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Non-Abelian group quantization and quantum kinematic invariants of some 
noncompact Lie groups 

J. Krause 
Fact&ad de Asica, PontQicia Universidad Catblica de Chile, Casilla 6177, Santiago 22, Chile 

(Received 11 October 1989; accepted for publication 19 September 1990) 

The formalism of non-Abelian group quantization is briefly revisited, within the regular 
representation of noncompact Lie groups. It is shown that some of such r-dimensional groups 
have a set of Y basic quantum-kinematic invariants, which substantially differ from the 
traditional invariants. The relation of the traditional invariants of the Lie algebra with the new 
quantum-kinematic invariants is also briefly examined. This paper contains two miscellaneous 
examples of quantum-kinematic invariant operators. 

I. INTRODUCTION 
One of the most fundamental problems in the represen- 

tation theory of Lie groups (or Lie algebras) is the determin- 
ation of the invariant operators of a group.’ The purpose of 
this paper is to bring this fundamental problem under a new 
perspective. In fact, here we shall not follow the traditional 
approach to this subjecQ2 instead, to this end, in this paper 
we adopt the new standpoint offered by the group quantiza- 
tion formalism of non-Abelian quantum kinematics, which 
we have recently introduced in the literature.3-5 (The con- 
cept of “quantizing a Lie group” means that all its essential 
parameters are treated as q numbers. This concept will be 
analyzed in the sequel. ) 

The invariant operators of Lie group theory have been 
traditionally obtained from the exclusive viewpoint of the 
Lie algebra, since they have been defined hitherto as those 
functions of the generators that commute with all the gener- 
ators of a given representation. Henceforth, for the sake of 
briefness, we shall refer to this familiar notion of invariant 
operators as the traditional invariants of Lie group theory. In 
this sense, we have to point out that the set of invariants 
considered in the present line of research (i.e., quantum- 
kinematic invariants) are of a conceptually new type, be- 
cause they are not only invariant functions that depend ex- 
clusively on the generators, and because the new set of 
invariants contains all the traditional invariants as a proper 
subset of a rather special kind. Thus the quantum-kinematic 
theory of invariants (which is introduced in this paper) en- 
tails an interesting generalization of the traditional theory. 

The importance of Lie group invariant operators is well 
known, both from the mathematical point of view, as well as 
for their physical applications6 The problem of their explic- 
it construction for semisimple Lie algebras was first consid- 
ered by Casimir,’ and the traditional invariants of semisim- 
ple Lie groups were determined long ago.* On the contrary, 
traditional invariants of nonsemisimple groups have been 
determined only for a small number of cases, and their ph ys- 
ical meaning have been also discussed in the literature.’ 

Maybe the best method for obtaining the traditional in- 
variants of a Lie group consists in using the associate adjoint 
realization of the corresponding Lie algebra,‘O which re- 
duces the problem to that of solving a system of linear homo- 
geneous first-order partial differential equations [cf. Eq. 
(4.3)) below 1. As is well known, the solutions of these equa- 

tions lead to the most general set of traditional invariants of 
the group,” This method is completely general indeed. 
However, the results obtained in this way are both remark- 
ably successful and faintly distressing because, for some Lie 
groups, these equations have no polynomial solution (and 
the Lie algebra has no Casimir operator, sense stricto); for 
other Lie groups, the equations have only transcendental 
solutions (yielding invariant operators that do not belong to 
the enveloping algebra). Moreover, it also happens that for 
some Lie groups the equations provided by the associate ad- 
joint Lie algebra have no solution (and therefore the group 
has no traditional invariant at all). 

As we shall see presently, one arrives at completely dif- 
ferent results if one uses the “group quantization” method, 
for then it turns out that every r-dimensional Lie group has a 
set of r basic quantum-kinematic operators that commute 
with all thegenerators of the group. Moreover, it can be prov- 
en that once a Lie group has been “quantized,” its basic 
kinematic invariant operators arise in a rather natural man- 
ner (even in those extreme cases where the group has no 
traditional invariant at all). In this paper we prove this fact 
for a special kind of noncompact Lie groups. Although this 
feature is valid also for other kinds of Lie groups, quantum 
kinematics of Lie groups, in general, sets a rather difficult 
issue. (We postpone the consideration of the general formal- 
ism of quantum kinematics to some forthcoming papers.) 

The organization of this paper is as follows. Section II 
contains a brief review of group quantization and presents 
some features of non-Abelian quantum kinematics of non- 
compact Lie groups of a special kind. The basic quantum- 
kinematic invariants are introduced in Sec. III, and some of 
their properties are examined. The relation of the traditional 
Lie algebra invariant theory with the new kind of quantum- 
kinematic invariants is next discussed in Sec. IV. In Sec. V 
we present two rather simple (albeit interesting) instances of 
quantum kinematic invariant operators. Finally, Sec. VI 
contains some concluding remarks. This paper includes an 
Appendix that serves the purpose of introducing our nota- 
tion and some required basic concepts. 

