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Abstract Synaptic activity is a critical determinant in the
formation and development of excitatory synapses in the
central nervous system (CNS). The excitatory current is pro-
duced and regulated by several ionotropic receptors, including
those that respond to glutamate. These channels are in turn
regulated through several secreted factors that function as
synaptic organizers. Specifically, Wnt, brain-derived neuro-
trophic factor (BDNF), fibroblast growth factor (FGF), and
transforming growth factor (TGF) particularly regulate the N-
methyl-D-aspartate receptor (NMDAR) glutamatergic chan-
nel. These factors likely regulate early embryonic develop-
ment and directly control key proteins in the function of
important glutamatergic channels. Here, we review the secret-
ed molecules that participate in synaptic organization and
discuss the cell signaling behind of this fine regulation.
Additionally, we discuss how these factors are dysregulated
in some neuropathologies associated with glutamatergic syn-
aptic transmission in the CNS.
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Introduction

The obligatory balance between synaptic plasticity and
excitotoxicity, in which the N-methyl-D-aspartate receptor
(NMDAR) is a major player, is essential for the precise
regulation of the dynamic distribution of this receptor. The
receptor distribution is controlled not only through the internal
clock (i.e., the GluN2A/GluN2B shift), but also through ex-
ternal signals that participate in synaptic formation and fine-
tuned control beyond the amino acid sequence signals and
structural domains of proteins attached to the presynaptic or
postsynaptic neuronal cell. The final destination and changes
associated with the dynamic synaptic structure are highly
influenced through external components, particularly soluble
molecules, secreted from the neuron itself or other cells [1, 2].

Synaptic components could be modulated through either
direct interactions with receptors or signaling cascades in
cross talk with mechanisms associated with synaptic remod-
eling and plasticity [3, 4].

In this review, we focus on synaptic function and the major
protein families, including Wnt, brain-derived neurotrophic
factor (BDNF), transforming growth factor (TGF)-β, and
fibroblast growth factors (FGFs), which specifically modulate
glutamatergic transmission and, more specifically, NMDAR
synaptic transmission in the CNS.

Biology of the N-Methyl-D-Aspartate Receptors

In the mammalian brain, fast excitatory synaptic transmission
is mainly mediated through glutamate and its ionotropic re-
ceptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
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acid (AMPA) and NMDA. Unique properties, including Ca2+

permeability, the voltage-dependent sensitivity to Mg2+ and
modulation through glycine, mediate the critical subunit-
dependent role for NMDARs in brain development, neuropa-
thology, and synaptic plasticity [5–9]. In addition, NMDARs
play a structural role at the synapse through the recruitment of
scaffolding and signaling complexes [10, 11]. The number,
properties, and subunit composition of synaptic NMDARs are
critical for proper synaptic functioning and the integrity of the
synapse, and these factors must be well controlled to regulate
Ca2+ influx and different signaling cascades associated with
the activation of this receptor.

The dysregulation of Ca2+ influx through NMDAR not
only contributes to neuronal death during acute damage, such
as traumatic brain injury and ischemia, but also contributes to
neuronal cell loss in several neurodegenerative diseases, such
as Alzheimer’s and Huntington’s diseases [12–14].

Structurally, NMDAR is a heterotetrameric channel pore
formed by the obligatory subunit GluN1 and either GluN2 or
GluN3 subunits. These subunits contain several variants:
unique GluN1 subunits with eight splice variants, four
GluN2 subunits (GluN2A–D), and two GluN3 subunits [15].
Each subunit has an extracellular N-terminus, three transmem-
brane segments, a reentrant loop that forms the channel pore,
and an intracellular C-terminus. Functional NMDARs, in the
forebrain of the central nervous system (CNS), primarily
comprise two GluN1 subunits and two GluN2/3 subunits
[15]. Glutamate binds the GluN2 subunit, while glycine, a
co-agonist, binds the GluN1 subunit. The domain for Mg2+

