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Pontificia Universidad Católica de Chile, Santiago, Chile, 3 Millenium Nucleus EMBA, Santiago, Chile, 4 Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena,

Germany, 5 Institute for Biochemistry I, University of Cologne, Cologne, Germany, 6 Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany

Abstract

Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies
and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain
metabolic functions for reproduction and nitrogen (N2) fixation into specialized cell types (e.g. akinetes, heterocysts and
diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been
sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further
insights into the molecular basis of the traits of N2 fixation, filament formation and cell differentiation. Cylindrospermopsis
raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil
synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin
composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of
approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous
cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference
in repetitive element content, which accounts for most of the genome size difference between them. We show here that
the strains share a specific set of 2539 genes with .90% average nucleotide identity. The fact that the CS-505 and D9
genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the
ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous
species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N2 fixation
capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch
revealed a common minimal gene set for each of these cyanobacterial traits.
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Introduction

Cyanobacteria are among the most successful primary produc-

ing aquatic organisms, having populated the Earth for approxi-

mately 2.8 billion years [1]. Extant species are major (occasionally

dominant) components of marine, brackish and freshwater

environments, where they play crucial roles in global biological

solar energy conversion and nitrogen (N2) fixation, but are also

found in terrestrial ecosystems (in mats), and as extreme

thermophiles in hot springs and polar ice. In high biomass

concentration, cyanobacteria are responsible for noxious or

harmful algal blooms (HABs), and this phenomenon is com-

pounded by the fact that some cyanobacteria also produce potent

cyanotoxins (microcystins, nodularins, saxitoxins, anatoxins,

cylindrospermopsins, etc.), which have been classified according

to their mode of action and effects on mammals [2].

Cyanobacteria have evolved alternative morphologies, includ-

ing unicellular and diverse multicellular forms ranging from simple

colonies to branched filaments. Phylogenetic analysis has suggest-

ed that cyanobacteria capable of cell differentiation are mono-

phyletic [3]. Within this monophyletic group some cyanobacteria

further evolved from filaments in which a small number of

vegetative cells differentiated into either heterocysts or akinetes

(resting stages). Nitrogen (N2) fixation, or diazotrophy, also

appears to be monophyletic among cyanobacteria, although a

polyphyletic origin has also been proposed [4,5]. When mineral

and organic nitrogen sources, such as nitrate or ammonium, are

depleted from the growth medium, some filamentous cyanobac-
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teria maintain photosynthetic activity (including O2 generation) in

vegetative cells and differentiate heterocysts to provide an anoxic

environment suitable for N2 fixation [6].

The proposed evolutionary sequence of heterocyst-forming

filamentous cyanobacteria is still under debate. However, a likely

scenario is that diazotrophy was first established in filamentous

cyanobacteria (who acquired it either by horizontal gene transfer

(HGT) or by vertical evolution of a not necessarily filamentous

ancestor), and only after the establishment of diazotrophy, the

capacity for heterocyst formation in filamentous diazotrophs

developed [5].

Among filamentous cyanobacteria, the toxigenic species Cylin-

drospermopsis raciborskii is highly successful in freshwater environments.

This species has been reported to be rapidly expanding worldwide,

from tropical to temperate freshwater bodies [7]. C. raciborskii can

also co-exist with morphotypes assigned to the closely related genus

Raphidiopsis (also with toxin-producing members), which unlike

Cylindrospermopsis does not develop heterocysts or fix N2 [8].

One remarkable characteristic of some cyanobacteria is their

ability to form toxic blooms. Nevertheless, toxigenicity is not a

ubiquitous feature at the generic level or even within a species; for

example, both non-toxic and toxic strains of Cylindrospermopsis and

Raphidiopsis have been isolated from natural populations. The genes

responsible for toxin production are organized into clusters that

might be subject to frequent HGT, a possible explanation for the

evolution and biogeography both toxigenic and non-toxigenic strains

within species or genera [9]. Among C. raciborskii strains, two totally

different types of toxins may be produced: the hepatotoxin

cylindrospermopsin (CYN), a tricyclic alkaloid inhibitor of protein

synthesis [10], or neurotoxins associated with paralytic shellfish

poisoning (PSP), specifically the tetrahydropurine saxitoxin (STX)

and analogues [11]. Cylindrospermopsin is biosynthesized via

combined polyketide synthase/nonribosomal peptide synthetase

(PKS/NRPS) pathways [12], whereas cyanobacterial STX and its

analogues are likely generated by a unique gene cluster recently

described in C. raciborskii strain T3 [13] and also in a few other toxic

species [14]. Toxic strains of Raphidiopsis are reported to produce

CYN and/or deoxycylindrospermopsin (doCYN) [15], the bicyclic

amine alkaloid anatoxin-a [16], which affects mammalian nicotinic

acetylcholine receptors, or PSP toxins [17]. These cyanotoxin classes

exhibit completely different mechanisms of action in mammalian

systems [10,18] and are also structurally dissimilar.

Cyanobacteria are of high ecological importance, and given

their relatively small genome, they are an ideal target for genome

sequencing and analysis with current genomic tools. Knowledge

gained from such projects has yielded important insights into the

evolution of photosynthesis [19], and adaptations of these

microorganisms to the environment [20]. Nevertheless, to date,

only 9 filamentous cyanobacteria have been either completely or

partially sequenced.

Comparative genomics has also revealed high genetic variability

even between closely related cyanobacterial strains [21]. Our

objective was to conduct a genomic comparison of phylogenetically

closely related filamentous cyanobacteria with a particular focus on

the elucidation of the genetic background of their morphological

and metabolic differences. Accordingly, we chose two cyanobacterial

strains, C. raciborskii CS-505 and R. brookii D9 isolated from

geographically disjunct regions in Australia (CS-505) and Brazil

(D9) (Figure 1). The strains under study have been morphologically

classified into different genera, since D9 produces no functional

heterocysts and is therefore unable to fix N2. Nevertheless, based on

16S rDNA analysis they share 99.5% identity and are thus part of

the same monophyletic cluster [22]. The two chosen strains also

express a radically different toxin profile: while CS-505 produces

exclusively CYN and doCYN, strain D9 produces the PSP-toxin

analogues STX, gonyaulaxtoxins 2/3 (GTX2/3) and the respective

decarbamoylated analogues [22].

We sequenced and analyzed the complete genomes of both

strains CS-505 and D9, and thereby found the two smallest

genomes thus far described for filamentous cyanobacteria. A

comparative genomic analysis of these strains in relation to other

members of filamentous cyanobacteria allowed us to propose

minimal sets of core genes that provide insight into the evolution of

diazotrophy and multicellularity, and heterocyst development in

these minimal genomes.

Results and Discussion

Genome Structure Comparison
We sequenced the genomes to .20-fold depth with 454/Roche

pyrosequencing technology (Table 1), thereby rendering .99.9%

complete genomes [23]. Although a number of small gaps caused

mainly by repetitive elements remain in both sequences, it is thus

unlikely that we missed a significant portion of the genomes. The

additional sequences of the long and short insert libraries from the

Sanger sequencing (Table 1) also served to mitigate this deficiency,

and the extra Sanger sequences derived from the short insert libraries

were used to correct for 454/Roche technology intrinsic errors.

An initial assembly of all sequencing data for each strain yielded

182 contigs (larger than 3 kb) for CS-505 and 105 for D9. Due to

limitations in the assembly of next generation sequencing (NGS)-

derived, repeated sequences are commonly represented only once

in such an assembly. Thus, only plasmid shotgun and fosmid clone

end-sequencing and clone walking enabled us to close further

gaps, such that the current assembly consists of 94 contigs for CS-

505 and 33 for D9 (Table 1). The highly repetitive nature of the

remaining gaps prevented us from reconstructing gap-free

genomes.

