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Abstract
We analyze in detail a previous proposal by Dvali and Gómez that black holes 
could be treated as consisting of a Bose–Einstein condensate of gravitons. In 
order to do so we extend the Einstein–Hilbert action with a chemical potential-
like term, thus placing ourselves in a grand-canonical ensemble. The form 
and characteristics of this chemical potential-like piece are discussed in some 
detail. We argue that the resulting equations of motion derived from the action 
could be interpreted as the Gross–Pitaevskii equation describing a graviton 
Bose–Einstein condensate trapped by the black hole gravitational field. After 
this, we proceed to expand the ensuring equations  of motion up to second 
order around the classical Schwarzschild metric so that some non-linear terms 
in the metric fluctuation are kept. Next we search for solutions and, modulo 
some very plausible assumptions, we find out that the condensate vanishes 
outside the horizon but is non-zero in its interior. Inspired by a linearized 
approximation around the horizon we are able to find an exact solution for the 
mean-field wave function describing the graviton Bose–Einstein condensate 
in the black hole interior. After this, we can rederive some of the relations 
involving the number of gravitons N and the black hole characteristics along 
the lines suggested by Dvali and Gómez.
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1.  Introduction

In an interesting saga of papers, Dvali et al [1, 2] have put forward an intriguing suggestion: 
black holes (BHs) could perhaps be understood as Bose–Einstein condensates of gravitons. 
If correct, this would reveal a deep quantum nature of such fascinating objects and could lead 
to an alternative understanding of some of the most striking features of BHs; for instance, 
Hawking radiation [3] could be understood as being due to leakage from the condensate. 
Besides, this picture brings new ideas about the Bekenstein entropy [4], the absence of hair 
[5], as well as the quantum nature of information storage and the possible information loss in 
BHs [6].

The main point of these works is that the physics of BH can be understood in this picture in 
terms of a single number N, the number of (off-shell) gravitons contained in the Bose–Einstein 
condensate (BEC). These condensed gravitons have a wavelength λ ∼

√
NLP, LP being the 

Planck length; they have a characteristic interaction strength αg ∼ 1/N and the leakage leads 
to a Hawking temperature of order TH ∼ 1/

√
NLP, equal to the inverse of λ. The mass of 

the BH is M ∼
√

NMP, with MP the Planck mass; and its Schwarzschild radius therefore is 
given by rs ∼

√
NLP, thus agreeing with the Compton wavelength of the quantum gravitons 

λ, in accordance with the uncertainty principle that dictates λ � rs in the ground state of the 
quantum system. Therefore, up to various factors of the Planck mass everything is governed 
by N, the number of intervening gravitons. Modulo some assumptions, all these results stem 
from the basic relation (unless otherwise stated we work in units where � = 1)

rg =
N
M

� (1)

that relates the number of gravitons N, the mass of the gravitating object M and its gravita-
tional radius rg. For a Schwarzschild BH rg = rs.

We found these results intriguing and we set up to try and understand them in a different 
language and, if possible, attempt to be more quantitative. On the process we have separated 
slightly from the original line of thought of the authors. The original approach of [1, 2] is not 
geometric at all. There is no mention of horizon or metric. Here we will adopt a more con-
servative approach. We will assume the pre-existence of a classical gravitational field created 
by an unspecified source that generates the Schwarzschild metric. As it is known, nothing can 
classically escape from a BH so if we wish to interpret this in potential terms (which of course 
is not correct but serves us for the purpose of creating a picture of the phenomenon) it would 
correspond to a confining potential. On and above this classical potential, one can envisage 
a number of quantum fields being trapped. For sure there is a gravity quantum field present 
inside the horizon; hence gravitons. Other quanta may get trapped by the BH potential as well, 
but a possible graviton BEC seems particularly challenging to treat and this is the purpose of 
this work.

Continuing with our semi-classical analogy, these trapped gravitons as well as other quanta 
present have had a long time to thermalize in a (eternal) Schwarzschild BH and it is therefore 
natural to expect that after cooling they can form a Bose–Einstein condensate. Of course 
these ‘gravitons’ are in no way freely propagating transverse gravitons. They are necessarily 
off-shell (q2 �= 0) and have some sort of effective mass. It may help to get a picture of the 
phenomenon to think of them as quasiparticles.

It is well known in BEC theory that Bose–Einstein condensation of a spatially homogene-
ous gas with attractive interactions is precluded by a conventional phase transition into either 
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a liquid or solid unless its occupation number is low. Repulsive forces act to stabilize the 
condensate against collapse. Knowing this, one would immediately think that gravitons do not 
have repulsive interactions, at least naively, and that therefore a BEC is impossible to sustain, 
particularly as we expect N to be very large. To this objection one could reply in a twofold 
way. First, it is up to the equations to determine whether such a condensate is possible or not 
(we will see below that indeed it is, at least in the case of vanishing angular momentum). 
Secondly one might also answer that, in theories of emergent gravity, the ultimate nature of 
gravitons may be some type of fermionic degrees of freedom (such as e.g. in the model sug-
gested in [7]). Then, repulsion is assured at some scale and fundamental collapse prevented.

We will try to identify and propose a consistent set of equations describing a BEC con-
structed on top of the classical field created by a BH3. We will succeed and we will see that 
remarkably enough the characteristics of the resulting BEC are uniquely described in terms 
of the Schwarzschild radius of the BH and the value of a dimensionless parameter, interpreted 
as a chemical potential. A condensate appears not only to be possible but actually intimately 
related to the classical field that sustains it and determines its characteristics.

It would therefore be tempting to go one step beyond and reverse the order of the logical 
implication and eventually attempt to derive the classical field as a sort of mean field potential 
à la Hartree–Fock. However we will stop short of doing so here. In any case, even without 
embarking in the discussion just mentioned, we are aware of the speculative nature of the 
present study.