blockade and Ca2+ permeability is in the pore formed by the
internal loop [15]. Although GluN1 subunits are critical for
the formation of a functional NMDAR, GluN2 subunits con-
fer specific and key biophysical and pharmacological proper-
ties, including sensitivity to polyamines, protons, and Zn2+

ions [16]; affinity for glutamate; modulation through glycine;
specific Ca2+ permeability; and differential channel kinetics,
including open probability and deactivation time [17]
(Fig. 1a). Additionally, GluN2 subunits confer specific prop-
erties for the trafficking and delivery of NMDAR to the
plasma membrane and synaptic compartment [15, 18].
Recently, crystal structure of intact heterotetrameric GluN1-
GluN2B NMDAR ion channel at 4 Å was described [19], and
also crystal structure of GluN1-GluN2B NMDAR with the
allosteric inhibitor, Ro25-6981, partial agonists, and the ion
channel blocker, MK-801, was published [20]. Both manu-
scripts help to understand the functional differences with
AMPA receptor structure defining subunit interfaces and
structural basis for allosteric inactivation providing a molecu-
lar blueprinting for design of therapeutic compounds [19, 20].

In several brain structures, including the brain stem, hip-
pocampus, and neocortex, the ratio of GluN2A/2B increases
during early postnatal development [21]. For example, in the
hippocampus, the selective GluN2B inhibitor, ifenprodil,

shows an age-dependent decrease in the blockade of
NMDAR in rats between the ages of P1 and young adult
[22]. Changes in the GluN2A/2B ratio can be estimated after
measuring messenger RNA (mRNA) [23, 24] or protein [25]
levels. Differences in the biophysical characteristics and struc-
tural properties of GluN2A or GluN2B confer physiological
differences to the synapses containing these subunits. For
long-term potentiation (LTP), the structural role of GluN2B-
containing receptors is more critical than the role of the
channels formed from these receptor subunits. LTP can still
be induced when the GluN2B subunits are pharmacologically
inhibited, but this induction is prevented when GluN2B ex-
pression is suppressed [26]. This structural role has been
associated with the C-terminus of GluN2B (Fig. 1b).
Therefore, wild-type GluN2A does not restore LTP in the
absence of GluN2B (GluN2B RNAi), but replacing the C-
terminus of the GluN2A subunit with the C-terminus of
GluN2B restored LTP, suggesting that the C-terminus is crit-
ical [26]. Previous studies have shown that the CaMKII-
binding domain in the C-terminus of GluN2B plays an im-
portant role in LTP induction [10] and the replacing synaptic
GluN2B with GluN2A reduces synaptic plasticity. The
switching of GluN2B with GluN2A also occurs after sensory
experiences [25, 27], learning [28], and during development
[23, 29]. However, changes in the biophysical properties of
the synaptic NMDARs have not been associated with reduced

Fig. 1 Schematic of the general structure of the NMDA receptor. a The
tetrameric structure of the NMDA receptor with two GluN1 and two
GluN2A/B subunits, indicating Ca2+ signaling. The regulation of the
receptor includes the effect of polyamines, glycine, H+, Zn2+, D-serine,
and glutamate. b The structural domains of the GluN2B subunit of the
NMDA receptor, showing a long C-terminus containing a PDZ domain
for interactions with several postsynaptic proteins, including CamKII and
α-actin
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synaptic plasticity [30, 31]. Moreover, modifying the
CamKII-binding domain of the GluN2B subunit reduces
LTP [10].

