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Exciton Stark and Landau ladders in a GaAs/Al Gaq As superlattice
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We have calculated the excitonic optical absorption of a superlattice in the presence of electric
and magnetic fields aligned with the superlattice axis. The main excitonic eKects are an infrared
shift and Stark/Landau ladder anticrossings. We show that an independent intrawell or interwell
bidimensional exciton picture is accurate except when two transitions approach each other as the ex-
ternal 6elds are varied, in which case the interaction between these excitons causes the anticrossings
previously observed in experiment.

I. INTRODUCTION

It was suggested a few years ago that the cornbina-
tion of Wannier-Stark and Landau quantization might
produce interesting electronic conmensurability proper-
ties in a superlattice (SL). An electric field aligned with
the SL growth axis introduces a periodic sequence of
resonances in the energy spectrum, ' while a magnetic
Geld pointing in the same direction quantizes the mo-
tion in the perpendicular plane, imposing a harmonic-
oscillator-like structure in the spectrum. Two periods
are thus present, one associated with the Wannier-Stark
frequency and one with the cyclotron frequency. When
the ratio between these frequencies is a rational the spec-
trum is periodic, while in the irrational case the additive
structure of Wannier-Stark resonances and Landau levels
is IloIlpeI'lodlc aIld deilse.

The accurate manifestation of these properties in an
actual sample in experiment depends on whether the as-
sumptions of the model are realized. One knows that
nonparabolicities of the dispersion law of electrons and
holes, and the multiplicity of the relevant valence bands,
produce distortions in the regularity of Landau levels al-
ready at moderate magnetic fields. The spectrum is thus
no longer characterized by periodic components, except
at low magnetic fields. Optical experiments also show
that the various Wannier and Landau fans that develop
in the energy spectrum as the fields are varied anticross
rather than cross, suggesting that the spectrum is not
the simple sum of two periodic structures as would be re-
quired to observe the commensurability properties. This
would be the case if the longitudinal and transverse de-
grees of freedom are not independent but coupled. In
this paper, we study the e8'ect of the largest coupling
of this kind that occurs in an optical experiment in su-
perlattices, that of the excited electron and the hole left
behind. We show that away from possible crossings, this

coupling modifies the energies by an approximately con-
stant infrared shift that accounts for the exciton binding
energy, while in the neighborhood of crossings the cou-
pling is more severe and turns crossings into anticrossings
as observed. in experiment.

The properties of excitons in quantum-confined serni-
conductor structures have been studied in the past by
several authors. In quantum wells the binding energy is
large, since both electron and hole are localized within
the well width. "' In coupled asymmetric double quan-
tum well systems the electron and hole may be in the
same or in diferent wells, giving rise to two distinct bind-
ing energy states. If an electric field is applied along
the growth axis, the Stark shift produces a crossing in
the energy of these states. The case of semiconductor
superlattices has also been discussed in the past in the
presence of an electric Geld. The binding energy of
the exciton depends on the barrier width, height, and
applied electric Geld, since these quantities control the
degree of localization of the wave functions. We here de-
velop a formalism that includes a magnetic Geld aligned
with the SL axis. Neglecting the coupling between hole
bands, we find that the Wanxlier-Stark localization allows
a description in terms of pseudo-bi-dimensional excitons,
each with the electron and the hole placed in well defined
SL layers that need not be the same. This gives rise to
the distinction between intermell and intramell excitons.
We also show that anticrossings are due to the coupling
between these special excitons.

In Sec. II, we present a method for calculating the ex-
citonic envelope wave function for a SL in the presence
of an electric and a magnetic Geld parallel to the growth
axis. We work in the effective mass approximation and
assume a parabolic dispersion for electrons and a four
band model for holes. We apply our method to calculate
the excitonic spectrum and the envelope wave functions
for heavy-hole and light-hole excitons, for diferent values
of the external fields. In Sec. III, we discuss the excitonic
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optical absorption spectrum in terms of the above formal-
ism and present numerical results for the binding energies
and the optical absorption of excitonic states. Compari-
son of our results with available experimental data shows
excellent agreement.