Contigs lengths circumscribe an overall genome size of 3.89 Mb

for strain CS-505 versus a smaller genome size of 3.20 Mb for D9

(Table 1); sequences in gaps accounted for an additional estimated

100 to 150 kb in both strains. The size of the genomes was further

supported in the assessment by restriction fragment length

polymorphism with Pulsed Field gel electrophoresis (PFGE)

(Methods S1). The later method rendered an estimated genome

size of 3.49 Mb for CS-505 and 3.09 Mb for D9 using the

restriction enzyme Mlu I. The smaller estimated sizes by PFGE

can be attributed to the low resolution of the some bands in the

electrophoresis, which may lead to an underestimation of the

genome sizes (Figure S1). Indicative of the presence of plasmids,

we observed a faint band in CS-505 (Figure S2) plus a second band

(data not shown) of approximately 30 kb. Plasmids may be

integrated into the genome and thereby the plasmid sequences can

be present in the assemblies surrounded by two different sequence

environments (plasmid only sequences or adjacent genome parts),

making the integration site a low coverage region. Thus, probably

a plasmid is, if there is any, very likely represented by a single

contig in our assembly.

The genomes we sequenced are almost a factor of two smaller

than that of the most closely related fully sequenced cyanobacte-

rium, Anabaena sp. PCC 7120 (hereafter referred as Anabaena)

(6.41 Mb) (Table 2). The genome sizes of filamentous cyanobac-

terial species are previously reported to range between 5.0 and

8.7 Mb (NCBI database). Curiously, the genomes of our

filamentous cyanobacteria are comparable to the genome size of

those of unicellular cyanobacteria such as Synechocystis sp. PCC

6803 (3.57 Mb). Moreover, the number of ribosomal operons (3)

and regulatory systems in both CS-505 and D9 (81 and 75 sensor-
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regulator components, respectively), is more similar to that of

Synechocystis sp. PCC 6803 (3 ribosomal operons and 89 sensor-

regulator systems), to that of the filamentous Anabaena (4 ribosomal

operons and 175 sensor-regulator systems).

Genome reduction is a well-known evolutionary strategy to

streamline genomes and get rid of superfluous functions. This

strategy is followed by most obligate pathogens because their

metabolic processes are strongly dependent upon the host.

However, free-living cyanobacteria undergo genome reduction

as well [20]. The reasons for this genome reduction phenomenon

are unknown, but are likely related to genomic efficiency and

relatively lax selective pressure on certain aspects of metabolism.

The G+C content is similar between both genomes (approxi-

mately 40%) and also similar to that of other fully sequenced

genomes of filamentous cyanobacteria (Table 2). The genomes

share 2539 clearly orthologous protein coding sequences (CDS)

Figure 1. Overview of the main gene clusters involved in nitrogen metabolism and heterocyst development in strains CS-505 and
D9. Transmission electron micrographs in the left panels show the heterocyst of CS-505 and the apically differentiated cell of D9. Optical micrographs
on the right panels exhibit the Alcian blue staining characteristic of polysaccharides in the heterocyst.
doi:10.1371/journal.pone.0009235.g001
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(referred to here as shared CDS), representing 73.6% and 84.4%

of all predicted CDS from CS-505 and D9, respectively. We found

112 additional CDS in the CS-505 genome with similarities to D9

counterparts. Further analysis indicated that this surplus of CDS is

mainly due to coding parts of transposable elements (data not

shown, but note following discussion). Of the shared genes, the

average nucleotide identity is .90% and the rate of synonymous

substitutions is 0.29. These values are similar to those found for

conspecific bacterial strains that have evolved in different

ecological habitats [24] and are consistent with the level of

similarity between 16S rRNA sequences from CS-505 and D9.

Unique CDS in the Genomes
Comparative analysis via Best Bidirectional Hits (BBH) revealed

large differences in the number of unique CDS between the two

strains. CS-505 has 794 (23%) unique CDS whereas D9 contains

394 (13%). The presence and number of unique CDS among two

closely related strains may represent the different potential for

ecological adaptation and physiological plasticity. This relation-

ship has been proven, particularly for pathogenic bacterial isolates

that acquire pathogenicity islands conferring the toxic phenotype

[25]. Even the acquisition of single genes can yield adaptations to a

specific strain. For example, the two ecotypes of Prochlorococcus

marinus MIT9313 and MED4 differ in the presence of certain

Photosystem II and nitrite transport and reduction genes, among

others. These differences correlate with the distribution of the

ecotypes in the water column [20].

The classification of the unique CDS into Clusters of

Orthologous Groups (COGs) showed that for two thirds of the

unique CDS no function could be assigned (503 of 794 for CS-505

and 237 of 394 for D9). Yet of the remainder, there was a

homogeneous distribution within most of the COG categories,

indicating common functions between CS-505 and D9 (Figure S3,

Table S1). Only a minor fraction of the unique CDS of both

strains showed evident differences in their distribution into the

different categories. Those differences were restricted to seven

COGs (Figure 2) from which only two categories were better

represented by D9-unique CDS: coenzyme and amino acid

transport and metabolism. The COG distribution clearly showed

the greater metabolic capabilities of CS-505 than D9 in relation to:

1) secondary metabolite biosynthesis, transport and catabolism; 2)

replication, recombination and repair (this category is overrepre-

sented partially due to transposons), 3) energy production and

conversion, 4) cell cycle control and 5) cell wall and membrane

biogenesis. On closer inspection, most of the identifiable unique

CDS of CS-505 were organized into gene clusters and could be

attributed to toxin production and heterocyst differentiation

coupled with diazotrophy (discussed in more detail below). Thus,

the lack of these genes and the scarcity of unique genes in D9

points to the fact that this genome was shaped by gene and

function losses rather than gains.

Repetitive Elements and Synteny
The most prominent difference between the genomes of CS-505

and D9 is the overwhelming number of repeated insertion

elements or transposon-derived sequences in the CS-505 genome,

which accounts for a considerable part of the genome size

difference (nearly 0.6 Mb or 20% of the D9 genome) between the

two strains (Table 1). Repetitive elements are not rare in

cyanobacteria. On the contrary, a high percentage of repeated

sequences was found in the genomes of Crocosphaera watsonii

WH8501 (19.8%) and in the only two sequenced Microcystis

aeruginosa strains (11.7% each) [26,27]. However, our study

represents the first time that large differences in repeat numbers

have been observed between closely related strains. A low number

of CDS (,100) in the CS-505 genome reflects apparent gene

duplications or functional redundancies. However, since we

produced significantly more large- and small-insert library derived

reads for the CS-505 strain from Sanger-based sequencing, a small

portion of the observed genome size difference could be due to the

better resolution of repeats in this strain. Such redundancy of long

stretches of nearly identical sequences also contributes to our

difficulties in closing the gaps in the genome sequences,

particularly for CS-505. The total number of nearly identical

repeated sequences with coding potential in the CS-505 genome

accounts for 6.3% of its genome length. In addition, we identified

Table 2. General features of the genomes of strains CS-505
and D9 in comparison with four other fully sequenced
genomes of filamentous cyanobacteria.

D9 CS-505 Avar Anab Tery Npun

Genome size (Mb) 3.20 3.89 6.34 6.41 7.75 8.23

G+C content (%) 40 40.2 41 41 40.8 41

Genes 3,088 3,968 5,134 5,432 5,542 6,501

Total CDS 3,010 3,452 5,039 5,368 4,452 6,087

Function assigned* 1,979 1,922 3,799 3,892 2,729 0

Unclassified 1,031 1,530 1,244 1,474 2,347 6,087

rRNA genes 9 9 12 12 5 12

tRNA genes 42 42 47 48 38 98

Transposases 9 77 57 145 260 112

Phage integrases - 2 10 - 3 22

Repeated regions 53 406

Plasmids ? ? 3 6 - 5

Unique CDS 394 794

Function assigned* 157 291

Unclassified 237 503

Abbreviations: Avar: Anabaena variabilis ATCC 29413; Anab: Anabaena sp. PCC
7120; Tery: Trichodesmium erythraeum IMS101; Npun: Nostoc punctiforme PCC
73102.
*Function assigned according to COGs.
doi:10.1371/journal.pone.0009235.t002

Table 1. Sequencing and assembly statistics for the two
strains.