2.  Building up a condensate over a Schwarzschild background

In what follows we shall adhere to the following notational conventions: the Einstein tensor 
Gµν = Rµν − 1

2 gµνR is constructed with the metric gµν in the usual way. We will denote 
by g̃µν the background metric that in our case will invariably be the Schwarzschild metric. 
Perturbations above this background metric will be denoted by hµν, so gµν = g̃µν + hµν. We 
will use the Minkowskian metric convention ηµν = diag(−1, 1, 1, 1).

To initiate our program we should, first of all, identify an equation (or set of equations) 
that could provide a suitable description of a BEC in the present context. In other words, we 
have to find the appropriate generalization of the Gross–Pitaevskii equation. The graviton 
condensate has necessarily to be described by a tensor field that within our philosophy has to 
be connected necessarily with a perturbation of the classical metric.

In order to keep things as simple as possible we will attempt to describe only condensates 
with quantum states having l = 0. This will translate to spherically symmetric perturbations 
of the gravity field only

ds2 = [− (1 − rs/r) + htt] dt2 +
[
(1 − rs/r)−1

+ hrr

]
dr2 + r2dΩ2.� (2)

The Einstein tensor derived from the previous metric will be expanded up to second order in 
hµν to retain the leading non-linearities (self-interactions of the desired condensate).

It is well known that Birkhoff’s theorem [8, 9] guarantees the uniqueness of the solution of 
Einstein’s equations in vacuum with the properties of having spherical symmetry and being 
static. As every dimensionful quantity can be expressed as a function of the Schwarzschild 
radius rs = 2GM , the difference between a given Schwarzschild metric and any perturbed solu-
tion built upon it must necessarily correspond to a change in the mass M to M + δM . The fact 
that spherical symmetric perturbations are related to shifts in mass, indicates a correspondence 

3 A classical field is not the same as a quantum condensate, although the latter may trigger the former.
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between any perturbation hµν (i.e. each ‘graviton’) and a certain amount of energy that is 
reflected in a change of the BH mass.

2.1.  Einstein equations as Gross–Pitaevskii equations

The familiar Gross–Pitaevskii equation [10] employed to describe Bose–Einstein condensates 
is a non-linear Schrödinger equation; i.e. an equation of motion that contains self-interactions 
(hence the non-linearity), a confining potential for the atoms or particles constituting the con-
densate, and a chemical potential, the conjugate thermodynamic variable of the number of 
particles or atoms contained in the condensate.

Among all these ingredients, the Einstein equations perturbed around a BH metric contain 
most of them. They are already non-linear and while there is no explicit confining potential (as 
befits a relativistic theory) they do confine particles, at least classically, because if the selected 
background corresponds to a Schwarzschild BH, the strong gravitational field classically traps 
particles inside the horizon. In addition, they are the only known consistent equations describ-
ing a rank-two tensor. Finally, the background (i.e. the BH metric) is a solution of Einstein 
equations; therefore they are necessarily part of the answer. However, there is one ingredient 
still missing, namely the equivalent of the chemical potential. Therefore we have to extend the 
formulation of perturbations around a classical BH solution to the grand-canonical ensemble 
by adding to the appropriate action a chemical potential term.

As it is well known since the early days of quantum field theory [11] there are no con-
served currents or continuity equations for fundamental fields that are chargeless (such as a 
real Klein–Gordon field). Therefore there is no way of defining a number operator for freely 
propagating gravitons or photons. Nonetheless, in the picture of [1] and [2] the situation is dif-
ferent. If a BEC is present with ‘gravitons’ acquiring all the same momenta  ∼1/rs and being 
weakly interacting for a macroscopic BH (recall αg ∼ 1/N) the total energy stored in the 
condensate should be  ∼N/rs and this quantity would be a conserved one. Therefore, lest rs 
change, N would be conserved. The previous reasoning shows very clearly that the ‘gravitons’ 
contemplated in the present scenario, if realized, have nothing to do with freely propagating 
gravitons.

The energy contained in a given volume occupied by a non-interacting scalar field is

E = −1
2

∫
dVφ∇2φ;� (3)

by analogy, in the present case

E =
1
2

∫
dVε2ĥαβ ĥαβ =

∫
dVε ρĥ ,� (4)

where we assume that the energy per graviton ε is constant and approximately given by 1/rs, 
and

ρĥ ≡ 1
2

ĥαβ
1
λ

ĥαβ ,� (5)

with ĥαβ = MPhαβ . While there is no formally conserved current, the above quantity can be 
interpreted as a ‘graviton’ number density, and the integral of the graviton density (5) in the 
interior of the BH has to be interpreted as the number of constituents of the BEC.

The above considerations can now be phrased in a Lagrangian language. The chemical 
potential term in the action should be related to the graviton density of the condensate inside 
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a differential volume element dV. In order to respect the basic symmetry of General Relativity 
(GR), the simplest form of introducing such a term is by means of

∆Schem. pot. = −1
2

∫
d4x

√
−gµ ĥαβ ĥαβ .� (6)

This term does of course resemble a mass term for the spin-2 excitation and indeed it is some 
sort of effective mass in practice as the ‘gravitons’ in the BEC are quasi-non-interacting. 
However we will see that GR eventually requires for the quantity μ to actually be position 
dependent, i.e. µ = µ(r), and transform as a scalar.

Given the resemblance of the term that we interpret as chemical potential to a mass term, it 
is legitimate to ask why not use the Fierz–Pauli form of the mass term, that is known to be able 
to provide ghost-free propagation of gravitons (see e.g. [12] for a detailed discussion of mas-
sive gravity). The answer is simple: our ‘gravitons’ correspond to time-independent solutions; 
they do not propagate and the issue of ghosts is totally irrelevant in the present discussion. 
We do not advocate adding (6) as a fundamental ingredient of gravity, but only as a means 
of describing in an effective and thermodynamical way the formation of a BEC condensate 
—exactly what the Gross–Pitaevskii equation is meant to implement. From a more pragmatic 
point of view, modifications of (6) in the sense of making this term look like a Fierz–Pauli 
mass term do not really change the results at the qualitative level, but we emphasize that it is 
not really necessary to worry about the ghost issue at this point.

