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Corrugation-induced transverse voltage in a lateral superlattice
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Lateral superlattices are fabricated with a unidirectional potential modulation. The current is passed
under an angle a with respect to the lattice direction. In the quantum Hall regime the resistivities, cal-
culated from the respective voltage drops along and perpendicular to the direction of current flow, agree
with predictions of tensor calculus. Similar to the Hall effect but in the absence of a magnetic field, a
finite voltage drop is detected perpendicular to the current direction. A model based on the ballistic
motion of the electrons explains this effect and relates the size of this voltage drop directly to the ampli-
tude of the potential modulation.

I. INTRODUCTION

Lateral superlattices with a potential modulation in
one or both lateral dimensions have been realized
by various technological means' predominantly on
Al Ga, „As-GaAs heterostructures. In these structures
the electrons can travel ballistically over several lattice
periods, while usually the Fermi wavelength is about an
order of magnitude smaller than typical period sizes. For
weakly modulated systems the components of the resis-
tivity tensor have been extensively investigated, and vari-
ous physical phenomena have been observed. In the
pioneering work of Weiss et al. ' the authors found os-
cillations in the magnetoresistance for current How per-
pendicular to the potential modulation of a unidirectional
lateral superlattice. The oscillations are observed in the
ballistic transport regime whenever the classical cyclo-
tron diameter becomes commensurate with the superlat-
tice period. These experimental results were explained by
the formation of Landau bands and their characteristic
magnetic-field-dependent bandwidth. ' In the classical
limit, Beenakker showed in an intuitive picture that the
8X8 drift is modulated as a function of magnetic field in
the presence of a lateral superlattice. This way the exper-
imentally observed 1/B periodic oscillations can be ex-
plained in a quantitative manner by both quantum-
mechanical and classical theories.

Similar commensurability effects have also been ob-
served on lateral superlattices with two-dimensional po-
tential modulation, ' as well as on lateral superlattices
fabricated on InAs-A1Sb quantum wells. The field is
now well established, and the theoretical understanding
of the experimentally observed effects is based on solid
grounds.

In this paper we would like to address the question of

how well the tensor picture for the components of the
resistivity tensor is obeyed in such experiments. To the
best of our knowledge most experiments so far have used
measurement geometries where the current Aowed either
parallel or perpendicular to the main axes of the lateral
superlattice. In general, Hall geometries are used where
voltage drops perpendicular ( Vt ) and parallel ( V~~ ) to the
direction of current Aow can be precisely determined. If
the dimension of the Hall bar is much larger than any in-
trinsic length scale of the system, i.e., the mean free path,
lattice period, or Fermi wavelength, one can identify the
experimentally determined four-terminal resistance with
a particular component of the resistivity tensor (pi, p~~),
taking into account the underlying geometry of the Hall
bar.

Here we fabricate lateral superlattices which are tilted
with respect to the direction of current How as deter-
mined by the Hall geometry. In this way the four-
terminal resistance measures a mixture of the fundamen-
tal resistivities. Since it is difficult to compare measure-
ments on two different samples fabricated independently,
we relate various experimental four-terminal resistances
obtained on the same Hall geometry for two magnetic-
field orientations. Within the experimental accuracy we
can explain the resistance traces with the basic tensor re-
lations.

In these symmetry-breaking geoxnetries there occurs a
finite voltage drop even at B =0 in the direction perpen-
dicular to the current Aow. This transverse voltage is
directly related to the amplitude of the potential modula-
tion. With a model based on the ballistic motion of the
carriers in the potential landscape we can qualitatively
explain the observed behavior. In particular this pro-
cedure provides a method to estimate the amplitude of
the potential modulation which should be a versatile tool
especially for future samples with smaller lattice periods.
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II. ESTIMATION
OF POTENTIAL MODULATION

The fabrication process starts from a GaAs-
Al Ga, „As heterostructure (x =0.3) that is grown by
molecular-beam epitaxy and contains a high-mobility
two-dimensional electron gas situated 54 nm below the
sample surface. At liquid-He temperatures the carrier
density is X& =3.5 X 10" cm and the mobility is
@=450000 cm /Vs, resulting in an elastic mean free
path of the carriers of A,