The modulation of the GluN2A/2B ratio is not only asso-
ciated with activity-dependent forms of synaptic plasticity,
such as LTP. Indeed, the switch between GluN2 subunits
implicates structural changes associated with different events,
including synaptogenesis and synaptic pruning. Increasing
GluN2A expression decreases the number of synapses, and
although increasing the expression of GluN2B does not affect
the number of spines, GluN2B increases both filopodia and
spine motility, thereby inducing the addition and retractions of
spines [32]. The effects on spine structure reflect the different
roles of each C-terminal subunit during synapse formation and
stabilization. The structural role of the C-terminus of
NMDAR is not confined to the GluN2 subunits. Indeed,
non-ionotropic NMDAR-dependent signaling through specif-
ic GluN1 C-terminal splice isoforms regulates the long-term
stability and density of dendritic spines and the number of
excitatory synapses [11]. The knockdown of the GluN1 sub-
unit (essential subunit for NMDAR assembly) increased the
motility of dendritic spines and the number of transient pro-
trusions but decreased the spine density. These events have
been associated with the C-terminal PDZ binding domain-
dependent physical loss of NMDARs, as these effects are not
observed in the presence of the pharmacological blockade of
NMDARs [11].

Changes in F-actin regulate dendritic spine morphology
through the regulation of postsynaptic proteins, such as
NMDARs, AMPARs, and CaMKIIa, and postsynaptic density
(PSD) scaffolds, including GKAP, Shank, and Homer
[33–35]. Specifically, the C-terminus of the GluN2B and
GluN1 subunits directly binds to α-actinin [36] (Fig. 1b).
The CA3-targeted GluN2B-knock-out (KO) mice, with ablat-
ed GluN2B expression, reduced GluN1 expression and no
effect on GluN2A, which shows a significant decrease in
F-actin in the synaptosomal fraction [37].

In CA3-GluN2B-KO mice, the F-actin/G-actin ratio is
reduced, affecting the formation of the postsynaptic complex
and the formation and maintenance of dendritic spines [37]
(Fig. 2).

The presence of specific GluN2 subunits in different do-
mains suggests physiological and pathological roles for these
proteins. The predominant GluN2 subunits in the mammalian
forebrain, 2A and 2B, also control the trafficking of NMDARs
based on subunit-specific rules, whereby the GluN2A sub-
units are more abundant in synaptic regions, while GluN2B is
present in both synaptic and extrasynaptic domains. GluN2B-
containing receptors have faster rates of diffusion than
GluN2A-containing receptors, which contributes to the en-
richment of GluN2A at mature synaptic sites [6]. Thus,
GluN2B-containing receptors are inserted into synapses in
an activity-independent or constitutive manner. In contrast,

the incorporation of GluN2A-containing receptors requires
synaptic activity, and these receptors accumulate intracellular-
ly when activity is blocked [38].

Alterations in the composition and distribution of NMDAR
subunits modulates the amount of Ca2+ influx into neurons,
determining the ionic balance needed to maintain healthy
conditions for the correct function of neuronal circuits, with
several forms of regulation, including phosphorylation
(Tables 1 and 2). The regulation of the composition and
distribution of NMDAR is not only mediated through intra-
cellular and intrinsic signaling, as these events are also regu-
lated through external molecules not necessarily associated
with electrical activity or housekeeping regulation. Indeed,
these soluble factors are released in autocrine and paracrine
forms, providing an additional level of control in the intricate
regulation of the composition and function of postsynaptic
components.

Wnt

Wnt ligands are secreted glycoproteins that play a key role in
neuronal development and connectivity [39–41], the regula-
tion of axon guidance and remodeling [42], dendrite develop-
ment [43], synapse formation [44–46], and synaptic plasticity
[47–49], and some of these effects can be mediated through
NMDAR. Wnt activity through the binding of Frizzled (Fz)
subsequently triggers different downstream pathways [50],
including the canonical Wnt/β-catenin control of gene tran-
scription and the regulation of cytosolic microtubule dynam-
ics, a non-canonical pathway that activates Rho GTPases and
c-Jun N-terminal kinase (JNK) that induces changes in the
cytoskeleton, and a non-canonical Wnt/Ca2+ pathway that
increases the intracellular Ca2+ and the activation of CaMKII

Fig. 2 Effects of several soluble factors on the cellular pathways
controlled through NMDA receptor activation. The targets include the
receptors and downstream kinases, such as Erk1/2, MAPK, and PKC, for
the regulation of CREB phosphorylation to control LTP. Wnt proteins,
BDNF, and other factors function at different levels
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and protein kinase C (PKC), two enzymes that control synap-
tic function and plasticity [51].

