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FAST CALDERÓN PRECONDITIONING

FOR HELMHOLTZ BOUNDARY

INTEGRAL EQUATIONS
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José, who always saw a shine in me, has a golden disposition to help, and was key to this

investigation.

I want to thank my family, specially to my mother. Although it seems that we came

from different worlds and although we do not keep a perfect relationship, you always let

me fabricate and follow my own path, even if it was not the most classical one. I hope

you realize how much I appreciate that you let me be who I want to be. Secondly, I want

to thank my sister, Francisca, for becoming a friend this last decade. I would also like to

thank to my grandmother, Adela, for being present in the most important moments of my

life. I also thank to my aunts Marcela and Alejandra for always being caring, even if I

am not present, and recognizing my cousins, Pablo, Marı́a José and Oscar for being like
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ABSTRACT

Calderón multiplicative preconditioners are an effective way to improve the condi-

tion number of first kind boundary integral equations yielding provable mesh independent

bounds. However, when discretizing by local low-order basis functions as in standard

Galerkin boundary element methods, their computational performance worsens as meshes

are refined. This stems from the barycentric mesh refinement used to construct dual basis

functions that guarantee the discrete stability of L2-pairings. Based on coarser quadrature

rules over dual cells andH-matrix compression, we propose a family of fast precondition-

ers that significantly reduce assembly and computation times when compared to standard

versions of Calderón preconditioning for the three-dimensional Helmholtz weakly and

hyper-singular boundary integral operators. Several numerical experiments validate our

claims and point towards further enhancements.

Keywords: Operator Preconditioning, Calderón Precontitioning, Helmholtz equa-

tion, Hierarchical Matrices, Fast solvers, Boundary Elements Method.
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RESUMEN

El uso de precondicionadores multiplicativos de Calderón es una manera efectiva de

mejorar el número de condición de ecuaciones integrales de frontera de primer tipo, garan-

tizando cotas para el número de condición, independientes de la discretización usada en

el mallado. Sin embargo, al aplicar el Método de Elementos de Frontera de tipo Galerkin,

el rendimiento en términos computacionales de estos precondicionadores empeora, a me-

dida que la malla es refinada. Esto se debe al uso de un refinamiento baricéntrico de la

malla, requerido en la construcción de funciones bases duales, que garantizan la estabili-

dad discreta de las matrices que surgen de los productos L2 de las funciones base (matrices

de Gram). Basándonos en reglas de cuadratura de menor precisión sobre celdas duales y

el uso de compresiones mediante H-mat (Matrices Jerárquicas) proponemos una familia

de precondicionadores de Calderón fast, que significativamente reducen sus tiempos de

ensamblaje, en comparación a las versiones estándar de precondicionadores de Calderón

para los operadores integrales de frontera tridimensionales de Helmholtz, weakly y hyper-

ingular. Una serie de experimentos numéricos validan nuestras afirmaciones y apuntan

hacia mejoras futuras.

Palabras Claves: Precondicionamiento operacional, precondicionamiento de Calderón,

ecuación de Helmholtz, Matrices Jerárquicas, solvers veloces, Método de Elementos de

Frontera..
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1. INTRODUCTION

1.1. Basic notation

Rd : the d-dimensional real space with Euclidean norm.

A : capital letters in bold font designates matrices.

x : letters in bold font designates vectors.

A∗ : conjugate transpose of A.

‖ x ‖p=

(
n∑
i=1

|xi|p
)1/p

: p-norm of a vector.

‖ A ‖p= max
x∈Cn,x 6=0

‖Ax‖p
‖x‖p

: p-norm of a matrix.

|x| =
d∑
i=1

xi : Norm p = 1 of a vector,x.

ρ(A) : spectral radius of A.

κp(A) : condition number of A (see appendix B.2)

‖ A ‖2= ρ(A∗A)1/2 : spectral norm of a matrix.

(a, b)X : inner product defined on the space X between a and b.

Ω : closure of a set.

(X)′ : topological dual of a vectorial space, X.

divf : stands for divergence of a scalar function, f.

∆u,∇u : are the standard definitions of laplacian and gradient of a function u.

b·c : stands for the floor function (lower integer part of a function).

1



1.2. Motivation

Scattering problems model the behavior of waves that scatter from solid objects or

propagate through non-uniform media. This phenomenon can be treated from two main

approaches: direct scattering problems, where a known incoming wave hits an object,

so the scattered wave is to be found, and inverse scattering problems, where both, inci-

dent and scattered waves are known and then the shape and properties of the material are

unknowns.

To this research, direct scattering problems will be the main concern, and in particular,

we are interested in scattering of acoustic waves. For this, we consider the propagation of

sound waves in a homogeneous isotropic medium in R3 viewed as an inviscid fluid. We

define v = v(x, t), p = p(x, t), ρ = ρ(x, t) and S = S(x, t) as the velocity, the pressure,

density and specific entropy respectively. The wave motion is governed by Euler’s equa-

tion, the equation of continuity, the state equation and the adiabatic hypothesis (Colton &

Kress, 2012):



∂v
∂t

+ (v · ∇)v + 1
ρ
∇p = 0

∂p
∂t

+ div(ρv) = 0

p = f(ρ, S)

∂S
∂t

+ v · ∇S = 0

(1.1)

where f is a function that depends on the nature of the fluid. By assuming that v, p,

ρ and S are small perturbations of the static case (v0 = 0, p0 = K1, ρ0 = K2, S0 = K3

–with K1, K2, K3 constants–) one can linearize the aforementioned equations and thus

obtain the wave equation:

1

c2

∂2p

∂t2
= ∆p (1.2)

Where c is the speed of sound defined by c2 = ∂f(ρ0,S0)
∂ρ

.

2



However, all acoustic radiation problems can be boiled down to solving the wave equa-

tion, subject to certain initial and boundary conditions. For a constant frequency case, the

problem reduces to solving the Helmholtz equation. From linearizing the Euler equation:

∂v

∂t
+

1

ρ0

∇p = 0 (1.3)

we have that there exists a velocity potential U = U(x, t), such that

v =
1

ρ0

∇U

and

p = −∂U
∂t
.

Then, the velocity potential also satisfies the wave equation, and for time harmonic

waves of the form U(x, t) = Re{u(x)e−iωt} with frequency ω > 0 we deduce that the

complex valued dependent part, u satisfies the Helmholtz equation:

∆u+ κ2u = 0 (1.4)

where κ is the wave number given by κ = ω
c
.

To solve this problem, for simple geometries as a sphere or a cilinder, one resorts to

spherical harmonics to compute the analytical solution for the Helmholtz equation. For

complex geometries, in turn, the use of numerical tools is necessary to calculate good

approximations for the solution u. Finite differences, Finite Elements Method, and collo-

cation methods are widely used to this end, but in particular, the method that will concern

to this investigation is the Boundary Elements Method (BEM), also called Method of Mo-

ments (MOM).

3



Ω

ui

us

Figure 1.1. Scattering problem. An incident wave ui hits a scatterer, re-
sulting in an outgoing wave, us

BEM is based in the derivation of boundary integral equations (BIEs) from elliptic par-

tial differential equations. In practice, the aplication of BEM is similar to Finite Elements

Method, but we resort specifically to BEM as it has the characteristic of finding solutions

for exterior and interior problems from the discretisation of the boundary data, instead of

performing the discretisation of a whole volume. This is a suitable technique to solve 1.4

as many of its applications involve unbounded domains. As an example, we consider the

classic scattering from a bounded obstacle, Ω ⊂ R3. Given an incident field ui that is a

solution to 1.4 in R3, the problem is to find the scattered field us, such that the total field

ut = ui+us satisfies 1.4 in R3 \Ω, as well as a boundary condition on ∂Ω, which tipically

could be a Neumann condition (sound hard obstacle):

∂ut

∂n̂
= 0

or a Dirichlet condition (sound soft obstacle):

ut|∂Ω = 0.

4



Adding a radiation condition:

lim
R→∞

∫
r=R

∣∣∣∣dudr − iκu
∣∣∣∣2 dS → 0

the Neumann and Dirichlet problems can be transformed into Boundary Integral Equa-

tions (which will be presented in the next chapter) that can be solved with BEM. As we

have already said, the use of this method requires only to mesh the boundary of the scat-

tered object to find us , and in conclusion, BEM allows to easily solve problems in un-

bounded domains (Sauter & Schwab, 2010), saving computational space and assembly

time of the matrices involved, in contrast to the aforementioned methods.

However, one of the main problems of applying BEM is that, in this particular research,

we intend to solve a first kind integral equation whose discretisation leads to large systems

that must be solved by iterative methods, which will not perform optimally, as the linear

systems to be solved are ill conditioned( appendix B.2).

Given an integral operator, A on a Hilbert space X , an integral equation is called of

first kind if it has the form:

Aφ = f

and of second kind, if it has the form:

(αI + A)φ = f

Besides, if A is compact, then equations (1.2) and (1.2) are respectively called Fred-

holm integral equations of first kind and second kind. Second kind Fredholm integral

equations, under suitable conditions give rise to well conditioned linear systems, because

5



the eigenvalues of a compact operator is composed by a sequence of eigenvalues accumu-

lating at the origin, and then, the eigenvalues of (αI + A) cluster at α.

Due to the characteristics of the integral equation to be solved, we resort to the GMRES

( appendix B.1). As said before, this method has slow convergence issues when matrices

are ill conditioned. Meurant and Tebbens (2015) proved that for diagonalizable matrices

the norm of the residual vector depends on the eigenvalues, which if close to the origin,

tend to hamper convergence. Also, proposition 4 formulated by Saad and Schultz (1986)

reads:

Supose that A is diagonalizable, so that A = XDX−1 and let

ε(m) = min
p∈Pm,p(0)=1

max
λi
|p(λi)|

where Pm is the space of polynomials of degree ≤ m and λi are the

eigenvalues of the spectrum of A

Then the residual norm provided at the mth step of GMRES satisfies

‖rm+1‖2 ≤ κ2(X)ε(m) ‖r0‖2 . (1.5)

Which shows a relation between the convergence of the GMRES method and the spec-

tral condition number of A.

Sustained by a rigorous mathematical background, operator preconditioning (OP)

Hiptmair (2006) has shown remarkable results able to cope with ill-conditioned linear

systems arising from the Galerkin discretization of boundary integral or partial differen-

tial equations. Fundamentally, OP seeks to create a well-defined endomorphism through:

(i) linear operators whose induced sesquilinear forms satisfy continuous and discrete inf-

sup conditions; (ii) same amounts of primal and dual degrees freedom; and, (iii) a non-

singular Gram matrix linking dual and primal linear systems. Under these conditions, the

preconditioned matrix is proven to be spectrally mesh independent (see (Hiptmair, 2006,

Theorem 2.1)).