Although the additional term may look odd, it is invariant under the gauge group of dif-
feomorphisms. Part of this statement is shown in [13]: under an infinitesimal displacement 
in the coordinates of the form δDxµ = ξµ the full metric changes as δgµν = ξµ;ν + ξν;µ. The 
same gauge transformation rules the background metric. As the perturbation is defined by 
hµν = gµν − g̃µν, under the same perturbation of the coordinate system, the same rule of 
covariant transformation is obtained. Together with the fact that the chemical potential μ 
behaves as a scalar under a general coordinate transformation, ensure automatically the gen-
eral covariance of the theory. However, while the formalism is diff invariant, it is not back-
ground independent. The separation gµν = g̃µν + hµν leads to an action that depends on the 
choice of the background metric, which is the one of the BH. Likewise µ(r) also will depend 
on the background metric. We will not postulate any particular dependence of μ on r. In fact, 
at this point it would be conceivable that the only consistent solution implies µ = 0. This will 
not be the case however and µ(r) will be determined in the subsequent from the requirement 
of self-consistency of the proposal. Therefore an appropriate action for the field hαβ is

S(h) = MP
2
∫

d4x
√
−g R(g)− 1

2
MP

2
∫

d4x
√
−gµ hαβhαβ .� (7)

Indices are raised and lowered using the full metric gµν = g̃µν + hµν. A completely covariant 
expansion in powers of hαβ can be performed up to the desired order of accuracy. By con-
struction these equations will be non-linear, but we will keep only the leading non-linearities 
to maintain the formalism simple and analytically tractable. It is worth noting again that the 
action (7) is as shown reparametrization invariant, but it is not background independent. The 
fact that fluctuations take place above a BH background –in whatever coordinates one chooses 
to describe it– does matter.

The action principle yields the two equations of motion for the field hαβ = diag(htt, htt, 0, 0), 
namely

Gα
β(g̃ + h) = µ

(
hαβ − hασhσβ +

1
4

h2 δβα
)
,� (8)

J Alfaro et alClass. Quantum Grav. 35 (2018) 015001
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where δβα is the Kronecker delta and h2 = hαβhαβ. It is important to keep in mind the follow-
ing: we are working here in the grand canonical ensemble; this implies that the magnitude μ 
is an external field and does not vary in the action. In particular, for these equations of motion 
μ is independent of hαβ, so δµ/δhαβ = 0. This should be the way of introducing the chemical 
potential. Otherwise, were μ not an external field, it would be necessary to take it into account 
when performing variations to derive the equations of motion. An equation of motion would 
be obtained for μ and this equation would nullify automatically the perturbation as well as the 
chemical potential itself, i.e. hαβ = 0 and µ = 0. Therefore, the external field μ is introduced 
in the theory as some kind of Lagrange multiplier. As Lagrange multipliers have constraint 
equations, the chemical potential of the theory may not be arbitrary at all. It must satisfy bind-
ing conditions with hαβ. The main difference is that these constraints are implicit in a GR 
theory. The restriction of μ is through the general covariance conditions for the action. In other 
words, the diffeomorphisms covariance implies the covariant conservation of the Einstein ten-
sor, and this in itself entails the same for the chemical potential term

∇βGα
β = 0 =⇒

[
µ
(

hαβ − hασhσβ +
1
4

h2 δβα

)]
;β

= 0.� (9)

The covariant derivative is defined using the full metric gαβ = g̃αβ + hαβ . This differential 
equation of motion is valid up to every order in perturbation theory.

Subsequently, we will proceed to find acceptable solutions of these equations and interpret 
them. We will separate the problem into two regions: outside and inside the BH horizon. We 
certainly expect that the graviton condensate will disappear quickly in the outside region; 
imposing this as a boundary condition for r � rs  we will see that in fact the condensate is 
identically zero on this side of the horizon. On the contrary, a unique non-trivial solution will 
be found in the interior of the BH.

3.  Outside the horizon

In this section it will be shown that even after the inclusion of μ there is not other normaliz-
able solution outside the black hole horizon than the trivial solution for the perturbation. If we 
place ourselves far away from the BH, in the r → ∞ limit, one is able to keep only dominant 
terms in the Einstein equations. In this perturbative treatment the chemical potential, far away 
from the condensate, is expected to behave as a perturbative small parameter. Therefore, on 
the LHS side of the equations of motion (8), possible terms of the form µh2 will be consid-
ered as O(h3) and neglected. We will make use of another equation that, although it does not 
contribute with new information, will make explicit how the components of the perturbation 
behaves between each other; namely, any of the two angular components of the Einstein tensor 
Gθ

θ = Gφ
φ = 0. In this limit, as we want a vanishing perturbation at infinity, the following 

ansatz is imposed in the faraway region:

htt =
A
ra hrr =

B
rb µ =

C
rc ; with a, b, c > 0.� (10)

Before proceeding, an additional consideration is needed: since for us h represents a local-
ized BEC, in analogy with the wave function of a confined particle, the perturbation must be 
a square-integrable function. This is

∫ ∞

0
d3x

√
−g h2 ≡

∫ ∞

0
d3x

√
−g

(
htt

2 gtt 2 + hrr
2 grr 2) < ∞.� (11)

J Alfaro et alClass. Quantum Grav. 35 (2018) 015001
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There are two reasons that lead us to the previous requirement. Let us review first why one 
has to request square-integrability. Note that the solutions of (8) should not be understood 
as a quantum field, but rather as solutions of the Gross–Pitaevskii equation. Here we adopt 
Bogoliubov theory [14] and its interpretation of the GP wave function. This is the commonly 
accepted interpretation and essentially it boils down to the fact that in the large occupation 
limit (N → ∞) the creation and annihilation operators of the ground state can be approxi-
mately treated as commuting c-numbers, and hence the many body quantum problem is 
described by a classical function called the ‘macroscopic wave function’ or simply the ‘order 
parameter’. Because the modulus square of this quantity is proportional to a0

† a0, it is there-
fore proportional to N. Hence the order parameter itself is proportional to 

√
N/V . If the poten-

tial is not uniform, N may of course depend on the coordinates. From this the need to require 
square-integrability follows. This interpretation is in the present case also supported by the 
dimensionality of ρĥ.