Little information is known about which the specific role of
Wnt in NMDAR biology. First, Cappuccio et al. [52] showed
that lithium, an inhibitor of glycogen synthase kinase (GSK)-
3β, protects neurons against NMDA excitotoxicity. In this

context, Wnt-5a also exhibits a protective role against the
reduced expression of NMDAR and PSD-95 through Aβ
oligomers [53]. Indeed, Wnt-5a occludes the Aβ-mediated
synaptic depression of excitatory postsynaptic currents
(EPSCs) and reduces PSD-95 clusters in neuronal cultures
[54]. In retinal ganglion cells (RGC), Norrin, an Fzl4 ligand,
prevents NMDA damage through the expression of several
factors that increase the number of surviving RGC axons and
decrease the apoptotic death of retinal neurons following
NMDA-mediated damage. This effect is induced through
Wnt/β-catenin [55, 56]. In addition, Wnt-7a, lithium (GSK-
3β inhibitor), and MK801 (a NMDA blocker) showed pro-
tective roles in dystrophic networks, apoptosis, Ca2+ increase,
and the loss of mitochondrial membrane potential induced
through Aβ-AChE complexes [57]. However, in terms of
function,Wnt-7a has no effect onNMDAR-mediated synaptic
transmission, whereas Wnt-5a, the non-canonical ligand,
upregulates synaptic NMDAR currents, facilitating LTP. In
addition, endogenous Wnt ligands maintain basal NMDAR
synaptic transmission and adjust the threshold for synaptic
potentiation. Therefore, Wnt ligands could modulate synaptic
plasticity and brain function during later stages of develop-
ment and in mature organisms [48] (Fig. 2). Other studies
have shown that NMDA and Wnt signaling are impaired in
the Traf2 and Nck-interacting kinase (TNiK) KO, which
exhibits difficulties in spatial discrimination, glutamatergic
signaling-dependent object location learning, and hyper-
locomotor behavior [58]. Wnt ligands and the activation of
NMDAR can also modify the NMDAR activity through the
regulation of glutamate levels in osteoblastic cells. Wnt and
NMDAR activation inhibits the activity of glutamine synthe-
tase [36], thereby increasing the glutamate concentration
through a decrease in the conversion of this compound to
glutamine. This effect has been associated with the differenti-
ation of osteoblasts, as GS activity declines during bone
mineralization [59].

Table 1 Highlight structure/modification (phosphorylation) of NMDA receptor subunits under different enzymes

Subunit Structure/modification Regulation by Property/event affected Reference

GluN1 Phosphorylation, S890 and S896 PKC Receptor clustering [112, 113]

Phosphorylation, S897 PKA Surface expression and calcium permeation [112, 114]

GluN2A Phosphorylation, S900 and S929 PKA Desensitization [115, 116]

Phosphorylation, S1232 Cdk5 Increase NMDAR activity [117]

Phosphorylation, S1291, S1312, and S1416 PKC Increase GluN2A containing receptors,
decrease affinity by CaMKII

[118–120]

Phosphorylation, Y1292, Y1325, and Y1387 Src Potentiation of NMDAR currents [121, 122]

GluN2B Phosphorylation in PDZ-binding domain, S1480 Casein kinase 2 Diffusion in the membrane [123]

Phosphorylation, S1303 CaMKII/PKC Calcium entry [124]

Phosphorylation, S1323 PKC Activity potentiation [125]

Phosphorylation, Y1252, Y1336, and Y1472 Fyn Mediates endocytosis [126]

Phosphorylation, S1166 PKA Synaptic function and calcium permeation [127, 114]

Table 2 Soluble factor and target over signaling associated to
glutamatergic transmission

