 

the particular choice of 𝜈. This can be shown mathematically by assuming that the initial condition of the 

recursive equation 11 is 

𝑛−(0) = 𝜈 

Note here that the number of fractions is counted such that 0 is the first fraction. This parameter appears 

only in two places, and it is easy to show that it cancels out. Beginning with equation 11, it is important to 

note that we care only about the ratio of surviving cells from two successive fractions (equation 10): 

𝑛−(1)

𝑛−(0)
=

νS

{𝑆𝑛−(0) + [ν – 𝑆𝑛−(0)] exp[– λ(ΔT(i))]}
=

νS

{𝑆𝜈 +  [ν – Sν] exp[– λ(ΔT(i))]}
 

One can factor out a 𝜈 from the denominator and rearrange the expression such as: 

𝑛−(1)

𝑛−(0)
=

S

{S +  [1 –  𝑆] exp[– λ(ΔT(i))]}
= 𝛾 

 The result of this fraction is thus independent of 𝜈, and the result holds for posterior fractions: 

𝑛−(2)

𝑛−(1)
=

νS

{𝑆𝑛−(1) + [ν – 𝑆𝑛−(1)] exp[– λ(ΔT(i))]}
 

=
νS

{𝑆𝑛−(0)𝛾  + [ν – 𝑆𝑛−(0)𝛾] exp[– λ(ΔT(i))]}
 

=
νS

{𝑆𝜈𝛾  +  [ν –  Sνγ]exp[– λ(ΔT(i))]}
=

S

{𝑆𝛾  +  [1 –  Sγ]exp[– λ(ΔT(i))]}
 

 

Again, we find that the result is independent of the parameter 𝜈. It remains to be shown that the 𝜈 in 

𝐼𝑆𝑓(𝐷) (equation 12) also cancels out: 
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𝐼𝑆𝑓(𝐷) = ∑
𝑑𝑆𝑛−(𝑘)

𝜈
𝐹(𝑘)

𝐾

𝑘=1

 

 

𝐼𝑆𝑓(𝐷) = ∑
𝑑𝑆 [

νSn−(𝑘 − 1)
{𝑆𝑛−(𝑘 − 1) +  [ν – 𝑆𝑛−(𝑘 − 1)] exp[– λ(ΔT(i))]}

]

𝜈
𝐹(𝑘)

𝐾

𝑘=1

 

As before, the result is clear once you examine the cases for 𝑘 = 1: 

𝐼𝑆𝑓(𝐷)𝑘=1 =
𝑑𝑆 [

νSn−(0)
{𝑆𝑛−(0) +  [ν – 𝑆𝑛−(0)] exp[– λ(ΔT(i))]}

]

𝜈
𝐹(𝑘) 

=
𝑑𝑆 [

ν2𝑆
{𝜈 +  [ν –  𝑆𝜈)] exp[– λ(ΔT(i))]}

]

𝜈
𝐹(𝑘) = 𝑑𝑆 [

ν𝑆

{𝜈 + [ν –  𝑆𝜈)] exp[– λ(ΔT(i))]}
] 𝐹(𝑘) 

𝐼𝑆𝑓(𝐷)𝑘=1 = 𝑑𝑆 [
𝑆

{1 +  [1 –  𝑆)] exp[– λ(ΔT(i))]}
] 𝐹(𝑘) 

Thus, the parameter 𝜈 has been completely canceled out from every equation it originally appeared in. 

What this translates to is that the expressions for surviving cells 𝑛−(𝑘) are normalized so that they refer 

not to the number but rather to the fraction of surviving cells, thus giving an initial condition for the 

recursive formula that 𝑛−(0) = 1.  