D9 CS-505

454 GS sequence coverage 27 34

Small insert library 188 3909

Fosmid library 491 --

Finishing reads 253 161

Total sequencing depth 27 35

Contigs 157 268

Assembled (Mb) 3.20 3.89

Contigs .3.5 kb 33 94

Largest contig (kb) 543 259

Repeats (regions) 53 406

Repeats (bases) 53,870 244,280

Repeats (% total) 1.7 6.3

doi:10.1371/journal.pone.0009235.t001
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two phage integrase genes and 77 transposases among them, from

which only 28 were full sequences reflecting possible functionality.

The low number of mobile elements in the D9 genome compared

to other cyanobacteria is indeed remarkable. The presence of only

9 transposases (just one is a full sequence), 53 repeated regions and

no phage integrase genes points to a high plasticity of the CS-505

genome relative to the transposon-poor genome of D9 (Table 2).

Pursuit of repeated sequence elements not necessarily coding for

proteins, employing a strategy described in Abouelhoda et al., [28]

(see methods), allowed us to define 20 clusters that are present

more than once in the CS-505 genome. Interestingly, one of those

clusters internally repetitive, i.e. a short sequence stretch is

repeated identically within this cluster several times (Figure S4)

and occurs 39 times in the genome.

Repetitive elements can be a source for genome rearrange-

ments. This genomic plasticity could be partly responsible for

niche adaptation of organisms to their environment. We counted

the number of syntenic regions between the two strains to estimate

the number of rearrangements that occurred after their evolu-

tionary separation. Interestingly, all 2539 orthologous gene pairs

are located in syntenic regions, meaning that at least one

neighboring CDS is common between the two strains. This

excludes the possibility that single genes were relocated to other

genomic regions during evolution. In total we found 280 synteny

groups with a mean of 9 members in a group. The largest group

comprised the ribosomal cluster and an adjacent CDS with 55

orthologous pairs. If we compare the A. variabilis genome to that of

D9 in the same way we observe 464 synteny groups with only 1651

members. Thus, not unexpectedly, the mean of 3.6 CDS per

synteny group is much lower than in the CS-505/D9 comparison.

The high sequence similarity between CS-505 and D9 emphasizes

the close relationship between the two strains, whereas the synteny

analysis shows that rearrangements occurred relatively frequently

during evolution. This high plasticity may be partly due to the high

number of repeated elements.

Genomic Islands for N2 Fixation and Toxin Production
We did not find any region matching the criteria for definition

of a genomic island, i.e. differing G+C content, presence of direct

repeats, transposition elements or tRNA sequences [25] within

the CS-505 and D9 genomes. Nevertheless, we found gene

clusters present in one or the other strain; thus we cannot discard

the possibility that islands containing those gene clusters were

transferred from genomes with a similar G+C content. Filamen-

tous cyanobacteria are known to have a homogenous G+C

content (Table 2). The most prominent examples of such

identifiable gene clusters in our strains are those for N2 fixation

and toxin production in CS-505, and the toxin production gene

cluster in D9. In strain CS-505 the nif gene cluster encoding for

the Fe-Mo cofactor-dependent nitrogenase and thirteen other

genes related to N2 fixation are all together within a tight 15 kb

cluster. The gene content is therefore similar to the nif cluster of

heterocystous cyanobacteria [6]. The gene organization, howev-

er, is comparable to that of the second nif cluster expressed in

vegetative cells of Anabaena variabilis [29], and of the nif cluster of

the symbiotic Nostoc azollae 078 (see Figure 3 for the comparison

with A. variabilis). The distinguishing feature of this gene

organization is that it does not exhibit excision elements

interrupting the nifD sequence, a characteristic of many other

heterocyst-forming cyanobacteria. A second nitrogenase operon

nifVZT (also commonly present in diazotrophic cyanobacteria) is

located at a different locus in CS-505. The D9 strain is not able to

fix N2 and is therefore dependent on the uptake of N-containing

compounds from the environment. This dependency is nicely

reflected by the absence of the N2-fixation gene clusters (nif) and

the prevalence of several unique CDS for coenzyme- and amino

acid- transport in the D9 genome (Figure 2). We note as

significant that there is shared synteny in the regions surrounding

the nif clusters in the compared strains (Figure 3). The nif clusters

in R. brookii D9 might thus have been selectively lost along with

the corresponding function. Nevertheless, the D9 genome

encodes and expresses (Methods S1) hetR, an important regulator

of heterocyst differentiation and pattern formation in N-fixing

cyanobacteria [30], under normal culture conditions (with nitrate

as N-source). As reported by Zhang et al., the presence of hetR and

its expression have been detected in non-heterocyst producing

cyanobacteria that also do not fix N2, pointing to a more global

role of HetR [31].

Figure 2. Distribution of the unique CDS of CS-505 and D9 into Cluster of Orthologous Groups (COGs). Only COG categories
overrepresented by CDS of CS-505 or D9 are shown (see text for more details). Unique CDS were obtained by a Best-Bidirectional Hits (BBHs) search
between both genomes using a 30% cutoff.
doi:10.1371/journal.pone.0009235.g002
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A similar example of common and conservative elements is

observed in the toxin gene clusters of CS-505 and D9. The different

cyanotoxins produced by strains CS-505 and D9 are the most

prominent known secondary metabolites in these cyanobacteria.

The tricyclic alkaloids CYN/doCYN and the tetrahydropurine

STX and analogues are N-rich molecules, but these toxin groups are

synthesized by two independent and apparently unrelated biosyn-

thetic pathways in cyanobacteria. The C. raciborskii CS-505 genome

encodes for only one hybrid NRPS-PKS pathway, corresponding to

the CYN/doCYN biosynthesis cluster. The cluster spans 41.6 Kb,

encodes for 16 Open Reading Frames (ORFs) and has complete

synteny with the CYN cluster of C. raciborskii AWT205 [12] (Figure

S5A), flanked at both ends by genes from the hydrogenase gene

cluster (hypABCDEF). In addition to the two transposase ORFs, cyrL

and cyrM, CRC_01709 is only present in CS-505. This latter gene

fragment of 219 bp is located between cyrC and cyrE, and matches

with part of a transposase from Synechococcus BO 8402. The cyrM and

CRC_01709 components are only vestiges of transposases,

indicating that rearrangements have occurred in this section of the

genome. The same genetic structure neighboring the CYN

biosynthetic gene cluster in CS-505 is present in the strain D9, as

another example of synteny (Figure 4A). As this conservation has

been shown in other non-CYN producing Australian strains of C.

raciborskii that contain the uninterrupted hydrogenase cluster

(Figure 4B), we find it plausible that each cluster could be inserted

or deleted at common genetic loci.

Likewise, the genes adjacent to the STX gene cluster in the D9

genome form a syntenic region within the CS-505 genome

(Figure 4C). The STX gene cluster in D9 covers 25.7 Kb, and

encodes for 24 ORFs, in comparison with 35 Kb and 31 ORFs

described in the published STX gene cluster of C. raciborskii T3

[13] (Figure S5B). Only 20 ORFs are shared between these

clusters (19 ORFs share 100% similarity); among these ORFs are

all of the proposed genes necessary to synthesize STX. Thus,

according to the genome size of D9, this is the minimum gene

cluster thus far described for STX production.

Tracing the Evolution of Traits in Cyanobacteria
Access to the smallest known genomes of filamentous and

heterocyst-forming cyanobacteria provided insights into the

molecular basis and evolution of traits such as diazotrophy,

filamentous growth, and the capacity for cellular differentiation.

We assumed that protein sequences had to be drastically changed

or newly developed to achieve new functions. Of course it is

possible that only slight neofunctionalizations could be responsible

for the observed phenotypic changes without major restructuring.