Soluble
Factor

Target Reference

Wnt

5a Upregulation of synaptic NMDA current [48]

Occlusion of Aβ-depression on EPSCs and
decrease of PSD-95 cluster

[54]

7a No effect at postsynaptic level. Protective
role in dystrophic neurons, Ca2+ increase,
and loss of mitochondrial membrane
potential induced by Aβ-AChE
complexes

[57]

2 It transcription is induced by CREB through
NMDAR-Ca2+ entry. Stimulates dendritic
arborization

[66]

BDNF NMDA receptor phosphorylation [77]

GluN1 phosphorylation [78]

GluN2B phosphorylation [79]

NMDA clustering induction [84]

NMDA channel open probability modulator [85, 86]

FGF Increases of mRNA of NMDA receptor [93]

Increase neuronal branching [94]

Participation in neurogenesis and plasticity
including LTP

[95]

TGF Increases of NMDA receptor level [101]

NMDA receptor phosphorylation inducing
Ca2+ influx

[102]

By GDF11 (TGF family protein) increases
in CREB phosphorylation

[106]
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Other functions of the Wnt pathway include the enhance-
ment of gene expression through the downstream effector β-
catenin. This enhanced gene expression can be activity de-
pendent, as the activation of calpain through NMDA induces
β-catenin cleavage at the N-terminus, generating stable trun-
cated forms that accumulate in the nucleus and induce the Tcf/
Lef-dependent transcription of genes, such as Fosl1 [60].
Calpain also cleaves N-cadherin and subsequently interacts
with β-catenin to modulate the expression of this gene [61].
Following NMDAR activation, the expression of several pro-
teins, such as ADAM10 andβ-catenin, increases through both
theWnt pathway and ERK kinase [62]. Indeed, D-serine, a co-
activator of NMDAR, apparently triggers the upregulation of
Wnt signaling genes, such as the gene encoding the catalytic
beta subunit of cAMP-dependent protein kinase [63]. Wnt/β-
catenin has also been implicated in drug-induced changes in
transporter expression, and in the epileptic brain, glutamate
stimulates the endothelial form of NMDAR, inducing the
expression of P-glycoprotein, a protein involved in blood-
brain barrier permeability, which affects several central ner-
vous diseases [64]. In addition, the activation ofWnt signaling
in the spinal cord during neuropathic pain stimulates the
production of the GluN2B subunit of NMDAR and the gen-
eration of Ca2+ signals through the β-catenin pathway [65]. In
turn, neuronal activity mediated through Ca2+ entry via
NMDAR also enhances the CREB-dependent synthesis and
secretion of Wnt-2 (Fig. 2). Wnt-2 couples neuronal activity
with dendritic arborization, as this protein stimulates dendritic
arborization [66] (Fig. 3). Moreover, NMDA activation in-
duces the rapid synthesis and secretion of Wnt-5a protein.
NMDAR-regulated Wnt-5a synthesis does not require tran-
scription and results from activity-dependent translation, as
treatment with anisomycin, a translation inhibitor, suppresses
this effect. NMDAR-dependent Wnt-5a synthesis depends on
MAPK, but not mammalian target of rapamycin (mTOR),
signaling, as MEK inhibitors impair this process, whereas
rapamycin, the mTOR blocker, has no effect [67].

Previous evidence has also demonstrated that Wnt signal-
ing through NMDAR is involved in dendritic refinement and
stimulates dendrite spine morphogenesis. Indeed, dendritic
refinement potentially reflects NMDAR stimulation, and this
activity triggers Wnt signaling, which plays a proretraction
role in dendritic arbors [68]. Wnt-5a, expressed early during
development, increases the amplitude of NMDAR spontane-
ous miniature currents and intracellular Ca2+ in dendritic
processes, stimulating spine morphogenesis, inducing the de
novo formation and increasing the size of spines. This phe-
nomenon is reversed through scavengers of Wnt [69].
Altogether, these effects suggest that the activation of Wnt
signaling through NMDAR stimulation is associated with
activity-coupled neurogenesis, neuronal development [70,
71], synapse formation [48], and learning and memory pro-
cesses [58]. The mechanism underlying the Wnt-mediated

regulation of NMDA receptor dynamics involves an interme-
diary role for nitric oxide (NO) [72]. Indeed, Wnt-5a increases
the GluN2B subunit of the NMDA receptor on the hippocam-
pal neuronal cell surface, and this increase is mediated through
NO production [72].