II. GROUP QUANTlZATlON AN5 NON-ABELIAN 
QUANTUM KINEMATICS 

We begin this work with a brief review of the main con- 
cepts leading to group quantization and non-Abelian quan- 
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turn kinematics of noncompact Lie groups. It is our inten- 
tion to describe here only those features that are directly 
relevant for the discussion of the quantum kinematic invar- 
iants. In particular, here we shall nof dwell on the physical 
meaning of the formalism.4’5 

Henceforth, G denotes a noncompact, connected and 
simply connected, r-dimensional Lie group (as, for instance, 
the universal covering group of a noncompact finite-dimen- 
sional Lie group). Furthermore, we shall also assume that 
there exists a coordinate patch q = (q’,...,q’), which covers 
the whole group manifold M( G) and mantains everywhere a 
one-to-one correspondence with the elements of G, i.e., the 
coordinates q”, a = 1 ,...,r, are real and provide a set of r es- 
sential parameters of G. This is a strong condition, to be sure. 
However, as a matter of fact, this assumption holds for a 
large class of Lie groups that are physically relevant. Indeed, 
most Lie groups of physical interest are of a type known as 
“linear Lie group,” in the sense that they have at least one 
faithful finite-dimensional representation.12 It can be shown 
that the whole of a connected linear Lie group of dimension r 
can be parametrized by r real numbers q’,...,q’, which form a 
connected set in 9’. (Let us recall that a linear Lie group is 
said to be “connected” if it possesses only one connected 
component. ) Of course, there is no requirement in general 
that this globalparametrization of G be faithful, Neverthe- 
less, there are many instances of noncompact, connected and 
simply connected linear Lie groups (of physical relevance) 
for which the global parametrization provides a one-to-one 
faithful mapping.” For the sake of simplicity, and in order 
to concentrate ourselves on the issue of existence of a new 
kind of quantum kinematic invariants, in this paper we shall 
deal exclusively with Lie groups that satisfy this strong con- 
dition. 

In the sequel we shall write 7j = q(q) to denote that 
point in M(G) which labels the inverse element of the ele- 
ment corresponding to q, and e = (e’,...,e’)EM( G) to denote 
the labels of the identity element. Ofcourse, M(G) carries an 
analytic mapping, g: M(G) xM(G) -M(G), that is en- 
dowed with the group property of G. Hence, in this parame- 
trization of G one has a well-defined set of r group-multipli- 
cation functions, f(q’;q) = q’“&(G), which realize the 
group law in M( G) .I3 

Now, in order to “quantize” the group G we have to 
associate its essential parameters q0 with a set of commuting 
Hermitian operators Q ‘, which act within the carrier space 
of a relevant representation and may be interpreted as gener- 
alized “position” operators of the group manifold.3 It is 
clear that the best (if not the only) way of achieving this 
endeavor is by means of the regular representation of G. 
Hence, let us consider the quantum-kinematic formalism ob- 
tained from both (the left and right) regular representations 
of G (cf. the Appendix of this paper for a unified formalism 
of the two regular representations that shall be assumed as 
theoretical framework in what follows). 

Within the common Hilbert space H(G) that carries 
both regular representations [cf. the Appendix, Eq. (A9) 1, 
we next “quantize” the group in the standard way. That is, 
we define the following spectral integrals over the group 
manifold: 

ea = J d’qlq)f(ql = 1 dPL (9) ldd(4lL 

= s dPR (4) Iq)Rcf%IlR (2.1) 

[cf.Eqs.(A5)and(A8)];i.e.,wesetQa=Q”, =Qg.Cer- 
tainly, the Q ‘s are generalized position operators of M(G), 
acting in a(G); in fact, one has 

Q"ldL = q”lq)~, Q"ldR = cfld~, (2.2) 
and moreover 

[Q”,Qb] = 0, a,b = l,..., r. (2.3) 
Hence, the Q ‘s provide a complete set of commuting Hermi- 
tian operators in H(G). 

Of course, the generators L, and R, of the regular repre- 
sentations of G are Hermitian operators in their own right 
[cf. Eq. (A14) 1, which are given by 

U,(e +Sq) =I- (i/fi)Sq”L,, (2.4) 
U, (e + Sq) = I - (i/fi)Sq”R,. (2.5) 

(The constant fi will have no relevance in this paper, and is 
kept here only to recall the familiar and suggestive expres- 
sions of quantum mechanics.) Therefore, in the “Q repre- 
sentation” of quantum kinematics these generators become 
realized as follows: 

L(91LIti) = -i~a(q)$L(q), (2.6) 

R (qlR, Iti> = - ifir, (q)h (4) (2.7) 
[cf. Eqs. (Al) and (A12)]; or, for that matter, we can also 
write: 

Llq)L =i~a(q)ldL, R,lq), =ifiY,(q)lq).. 
(2.8) 

It is interesting to consider the active transformation 
laws that bring the operators QU, L,, and R,, from the 
“Schrbdinger picture” into the “Heisenberg picture” of 
quantum kinematics. After some manipulations, one gets: 

ut Cq)Q"U, (q) = g"(q;Q), (2.9) 

ut (4)L u, (4) = A I: (4X,, (2.10) 

and 

ut, Cq)Q”u, (4) =g”(Q;q), (2.11) 

