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ESCUELA DE INGENIERÍA
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ABSTRACT

Displacement estimation algorithms play a critical role in the performance of ultra-

sound elastography methods. Bayesian displacement estimators have shown promising

results in the last decade. However, computational cost still prevents their real-time im-

plementation. In this thesis, a novel likelihood function called “autocorrelation kernel”

(ACK) is incorporated into a bayesian estimator. Unlike previous approaches, ACK can

directly evaluate the probability of sub-sample displacements without the need of over-

sampling or interpolation.

Representative B-mode images of shear wave elasticity imaging (SWEI) were gener-

ated. First, acoustic radiation force distributions were virtually simulated. Second, the

finite element method was used to simulate realistic shear wave displacements. Finally, an

ultrasound imaging software was used to produce images of moving tissue with appropri-

ate speckle texture.

The proposed likelihood function was compared to the classical normalized cross-

correlation function (NCC). Both functions were combined with a L1-norm prior to cal-

culate the posterior distribution. Additionally, a L2-norm prior was tested with ACK. Dis-

placement was estimated from the simulated B-mode images and results were compared

in terms of bias, variance and root mean square error (RMSE).

NCC performed better than ACK by improving the initial, non-bayesian estimation be-

tween 24.2% and 42.5% in terms of RMSE. ACK made an improvement between 16.6%

and 36.7% using L1-norm and 19.3% to 33.8% using L2-norm. Regarding computation

time, ACK function evaluation was in average 28.6% faster than NCC. However, conver-

gence of the non-linear optimization algorithm wasn’t faster.

Keywords: elastography, ultrasound, displacement, estimation, bayesian.
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RESUMEN

Los algoritmos de estimación de desplazamiento juegan un rol crı́tico en los métodos

de elastografı́a por ultrasonido. Los estimadores bayesianos han mostrado resultados

prometedores en la última década, pero su costo computacional impide su implementación

en tiempo real. En esta tésis, una nueva función de verosimilitud llamada “autocorrelation

kernel” (ACK) es incorporada a la estimación bayesiana. Al contrario de funciones anteri-

ores, ACK permite evaluar directamente la probabilidad de desplazamientos sub-muestra

sin necesitar sobremuestreo ni interpolación.

Se generaron imágenes de modo B representativas de shear wave elasticity imaging

(SWEI). Primero, la fuerza de radiación acústica fue simulada. Segundo, el método de el-

ementos finitos fue utilizado para simular desplazamientos de ondas cortantes. Por último,

un programa de simulación de ultrasonido fue utilizado para producir imágenes de tejido

en movimiento con textura apropiada.

La función de verosimilitud propuesta fue comparada contra la clásica correlación

cruzada normalizada (NCC). Ambas fueron combinadas con un prior de norma L1 para

calcular la probabilidad a posteriori. Adicionalmente, un prior de norma L2 fue probado

con ACK. El desplazamiento fue estimado a partir de las imágenes de modo B simuladas

y los resultados fueron comparados en términos de su sesgo, variabilidad y la raı́z del error

cuadrático medio (RMSE).

NCC tuvo un mejor desempeño que ACK. Esta mejoró la estimación inicial no bayesiana

entre 24.2% y 42.5% en términos de su RMSE. ACK mejoró esta estimación en tan solo

16.6% a 36.7% con norma L1 y entre 19.3% y 33.8% con norma L2. Respecto al tiempo

de cómputo, cada evaluación de ACK fue en promedio 28.6% más rápida que las de NCC.

No obstante, la convergencia del algoritmo de optimización no-lineal no fue acelerada.

Palabras Claves: elastografı́a, ultrasonido, estimación, desplazamiento, bayesiana.
xi



1. INTRODUCTION

Medical ultrasound (US) is an imaging technique that uses a transducer to generate

images of human tissue. A transducer is equipped with an array of piezoelectric elements

that transform electric signals into mechanical vibrations and vice-versa (Martin & Ram-

narine, 2010). Figure 1.1 shows a linear array transducer with a common definition of

the problem’s spatial dimensions: lateral (x), elevational (y) and axial distance (z). The

elements are excited with a short, bandpass electric pulse of central frequency fc. Sound

waves travel in the axial direction and whenever a wavefront encounters a small acoustic

inhomogeneity (called “scatterer”), the pulse is partially reflected in the form of an “echo”.

Finally, the transducer transforms the received echo into an electric signal, which is sam-

pled and processed to create an image. Thus, this is called “pulse-echo” imaging.

Figure 1.1. Linear array transducer and respective spatial dimensions.

Figure 1.2a depicts a received echo as a function of time t. As described by equation

1.1, time can be mapped to a spatial dimension z by considering that the speed of sound

in human tissue cs is approximately 1540 m/s (Martin & Ramnarine, 2010). Indeed, it is

possible to infer the distance between transducer and scattering source. As shown in figure

1.2b, the spatial profile of the acoustic pressure will exhibit a wavelength of λ = cs/fc.

z = t cs/2 (1.1)
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(a) Over time t. (b) Over axial distance z.

Figure 1.2. Example of a received echo as a function of (a) time and (b)
axial distance. σt and σz are full width half maximums (FWHM), i.e. the
lengths of the segments where the amplitude of the envelope is greater than
-6dB below its peak.

If many elements are distributed along the lateral dimension, it is also possible to infer

the lateral position x of that source by using “beamforming”, i.e. the combination of de-

layed versions of various element signals. This results in a bandpass, two-dimensional im-

age, like figure 1.3a. The two-dimensional envelope of the beamformed signals is known

as a “B-mode” image (see figure 1.3b). When imaging a dynamic phenomenon, many

consecutive pulse-echo events can be used create a video-like collection of “frames”. Dig-

itally, all acquisitions are represented by a 3D matrix with dimensions of position and

time: r(x, z, T ).

On the one hand, the spatial resolution of B-mode images depends on the transducer’s

geometry, number of elements and the pulse’s envelope. It’s limited by the “resolution

cell” of the system, which corresponds to the ellipsoidal volume where the intensity of

the response caused by a single scatterer is greater than -6 dB below its peak. It can be

calculated using equation 1.2:

Vres. cell =
π

4
σx σy σz (1.2)

2



(a) Amplitude. (b) Envelope.

Figure 1.3. Pulse-echo acquisition in two dimensions, including (a) the
signal’s amplitude and (b) its envelope. The echo is produced by a single
scaterer in front of the transducer.

where σx, σy and σz are the FWHM lengths of the response in every dimension, as shown

in figure 1.3. On the other hand, the temporal resolution of a sequence is limited by

hardware constrains and the sound wave’s travel time.

Some medical US devices also feature “elastography” capabilities. Elastography refers

to the assessment of the mechanical properties of human tissue, such as its elastic moduli

and viscosity (Sarvazyan et al., 2011). In particular, ultrasound elastograhy (USE) is a

promising technique due to the availability and cost-efficiency of US devices (Gennisson,

Deffieux, Fink, & Tanter, 2013). USE has demonstrated potential for early diagnose of

pathologies, such as cirrhotic liver disease (Mueller, 2020) and breast cancer (Doyley,

Meaney, & Bamber, 2000).