5.2 A compact expression for F(k) 

Another important simplification can be done on equation 10, assuming that all fractions deliver the 

same dose. We can expand the product inside of 𝐹(𝑘): 

∏
𝑛−(𝑖 + 1)

𝑆𝑛−(𝑖)
=

𝑛−(𝑘 + 1)

𝑆𝑛−(𝑘)

𝑗−1

𝑖=𝑘

×
𝑛−(𝑘 + 2)

𝑆𝑛−(𝑘 + 1)
×

𝑛−(𝑘 + 3)

𝑆𝑛−(𝑘 + 2)
× … ×

𝑛−(𝑗 − 1)

𝑆𝑛−(𝑗 − 2)
×  

𝑛−(𝑗)

𝑆𝑛−(𝑗 − 1)
 

Evidently, this is a telescopic product which simplifies down to: 

∏
𝑛−(𝑖 + 1)

𝑆𝑛−(𝑖)
=

𝑛−(𝑗)

𝑆𝑗−1−𝑘 𝑛−(𝑘)

𝑗−1

𝑖=𝑘

 

Now, plugging this back into equation 10: 
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𝐹(𝑘) = (1 + ∑ [
𝑆(𝑘−𝑗)(1 − 𝑆)

𝑛−(𝑗)
𝑆𝑗−1−𝑘 𝑛−(𝑘)

]

𝐾

𝑗=𝑘+1

)

−1

= (1 + ∑ [
𝑆(𝑘−𝑗+𝑗−1−𝑘)(1 − 𝑆)𝑛−(𝑘)

𝑛−(𝑗)
]

𝐾

𝑗=𝑘+1

)

−1

 

𝐹(𝑘) = (1 + (𝑆−1 − 1) ∑ [
𝑛−(𝑘)

𝑛−(𝑗)
]

𝐾

𝑗=𝑘+1

)

−1

 

This expression is much simpler to compute than 3 and is completely equivalent as long as every fraction 

delivers an equal dose. 

5.3 Best fit parameters 

The best-fit parameters related to the background risk, 𝑎 𝑏 and 𝑐, are shown in Table 3, while the 

generated plots are shown in Figure 3. The resulting parameters are mostly the same as the ones originally 

proposed by Shuryak. The differences arise due to the differences in cancer indices between the available 

data around the release of the original publication and the data available for recent years. If instead of 

fitting cancer incidence rates from 2015 to 2020, one fits to data before 2007, Shuryak’s parameters and 

graphs can be flawlessly reproduced.   

 

Table 3. Best-fit parameter values for background incidence of all analyzed cancer types. An additional parameter 𝑘 is shown here and will be 

explained shortly. The 95% confidence intervals appear in parenthesis next to their corresponding mean values. 
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Figure 4. Best fit model predictions for US Background incidence for each cancer type from the SEER database.   

The parameters for radiocarcinogenesis were fitted using both low doses from survivors of the atomic 

bomb and higher doses from second primary cancer studies after RT. A Bayesian Inference code was used 

in which priors were selected based on biologically plausible ranges. The results can be found in Table 4. 
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Table 4. Best-fit parameters and their uncertainty ranges for selected organs. Note that only 𝑋, 𝑌, 𝑍, and 𝛿 were fitted. 𝛼, 𝛽, and 𝜆 were taken 

from the literature [20][21][22][23]. Note that the model appears to be almost entirely independent of the value of X, which consistently 

reflected the entirety of the biologically plausible range.  

5.4 Adjustments to the CNS 

In Figure 4, it is evident that all organs fit the data well for all ages except for the CNS. This is an issue that 

was initially raised by Shuryak. The underestimation that occurs for subjects under age forty is likely due 

to the model’s assumption that there are no premalignant cells at birth. Yet CNS cancers are notorious for 

their genetic origin and thus require a modification of the model of background incidence. If we assume 

that an individual is born with a 𝑘 number of premalignant cells, Equation 8 can be replaced by  

𝐴𝑏𝑎𝑐 =
𝑎

𝑏
(𝑒𝑏𝑇𝑥 − 1 + 𝑘)𝑒−𝑐(𝑇𝑥+𝑇𝑦)

2

         (9) 

The plot of background cancer incidence of CNS using this new equation is shown in Figure 5.   

 

Figure 5. Best-fit model predictions utilizing the additional parameter 𝑘. When using this parameter, the values for 𝑎, 𝑏, and 𝑐 should be 

replaced by 0.651 × 10−6,0.219 and 1.380 × 10−3, respectively. 
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The model now fits the cancer rates at early ages more precisely, but it must be kept in mind that the 

modification to the background incidence model should only be used for cancers with high genetic causes, 

such as the central nervous system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

5.5 Fitted parameters and their uncertainties 

After fitting, Montecarlo simulations of the parameter distributions were performed using random 

sampling. The plots can be found in Figure 5, where darker colors indicate a higher likelihood of 

occurrence. 