II. EXCITONIC ENVELOPE FUNCTION

quantum number. Due to the electric field induced local-
ization, Eq. (2) describes an electron or a hole primarily
confined about z = md. In terms of these functions, our
expansion reads

I"MM (P z. «) = ).&MM (P &)4'. ""(z-)C'7' («)
mml

In this section, we sketch the method we follow to
obtain the excitonic eigenstates of a SL in the presence
of a magnetic (B) and an electric (E) field both paral-
lel to the growth axis. The SL period is d and we take
the z axis to be along the direction of growth. In the
effective mass approximation the excitonic wave function
may be written as a linear combination of products of
electron- and hole-Bloch functions. The excitonic Hamil-
tonian reduces then to the sum of single particle electron
and hole Hamiltonians, and the screened Coulomb inter-
action. For a GaAs/Al Gai As SL the bands relevant
to optical transitions have I'6 and I'8 edge symmetry. For
these materials it is a good approximation to neglect the
split off I'7 band and the coupling between conduction
and valence bands. In this case, the excitonic envelope
function components EMM are solutions of the matrix
differential equation,

) (H )MM', LL'+LL' = E +MM' ~

L,L'

Here, H ' is the effective mass Hamiltonian operator.
It includes the kinetic energy of the conduction-band
electron and the valence-band hole in the presence of the
magnetic field, the screened electron-hole (e-h) Coulomb
interaction, the external electric field, and the SL poten-
tial. The summation over L includes the spin up or down
terms corresponding to the I'6 conduction band, and the
sum over L', the four spin states of the I"8 spin-orbit split
valence band. If we neglect the small contribution of the
e-6 exchange interaction, the eight-dimensional matrix
equation (1) reduces to two four-dimensional equations
for both spin states of the conduction band. The ex-
citonic envelope function components EMM depend on
the e-h relative coordinates p = (p, P) for motion par-
allel to the SL layers, as well as on the coordinates for
motion along the z axis. We expand these components
in terms of single-particle solutions of the effective mass
equation for motion along the SL axis in the presence of
the electric field alone. In the tight-binding approxima-
tion, taking into account one level per well only, these
functions have the form

4 (z) = ) Ji (9) QM(z —ld).

Here, P(z —ld) is the lowest energy eigenstate of the
quantum well associated with a period of the SL cen-
tered at z = td, and J (rI) is the Bessel function of order
n, with g the ratio between the transfer energy between
neighboring wells and the Stark energy L = eEd. The
single-particle energy associated with this eigenstate is of
the form e~ ——eo+ mL, the integer m denoting the Stark

where the subindices e, h, , refer to electrons and holes, re-
spectively. Note that the coefIicients in this expansion de-
pend on the in-plane relative electron- (4, ' (z,)), and

' M'
hole- (4'& ' (zi, )) coordinates only.

It is easy to show that the excitonic Hamiltonian is
invariant under a simultaneous shift of z, and zh by nd,
with n an integer. The excitonic envelope functions sat-
isfy then the special form of Bloch's theorem,

I"MM (p "+ nd «+ d) = *'""I"MM (p .
Here, q is the exciton wave number in the z direction.
Using this theorem and the general property 4 M(z) =
4o™(z —md), one can show that the function I"MM, may
be written in the form

IMM = )
e

where

AM, (z„zh, ) = ) e' " 4, ™(z)4m+ ' (zh).
m

The index E denotes the difference between the Stark
quantum numbers of the electron and the hole. Due
to the localization of the functions 4™(z),this in-
dex essentially corresponds, in units of the SL period,
to the spatial separation between them. The function

f~~M, (z„zh) can be seen as a linear combination of non-
interacting e-6 pairs a distance 8 apart from each other.

For simplicity, we shall next apply our method to in-
dependent excitons, that is, we discard the off-diagonal
elements in the hole Hamiltonian. In this case, Eq. (1)
becomes a scalar equation. In particular, for heavy-hole
excitons the effective mass Hamiltonian operator is given
by

~exc 1 d2 1 d
, + V.(z.) —

d , + &i (zh. )m. dz2 .
mhh dzh2(, g'p' )

+(z —zh, )eF +
i

—V'-+
i
+

m, ( ' 4)
2 ge'7

e~r, —ri,
~

2

pL
m2

where the electron (m, ) and heavy-hole (mhi, ) effective
masses are in units of the bare electron mass, lengths
are in Bohr units, and energies are in units of Rydbergs.
Also, mi ——(1/m, + pi + p2) and m2 ——(1/m, —pi-
p2), with pi, p2, and v the valence band Luttinger
parameters, and g, the g factor of the conduction-band
electron. e is an average static dielectric constant of the
two materials, V and Vh are the electron and hole SL
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potentials, and p the dimensionless energy of the free
electron lowest Landau level.