All USE methods share a similar structure (Sarvazyan et al., 2011). First, tissue is

mechanically excited using manual pressure (Ophir, Céspedes, Ponnekanti, Yazdi, & Li,

1991), acoustic radiation force (Rudenko, Sarvazyan, & Emelianov, 1996), an external

vibrator (Sandrin, Tanter, Gennisson, Catheline, & Fink, 2002) or even endogenous move-

ments of the body such as heartbeats (Kanai, 2005; Fujikura et al., 2007). Second, the

3



tissue’s displacement response is tracked using ultrasound (Gennisson et al., 2013), hy-

drophones (Fatemi & Greenleaf, 1999) or superficial pressure sensors (Sarvazyan, Rudenko,

Swanson, Fowlkes, & Emelianov, 1998). Finally, a physical model is used to infer the tis-

sue’s mechanical properties from the displacement information.

The second step, namely displacement estimation, plays a critical role in the perfor-

mance of USE methods (Viola & Walker, 2003). Displacement estimation algorithms

receive a collection of radio frequency (RF) images as input, i.e. 2D frames taken at dif-

ferent times: r(x, z, T ). The RF data is obtained from the echoes of scatterers that may be

moving between frames. The algorithm’s output is that displacement field u⃗(x, y, z, T ),

which is a function of space and time. Some difficulties may arise when the data is cor-

rupted by electronic and decorrelation noise (Walker & Trahey, 1995) and the magnitude

of the displacement is smaller than an axial sample length, i.e. a “sub-sample” displace-

ment (G. Pinton, Dahl, & Trahey, 2006).

In this work, a new method for estimating displacements using a bayesian approach is

presented. Many displacement estimators have been proposed over the last three decades,

but their performance has commonly been limited by the Crámer-Rao lower bound (CRLB)

(Walker & Trahey, 1995). Nonetheless, bayesian estimators have recently been able to

surpass that limit (Byram, Trahey, & Palmeri, 2013a; Byram, Trahey, & Palmeri, 2013b;

Dumont & Byram, 2016). They consist of two components: a likelihood function and a

prior. Previously, the normalized cross-correlation (NCC) or the sum of squared differ-

ences (SSD) have been implemented as likelihood functions. However, they are limited to

offline processing, because they require oversampling or interpolation to determine sub-

sample displacements. This paper introduces a novel likelihood function, called “auto-

correlation kernel” (ACK), which is based on the autocorrelator algorithm proposed by

Loupas, Powers, and Gill (1995) and can be directly evaluated at sub-sample lags. Thus,

it is a promising technique for real-time processing.

4



Its target application is shear wave elasticity imaging (SWEI), a USE technique that

uses ultrasound to both mechanically excite the tissue and then track the induced displace-

ment (Sarvazyan et al., 1998). In SWEI, the transducer is electrically excited with a spe-

cially lengthy voltage sequence, called the “push” sequence, resulting in a powerful sound

burst. This burst excerpts a spatially focused force in the positive axial direction called

acoustic radiation force (ARF). Consequently, shear waves propagate away from the fo-

cus in the lateral direction and displace particles in the axial direction. Their propagation

speed is related to the tissue’s mechanical properties, thus it is tracked using pulse-echo

US. However, their magnitude is generally smaller than a sample length (in the order of

tens of µm) (M. Palmeri & Nightingale, 2004).

The algorithms were tested using the simulation procedure shown in figure 1.4. First,

the pushing force f(x, y, z, T ) was simulated. Then, the finite element method (FEM) was

used to approximate the tissue’s response u⃗(x, y, z, T ) under various material conditions.

Next, the imaging region was randomly populated with scatterers and B-mode images

r(x, z, T ) were generated. The displacement u⃗(x, y, z, T ) was used to move the scatterers

between each simulated acquisition. Then, an estimation of the axial component of the

displacement û(x, z, T ) is obtained using both the proposed method and a previously val-

idated bayesian approach (Dumont & Byram, 2016). Finally, error metrics are calculated

by comparing the estimation with the true displacement.

This work is organized as follows. In section 2, a mathematical framework is presented

and each simulation block is described in order. Next, section 3 presents the output of each

block and analyses those results. Finally, conclusions are drawn on section 4 and future

improvements are offered.

5



Figure 1.4. Graphical abstract of simulation procedure.
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2. METHODS

2.1. Mathematical framework for images of moving tissue

As stated before, all elastography methods deal with some sort of displacement in-

side the tissue. This displacement can be modeled by shifting the position of a group

of randomly placed scatterers (Loupas et al., 1995). For the sake of simplicity, a one-

dimensional model is derived. First, a pulse-echo acquisition r(t, T ) is obtained at frame

T . The transducer fires a pulse and then samples the echoes at times t. The sampling

frequency is considerably larger than the frame rate: in the order of 107 versus 103, re-

spectively. Therefore, dimensions t and T are also denoted as “fast” and “slow” time

dimensions.

The echoes are produced by a collection of scatterers distributed along the axial di-

rection z. The i-th scatterer is represented by a Dirac delta function δ(z) with a random

reflectivity ai and an initial axial position zi. Position zi can be mapped to echo arrival time

ti by using equation 1.1. If the analyzed scatterers are sufficiently close, one can assume

that they are subjected to the same adimensional displacement u(T ), expressed as a multi-

ple of the wavelength λ. So, a collection of Nscat moving scatterers can be represented by

either:

∆(z, T ) =
Nscat∑
i=1

ai δ(z − zi − u(T ) λ) (2.1)

∆(t, T ) =
Nscat∑
i=1

ai δ(t− ti − 2 u(T ) λ / cs) (2.2)

The collection of consecutive 1D signals received by the transducer r(t, T ) is obtained

by taking the convolution between ∆(t, T ) and H(t), namely the impulse response of the

acquisition setup. An example of this procedure is depicted in figure 2.1. H(t) accounts

for the impulse responses of the transducer, the emitted pulse and the media:

7



r(t, T ) = H(t) ∗∆(t, T ) (2.3)

(a) Scatterer distribution ∆(z, T ). (b) Acquired signal r(z, T ).

Figure 2.1. Scatterer distribution and acquired signal, obtained by convo-
lution with H(z).

As shown in figures 2.2a and 2.2c, r(t, T ) consists on M samples in fast time t and N

frames in slow time T . Inter-frame displacement is assumed to be approximately constant

during the N frames. Nevertheless, the current imaging setup does not guarantee that

displacements are similar during 3 or more frames, so N is set to 2 frames throughout this

work, unless specified otherwise.

2.2. Non-bayesian displacement estimation algorithms

2.2.1. Normalized cross correlation function

Displacement estimation algorithms infer u(T ) from a set of frames r(t, T ), r(t, T +

1), etc. The most popular method for high accuracy applications consists on finding the

maximum of the normalized cross-correlation (NCC) function (Svilainis, 2019). The NCC

function between frames T and T + 1 is defined as:

NCC(τ) =
1√

Er(T )Er(T + 1)

M9τ∑
t=1

r(t, T ) r(t+ τ, T + 1) (2.4)

8



(a) r(t, T ), utrue = 0.1λ (b) |R(f, F )|2 , utrue = 0.1λ

(c) r(t, T ), utrue = 90.3λ (d) |R(f, F )|2 , utrue = 90.3λ

Figure 2.2. (a, c) One-dimensional acquisition r(t, T ) and (b, d) its energy
spectrum |R(f, F )|2. True displacement is either (upper row) utrue = 0.1λ
or (lower row) utrue = 90.3λ.

where Er(T ) =
M∑
t=1

r2(t, T ) is the signal energy, τ takes integer values between 1 9M and

M 9 1 and r(t, T ) is zero for all t /∈ [1,M ].