Why then this precise condition? The leading role of the geometry has been to provide, in 
an indirect manner, a ‘confining potential’ that traps gravitons inside the horizon. Therefore, 
from this point of view when giving a physical interpretation to the chemical potential (see 
section 4) one implicitly assumes that the geometry of the spacetime is flat and that geometry 
acts via the external potential and the chemical one. In the present situation, it turns out that √
−g ∝ r2 sin θ coincides with the one corresponding to a 3 dimensional spatial flat metric in 

spherical coordinates; therefore d3x
√
−g is reparametrization invariant in 3 dimensions. This 

interpretation is equivalent to defining a wave function normalized by the temporal component 
of the metric tensor, ψ = 4

√
−gtt h. Then, any magnitude computed by means of an integra-

tion over a 3-spatial volume d3V = d3x
√
γ  is effectively written in a fully covariant way as 

d3V|ψ|2 = d3x
√
γ
√
−gtt h2 = d3x

√
−g h2, since the 4-dimensional metric can be decomposed 

as gµν = gttγij, with i, j = r, θ,φ if the metric is diagonal. Therefore, the volume element is 
coordinate dependent as well as the square modulus of the macroscopic wave function ψ, but 
the combination of both is not; and we end up finally with the corresponding volume element 
to the previously discussed flat spacetime.

Whatever the case, in this perturbative limit the components of the Schwarzschild metric 
accomplish g̃tt 2, g̃rr 2 r→∞−→ 1; then the integral in equation (11) should fulfill

4π
∫ ∞

0
dr r2 [

htt
2 + hrr

2 + O(h3)
]
<

∫ ∞

0

dr
r

= ∞ (Logarithmic divergence).

�

(12)

For this to happen, if a power law ansatz at infinity is imposed, the exponents must obey 
a, b > 3/2. Then the equations corresponding to Gt

t, Gr
r and Gθ

θ respectively become

(1 − b)
B

rb+2 − (1 − 2 b)
B2

r2b+2 =
A C
ra+c

( rs

r
+ a

) A
ra+2 − B

rb+2 +
( rs

r
+ a

) A2

r2a+2 −
( rs

r
+ a

) A B
ra+b+2 +

B2

r2b+2 =
B C
rb+c

( rs

r
+ a2

) 2 A
ra+2 +

( rs

r
− b

) 2 B
rb+2 +

(
2rs

r
+ 3 a2

)
A2

r2a+2 −
( rs

r
− b

) 4 B2

r2b+2

−
[
(2 + b)

rs

r
+ 2 a2 + a b

] A B
ra+b+2 = 0.

�

(13)

The requirement of the solution being square-integrable exclude that a and b could be zero. 
This implies automatically the neglection of the terms proportional to the Schwarzschild 
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radius. Even more, with the previous considerations, (13) reduce to the following asymptotic 
identities

(1 − b)
B

rb+2 =
A C
ra+ρ

;
A a
ra+2 − B

rb+2 =
B C
rb+c ;

�
(14)

2 A a2

ra+2 − 2 B b
rb+2 = 0.

�
(15)

From the angular equation (15), it is mandatory for both terms to contribute at infinity. If this 
is not the case, this would nullify A (or B), and then, via both equations in (14), fix B = 0 (or 
A = 0) and C = 0; i.e. hαβ = µ = 0. The competition of both terms is possible if and only if 
a = b. This condition modifies the angular equation (15) as

(A a − B)
2 a

ra+2 = 0 =⇒ A a = B.� (16)

Then, from the second equation in (14) the following relationship can be read

(A a − B)
1

ra+2 = 0 =
B C
ra+c .� (17)

This automatically leads to a null chemical potential as the only possible solution for this 
region with the proposed ansatz.

We have also explored the possibility of exponentially vanishing chemical potential when 
r → ∞ with analogous conclusions. If we change the ansatz and impose an exponential 
decreasing solution for the perturbations at infinity,

htt = A ea r; hrr = B eb r; µ = C ec r with a, b, c < 0,� (18)

the linear order dominates in front of the higher ones. As decreasing solutions are expected, 
the parameters a, b and c must be not null. If one use this ansatz in the Einstein equations par-
tially evaluated at infinity, one finds that in the angular equation there is no way for both lead-
ing terms to compete between each other

Gθ
θ : −2 A a2 ea r − 2 B b

eb r

r
= 0.� (19)

In conclusion, depending on the fact whether if a is bigger or not than β, A = 0 or B = 0. For 
the first case, if A = 0, the leading terms of the temporal equation

Gt
t : B b

eb r

r
= A C e(a+c) r� (20)

fixes B = 0. Being both, A and B null, the chemical potential disappears from the theory in 
this region. For the second case, if B = 0, the same equation Gt

t nullifies A (as no null solu-
tions for C are expected). No perturbation makes the chemical potential senseless. To sum up, 
this ansatz implies as well that the only solution at infinity is a null perturbation, hαβ = 0, and 
the disappearance of the chemical potential from the theory, µ = 0. Likewise it can be seen 
that a much faster Gaussian decay is also excluded with analogous calculations.