Using expansions (5) and (6) in Eq. (1), we obtain for
the coeImicients

2 2

~ &,'+ I+ ~L. C.", (p, 4)
m7 ( 4 ) m2

+ ) Mee (p) C, hg(p, 4) = (E —EeFd) C, ~h(p) P).
e

(7)

Here, F = E,„,—Eo —Zo —Fg —p(3K + ~~'), where

Eo(Eo) is the ffrst energy level of the electron (hole) in
the quantum well, and Eg is the energy gap. The matrix
elements of the e-6 interaction energy are

»P (Is]+ 1)~'
' p~'~+' 2m, sm,

2

2(lsl + 1)+ 22mph'-A~

(E+ EeI"d)
2

s t

e

Here, P = 1/A2 —1/Az and

OO OO ((' l
~." (p) = & p(-&'/4p) L'.

I

—
lI~I q4p~

N{E,E', n)
a2+(2

el
~e,e (e) = (f."t,. . . f

e p + ze —zh

and are given in Appendix A.
If in Eq. (7) the diagonal terms E = E' are considered

only, the index 8 becomes a good quantum number, and
the problem is reduced to one of independent pseudo-bi-
dimensional excitons in a magnetic field. We call such
excitons "Stark excitons, " since they arise naturally in
our basis set of localized Wannier-Stark eigenfunctions
for motion along the SL axis. In fact, in this diagonal
approximation, the Coulomb interaction in Eq. (7) has
been averaged out over the z axis and what remains may
be thought of as an electron and a hole, each constrained
to move over layers a distance Ed apart from each other.
Equation (7) describes the dynamics in the x-y plane of
the interacting pair in a magnetic Geld, and is thus of pure
two-dimensional character. For each value of 8 there is
a set of solutions with eigenvalues e,e ——E, —ZeFd, and,
therefore, the complete spectrum is the sequence of lad-
ders Ee = e;e + geEd. In the large magnetic field limit,
the index i may be associated with the usual Landau
inde~ of noninteracting particles in a magnetic field. At
certain values of the external fields, the ladders will cross.
It is in the neighborhood of these crossings where the oK-
diagonal Coulomb terms Mee become important and, in
fact, cause a repulsion of levels and therefore, anticross-
ings. We have found that away from these crossings such
elements do not change significantly the eigenenergies
and could be ignored completely. The oK-diagonal matrix
elements in Eq. (7) couple an E-Stark exciton and an E'-

Stark exciton, and it is this coupling that turns crossings
of levels into the anticrossings observed in experiment.

In order to solve Eq. (7), we expand the coefficients
elC, &&(p, P) in a restricted set of Gaussian functions with

length parameters A~, fixed a prioH, to cover the physical
range of relevant radii and assure convergence,

2
where Lt, ~(4~&) is the Laguerre polynomial and

N(E, I.', n) = cos[cl'(z —zg)] f,*'hh'(z„zh)
0 0

x f,~„„(z„zg)dz,dzg.

To solve Eq. (10), we need to restrict the basis by choos-
ing an upper value of ~E~

= E „. It is clear, due to the
Stark localization, that the coupling between an E exciton
and an /' exciton will be dominated by nearest neighbor
excitons. On the other hand, the absorption oscillator
strength will be very small for large 8, because of the
small overlap between the electron and hole wave func-
tions. For the 6elds considered below, we have checked in
our numerical calculations that truncation at ~E „~ = 3
gives sufhcient accuracy. In fact, increasing this num-
ber by two changes the excitation energies by less than
0.01'Fo.