However, as stated in the introduction, SWEI deals with sub-sample displacements.

Therefore, the NCC needs to be interpolated or oversampled to avoid quantization error.

Previous works have reported good performance for small displacements using spline in-

terpolation (G. F. Pinton & Trahey, 2006).

2.2.2. Loupas’ algorithm

Alternatively, Loupas’ algorithm is capable of estimating sub-sample displacements

without the need of oversampling or interpolation. This is done by obtaining estimates of

9



both the center frequency of the received signal f̂ and its shift between various frames,

i.e. the Doppler frequency F̂ (Loupas et al., 1995). In ultrasound applications, the center

frequency of the signal is in the order of MHz and belongs to the “fast” frequency dimen-

sion f , i.e. the Fourier dimension of the time between samples t. Similarly, the Doppler

frequency is in the order of kHz and exists in the “slow” frequency dimension F , related

to the time between frames T . Loupas et al. (1995) demonstrated that the inter-frame

displacement is proportional to the ratio of their estimates F̂ /f̂ , which takes continuous

values.

To visualize this, take the discrete time Fourier transform (DTFT) of one-dimensional

frame collections r(t, T ) and observe the continuous energy spectral density |R(f, F )|2 =

|DTFT {r(t, T )}|2, as in figures 2.2b and 2.2d. Notice how their spectral energy concen-

trates differently depending on the underlying inter-frame displacement. As a matter of

fact, Loupas et al. (1995) proved that if u∗ is the true displacement, then the energy spec-

tral density of r(t, T ) concentrates along the line given by F = ku∗ f , where the slope ku∗

is given by:

ku∗ =
u∗

fc ts
(2.5)

where u∗ is an adimensional multiple of the wavelength, fc is the transducer’s center

frequency and ts is the fast time sampling period. Due to the fact that this line passes

through the origin, the sub-sample, inter-frame displacement can be estimated by finding

the centroid of the half-spectrum (⟨f⟩, ⟨F ⟩) and deriving u from the slope ku:

û =
⟨F ⟩
⟨f⟩

fc ts (2.6)

The centroids are obtained as following:

10



⟨f⟩ =

0.5∫
−0.5

0.5∫
0

f |R(f, F )|2 df dF

0.5∫
−0.5

0.5∫
0

|R(f, F )|2 df dF
, ⟨F ⟩ =

0.5∫
−0.5

0.5∫
0

F |R(f, F )|2 df dF

0.5∫
−0.5

0.5∫
0

|R(f, F )|2 df dF
(2.7)

However, Loupas et al. (1995) derived a quick way of estimating these centroids by

evaluating the phase of the autocorrelation function near the origin. In this manner, a fast

and reliable displacement estimator for sub-sample displacements was proposed.

2.3. Tissue characterization using shear wave elasticity imaging

Before delving into the task of estimating the displacements, let’s review the physical

principles that give rise to the target application, SWEI. On the one hand, sound is a

compressional wave and its propagation speed cs in soft tissue is relatively constant. This

is because sound speed is a function of bulk modulus B and density ρ:

cs =
√
B/ρ (2.8)

Both quantities don’t vary significantly in soft tissue, because it inherits these prop-

erties from water (Martin & Ramnarine, 2010). On the other hand, “shear waves” are

transverse waves and their propagation speed ct is a function a shear modulus µ and den-

sity:

ct =
√
µ/ρ (2.9)

Unlike bulk modulus, shear modulus depends on specific biological structures and

spans a much wider range of values throughout the body (at least 7 orders of magnitude).

Additionally, this type of waves travel much slower, at speeds around 1-10 m/s (Hoskins,
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2010). When media is linearly elastic, homogeneous and isotropic, shear modulus µ is

related to elastic modulus E by (Timoshenko & Goodier, 1969):

µ =
E

2 ∗ (1 + ν)
≈ E

3
(2.10)

where the Poisson’s ratio ν is set to 0.499, because tissue is assumed to be nearly incom-

pressible.

Equation 2.9 allows SWEI to calculate the tissue’s shear modulus by tracking its shear

wave speed (Sarvazyan et al., 1998). Shear wave displacement u⃗(x, y, z, T ) is generated

using acoustic radiation force and then captured in ultrasound acquisitions r(x, z, T ) by

using ultrafast pulse-echo ultrasound. Next, using a displacement estimator, an approxi-

mation of its axial component û(x, z, T ) is calculated. This is finally fed into a shear wave

speed estimation algorithm to obtain ct and eventually µ.

2.4. Acoustic radiation force simulation

Acoustic radiation force (ARF) is the transfer of momentum from the ultrasound wave

to the medium (Rudenko et al., 1996). With conventional pulse-echo imaging, transmit-

ted pulses are too short to produce any significant force. However, if the transducer is

continuously excited during many hundreds of cycles (with a so called “push” sequence),

the resultant force is then capable of producing observable displacement in the axial direc-

tion, in the order of 1-10 µm (M. Palmeri & Nightingale, 2004). Even more, if the element

signals are delayed so that the push is focused, an impulsive excitation is created in the

media. This kind of excitation gives rise to shear waves that displace particles in the axial

direction, but travel in the lateral direction.

In this work, the ARF induced by a push sequence was simulated on Field II (Jensen

& Svendsen, 1992; Jensen, 1996), an ultrasound field simulator software, following the

12



guidelines by M. L. Palmeri, Qiang, Chen, and Urban (2017). Details are included in ap-

pendix A. Simulation properties of the linear array transducer, push sequence and media

are listed in tables 2.1, 2.2 and 2.3, respectively. Linear array transducers have been com-

monly used in SWEI (Nordenfur, 2013; Y. Wang, 2017) and the current parameters are

suited for a future implementation on a Verasonics Vantage 128 System (Verasonics, Inc.,

Kirkland, WA, USA) with a L11-5v probe.

Table 2.1. Transducer characteristics.

Parameter Value Units

Transducer model L11-5v -

Number of elements 128 -

Center frequency 7.6 MHz

Bandwidth 76.8 %

Element spacing 0.3 mm

Element width 0.27 mm

Element height 5 mm

Elevation focus 18 mm

Aperture size 38.4 mm
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Table 2.2. Push sequence parameters.

Parameter Value Units

Active elements 64 -

ISPTA * 15 mW/cm2

Push cycles 430 -

Push depth 10 mm

Grid resolution 0.1 mm

*Spatial-Peak, Temporal-Average Intensity.

Table 2.3. Media acoustical parameters.