In the latter case, the observable gene repertoire of all

cyanobacteria would remain relatively stable with only the

addition of paralogous genes with acquired new functions. Genes

with new functions would turn up at specific evolutionary time

points and then remain stable as long as the respective trait is

expressed and positively selected. Our analysis by definition

excluded genes that might have become indispensible over the

time course of evolution in one or another species, but not in all

species analyzed. We thus aimed at only the description of key

innovations for the establishment of major evolutionary branches.

To this end, we collected available genomes of cyanobacteria

from the databases and compared their gene repertoire. Unfortu-

nately, due to difficulties in culturing, no genome of a branching

filamentous species (e.g. from Stigonematales) is available for

Figure 3. Schematic representation of the synteny within the vicinity of the nif gene clusters. The scheme represents the 15 kb gene cluster
containing the nifHDK and the other 13 nitrogen fixation related genes in CS-505 compared with the nif1 and nif2 gene clusters of Anabaena variabilis ATCC
29413 and the synteny regions between CS-505 and D9. The synteny regions between CS-505 and D9 are delimited by the arrows. nif genes are represented
by light grey and dashed lines. Genes in black correspond to hypothetical proteins and grey genes to proteins with assigned function.
doi:10.1371/journal.pone.0009235.g003
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comparison [32], but all other major groups are well represented

(see Materials and Methods). The availability of streamlined

genomes of C. raciborskii and R. brookii further enhanced the

resolution of our analysis. We made use of the whole genome

sequences and subtracted step-wise common sets from the sets

represented only in species with specific traits. We cannot exclude

that some genes in these sets are not related with the specific trait,

but the broader the species sampling the better is the resolution of

the genes of the trait in question. Since our analysis is based on

BLAST hits, the orthologous relationships between the genes in the

respective species may not be clear. But as it turned out later, most

genes in the gene sets had only one counterpart in each genome,

Figure 4. Schematic representation of the syntenic regions within the toxin gene clusters in CS-505 and D9. A. Location of the CYN
gene cluster of CS-505 compared with the syntenic genomic region in D9. B. Gel electrophoresis of the PCR products from the hypF/hupC
amplification in R. brookii D9 and in the strains of C. raciborskii non-toxic: CS-507, CS-508, CS-509 and CS-510. Producers of CYN: CS-505, CS-506 and
CS-511 do not present amplification of the hypF/hupC region. C. Location of the STX gene cluster of D9 compared with the syntenic genomic region
in CS-505. Genes participating in syntenic regions are depicted in blue and highlighted in the green boxes within the arrows; genes outside the
syntenic regions are depicted in white. tRNAs and transposases are shown in red. The grey arrows show the position of the primer pairs HYPa/HUPa
and HYPb/HUPb used to amplify the region between hypF and hupC genes in different strains of C. raciborskii and in R. brookii D9, respectively.
Ladder: GeneRuler 1 kb DNA ladder (Fermentas, Ontario, Canada). The strains of C. raciborskii were obtained from the culture collection of the
Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia. For more details on DNA isolation, primer synthesis and PCR
conditions see Methods S1.
doi:10.1371/journal.pone.0009235.g004
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thus representing most likely orthologous gene groups. Table 3

shows a summary of the number of core genes found for each of

the three traits under study.

Filament Formation
Filaments are formed in groups III, IV and V of cyanobacteria

[3]. Filament formation is also observed in unicellular cyanobac-

teria as well as in bacteria when several genes involved in cell

division are interrupted by transposon mutagenesis [33]. If

filament formation is generally a loss-of-function mutation then

filamentous species should lack some cell division genes. However,

orthologs of all genes examined for their effect on this artificial

filament formation are present in the filament-forming species

Anabaena (Table S2). Filament formation is thus more likely a gain-

of-function in the evolutionary context. When we compared all the

available genomes of filamentous species, we found 32 genes

present in all (Table 3, Table 4). Comparison of this set with the

more streamlined genomes of CS-505 and D9 showed that only 23

and 20 genes are present, respectively. Since the D9 strain is able

to form proper filaments, the additional three genes found in the

CS-505 genome are unlikely to be directly involved in filament

formation. The absence of these three genes in D9 points to the

probability that some of the remaining 20 genes are also not

associated with ability to form filaments. This is further underlined

by the fact that the additional screening of the unfinished genome

sequences of Nostoc azollae 078 and Microcoleus chtonoplastes PCC

7420 yielded a common set of only 10 genes. We conclude that

filament formation in cyanobacteria needs at most 10 different

gene products. Interestingly, besides the three genes previously

thought to be associated with heterocyst formation (hetR and patU3

and hetZ) all other seven genes correspond to only hypothetical

proteins. Although mutations in these three genes do not produce

a unicellular phenotype, it has been shown that they affect

heterocyst development, and hetZ and patU3 also affect pattern

formation [34,35]. Their presence in cyanobacteria that do not

present these phenotypes is suggestive of a different and more

general function, which could be filament formation.

Insights into evolution of the 10 core genes were obtained by

phylogenetic analysis (Figure S6). The trees clearly show the high

phylogenetic affiliation between CS-505 and D9, supported by

bootstrap values of 100%, and the closest association to the CS-

505/D9 branch to Nostoc azollae, supported for 9 of the core genes.

All the core genes support the monophyly of heterocystous

cyanobacteria (belonging to subsection IV), consistent with

previous reports based on 16S rRNA, hetR [3] or phylogenomics

[4,5]. It is remarkable that seven of the core genes have an

ortholog in Synechococcus sp. PCC 7335. The closest relationship of

this organism with filamentous cyanobacteria has been reported

by 16S rRNA phylogeny [36], and an ortholog of HetR was also

described [31]. Our results strongly indicate that this organism

could be the closest ancestor of filamentous cyanobacteria.

Although our BLAST analysis selected the gene pair

CRC_00038/CRD_02583 as part of the core genes, only the

branch formed by heterocystous cyanobacteria is resolved on the

phylogenetic tree. Non-heterocystous cyanobacteria cluster with

unicellular taxa, suggesting that this gene is part of a different

family and therefore was removed from the core.

Nitrogen Fixation
Diazotrophy is an ancient character, marking the lineage from

which filamentous cyanobacteria seem to have evolved [3,5]. In

comparing the gene repertoire of all available diazotrophic

species with that of non-diazotrophic, we ended up with 49 genes

that were present in at least eight of the nine genomes we chose

for the first analysis. These 49 genes comprise the upper limit of

true inventions at this evolutionary juncture. As the functional

classification confirms, most of the gene products are indeed

involved in N2 fixation (Table 5). The data set can be dissected

into three distinctive categories: 1) the nif cluster and related

genes, 2) the uptake hydrogenase gene cluster (hupSL) and

endopeptidase specific for the uptake hydrogenase hupW, and 3)

finally, a set of genes involved in general metabolism and

hypothetical proteins.

Three genes coding for hypothetical proteins normally located

between hupSL and maturation hydrogenase gene clusters

(hypABCDEF) [37] belong to the group of 49 genes, suggesting

their key role in N-metabolism. Part of the set also comprises genes

found to be up-regulated under N-depletion in Anabaena [38]

(Table 5). Interestingly, the CS-505 strain does not have the full set

of 49 genes. Genome comparison with this strain thus further

narrows the set of gene products needed for diazotrophy down to

only 38. This indicates that a streamlined genome like that of C.

raciborskii may be able to dispense with some otherwise needed

genes. Analysis of several further genomes to account for species

variability allowed us to define an indispensable core gene set for

all species. Unexpectedly, in some Cyanothece and extremophile

Synechococcus genomes many of the previously found common genes

were not present, e.g. the uptake hydrogenase and related genes

and genes that show changes in expression in heterocysts are

missing (Table 5). Microcoleus chthonoplastes has not been classified as

a N2 fixing cyanobacterium, however, its genome contains the

nifHDK and nifEN gene clusters with similarity to d-proteobacteria

rather than cyanobacteria suggesting that this cluster was

transferred by HGT [39]. When we considered the Cyanothece,

Synechococcus and M. chthonoplastes PCC 7420 genomes, our core set

was highly reduced to 10 genes: the nif gene cluster and related

genes and patB. PatB has an N-terminal- ferredoxin and a C-

terminal helix-turn-helix domain suggesting its function as a

redox-sensitive transcription factor [40]. Furthermore, in Anabaena,

a patB deletion mutant was completely defective for diazotrophic

growth, but in the wildtype, its expression was restricted to

heterocysts [41]. The presence of patB as part of the core gene for

Table 3. Common genes for the different traits.