&
=4.4 pm. A Hall bar is defined

by wet etching and provided with Ohmic contacts
(AuGe/Ni). Using electron-beam lithography and a suit-
able development process, the resist is then patterned into
an array of wires with period p =280 nm whose orienta-
tion is well defined with respect to the direction deter-
mined by the underlying Hall geometry. The pattern is
transferred onto the electron gas either by a carefully
tuned wet etching step or by a gate voltage which is ap-
plied to a front gate electrode evaporated on top of the
patterned resist layer. Both fabrication methods lead to
very similar results, and therefore we restrict ourselves to
the presentation of experimental data obtained on sam-
ples where the lateral superlattice is induced via a pat-
terned gate electrode. The samples are cooled down to
liquid-He temperatures T =4.2 K, and a magnetic field is
oriented perpendicular to the sample surface.

The inset of Fig. 1 (upper right) presents the experi-
mental magnetoresistance (solid line) for a sample where
the Hall geometry is oriented such that the current Rows
perpendicular to the wirelike barriers induced by the gate
voltage (see the schematic of the Hall geometry in the
upper part of the figure). The well-known commensura-
bility oscillations occur at low magnetic fields B &0.5 T,
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FIG. 1. Inset: The solid line presents an experimental mag-
netoresistance trace for current Aow across the wirelike barriers
(see the schematic of the Hall geometry). The dashed line
marks a fit to the experimental data according to formulas given
in Ref. 10 which lead to the indicated value for the potential
modulation. The full squares mark the thus-determined values
for the effective potential modulation for different values of the
gate voltage. The dashed line indicates the result of the screen-
ing calculation [Eq. {1)]as described in the text.

while Shubnikov —de Haas (SdH) oscillations take over at
higher magnetic fields. Just after the last maximum at
B =0.5 T that rejects the situation where the classical
cyclotron diameter 2R, matches the lattice period, the
magnetoresistance rises roughly proportional to B . This
fact was used by Geim et al. ' to estimate the effective
modulation of the superlattice potential. In the present
case we fit this parabolic rise of the magnetoresistance as
well as the commensurability oscillations (dashed line) to
extract a number for the potential modulation of
Uo/EF =0.09.

The amplitude of the potential modulation depends on
the applied gate voltage as well as on the screening prop-
erties, i.e., the average carrier density of the two-
dimensional electron gas (2DEG)." In order to check
our understanding of the potential landscape we have
measured the magnetoresistance for a series of gate volt-
ages, and extracted the corresponding potential modula-
tion according to the procedure as described above. The
values for Uo /EF obtained this way are plotted in Fig. 1

as a function of gate voltage. The carrier density is ob-
tained from the numerical relation Ns (10"
cm )=2.94+4.96Vg (V) which is determined from the
experiment. The Fermi energy is obtained from the car-
rier density via the constant density of states of the
2DEG. This assumption is justified as long as the poten-
tial modulation is small, Uo!E~ &&1. The calculation by
Kotthaus and Heitmann" assumes a sinusoidally modu-
lated potential at the sample surface. A more realistic
approach by Winkler' relies on a sinusoidally modulated
electron density on the sample surface leading to a
different numerical factor C in the equation

Uo X=C
E~ N, 1+@/s

of Winkler. ' Here X is the charge deposited on the
gate, and C is a numerical factor which contains the
dielectric constants of the semiconductors and the pho-
toresist and the eKciency of the grating gate. The last
factor describes the screening properties of the 2DEG
(Ref. 13) with the constant screening length in GaAs of
s =30 nm. The results of this calculation are indicated
by the dashed line in Fig. 1. The overall agreement with
the experimentally obtained data for the potential modu-
lation is satisfactory. One has to keep in mind that some
sample parameters such as the Schottky barrier height or
the aspect ratio of the photoresist grating are not precise-
ly known. This leads, for example, to the experimentally
observed finite value for Uo/EI; at Vg=0. Furthermore,
for very negative values of the gate voltage, the extracted
value of Uo/EF exceeds the estimation of Eq. (1). In this
regime, where the potential modulation is already fairly
strong, the simple fitting procedure to the experimental
p„ traces with the formulas as given in the literature for
weak potential modulation is not strictly valid any
more. In particular, the assumption of a constant
scattering time independent on the location of the elec-
tron in the superlattice potential is no longer applicable.
Nevertheless we conclude that our overall understanding
of the potential landscape relying on classical ballistic
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electron transport leads to results that are in agreement
with basic screening calculations.