Parameter Value Units

Speed of Sound 1540 m/s

Wavelength @ fc 0.203 mm

Attenuation 0.3 dB/cm/MHz

Density 1000 kg/m3

2.5. Finite element method for simulating the tissue’s response

To simulate the tissue response u⃗(x, y, z, t) to the acoustic force, a finite element

method (FEM) model of the linear elastodynamics problem was solved following the

guidelines by M. L. Palmeri et al. (2017). As shown in figure 2.3, the solid body Ω in

front of the transducer is split into hexahedrons or “elements” and an approximate solu-

tion U⃗k is obtained for each node. Then, given the material properties E and ν, initial

and boundary conditions and applying the ARF as an external force, the displacement is

solved recursively.
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(a) FEM domain. (b) Discretized domain.

Figure 2.3. FEM domain and discretization.

The previous model was implemented using FEniCSx (Alnaes et al., 2015; Scroggs,

Dokken, Richardson, & Wells, 2022; Scroggs, Baratta, Richardson, & Wells, 2022), an

open-source FEM computing platform wrapped in a python library. Simulation parameters

are described in detail in appendix B and briefly summarized here. Element size was set

to 0.2 mm and material elastic modulus E = 3 ρ c2t was chosen to mimic common shear

waves speed values in healthy tissue (Hoskins, Martin, & Thrush, 2010). Thus, ct was set

between 0.25 m/s and 3 m/s with steps of 0.25 m/s, resulting in E-values between 187.5

Pa and 27 kPa.

As suggested in figure 2.3a, the ARF was applied in the axial direction at the corre-

sponding depth. To avoid reflections at boundaries, domain dimensions in the x and y

directions are slightly longer than the travel distance of the respective shear wave after 2

ms. Axial size was set to 10 mm by visually inspecting a simulation on a large domain

and estimating its full width in the z direction. A total of 101 time steps were simulated

with a step size of ∆t = 20µs. This temporal resolution allowed the ARF to be effectively

modeled as an impulsive source, because ∆t is at least 2 times smaller than the push’s

duration (≈ 56µs).
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2.6. Simulations of B-mode acquisitions of moving tissue

To generate artificial B-mode images of the acoustically excited tissue, the Vantage

software is used on “simulation mode”. Specifically, virtual point scatterers are randomly

placed inside an imaging region in front of the transducer. Next, they’re convoluted with

the spatial impulse response H(z) to create a bandpass RF signal for each of the trans-

ducer’s elements. These signals can be beamformed to generate a B-mode frame. A

close-up to the beamformed received signals of moving scatterers can be observed in fig-

ure 2.4.

Figure 2.4. Example of 2D received signals of moving tissue. Red stars
indicate the scatterers’ positions. For simplicity, only one scatterer per
lateral position is subjected to an axially constant displacement.

The tissue’s movement is modeled by shifting the scatterers (red stars) in the axial

direction between frames T and T +1. The shift’s magnitude is obtained by linearly inter-

polating the displacement data from the FEM simulations in time and space. A diagram of

the simulation process is depicted in figure 2.5. For each one of the 12 different material

properties, 10 random scatterer placements were done. 40 frames where simulated at 20

kHz frame rate to account for the Vantage system’s hardware limitations.
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Figure 2.5. Complete diagram of simulation of b-mode images of moving
tissue.

2.6.1. Imaging region of the B-mode acquisitions

The imaging region is shown in figure 2.6 and corresponds to the volume where axial

displacement is significant and the transducer is sensitive. Therefore, its lateral and axial

dimensions are equal to the dimensions of the largest FEM domain. Axially, the region is

centered around the push’s depth. Finally, its length in the elevation direction (not shown

in figure 2.6) is equal to twice σy as described by equation 1.2.

Figure 2.6. Imaging region.
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As a result, the total imaged volume is 60 mm3 and its dimensions are summarized

in table 2.4. To properly imitate the texture of biological tissues (commonly called “fully

developed speckle”), at least 10 scatterers should be placed per resolution cell (Wagner,

Smith, Sandrik, & Lopez, 1983; Oosterveld, 1990; Yamaguchi & Hachiya, 1998). The

-6 dB resolution cell was determined experimentally in Field II and found to be approx.

0.027 mm3, thus the imaged region was populated with 22222 scatterers. Additionally, to

account for noise produced by scatterers outside this region, additive Gaussian white noise

with different signal-to-noise ratios (SNR) was added.

Table 2.4. Simulation region sizes.

B-mode simulation FEM simulation

λ mm mm

Lateral (x) 30 ≈ 6 0.5 - 6

Elevation (y) 5 ≈ 1 0.5 - 6

Axial (z) 50 ≈ 10 10

2.6.2. Plane wave imaging for ultrafast acquisitions

The imaging frame rate affects the performance of the shear wave elastography meth-

ods directly (Correia et al., 2016). An ultrafast imaging method is required to reach the

hardware limit of 20 kHz and properly image the development of shear wave displace-

ments. In SWEI, plane wave imaging (PWI) with multiple angle compounding is com-

monly used (Denarie et al., 2013; Nordenfur, 2013). PWI is a technique for incrementing

the frame rate by transmitting a single unfocused plane wave instead of focusing the ul-

trasound beam at different lateral positions. Its downside is the loss of lateral resolution,

which can be compensated by “steering” the plane waves at different angles and then

combining them. However, to simplify the experiments and ignore the effect of artifacts
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related to different choices of frame rate and number of steering angles (Pan et al., 2018),

single-angle PWI was preferred in this work.

2.7. Displacement estimation

Next, an estimation of the axial component of the displacement û(x, z, T ) is obtained

using both the proposed method and a previously validated bayesian approach (Dumont

& Byram, 2016). Finally, error metrics are calculated by comparing the estimation with

the true displacement.

2.7.1. Bayesian estimation

In bayesian displacement estimation, a likelihood function Pl(r|u) operates over a

collection of US frames r(x, z, T ) and assigns a value to each candidate displacement

solution u(x, z, T ). Higher values should be assigned to candidates that are more likely

to be indeed the true displacement. Non-bayesian estimators, like the NCC estimator or

Loupas’, usually find the u that maximizes this function. However, noise and decorrelation

cause this maximum to be randomly shifted (Walker & Trahey, 1995).

Nevertheless, Bayes’ theorem states that prior information can be used to update our

beliefs on a certain likelihood function. So, a prior distribution Pp(u) that operates solely

on the candidate solution u is introduced and favors some candidates over others, for

example “smooth” solutions. In turn, the objective becomes maximizing the following

posterior distribution:

Pb(u|r) =
Pl(r|u) Pp(u)∫
Pl(r|u′) Pp(u′) du′

(2.11)

Previous bayesian approaches have used the NCC function or the sum of squared dif-

ferences as the likelihood function (Byram et al., 2013a; Byram et al., 2013b; Dumont &

Byram, 2016). As stated earlier, these functions can’t directly evaluate the probability of
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sub-sample displacements, thus some sort of oversampling or interpolation must be used.

This can in turn raise the computational effort considerably and restricts its applicability

to offline processing (Dumont & Byram, 2016).

2.7.2. Proposed likelihood function

A likelihood function Pl(r|u) processes the received frames r(x, z, T ) and associates

each candidate displacement u to a value. Higher values should be given to displacements

that are more likely to generate the observed signals. A candidate displacement at a single

location u represents an axial displacement of magnitude equal to u times the wavelength

λ of the setup. In the present approach, it can take values between -0.5 and 0.5.