Trait
Hits between species*
(see methods) CS-505 D9 Core set present in wider spectrum of species

Filament formation 32 23 20 10

Diazotrophy 49 38 6 10

Heterocyst development 149 58 54 41

*Paralogs are not removed.
doi:10.1371/journal.pone.0009235.t003
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diazotrophic cyanobacteria suggests that this gene is also essential

in unicellular and non-heterocystous diazotrophic cyanobacteria.

Further evidence for the correct logic of our approach is

provided from genomic data of the D9 strain. This cyanobacte-

rium has lost the ability to fix N2, and as we show in our analysis, it

lost genes involved in this process. Indeed, only 6 of the 49 genes

were detected in this strain. The gene products of these are related

to phosphoglycerol metabolism and therefore are possibly involved

in membrane degradation/synthesis. If they were once involved in

N2 fixation they likely now fulfill indispensable functions, such that

a loss would lead to decreased fitness or lethality.

Heterocyst Development
The process of heterocyst differentiation has been described in

detail only in Anabaena and Nostoc punctiforme ATCC 29113, which

develop intercalated heterocysts in a specific pattern [42]. There

are no published studies on heterocyst differentiation in cyano-

bacterial genera that develop terminal heterocysts, such as

Cylindrospermopsis or Cylindrospermum. Our comparative genomic

screen for genes restricted to heterocyst-forming species delivered

an overwhelming number of 149 genes (Table 3, Table S3). This

high number can be explained by the fact that only a few genomes

of heterocyst-forming species are currently known, but they are

also rather closely related. Some of the 149 genes may be involved

in the formation of intercalating heterocysts. If we include the

genomes of our strains in this analysis only 58 unique genes remain

as common to all heterocyst-forming species. A further slight

reduction in gene numbers to 41 was achieved by including the

symbiont Nostoc azollae in the analysis. Of these genes, only one,

patN, is currently described as involved in pattern formation.

In Anabaena, 77 genes are described as having a function in

heterocyst differentiation, but only 55 of these have a homolog in

the C. raciborskii CS-505 genome (Table S4). Surprisingly, one of

the genes thus far seen as essential for heterocyst differentiation,

hetC, is absent. This gene represses the expression of ftsZ in early

stages of heterocyst differentiation in Anabaena, and the DhetC

mutant generates multiple clusters of uncompromised pro-

heterocysts along the filament that are capable of cell division

Table 4. Genes present only in filamentous species.

Npun Gene product description Anab D9 CS-505

186680616 hypothetical protein all1770 CRD_00231 CRC_00822

186680621 core set hypothetical protein all1765 CRD_00230 CRC_00821

186681198 core set hypothetical protein alr0202 CRD_00387 CRC_01215

186681299 hypothetical protein all1340 no no

186681300 hypothetical protein all1339 no no

186681350 PpiC-type peptidyl-prolyl cis-trans isomerase alr1613 no CRC_02567

186681409 HEAT repeat-containing PBS lyase alr2986 CRD_00077 CRC_02169

186681476 peptidoglycan binding domain-containing protein alr4984 CRD_02468 CRC_02058

186681631 nuclease all2918 CRD_01392 CRC_01535

186681697 core set hypothetical protein alr2393 CRD_02002 CRC_01280

186681814 hypothetical protein all3643 CRD_01982 CRC_01258

186681958 core set hypothetical protein all1729 CRD_02583 CRC_00038

186682138 core set peptidase S48, HetR alr2339 CRD_01519 CRC_03184

186682240 core set PatU3 alr0101 CRD_02293 CRC_02800

186682241 core set HetZ alr0099 CRD_02292 CRC_02801

186682787 hypothetical protein alr1555 no no

186682808 peptidoglycan binding domain-containing protein all1861 no no

186683172 hypothetical protein all5122 CRD_01021 CRC_02539

186683174 hypothetical protein all2077 no no

186683213 hypothetical protein all1154 CRD_00512 CRC_00964

186683474 GDSL family lipase all0976 no no

186683904 hypothetical protein all0215 CRD_00210 CRC_03261

186683953 GDSL family lipase all1288 no no

186684054 hypothetical protein asr1049 no no

186684093 core set hypothetical protein all2344 CRD_00085 CRC_00676

186684579 core set hypothetical protein all2320 CRD_01527 CRC_01389

186684586 hypothetical protein all5091 CRD_02655 CRC_00188

186685511 core set hypothetical protein alr4863 CRD_02120 CRC_01594

186685539 NUDIX hydrolase alr2015 CRD_01916 CRC_01834

186685973 hypothetical protein all1007 no CRC_00879

186685974 hypothetical protein all1006 no CRC_00878

186686413 hypothetical protein all4622 no no

doi:10.1371/journal.pone.0009235.t004
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Table 5. Genes present in N2- fixing species.

Npun Gene Gene product Anab D9 CS-505 Absent in

186680715 glycerophosphoryl diester phosphodiesterase all1051 CRD_01538 CRC_01381 SynJA3, SynJA2, Cya7425

186680864 patB core set 4Fe-4S ferredoxin iron-sulfur binding domain-
containing protein

all2512 no CRC_01763

186680869 hypothetical protein alr2517* no CRC_03082 SynJA3, SynJA2, Cya8801

186680870 cupin 2 domain-containing protein alr2518* no CRC_03081 SynJA3, SynJA2, Mcht

186680871 nitrogenase-associated protein alr2520* no CRC_03080 Mcht

186680875 hypothetical protein asr2523* no CRC_02152 SynJA3, SynJA2, Cya7425

186680876 hypothetical protein alr2524* no CRC_02151 SynJA3, SynJA2, Cya7425, Mcht

186680892 NHL repeat-containing protein alr0693 no no SynJA3, SynJA2, Cya7425, Mcht

186680893 Rieske (2Fe-2S) domain-containing protein alr0692 no no

186680895 hypothetical protein asr0689 no CRC_01692 SynJA3, SynJA2, Cya7425, Mcht

186680897 hupS Ni Fe-hydrogenase small subunit, HupS all0688 no CRC_02736 SynJA3, SynJA2, Cya7425, Mcht

186680898 hupL Ni Fe-hydrogenase large subunit, HupL all0687 no CRC_02737 SynJA3, SynJA2

186680903 hupW hydrogenase maturation protease alr1423 no CRC_01049 SynJA3, SynJA2, Cya7425

186680908 feoA FeoA family protein asl1429 no CRC_02875 Tery, Lyng, Nspu

186680909 fdxH ferredoxin (2Fe-2S) all1430 no CRC_02876 Mcht

186680910 hesB iron-sulfur cluster assembly accessory protein all1431 no CRC_02877 SynJA3, SynJA2

186680911 hesA UBA/THIF-type NAD/FAD binding protein all1432 no CRC_02878 SynJA3, SynJA2

186680912 nifW nitrogen fixation protein all1433 no CRC_02879 Mcht

186680913 protein of unknown function DUF683 asl1434 no CRC_02880 Tery

186680914 protein of unknown function DUF269 all1435 no CRC_02881 Mcht

186680915 nifX nitrogen fixation protein all1436 no CRC_02882 Mcht

186680916 nifN core set nitrogenase molybdenum-iron cofactor
biosynthesis protein NifN

all1437 no CRC_02883

186680917 nifE core set nitrogenase MoFe cofactor biosynthesis
protein

all1438 no CRC_02884

186680918 Mo-dependent nitrogenase family protein all1439 no no Tery

186680919 nifK core set nitrogenase molybdenum-iron protein beta chain all1440 no CRC_02885