III. FINITE TRANSVERSE VOLTAGE
IN THE TILTED GEOMETRY

In this section we describe experiments where the
direction of the lateral superlattice is tilted with respect
to the main axes of the Hall geometry. A typical
schematic is presented in the inset of Fig. 2 (upper left
corner), where the current can be passed along two direc-
tions which are perpendicular to each other. Very naive-
ly one expects a voltage drop perpendicular to the direc-
tion of the current How, because the electrons are
deflected by the presence of the tilted potential. An intui-
tive analog is the Gedanken experiment, where a pin ball
rolls down a tilted washboard. This ball will not follow
the direction of its initial velocity but will be deflected
compared to a Oat surface. This can be seen in Fig. 3 for
an electron trajectory in a tilted 1D potential.

We fabricated a sample where the potential with uni-
directional modulation is tilted with respect to the direc-
tion of the current Qow. The angles are 30 and 60', re-
spectively, for a Hall geometry with two perpendicular
arms, as sketched in the inset of Fig. 2. The measured
transverse resistivity p at 8 =0 is presented in Fig. 2
(the inset in the upper right corner) as a function of the

I

p
pi pH

pH pii
(2)

The off-diagonal components pH, i.e., the Hall effect, are
antisymmetric because of the Onsager-Casimir relations
that hold in this system. ' ' The validity of these sym-
metry relations for the Hall effect have been proven ex-
perimentally in rectangular antidot lattices. ' ' If the
resistivity tensor is rotated by the angle a with the matrix

cosa sine
sina cosa

the resulting tensor p=Dp'D in the coordinate system
(x,y) is given by

gate voltage applied to the corrugated gate electrode
(solid line: a=30', dashed line: a=60'). For negative
gate voltages the transverse resistivity p increases. This
is obviously related to the increased potential modulation
and therefore the enhanced deAection of the electrons
from their ballistic path along the respective direction of
the current Aow.

Let us now consider what one would expect for the re-
sults of a tensor calculation. The resistivities for the
current Aow perpendicular and parallel to the wire grat-
ing are denoted by p~ and p~~, respectively. The tensor in
this axes system (x',y') (see Fig. 3) therefore reads

Pxx Pxy

Pyx Pyy

p&cos a+p~~sin a

pH+(p~~
—

pJ )sina cosa

—
pH+ (p~~

—p~)sina cosa

pepsin a+p~~cos a (4)

At B =0 (pH =0) one finds p„~ =pY„=(p~~ —p~)sinu cosa.
In other words the finite transverse voltage that drops
perpendicularly to the direction of current How is directly
proportional to the difference between the resistivities
along the two main axes of the lateral superlattice. The
term sina cosa is symmetric with respect to a =45 . We
therefore expect that the transverse voltage for a=30'
and 60' should be the same. This is definitely not the case
for the data presented in the inset in Fig. 2. Experimen-
tally a different Hall geometry is probed for a different tilt
angle. Since the transverse resistivity pzy is found to be
very sensitive to the details of a particular sample and its
potential modulation, it is not surprising that the experi-
mental results do not follow the predicted behavior.
However, we find pxy to be always larger for a=60' than
for a =30'. We suspect the reason for this observation to
be the nonuniformity of the electron distribution in phase
space, as discussed at the end of this section.

The tensor relations as discussed above rely solely on
fundamental symmetry relations. A quantitative compar-
ison with the experimental features requires a microscop-
ic transport model that relates the longitudinal and trans-
verse resistances on the same Hall bar. Let us assume a
potential induced by a negative gate voltage of the form
U(x') = Uo[1+sin(2~x'/p)] in the x' direction, rotated
by an angle a from the direction of the Hall bar (Fig. 3).
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FIG. 2. The inset in the upper right corner shows the trans-
verse resistivity p ~ as a function of gate voltage measured at
B =0 for a geometry as shown in the upper left corner. The two
lines mark the results for the two current orientations as indi-
cated. The solid and dashed curves in the main figure represent
the calculated ratios of the transverse (p„~) and longitudinal
resistivities (p, evaluated with the known width to length ratio
of the Hall geometry) measured on the two Hall geometries.
The dots and squares are calculated using the resistivities of Eq.
(10), the known potential modulation from Fig. 1, and the
respective tilt angle.
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geometry. To this end we calculate the average velocities
in the x and y directions of the trajectory in Fig. 3 by us-
ing the matrix D [Eq. (3)] to rotate the average velocities
perpendicular v~=p/r~ and parallel v~~