The proposed method turns Loupas’ algorithm into a likelihood function by assigning

each candidate displacement u a likelihood that is proportional to the amount of spectral

energy present in the candidate’s “frequency path”. A frequency path is a line along the

frequency dimensions f and F and its slope ku is associated with a candidate displacement

u according to the following equation:

F = ku f, ku =
u

fc ts
(2.12)

Then, the likelihood of u being the true displacement is defined to be the integral along

each path:

Pl(r|u) ≜
0.5∫

90.5

|R(f, ku f)|2 df (2.13)

If u∗ is, in fact, the true displacement, then the energy integral over F = ku∗ f

should be greater than the integral over any other path, because energy will be concen-

trated around (f, F ) = (fc, ku∗ fc) (Loupas et al., 1995). Examples are presented in figure

2.7.
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(a) utrue = 0.1λ (b) utrue = 90.3λ

Figure 2.7. Frequency paths superposed over the frequency spectrum
|R(f, F )|2. True displacements are (a) utrue = 0.1λ and (b) utrue = 90.3λ.
Each dashed line is a candidate frequency path and the thick dashed line is
the path of greater integral.

A quick calculation method is presented in appendix C. Briefly, the previous integral is

equivalent to accumulating the term by term product between the autocorrelation γ(t, T )

(of size (2M − 1)× (2N − 1)) and a “sinc” kernel, where sinc (t) = sin (π t)
π t

:

Pl(r|u) ∝
1

γ(0, 0)2

M91∑
t=19M

N91∑
T=19N

γ(t, T ) sinc (t+ ku T ) (2.14)

2.7.3. Selectivity parameter

It’s possible to apply a non-linear map to the values of the likelihood function in order

to control its “confidence”. Confident likelihood functions are “narrow”, i.e. they assign

high values to only a few candidate displacements, and diffident functions are wider. In

this work, an exponential map and a selectivity parameter β are utilized for adjusting the

selectivity of the distribution (Byram et al., 2013a):

Pl(x|u) ∝ exp

{
1

β

1

γ(0, 0)2

M91∑
t=19M

N91∑
T=19N

γ(t, T ) sinc (t+ ku T )

}
(2.15)
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To obtain a probability density function (PDF) from a likelihood function, equation

2.16 can be used to normalize its integral to 1:

PDF(u|r) =


Pl(r|u)

0.5∫
90.5

Pl(r|u′) du′
if u ∈ [90.5, 0.5]

0 ∼

(2.16)

Figure 2.8 shows the effect of β on the shape of the resulting PDF. Note that noise

shifts the spectral energy away from the true displacement’s frequency path, so there’s an

optimal value β∗ that, in average, assigns more probability to the true displacement.

Figure 2.8. ACK’s PDF at varying β. True displacement utrue is 90.2λ, but
high noise levels (SNR = 10 dB) have shifted the distributions peak away.

2.7.4. Likelihood function benchmark

The proposed likelihood function was compared to the NCC function. Just as men-

tioned in section 2.2.1, the NCC function naturally assigns higher values to displacements

that are more likely to be the real ones. A continuous likelihood function is formulated

by interpolating the NCC at the candidate sub-sample displacement values. Again, an

exponential and a parameter β are included to adjust the function’s selectivity:

22



Pl(r|u) ∝ exp

{
1

β
Interp{NCC, u κ}

}
(2.17)

where κ is the number of samples per wavelength. Spline interpolation was used in the

current work.

2.7.5. Prior distribution

In order to test the proposed likelihood function without altering other components

of the bayesian estimator, both likelihood functions were combined with a generalized

Gaussian–Markov random field prior to obtain the posterior distribution (Dumont & Byram,

2016). The non-normalized prior is given by:

Pp(u) ∝ exp

{
9

1

p αp

∑
j∈B

|u 9 uj|p

}
(2.18)

where α is the scaling parameter that controls the weight of prior information in the solu-

tion, p is the chosen vector norm and B is a neighbourhood of solutions. In this work, L1

and L2-norm priors were implemented. ACK likelihood was combined with both priors

and NCC only with L1-norm prior. The resulting bayesian estimators will be addressed

as ACK-L1, ACK-L2 and NCC-L1, respectively. To avoid problems in the calculation of

gradients, the L1-norm was approximated by choosing p = 1.05 and calculating (Dumont

& Byram, 2016):

|u 9 uj|1 ≈
(√

(u 9 uj)
2 + 10910

)1.05

(2.19)
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2.7.6. Posterior distribution

Finally, the displacement estimation is carried out by maximizing the posterior distri-

bution. Notice how constant terms can be ignored without affecting the result:

û = argmax
u

{Pb(u|r)} = argmax
u

{Pl(r|u) Pp(u)} (2.20)

Furthermore, due to the monotonicity of the natural logarithm, the product of the dis-

tributions can be transformed into the sum of the log-distributions. If our goal is max-

imizing the sum of the posterior log-probabilities at every location of the ROI, we can

split the full collection of 2D frames r(x, z, T ) into various windows centered at positions

(x, z). For every window, a 1D frame collection rx,z(t, T ) is obtained and its autocorre-

lation γx,z(t, T ) is calculated. As a result, the optimization algorithm will find the axial

displacements ux,z so that the following expression is maximized:

û = argmax
u

{∑
x

∑
z

{ln (Pl(rx,z|ux,z)) + ln (Pp(ux,z))}

}

= argmax
u

{∑
x

∑
z

{
M91∑

t=19M

N91∑
T=19N

γx,z(t, T )

γx,z(0, 0)2
sinc (t+ ku T ) . . .

. . .− 1

p αp

∑
j∈B

|ux,z 9 uj|p
}} (2.21)

Notice how the parameter β was removed, because parameter α is sufficient to con-

trol the relevance of both the likelihood function and the posterior distribution. This can

explained by considering that multiplying the whole objective function by a constant does

not alter the optimal solution. The choice of α is decided experimentally, by sweeping

over a range of values and picking the one that results in the least estimation error.
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The optimization was performed using the fmincon function provided by MATLAB

(The MathWorks, Inc., Natick, MA, USA). This function uses interior-point algorithm

(Byrd, Hribar, & Nocedal, 1999; Byrd, Gilbert, & Nocedal, 2000) to minimize non-linear

problems. The parameters presented in table 2.5 ensure that the optimization converges

to an optimum for appropriate values of α, while stopping prematurely optimizations for

extremely low α values. The initial estimation was obtained using Loupas’ algorithm.

Table 2.5. Non-linear optimization parameters.

Value

Max. fun. evaluations 2 · 104

Max. iterations 30

Optimality tolerance 1 · 1094

Step tolerance 1 · 1096

Constraint tolerance 1 · 1096

2.8. Method evaluation

2.8.1. Likelihood evaluation

Before constructing a bayesian framework, the proposed likelihood function was com-

pared to the NCC likelihood in terms of their best achievable performance. A good likeli-

hood function should assign a high probability to the true displacement, even in the pres-

ence of noise. Because of this, the selectivity parameter β was varied and both likelihoods

were compared using a quality metric (similar to the one proposed by Dumont and Byram

(2016)):
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Q = med
i


u∗
i+ϵ∑

u=u∗
i 9ϵ

PDF(u|ri)

 (2.22)

where ri are 1000 artificially generated one-dimensional acquisitions subject to a random

displacement u∗i ∼ N(0, 1
9
).