6



Among particular cases of OP for first-kind boundary integral equations, we mention

opposite order (Steinbach & Wendland, 1998) and Calderón preconditioning. The former

is based on canceling the symbol order of the operator whereas the latter is based on

the so-called Calderón identities, setting specific choices for the preconditioners. With

this, unlike algebraic preconditioners (appendix B.3), OP seeks to transform a first kind

Fredholm integral equation into a second kind Fredholm integral equation.

Commonly, Calderón preconditioning is implemented via Calderón Multiplicative Pre-

conditioners (CMP). For the Laplace case, examples on open curves and smooth screens

can be found in Hiptmair, Jerez-Hanckes, and Urzúa-Torres (2013) and Hiptmair, Jerez-

Hanckes, and Urzúa-Torres (2017); Hiptmair and Urzúa-Torres (2016), respectively. For

the Electric Field Integral Equation (EFIE), prior to CMP techniques stabilization through

the use of loop-star basis functions (Lee, Lee, & Burkholder, 2003; Stephanson & Lee,

2009; Yan, Jin, & Nie, 2010) as well as of the Helmholtz decomposition (Adams &

Champagne, 2004; Christiansen & Nédélec, 2002) was a recurrent subject. The work

of Andruilli et al. (Andriulli et al., 2008) introduced the CMP for the EFIE by employing

dual Buffa-Christiansen (BC) basis functions (Buffa & Christiansen, 2007) after which it

has seen further improvements and variations (cf. (Y. P. Chen, Sun, Jiang, & Chew, 2014;

Cools, Andriulli, & Michielssen, 2011; Dobbelaere et al., 2015; Gossye, Huynen, Ginste,

De Zutter, & Rogier, 2018)).

Despite the advantages of the CMP, in order to derive a dual-basis preconditioner,

discretization on a barycentric refinement of the original mesh is performed. This entails

a six-fold increase in computational complexity, rendering the method often impractical

in realistic scenarios. Hence, the question arises as whether one can avoid barycentric

refinement, or at least, how to improve its efficiency. Recent efforts have been devoted

to tackle this issue. In Adrian, Andriulli, and Eibert (2018) a refinement free version of

the CMP for the EFIE is constructed by leveraging on spectral equivalences between the

weakly and hyper-singular operators and the Laplace-Beltrami operator. In parallel, a fast

CMP for the EFIE was proposed in Escapil-Inchauspé and Jerez-Hanckes (2019) which

7



relies on a splitting of solution and preconditioner accuracies using hierarchical matrices

(H-mat) approximations with very promising results.

This research discusses two improvements over the original CMP for the Helmholtz

case. Following the ideas of Escapil-Inchauspé and Jerez-Hanckes (2019), we preserve the

most relevant information of the operator preconditioner by heavily compressing far-field

interactions. This results in an almost equally effective preconditioner but much cheaper

to compute when compared to the original one. Based on H-mat approximations, we

further accelerate assembly times by applying more efficient quadrature rules to integrate

the dual basis functions. As we will show, joining these two techniques leads to a family

of preconditioners whose efficiency depends on the accuracy of integration rules and on

parameter choices used to construct their H-mat approximation. As it will be shown, the

H-mat compression tolerance is a crucial parameter determining the performance of these

preconditioners. Also, our modified CMPs inherit the shortcomings of the standard CMP

with respect to growing wavenumbers as expected.

The following chapter states the mathematical background for the Helmholtz BIEs for-

mulations. Chapter 3 proposes modified versions of the Calderón preconditioner, chapter

4 explains how the problems were solved computationally and chapter 5 shows the re-

sults obtained from the methods proposed. Finally, chapter 6 states the conclusions of this

research.

8



2. CHAPTER 2: PRELIMINARIES

2.1. Sobolev Spaces

Let Rd , d = 1, 2, 3 and let Ω ∈ Rd For any integer r ≥ 0. Following the definitions

already stated by McLean (2000), we write:

Cr(Ω) = {u : ∂αu exists and is continuous on Ω for |ααα| ≤ r}

and

C∞(Ω) = ∩r≥0Cr(Ω).

The support of u will be denoted by supp u.

Definition 2.1. If K ⊂ Ω is compact, then we define:

CrK(Ω) := {u ∈ Cr(Ω) : supp u ⊂ K}, C∞K (Ω) := ∩r≥0CrK(Ω)

and

C∞0 (Ω) = {u : u ∈ C∞K (Ω) for some K ∈ Ω}.

We also define L2(Ω) = {u :
∫

Ω
|u|dx <∞}.

Definition 2.2. Let f ∈ L2(Ω). For i ∈ {1 . . . d}. A class, ∂xif of measurable

functions differing only in a zero measure set, is called a weak derivative of f respect to

xi, if

(f, ∂xig)L2(Ω) = −(∂xif, g)L2(Ω) ∀g ∈ C∞0 (Ω). (2.1)
9



Having the weak derivative definition, and given a vector m ∈ Rd we write the differ-

ential operator for f ∈ L2(Ω) as:

∂αααf =

 f if ααα = 0

∂α1
x1
. . . ∂αd

xd
f if ααα 6= 0

.

Thus,

Definition 2.3. Let s ∈ N. The space

Hs(Ω) := {f ∈ L2 : ∂αααf ∈ L2(Ω)∀ααα ∈ Rd |ααα| ≤ s}

is called a Sobolev space in Ω.1

The completion of L2(Ω) implies that Hs(Ω) becomes a Banach space with the norm:

‖ f ‖Hs(Ω)=
∑

ααα:|ααα|≤s

‖∂αααf‖2
L2(Ω) .

In the same way, Hs
0(Ω) stands for the completion of C∞0

For fractional Sobolev spaces, we introduce thei Sobolev-Slobodeckii semi-norm:

|ϕ|2l :=

∫
Ω

∫
Ω

|ϕ(x)− ϕ(y)|2

‖x− y‖d+2l
2

dxdy

with l ∈ (0, 1) and ϕ ∈ L2(Ω). As s has a fractional order, we split s = bsc + l to

define the fractional Sobolev space:

Hs(Ω) := {f ∈ Hbsc : |∂αααf |l <∞ for |ααα| = s}
1 This is a particular class of Sobolev spaces, which is originally defined with the Lp norm, but in this case
we consider only define the L2 case
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with the norm:

‖ϕ‖2
Hs(Ω) = ‖ϕ‖2

Hbsc(Ω) + |ϕ|2Hs(Ω) ,

where

|ϕ|2Hs(Ω) =
∑
|ααα|=bsc

|∂αααϕ|2l .

With this norm, arises the inner product:

(ϕ, φ)Hs(Ω) := (ϕ, φ)Hbsc(Ω) +
∑
ααα=bsc

∫
Ω

∫
Ω

(∂αααϕ(x)− ∂αααϕ(y))(∂αααφ(x)− ∂αααφ(y))

‖x− y‖d+2l
2

dxdy

For Sobolev spaces on boundaries, we can define a piecewise parametrization on Γ :=

∂Ω:

Γ =
∑
i

Γi Γi := {x ∈ Rd : x = X (ζ) for ζ ∈ Ti ⊂ Rd−1}.

We also consider a partition of unity, {ϕ}pi=1 of non negative cut off functions φi ∈

C∞0 (Rd) satisfying:

∑
i

ϕi(x) = 1 for x ∈ Γ ϕ = 0 for x ∈ Γ \ Γi.

Then, for any function f defined on the boundary we can write:

f(x) =
∑
i

ϕi(x)f(x) = ϕi(X (ζ))f(X (ζ)) for x ∈ Ti ⊂ Rd−1.

Thus, we can define the Sobolev norm:
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‖f(x)‖2
Hs(Γ) :=

∑
i

‖ϕi(X (ζ))f(X (ζ))‖2
Hs(Ti) .

For s ∈ (0, 1) we resort again to the Sobolev-Slobodeckii norm:

‖f‖2
Hs(Γ) = ‖f‖2

L2(Γ) + |ϕ|2Hs(Γ) .

Let X be either a domain or a surface. Then the following notation is used for the dual

space:

H−s(X) := (Hs
0(X))′, s ≥ 0.

Note that in the case of closed surfaces (X = Γ) the boundary of X is the empty set

and therefore Hs
0(X) = Hs(X).

2.2. Trace operators

Definition 2.4. (Sauter & Schwab, 2010, Definition 2.6.1) Let Ω be a (possibly un-

bounded) domain. The space Hs
loc(Ω) contains all continuous, linear functionals (distri-

butions) on C∞0 . Thus, f ∈ (C∞0 )′ with the property that ϕf ∈ Hs(Ω) for all ϕ ∈ C∞0 .

Theorem 2.1. (Sauter & Schwab, 2010, Theorem 2.6.8) Let Ω− be a Lipschitz domain,

with boundary Γ and Ω+ := Rd \ Ω−.

a) for all s ∈ (1/2, 3/2) there exists a continuous, linear trace operator:

γD : Hs
loc(Rd)→ Hs−1/2(Γ) (2.2)

with

γDf := lim
x̃∈Ω→x∈Γ

f(x) ∀f ∈ C0(Rd).
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b) For l ∈ {−,+}there exist one-sided, continuous, linear trace operators

γlD : Hs
loc(Ω

l)→ Hs−1/2(Γ) (2.3)

with

γlDf := lim
x̃∈Ω→x∈Γ

f(x) ∀f ∈ C0(Ω
l
)

and γ+
Df = γ−Df = γDf almost everywhere for all f ∈ Hs

loc(Rd)

Also, the Neumann trace id defined as:

γNf := (n, γD∇f)Rd (2.4)

and then:

γ :=

γDu
γNu

 . (2.5)

Finally, if γ+ and γ− denote the exterior and interior trace respectively, then jump and

average operators are defined as:

[γ]Γ := γ+ − γ− (2.6)

{γ}Γ :=
1

2
(γ+ + γ−). (2.7)

2.3. Layer Potentials, BIEs and Calderón Identities

Let R3 be split into a bounded Lipschitz domain Ω− of boundary Γ and such that

Ω+ := R3 \ Ω−. For a wavenumber κ > 0 and an incident plane wave, we aim at solving
13



the homogenous Helmholtz equation for the scattered wave

∆u+ κ2u = 0, in Ω− ∪ Ω+, (2.8)

together with suitable boundary conditions given below. For exterior problems, i.e. do-

mains considering Ω+, the Sommerfeld radiation condition

lim
R→∞

∫
r=R

∣∣∣∣dudr − iκu
∣∣∣∣2 dS → 0

is required for wellposedness McLean (2000).