Before concluding this section we will give additionally a numerical argument that con-
firms the vanishing of the condensate and the chemical potential in the outer region when 
the perturbations are null at infinity. The following change of variables allows rewriting the 
relevant equation (8) in terms of dimensionless quantities
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z =
rs

r
; X(z) = µ(r) r2.� (21)

This quantities are universal as rs and μ are the only physical parameters. This redefinition 
maps the exterior part into a compact interval: r = ∞ is transformed into z = 0 and r = rs into 
z = 1. It is well known that Schwarzschild spacetime is asymptotically flat; therefore, at infin-
ity (z = 0) it is expected for the perturbation to vanish (hαβ = 0). Nevertheless equations are 
difficult to deal with because they are singular at z = 0, i.e. it is not possible to isolate the 
higher order derivatives.

Let us see how we can proceed. As mentioned before, we have to settle for a point z ∼ 0 
(but z �= 0) to set up boundary conditions for the numerical integration procedure to start. 
Likewise setting hrr = 0 at any arbitrary value of z outside the event horizon, immediately 
triggers divergences at the first step of the routine. Therefore we take a ‘small’ initial value 
for the perturbation in a point near infinity (z ∼ 0), and then decrease this initial value; this is 
hαβ(r ∼ ∞) → 0.

With the set of solutions for the components of hαβ obtained for each of the initial con-
dition imposed, it is possible to compute the quantity 

∫
dV h2 defined in equation (11); the 

integral extends over the exterior of the BH (i.e. z runs between 0 and 1). In figure 1 the behav-
iour of the integral of h2 outside the BH is presented when the initial condition for the integra-
tion approaches zero at a fixed point far away from the condensate (near infinity or z ∼ 0). The 
numerical analysis results very stable and the initial condition can be reduced as many orders 
of magnitude as desired. The graph is presented in a log–log scale, hence the linear behaviour. 
The points are fitted by a linear function with a slope approaching 2 as more points with lower 
initial condition are added. This implies that the integral converges quadratically to zero as the 
initial condition for hαβ nullifies. This seems to confirm—also numerically—that there is no 
condensate, i.e. hαβ = 0 and no dimensionless chemical potential X = 0 in the outer region 
of the BH.

4.  Inside the horizon

In order to study the behaviour of our equations when the horizon is crossed, it is convenient 
to keep working in the z = rs/r  and X = µ r2 variables introduced in the previous section and 
redefine the perturbations as

htt(r) = (1 − z) γtt(z); hrr(r) = (1 − z) γrr(z).� (22)

With the new definitions the Einstein equations become more compact. At the same order as 
before, the temporal, radial and angular components of the Einstein tensor read as

(2z + 1)(z − 1)2γrr + z(z − 1)3γrr
′ − (4z + 1)(z − 1)4γrr

2 − 2z(z − 1)5γrr γrr
′

− (z − 1)2γrr − z(z − 1)γtt
′ − z(z − 1)γtt γtt

′ + z(z − 1)3γrr γtt
′ + (z − 1)4γrr

2

2z(z − 2)(z − 1)γrr + z(z − 2)(z − 1)2γrr
′ − z(5z − 2)γtt

′ − 2z2(z − 1)γtt
′′

− 2z(z − 2)(z − 1)4γrrγrr
′ + z(7z − 2)(z − 1)2γrrγtt

′ − z(5z − 2)γtt γtt
′

+ z2(z − 1)3γrr
′ γtt

′ − z2(z − 1)γtt
′2 + 2z2(z − 1)3γrr γtt

′′

− 2z2(z − 1)γtt γtt
′′.

�
(23)
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4.1.  Linearization near the event horizon

In order to get a feeling for possible solutions to these equations we consider their linearized 
approximation. Only terms linear in γtt , γrr and their derivatives are kept in the region z → 1. 
No a priori assumption for the dimensionless chemical potential X is made, therefore Xγαβ is 
a priori considered as a linear contribution in the perturbation. That is

3(z − 1)2γrr + (z − 1)3γrr
′ = Xγtt

(z − 1)2γrr + (z − 1)γtt
′ = −X(z − 1)2γrr

2(z − 1)γrr + (z − 1)2γrr
′ + 3γtt

′ + 2(z − 1)γtt
′′ = 0.

�

(24)

Let us now make the following ansatz for the new perturbations

γtt ∼ A(z − 1)a; γrr ∼ B(z − 1)b,� (25)

while we leave the chemical potential X = X(z) as a free function. The three equations take 
respectively the following form

B(3 + b)(z − 1)b+2 = XA(z − 1)a

B(z − 1)b+2 + Aa(z − 1)a = −XB(z − 1)b+2

B(2 + b)(z − 1)b+1 + Aa(1 + 2a)(z − 1)a−1 = 0.

�

(26)

It is worth noting that if a = b + 2, all terms contribute as we get closer to the event horizon 
and X behaves as a constant. In this situation, we obtain three equations for the coefficients

B(1 + a) = XA; B + aA = −XB; a[B + A(1 + 2a)] = 0.� (27)

Figure 1.  Each point represents a magnitude proportional to the integral of h2 outside 
the event horizon, computed for a particular initial condition for the perturbation placed 
near infinity, hµν(∞). The graph is presented in a log–log scale. A linear fit gives a 
slope that asymptotically approach 2 as the boundary condition is nullified; this implies 
that the integral vanishes quadratically. The closer the limit to an asymptotically flat 
spacetime is (i.e. decreasing the initial condition near infinity), the smaller this integral 
becomes.
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The system of equations is algebraic for the variable X (that as we have seen should behave 
as a constant as z → 1); therefore, it is possible to eliminate X by combining the temporal and 
radial equation. In the present ansatz this leads to

B2(1 + a) + AB + A2a = 0.� (28)

Together with the angular equation, this determines the solutions up to a single constant. 
There are two possible solutions for this system

(i) a = 0; b = −2; A = −B =⇒ γtt = A; γrr = − A
(z − 1)2� (29)

(ii) a = −1; b = −3; A = B =⇒ γtt =
A

(z − 1)
; γrr =

A
(z − 1)3 .� (30)

In any case, at least one of the perturbations is divergent over the event horizon. Nonetheless, 
the first solution appears to be integrable, while this is not the case for the second one. In case 
(i) X = −1 while if (ii) is taken as solution X = 0 (i.e. no chemical potential at all)4.