This quality metric indicates the median probability assigned to small neighbourhood

around the actual displacement utrue,i ± ϵ, where utrue,i = u∗iλ. In this case, ϵ was fixed to

λ/100 and u was sampled at steps of λ/1000, thus ±10 samples around the true displace-

ment were considered. The best achievable performance of a likelihood function is then

measured by its highest Q-value.

2.8.2. Evaluation of displacement estimates

The performance of the proposed estimators (ACK-L1 and ACK-L2) was compared

with two other benchmark algorithms: non-bayesian Loupas and NCC-L1. To find the

optimal α-parameter for each method, estimations were run on 4 frame collections chosen

at random. They corresponded to shear wave speeds of ct ∈ {1.5, 2, 2.5, 3} m/s. Every

frame was split into windows according to the parameters presented in table 2.7 and then

the optimization was run using the parameters established in table 2.6. This resulted in a

total of 1320 displacement estimates for each candidate α-value.

The estimations were compared in terms of bias, variance and root mean squared error

(RMSE), defined as following:
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Bias : E{u∗ 9 û} (2.23)

Variance : V{u∗ 9 û} = MSE 9 Bias2 (2.24)

MSE : E{(u∗ 9 û)2} = Variance + Bias2 (2.25)

RMSE :
√

MSE (2.26)

where u∗ is the true adimensional displacement obtained using FEM and û is its estima-

tion.

Table 2.6. Method parameters.

Typical Range

α @ ACK-L1 5 · 103 102 − 105

α @ ACK-L2 7 0.2− 20

α @ NCC-L1 10 1091 − 103

Prior neighbors 3 (ax.) × 1 (lat.) -

2.8.3. Convergence time

Finally, the computational efficiency of the bayesian methods using optimal α∗ was

analysed by determining the time needed for each algorithm to reach a RMSE smaller

than 105% of its final value. Estimation on 4 different B-mode frames was performed.

After every iteration of the non-linear optimization algorithm, error metrics were calcu-

lated and elapsed time was registered. This way, timelines of the error convergence were

constructed to evaluate if the proposed method is indeed more suitable for a real-time im-

plementation. Finally, time was expressed as a proportion of the longest computation time.

In this manner, results are independent of the device where simulations were run.
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Table 2.7. Imaging parameters.

Typical Range Units

Axial window length 8 2− 15 λ

Axial window hop 2 - λ

Axial window number 22 - -

Lateral window length 2 - λ

Lateral window hop 2 - λ

Lat. window number 15 - -

Temporal ensemble 2 [2, 3, 4] -

SNR 20 [5, 20, 60] dB

Shear wave speed 2.5 [1.5, 2, 2.5, 3] m/s
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3. RESULTS

3.1. Acoustic intensity and radiation force profiles

The simulated acoustic intensity field and the resulting ARF are presented in figure

3.1. It can be seen that the sequence successfully concentrates its momentum transfer at

a focus depth of 10 mm, because a spike is observed. Additionally, as recommended by

M. L. Palmeri et al. (2017), a threshold of 10 % of the peak amplitude was used to crop

the ARF region.

Figure 3.1. Acoustic intensity field produced by “push” sequence and re-
sulting force density distribution.

3.2. Analysis of FEM output and tissue response

The previous ARF profile was interpolated at the nodes of the bottom X-Z facet, rep-

resenting the center of the whole domain. It was applied as an external force during the

push’s duration and then released. The tissue displacement response was then solved us-

ing FEniCSx and visualized using the software ParaView (Kitware, Inc., Clifton Park, NY,

USA). An example sequence of displacement solutions can be found in figure 3.2.
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(a) t = 0.1 ms (b) t = 0.5 ms (c) t = 1 ms (d) t = 1.5 ms (e) t = 2 ms

Figure 3.2. Sequence of FEM solution. The domain has been reflected
along the lateral direction to visualize its full lateral extension. According
to the colorbar to the right, color represents the magnitude of the vector
displacement. A shear wave travels laterally at a speed of ct = 2 m/s.

Recall from section 2.3 that material stiffness is related to shear wave speed by E =

3 ρ c2t . Results were inspected to check if shear wave speed exhibited expected values.

This is done by ascertaining that the peak displacement along the lateral direction moves

laterally at a speed of ct =
√

E
3 ρ

for a material with modulus E.

Figure 3.3. Statistics of axial displacement in FEM simulation results.

Furthermore, the peak and mean displacements were analysed for each material, as

shown in figure 3.3. As it can be seen, peak displacements of softer materials are consid-

erably larger than λ/2 ≈ 100µm. This can be problematic, because Loupas’s algorithm
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is restricted to inter-frame displacements of ±λ/2. Fortunately, even in the softest mate-

rial, 92.9 % of the node displacements are inside this range and only a few present larger

amplitudes during initial times.

3.3. Performance analysis of the proposed method

3.3.1. Likelihood function evaluation

After processing 1000 artificially generated one-dimensional acquisitions subject to a

random displacement u∗i ∼ N(0, 1
9
), both likelihood function were evaluated in terms of

their Q-value, i.e. the median probability assigned to true displacement. This results are

presented in figure 3.4. Both the proposed ACK and NCC were evaluated for different

selectivity parameters β. It can be seen that results achieved with ACK are at least as good

as results with NCC and even better in some cases, because their Q-values at optimal β

are comparable.

(a) SNR = 5 dB (b) SNR = 20 dB (c) SNR = 60 dB

Figure 3.4. Effect of parameter β in likelihood quality under (a) 5 dB, (b)
20 dB and (c) 60 dB SNR. ACK is compared to the NCC. N = 2 and axial
kernel length is 8λ.

Sensibility to kernel length was also analyzed and the results are depicted in figure

3.5. Optimal β were selected based on the SNR = 20 dB simulations for both likelihood
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functions: β∗
ACK = 4.6 · 1093 and β∗

NCC = 1.8 · 1093 for ACK and NCC, respectively. Axial

kernel length was varied from 2 to 15 λ. Although it was expected that longer kernels

would’ve led to better performances, this was not the case for ACK. This can be explained

by considering that longer axial lengths support the estimation of the “fast” frequency co-

ordinate of the spectral centroid, but don’t carry information about the “slow” frequency

coordinate. On the contrary, more noise and no information is incorporated. In order

to improve the estimation in the “slow” frequency dimension, the number of consecutive

frames N has to be increased. This can be seen in figures 3.5b and 3.5c, where perfor-

mance was greatly improved.

(a) N = 2 (b) N = 3 (c) N = 4

Figure 3.5. Effect of axial kernel length in likelihood quality for both ACK
and NCC, using a number of frames N equal to (a) 2, (b) 3 and (c) 4. SNR
is set to 20 dB.

3.3.2. Evaluation of displacement estimates

Displacements were estimated using ACK-L1, ACK-L2 and NCC-L1. Figure 3.6

shows an example estimation of ACK-L1 using optimal α. This corresponds to the inter-

frame displacement between two random frames at T and T + 1. The spatial dimensions

x and z and the displacement value u (color dimension) are expressed as adimensional

multiples of the wavelength λ. Notice how there’s a displacement peak near the center of
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the imaging region. This peak corresponds to the wavefront of the travelling shear wave.