 

Figure 6. Results of the Montecarlo simulation for the ERR values for the selected organs. The black dots and lines correspond to the 

epidemiological data and their respective reported uncertainties.  
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5.6 Analyzing X 

When fitting, it became apparent that the model seemed to have only a loose dependence on the 

parameter  𝑋. To better understand this, another curve was plotted, this time fixing all parameters except 

for 𝑋, the values of which were randomly drawn from the range shown in Table 4. The resulting plots are 

shown in Figure 7. 

Colon 

 

Bladder 

 

Figure 7. On the Left, ERR for Colon as a function of age at diagnosis (Tx) for four different values of time since diagnosis (Ty). On the right, ERR 

for Bladder under the same conditions. Keep in mind that graphs have different scales on the ERR axis. It is interesting to note that changes in X 

only have a noticeable impact if the age at diagnosis is lower than forty. Beyond that point, the 𝑋 can take almost any value, and the model 

thus becomes independent of it.  
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While colon cancer at early ages is a relatively rare occurrence, one must consider that the model works 

with relative risk, so apparently large percentage increases often translate into a small number of 

additional cases. The behavior of the model as a function of parameter 𝑋 remains consistent with other 

studied organs. 

The justification of why 𝑋 can be neglected at older ages is the fact that as 𝑇𝑥 grows, there can be several 

orders of magnitude of difference between the quantities being added on the left side of equation 14 

((𝑒𝑏𝑇𝑥 − 1)𝑆𝑓(𝑍, 𝐷) and +𝑏 ∙ 𝑋 ∙ 𝐼𝑆𝑓(𝐷)). In other words, there exists such a large number of 

premalignant cells that have been accumulating during the individual’s life that the few initiated ones 

become negligible. When the individual is young, however, since there are fewer premalignant cells 

present, initiation plays a much more important role. So, in cases when 𝑇𝑥 > 40 𝑦𝑒𝑎𝑟𝑠, we can replace 

equation 6 with the much simpler: 

𝐸𝑅𝑅𝑇𝑥>40 =

1 + 𝑌𝐷

[1 + 𝑌𝐷(1 − 𝑒−𝛿𝑇𝑦)]
((𝑒𝑏𝑇𝑥 − 1)𝑆𝑓(𝑍, 𝐷)) 𝑒𝑏𝑇𝑦 + (𝑒𝑏𝑇𝑦 − 1)

𝑒𝑏(𝑇𝑥+𝑇𝑦) − 1
    (16) 

5.5 The impact of uncertainties in Tx and Ty 

All of the selected studies indicated the average attained age and average latency time before the 

apparition of second primary cancer. This obscures information that is relevant for a model that heavily 

depends on the time evolution of premalignant cells. To better understand the impact of averaging the 

ages of the cohort, ERR was plotted against different combinations of age at diagnosis (𝑇𝑥) and time until 

apparition 𝑇𝑦, in Figures 8 and 9.  
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Figure 8. ERR for the stomach as a function of age at exposure for different values of Ty. This phenomenon is noticeable for all organs. The 

stomach was chosen for no particular reason. Similarly, an absorbed dose of 20 Gy at 17 fractions was chosen arbitrarily to illustrate the impact 

of the uncertainties in 𝑇𝑥 and 𝑇𝑦.   

 

Figure 9. ERR for the stomach as a function of time since exposure for different values of Tx. This phenomenon is noticeable for all organs. The 

stomach was chosen for no particular reason. Similarly, an absorbed dose of 20 Gy at 17 fractions was chosen arbitrarily to illustrate the impact 

of the uncertainties in 𝑇𝑥 and 𝑇𝑦.   

Both plots clearly show significant variations in ERR for even relatively small age differences, which clearly 

indicates the impact of an uncertainty source that cannot be easily accounted for with the current 

method.  
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5.8 Results of the prostate plans 

The resulting ERR estimation for the chosen prostate plans can be seen in Table 5. 

 

Table 5. ERR and standard deviation for the generated distributions obtained using the new parameters for Shuryak’s model. The plan labels can 

be interpreted as follows: the first letter indicates the manufacturer of the linear accelerator (V for Varian, S for Siemens, E for Elekta, P for 

Philips). The middle letters correspond to the technique used (SB for SBRT, 3D for 3D-CRT, IMi for Inverse IMRT, IMd for direct IMRT, VM for 

VMAT, RA for rapid arc).  