Let Gκ(z) = exp(iκ|z|)
4π|z| denote the Helmholtz fundamental solution or kernel Sauter and

Schwab (2010). With it, one defines the standard single and double layer potentials Sauter

and Schwab (2010):

Sκ(ϕ)(x) :=

∫
Γ

Gκ(x− y)ϕ(y)dS(y) : H−
1
2 (Γ)→ H1(Ω− ∪ Ω+),

Dκ(v)(x) :=

∫
Γ

∇Gκ(x− y) · n̂(y)v(y)dS(y) : H
1
2 (Γ)→ H1(Ω− ∪ Ω+),

with extensions to standard trace and volume Sobolev spaces H±
1
2 (Γ) and H1(Ω− ∪Ω+).

The above defined potentials satisfy the jump relations (Sauter & Schwab, 2010, The-

orem 3.3.1):

[γDSκ(λN)]Γ = 0, [γNSκ(λN)]Γ = −λN ,

[γDDκ(λD)]Γ = λD, [γNDκ(λD)]Γ = 0.

Solutions of (2.8) can be given in terms of the integral representation formula (Sauter &

Schwab, 2010, Theorem 3.1.13):

u = Dκ([γDu])− Sκ([γNu]) in Ω+ ∪ Ω−. (2.9)
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By taking traces over (2.9) and using the above jump relations, one defines the following

BIOs:

Vκ := {γDSκ}Γ : H−
1
2 (Γ)→ H

1
2 (Γ), (2.10)

K′κ := {γNSκ}Γ : H−
1
2 (Γ)→ H−

1
2 (Γ), (2.11)

Kκ := {γDDκ}Γ : H
1
2 (Γ)→ H

1
2 (Γ), (2.12)

Wκ := −{γNDκ}Γ : H
1
2 (Γ)→ H−

1
2 (Γ), (2.13)

dubbed weakly singular, (adjoint) double layer and hypersingular operators, respectively,

and whose continuity and coercivity properties can be found in (Sauter & Schwab, 2010,

Chapter 3). With these, we can derive interior and exterior Calderón projectors:γ±Du
γ±Nu

 = C±γ±u :=

1
2
I± Kκ ∓Vκ
∓Wκ

1
2
I∓ K′κ

γ±Du
γ±Nu

 (2.14)

From the above identities, one deduces the first kind BIEs that we aim to solve:

∓Wκγ
±
Du =

(
1

2
I± K′κ

)
γ±Nu, (2.15)

±Vκγ±Nu =

(
1

2
I± Kκ

)
γ±Du. (2.16)

These BIEs are derived by the so-called direct method. Alternatively and indirectly, one

can derive Ansatz representations by solely using either the single or double layer po-

tentials. More importantly, for closed Lipschitz boundaries, (2.14) leads to the Calderón

identities:

VκWκ =
1

4
I
H

1
2 (Γ)
− K2

κ, (2.17)

WκVκ =
1

4
I
H−

1
2 (Γ)
− K′2κ , (2.18)

which can be interpreted as preconditioned versions of (2.15) and (2.16), i.e. the weakly

singular operator preconditions the hyper-singular one and viceversa. Identity operators
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are tagged to be understood in their respectively functional space. Clearly, Wκ is an oper-

ator of order +1 while Vκ is of order -1, thus explaining the opposite order preconditioning

(Steinbach & Wendland, 1998). One should carefully handle the squared terms in (2.17)

and (2.18), as only sufficiently smooth boundaries one can prove that these terms are com-

pact (Sauter & Schwab, 2010, Section 3.9.3).

2.4. Hierarchical matrices

Hierarchical matrices are a method of matrix compression used for saving memory,

space and accelerating the resolution of dense matrix systems. This is the reason why in

conjunction with the Fast Multipole Methods, Hierarchical matrices are widely used for

solving linear systems coming from BEM.

Some definitions on Hierarchical matrices can be found in different sources (Beben-

dorf, 2008; Hackbusch, 2015), but for the sake of completeness we offer a brief definition

of Hierarchical matrices and complementary concepts that can be found in the appendix

B.4.

Finally,

Definition 2.5. A Hierarchical matrix is defined by:

Let L ∈ RI×I be a matrix and T a block tree of I × I consisting of

admissible and nonadmissible leaves. Let Let k ∈ NL is called an H-

matrix of blockwise rank k, if for all admissible leaves τ × σ ∈ II×I ,

rank(L|τ×σ) ≤ k (Börm, Grasedyck, & Hackbusch, 2003)

Thus, the use of H-matrices should lead to a less expensive storage for matrices in

terms of space and time. In the following, we take advantage of this fact to design a fast

Calderón preconditioner.
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3. CHAPTER 3: FAST CALDERÓN PRECONDITIONING

3.1. Galerkin Boundary Element Discretization and Standard Calderón Precondi-

tioning

We now perform Galerkin low-order discretizations of the BIEs (2.15) and (2.16) as

well as introduce their standard OP preconditioning based on barycentric mesh refinement

to construct dual bases. Elements of the discrete Galerkin matrices arising from operators

in (2.17) and (2.18) are built upon piecewise -constant or -linear basis functions as follows.

Let Th refer to either primal (Γh), dual (Γ̂h) or barycentrically refined primal (Γh) mesh

(see Figure 3.1). For p = 0, 1, we write Pp ≡ Pp(Γh) for the space of piecewise constant

or linear functions over the primal mesh Γh, respectively. Similarly for barycentric (P p)

and dual mesh (P̂p) basis functions. Given a primal mesh Γh, we also define nT , nV and

nE as the number of triangles, vertices and edges, respectively. With this, we must solve

the discrete versions of (2.15) and (2.16):

Wκ,hu = b, (3.1)

Vκ,hv = η, (3.2)

where we have skipped the construction of the right-hand sides for the sake of brevity.

Figure 3.1. Primal (large triangles), barycentric (small triangles) and dual
(dashed) meshes for piecewise-constant basis functions.
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As aforementioned, the condition number of these systems deteriorates as O(h−1),

thus requiring preconditioning. Hence, we will follow the OP strategy described in Theo-

rem 0.1 (see appendix A). In the context of Calderón preconditioning, let A : X → Y and

B : Y → X be two linear operators, namely the weakly singular integral operator and the

hyper-singular integral operator and vice-versa, (cf. (2.17) and (2.18) wherein X and Y

are alternatively H±1/2(Γ)). We use a pair of discrete spaces, Xh ⊂ X and Yh ⊂ Y over

meshes of characteristic length h, such that dim(Xh) = dim(Yh) to find a discretization

for A, and B (Ah and Bh respectively). We also assume that X and Y are dual to each

other and use a stable L2-pairing, GXh,Yh
h = (φh, ϕh)L2 for φh ∈ Xh and ϕh ∈ Yh). With

these elements, the preconditioned matrix takes the form:

(GXh,Yh
h )−1Bh(G

Xh,Yh
h )−TAh

Specific standard CMP for the BIEs considered read:

• Vκ as CMP (2.17). The induced bilinear form of the operator Wκ is discretized

over the primal mesh using Xh = P1 ⊂ H
1
2 (Γ) whereas Vκ is approximated in

Yh = P̂0 ⊂ H−
1
2 (Γ). However, P̂0 basis functions over the dual mesh are built

by assembling the discrete version of Vκ over P 0 to then apply an averaging

matrix Σ to obtain a dual basis function (see below).

• Wκ as CMP (2.18). We use as primal boundary element space Xh = P0 ⊂

H−
1
2 (Γ) to discretize Vκ and Yh = P̂1 ⊂ H

1
2 (Γ) for Wκ.

For P̂1 basis functions, the degrees of freedom are determined by the triangles in the

primal mesh Buffa and Christiansen (2007). These are obtained as the weighted sum of

piecewise linear basis functions defined over the barycentric mesh corresponding to each

triangle. Based on their geometric relation, the degrees of freedom (dofs) for piecewise

linear barycentric basis functions are assigned weights as follows:

(i) Barycentric nodes at the center of each primal triangle (weight 1.0);

(ii) Barycentric nodes that lie between two primal nodes (weight 0.5); and,
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(iii) Primal mesh nodes, whose weights are given by 1
nti

, where nti is the number of

primal triangles adjacent to the node i.

Thus, the standard CMP strategy reads:

(GXh,Yh
h )−1ΣBY h,Y h

h ΣT (GXh,Yh
h )−TAXh,Xh

h u = (GXh,Yh
h )−1ΣBY h,Y h

h ΣT (GXh,Yh
h )−Tb,

(3.3)

where Σ is an averaging matrix, which for WP̂1,P̂1

κ,h is obtained as described in (Hiptmair

& Urzúa-Torres, 2016, Section 3.3). To compute Σ for VP̂0,P̂0

κ,h , we resort to the strategy

followed in BEMPP, which is different to the one used in (Hiptmair & Urzúa-Torres, 2016,

Section 3.3). Specifically, the entries of Σ are given by:

Σ[i][j] =

1 if the barycentric triangle j belongs to the dual cell i,

0, otherwise

In the case of Vκ as preconditioner (2.17), the matrix BYh,Yh
h = VP 0,P 0

κ,h is of size 6nT ×

6nT over the barycentric mesh. Opposingly, when the hypersingular operator Wκ acts as

preconditioner, standard CMP reads BYh,Yh
h = WP 1,P 1

κ,h and is a (nT + nV + nE)× (nT +

nV + nE) matrix built over the barycentric mesh.

3.2. Modified Calderón Multiplicative Preconditioners (mCMPs)

In what follows, we present the first building block for the construction of efficient

CMPs, referred to as modified CMPs (mCMPs). Specifically, we aim at avoiding comput-

ing the averaging matrix Σ by directly building preconditioners on approximations of the

dual mesh employing low accuracy numerical integration routines.

3.2.1. Construction of Vκ as mCMP

Consider the preconditioning strategy summarized in (2.17) and matrix VP̂0,P̂0

κ,h . As

shown in Figure 3.1, the supports of P̂0 basis functions are disjoint and obtained as the sum
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of barycentric piecewise-constant basis functions, P 0, that occupy the dual basis function

support. This is the cornerstone of the mCMP as instead of integrating over each barycen-

tric triangle support, other quadrature rules are directly applied over the dual basis support.

This immediately translates into considering less quadrature points. However, the polygo-

nal shape of the dual basis support depends on the amount of barycentric triangles therein.