U:,(qM”U,(q) =%q)&, (2.12) 

whereg”(q;Q) andg”(Q;q) aredefined by their spectral inte- 
grals, namely, 

g”(q;Q) = j- dpL (4’) lq’)tg”(q;q’) (q’IL, (2.13) 

g”(Qx) = s d,R (4) Iq’),g”(q’;q) <q’lR, (2.14) 

and where we have written 

A:(q) =RZ(q)~;,b(q), A:(q) =L:(q)R:(q). 
(2.15) 

[As a matter of fact, these ‘mixed’ transport matrices in 
M(G) correspond to the adjoint representation of G; for it 
can be shown that 

A : (4’M ,b(q) = A 8 Mq’;q) I, (2.16) 
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and also 

x, (qM E(4) =f$A ;(q), (2.17) 

Y,(qM Z(q) =.f:J :(q), (2.18) 

wherefrom A & (e) = f i. follows. Therefore, one has 

A,b(e+&) =S,b t-W%, (2.19) 
as required. ] Hence, Eqs. (2.10) and (2.12) mean that L, 
and R, transform as covariant vector operators with respect 
to the adjoint representation of G (which is well known, to 
be sure* ). On the other hand, Eqs. (2.9) and (2.11) (al- 
though rather natural) to our best knowledge are new.3 
They state that the generalized position operators of the 
group transform covariantly upon the group law. 

We are now ready to consider one of the most important 
results of the group quantization approach to quantum kine- 
matics. In fact, if we evaluate the transformation laws (2.9 )- 
(2.12) in a small neighborhood of the identity we get a set of 
new interesting commutation relations, which can be used to 
obtain the quantum-kinematic algebras of the formalism. 
Thus from Eqs. (2.9) and (2.10) we obtain: 

[QUA,] =im”,(Q), (2.20) 

[Lo&] = -ififCaA, (2.21) 
where 

R:CQI = I 4bwbh.R34ML. (2.22) 

In the same way, from Eqs. (2.11) and (2.12), it follows: 

[ Q”,Rb] = iW. “b(Q), (2.23) 

[R,,R, ] = ififL& (2.24) 

with 

L:(Q) = d,,(q)lq).L;:(q)(ql.. (2.25) 

Certainly, Eqs. (2.2 1) and (2.24) correspond to the Lie 
algebra obeyed by the generators [cf. Eq. (A2) 1. On the 
other hand, the “canonical” commutation relations shown 
in Eqs. (2.20) and (2.23) are characteristic of a non-Abelian 
(noncompact) Lie group like G. They are interesting, for 
they correspond to generalized Heisenberg commutation re- 
lations that are obeyed by the position operators and the non- 
Abelian momenta represented by the generators.3 Indeed, it 
is clear that if the group is Abelian (and the parameters are 
canonical), one recovers the conventional Heisenberg-Weyl 
algebra within the present formalism, for in that case (and 
only in that case) one has L, =R, = P,, 
L”,(q) =Rg(q)=l$, andf& =0, fora,b,c,= i,..., r, and 
for all q&f(G). Hence, the commutators presented in Eqs. 
(2.20)-(2.25) entail a generalization of the Heisenberg 
commutation relations of ordinary quantum mechanics (for 
the case of a non-Abelian G), in a very natural fashion in- 
deed. Such a result is, of course, of potential interest for 
physics.3-5 

We next easily obtain the quantum kinematic algebras 
of G. In fact, from Eq. (2.20) one has 

[RQ),L,] = iWo(Q)F(Q), (2.26) 

where A’,(q)F(q) = R,b(q)F,,(q), and therefore Eq. 
(2.17) yieIds immediately: 

[A ‘i,tQ~A,] = ifif$J %(8). (2.27) 
In the same way, from Eqs. (2.23) and (2.18), one gets 

[A Eb(Q)J&] = iCifZdA ;f(Q). (2.28) 
Thus we see that the commutation relations (2.20)-(2.21) 
and (2.23)-(2.24) close separately to form two iinite-di- 
mensional algebras. Equations (2.21) and (2.27) define the 
left quantum kinematic algebra, while Eqs. (2.24) and 
(2.28) exhibit the right quantum kinematic algebra of G. It 
is clear what are exactly the generators (and the dimension) 
of these algebras. Of course, since 

[A:(QM:(Q,] =O (2.29) 
and 

[&A,] = 0, (2.30) 

for a,b,c,d = l,..., r [cf. Eqs. (2.3) and (A3) 1, one has also a 
larger quantum kinematic algebra of G, which is given by 
Eqs. (2.21), (2,24), (2.27), (2.28), (2.29),and (2,30).The 
discussion of the structure of these algebras is not difficult; 
albeit, it shall be given elsewhere. 