186680550 nifD core set nitrogenase molybdenum-iron protein alpha chain all1454 no CRC_02886

186680941 nifH core set nitrogenase iron protein NifH all1455 no CRC_02887

186680943 nifU core set Fe-S cluster assembly protein NifU all1456 no CRC_02888

186680944 nifS core set Nitrogenase metalloclusters biosynthesis protein
NifS

all1457 no CRC_02889

186680946 nifB core set nitrogenase cofactor biosynthesis protein all1517 no CRC_02891

186680953 cysE serine acetyltransferase alr1404 no no SynJA3, SynJA2

186680954 hypothetical protein asr1405* no no

186680955 core set hypothetical protein asr1406* no CRC_02071

186680956 nifV homocitrate synthase alr1407 no CRC_02070 Tery, Mcht

186680957 nifZ NifZ family protein asr1408 no CRC_02069 Mcht

186680958 nifT NifT/FixU family protein asr1409 no CRC_02068 Mcht

186680959 hypothetical protein alr1410 no CRC_02067 Tery

186682206 hypothetical protein all0969 no no SynJA3, SynJA2

186682693 ribokinase-like domain-containing protein alr4681 CRD_01205 CRC_01938 SynJA3, SynJA2, Cya7425

186683057 hypothetical protein alr0857 no no SynJA3, SynJA2

186683906 pathogenesis related protein-like protein all0217 no CRC_03259 SynJA3, SynJA2, Cya7425, Mcht

186684105 glycosyl transferase, group 1 all1345 CRD_02459 no SynJA3, SynJA2, Cya7424

186684241 hypothetical protein all4434 CRD_01931 CRC_02458 SynJA3, SynJA2, Cya7425

186685158 phosphoglycerate mutase alr2972 CRD_00352 CRC_03094 Tery, SynJA3, SynJA2, Cya7425

186685476 hypothetical protein asl0163 no no SynJA3, SynJA2

186685625 hypothetical protein all3713* no no SynJA3, SynJA2, Cya7425,
Cya8801
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and elongation [43]. Other genes related with key steps in

heterocyst differentiation that are absent in CS-505 include: ccbP,

whose product has been shown to regulate the calcium availability

for heterocyst formation and negatively regulate the heterocyst

differentiation [44]; hetL, a positive regulator of the differentiation

process that interferes with patS inhibition process [45]; and hetN, a

suppressor of heterocyst differentiation involved in the mainte-

nance of the delayed heterocyst spacing pattern [46]. Lack of these

genes again points to streamlining in the C. raciborskii genome and

could possibly be attributed to a terminal rather than an

intercalating heterocyst formation.

PatS, or a pentapeptide PatS-5, have been proposed to be

diffusible molecules acting as an inhibitor of heterocyst differen-

tiation [47]. In the current model, HetR activates the expression of

patS, and PatS or a derivative diffuses laterally to inhibit the

differentiation of the neighboring cells by acting negatively on the

DNA-binding activity of HetR [42]. No CDS for a protein with

the typical characteristics described for PatS, i.e. a diffusible penta-

peptide with distinctive last C-terminal amino-acid, was found in

the CS-505 and D9 genomes. Zhang et al., showed that a patS-like

CDS of the non-diazotrophic Arthrospira platensis could complement

a patS mutant of Anabaena, despite the fact that its conserved penta-

peptide (RGSGR) was not in the last amino acids of the predicted

protein [31]. Thus, other penta-peptide-containing proteins could

have taken over the function of PatS in C. raciborskii. A deeper

analysis for proteins containing the penta-peptide revealed a CDS

that had the penta-peptide in the C-terminal region in the

genomes of CS-505 and D9. We propose therefore that if patS exist

in these cyanobacteria, the most likely candidates are CRC_02157

and CRD_02133 in CS-505 and D9, respectively.

Our analysis also revealed that 39 of the 55 heterocyst

differentiation-related genes in CS-505 are also present in the

non-heterocystous R. brookii D9 genome (Table S4). In Nostoc

punctiforme, the cellular differentiation pathways for hormogonia,

akinetes and heterocysts are reported to have genes with common

expression profiles [48]. Since we observed akinetes in strain D9

by optical microscopy, it is most likely that these genes with

described functions in heterocyst differentiation have additional

functions and/or are involved in other cellular differentiation

processes such as akinete formation.

Terminal cell differentiation was evident from electron

micrographs (Figure 1) of both strains. Nevertheless, terminal cell

differentiation in D9 resembles the morphology of an immature

heterocyst of CS-505 (not shown), suggesting incomplete hetero-

cyst development. The final steps in heterocyst development

involve the synthesis and deposition of an inner glycolipid layer

and then covering with a polysaccharide envelope [42]. These

layers isolate the newly differentiated cell from external oxygen.

The inner glycolipid layer is synthesized by a cluster of genes

involving a polyketide synthase (PKS) pathway and glycosyltrans-

ferases in Anabaena [49,50]. Cylindrospermopsis raciborskii CS-505

contains most of these genes (hglEGDCA and hetM), with the

exception of the aforementioned hetN (Figure 1, Table S4). In

Anabaena, hetN is located adjacent to the phosphopanteinyltransfer-

ase hetI. In CS-505, however, a sequence similar to hetI is located at

a different locus, implying structural differences in the glycolipid

layer between the CS-505 and Anabaena heterocysts. In any case,

further analysis must be done to understand the implications on

the glycolipid structure of C. raciborskii.

The N2-fixation and heterocyst glycolipid clusters are not

present in the D9 genome (Figure 1). Only hetI is present in the D9

genome, which suggests a different role of this gene in this strain.

Strain CS-505 and D9 genomes do, however, contain an identical

gene arrangement of the genes necessary for the synthesis of the

polysaccharide envelope of the heterocysts [51] (Table S4, Figure

S7). Since neither heterocyst formation nor N2-fixation occur in

D9 it seems unlikely that the polysaccharide layer is properly

deposited in the terminal D9 cells. Indeed, when we stained for

polysaccharide with Alcian blue, D9 filaments were homoge-

neously but only slightly stained (Figure 1), indicating that

polysaccharide was being synthesized, but not as a heterocyst-

protective layer.

Since D9 shows features of heterocyst formation, we expect that

most gene products responsible for this trait are also encoded in

this strain. Indeed, only five genes of the smallest common set of

41 genes are not present in the D9 strain. The lack of these five

genes could be entirely responsible for the incomplete heterocyst

formation in D9. Unfortunately, no function is as yet assigned to

these genes. Most of the other genes have also no assigned function

for their gene products. Although all five genes are annotated as

conserved hypothetical proteins, the intensive studies of N-

metabolism and heterocyst development in Anabaena allowed us

to search for possible functions of these five genes absent in D9.

Indeed, we found possible functions for three genes. Both alr2522

and all0721 were shown to be up- regulated in a mutant

expressing HE0277, a homolog of the sigma factor sigJ of

alr0277 that confers resistance to desiccation by up-regulating

genes involved in polysaccharide synthesis [52]. Furthermore,

all1814 was up-regulated after 8 h of N-depletion and showed no

significant regulation in an nrrA mutant, an N-regulator that

facilitates heterocyst development [53]. Together this evidence

suggests that alr2522 and all0721 are involved in polysaccharide

biosynthesis and that all1814 is related to a stage of heterocyst

development. Their absence in D9 makes them ideal targets for

further functional studies on heterocyst development.