III. ABSORPTION COEFFICIENT

We may now apply the above formalism to obtain the
excitonic optical absorption coefEcient. It is given by

~-%d
q

dzI'~„„(o,z, z) (14)

Using Eq. (5) and the properties of Bessel functions, we

obtain

where ( is the photon polarization, P, the electron mo-
mentum operator, g(ur) the refractive index and mo the
bare electron mass. The oscillator strength 0„ is given
by

where 8 is an integer associated with the conserved z
component of the total angular momentum. Replacing
(9) in (7), we obtain

0„"'= 8~08o) ) aa, , ) J~ g(g"
ee pp'

n) J» r. (n" —n ) —p(p') p(p-) (15)

where ar. are the solutions of Eq. (10), g'l" is the
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transfer energy between neighboring wells, and p, (p) =
f dz P, (z)P~(z —pd) are the overlap integrals for the well
eigenstates.

In what follows, we present numerical results for heavy-
and light-hole excitons in a GaAs/Al Gai As SL, for
which there is experimental data available. In our cal-
culations the band gap of GaAs is taken to be Eg
1.52 eV and we assume a valence-band offset of 30%,
and a band-gap discontinuity as given by the expression
LEg ——1.36x+0.22x . The efFective mass parameters for
GaAs(A1As) are m, = 0.067(0.15), m~b~ ——0.11(0.13),
mbi, i = 0.34(0.42), and e = 12.0(9.8). In addition,
we set the in-plane effective mass for the heavy exciton
m&&' ——0.06 and for the light-hole exciton m&&' ——0.069.

As a first test of our model, we have calculated the
absorption spectrum in the zero magnetic Geld limit.
For this case, we have compared our results with pho-
tocurrent data reported by Agullo-Rueda et al. for a
40 A. GaAs/20 A Alp 35Gap s5As SL.is We find excellent
agreement between theory and experiment if we use the
geometrical parameters suggested by Dignam and Sipe
for the same sample, that is, a layer thickness of 41 A for
the well, and 24 A for the barrier. i7 In Figs. 1(a) and

(0,-1hh)
F=33.8 keV/cm

14

12
O

1

O 8

6

1(b), we show the experimental (circles) and calculated
(dots) excitonic transition energies as a function of the
electric field for heavy- and light-hole excitons. In this
case, as Dignam and Sipe have done, we have also ad-
justed the zero of the electric field in 1.5 kV/cm.

Photocurrent experimental data of excitonic transi-
tions in a 40 A. GaAs/20 A Alp 35Gap ssAs SL under lon-
gitudinal electric and magnetic fields have been reported
by Alexandrou, Mendez, and Hong. The following re-
sults are for this system. Figure 2 shows results for the
excitonic absorption strength as a function of the photon
energy for diferent values of the magnetic field and an
electric field of 33.8 kV/cm. To account for thermal and
other broadening eH'ects, we have replaced in our calcu-
lations the b' functions in Eq. (13) by Lorentzian curves
of width 2.5 meV. The optical spectrum shows excitonic
resonances associated with bound states of an electron
and a hole localized in the same well, or in neighboring
wells of the SI . For zero magnetic field, we see the main
Stark transitions clearly resolved. They are labeled with
the symbol Ehh, where the integer 8 is as defined before.
When the magnetic field is increased, new excitations of
the system associated with each Stark transition appear.
For finite magnetic field, we have labeled the peaks with
the symbol (n, Ehh), where, for a given Ehh, the inte-
ger n orders the transitions according to increasing en-
ergy. Thus, for example, (0, 0hh) is associated with the
lowest intratUell excitonic transition and (1, —lhh) labels
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FIG. 1. Calculated (a) heavy-hole and (h) light-hole
excitonic transitions energies for a 41 A. GaAs/24 A.

Alo. 35Ga0.65As SL at zero magnetic field, as a function of
the applied electric field. Open circles are the experimental
photocurrent data from Ref. 16. All figures refer to the same
SL.

Photon Energy (eV)

FIG. 2. Absorption coefficient for diferent values of the
magnetic field at a constant electric field. The dotted line
shows the (1,—1hh) transition as it would appear without
electron-hole interaction. The dashed lines show anticrossings
as a function of the magnetic field. The (1, —1hh) transition
anticrosses with the (0, 0hh) transition around 6 T, and with
the (0, +1hh) transition around 16 T. Both fields are parallel
to the SL growth axis.
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the second intermell excitonic transition. Below 4 T the
(0, 0hh) transition is strong, while the (1, —1hh) is weak.
As the magnetic field is increased, the peaks associated
with these two transitions approach each other, their in-
tensities become comparable, and above 6 T their relative
strength is inverted.