Brain-Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) belongs to the
neurotrophin family, which includes neurotrophin-3 (NT-3),
NT-4–5, and nerve growth factor (NGF) [73, 74]. BDNF not
only participates in the regulation of cell survival, develop-
ment, and differentiation but also regulates synaptic transmis-
sion and plasticity [75]. The regulatory function of BDNF
works at different levels. Herein, we discuss the specific
regulation of NMDAR and the implications on synaptic
function.

NMDAR is highly regulated, particularly through phos-
phorylation [76], and BDNF participates in this regulation
[77]. Using hippocampal synaptoneurosomes (including pre-
synaptic and postsynaptic elements) and isolated PSD, treat-
ment with BDNF specifically enhances the phosphorylation
of GluN1 NMDAR subunits [78]; however, no effect of NGF
was observed at 5 min after exposure. In mature cortex and
hippocampal PSD preparations, containing TrkB receptors,
BDNF also enhances the phosphorylation of GluN2B
NMDAR subunits [79]. Phosphorylation at tyrosine 1472
stimulates synaptic transmission and enhances the amplitude
of synaptic currents through the enrichment of GluN2B on
membrane surface of synaptic regions [80]. Fyn kinase

Fig. 3 Modulation of NMDA receptor in the synapse and the effects on
synaptic spines and branching. The NMDA receptor is delivered to the
synapse under the regulation of several soluble factors; this regulation not
only affects protein trafficking, but also regulates NMDA receptor
mRNA levels (through FGF). Other soluble factors, such as Wnt,
bFGF, BDNF, and GDF11, play active roles in synaptic branching and
spine plasticity with opposite effects, such as deleterious events
associated with Aβ
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mediates the phosphorylation of GluN2B subunits at tyrosine
1472 [81], and BDNF modulates Fyn activity through the
TrkB receptor [82] (Figs. 2 and 3). In Fyn KO mice (Fyn −/
−), the Fyn-mediated basal phosphorylation GluN2B was
decreased 20 % compared with the wild-type control [82].
Moreover, in wild-type mice, BDNF increases GluN2B phos-
phorylation 1.9-fold, but this effect was not observed in KO
mice (Fyn −/−) [82].

Electrophysiological measurements of evoked currents
in hippocampal culture neurons confirmed the importance
of GluN2B subunits for BDNF function in glutamatergic
transmission, and AP-5 (a NMDAR inhibitor) and
ifenprodil (a specific GluN2B inhibitor) showed similar
effects, partially inhibiting the BDNF effect on glutamater-
gic synaptic currents [83], suggesting that GluN2B inhibi-
tion plays an important role in this effect. In addition,
BDNF induces NMDAR clustering during the maturation
of hippocampal synapses in culture [84], and this mecha-
nism is GABAA dependent; bicuculline abolishes this ef-
fect. Moreover, GABAA clustering is also necessary for
TrkB-mediated and activity-dependent events [84]. These
regulations have physiological consequences, including
increased Ca2+ concentration in response to NMDA treat-
ment [77]. Cultured hippocampal neurons loaded with a
Ca2+ indicator (fura-2) showed an important response to
NMDA treatment after incubation with BDNF [77]. The
increased NMDAR functions could reflect modifications in
the properties of this receptor, including open probability
[85]. In hippocampal neurons, BDNF enhances respon-
siveness to the iontophoretic application of glutamate or
NMDA, increasing the amplitude and the open probability
[85], and these effects occur in response to BDNF exposi-
tion, but not with NGF or NT-3 treatments. The BDNF
effect is selective for the NMDA receptor because neither
AMPA nor acetylcholine responses are affected by BDNF
[85]. Signaling for NMDAR modulation through BDNF
also includes PKC pathways [86]. In rat spinal cord prep-
arations, BDNF treatment increases the phosphorylation of
GluN1 subunits, specifically at serine 897 [86]. This phos-
phorylation is mimicked by the PKC activator, phorbol
myristate acetate (PMA), and is inhibited by the PKC
inhibitor, chelerythrine [86] (Fig. 2a).