Hence, instead of integrating over the whole support, a quadrilateral mesh is considered:

the dual support will be divided into coarser partitions than the barycentric one.

More succinctly, we exchange the standard CMP preconditioner (3.3) for the following

form:

G−1
h VP̂0,P̂0

κ,h G−Th WP1,P1

κ,h u = G−1
h VP̂0,P̂0

κ,h G−Th b, (3.4)

where VP̂0,P̂0

κ,h is the Galerkin (nV × nV )-matrix for the weakly singular operator over the

dual mesh and WP1,P1

κ,h is the discrete version of the hypersingular opetator over the primal

mesh.

Computationally, self-interaction matrix entries of VP̂0,P̂0

κ,h are obtained as in the orig-

inal method: barycentric triangles are used which are then added up to deliver the matrix

entry for the dual cell. For cross-interaction terms, quadrilateral elements are used by

merging couples of barycentric triangles instead of working on the individual the barycen-

tric triangles. This entails modifying quadrature rules: for piecewise constant basis func-

tions, one point per triangular element is used in the original method whereas one point

per quadrilateral element is computed for the modified method. Hence, one can expect

at least an improvement of factor four in matrix entries computations when compared to

the barycentric case, i.e. evaluations on the dual mesh are 9n2
T + 6nT versus 36n2

T di-

rectly on the barycentric mesh (table 3.1 summarizes this fact). For Gram matrices Gh,

dual pairings over P̂0-P1 are approximated via quadrature rules over the dual cell support

(cf. Figure 3.2). Algorithm 1 summarizes cross-interaction computations for the weakly

20



singular mCMP1.

Table 3.1. Summary table for the mCMP developed for the hypersingular
operator. Complexity order stands for the total number of evaluations re-
quired in the Gaussian quadrature method, which is reduced by a factor 4.

Preconditioner Standard CMP mCMP

Preconditioning strategy G−1
h ΣVP 0,P 0

κ,h ΣTG−Th WP1,P1

κ,h G−1
h VP̂0,P̂0

κ,h G−Th WP1,P1

κ,h

Complexity order 36n2
T 9n2

T + 6nT

P̂0
P1

Figure 3.2. P̂0−P1 testing between two basis functions that intersect (gray
area). Red and blue quadrilaterals are subdivisions of the dual basis func-
tion P̂0.

By Theorem 0.2 (see Appendix), the spectral condition number, denoted by κ2, of the

new preconditioned system is bounded as follows

κ2(G−1
h VP̂0,P̂0

κ,h G−Th WP1,P1

κ,h ) ≤ Kκ2

(
G−1
h VP̂0,P̂0

κ,h (ΣVP 0,P 0

κ,h ΣT )−1Gh

)
, (3.5)

1 IE stands for integration elements: Jacobian, quadrature weights, evaluation points.
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Algorithm 1 Cross interaction calculations of Vκ mCMP.
1: input: Grid Th (vertices nti–number of quadrilaterals surrounding the dof i–, barycen-

tric vertices, quadrilaterals obtained from merging barycentric triangles), κ.
2: for (i, j) ∈ {1, . . . , nV } do
3: for each quadrilateral k ∈ {1, . . . , nti} surrounding the dof i do
4: • compute IE of the quadrilateral k.
5: for each quadrilateral l ∈ {1, . . . , ntj} surrounding the dof j do
6: • compute IE of the quadrilateral l.
7: • compute cross-interaction from IE coming from quadrilaterals k and l

and save in v.
8: end for
9: end for

10: VP̂0,P̂0

h [i][j] = sum of the entries of v.
11: end for
12: output: VP̂0,P̂0

h

wherein K is a bound for κ2(PhWκ,h) given in Theorem 0.1. Thus, the new condition

number depends on the factor

κ2(G−1
h VP̂0,P̂0

κ,h (ΣVP 0,P 0

κ,h ΣT )−1Gh) (3.6)

so that if VP̂0,P̂0

κ,h ≈ ΣVP 0
κ,hΣ

T , then G−1
h VP̂0,P̂0

κ,h (ΣVP 0,P 0

κ,h ΣT )−1Gh ≈ I. Thus, (3.6) will

remain close to one.

3.2.2. Construction of Wκ as mCMP

We now solve (2.18) following previous ideas: avoiding the use of the averaging ma-

trix Σ and building WP̂1,P̂1

κ,h directly over the dual mesh.

For cross-interactions, barycentric supports corresponding to type 1 dofs can be merged

into coarser triangles. At the same time, barycentric supports of type 3 dofs can be merged

into quadrilaterals as in the case of P̂0 basis functions. Figure 3.3 illustrates this idea

and shows examples of adjacent dual basis supports for dofs of type 1, 2 and 3. Merg-

ing barycentric cells into coarser ones allows the use, in the case of dofs of type 1, of

three quadrature points every two merged barycentric triangles instead of three points per

barycentric triangle. In the case of type 3 dofs, two merged barycentric triangles lead to
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quadrilaterals for which four quadrature points are employed instead of three points per

barycentric triangle.

Interactions among overlapping dual basis functions occur when two basis functions

have a common node, a common edge or are the same. Here, we again use the standard

CMP algorithm: interactions are calculated over the barycentric mesh and then added up

to a dual cell instead of merging the barycentric triangles.

As expected, the proposed hypersingular mCMP has lower computational complexity

than the standard version for the integration algorithms due to the use of coarser meshes.

For type 1 dofs, quadrature points are reduced from 18nT to 9nT whereas for type 3

reduce from 18nT –three points per barycentric triangle– to 12nT –4 points every two

barycentric triangles. For type 2 dofs, the number of computations remains the same

(12nE). Thus, we reduce a total number of evaluations from (36nT + 12nE) × (36nT +

12nE) to (21nT + 12nE)× (21nT + 12nE). Assuming that nT ≈ 2nE , we obtain a global

reduction from 42nT × 42nT to 27nT × 27nT + 42nT –coming from the calculation of

overlaping interactions– which is reduction of a factor ≈ 2.4 (table 3.2 summarizes this

fact). Algorithm 2 summarizes the cross interaction calculations for the hypersingular

mCMP.

Table 3.2. Summary table for the mCMP developed for the weakly singu-
lar operator. Complexity order stands for the total number of evaluations
required in the Gaussian quadrature method, which is reduced by a factor
of 2.4.

Preconditioner Standard CMP mCMP

Preconditioning strategy G−1
h ΣWP 1,P 1

κ,h ΣTG−Th VP0,P0

κ,h G−1
h WP̂1,P̂1

κ,h G−Th VP0,P0

κ,h

Complexity order 42nT × 42nT 27nT × 27nT + 42nT
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Algorithm 2 Cross interaction calculations of Wκ mCMP
1: input: Grid Th (information of triangles , ntjl–number of primal triangles surrounding

the dof jl–, barycentric vertices, etc.), κ, coefficient arrays (vc1, vc2), cross interaction
arrays (vci1, vci2)

2: for (i, j) ∈ {1, . . . , nT} do
3: for each barycentric vertex , k, in the triangle i do
4: if vertex k is type 1 then merge each couple of barycentric triangles surround-

ing vertex k into triangles and compute the IE. Also vc1[k] = 1
5: else if vertex k is type 2 then compute the IE for each barycentric triangle.

Also, vc1[k] = 0.5
6: else merge each couple of barycentric triangles surrounding vertex k into

quadrilaterals and compute the IE. Also vc1[k] = n−1
tik

7: for each barycentric vertex , l, in the triangle j do
8: if vertex l is type 1 then merge each couple of barycentric triangles sur-

rounding vertex l into triangles and compute the IE . Also vc2[l] = 1
9: else if vertex l is type 2 then compute the IE for each barycentric triangle.

Also, vc2[l] = 0.5
10: else merge each couple of barycentric triangles surrounding vertex l into

quadrilaterals and compute the IE. Also vc2[l] = n−1
tjl

11: • compute cross interactions from the integration elements coming from
vertex k and vertex l and save them in an array, vci2[l].

12: end for
13: • calculate vci1[k] as the dot product vci2 · vc2
14: end for
15: • calculate WP̂1,P̂1

h [i][j] as the dot product vci1 · vc1
16: end for
17: output: WP̂1,P̂1

h

As for the weakly singular mCMP, the preconditioning strategy (2.18) becomes

G−1
h WP̂1,P̂1

κ,h G−Th VP0,P0

κ,h u = G−1
h WP̂1,P̂1

κ,h G−Th b, (3.7)

where WP̂1,P̂1

κ,h is the Galerkin (nT × nT )-matrix for the hypersingular operator built over

the dual mesh and VP0,P0

κ,h is the discrete version of the weakly singular operator over the

primal mesh. An auxiliary matrix of size (nT + nV + nE) × (nT + nV + nE) is used

to build WP̂1,P̂1

κ,h in order to avoid computing barycentric basis functions that conform

the dual basis functions more than once, as these last ones have overlapping supports.

Then, although assembly time is reduced, storage not necessarily does. Still, this could
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be improved by using only an auxiliary matrix of size (nV + nE) × (nV + nE) to store

barycentric interactions that are part of more than one dual basis function.

By Theorem 0.2, we can derive a similar bound to (3.5):

κ2(G−1
h WP̂1,P̂1

κ,h G−Th VP0,P0

κ,h ) ≤ Kκ2(G−1
h WP̂1,P̂1

κ,h (ΣWP 1,P 1

κ,h ΣT )−1Gh), (3.8)

where κ2 is the spectral condition number of a matrix and K is a bound for κ2(PhWκ,h).

Again, the boundedness of the condition number depends on the right-hand side factor,

which shall remain close to one as WP̂1,P̂1

κ,h ≈ ΣWP 1,P 1

κ,h ΣT .

•

•

•
•

• •
•

•
•

•

•

•

•
•

•

• •

•

•

•

•

Figure 3.3. P̂1 basis functions supports. Black dots represent dofs of type
1, 2 and 3 respectively. For the barycentric type 1 dofs, supports are given
by three triangles conformed by the union of two barycentric triangles;
barycentric type 2 dofs are built by four barycentric triangles; and, type 3
dofs by quadrilaterals made from two barycentric triangles.