In the following frames, the lateral position of this wavefront will move towards higher

values. It can be observed that the estimation with ACK-L1 is effectively smoother and

less noisy than the initial Loupas estimation. This can in fact facilitate the determination

of the peak’s position and ultimately translate to better shear wave speed estimations.

Figure 3.6. Example estimation with ACK-L1. SNR is 20 dB. Color rep-
resents the adimensional displacement value u as a multiple of λ.

The effect of α in estimation RMSE for different noise levels can be observed in figure

3.7. Notice how ACK-L1 and ACK-L2 error becomes asymptotically similar to the initial

error for increasing values of α. This is expected, because large values of α cause the

prior to have no effect on optimization. This ultimately leads to the maximum likelihood

estimator, which is equivalent to Loupas’.

Also, note that the optimal α∗ for which RMSE is minimal decreases when SNR de-

creases. The optimal values are summed up in table 3.1. This is expected, because higher

noise levels produce noisier estimates and require a larger prior weight to intensify the

spatial filtering. Another noteworthy result is that variance error is dominant (in this case,

standard deviation is plotted for unit consistency). This is appropriate, because bayesian

estimators trade off an increase of bias error for a reduction of variance error (Byram et

al., 2013b).
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(a) ACK-L1 (b) ACK-L2 (c) NCC-L1

Figure 3.7. Effect of parameter α on estimation RMSE, using (a) ACK-
L1, (b) ACK-L2 and (c) NCC-L1. Each color represents a different noise
level. Continuous line corresponds to bayesian estimators and dashed line
to Loupas’ initial estimation. Shear wave speed is 2.5 m/s.

Table 3.1. Optimal α for different SNR.

ACK-L1 ACK-L2 NCC-L1

5 dB 1225 2 0.9

20 dB 2050 6 0.9

60 dB 3000 7.5 1.5
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Figure 3.8 helps to compare ACK-L1 and NCC-L1. Note that α-values of NCC-L1

where scaled by 103 to fit both curves inside the same axis. As it can be seen, performance

of ACK-L1 is close to NCC-L1 for optimal values of α. Overall, ACK-L1 behaves in a ex-

pected manner with respect to its parameter α and has an optimal performance comparable

to NCC-L1, so it’s still a good candidate for real-time implementation if its convergence

time is actually faster.

(a) SNR = 5 dB (b) SNR = 20 dB (c) SNR = 60 dB

Figure 3.8. Comparison of estimation performances versus α between
ACK and NCC using a L1 norm prior. SNR is set to (a) 5, (b) 20 and
(c) 60 dB. Continuous lines represent bayesian estimators and dashed line
is Loupas’ initial estimation. Results from shear wave speeds between 1.5
and 3 m/s were averaged.
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Finally, the relative improvement to Loupas’ algorithm for each bayesian estimator

at optimal α is presented in table 3.2. This was calculated by dividing the decrease of

RMSE by the RMSE of the initial estimation, thus providing a relative measure of RMSE

improvement. Results from frames at various shear wave speeds were averaged.

Table 3.2. Relative improvement for optimal α at different SNR.

SNR = 5 dB SNR = 20 dB SNR = 60 dB

ACK-L1 36.7% 21.7% 16.6%

ACK-L2 33.8% 19.3% 19.5%

NCC-L1 42.5% 27.2% 24.2%

3.3.3. Convergence time

RMSE is plotted versus time in figure 3.9 and the results of convergence time measure-

ments are presented in table 3.3 for each method and noise scenario. As it can be seen,

ACK-L1 doesn’t converge faster than NCC-L1 to its final value, although each function

evaluation is 28.6% faster with ACK than NCC. ACK-L1 executes in average 84.8 eval-

uations per second, while NCC-L1 runs only 65.9 eval./s. The fastest converge time was

achieved by ACK-L2, which also has the fastest evaluation rate at 103.4 eval./s. Nonethe-

less, it’s still necessary to combine NCC with L2-norm prior to draw conclusions.
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(a) SNR = 5 dB (b) SNR = 20 dB (c) SNR = 60 dB

Figure 3.9. Comparison of convergence time between ACK using a L1
and L2 norm prior and and NCC using L1 norm prior. Estimation RMSE
is plotted against time. SNR is (a) 5, (b) 20 and (c) 60 dB. Results from
shear wave speeds between 1.5 and 3 m/s were averaged.

Table 3.3. Convergence time for optimal α at different SNR.

SNR = 5 dB SNR = 20 dB SNR = 60 dB

ACK-L1 26.7 % 20.7 % 8.0 %

ACK-L2 13.3 % 8.7 % 8.7 %

NCC-L1 24.0 % 16.0 % 8.7 %
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4. CONCLUSIONS

4.1. Concluding remarks

In summary, a new likelihood function for bayesian estimation of sub-sample dis-

placements called “autocorrelation kernel” (ACK) has been proposed. Its main objective

is tracking axial displacements produced by shear waves in the context of SWEI. Unlike

previously proposed likelihood functions, ACK can directly evaluate the probability of

sub-sample displacements without the need of oversampling or interpolation. Thus, it is

an attractive candidate for enabling real-time implementation of bayesian estimation.

ACK’s performance was compared to a non-bayesian Loupas’ estimator and a bayesian

estimator with normalized cross-correlation (NCC) likelihood function. A virtual test en-

vironment was created to simulate an appropriate acoustic radiation force distribution. The

simulated force was applied to a FEM model to replicate realistic shear wave displace-

ments. The resulting displacements were applied to an ultrasound simulation software

to generate B-mode images of moving tissue. Finally, displacement between frames was

estimated using the proposed and benchmark methods.

Results showed that all algorithms produced a relative improvement to the initial

Loupas’ estimation. However, NCC-L1 still generated better estimates than the proposed

algorithms. ACK-L1 improved the initial estimation between 16.6% and 36.7%, ACK-

L2 by 19.3% to 33.8% and NCC-L1 between 24.2% and 42.5%. Regarding computation

time, it was found that, when using an L1-norm prior, function evaluation was in average

28.6% faster with ACK than NCC. However, this did not translate into consistently faster

convergence times.
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4.2. Future work

Although ACK exhibited no major performance improvement over NCC, there’s still

room for improvement. As stated in section 3.3.1, ACK greatly benefits from incorporat-

ing more consecutive frames into the estimation. This is a crucial difference to NCC, for

which averaging results of many consecutive frame pairs does not translate into a signifi-

cantly better performance. However, inter-frame displacements have to be as constant as

possible throughout the whole frame collection for this method to work, which requires

even faster frame rates. Fortunately, this can be done with recent frame interpolation tech-

niques (Mirarkolaei, Snare, Schistad Solberg, & Steen, 2020; Afrakhteh, Jalilian, Iacca, &

Demi, 2022) without the need of dedicated hardware.