It can be seen by comparing the total ERR and their standard deviation that a hierarchy between plans 

can clearly be established. However, the model must still be tested against an alternative one. Tables 6 

presents a comparison between the results using Shuryak’s model and those found using the BEIR VII 

model. Results from the original study [34] were found using a combination of Schneider’s and the BEIR 

model. The corresponding risks were transcribed into Table 7. 
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Table 6: Comparison between the results found using Shuryak’s model with the new parameters and BEIR VII. Here, (B) stands for BEIR VII and 

(S) for Shuryak. Here, plans are ordered from highest to lowest total ERR.  

 

Table 7: Comparison between the results found using Shuryak’s model and those reported by Sanchez-Nieto et al. The latter risk is reported as 

LAR  [34]. 
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It is clear that Shuryak’s model tends to underestimate the risk at very low doses while overestimating it 

at higher doses, with respect to the BEIR VII model.  

While there are clear agreements between the models on the lowest risk plans, determining a hierarchy 

on the upper end is difficult, as the differences between ERR are smaller than the uncertainties. 

Differences could also be explained by the fact that the Shuryak model for low doses was parametrized 

using data from the atomic bomb, which not only has large uncertainties but also corresponds to a 

different ethnic group, which is known to have different cancer rates. This can be seen by examining the 

difference in cancer rates in the SEER database and the Radiation Effects Research Foundation (RERF) [36].  
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Chapter 6: Discussion 

Several important contributions were accomplished during the present work. Shuryak’s model was 

rewritten in a more compact and accessible way by eliminating the parameter 𝜈 and rewriting 𝐹(𝑘). New 

parameters were calculated using newer data from epidemiological studies, and a new organ, the 

oesophagus, was added entirely. It was possible to obtain a better fit for the CNS to the cancer incidence 

data found on the SEER database by introducing a new parameter 𝑘. The fitting process was improved by 

using a Bayesian inference fitting method from Python’s pymc database. It is interesting to note that, for 

most cancers, variations of the value of the parameter X only marginally affected the results. As briefly 

mentioned, this is a consequence of the fact that the first term in the bracket in equation 6 can be several 

orders of magnitude larger than the second one for sufficiently large 𝑇𝑥. This implies that the 

predominating factor that leads to second primary cancers might not be the initiation of premalignant 

cells during RT but rather the process of hyperproliferation of the surviving premalignant cells. 

This issue may be related to the fact that equation 8 assumes exponential growth of the premalignant cell 

niches. However, cancerous growth cannot really be assumed to be exponential in the long term, as 

competition with adjacent niches and homeostatic regulatory mechanisms impose a limit on tumoral 

growth. It is possible that a limited growth function might be better suited for the modeling of growth and 

replication of premalignant cells and would thus avoid the order of magnitude difference that renders 

initiation a negligible factor in this model.  

The age dependence of the parameter X might be an indicator of a future need to allow for age 

dependence in the fitting process, further increasing its complexity but also its accuracy. This change 

would make sense, however, as it is known that younger people are more radiosensitive than older 

people. Regardless, the result obtained in equation 16 should be used for all patients over the age of 40 

(which is the vast majority of RT patients), as it significantly simplifies the expression and reduces 

computation time, which is even more impactful if implemented in a treatment planning system that 

requires large numbers of computations.  

Despite the fact that Shuryak’s model was clearly capable of distinguishing between different prostate 

plans, no clear agreement existed between different risk estimation models. Further study is required not 

only to obtain better-adjusted parameters by reduced uncertainty in the data fed to Shuryak’s model but 

also to evaluate its reliability and accuracy.   
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In conclusion, Shuryak’s model was successfully implemented and reparametrized, with a new organ 

being added altogether. Several simplifications were made, which will allow for easier access to the model. 

However, it was also made clear the impact that uncertainties have on a model that considers such a large 

number of parameters, and thus, before being clinically viable, Shuryak’s model will require 

epidemiological studies that contain all the information that it needs with the lowest uncertainty possible.  
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Appendix: Python code 

This is a sample code used for fitting the rectum. All other organs were similarly fitted, with their 

respective data. 
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