3.3. Hierarchical Modified Calderón Preconditioner (H-mCMP)

Based on work by Escapil-Inchauspé and Jerez-Hanckes Escapil-Inchauspé and Jerez-

Hanckes (2019), we further improve our mCMP by usingH-mat approximations, denoting

these versions H-mCMP. For the sake of brevity, we skip definitions that can be found in

Hackbusch (2015).
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Far-field interactions are defined by block cluster trees, decompositions based on index

trees T (I) and T (J), and assembled by means of low rank approximations of the original

matrix, with subsequent savings in space and assembly time. Following Bebendorf (2008),

a matrix A ∈ Cm×n
k is said to be of low rank if k(m + n) � m · n. Moreover, its

representation is given by

A =
k∑
i=1

uiv
∗
i , ui ∈ Cm, vi ∈ Cn,

where k is the rank of the approximation and uiv∗i is an outer product. Ideally, the low

rank approximation could be derived by a singular value decomposition (SVD), but this is

prohibitively expensive Hackbusch (2015). Alternatively, we use the Adaptive Cross Ap-

proximation (ACA) which defines the rank of the approximation in an adaptive way, given

an accuracy ε. According to Bebendorf, Maday, and Stamm (2014), the approximation is

constructed incrementally by Algorithm 3, wherein col and row are routines that yield

the jq-th column and iq-th row respectively of a submatrix of A. Therefore, the algorithm

computes a sequence of vectors uq and vq such that

Ã =
k∑
q=1

uqv
T
q

(vq)jq
.

In principle, the algorithm stops when
∥∥∥Ã−A

∥∥∥
2
< ε, which is equivalent Bebendorf et

al. (2014) to say
‖uq+1‖2 ‖vq+1‖2

|vq+1|
< ε.

For ourH-mCMPs, the ACA is computed directly on the dual mesh and so
∥∥∥Ã−A

∥∥∥
2
≤

ε for each far-field block. Accordingly, by Theorem 0.3, it can be deduced that

κ2(PH(Wκ,h/Vκ,h)) ≤ κ2(Ph(Wκ,h/Vκ,h))
1 + εα

1− εα
, (3.9)
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Algorithm 3 Low rank approximation calculation.
1: input: ε, κ, Th(grid)
2: set q := 1
3: while err< ε do
4: Calculate Aiq ,: =row(iq, κ, Th), choosing iq such that

vq := AT
iq ,: −

q−1∑
l=1

(ul)iq
(vl)jl

vl

is non-zero and compute A:,jq =col(jq, κ, Th), for a jq such that
∣∣(vq)jq ∣∣ =

maxj=1...N |(vq)j|

5: Compute the vector uq := A:,jq −
q−1∑
l=1

(vl)jq
(vl)jl

ul

6: Compute the error indicator
err =

∣∣(vq)jq ∣∣−1 ‖vq‖2 ‖uq‖2

7: end while

where α := max{1, Cspdepth(T )}1/σminκ2(Gh), σmin is the smallest singular value of

Vκ,h or Wκ,h, and depth(T ) stands for depth of the tree T

depth(T ) = depth(T (I × J)) = min{depth(T (I)), depth(T (J))}.

Consequently, the lower the tolerance used for ACA, the better condition number of the

preconditioned system. Furthermore, for larger matrices, a lower tolerance should be used

in order to keep the system well conditioned as factors depth(T ) and 1/σmin grow –the last

one, due to the preconditioner singular values (Vκ,h or Wκ,h), which tend to zero as the

mesh shrinks. κ2(Gh) should not affect the factor α as it is bounded (Sauter & Schwab,

2010, Remark 4.5.3). Considering a geometrically balanced clustering to construct T (I),

T (J), the stopping criterion: size(b) ≤ m, m = leafsize with b in P a partition of T , will

determine the length of the deepest branch of the tree and also depth(T (I)), depth(T (J))

for a level conserving block cluster tree (Hackbusch, 2015, Theorem 5.27 ). In other

words, the clustering algorithm will require more levels to achieve a smaller leafsize and

thus, bigger leafsizes should lead to a better conditioned system.
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4. CHAPTER 5: METHODOLOGY

4.1. Software

To test the effectiveness of the mCMPs and H-mCMPs for the BIEs resulting from

exterior Helmholtz problems with Dirichlet and Neumann boundary conditions, respec-

tively, we solve different cases for the unit sphere, the Fichera cube and a submarine-like

shaped object.

Given the original method to handle numerical integration on the dual mesh, test cases

for the mCMP andH-mCMP were programed in C, for which the library GSL was used to

store and perform matrix operations. This program emulates the BEMPP structure, which

means that it returns PYTHON objects, such as NUMPY arrays or CTYPES, in the case of

the H-mat. Routines matvec and matmat were implemented to apply matrix-vector

and matrix-matrix products between H-matrices stored in CTYPES and PYTHON vectors

or matrices. In order to validate the code, results were compared with those obtained

with the library BEMPP (Betcke, Arridge, Phillips, Smigaj, & Schweiger, 2015). This

means that we programmed the standard version of the CMP that will be called Standard

and compared it with the standadrs version of the CMP fabricated with BEMPP that will

be also called Bempp. Discrete operators were computed with numerical quadratures of

order one for Vκ,h –order three for its singular part– and of order two for Wκ,h –order

three for its singular part–. Tests were executed on a 32 core, 4 GB RAM per core, 64-bit

Linux server.

A geometrically balanced clustering algorithm was used to create H-mat along with

ACA. The preconditioned BIO Galerkin matrix and right-hand sides for each case were

computed using BEMPP and solved with restarted GMRES(m) routine of SCIPY, where the

preconditioned version of the GMRES(m)with preconditioners defined as LinearOperator

objects of SCIPY was implemented. Finally, for each mesh, H-mat were calculated using

different tolerance values ε each signaled byH-mCMPε.
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4.2. Validation and early results

In order to validate the code, a comparison was made between results coming from

the use of Calderón preconditioners built in BEMPP and the preconditioners coming from

the library developed for this work. To build the preconditioners, numerical quadratures

of order one and order three for the singular part of the matrices were used in the case of

P̂0 basis functions, and of order two and order three for the singular part of the matrices in

the case of P̂1 basis functions.

For Vκ mCMP and Vκ H-M2εCP, spherical meshes were created in GMSH, by using

different refinement factors: n = 4, 6, 8, 10, 12 points per wavelength, with a constant

wavenumber of κ = 5, resulting in systems of 181, 425, 653, 1,069 and 1,442 degrees

of freedom (dofs). H-mCMPε were calculated with a leafsize of 10, resulting in trees of

depth 5, 6, 7, 8 and 9 respectively.

For a vibrating sphere of radius a, with a normal surface given by v̂n(a, θ, φ, ω), the

Neumann boundary condition is given by γNu = iωρ0v̂n(a, θ, φ, ω), where ρ0 is the am-

bient density of the medium surrounding the sphere and ω is the angular frequency with

κ = ωc−1, with c the speed of sound. General solutions for this problem are of the form

(Wu, 2015):

u(r, θ, φ, ω) = iωρ0

∞∑
n=0

h
(1)
n (κr)

dh
(1)
n (κr)
dr
|r=a

n∑
m=−n

Y m
n (cos θ)

∫ 2π

0

dφ′
∫ π

0

v̂n(a, θ′, φ′, ω)

Y m∗
n (θ′, φ′) sin θ′dθ′, (4.1)

where h(1)
n (κr) denote first kind spherical Hankel functions and Y m

n (θ, φ) are Legendre

polynomials. For simplicity, we considered a constant Neumann boundary condition,

γNu = (3i − 5)κ, for which v̂n(a, θ, φ, ω) = (3i−5)κ
ωρ0

= v0 is constant. For n = m = 0 in

(4.1), the solution of the exterior problem is given by

u(r, θ, φ, ω) = ρ0cv0

(
κa

κa+ i

)(a
r

)
eiκ(r−a) for a = 1.
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The solution for this particular problem is

u(r, θ, φ, ω) = (3i− 5)

(
κ

κ+ i

)(
1

r

)
eiκ(r−1),

which was used to compute the H
1
2 -relative error between numerical and analytical solu-

tions.

The H
1
2 -norm was calculated as (Langer & Steinbach, 2007)

‖u‖
H

1
2 (Γ)

=

√∑
n

ūn〈φn,W0u〉

Table 4.1 shows the total number of iterations for GMRES(20) for unpreconditioned

and preconditioned systems with different versions of the CMP. Results show that the

preconditioner built using BEMPP, the standard preconditioner built for this work and

the mCMP developed for this work perform similarly, thereby validating our code. Also,

results in Table 4.1 for the hierarchical versions of the mCMP support the idea that a lower

tolerance in the ACA algorithm will result in a more effective method, which coincides

with the behavior described in (3.9). Table 4.2 shows H
1
2 - and L2-relative errors for all

the methods considered, yielding same convergence rates, thereby validating our code.

Table 4.1. GMRES iteration comparison for the unpreconditioned system
and the system preconditioned with different versions of the CMP, for the
Neumann problem over a unit sphere of 1,442 dofs, and κ = 5.

Method None mCMP BEMPP Standard H-mCMP01E-6 H-mCMP1E-5 H-mCMP5E-5 H-mCMP1E-4

Iterations 66 17 18 18 17 20 36 57
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Table 4.2. H
1
2 - and L2-relative errors for different CMP methods applied

to a Neumann problem 2.17 over a unit sphere meshed with triangles of
different characteristic lengths (h).

h L2-relative error H
1
2 -relative error

3.14E-01 5.12E-02 5.12E-02

2.09E-01 2.25E-02 2.25E-02

1.57E-01 1.61E-02 1.56E-02

1.26E-01 1.21E-02 1.11E-02

1.05E-01 1.17E-02 9.88E-03

Finally, results in Figure 4.1 evidences that, for increasing numbers of dofs, smaller

tolerances in the ACA algorithm are required in order to keep the effectiveness of the

method. This can is explained by (3.9) as an increase factor of α = max{1, Cspdepth(T )}/

σminκ2(Gh) would require ε to decrease in order to keep the boundedness of κ2(PHWκ,h),

as increasing the number of dofs also increases depth(T ) and 1/σmin. It can also be seen

that although the ratio ε/σmin > 1, the preconditioner is still effective, which does not

necessarily contradict (3.9).
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Figure 4.1. Number of GMRES iterations to solve the Neumann problem
over a sphere by unpreconditioned and preconditioned systems with a fam-
ily of H-mCMP preconditioners. Numbers in parenthesis represent the
ratio ε/σmin

To validate the Wκ mCMP and Wκ H-mCMPε, again, spherical meshes were created

in BEMPP, with the same sequence of refinement factors: n = 4, 6, 8, 10 points per wave-

length, with a constant wavenumber of κ = 5. The H-mCMPε were calculated with a

leafsize of 10, resulting in trees of depth 8, 9, 10 and 11 respectively.

For a vibrating sphere of radius a, with a superficial acoustic pressure on r = a given

by u(a, θ, φ, ω), we have a Dirichlet boundary condition given by γDu = u(a, θ, φ, ω).

