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Abstract
The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/ψ resonance
mass, coupling (leptonic decay constant), total width, and continuum threshold is analyzed in the framework of
thermal Hilbert moment QCD sum rules. The continuum threshold s0, as in other hadronic channels, decreases
with increasing temperature until the PQCD threshold s0 = 4 m2

Q is reached at T � 1.22 Tc (mQ is the charm quark
mass) and the J/ψ mass is essentially constant in a wide range of temperatures. The other hadronic parameters
behave in a very different way from those of light-light and heavy-light quark systems. The total width grows with
temperature up to T � 1.04 Tc beyond which it decreases sharply with increasing T. The resonance coupling is
also initially constant beginning to increase monotonically around T � Tc. This behavior strongly suggests that the
J/ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with lattice QCD results.

Keywords: Finite temperature field theory, hadron physics.

1. Introduction

We discuss here the thermal evolution of the hadronic
parameters of J/ψ in the vector channel, using ther-
mal QCD Sum Rules [1]. We refer the reader to the
original article [2] for details. This technique has been
used previously in the light-light and in the heavy-light
quark sector [3]- [5], with the following emerging pic-
ture: (i) For increasing temperature, hadronically sta-
ble particles develop a non-zero width, and resonances
become broader, diverging at a critical temperature in-
terpreted as the deconfinement temperature (Tc). The
thermal resonance broadening was first proposed in [6].
ii) Above the resonance region, the continuum threshold
in hadronic spectral functions, i.e. the onset of pertur-
bative QCD (PQCD), decreases monotonically with in-
creasing temperature. When T → Tc hadrons disappear
from the spectrum. (iii) This scenario is also supported
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by the behavior of hadronic couplings, or leptonic decay
constants, which approach zero as T → Tc. Masses, on
the other hand, do not to provide information about de-
confinement.
The thermal behavior of the heavy-heavy quark corre-
lator should be different from that involving at least
one light quark since: a) In the light-light and heavy-
light quark sector, the PQCD contribution is domi-
nated by the time-like spectral function (annihilation
term), which is relatively unimportant in relation to the
light quark condensate contribution, being the scatter-
ing PQCD spectral function highly suppressed. Instead,
for heavy-heavy quark systems this term becomes in-
creasingly important with increasing temperature while
the annihilation term only contributes near threshold;
b) The non-perturbative QCD sector in the operator
product expansion (OPE) of light-light and heavy-light
quark correlators is driven by the light quark conden-
sate, responsible for the behavior of the continuum
threshold since s0(T )/s0(0) � 〈〈q̄q〉〉/〈q̄q〉 [4]-[7]. The
light quark condensate is the order parameter for chi-
ral symmetry restoration. In contrast, for heavy-heavy
quark correlators the leading power correction in the
OPE is that of the gluon condensate, which has a very
different thermal behavior. In this approach, the criti-
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cal temperature for deconfinement is a phenomenologi-
cal parameter which does not need to coincide with e.g.
the critical temperature obtained in lattice QCD [8]. In
fact, results from QCD sum rules lead to values of Tc

somewhat lower than those from lattice QCD. In order
to compare with other approaches, we express our re-
sults in terms of the ratio T/Tc.

We find for charmonium in the vector channel that the
continuum threshold, s0(T ), decreases with increasing
T , being driven by the gluon condensate and the PQCD
spectral function in the space-like region, until it reaches
the PQCD threshold s0 = 4 m2

Q at T � 1.22 Tc (mQ is
the charm quark mass). Below this value of s0 the sum
rules cease to be valid. The J/ψ mass remains basically
constant as in the light-light or heavy-light systems. We
have, however, a very different thermal evolution of the
width and the coupling. Both are almost independent of
T up to T � 0.8 Tc where the width begins to increase
substantially, but then above T � 1.04 Tc it starts to de-
crease sharply, and the coupling increases also sharply.
This suggests the survival of the J/ψ resonance above
the deconfinement temperature.

The PQCD spectral function in the space-like region
plays here a very important role. Non-relativistic ap-
proaches to charmonium at finite temperature would
normally miss this contribution. In fact, the complex en-
ergy plane in the non-relativistic case would only have
one cut along the positive real axis, which would cor-
respond to the time-like (annihilation) region of PQCD.
The space-like contribution (q2 = (ω2 − |q|2) ≤ 0) in the
form of a cut in the energy plane centered at the origin
for −|q| ≤ ω ≤ |q|, would not be present in the non-
relativistic case.