Results also indicate that computation time is still an obstacle for real-time implemen-

tations. But, considering ACK can be evaluated for each image window independently,

the algorithm can be parallelized to further decrease computation time. This parallel com-

puting approach has already been implemented for NCC outside the context of ultrasound

elastography (X. Wang & Wang, 2009; X. Wang, Wang, & Han, 2019). This might finally

allow the real-time implementation of bayesian estimators.
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A. ARF SIMULATION PROCEDURE

To generate a push, the elements of the transducer are focused on a specific point and

then excited with a lengthy voltage signal. The resulting acoustic pressure field p(x⃗, t)

(measured in Pa) can be simulated in Field II. The power per unit area carried by this

field is given by its intensity (in W2/m), which is obtained as I(x⃗, t) = p2(x⃗, t)/z, where

z = ρ cs is the acoustic impedance of the medium (in Pa s/m3). Once the intensity field is

known, the ARF (in N/m3) can be obtained as:

F (x⃗) =
2 â ⟨I(x⃗, t)⟩

cs
(A.1)

where â is the media absorption coefficient (in Np/m), ⟨I⟩ is the temporal average of

the intensity and cs is the speed of sound. â is related to the attenuation coefficient a

(commonly assumed to be ≈ 0.3 dB/cm/MHz) and the transducer central frequency fc

using â = a fc ln (10)/20.
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B. FEM SIMULATION PROCEDURE

First, the domain Ω is split into hexaedral elements of size 0.2 mm. By taking advan-

tage of symmetry in the lateral and elevational directions, it’s possible to simulate only a

quarter of the full domain. Then, given the material properties E and ν, conditions on the

boundary ∂Ω and applied forces f⃗ , the following system of equations is solved:

K U⃗(t) +M ⃗̈U(t) = F⃗ (t) (B.1)

K : Kij =

∫
Ω

λ
(
∇ · ψ⃗i

)(
∇ · ψ⃗j

)
+ 2µ ε(ψ⃗i) : ε(ψ⃗j) dΩ (B.2)

M : Mij =

∫
Ω

ρψ⃗i · ψ⃗j dΩ (B.3)

F⃗ : Fi =

∮
∂Ω

ψi · [σ]ij n⃗ d∂Ω +

∫
Ω

ψ⃗i · f⃗i dΩ (B.4)

where λ = νE
(1+ν)(1−2ν)

is the first Lamé parameter, ψ⃗ are the FEM interpolation functions,

[σij] is the stress at the boundary, ε(ψ⃗) is the deformation tensor, ∇ is the Del operator and

“:” indicates tensor inner product. The strain tensor is a vector function defined as:

ε(u⃗) =
1

2

(
∇u⃗+ (∇u⃗)T

)
(B.5)

The system of equations arises from the weak formulation of the conservation of linear

momentum (Timoshenko & Goodier, 1969). However, a Dirichlet boundary condition of

zero displacement was set on both X-Y planes and every other facet possess a Neumann

boundary condition of zero stress. Therefore, the integral over the boundary of the domain

can be neglected:
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∫
Ω

λ
(
∇ · ψ⃗

)
(∇ · u⃗) + 2µ ε(ψ⃗) : ε(u⃗) dΩ +

∫
Ω

ρ ψ⃗ · ⃗̈u dΩ =

∫
Ω

ψ⃗ · f⃗ dΩ (B.6)

To achieve shear waves speeds ct between 0.25 m/s and 3 m/s with steps of 0.25 m/s,

homogeneous elastic media with elastic moduli E = 3 ρ c2t (187.5 Pa to 27 kPa) were

created. Domain dimensions in the lateral and elevational directions are 0.5 mm longer

than the travel distance at the corresponding shear wave speed after 2 ms. This way, no

significant reflections at boundaries would occur during simulation time. Axial size was

set to 10 mm by visually inspecting a simulation on a large domain and estimating the full

axial width of the shear wave.

At initial time, all node displacements are zero. Then, the ARF is applied at the lower

facet of the domain during the push’s duration (first 3 time steps) and then vanishes. This

force operates only in the positive z direction. Time stepping was carried out using a finite

difference approach to recursively obtain the next displacement:

(
K+

2

τ2 ∆t2
M

)
U⃗ s+1 = M

(
2

τ2 ∆t2
U⃗ s +

2

τ2 ∆t
⃗̇U s +

1− τ2
τ2

⃗̈U s

)
+ F⃗ s+1 (B.7)

⃗̇U s+1 =
2τ1
τ2 ∆t

(
U⃗ s+1 − U⃗ s

)
− 2τ1 − τ2

τ2

⃗̇U s − τ1 − τ2
τ2

∆t ⃗̈U s (B.8)

⃗̈U s+1 =
1

τ1 ∆t

(
⃗̇U s+1 − ⃗̇U s

)
− 1− τ1

τ1

⃗̈U s (B.9)

where the time stepping parameters τ1 = 0.7 and τ2 = 0.72 result in unconditionally stable

simulations (Reddy, 2019).

Calculation was performed using Docker (Docker, Inc., Palo Alto, CA, USA) on a

Linux virtual machine, hosted on a 4-core, 1,1 GHz Intel Core i5, 8 GB RAM Mac OS

computer (Apple, Inc., Cupertino, CA, USA). Computing time for each experiment was

∼ 40 min.
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C. QUICK CALCULATION OF ACK LIKELIHOOD

We start by expressing the original formulation of the likelihood function:

P̃l(x|u) =
0.5∫

−0.5

|R(f, ku f)|2 df

The Wiener–Khinchin theorem relates the power spectrum of the signal with its auto-

correlation γ(t, T ) by using the DTFT:

|R(f, F )|2 = DTFT {γ(t, T )}

The autocorrelation γ(t, T ) is defined as following:

γ(t, T ) =
M−1∑

t′=1−M

N−1∑
T ′=1−N

r(t′, T ′) r∗(t− t′, T − T ′)

where the complex conjugate r∗(t, T ) = r(t, T ) since the RF lines are real-valued.

By definition, the DTFT is obtained as following:

DTFT {γ(t, T )} =
M−1∑

t=1−M

N−1∑
T=1−N

γ(t, T )e−j 2π (t f+T F )

Integrating the power spectrum along a frequency path, we get:

0.5∫
−0.5

|R(f, ku f)|2 du =

0.5∫
−0.5

{
M−1∑

t=1−M

N−1∑
T=1−N

γ(t, T )e−j 2π (t f+T ku f)

}
du

We can rearrange the definite integral and the finite sum, thus obtaining:
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0.5∫
−0.5

|R(f, ku f)|2 du =
M−1∑

t=1−M

N−1∑
T=1−N

γ(t, T )

0.5∫
−0.5

e−j 2π (t f+T ku f) du

Using the following substitution of the integral variable −2π f = ω, the integral

becomes:

0.5∫
−0.5

|R(f, ku f)|2 du =
M−1∑

t=1−M

N−1∑
T=1−N

γ(t, T )

π∫
−π

1

2π
ejπω (t+T ku) du

This is in turn the definition of the 1D sinc function:

sinc(t+ T ku) =

π∫
−π

1

2π
ejπω (t+T ku) du

Finally, the likelihood becomes:

P̃l(x|u) =
M−1∑

t=1−M

N−1∑
T=1−N

γ(t, T ) sinc(t+ T ku)

To account for signals with different energy, we normalize the autocorrelation by the

square of the signal’s energy: 1 = 1
γ(0,0)2

.
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