However, because these solutions do not vanish when z → 1, justified doubts can be cast 
on the relevance of the linearized equations. Let us examine this point taking into considera-
tion only the solution (i), which is integrable according to the considerations of the previous 
section.

In order to see if this solution is modified when non-linearities are switched on, we sub-
stitute it back in the O(γ2) equations system where self-interactions matters, and see if the 
solution survives or how would it get modified. In view of the foregoing, near z ∼ 1 the full 
temporal, radial and angular equations read

− 3(z − 1)2γrr − (z − 1)3γrr
′ + 5(z − 1)4γrr

2 + 2(z − 1)5γrr γrr
′

= X
{
−γtt − 2γtt

2 +
1
4

[
γtt

2 + (z − 1)4
γrr

2
]}�

(31)

−(z − 1)2 γrr − (z − 1)γtt
′ − (z − 1)γtt γtt

′ + (z − 1)3γrr γtt
′ + (z − 1)4γrr

2

= X
{
(z − 1)2

γrr − 2 (z − 1)4
γrr

2 +
1
4

[
γtt

2 + (z − 1)4
γrr

2
]}

γrr

�

(32)

2(z − 1)γrr + (z − 1)2γrr
′ + 3γtt

′ + 2(z − 1)γtt
′′ − 4(z − 1)3γrr

2 − 2 (z − 1)4γrr γrr
′

+ 3γtt γtt
′ − 5(z − 1)2γrr γtt

′ − (z − 1)3γrr
′ γtt

′ + (z − 1)γtt
′2 + 2(z − 1)γtt γtt

′′

− 2(z − 1)3γrr γtt
′′ = 0,

�

(33)

respectively. Replacing the possible solution, γtt = A—this eliminates any derivative of γtt

—and γrr = − A
(z−1)2  into these equations, we obtain the following relations

3 A − 2 A + 5 A2 − 4 A2 = (1 + A)A = −X
(

A +
3
2

A2
)

� (34)

A + A2 = (1 + A)A = −X
(

A +
3
2

A2
)

� (35)

4 Solution (ii) represents however a volume-preserving fluctuation at the linear order.
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− 2 A
(z − 1)

+
2 A

(z − 1)
− 4 A2

(z − 1)
+

4 A2

(z − 1)
= 0.� (36)

Therefore, quite surprisingly, the linear solution is still an exact solution of the non-linear 
quadratic differential equations. Thus, we conclude that

γtt = A γrr = − A
(z − 1)2� (37)

are solutions of the second order system of equations.
In addition, this exercise gives an interesting result: X � −(1 − A/2), where A is so far 

arbitrary, also in sign. Note that at the linear level we got X = −1 and the fact that the quad-
ratic equation gives an O(A) correction to this result is consistent as we are implicitly assum-
ing that |hαβ | � |g̃αβ |, i.e. |A| � 1. The constant A itself is arbitrary and is not determined by 
the structure of the equations. Changes in A appear as an overall factor in the solution.

So far we have seen that the solution given in (37) satisfies not only the linearized approx
imation but also the full quadratic equations. This conclusion is reinforced after performing 
a numerical integration of the basic equation (8) expanded up to O(hαβ2). We found that the 
numerical study reproduces the general features of the analytical study: γtt  as well as the func-
tion related to the dimensionless chemical potential X, turns out to be constant in the interior 
of the BH. No other solutions are found.

The equations look simpler if expressed in terms of the functions γαβ but to understand 
what this solution means is better to undo the redefinition of the components of the wave 
function (i.e. γαβ → hαβ) by means of (22) for the solution (37). It is of interest to raise one 
index of the components of the perturbation with the inverse full metric gµν. The function so 
obtained happens to be constant throughout the interior of the BH

hαβgαβ = ht
t = hr

r = constant.� (38)

The solution for the perturbation hαβ turns out to be proportional to the corresponding metric 
element where each of the two belongs; i.e. htt = ht

tgtt and hrr = hr
rgrr with hα

α constant. 
The angular degrees of freedom remain unchanged, hθ

θ = hφφ = 0.

4.2.  Exact solution

Inspired by the previous analysis, we reformulate our main equations in terms of the metric 
fluctuation with mixed indices (one covariant, one contravariant). Let us write

ht
t = ϕt; hr

r = ϕr; hθ θ = hφ φ = 0.� (39)

The full metric would become

gµν = diag
( 1

1 − ϕt
g̃tt,

1
1 − ϕr

g̃rr, g̃θθ, g̃φφ

)
� (40)

and seems to impose an upper limit5 for the constant values ϕt and ϕr. The exact equations of 
motion for the theory simplify enormously and reduce to the following ones

5 The upper bound for the wave function will become clear when computing the number N of constituents of the 
condensate; such value for the wave function corresponds to the limit N → ∞.
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Gt
t = −ϕr

r2 = µ

[
ϕt +

1
4
(
−3ϕ2

t + ϕ2
r

)]

Gr
r = −ϕr

r2 = µ

[
ϕr +

1
4
(
ϕ2

t − 3ϕ2
r

)]
.

�
(41)

These equations are valid also for the external solution; however, in the case of the external 
sector, we know that Minkowski metric must be recovered far from the sources. This condition 
implies that ϕt = ϕr = 0 as explained in section 3.