2. Hilbert Moment QCD Sum Rules

We consider the correlator of the heavy-heavy quark
vector current at finite temperature

Πμν(q2,T )=−(gμνq2 − qμqν) Π(q2,T )

= i
∫

d4x eiqx θ(x0) << |[Vμ(x) , V†ν (0)]| >>, (1)

where Vμ(x) =: Q̄(x)γμQ(x) :, and Q(x) is the heavy
(charm) quark field. The matrix element above is under-
stood to be the Gibbs average in the quark-gluon basis.
The imaginary part of the vector correlator in PQCD
at finite temperature involves two pieces, one in the
time-like region (q2 ≥ 4m2

Q), Im Πa(q2,T ), which sur-
vives at T=0, and one in the space-like region (q2 ≤ 0),
Im Πs(q2,T ), which vanishes at T=0. To leading order
in PQCD we find

1
π

ImΠa(q2,T ) =
3

16π2

∫ v

−v
dx (1 − x2)

[
1 − nF

( |q|x + ω
2T

)
− nF

( |q|x − ω
2T

)]
, (2)

where v2 = 1 − 4m2
Q/q

2, mQ is the heavy quark mass,
q2 = ω2 −q2 ≥ 4m2

Q, and nF(z) = (1+ ez)−1 is the Fermi
thermal function. In the rest frame of the thermal bath,
|q| → 0, the above result reduces to

1
π

ImΠa(ω, T ) =
v(3 − v2)

8π2 [1 − 2nF(ω/2T )]

× θ(ω − 2mQ) . (3)

The quark mass is assumed independent of T , a good
approximation for T < 200 MeV [9]. Only the leading
order in the strong coupling will be considered here.

The PQCD piece in the space-like region demands a
careful analysis. In the complex energy plane, and in the
space-like region, the correlator Π(q2), Eq.(1), has a cut
centered at the origin and extending between ω = −|q|
and ω = |q|. In the rest frame this cut produces a delta
function δ(ω2) in the imaginary part ofΠ(q2). The result
is

1
π

ImΠs(ω, T ) =
2
π2 m2

Q δ(ω2) ×⎡⎢⎢⎢⎢⎢⎣nF

(mQ

T

)
+

2 T 2

m2
Q

∫ ∞
mQ/T

y nF(y) dy

⎤⎥⎥⎥⎥⎥⎦ . (4)

The corresponding hadronic representation is
parametrized in terms of the ground state resonance,the
J/ψ, followed by a continuum given by PQCD after a
threshold s0 > M2

V . In the zero width approximation,
the hadronic spectral function is

1
π

ImΠ(s,T )|HAD =
1
π

ImΠ(s, T )|RES θ(s0 − s)

+
1
π

ImΠ(s,T )|PQCD θ(s − s0)

= 2 f 2
V (T ) δ(s − M2

V (T )) +
1
π

ImΠ(s, T )a θ(s − s0) ,

(5)

where s ≡ q2 = ω2 − q2. The leptonic decay constant is
defined as < 0|Vμ(0)|V(k) >=

√
2 MV fV εμ .

When considering a finite (total) width the following
replacement will be understood

π δ(s − M2
V (T ))→ MV (T )ΓV (T )

(s − M2
V (T ))2 + M2

V (T )Γ2
V (T )

,

(6)
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The hadronic scattering term, due to current scatter-
ing off D-mesons, is negligible [2]. The correlation
function Π(q2,T ), Eq.(1), satisfies a once subtracted
dispersion relation. To eliminate the subtraction one can
use Hilbert moments, i.e.

ϕN(Q2,T ) ≡ (−)N

(N)!

( d
dQ2

)N
Π(Q2, T )

=
1
π

∫ ∞
0

ds
(s + Q2)N+1 ImΠ(s, T ) , (7)

where N = 1, 2, ..., and Q2 ≥ 0 is an external four-
momentum squared, to be considered as a free parame-
ter. Using Cauchy’s theorem in the complex s-plane, the
Hilbert moments become Finite Energy QCD sum rules
(FESR), i.e.