FinaIly, we observe that, from the “crossed” action of 
the representative operators [i.e., UL (4) lq’jR and 
UR (4) wL.9 asgiveninEqs. (A16)and (A17)],itfollows: 

Llq), =qKAq) --?,f5?]ldm (2.31) 

R,ldt =“fi[YAq) +If:~+]lh (2.32) 

which yield the realizations (i.e., the Q representation) of 
the left (right) generators in the right (left) regular repre- 
sentation of G, respectively. (Note that 
fib =fA, + *** -i-f:,., 

To end this short review, we would also like to remark 
that, from a mathematical point of view, the importance of 
non-Abelian quantum kinematics stems from the fact that 
the sets {Q’,..., Q’; L,, . . . . L,) and {Q’,..., Q’; R,,..,,R,) 
[and not just the set of generators {L, ,...,L,}, nor 
(R, ,.,.,R,}] are the irreducible sets of Hermitian operators 
that characterize the carrier Hilbert space H(G) . I4 

III. QUANTUM-KINEMATIC INVARIANTS OF G 
We now proceed to study those functions of the position 

operators and the generators that commute with all the gen- 
erators of (one of) the regular representations of G. (For the 
sake of concreteness, here we choose the left regular repre- 
sentation.) It is clear that such functions correspond to the 
most general invariants of G. 

First, we recall that the left and right representative op- 
erators commute: 

u, (9) u, (4’) = U,(q’)U,(q), (3.1) 
for al1 q,q’&f( G). [In the present context, this fact can be 
shown by means of Eqs. (A 10) and (A 11) . ] Hence, a glance 
at Eqs. (A3), (2.8), and (2.15) recommend us todefine the 
following set of Y linearly independent operators in H(G): 

iiJe;L, =;I:(Q,L,. (3.2) 
Indeed, by means of Eqs. (2.10) and ( 2.161, it can be shown 
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u; b7)jio (Q;L> u, (4) = ii, (c&L>; (3.3) 
or else, using Eqs. (2.17) and (2.23) one can prove that 

[ii,(Q;L,,L,] =o, a,b= l,..., r, (3.4) 
holds, as required. Thus these are invariant operators of the 
left regular representation. Furthermore, in the Q represen- 
tation (of the left quantum-kinematic formalism) these op- 
erators become realized as follows: 

,(41EJ@;L)I?G = -ifiya(q)q,(q), (3.5) 
which also exhibits their invariant property [i.e., Eqs. (2.6) 
and (A3)]. 

However, the 2 ‘s are not Hermitian, in general, since 
from Eqs. (2.17) and 
j&-ii,- 

(2.20), one obtains 
ifi& ,” (Q). Certainly, this means that the op- 

erators@ ,” (Q) must be multiples of the identity [since 
they commute with all the operators of the irreducible set 
{Q;L}]. This is the case, indeed, because from the Jacobi 
identity obeyed by the structure constants it follows 

f$f& = 0 (fora,b = l,... ,r) and therefore, after some mani- 
pulations, Eq. (2.17) yields&z t (q) =f s,. Hence, we can 
always define a set of r Hermitian invariant operators in the 
left regular representation of G, which are given by 

R,(e;L) =A:(Q)L, -@if:,. (3.6) 
Furthermore, using Eq. (3.5), it is an easy matter to obtain 

R, (Q;L)Iq)L = i$[ Y, (9) + tfi,] ldL, (3.7) 
which immediately identifies these operators as the genera- 
tors of the right regdar representation [recall Eq. (2.32) 1, 
acting as invariant operators within the left regular represen- 
tation of G. 

Of course, if one is interested in the right regular repre- 
sentation, one can invert Eq. (3.6) to read 

L,(Q;R) =A,b(12)~~ +fififjlb. (3.8) 
These are the generators of the left regular representation 
acting as invariant operators within the right regular repre- 
sentation. 

Clearly, the clue of this nice feature lies in Eq. (A3), 
which is a well-known fact. However, we would like to un- 
derline that without recourse to group quantization it is not 
possible to take advantage of Eq. (A3), because in order to 
cast the right (left) generators as invariant operators of the 
left (right) regular representation, one needs to express 
them as functions of the left (right) generators and of the 
position operators of the group (which, thus, has to be quan- 
tized). 

IV. TRADITIONAL INVARIANTS OF THE LIE ALGEBRA 
According to the previous discussion, it is evident that a 

function F(Q), which does depend only on the Q ‘s, cannot 
yield an invariant operator of G. On the other hand, the 
traditional invariants of G are defined (within the left repre- 
sentation) as those functions F( L) which do depend only on 
the generators, and which are such that 

[F(L),L,] = 0, a = l,..., r. (4.1) 

Hence, the interesting question arises concerning the possi- 

ble relations between the quantum-kinematic invariants of G 
and its traditional invariant operators. 

In order tz tackle this problem let us assume that there is 
a function F(R) with the following property 

~&Q,.L)=f(L); (4.2) 
i.e., F is such a function of the i ‘s that its implicit depen- 
dence on the Q’s cancels out. (It is clear that such function 
would correspond to a traditional invariant of G.) We then 
introduce an auxiliary space X = {x}, with coordinates 
x = (x, ,..., x,)&Y, and we consider the following c-number 
functions: pa (q;x) = 7 t (4)x,, defined on M(G) XX. We 
now demand for a function F(p) such that 
F[A(q)-x] =f(x); thus, we demand dF(p)/k3q”=O, for 
a=1 ,...,r. If we evaluate this condition at the identity point 
q = e of M( G), after some straightforward steps, we obtain: 

a = l,..., r, (4.3) 

which we recognize as precisely the first-order partial differ- 
ential equations of the associate adjoint realization of the Lie 
algebra, which one has to solve in order to obtain the tradi- 
tional invariants of G. i ’ 