The general solution for this problem is (Wu, 2015):

u(r, θ, φ, ω) = iωρ0

∞∑
n=0

h
(1)
n (κr)

h
(1)
n (κr)|r=a

n∑
m=−n

Y m
n (cos θ)

∫ 2π

0

dφ′
∫ π

0

γDuY
m∗
n (θ′, φ′) sin θ′dθ′

(4.2)

In this case, we considered a constant Dirichlet boundary condition, γDu = (3i − 5)κ.

Consequently, with n = m = 0 in (4.2), the solution for the exterior problem on the unit
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sphere is

u(r, θ, φ, ω) = γDu
(a
r

)
eiκ(r−a) for a = 1.

with
du(r, θ, φ, ω)

dr
= γDu

(
iκ
(a
r

)
eiκ(r−a) −

( a
r2

)
eiκ(r−a)

)
for a = 1.

which was used to compute the H
1
2 -relative error between numerical and analytical solu-

tions. The H−
1
2 -norm was calculated as (Langer & Steinbach, 2007):

‖u‖
H−

1
2 (Γ)

=

√∑
n

ūn〈φn,V0u〉

Table 4.3 shows the number of GMRES iterations to solve for a sphere of 2,128 dofs.

Results prove the effectiveness of theH-mCMP and its hierarchical versions and as for the

Neumann case, for a lower tolerance used in the ACA algorithm, the method performed

better.

Table 4.3. Number of iterations of GMRES(20) solving the Dirichlet prob-
lem over a sphere of 2128 dofs with different versions of theH-mCMP.

Method None BEMPP Standard mCMP H-mCMP1E-3 H-mCMP1E-2 H-mCMP1E-1

Iterations 150 20 30 20 40 60 80

Figure 4.2 shows that the effectiveness ofH-mCMPε decreases with the increment of

dofs for a fixed ε and that the mCMP is not affected by smaller mesh sizes. Again, the

preconditioners with higher values of ε are more sensitive to the reduction of the mesh

size, but are more robust than the preconditioners built for the Neumann case, even if

ε/σmin > 1.
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Figure 4.2. Evolution of the number of iterations for the Dirichlet problem
with an unpreconditioned and precondtioned system with a family of H-
mCMP. Numbers in parenthesis represent the ratio ε/σmin .

Table 4.4. H−
1
2 and L2 relative error evolution for different CMP methods

applied to a Dirichlet problem over a unit sphere meshed with triangles of
different characteristic lengths (h).

h L2 -relative error H−
1
2 -relative error

3.14.E-01 1.73E-02 3.75E-03

2.09.E-01 1.21E-02 1.93E-03

1.57.E-01 7.78E-03 1.20E-03

1.26.E-01 6.94E-03 7.97E-04

Table 4.4 shows the evolution of the H−
1
2 and L2-relative error for a fixed κ = 5,

with different mesh refinements h. This fact also validates the effectiveness of the code,

as the preconditioners developed for this work converge the same as the preconditioner

developed by BEMPP.
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5. CHAPTER 6: RESULTS

5.1. Results for the Vκ as mCMP

5.1.0.1. Fichera cube

To prove the effectiveness of the mCMP for domains with corners, similar tests were

carried out on a Fichera cube. A surface mesh of 3,278 nodes was used along with a dif-

ferent boundary condition: γNu = n̂ze
iκz, with κ = 15. The H-mCMPε were calculated

with a leafsize of 100, resulting in a cluster tree of depth 10.

Z
XY

Figure 5.1. Fichera cube of length one, with 3,278 dofs. The mesh was ob-
tained by using GMSH with a uniform triangulation refined at the reentrant
corner.

Table 5.1 confirms that the preconditioner quality decreases when the ε parameter of

the ACA algorithm is increased. In this case, after a tolerance of ε = 5E-5, the precondi-

tioner is no longer effective, as expected from (3.9).
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Table 5.1. Number of GMRES iterations for the resolution of a system
preconditioned with a family of H-mCMP for a Neumann problem on a
Fichera cube.

None mCMP Bempp Standard H-mCMP1E-7 H-mCMP1E-6 H-mCMP1E-5 H-mCMP5E-5

940 300 300 300 300 380 300 1160

−0.25
0.00
0.25

No Preconditioner mCMP

−0.25
0.00
0.25

-mCMP1E-7 -mCMP1E-6

0.0 0.2 0.4 0.6 0.8

−0.25
0.00
0.25

-mCMP1E-5

0.0 0.2 0.4 0.6 0.8

-mCMP5E-5

Figure 5.2. Spectral behavior comparison between the unpreconditioned
system and a family of H-mCMP for the Neumann problem on a Fichera
cube.

Figure 5.2 shows the spectrum of each preconditioned system. The eigenvalues of

the unpreconditioned system cluster near zero and move away when preconditioned to a

larger value. Notice that the spectrum spreads when increasing ε, which explains why

the preconditioner performance worsens. Also, Figure 5.3 shows that, for this particular

example, theH-mat versions of the mCMP have a total assembly time slightly higher than

the unpreconditioned system and that the assembly time of the mCMP is significantly bet-

ter than the BEMPP standard Calderón. It can also be noticed that although shorter, the
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timing of the BEMPP Calderón is close to the magnitude of the standard Calderón devel-

oped for this work, which supports the efficiency of the modified preconditioner.
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Figure 5.3. Assembly and solving times for preconditioned and unprecon-
ditioned systems for the Neumann problem on a Fichera cube.

5.1.1. Results for the submarine-like shape object

A submarine-like object was built from a sphere, a cone and a wedge, whose mesh

contains 3,470 nodes and 6,936 triangles. The boundary condition used for this case was

γNu = n̂ze
iκz, with κ = 8 and theH-mCMPε were calculated with a leafsize of 50.
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Figure 5.4. Latera and interior view of the submarine mesh of length 6
metres, height 2.5 metres and width 1 metre. The mesh has 3,740 vertices.

Table 5.2 shows that, in this case, the accuracy used in the ACA does not affect the

number of iterations needed to solve the preconditioned system. This is confirmed by the

eigenvalue distributions displayed in Figure 5.5, as all preconditioned systems have a sim-

ilar distribution.

Table 5.2. GMRES iteration comparison between the unpreconditioned
system and a family of H-mCMP for the Neuman problem, with κ = 8,
over a submarine grid.

None mCMP Bempp Standard H-mCMP1E-6 H-mCMP1E-5 H-mCMP5E-5 H-mCMP1E-4

7,399 840 900 920 820 860 680 740
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Figure 5.5. Spectral behavior comparison between the unpreconditioned
system and a family of mCMP for the Neumann problem over a submarine
grid.

Assembly and solving times for each preconditioner (Figure 5.6) confirm the standard

CMP poor performance. Total execution time of the mCMP does not exceed that of the

unpreconditioned system, however, theH-mat versions perform better.
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Figure 5.6. Assembly and solving time for preconditioned and unprecon-
ditioned systems over the submarine grid.

Further analysis of the spectrum for the H-mCMP shows that the resulting condition

number has a behavior respect to ε similar to the one stated in (3.9). Figure 5.7 show the

evolution of the condition number with ε forH-mat built with different leafsizes. It can be

seen that the increase of the leafsize results in a decreasing factor α from equation (3.9), as

the depth(T ) factor and the number of far-field blocks decrease. Thus, the preconditioner

becomes more robust in terms of the ε parameter. Despite of this, larger lefsizes lead to

higher assembly times as Table 5.3 shows.
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Figure 5.7. Condition number’s evolution for systems over the submarine
grid, preconditioned with H-mCMP built with different leafsizes for the
Neumann problem over a submarine like shaped object. Condition number
grows at a rate similar to the stated in (3.9), remaining constant for n =
400.

Table 5.3. Assembly times for families of H-mCMP built with different
leafsize values for the Neumann problem over a submarine like shaped
object. Larger leafsize values take more time to be assembled.

Leafsize 1E-6 1E-5 5E-5 1E-4

50 36.74 43.96 26.36 18.69

100 49.07 36.18 56.16 36.21

200 65.11 128.09 50.21 92.94

400 152.73 307.74 140.01 137.80
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5.2. Results for the Wκ as mCMP

5.2.1. Results for the Fichera cube

In this case, a surface mesh of 5,284 triangles was used along with the boundary con-

dition: γDu = n̂ze
iκz, with κ = 7 and the H-mCMPε were calculated with a leafsize of

50.

Figure 5.4 shows that modified preconditioners built with lower tolerances do not have

necessarily a better performance. Figure 5.8 shows the spectral properties of each precon-

ditioned system for a family of mCMP, where the spectrum of the unpreconditioned system

is clustered near zero and moves away from this point by the preconditioner. For larger

values of ε in the ACA approximation applied in the construction of the H-mCMP the

eigenvalues spread a bit, but remain clustered near a point far from zero, which explains

the behavior exhibited in 5.4.

Table 5.4. GMRES comparison between the unpreconditioned system and
a family of mCMP for the Dirichlet problem, with κ = 7 over s Fichera
cube.

None mCMP Bempp Standard H-mCMP1E-5 H-mCMP1E-4 H-mCMP5E-3 H-mCMP1E-2

5,881 120 700 40 120 60 80 80
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Figure 5.8. Spectral behavior comparison between the unpreconditioned
system and a family of mCMP for the Dirichlet problem, with κ = 7 over
s Fichera cube.

Figure 5.9 shows a comparison of assembly and solving times between the unprecon-

ditioned and preconditioned systems with a family ofH-mCMP and mCMP. Results show

that the use of the mCMP by itself is not enough to get an efficient preconditioner, but

one of its hierarchical versions does take less time to be assembled and solved than the

unpreconditioned method.
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Figure 5.9. Assembly and solving time for preconditioned and unprecon-
ditioned systems over the Fichera cube for the Dirirchlet problem. Solving
times for the preconditioned systems vary between 11 and 60 seconds.

It can also be seen in 5.9, that the standard preconditioner takes almost half more time

than mCMP and that the BEMPP preconditioner takes, in this case, more time than the

standard CMP built for this work.

5.2.1.1. Submarine-like shape object

The boundary condition γDu = n̂ze
iκz, with κ = 8 and leafsize of 50 were used in this

case.

The GMRES(20) iteration counts in Table 5.5 show that the residuals do not converge

in case that no preconditioner is applied, but do converge when aH-mCMP or the mCMP

is used. The diagram also shows that some of the hierarchical versions of the mCMP

could work even better than the mCMP itself, which stands in favor of the robustness of

the method, at least for the Dirichlet case. Again, the behavior of the residuals is coincident
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with the spectral behavior of the preconditioned systems (figure 5.10), whose eigenvalues

moved away from zero.