Conclusions
The innovations of diazotrophy, filamentous growth, photosyn-

thesis and the capacity for cellular differentiation are major

defining events in the evolution of cyanobacteria. Given that the

free-living cyanobacteria C. raciborskii CS-505 and R. brookii D9

have the smallest known genomes among filamentous cyanobac-

teria, they are ideal subjects for exploration of the development

and modifications of these characteristics among cyanobacteria. In

Npun Gene Gene product Anab D9 CS-505 Absent in

186685845 hypothetical protein asl0597 no no SynJA3, SynJA2, Cya7425

186686227 Arginyl tRNA synthetase anticodon binding all3951 CRD_01597 CRC_03274

186686347 cytochrome P450 all1361 no no SynJA3, SynJA2, Cya7425

*Genes that show regulation in Anabaena under N2- depletion [38].
doi:10.1371/journal.pone.0009235.t005

Table 5. Cont.
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spite of their relatively small genomes, these strains are

nevertheless capable of cell differentiation. We are likely observing

evidence of genetic streamlining, pointing towards the minimum

set of genes required for these traits. Remarkably, strain CS-505 is

able to develop a functional heterocyst without supposedly

‘‘essential’’ genes, such as, hetC, hetN, hetL and ccbp.

The C. raciborskii CS-505 and R. brookii D9 strains have

geographically disjunct origins within tropical freshwater ecosys-

tems. We expect that they have been genetically isolated and

hence have evolved independently. Nevertheless, on the basis of

16S rRNA they are virtually identical and form a monophyletic

cluster, with a close phylogenetic affiliation among filamentous

cyanobacteria. The morphological criteria originally used to

discriminate between these strains and to assign them to different

genera obviously reflect differential genetic editing primarily

associated with cell differentiation and functional heterocyst

formation rather than their phylogenetic relationships. With

respect to this high similarity in 16S rRNA, as well as that

revealed in our phylogenomic analysis (.90% identity in their

2539 shared genes), we propose that these strains are congeneric.

This evidence suggests that the strain differences may represent an

example of allopatric speciation.

Our genomic analysis provides support for the idea that

cyanobacteria are capable of evolving according to highly diverse

strategies for genomic organization and adaptive mechanisms.

Whereas CS-505 shows evidence of phenotypic plasticity and has a

more elaborate genome, perhaps via gene acquisition and rearrange-

ment, D9 has apparently adapted by losing genes and avoiding

horizontal gene transfer. These alternative strategies have important

implications for the adaptive radiation of filamentous cyanobacteria

and at least partially account for their evolutionary success in a

multitude of environments over enormously long time-scales.

Materials and Methods

Isolation and Culture of Cyanobacterial Strains
Cylindrospermopsis raciborskii strain CS-505 was clonally isolated in

1996 from a water supply at the Solomon Dam, Australia [54] and

obtained from the culture collection of the Commonwealth

Scientific and Industrial Research Organization (CSIRO), Aus-

tralia. Raphidiopsis brookii D9 (originally classified as C. raciborskii)

was isolated from a mixed plankton sample collected in 1996 from

the Billings freshwater reservoir near Sao Paulo, Brazil and

subsequently recloned from a single filament. Strain CS-505

produces cylindrospermopsin (CYN) and deoxy-cylindrospermop-

sin (doCYN) [22,54], but no PSP toxins. Strain D9 constitutively

produces the following PSP toxins, as confirmed by LC-MS/MS:

saxitoxin (STX), C-11 O-sulfated gonyautoxins (GTX2/3), and

their respective decarbamoyl derivatives (dcSTX and dcGTX2/3)

as minor components [22,55].

The non-axenic cultures were grown in 250 ml flasks containing

100 ml of MLA growth medium [55] without aeration at 23uC
under fluorescent light at a photon flux density of 35 mmol

m22 s21 on a 12:12 h light/dark photocycle. To minimize

bacterial contamination several wash steps were performed after

harvesting and the absence of eubacterial DNA was checked by

PCR as previously described [22].

Preparation and Sequencing of Genomic DNA
Long strands of genomic DNA were obtained by purifying DNA

embedded on low melting point (LMP) agarose plugs. Intact

chromosomal DNA embedded on agarose plugs was obtained

from 100 ml of healthy cultures in mid-exponential growth phase

as previously described [22].

Sequencing was conducted with the BigDye kit from ABI

(Foster City, USA) using standard forward and reverse primers;

pre-assembly trimming was performed with a modified version of

Phred [56,57].

Genomic libraries for the 454/gs20 system were prepared

according to the manufacturer’s protocols (454 Life Sciences

Corporation, Branford, CT, USA). Three runs each were

performed on the 454/gs20 sequencing system. All 454/gs20

sequence data were assembled according to species-specific criteria

with the newbler assembler software (http://www.454.com). The

Sanger-based sequencing reads were assembled onto this backbone.

Clone gaps then were filled by a primer walking strategy with

custom primers. The genome sequences of CS-505 and D9 were

deposited in the NCBI genome database under the main accession

numbers: ACYA00000000 (CS-505) and ACYB00000000 (D9).

Repeat Analysis
For the CS-505 genome we calculated all supermaximal

repeats. A supermaximal repeat is defined as follows:

A pair of substrings R = ((i1, j1), (i2, j2)) is a repeated pair if and only

if (i1, j1)?(i2, j2) and S[i1..j1] = S[i2..j2]. The length of R is j1 - i1+1.

A repeated pair ((i1, j1), (i2, j2)) is called left maximal if S[i1 - 1]?
S[i2 - 1] and right maximal if S[j1+1]?S[j2+1]. A repeated pair is

called maximal if it is left and right maximal. A substring r of S is a

(maximal) repeat if there is a (maximal) repeated pair ((i1, j1), (i2, j2))

such that r= S[i1..j1]. A supermaximal repeat is a maximal repeat that

never occurs as a substring of any other maximal repeat.

For the given contigs of C. raciborskii CS-505 we found 258,229

different supermaximal repeats covering 98.52% of the whole

sequence.

In a second step we clustered all supermaximal repeats close to

each other and with similar distances between their positions in the

genome. This helps to find larger degenerated repeats because

they contain several exact super maximal repeats.

For the clustering, each supermaximal repeat containing more

than two copies was decomposed into all possible copy pairs.

Those pairs were then clustered according to similar first positions

of the first copy respectively and according to similar distances

between the copies. We selected 500 nt as the maximal allowed

difference between the two first positions. The maximal allowed

difference between the distances was 100 nt.

With the given parameter setting we got 5,390 different clusters.

For the 20 clusters with the best score ( = total copy length * copy

pair amount), we performed a motif search with at least 60%

sequence identity on both strands and in both directions. All hits of

the 20 clusters cover 3.94% of the whole sequence.

Bioinformatics Analysis
The cyanobacterial taxa used for comparative genomic analyses

are listed in Table 6. Using Nostoc punctiforme as member of the

group with all traits analyzed as ‘‘template’’, we performed blastp

analyses against all other genomes. We applied a score threshold of

150 to get rid of spurious hits. Remaining hits were analyzed with

respect to their occurrence in four different groups: non-N2-fixing,

N2-fixing, filamentous N2-fixing and filamentous heterocyst-

forming N2-fixing.

A further analysis was then performed with these sets including

genomes from a wider range of species to get the true core sets for

the traits: Nostoc azollae strain 0708 is a symbiotic cyanobacterium

with duckweed; Microcoleus chtonoplastes PCC 7420 possesses multiple

filaments in one mucous sheath, and Arthrospira maxima CS-328

belongs to Section III of the cyanobacteria. Different Cyanothece and

Synechococcus strains were used to account for species variability.
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Supporting Information

Figure S1 Size estimation of D9 and CS-505 genomes by PFGE

restriction analysis. Restriction profiles were obtained by Mlu I

digestion. SC: Chromosomic DNA from Saccharomyces cerevi-

siae. Vpkx: Genomic DNA from Vibrio parahaemolyticus RIMD

2210633 digested with Not I. PFGE electrophoresis conditions are

described in Stucken et al., [22].

Found at: doi:10.1371/journal.pone.0009235.s001 (0.40 MB TIF)

Figure S2 Possible extrachromosomal element in the CS-505

genome. PFGE of chromosomic DNA from strains D9 and CS-

505, the possible plasmid is indicated by the arrow. SC:

Chromosomic DNA from Saccharomyces cerevisiae.