ϕN(Q2,T )|RES = ϕN(Q2, T )|QCD , (8)

where

ϕN(Q2,T )|RES ≡ 1
π

∫ s0(T )

0

ds
(s + Q2)N+1 ImΠ(s,T )|RES ,

(9)

ϕN(Q2,T )|QCD ≡ 1
π

∫ s0(T )

4m2
Q

ds
(s + Q2)N+1 ImΠa(s, T )

+
1
π

∫ ∞
0

ds
(s + Q2)N+1 ImΠs(s, T ) + ϕN(Q2,T )|NP ,

(10)

and ImΠ(s, T )|RES is given by the first term in Eq.(5)
modified in finite-width according to Eq.(6), and the
PQCD spectral functions are given by Eqs.(3) and (4).

The dimension d=4 non perturbative term in the OPE
is well known in the literature, see [2] for details. The
dependence on N is quite cumbersome and it is propor-
tional to the gluon condensate

〈〈
αs
π

G2
〉〉

. At low temper-
atures, this condensate has been calculated in chiral per-
turbation theory [10]. In this framework the condensate
remains essentially constant up T ∼ Tc � 100 MeV,
after which it decreases sharply. In order to go beyond
the low temperature regime of chiral perturbation the-
ory, lattice QCD provides the right tool. A good ap-
proximation [11] is given by the expression

〈〈
αs

π
G2
〉〉
=

〈
αs

π
G2
〉 ⎡⎢⎢⎢⎢⎢⎢⎣θ(T ∗ − T ) +

1 − T
T ∗C

1 − T ∗
T ∗C

θ(T − T ∗)

⎤⎥⎥⎥⎥⎥⎥⎦
(11)

where T ∗ ≈ 150 MeV is the breakpoint tempera-
ture where the condensate begins to decrease apprecia-
bly, and T ∗C ≈ 250 MeV is the temperature at which

Figure 1: The ratio ΓV (T )/ΓV (0) as a function of T/Tc.

〈〈
αs
π

G2
〉〉

TC
= 0.

Returning to the Q2 dependence of the Hilbert moments,
Eq.(7), we shall fix Q2 and s0(0) from the experimental
values of the mass, the coupling, and the width at T=0.
At finite temperature there are non-diagonal (Lorentz
non-invariant) condensates that might contribute to the
OPE. Non-gluonic operators are highly suppressed [5],
[12] so that they can be safely ignored. We have con-
sidered also a gluonic twist-two term in the OPE intro-
duced in [13], and computed on the lattice in [14]. Its
impact is small,(2-6)%, and plays no appreciable role in
the results.

Figure 2: The ratio fV (T )/ fV (0) as a function of T/Tc.
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3. Results

We begin by determining s0 and Q2 at T=0 from the
moments, Eq.(8), and using as input the experimental
values [15] MV = 3.097 GeV, fV = 196 MeV, and
ΓV = 93.2 keV, as well as mQ = 1.3 GeV, and [16]
〈0| αs

12πG2|0〉 � 5 × 10−3GeV4. In the zero-width approx-
imation one finds from Eq.(9) that

ϕ1(Q2)|RES

ϕ2(Q2)|RES
=
ϕ2(Q2)|RES

ϕ3(Q2)|RES
. (12)

Given the extremely small total width of the J/ψ it
turns out that the above relation also holds with extreme
accuracy in finite width. Using Eq.(8) this leads to

ϕ1(Q2)|QCD

ϕ2(Q2)|QCD
=
ϕ2(Q2)|QCD

ϕ3(Q2)|QCD
, (13)

which depends only on the two unknowns s0 and Q2,
and provides the first equation to determine this pair of
parameters. The second equation can be e.g. Eq.(8)
with N = 1. In this way we find that s0 = 11.64 GeV2,
and Q2 = 10 GeV2 reproduce the experimental values
of the mass, coupling, and width of J/ψ within less than
1%. This whole set of hadronic parameters will then be
used to normalize the corresponding parameters at finite
temperature. In this way, see [2] for details, we were
able to find the thermal evolution of s0, the J/ψmass, its
width and its coupling. We show here only the behavior
of the width and the coupling (Figs. 1 and 2) since these
are the most important results of this analysis.

Both the width and the coupling can only be deter-
mined up to T f � 1.1 Tc beyond which s0(T ) < M2

V (T )
and the FESR integrals have no longer a support. The
temperature behavior of the width and the coupling
shown in Figs. 1 and 2 strongly suggests the survival
of the J/ψ above the critical temperature for decon-
finement. This conclusion agrees with results from
lattice QCD [8], but disagrees with non-relativistic
determinations. As pointed out earlier, the reason for
this disagreement might very well be the absence of the
central cut (QCD scattering term) in the energy plane
in non-relativistic frameworks.
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