Conversely, if F(x) is a solution to the system of partial 
differential equations given in (4.3) [and therefore F(L) is a 
traditional invariant of the Lie algebra], let us introduce the 
change of variables x, -+pO = At (q)xb into that equation; 
so we get, formally: 

f :bPr Ysf ;bA:(q)XdF.b (Z(9) ‘X) = 0. (4.4) 
b 

Then, taking into account that Eq. (2.18) can be cast in the 
equivalent form 

y,(q)x;(q) = -fZf,~fi(q), 
from Eq. (4.4) we obtain 

(4.5) 

Y, w-mq) ‘4 = 0, (4.6) 

which means dY@(q)*x)/dq” = 0, for a = l,...,r, every- 
whzre in M(G); i.e., we get Z@(q)+x) =f(x), and thus: 
F(R) =f(L). 

Hence, let us epitomize: All the traditional invariants 
F(L) of G in H(G) correspond to a special k&d of functions 
of Jhe quantum kinematic invariants R,, for which 
F(R) = f( L) holds. (This result can be easily extended to 
the Hermitian R ‘s). Thus we have proven that a noncom- 
pact Lie group like G has infinitely more invariant operators 
than those which have been traditionally considered hither- 
to, since every function F( R ) is certainly an invariant opera- 
tor of the left regular representation and, furthermore, every 
traditional invariant function f(L) of this representation is 
necessarily a function of the R ‘s. 

V. TWO MISCELLANEOUS EXAMPLES 
With the aim of exhibiting the explicit form adopted by 

the quantum-kinematic invariants, in this section we present 
two instances, which also serve to illustrate some particular 
points of the previous formalism. Our examples are taken 
from elementary Lie group theory. For the sake of brevity, 
our discussion is very sketchy. 
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Let us consider some features of the left regular repre- 
sentation of the following noncompact Lie groups: (a) the 
affine group of the real line, and (b) the inhomogeneous 
restricted Lorentz group of two-dimensional Minkowski 
space-time. In the space alloted here, we content ourselves 
with those formal results of quantum kinematics that throw 
some light on the new invariants of these groups. Hence, 
besides some few remarks, we shall not delve into the com- 
plete solution of the outcoming “quantum models” and their 
physical interpretation. 

A. The affine group of the real line 

It is well known that only one algebraically indecompos- 
able real Lie algebra of dimension r = 2 exists. The commu- 
tation rule is [ Y, , Y, ] = Y2 ; it is solvable. It has no tradi- 
tional invariant. [Indeed, the only solution to Eqs. (4.3), in 
this case, is F = const.] This Lie algebra corresponds to the 
affine group of the line { - to < t < + CO}; namely, 

t ’ = e9’t + q2, (5.1) 
where the group manifold is given by 
IV={-co<qO< + CO ;a = 1,2}, and the identity point is 
e = (0,O). In fact, the group law reads 

q”’ = g’(q’;q) = q” + q’, 

qm2 = g’( q’;q) = q’z + &‘q2; (5.2) 
and therefore one obtains: 

(5.3) 

(where “a” labels the raws and “b ” labels the columns), 
wherefrom the Lie vector fields in A4 follow, i.e., 

x,(q) =a, +$a,, x,(q) =a2, (5.4) 

Y, (q) = a,, Y, (4) = da,. (5.5) 
Thus one gets the Lie algebra: 

[X,,X2] = --x2, [Y,,Y,] = y27 (5.6) 
and moreover, one also has 

[X,,,Y,] = 0, a,b = 1,2. (5.7) 
Hence, the fundamental quantum kinematic commutation 
relations of the affine group are given by 

[L,,L,] = ifiL,, (5.8) 
[Q’,L, ] = ifi, [Q’,L, ] = ifiQ2, 

[Q’,L,] =O, [Q2,L2] =ifi, (5.9) 
and 

[R,,R2] = - ifiR,, (5.10) 

[Q’A ] = ifi, [Q% ] = 0, 

[Q’,R,] =0, [Q’,R,] =i?5eQ’, (5.11) 

where we have defined 

QO=PO JJ &’ dq2e-9’lq’~)tq’(q’q21L 

=rU0 IS 
4’ dq21dq2M’(dq21m (5.12) 

for a = 1,2. (Note that this group is not unimodular. ) 

From Eqs. (5.3) one also gets the adjoint representa- 
tion; i.e., 

A;(q) = [; ‘;-;:I, 
(5.13) 

[which matches well with the group law (5.2), as the reader 
can see]. Therefore, in the left regular representation, one 
gets immediately the following two basic quantum-kinemat- 
ic Hermitian invariant operators: 

R, (Q;L) = L, - Q2L, + jifi, (5.14) 

R, (Q;L) = eQ’L2, (5.15) 
which yield: 

L (dq21R, (Q&l t$O = - ifit - I)& (qL,q2L (5.16) 

,(q’q*lR,(Q;L)I@) = - ifie9’d2$,(q’,q2). (5.17) 
These are Hermitian operators with respect to the left invar- 
iant Hurwitz measure, indeed. Furthermore, by means of 
(5.8)-( 5.9) the reader can check that [R, (Q;L),L,] = 0 
holds for a,b = 1,2. It is also a simple exercise to prove that, 
as a consequence of Eqs. (5.8) and (5.9), the operators de- 
finedinEqs. (5.14) and (5.15) satisfy (5.10)-(5.11) (asit 
must be). Moreover, from Eqs. ( 5.13 ) , one easily obtains the 
quantum kinematic algebras of this group. 