Found at: doi:10.1371/journal.pone.0009235.s002 (0.25 MB TIF)

Figure S3 Distribution of the total unique CDS of CS-505 and

D9 into Cluster of Orthologous Groups (COGs). Unique CDS

were obtained by a Best-Bidirectional Hits (BBHs) search between

both genomes using a 30% cutoff.

Found at: doi:10.1371/journal.pone.0009235.s003 (0.57 MB TIF)

Figure S4 Repeated sequences in a repeat unit as revealed by an

analysis using miropeats. The analysis was performed according to

Parsons, (1995), with a threshold score of 100 [58].

Found at: doi:10.1371/journal.pone.0009235.s004 (0.72 MB TIF)

Figure S5 Structure and comparison of the toxin gene clusters in

CS-505 and D9 with those previously described. A. Comparison of

the CYN gene cluster of strain CS-505 with the cyr gene cluster

described in C. raciborskii AWT205 [12]; B. Comparison of the

STX gene cluster of strain D9 with the sxt gene cluster described

in C. raciborskii T3 [13]. Identical ORFs between D9/T3 and

CS-505/AWT205 are depicted in white; genes involved in the

biosynthesis of STX are highlighted with horizontal gray lines and

shading. The ORFs unique to D9 and CS-505, with respect to T3

and AWT205, are indicated in black. Unique ORFs in T3 are

represented by black horizontal stripes. ORFs outside the clusters

are represented by marginal dashed lines and gray fill.

Found at: doi:10.1371/journal.pone.0009235.s005 (0.10 MB

PDF)

Figure S6 Phylogenetic relationships of the 10 CDS found as

core in 9 filamentous cyanobacteria. Affiliations to the cyanobac-

terial subsections are shown in brackets. The trees were

constructed with clustalX, using the Neighbor-Joining algorithm

with bootstrap of 1000, only bootstrap values higher than 60% are

shown over the nodes. When available, unicellular strains were

used as outgroup taxa. Trees are organized according to the

appearance of each CDS pair in Table 4. GenBank accession

numbers are indicated after species designation (names in bold-

face correspond to sequences belonging to CS-505 and D9).

Species name abbreviations were used as in materials and methods

with the exception of the new sequences used in phylogenetic

analyses: Anab WH: Anabaena sp. WH School st. isolate; Cylin

A1345: Cylindrospermum sp. A1345; Clich UTEX2014: Cylin-

Table 6. Characteristics of the cyanobacterial taxa used for comparative genomic analyses.

Species Morphology Diazotrophy Accession number
Genome sequence
status

Nostoc punctiforme PCC 73102 (Npun) Filamentous, heterocystous N2-fixing NC_010628 finished

Nodularia spumigena CCY9414 (Nspu) Filamentous, heterocystous N2-fixing NZ_AAVW00000000 unfinished

Anabaena sp. PCC 7120 (Anab) Filamentous, heterocystous N2-fixing NC_003272 finished

Anabaena variabilis ATCC 29413 (Avar) Filamentous, heterocystous N2-fixing NC_007413 finished

Nostoc azollae strain 0708* (Nazo) Filamentous, heterocystous N2-fixing NZ_ACIR00000000 unfinished

Trichodesmium erythraeum IMS101 (Tery) Filamentous N2-fixing NC_008312 finished

Lyngbya sp. PCC 8106 (Lyng) Filamentous N2-fixing NZ_AAVU00000000 unfinished

Microcoleus chthonoplastes PCC 7420* (Mcth) Filamentous N2-fixing NZ_ABRS00000000 unfinished

Arthrospira maxima CS-328* (Amax) Filamentous non-N2-fixing NZ_ABYK00000000 unfinished

Crocosphaera watsonii WH8501 (Cwat) Unicellular N2-fixing NZ_AADV00000000 unfinished

Cyanothece sp. ATCC 51142 (Cya51142) Unicellular N2-fixing NC_010546 finished

Cyanothece sp. PCC 8801* (Cya8801) Unicellular N2-fixing NC_011726 finished

Cyanothece sp. PCC 7424* (Cya7424) Unicellular N2-fixing NC_011729 finished

Cyanothece sp. PCC 7425* (Cya7425) Unicellular N2-fixing NC_011884 finished

Synechococcus sp. JA-3-3Ab* (SynJA3) Unicellular N2-fixing NC_007775 finished

Synechococcus sp. JA-2-3B’a(2-13)* (SynJA2) Unicellular N2-fixing NC_007776 finished

Synechococcus sp. CC9311 Unicellular non-N2-fixing NC_008319 finished

Synechocystis sp. PCC 6803 Unicellular non-N2-fixing NC_000911 finished

Acaryochloris marina MBIC11017 Unicellular non-N2-fixing NC_009925 finished

Gloeobacter violaceus PCC 7421 Unicellular non-N2-fixing NC_005125 finished

Microcystis aeruginosa NIES-843 Unicellular non-N2-fixing NC_010296 finished

Prochlorococcus marinus MIT 9301 Unicellular non-N2-fixing NC_009091 finished

Synechococcus elongatus PCC 7942 Unicellular non-N2-fixing NC_007604 finished

Thermosynechococcus elongatus BP-1 Unicellular non-N2-fixing NC_004113 finished

*Species included in the second part of the analysis.
doi:10.1371/journal.pone.0009235.t006
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drospermum licheniforme UTEX 2014: Nost PCC9229: Nostoc

sp. PCC 9229; Anab SI: Anabaena sp. South India 2006; Nost

PCC7906: Nostoc sp. PCC 7906; Nodu KAC17: Nodularia sp.

KAC 17; Shof PCC7110: Scytonema hofmanni PCC 7110; Toly

CCMP1185: Tolypothrix sp. CCMP1185; Cdes PCC7102:

Calothrix desertica PCC 7102; Cfri PCC6912: Chlorogloeopsis

fritschii PCC 6912; Chlo PCC9212: Chlorogloeopsis sp. PCC

9212; Fmus UTEX1829: Fischerella muscicola UTEX 1829;

Fmus SAG 1427: Fischerella muscicola SAG 1427-1; Fmus

PCC7414: Fischerella muscicola PCC 7414; Fther PCC7521:

Fischerella thermalis PCC 7521; LeptoPCC73110: Leptolyngbya

sp. PCC 73110; Aplat HZ01: Arthrospira platensis HZ01;

Mae843: Microcystis aeruginosa NIES-843; Mae7806: Microcystis

aeruginosa PCC 7806; Cya7822: Cyanothece sp. PCC 7822;

Syn7002: Synechococcus sp. PCC 7002; Syn7335: Synechococcus

sp. PCC 7335.

Found at: doi:10.1371/journal.pone.0009235.s006 (0.39 MB

PDF)

Figure S7 Comparison of the gene clusters for heterocyst

polysaccharide biosynthesis. The comparison was based in the

gene cluster described for Anabaena sp. PCC 7120 [51].

Found at: doi:10.1371/journal.pone.0009235.s007 (0.10 MB

PDF)

Table S1 List of the unique CDS of CS-505 and D9 and their

classification into the different COG categories.

Found at: doi:10.1371/journal.pone.0009235.s008 (0.17 MB

XLS)

Table S2 Cell division genes in cyanobacteria

Found at: doi:10.1371/journal.pone.0009235.s009 (0.02 MB

XLS)

Table S3 Genes common to all heterocystous cyanobacteria

Found at: doi:10.1371/journal.pone.0009235.s010 (0.06 MB

XLS)

Table S4 83 Previously described regulatory genes present in the

genomes of the terminal heterocystous cyanobacteria C. racibors-

kii CS-505 and the non-heterocystous R. brookii D9.

Found at: doi:10.1371/journal.pone.0009235.s011 (0.06 MB

PDF)

Methods S1 Supplementary Material and Methods

Found at: doi:10.1371/journal.pone.0009235.s012 (0.06 MB

DOC)
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