Table 5.5. GMRES iteration comparison between the unpreconditioned
system and a family of mCMP for the Dirichlet problem, with κ = 8,
over a submarine grid.

None mCMP H-mCMP1E-5 H-mCMP1E-4 H-mCMP5E-3 H-mCMP1E-2

>20,000 700 760 780 220 340

−0.5
0.0
0.5

No Preconditioner mCMP

−0.5
0.0
0.5

-mCMP1E-5 -mCMP1E-4

0.00 0.25 0.50 0.75 1.00
−0.5
0.0
0.5

-mCMP1E-3

0.00 0.25 0.50 0.75 1.00

-mCMP1E-2

Figure 5.10. Spectral behavior comparison between the unpreconditioned
system and a family of H-mCMP for the Dirichlet problem, with κ = 8,
over a submarine grid.

In this case, results only for the mCMP and its hierarchical versions are available, be-

cause of the great amount of dofs in the barycentric mesh so we only show results for the

mCMP. As before, Figure 5.11 shows that the mCMP is not efficient enough for the prob-

lem, but H-mCMP1E-2 does overcome the total timing of the unpreconditioned system,
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which is the result we were expecting.
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Figure 5.11. Assembly and solving time for preconditioned and unprecon-
ditioned systems for the Dirichlet problem over the submarine grid (6,936
dofs).
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6. CONCLUSIONS

The H-mCMPs presented in this research provide significant reduction in computa-

tional time with respect to the original Calderón preconditioner. The proposed mCMP

respects the spectral properties of the original CMP. Moreover, we have shown our tech-

nique to be more efficient than the CMPs currently used to precondition the Helmholtz

BIOs. Robustness for larger leafsizes is also shown though this results in longer matrix

assembly times. Also, the understanding of the influence of the ε parameter in the pre-

conditioner assembly strategy turns out to be crucial to keep the efficiency of the method.

Finally, though there still are cases in which Calderón preconditioning is not more effective

than the unpreconditioned system, in general, the mCMPs are suitable for cases in which

the unpreconditioned system takes a long time to be solved and thus, its applicability and

improvements should remain as a subject of interest.
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A. THEORETICAL RESULTS

For the sake of completeness recall (Hiptmair, 2006, Theorem 2.1)

Theorem 0.1. On two Hilbert spaces V, W we consider continuous sesquilinear

forms a ∈ L(X × X) and b ∈ L(Y × Y ) and t ∈ L(X × Y ), with norms ‖a‖, ‖b‖

and ‖t‖.

(C1) If a, b and t satisfy a discrete inf-sup condition with constants cA, cB, cT > 0,

respectively, on their corresponding discrete spaces, and

(C2) dimXh = M = dimYh, choosing any discrete bases {ϕj}Mj=1 of Xh and {φi}Mi=1

of Yh. Then, the associated Galerkin matrices:

Ah := (a(ϕi, ϕj))
M
i,j=1,Bh := (b(φi, φj))

M
i,j=1,Th := (t(ϕi, φj))

M
i,j=1

satisfy

κ2(Th
−1BhTh

−HAh) ≤ ‖a‖ ‖b‖ ‖t‖
cAcBc2

T

(A.1)

where κ2 designates the spectral condition number.

The next result yields an error estimate for the hierarchical Calderón preconditioner.

Lemma 0.1. Let Ah be a discretization of Vκ or Wκ. Then, the hierarchical version

of Ah, denoted AH converges linearly with ε to Ah in spectral norm.

PROOF. Though this result was already demonstrated in Faustmann, Melenk, and

Praetorius (2017), for the sake of completeness we repeat the proof. We start by recalling

Lemma 6.32 in Hackbusch (2015). Let M ∈ RN×N ,P be a partitioning of I × I. Then,

‖M‖2 ≤ max{1, Cspdepth(T )}max{‖Mτ×σ‖2},
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where Csp is the sparsity constant defined in Hackbusch (2015):

Csp(X) = max{max
τ∈T (I)

|{σ ∈ T (J) : τ × σ ∈ X}|, max
σ∈T (J)

|{τ ∈ T (I) : τ × σ ∈ X}|}

and depth(T ) = depth(T (I × J)) = min{depth(T )(I), depth(T )(J)}. Applying this

bound to Ah −AH leads to∥∥Ah −AH
∥∥

2
≤ max{1, Cspdepth(T )}max{

∥∥(Ah −AH)|τ×σ
∥∥

2
}.

Given the definition of full matrices and the accuracy of ACA:

∥∥(Ah −AH)|τ×σ
∥∥

2
=

 0 for full matrices

ε for low-rank matrices

Hence, ∥∥Ah −AH
∥∥

2
≤ εmax{1, Cspdepth((T ))}.

as stated. �

Based on the previous lemma, we can bound the condition number for the Modified

Calderón preconditioner of either the weakly or hyper-singular operators.

Theorem 0.2. Given a pair of BIOs, A and B under assumptions like in 0.1, along

with their suitable Galerkin discretizations Ah and Bh over primal and dual meshes,

respectively. Let P′h be a dual preconditioner (P′hAh = G−1
h B′hG

−T
h Ah) assembled via

the method described in Section 3.2. The condition number of P′hAh is bounded by:

κ2(P′hAh) ≤ Kκ2(G−1
h B′hB

−1
h Gh) (A.2)

where K is a bound for κ2(PhAh) given by 0.1.
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PROOF. Given the triangular discretizations of a pair of BIOs, A and B, (Ah and Bh

respectively) and a quadrilateral discretization for A (A′h), a bound for the condition num-

ber of P′hAh can be found, by noticing that

‖P′hAh‖2 =
∥∥P′h(P−1

h Ph)Ah

∥∥
2
≤
∥∥P′hP−1

h

∥∥
2
‖PhAh‖2∥∥(P′hAh)

−1
∥∥

2
=
∥∥(P′h(P

−1
h Ph)Ah)

−1
∥∥

2
≤
∥∥(P′hP

−1
h )−1

∥∥
2

∥∥(PhAh)
−1
∥∥

2

and then

κ2(P′hAh) ≤
∥∥P′hP−1

h

∥∥
2
‖PhAh‖2

∥∥(P′hP
−1
h )−1

∥∥
2

∥∥(PhAh)
−1
∥∥

2
= κ2(PhAh)κ2(P′hP

−1
h ).

Finally, considering the equality P′hP
−1
h = G−1

h B′hB
−1
h Gh

κ2(P′hAh) ≤ κ2(PhAh)κ2(P′hP
−1
h ) ≤ Kκ2(G−1

h B′hB
−1
h Gh) (A.3)

as stated. �

Finally, we obtain the following bound for the condition number of the system precon-

ditioned by theH-mCMP

Theorem 0.3. Given a pair of BIOs, A and B, under assumptions like in 0.1, along

with their suitable Galerkin discretizations Ah and Bh over primal and dual meshes,

respectively. Let Ph be a dual preconditioner (PhBh = G−Th AhG
−1
h Bh).

If εmax{1, Cspdepth(T )}σmaxκ2(Gh) < 1, then the condition number of κ2(PHBh)

can be controled by ε and is bounded by:

κ2(PhBh)
1 + εmax{1, Cspdepth(T )}/σminκ2(Gh)

1− εmax{1, Cspdepth(T )}/σminκ2(Gh)
(A.4)
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PROOF. By definition, it holds

κ2(PHBh) =
∥∥PHBh

∥∥
2

∥∥(PHBh)
−1
∥∥

2

=
∥∥PHBh(PhBh)

−1(PhBh)
∥∥

2

∥∥(PhBh)
−1(PhBh)(P

HBh)
−1
∥∥

2

≤
∥∥PHBh(PhBh)

−1
∥∥

2
‖PhBh‖2

∥∥(PhBh)
−1
∥∥

2

∥∥(PhBh)(P
HBh)

−1
∥∥

2

= κ2(PhBh)
∥∥PHP−1

h

∥∥
2

∥∥(PHP−1
h )−1

∥∥
2

(A.5)

Since δ(PH) = PH −Ph, then :

= κ2(PhBh)
∥∥(PH −Ph + Ph)P

−1
h

∥∥
2

∥∥((PH −Ph + Ph)P
−1
h )−1

∥∥
2

= κ2(PhBh)
∥∥(δ(PH)P−1

h + I)
∥∥

2

∥∥(δ(PH)P−1
h + I)−1

∥∥
2
.

Observe that

δ(PH)P−1
h = (G−1

h δ(AH)G−Th )(G−1
h AhG

−T
h )−1 = G−1

h δ(AH)A−1
h Gh. (A.6)

Using the triangular inequality and calculating the inverse matrix by the Neumann series,

under the assumption that εmax{1, Cspdepth(T )}/σminκ2(Gh) < 1, we can write

κ2(PHBh) ≤ κ2(PhBh)
1 + εmax{1, Cspdepth(T )}/σminκ2(Gh)

1− εmax{1, Cspdepth(T )}/σminκ2(Gh)
(A.7)

where σmin is the smallest singular value of A. �

B. COMPLEMENTARY CONTENT

B.1. Krylov Subspaces, a short insight

Given a linear system:

Ax = b,
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where A is an invertible, complex-valued matrix of n×n entries and b ∈ Cn, methods

for solving this problem fall in two different classes: direct methods and iterative methods.

On one hand, direct methods find in a certain number of iterations, with a computa-

tional time complexity of O(n3) steps and then, when linear systems are large and dense,

direct methods require a prohibitive computational time to find a solution. Thus, itera-

tive schemes are considered as an alternative to direct methods. Among these, stationary

relaxation-type methods as Jacobi and Gauss-Seidel methods can be found, but have the

disadvantage of beeing well suited for certain classes of matrices only. To solve this

problem, projection methods are used, because they have more general use and are more

robust.

A general projection method for solving the system Ax = b is a method which seeks

an approximate solution xm from an affine subspace x0 +Km of dimension m, were x0 is

an arbitrary initial guess to the solution. The approximate solution xm also has to fullfill

the Galerkin condition b −Axm ⊥ Lm, where Lm is also a space of dimension m and a

Krylov subspace method is such that the subspace

Km(A, r0) = span{r0,Ar0,A
2r0, . . . ,A

m−1r0}, (B.1)

where r0 = b−Ax0 (Saad, 2003).

From another perspective, a Krylov subspace Km is the subspace of all vectors in Rn

which can be written as x = p(A)v where p is a polynomial of degree not exceeding

m− 1.