The magnetic field regions for which the excitation en-
ergy of an intramell exciton and an interwell exciton are
similar are observed as zones of anticrossings in Fig. 3,
where we have plotted the transition energies as a func-
tion of magnetic field. These regions of anticrossings oc-
cur, in general, whenever the energy of the magnetic ex-
citonic transition is close to a multiple M of the Stark
energy. For the corresponding magnetic field, anticross-
ings will be observed between the transitions (n, II.'hh) and
(n + M, Ehh~ M), with (n+ M) ) 0. In the one-particle
model, where excitonic efFects are neglected, those tran-
sitions cross as a function of magnetic field, the e-h in-
teraction being the relevant coupling that turns crossing
into anticrossings.

We also include in Fig. 3 the photo current peak
data of Alexandrou, Mendez, and Hong, reported for
a 40 A. GaAs/20 A A1Q 35GaQ 55A1 Si in an electric field
of 30 kV/cm. As in the case of zero magnetic field, we
found the best agreement with the experiment by using
the geometrical parameters suggested by Dignam et al. ,
and by setting the field at a value of 33.8 kV/cm, which
means to adjust the zero of the field in 3.8 kV/cm. For
magnetic Gelds B' less than 12 T, the calculated excitonic
peak positions as a function of the field are in excellent
agreement with the experimental data. For higher mag-
netic fields the agreement is less satisfactory, because the
coupling of heavy- and light-hole states has not been in-
cluded in our calculations. This coupling leads to quan-
tum well hole energies, whose magnetic Beld dependence
departs significantly kom the linear free electron result
above about 7 T, as we have shown in Ref. 5. This

effect leads to a magnetic field dependent excitonic efFec-

tive mass, such that in the limit of high magnetic field it
approaches the electron effective mass.

In Fig. 4, we have plotted the transition energies as a
function of the applied electric field for the same SL in a
magnetic field of 21e4 T. In this figure, we have included
both the calculated (solid circles) and experimental (open
circles) data, for light- and heavy-hole excitons. In this
case, we have used the excitonic effective masses mhh' ——

0.067 and m&h' ——0.0689, to take into account the efFect
of coupling of heavy and light hole disscused above.

Binding energies of the exciton may also be obtained
in our formalism. For zero magnetic field, our results
are in good agreement with the results of Dignam and
Sipe for an electric field of 33.8 keV/cm. i We have ob-
served the asymmetry in the binding energies of the exci-
ton states (0, +Mhh) and (0, —Mhh) predicted by them.
Our results also show that the (0, 0hh) exciton is the
most bounded, with a binding energy of 7.9 meV, while
the (0, —1hh) exciton has a binding energy of 6.5 meV.
For this last case, Alexandrou et al. have estimated an
experimental value of 6.7+1 meV, which again confirms
the agreement of theory and experiment.

When the magnetic field is increased, the in-plane ex-
citonic radius of a Stark exciton decreases and its binding
energy grows. For certain values of the magnetic field the
coupling between an E-type Stark exciton and an (E —1)-
type Stark exciton becomes relevant and the binding en-

ergy as a function of the field shows very clearly the con-
version of the 8-type excitonic state to the (/ —1)-type
excitonic state, and vice versa. In Fig. 5, we show the
ground state binding energies of the E = 0 (full line) and
8 = —1 (dashed line) excitons if the coupling between the
Stark excitons is neglected. The dots are for the fully cou-
pled system and show a binding energy with some struc-
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FIC. 3. Excitonic transition energies as a function of the
magnetic field for an electric field of F = 33.8 kV/cm. Open
circles are experimental data from Ref. 6 and solid circles are
our results.
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FIG. 4. Excitonic transition energies as a function of the
electric field for a constant magnetic field B' = 21.4 T. Open
circles are experimental data from Ref. 6 and solid circles are
our results.
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A,PPENDIX A

In this appendix, we outline the procedure used to eval-
uate the Inatrix elements of the Coulomb interaction. We
have to calculate

0
0 10

Magnetic Field (T)
15 20 M~.~ (~) = (f.'.hh, , &.'.:.) ("')

p2 + (z, —za)2

FIG. 5. Binding energies for the Ohh state as a function
of the magnetic field in an electric field of I" = 33.8 kV/cm.
The solid and dashed lines correspond to the Ohh and —1hh
states, respectively, neglecting the coupling between them.