Among the two possible solutions of the latter algebraical system of equations, only one is 
compatible with an acceptable limit for small perturbations, namely ϕt = ϕr ≡ ϕ (we expect 
0 < ϕ < 1). All things considered, the two equations in (41) are linearly dependent, hence the 
resulting equation of motion for a constant ϕ becomes

− ϕ

r2 = µϕ− 1
2
µϕ2.� (42)

Within our philosophy (8) is understood as a Gross–Pitaevskii equation for a condensate wave 
function hα

α ≡ ϕ. It is a non-linear Schrödinger-like equation that produces a unique solution 
for the condensate and the chemical potential described by equation (42). Because the solution 
is constant, the ‘kinetic’ term drops and one is left with a purely algebraic, mean-field-like, 
equation6.

The previous equation defines a dimensionless chemical potential X ≡ µr2 that behaves as 
a negative constant and, for small perturbations, is related to the mean-field solution by

X = − 1
1 − 1

2ϕ
� −1 − 1

2
ϕ+ . . . .� (43)

Notice that we are retrieving the solution found in the perturbative analysis when ϕ plays the 
role of the integration constant −A.

Before moving on, it is mandatory to make a comment on the covariant conservation of our 
equations. At the end of section 2.1 we have pointed out that the diffeomorphism invariance 
entails a differential equation for the chemical potential, namely (9). The covariant conserva-
tion of the Einstein tensor implies automatically the same for the LHS of our equations of 
motion

µ,β
(
hα

β − hασhσβ +
1
4

h2δβα
)
+ µ

(
hαβ − hασhσβ +

1
4

h2δβα
)

;β = 0.� (44)

The latter equation is a set of four equations, α = t, r, θ,φ, but only one is non trivial; this equa-
tion is the radial one, α = r. When the perturbations are equal and constant, i.e. ht

t = hr
r = ϕ, 

the general covariance condition yields the following differential equation for the chemical 
potential μ

(
ϕ− ϕ2

2

)(
∂rµ+

2µ
r

)
= 0.� (45)

The integration is direct and the only degree of freedom is a boundary condition when inte-
grating the differential equation that governs the chemical potential

µ = µ0 r−2 =⇒ X = µ0.� (46)

6 One usually thinks of the GP equation as a non-linear Schrödinger equation, hence with second order derivatives. 
Actually this is not always so; for uniform gas of interacting atoms the GP equation is simply gϕ2 = µ, where g is 
the interacting (repulsive) constant and μ, needless to say, is the chemical potential.
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This value should coincide with the value of our negative and constant dimensionless chemi-
cal potential in (43); this is X = µ0 = −1 − 1

2ϕ.
The qualitative result is the existence of a normalizable solution that can be interpreted as 

the collective wave function of a graviton condensate. A unique relation is obtained between 
this (constant) wave function and a (also constant) dimensionless chemical potential.

5.  Connection with previous proposals

It is immediate to see that the solution found for the wave function is of finite norm. Taking 
into account that the perturbation hαβ is null from the event’s horizon onwards, the endpoint 
on the integration limit can be fixed at the Schwarzschild radius. This way, the integral is
∫ ∞

0
d3x

√
−ghαβhβ

α = 4π
∫ rs

0
dr r2 ht

t 2 + hr
r 2

√
(1 − ht

t)(1 − hr
r)

= 4π rs
3 2ϕ2

3 (1 − ϕ)
�

(47)

and states that the integral of the square modulus of the wave function has a constant value. 
The volume element for the full metric d3x

√
−g = drdΩ r2 sin θ/(1 − ϕ) has been used. The 

fact that this magnitude is constant automatically ensures a constant behaviour for the prob-
ability density of the wave function defined in (5), as hα

βhβα = hαβhαβ. Retrieving the miss-
ing constants, we can relate the latter quantity in (47) to the integral of the density ρĥ. Then, 
we are able to compute the total number of gravitons of the condensate. From the arguments 
in section 2

N =
8π
3

MP
2 ϕ2

(1 − ϕ)
rs

2 =⇒ rs =

√
3 (1 − ϕ)

8πϕ2

√
NLP.� (48)

Here again the upper limit for the wave function enters explicitly; if ϕ → 1, then N → ∞ and 
the metric becomes singular. At this point we should attempt to make contact with the results 
of [1, 2]. Under the maximum packaging condition λ = rs our previous relation agrees nicely 
with their proposal. The rest of relations of their work can be basically derived from this.

Possibly our more striking results are that the dimensionless chemical potential X = µ(r)r2 
stays constant and non-zero throughout the interior of the BH, and that so does the quantity 
hα

α = ϕ previously defined and entirely determined by the value of the dimensionless chem-
ical potential X. Therefore, it is totally natural to interpret X as the variable conjugate to N, the 
number of gravitons.

As seen above the dimensionless chemical potential has a rather peculiar behaviour. As 
X = µ r2 is a constant function, then µ ∝ 1/r2 and it is not null over the event horizon. Outside 
it appears to be exactly zero. Let us now for a moment forget about the geometrical interpre-
tation of BH physics and let us treat the problem as a collective many body phenomenon. 
It is clear why gravitons are trapped behind the horizon: the jump of the chemical potential 
at r = rs would prevent the ‘particles’ inside to reaching infinity. From this point of view it 
is quite natural to have a lower chemical potential inside the horizon than outside (where is 
obviously zero) as otherwise the configuration would be thermodynamically unstable. In the 
present solution particles (‘gravitons’ in our case) cannot escape.