Hence, here we have an example of a Lie group whose 
Lie algebra admits no traditional invariant, which, however, 
has two (r = 2) basic quantum-kinematic invariants. 

B. The restricted Poincarb group in two-dimensional 
space-time 

We next consider the group P2 of Poincare transforma- 
tions in two-dimensional Minkowski space-time: 

x ‘“=y(q2)(x0-q2x’) +qo, 

x ” = y( q2) (x0 - q2x0) + q’, (5.18) 
wherey(q*) = [ 1 - (q2)2] -“2. (Wesetc= 1.) Thegroup 
manifold is given by M=C- w<q”< + w, 
-c0<q’<+W-- 1 <q2< f l}, and e= (O,O,O). The 

group law reads: 

4 Ire = gO(q’;q) = q’O + y(qf2) (qO - q’2q’), 

4 x’ = g’(q’;q) = q” + y(q’2) (4’ - qf2q0), 
q”O zz g”( q’;q) = (q’2 + q2) ( 1 + q’Iq”) - ‘. 

(5.19) 

Hence, one has 

R:(q) = [ 9, p, ,s,Js 

[ 

Y - VI2 0 
L:(q) = -yq2 y 0 > (5.20) 

0 0 y-2 1 
wherefrom one gets the generators in M( P2 ) : 

x0 =a,, x, =a,, 
x2 = - 0, -&a, +ea2, (5.21) 
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K, = Y(J” - !I24 1, 
y, = y(4 -q’J,), l-2 = y-92, (5.22) 

which satisfy the well-known Lie algebra: 

[x;v?] =a [X0,&] = -&,[~,,X,] = -x0, 
(5.23) 

[LY,] =o, [YoJ2] = y,, [YJ,] = Yo, 

(5.24) 

and 

[X,,Y*] = 0, a,b = 0,1,2. (5.25) 

The group Pz is unimodular [i.e., R(q) = L(q) = y - 2 
1, SO one defines the (left and right) Hurwitz measure: 

dP ((I) = poy2(q2)dq0 dq’ dq2. (5.26) 

In this way, the position operators of P2 are given by 

s 

I 

X dq2 "/2(q2) 14°4'42w(40414219 (5.27) 
-I 

for a = 0,1,2, where 

w”q”q’2/qoq’q2) 

=/Lo- ‘y - 2(q2)6(q’o - qO)S(q” - q’)S(q’Z - q2), 
(5.28) 

and where (in this particular case) we have defined 
1q?q’q2jL = 1q”q’q2jR = 1q”q’q2), once and for all. In fact, 
the adjoint representation is defined by 

z,hCq) = [ -;q2 “1 ;] =A:(#, (5.29) 

so that A(q) = R(q)z(q) = 1 follows. 
In this fashion, we easily obtain the Lie algebra of P2, 

which reads: 

[LA] =o, [Lo&21 =x&, [-q,L,] =i+iLo, 

(5.30) 

and the generalized canonical commutators of the left quan- 
tum kinematics of P2 are given by 

[QOJo] =i+k [Q’J,] =Q [Q’,L,] =O, 
[Q”,L, ] =O, [Q’,L, ] =X, [Q’,L, ] =0,(5.31) 

[Q0,L2] = -ifiQ’, [Q’,L,] = -i+iQ’, 

[Q’,L,] = -fiy-‘(Q2). 
It is well known that the Liealgebra (5.30) ofP, hasjust 

one invariant operator, which is given by the Casimir opera- 
tor 

S=LG-L;. (5.32) 

Clearly, in the physical interpretation of the formalism, this 
invariant operator yields the two-dimensional Klein-Gor- 
don equation; say, 

w4’421w,“) = -fi’(Ji -~:)?4,(q0,4’1q2) 

= m2$,, (q0,4’,q2), (5.33) 

forSl3,,) =rn21$,,) [ h’ h w ‘c corresponds to a superselec- 

tion rule in H(P, ) 1. The important point to remark is that 
one does not go too far with the quantum kinematic model 
for P2 if one pays attention exclusively to its Lie algebra, 
since in this traditional approach one obtains the theory of 
the Klein-Gordon equation, and nothing else. 