The Wnt-mediated regulation of BDNF adds another
level of complexity. So far, in this manuscript, we have
described a role for Wnt in the control of glutamatergic
transmission and the roles for several effector proteins,
including several kinases (PKC, CaMKII) and scaffold
proteins (PSD-95), including calcium influx. However, β-
catenin, the main effector of Wnt signaling activation,
binds DNA in putative Tcf/Lef regions in the promoter
and exons of the BDNF genes in humans and rodents
[41]. Experimental confirmation in glial cells showed that
BDNF is a direct target of the canonical Wnt pathway [87].

Fibroblast Growth Factor

The fibroblast growth factor (FGF) family includes 22 mem-
bers with four FGF receptors [88]. These ligands are polypep-
tides with diverse biological activities, including differentia-
tion, cell proliferation, and migration [89–91].

Basic FGF (bFGF or FGF-2) is effective in suppressing the
oxidative impairment of synaptic transporter functions
through a mitochondria-dependent mechanism [92]. Several
years ago, a role for bFGF in the regulation of NMDAR
expression was proposed [93]. Indeed, a reduction in the
levels of NMDAR mRNA was observed in bFGF-treated
neurons, and this effect was specific, as the level of kainate/
AMPA receptor mRNA did not change in the treated neurons
[93]. Additionally, bFGF increases the outgrowth of axons
and dendrites and might also increase the complexity
(branching) of the neurites in embryonic hippocampal neurons
[94] (Fig. 3).

Conditional KO mice for the FGFR1 gene were generated
to determine the role for the FGF receptor in neurogenesis and
synaptic plasticity in the dentate gyrus [95]. Deficits in
neurogenesis in KO mice were accompanied by LTP and
memory consolidation impairment [95]. In the presynaptic
counterpart, FGF22 and the closely related FGF7 and
FGF10 promote several aspects of presynaptic differentiation,
playing a key role in synaptic differentiation [96]. This dual
control of presynaptic and postsynaptic components through
the same family of soluble factors plays a role in targeting
diverse molecules to control synaptic organization.

Transforming Growth Factor

Transforming growth factor-β (TGF-β) signaling controls
several cellular processes, including cell proliferation, differ-
entiation, apoptosis, and others cellular events, from flies to
mammals [97]. The TGF-β family comprises TGF-β,
activins, Nodal, bone morphogenic proteins (BMPs), growth
and differentiation factors (GDFs), and anti-Mullerian hor-
mone (AMH) [98].

In general, studies concerning the role of TGF-α or β in
NMDAR modulation have involved excitotoxic models, fo-
cusing on the putative role for TGF-β in the toxicity mecha-
nism. In a retina model of neuronal damage induced through
the intravitreal injection of NMDA, the use of the inhibitors
SB431542 and LY364947 to block TGF-β signaling
prevented the progression of neuronal cell death [99]. Thus,
TGF-α shows a protective effect against NMDA-induced
toxicity [100]. In mixed neuron-glia cultures treated with
TGF-α, the neuronal cell death induced through NMDA
exposure was attenuated, showing a decrease in elevated
intracellular Ca2+ elicited, lactate dehydrogenase release,
propidium iodide staining, and caspase-3 activation [100].
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Additionally, the protein levels of NMDAR and AMPA
were increased in transgenic mice expressing high levels of
TGF-β1 (t64 mice) [101]. Specifically, in the hippocampus of
2-month-old transgenic mice, the levels of GluN1 and
GluN2A/B were enhanced more than 2-fold [101].