However this is not completely true as the picture itself suggests that one of the modes 
can scape at a time without paying any energy penalty if the maximum packaging condition 
is verified. Let us do a semiclassical calculation inspired by this picture; using M ∼ MP

√
N :
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dM
dt

� MP
1

2
√

N
dN
dt

=
1

2rs

dN
dt

.� (49)

To estimate dN/dt  (which is negative) we can use geometrical arguments to determine the 
flux. If we assume that for a given value of rs only one mode can get out (as hypothesized 
above) and that propagation takes place at the speed of light, elementary considerations7 
lead to

dM
dt

� −3
2

1
r2

s
.� (50)

This agrees with the results of [2]—for instance equation (35)—and yields T � 1/rs. Within 
this picture, several questions concerning the long-standing issue of loss of information may 
arise as the outcoming state looks thermal [15] but apparently is not; or at least not totally so. 
However we shall refrain of dwelling on this any further at this point.

The main result from the previous rather detailed analysis is that the BH is able to sus-
tain a graviton BEC and surely similar BECs made of other quanta [16]. But is that con-
densate really present? Our results do not answer that question, but if we reflect on the case 
where the limit N → 0 is taken, without disturbing the BH geometry (i.e. keeping rs constant) 
this requires taking ϕ → 0 in a way that the ratio 

√
N/|ϕ| is fixed. Then one gets X = −1. 

This value appears to be universal and independent of any hypothesis. The metric is 100% 
Schwarzschild everywhere. We conclude that a BH produces necessarily a (trapping) non-
zero chemical potential when the physical system is expressed in terms of the grand-canonical 
ensemble. Outside the BH, X = 0 (µ = 0).

Another way of reaching this conclusion is by taking a closer look to our exact equations in 
the previous section. If one sets X = 0 then necessarily ϕ = 0 and one gets the classical 
Schwarzschild solution everywhere, but the reverse is not true. One can have ϕ = 0 but this 
does not imply X = 0. Let us emphasize that these results go beyond the second order pertur-
bative expansion used in parts of this article.

As gravitons cross the horizon and are trapped by the BH classical gravitational field they 
eventually thermalize and form a BEC. The eventual energy surplus generated in this pro-
cess is used to increase the mass and therefore the Schwarzschild radius of the BH. ϕ is now 
non-zero; it is directly proportional to 

√
N , the number of gravitons, and the dimensionless 

chemical potential departs from the value X = −1, presumably increasing it in modulus. As 
soon as ϕ �= 0 the metric inside the BH is not anymore Schwarzschild (but continues to be 
Schwarzschild outside). Note that the metric is destabilized and becomes singular for ϕ = 1, 
so surely this is an upper limit where N → ∞.

Yet another possible interpretation, that we disfavour, could be the following. Each BH 
has associated a given constant value of X, hence of ϕ. Then equation (48) would imply 
that after the emission of each graviton, the value of rs is readjusted. The problem with this 
interpretation is that it would require a new dimensionless magnitude (X) to characterize 
a Schwarzschild BH; something that most BH practitioners would probably find hard to 
accept.

7 To determine the rate of variation of N we have to multiply the surface (4πr2
s ) times the flux; i.e. the density of the 

mode times the velocity, assumed to be c = 1 in our units. Since the density of the mode is constant in the interior, 
it is just 3/4πr3

s .
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6.  Conclusions and outlook

We shall now conclude. The purpose of this work was to have some insights in the refor
mulation of a quantum theory of black holes in the language of condensed matter physics. 
The key point of the theory is to identify the black hole with a Bose–Einstein condensate of 
gravitons.

We have conjectured the set of equations that play the role of the Gross–Pitaevskii non-linear 
equation; they are derived from the Einstein–Hilbert Lagrangian after adding a chemical poten-
tial-like term. We have used a number of different techniques to analyze these equations when 
the perturbation (i.e. the tentative condensate) has spherical symmetry. The equations appear at 
first sight rather intractable, but by doing a perturbative analysis around the BH Schwarzschild 
metric at quadratic order (i.e. including the leading non-linearities) we found that the chemical 
potential necessarily vanishes in the exterior of the BH. On the contrary, in the interior we have 
found two sets of solutions, one of them has to be discarded as producing a non-normaliza-
ble result. The other one leads to a non-zero chemical potential in the interior of the BH that 
behaves as 1/r2. Therefore, there is a finite jump on the chemical potential at the BH horizon. 
Surprisingly—or maybe not so—this solution modifies the coefficient of the tt and rr terms in 
the Schwarzschild solution, but not its functional form. Of course if there is no chemical poten-
tial at all, the modification vanishes, in accordance with well known theorems. However, if the 
former is non zero, the modification affecting the metric is also necessarily non-zero.

The perturbative analysis triggers a unique physical solution for the non-perturbative 
(exact) theory. This solution is characterized by a constant density of the wave function for 
the condensate. From the existence and knowledge of this solution, an unambiguous relation 
between the number of gravitons and the geometric properties of the BH is obtained. Hence, 
we find an expression for the Schwarzschild radius that involves an a priori independent and 
tuneable parameter, the dimensionless chemical potential X (related to the mean-field wave 
function of the condensate ϕ). We find this somewhat strange as this would be a new black 
hole parameter. Therefore we favour the universal value X = −1 as discussed in the text. 
From this expression for the Schwarzschild radius, most relations obtained in [1, 2] can be 
rederived.

As should be obvious to the reader who has followed our discussion, our approach is some-
what different from the one developed in the initial papers by Dvali, Gómez and coworkers. 
We assume from the start the existence of a classical geometry background that acts as confin-
ing potential for the condensate. The fact that the functional form of the metric perturbation 
induced by the condensate is exactly the same as the original background, of course gives a lot 
of credence to the possibility of deriving the latter from the former in a sort of self-consistent 
derivation. We have not explored this possibility in detail yet.

It is quite plausible that one could entertain the presence of condensates of other quantum 
fields inside the BH horizon (why only gravitons?). While we do not expect much of a con-
ceptual difference, it would be very interesting to see the similarities and differences with the 
case of quantum gravitons.
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