However, the complete realm of the quantum-kinematic 
theory of P2 is much broader than that of the traditional 
theory, because by means of the adjoint representation 
(5.29) one obtains three basic kinematic invariants, instead 
of only one. In effect, within the left regular representation of 
P2, these are given as follows: 

Ro(Q;L) = Y(Q~)(L, - Q2L, ), (5.34) 

R, (Q&l = Y(Q~HL, - Q24,), (5.35) 

R,(Q;L) = Q’L, + Q’L, +L,. (5.36) 
Therefore, introducing the “Q-representation” of quantum 
kinematics (i.e., settling a “wave mechanical” formalism on 
the group manifold of P2 ), one gets the following realiza- 
tions of these invariant operators: 

(q04q21Ro (Q&I I$) 
- W(q2) (Jo - q2J1 )$(q0,q’,q2), 

~qOq’;lR’ (Q;L)I$) 
(5.37) 

= - ifir (4 - s2Jo )$(q”,q’,q2), (5.38) 

(q0dq21R, (Q;L) I$> 
= - i~y-2(q2)d2~(q0,q’,q2). (5.39) 

Of course, these operators satisfy the right Lie algebra of P2. 
Moreover, one has 

S=L;-L;=R;-RR:. (5.40) 
Hence, one can “diagonalize” this scheme in the following 
two ways: (a) using the fact that [R,,R, ] = 0, or else (b) 
using [S,R, ] = 0. One thus reduces the left regular repre- 
sentation of P2 (by means of the corresponding superselec- 
tion rules) 4*5 into “physically” meaningful Hilbert sub- 
spaces, which one hopes to interpret properly. 

Interesting enough, the quantum kinematic invariants 
of P2 are first-order differential operators, and furthermore 
the formalism of P2 quantum-kinematics is automatically 
relativistic. This subject seems worthy of further discussion; 
work is in progress concerning this most important quantum 
kinematic model. 

VI. CONCLUDING REMARKS 
Quantum kinematic treatment of Lie groups was initiat- 

ed by Weyl, many years ago.15 Weyl’s most outstanding 
achievement, concerning this issue, was his discussion of 
Heisenberg’s kinematics as an Abelian group of unitary 
transformations. It is well known, however, that Weyl’s 
quantization scheme, in general, is not flexible enough for 
the needs of physics,” because it only contains the funda- 
mental commutation relations in an implicit fashion.” In 
fact, the quantum kinematic formalism sketched in this pa- 
per was suggested by Weyl’s approach to the group of space 
translations, and constitutes a direct generalization thereof. 
As we have seen, group quantization affords explicit “ca- 
nonical” commutation relations, and the quantum kinemat- 
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ic algebra, which can be evaluated systematically by purely 
group theoretic methods. It may also afford a new perspec- 
tive for the discussion of the fundamental invariants of a Lie 
group, that is much broader than the traditional standpoint, 
and may have some huge physical meaning. 

We deem these results important because the problem of 
quantizing a system that is primarily described by non-Abe- 
lian dynamical variables sets an intriguing question in quan- 
tum theory.” This problem appears in several areas of con- 
temporary physics. For instance, it arises in the recent trend 
of elementary particle physics, where several SU(n) and 
other gauge groups play a fundamental role.” The same 
problem arises in the formulations of lattice gauge theo- 
ries,” where quantum kinematics of non-Abelian variables 
is an indispensable device to circumvent conventional per- 
turbation theoryis in the search for the appropriate descrip- 
tion of quark confinement.“‘“.2’ Non-Abelian quantization 
sets also a fundamenta1 problem in connection with some 
attempts to generalize the theory of minimum-uncertainty 
states to variables other than Cartesian.2’-24 (In this sense, it 
would be also interesting to try to use the group quantization 
technique, the quantum kinematic algebra and the set of ba- 
sic kinematic invariants, within the recent Lie group theory 
ofgeneralized coherent statesZ5 ) In fact, this seems to be an 
unsolved problem, and we think that the quantum kinematic 
approach may offer a way out to these important questions. 

Finally, we would also like to remark that, in two pre- 
vious papers, the quantum kinematic invariants of the Eu- 
clidean group of the plane,4 and those of the Galilei group in 
two-dimensional space-time,5 were used as superselection 
rules in order to reduce the (left) regular ray representation 
of these groups into physically meaningful Hilbert sub- 
spaces. In this way, the usual quantum model of the simple 
harmonic oscillator,4 and that of the Galilean free particle,5 
respectively, were deduced by purely group-theoretic mani- 
pulations, based solely on the Newtonian symmetry groups 
of these systems. Let us here underline that the well-known 
space-time propagators of these systems were also obtained 
by means of Hurwitz-invariant integrals over the (respec- 
tive) group manifolds, instead of path integrals. [Certainly, 
in those previous papers we have quantized the central ex- 
tension of the corresponding groups by U( 1) . Nevertheless, 
theextension ofthequantum-kinematic invariant formalism 
from the “true” (i.e., vector) regular representation to the 
“projective” (i.e., ray) regular representation is a straight- 
forward matter. J 
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APPENDIX: LEFT AND RIGHT REGULAR 
REPRESENTATIONS REVISITED 

Of course, the regular representation of Lie groups is a 
well-known subject.’ The only aim here is to introduce the 

notation used in this paper, presenting a unified formalism 
for the simultaneous description of both (the left and the 
right) regular representations, in a rather simple fashion. TO 
this end, we shall use the standard Dirac notation (i.e., 
“kets” and “bras’“) of quantum mechanics. Here, G denotes 
an r-dimensional Lie group (endowed with the properties 
already introduced in Sec. II), and M(G) denotes the group 
manifold.” 