Activin, a member of the TGF-β superfamily, induces
NMDAR phosphorylation, thereby increasing Ca2+ influx
through these receptors [102]. After LTP, activin, GluN2
NMDAR subunits, and other proteins form a functional com-
plex that increases the expression of activin [103]. Dominant
negative activin receptor IB mice showed a reduced NMDA
current response and LTP impairment [104] (Fig. 2).

Considering that CREB phosphorylation is located down-
stream of NMDA activation in a synaptic potentiation context,
the modulation of CREB through TGF factors might be a
putative target for NMDA synaptic activation. Experiments
with heterochronic parabionts, in which the circulatory sys-
tems of young and aged animals are connected, indicate that
the exposure of aged mice to young blood late in life rejuve-
nates synaptic plasticity and improves cognitive function
[105]. Complementary studies have shown that this effect is
partially regulated through GDF11, a member of the TGF
family [106]. These data suggest that circulatory soluble fac-
tors are modulators of cognitive function (memory and learn-
ing tasks), associated with changes in the structural substrates
of plasticity (dendritic spines dynamic) [105, 106] (Fig. 4).

Conclusion and Projections

The roles for soluble secreted proteins, includingWnt, BDNF,
FGF, and TGF, in biological events, such as embryonic de-
velopment, cell proliferation, or axon guidance, have been
described. However, in recent years, these factors have been
implicated in the control of synaptic structure and function,
including the regulation of components of the glutamatergic
neurotransmission, such as NMDA receptors. Notably, these
molecules participate in different control points for key func-
tions. Through these proteins, the cell efficiently maintains the
correct internal balance and responds to external stimuli.

Although the role for soluble factors from the Wnt family
in embryonic development and cancer has been well charac-
terized [107], the role for these proteins in preventing neuronal
injuries, particularly those associated with Alzheimer’s dis-
ease (AD), has only recently been described [41, 51, 108,
109].

The role for BDNF in cell survival and differentiation has
been characterized for years, and its contribution to synaptic
function has also been well described [74]. However, the
coordinate action of BDNF together with other soluble factors
is an unexplored avenue. FGF plays a role in proliferation and
cell migration [110], and TGF controls several cellular pro-
cesses, including cell proliferation, differentiation, and

apoptosis, from flies to mammals [97]; although there are
many examples of the individual roles for these factors, we
cannot rule out the potential multitask properties of these
soluble factors when working together. These factors share
functional properties important for the maintenance of the cell,
and the availability of these factors is important for acute and
chronic changes during intracellular events, such as the inser-
tion of the AMPA receptor during LTP. Multifunctionality
ensures control of cell development through these molecules.
We focused on Wnt, BDNF, FGF, and TGF because these
molecules play active and specific roles for the control intra-
cellular traffic and NMDAR function, suggesting a mecha-
nism for the intervention of higher mental processes, such as
learning and memory, under physiological or pathological
conditions. Knowledge of the modifications that directly af-
fect the receptor or receptor signaling is crucial to generate

Fig. 4 Heterochronic parabiosis improves several synaptic properties in
older animals. a Exposure of aged mice to young blood late in life
rejuvenates synaptic plasticity and improves cognitive function. b
Increases in number of dendritic spines and enhanced LTP in
heterochronic animal [105]. An increase in the number of new neurons
is shown in the dentate gyrus, and a role for GDF11 is demonstrated [106]
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specific tools for the external control (soluble molecules) of
NMDAR function and synaptic plasticity. Current research
efforts have focused on dissecting the connection map in the
brain, the connectome, with huge progress [111]. Clearly,
however, the next step will be to elucidate the mechanisms
underlying the control of the interactions between neurons,
including the autocrine and paracrine release of soluble fac-
tors, which are ultimately responsible for remodeling neuronal
connections.
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