One of the most important applications of the Krylov subspaces is Arnoldi’s method,

which is an orthogonal projection method onto Km for general non-hermitian matrices.

This leads to a way for finding approximations for the eigenvalues of such matrices. The

algorithm reads:
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Algorithm 4 Arnoldi

1: Choose a vector v1 such that ‖ v1 ‖2= 1
2: for j = 1, . . . ,m do
3: Compute hij = (Avj, vi) for i = 1, . . . , j

4: Compute wj = Avj −
∑j

i=1 hijvi
5: hj+1,j =‖ wj ‖2

6: If hj+1,j = 0 then stop
7: vj+1 =

wj

hj+1,j

8: end for

Arnoldi’s method has several versions depending on the method used to orthonor-

malize the basis of vi vectors, but the idea is essencially the same, which is to form an

orthonormal basis fo the Km subspace.

At the same time, Arnoldi’s method is used by several algorithms to solve linear sys-

tems. The Full Orthogonalization Method (FOM) and its variations are supported by it, but

the one that concerns to this investigation is the Generalized Minimum Residual Method

(GMRES), which is a projection method based on taking the Krylov subspace, K = Km
and L = AKm, where Km is the mth Krylov subspace. The GMRES algorithm reads:

Algorithm 5 GMRES

1: Compute r0 = b−Ax0, β :=‖ r0 ‖2 and v1 = r0
β

2: Define the (m+ 1)×m matrix H̄m = {hij}1≤i≤m+a,1≤j≤m, set H̄m = 0
3: Compute the arnoldi iteration for j = 1, . . . ,m
4: Compute ym, the minimizer of βe1 − H̄my and xm = x0 + Vmym

Then, the GMRES method converges in m iterations, where m is not determined a

priori, but in general, there is a maximum, mmax in which convergence can be achieved.

If convergence is not achieved in that amount of iterations, then a restarting is triggered,

which means that the GMRES method returns to iteration zero, with an initial solution

given by xmmax .
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B.2. Matrix Preconditioning

Given a nonsingular matrix A of n × n entries, assume that its data is perturbed by

εE, then according to Saad (2003), the solution x(ε) of the perturbed system satsfies the

equation:

(A + εE)x(ε) = b+ εe

and its relative variation is such that:

‖ x(ε)− x ‖p
‖ x ‖p

≤ ε ‖ A ‖p‖ A−1 ‖p
(
‖ e ‖p
‖ b ‖p

+
‖ E ‖p
‖ A ‖p

)
+ o(ε).

The quantity κp(A) =‖ A ‖p‖ A−1 ‖p is called the condition number of the linear

system. For the spectral norm, ‖ · ‖2, the condition number is given by:

κ2(A) =
σmax(A)

σmin(A)
(B.2)

B.3. Algebraic preconditioners

As stated in the previous section, algebraic preconditioning techniques seeks to find a

matrix P, such that its application to an ill conditioned linear system transforms such sys-

tem into a matrix spectrally similar to the identity. On these terms, the best preconditioner

that can be built is the inverse matrix itself, and then, finding a preconditioner could be

summarized into constructing a matrix similar to the original system. This holds the key

behind algebraic preconditioners.

In this section, some of the most acknowledged methods to build algebraic precondi-

tioners are presented.
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B.3.1. Jacobi, Gaus Seidel and SOR preconditioners

Saad (2003) presents some basic iterative methods. To build a preconditioner, a split-

ing of a matrix A = M−N is necessary. Then, the preconditioned system reads:

M−1Ax = M−1b

Depending on the method, the splitting in (B.3.1) changes to A = D− E− F, where

D is a diagonal matrix. Then the splitting factor in (B.3.1) changes to:

MJacobi = D

MGauss−Seidel = D− E

MSOR = (D− ωE)

MSSOR = (D− ωE)D−1(D− ωF)

B.3.2. Incomplete LU factorization

The idea behind this method is to perform a partial LU factorization of a matrix A,

that is, a sparse lower triangular matrix, L and sparse upper triangular matrix U, so the

residual matrix R = LU−A satisfies some constraints.

According to K. Chen (2005) :

Although theoretically the optimal L,U may be dense, even for a gen-

eral sparse matrix, we can impose some pattern restrictions on L,U to

maintain efficiency. If A is a dense matrix, we may make a suitable

threshold on entries of A before considering an ILU preconditioner.
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Saad (2003) describes the ILU preconditioning technique as a set of preconditioners,

ILUP , where P is a zero pattern used for dropping entries in order to compute a sparse

version of L and U. The zero pattern is such that:

P ⊂ {(i, j)|i 6= j; 1 ≤ i, j ≤ n}

Then, the algorithm for the ILUP is performed as in 6.

Algorithm 6 ILUP

1: for k = 1, . . . , n− 1 do
2: for i = k + 1, . . . , n and if (i, k) /∈ P do aik := aik/akk
3: for j = k + 1, . . . , n and for(i, j) /∈ P do aij := aij − aikakj
4: end for
5: end for
6: end for

Thus, the quality of the preconditioner is determined by the P pattern, so the question

that arises now is how to find such pattern. There are different approaches to answer this

question. The most classical is the so called ILU(0) factorization, which takes theP pattern

from the zero entries of the original matrix, A, but ,ore accurate approaches can be found,

such as ILU(1), which ”results from taking P to be the zero pattern of the product LU of

the factors L,U obtained from ILU(0)” (Saad, 2003).

B.3.3. Approximate inverse preconditioners

There are several aproaches to build this kind of preconditioners. The first one is to

use the fact that A−1 can be expressed by the Neumann series (if ρ(B) < 1):

(I−B)−1 = I + B + B2 + B3 + . . .

Using B as I−A, then he the best kth low degree polynomial is targeted as a precon-

ditioner.
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For a diagonalizable matrix, A = XDX−1 a different approach is to find the best low

kth degree polynomial:

pk(A) = ckA
k + ck−1A

k−1 + · · ·+ c1A + c0I

and solve the problem:

min
pk(A)

‖ I− pk(A)A ‖∞≤ κ(X) min
pk(A)

max
λ∈Λ(A)

|1− pk(λ)λ|

Where Λ(A) is the set of eigenvalues of A. For a fixed integer k Chebyshev polyno-

mials are used to find a solution to (B.3.3).

Another approach aims to compute a A−1 by minimizing ‖ I − AM ‖ instead of

finding a polynomial M = pk(A) .

In particular, the SPAI preconditioning strategy considers a right preconditioner M

with a sparsity pattern S, such that M will be the best matrix that has the pattern S and

minimizes the functional

min
M
‖ AM− I ‖2

F= min
M
‖MA− I ‖2

F

thus, by using the Frobenius norm the problem decouples into n least squares problems

min
mj

‖ Amj − ej ‖2
2, j = 1, . . . , n

Here (B.3.3) usually represents an usually small-sized least squares problem to solve

if A is sparse, so parallel algorithms are required to solve them efficiently.
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B.4. Some definitions on Hierrchical matrices

(i) Partition: Let I,J ⊂ N. A subset P ⊂ P(I × J ) of the set of subsets of

I × J is called partition if

I × J =
⋃
b∈P

b

and if b1 ∩ b2 = ∅ implies b1 = b2 for all b1, b2 ∈ P . The elements b ∈ P are

called index blocks.

(ii) Tree: (r, V, E, L) is a tree, T , with a root r, if the following holds:

• V is a non-empty set of vertices and E ⊂ V × V is a set of edges.

• r ∈ V and for all v ∈ V there exists a unique path from r to v, i.e, a tuple

of vertices, (vi)
l
i=0, such that (vi−1, vi) ∈ E holds for all i ∈ {1, . . . , l} and

vi 6= vj if i, j ∈ {1, . . . , l}, i 6= j, and v0 = r, vl = v

(iii) Cluster Tree: A tree is called a cluster tree, if the following conditions hold:

• root(T ) = I

• For all v ∈ V , it holds sons(v) = ∅, or v = ∪s∈sons(v)s

(iv) Diameter of a cluster (diam):

diam(τ) := max{‖x′ − x′′‖2 : x′, x′′ ∈ Xτ}, τ ⊂ I

(v) Distance between clusters (dist):

diam(τ, σ) := min{‖x− y‖2 : x ∈ Xτ , y ∈ Yσ}, τ ⊂ I, σ ⊂ J

(vi) Level: Let T be a tree, let t be a leaf and t0, . . . , tm be a sequence of ancestors,

then m ∈ N0 is called the level of T .

(vii) Depth: The maximal level of a tree is called depth.

(viii) Cardinality of a cluster: Is the number of elements inside a cluster.

(ix) Leafsize: Is the minumum cardinality of a cluster.
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(x) Geometric and cardinality balanced clustering: There are different methods

for clustering, two of them are frequently used:

• Cardinality balanced clustering: This cardinality clustering method pro-

vides a balanced cluster tree. It starts with a d-dimensional box that contains

all the points of interest xi (in this case, the nodes of the mesh). Then, this

box is split in two boxes, such that each one contains the same number of

points. This process is repeated as long as the size of the corresponding

clusters is greater than a given leafsize.

• Geometric Clustering: This method is based on partitioning the smallest

d-dimensional box that contains all the points of interest xi (in this case,

the nodes of the mesh), BI := [a1, b1] × · · · × [ad, bd]. Then, BI is split

in the direction of maximal extent, creating a disjoint partition of BI . This

procedure is then applied recursively to the bounding boxes of the new par-

tition as long as the size of the corresponding clusters is greater than a given

leafsize.

(xi) Admissibility: Let η > 0, t ∈ TI and s ∈ TJ two clusters and Ωt,Ωs their

corresponding cluster supports. The cluster pair (t, s) is η-admissible if there

holds:

min{diam(Ωt)diam(Ωs)} ≤ ηdist(Ωt,Ωs)

(xii) Low rank matrix: A matrix A ∈ Cm×n
k is called a matrix of low rank if k(m+

n) < m · n

The low-rank reppresentation for a matrix of m× n entries is given by:

A =
r∑
i=1

uiv
∗
i , ui ∈ Cm, vi ∈ Cn

Where r is the rank of the approximation and uiv∗i is an outer product. Hence,

instead of storing the m ·n entries of A ∈ Cm×n
k , the vectors ui, vi, i = 1, . . . , k

require k · (m+n) units of storage. Then, the matrix-vector product is given by:
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Ax =
r∑
i=1

siui, ui ∈ Cm, si = v∗i x

Hence, instead of 2m · n arithmetic operations which are required in the full

representation, the outer-product form amounts to 2k(m+ n)− k operations.
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