We express the Coulomb interaction in terms of the
Fourier integral,

27K OO OO1 =1 i(p cos 8

Qp2 + (z, —zg)2 'ir o o o

ture revealing anticrossings. While below 7 T the dots
roughly follow the uncoupled E = 0 exciton, they are seen
to switch rather sharply to the / = —1 uncoupled exciton
in the region between 7 T and 11 T corresponding to the
main anticrossing highlighted in Fig. 3. At other values
of the magnetic field, a similar behavior in the binding
energy can be observed because of the coupling of the
intrawell exciton (0, 0hh) with other 8 g 0 interwell ex-
citons. For example, for fields below 7 T the intrawell
Stark exciton (0, 0hh) also couples weakly with the inter-
well Stark excitons (2, —1hh) and (3, —1hh). This can be
observed as little discontinuities in the binding energy in
Fig. 5.

To summarize, we have developed a formalism appro-
priate for the calculation of the excitonic optical absorp-
tion of a superlattice in the presence of an electric and
a magnetic field, both aligned with the superlattice axis.
We have applied this formalism to a GaAs/Al Gai As
sample for which experimental data is available and
have found excellent agreement between our results and
experiment. The spectrum contains Stark (Landau) fans
that develop when the electric (magnetic) field is in-
creased, already predicted by the one-electron picture.
The excitonic formation causes an infrared shift in the
spectrum and turns the crossings given by the one-
electron approximation into anticrossings. A convenient
picture to use involves bidimensional excitons with the
electron and the hole moving in separate planes, and we
find that it is the interaction between these excitons that
turns crossings into anticrossings in the spectrum.

n2 + 2

By performing the integral over 0, we obtain

(A2)

1 1
Jo Xp)

V p +(z~ —zh) 0 0

cos n(z, —zh, )X
2 2

d dn.
+ (A3)

The matrix elements given by Eq. (Al) can be written
in the form

N(E, E', n) = ) [Q, (l, l', n) D(A'„, A", , n)
n

+Q, (l, l', n) G(A"„,, C„,n)

+Qi(l, l', n + 1)G(A'„,C„",, —n)],

with

(A5)

D(A'„, A~, ) = A'„A~, g2 (k„,n) g2(k~I, n) (A6)

Jo p 2
'

2 do'd,

(A4)

where Jo((p) is the zero-order Bessel function and
N(E, E', n) is given in Eq. (12). Because the function

f,*&~& involves only exponential (out of the well), and har-

monic (in the well), functions, the integral N(E, I.', n) can
be performed analytically. We And

4

G(A"„„C„',n) = A", G„) ) (—1) e ["+(— ) x-1 g2(k, n)
j=0,1 m=1

(rn —1)(rn —2)
xg, ~ y„,n+ (—1) ~ k~, (—1) (—l)~ (j —n)dn

o + —1 ~ k„
(A7)
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gi(x, y, z) = x cos(yz) —y sin(yz)
2 + /g2

Here, k„(k„)and y„(y„)denote the electron (hole) wave
vectors in the quantum well and the barrier, respectively.
Also, A'(A", ) and C„'(t ",) are normalization constants
for electrons (holes) localized in neighboring wells. The
functions gq(x, y, z) and g2(x, y) are defined as

'g = 'Ue(h)
e(h) P(z),(h)P(z —d), ihi dz.

nations of Bessel functions given by

Qi(l, l', n) = N J( „(ri' —q") JE „(ri' —ri"),

Q2 (l, l', n) = Q i (l, l' + 1,n) + Q i (l', l + 1,n),

with

(A10)

(All)

(A12)
1 x sin(x) cos(y) —y sin(y) cos(x) sin y

g2(~ y) =
2

+

(Ao)

and the functions Qi(l, l', n) and Q2(l, I', n) are combi-

Here, v, (h) is the magnitude of the conduction-(val-
ence-)band discontinuity. To obtain Eq. (A4), we have
assumed q = 0, since these are the only states which are
accessible via optical excitation.
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