As is well known, one defines Lie’s (right and left) vec- 
tor fields as follows: 

X,,(q)=RI:(q)d,, Y,(q)=L;(q)d,, (AlI 
where R $ and L f: are the (right and left) transport matrices 
for contravariant vectors in M(G) that are obtained from 
g”(q’;q) in the usual “classical” fashioqz7 i.e., 
R 2 (9) = a:gb(q’;q) tY. = ‘,, and L:(q) =a:gb(q;q’)j,,=r. 
In this paper we also need the inverse transport matrices in 
M(G), which are defined by i? ,” (q) = d :gb(q’;Fj) I,, = 4, and 
E,“(q) =~:gb(q;q’&,,. [Clearly, one has: 
R,b(e) =L$(e) =St, and z ‘, (q)R :(q) 
= 2; z (q)L p(q) = Ss.1 The Lie operators satisfy the Lie al- 

gebra: 

[X,(q)J,,(q~] =f:,A.csh 

[ y‘,(q)%y,,(q)] = -f:,, Y,.(q), (A21 
where the structure constants are given by 
f:,, = R ;‘,,‘,(e) - R L.,,(e) = L :,,il (e) - L i,,,(e). It is inter- 
esting to recall that 

[JL(q)?y,,(q)] = 09 (A3) 
a,b = 1 ,...,r, holds for all q&(G), since this is the corner- 
stone for building the quantum kinematic invariants of G 
(cf. Sec. III). 

Now, as basic carrier space of both regular representa- 
tions let us first introduce the Hilbert space H(G) = L ‘(G) 
for all complex-valued functions Ift( q) defined in M(G), and 
such that (&[u%)( ~3, with d’q=dq’ * - *dq’, and where the 
integration is over M(G). We then consider a set of contin- 
uous kets Iq) = [q’,...,q)‘)EH( G) (rigged), which are in one- 
to-one correspondence with the points q&( G). and consti- 
tute an orthogonal complete basis of H(G); i.e. 

(qlq’) = 6’ rl (4 - 9% (A4) 

s drqlq)M = L (AS) 
where Z stands for the identity operator in H(G). Thus we 
set 1,4(q) = (ql$>, for I$)&( G), as usual. Using this rigged 
Hilbert space, it is clear that the formalism becomes much 
simpler if one introduces the inuuriant measures on M(G), 
instead of the coordinate volume element d ‘q. So, let us de- 
fine the following ad hoc kets in H(G) (rigged) : 

IS)l. = [Pi- ‘L(q)] “%)~ 

IdK = [~(o ‘R(q)] “‘%L (A61 
where L(q) and R(q) are the determinants of the corre- 
sponding transport matrices, and p,, is an arbitrary normali- 
zation constant. These yield 

t(qlq’),. =I% ‘UqW”(q - 9’1, 
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R (914’)R =p< ‘w7W’Vq - 4’) (A7) 
and 

~=J4~LhJh)Lb?lL =J4b(4HdR~~lR. (A81 

Here we have used the Hurwitz invariant measures’4 on 
M(G); i.e. &L (4) =poz(q)d ‘q, and 
dpR (4) =pOE( q)d ‘q. (In order to simplify the notation, in 
this paper we assume pL = ,u~ = ,uO, but this choice is not 
strictly necessary.** ) 

Thus we have 

(+I$) =~dll,(q)ldi(q)/1=~d~,Ol~,(q)l’, 

(A9) 

since, clearly, we define gL(q) = L(ql$) and 
JtR (q) = R (q/$), for all I$)di(G). Hence, as an important 
remark, it follows (even if one takespu, #pR ), that one and 
the same Hilbert space carries both (the left and the right) 
regular representations of G, because there is a one-to-one 
mapping $L(q)++$R (q), for all I$)EH(G); namely: 
J,, (q) = m$, (q) where A(q) is the determinant of the 

matrixoftheadjoint representation ofG [cf. Eqs. (2.15) and 
(2.19)]. 

One then introduces the left and right representative op- 
erators of the elements of G in H(G) . These can be defined as 
follows: 

UL (9) = I 4,. (4’) Ig(q;q’)), (@IL, 

U,(q) = s d~,(q’)Ig(q’;q)).(q’I,, 
respectively. In this way, one has 

fJLCS)ld)L = k(W’)),? 
UR(Q)l4’)R = Ig(q’;q)),. 

In fact, from these definitions one easily obtains: 

U,(q)U,(q’) = ~,k(q;q’)l, 
UR (4) UR (9’) = u, k(q’;q) 1 

and 

uz (q) = u, tq, = u; ‘(q), 

ut, (9) = u,(q) = u, ‘(4). 

(A101 

(All) 

C-412) 

(A13) 

(A14) 

Finally, it is evident that from Eqs. (A6) one gets 

k?>R = [A(q)l”21q),T IdL = msw’214)R1 
(A151 

and thus one can readily calculate “mixed” expressions 
between the two regular representation formalisms, if need- 
ed. For instance, after some manipulations, one shows: 

UL (q)lq’)R = mklw’21g(q;q’)),, 
UR(S)ld)L = Mqw’*1gw4)L. 

(Ale) 

(A17) 
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