=vosina to the
potential modulation. We find

F F

FIG. 3. Electron trajectory in a 1D potential modulation tilt-
ed by an angle a in a Hall bar. The potential deAects the trajec-
tory from the direction it would have if there were no potential
modulation (dashed line). This explains the experimentally
found transverse resistance p y in Fig. 2. The two coordinate
systems (x,y) and (x',y') rotated by the angle a are shown.

0+p
dx v 0COS cx

2U(x')

=I f dx'[1 —r sin(2''/p)] (6)
0

using the abbreviations I = ( v o cos a —2 Uo /m )
' and

r = Uz/(mvocos a/2 —Uo). The parameter r depends on
the relative magnitude of the potential modulation U0
and the kinetic energy across the potential hills. For our
present experiment the potential modulation is con-
sidered weak, i.e., Uo((E~ leading for fixed a&90' to
r «1. With K being the complete elliptic integral of the
first kind, ~L can be written as

1/2
2 I

mV1+r
2r

1+r

3r—pI 1+- +.
16

V 0COSCZ

U01+
plv cos cx

From this result we can derive a relation between the
measured longitudinal and Hall resistances of the tilted

The electrons may travel at the minimum of the potential

(xo= —p/4) with the velocity vo=+2E~/m in the
direction of the Hall bar. Their dynamics perpendicular
(x') and parallel (y') to the potential modulation is
decoupled, and energy conservation in x' direction re-
quires

—,'mv~(x')+ U(x')= ,'mvoc—os a+ U(xo) .

We assume that the electron travels ballistically over the
potential landscape following the ups and downs of the
washboard potential. The time it takes for an electron to
transverse a lattice constant in the perpendicular direc-
tion can be calculated as

g+p dx '

7L vi(x')
—1/2

and thus, to lowest order in U0/EF,

U0
v =v tano.

F
(9)

We include impurity scattering by assuming that under a
small electric field applied in the x direction the drift ve-
locities obey the same relation. This gives the conductivi-
ty tensor, and by inversion we find, to lowest order in
Uo /EF,

U0
p =p tana

2EF
(10)

This formula directly relates the transverse and longitudi-
nal resistivities of a particular Hall geometry via the
effective potential modulation. The derivation is only ap-
plicable for small potential modulation and, in particular,
if the kinetic energy across the wirelike barriers is much
larger than the barrier height. In the spirit of Eq. (10) we
plot the ratio of transverse and longitudinal resistances
for the two Hall geometries in Fig. 2. From Fig. 1 it is
possible to estimate the potential modulation for a given
gate voltage. This value is taken, divided by two, and
multiplied by the tangent of the respective tilt angle [see
Eq. (10)]. The solid squares and circles in Fig. 2 mark the
result of this calculation, in surprising agreement with ex-
perimental data. Not all samples reveal such a good
compliance between the two approaches of extracting a
potential modulation, but considering the crudeness of
our model anything within a factor of 2 would be satis-
factory.

The angular dependence predicted by our model [Eq.
(10)] does not agree with the results of the tensor calcula-
tion [Eq. (4)]; however, it fits the experimental results
much better (Fig. 2). This is due to the fact that in the
model just a single trajectory is considered, whereas the
tensor calculation implicitly assumes a uniform phase-
space density and thus an averaging over all initial condi-
tions.

The result for p in Eq. (10) depends sensitively on the
starting condition x0 for the electron. If the electron
were to start in the middle of the potential at x0=0 in
the x direction, the value for p would be smaller, as for
symmetry reasons the linear term in U0/EF vanishes and
only a quadratic term survives. On the other hand, for a
starting condition at a maximum (xo =p /4) of the poten-
tial the transverse resistivity p would even have a
different sign, which we never observed in the experi-
ment. We find that an averaging over all starting posi-
tions and directions using the Kubo formula recovers the
angular dependence of the tensor calculation. '

As experiments were done on Hall bars only a few
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times larger than the electron mean free path, we believe
that the implicit assumption of a uniform phase-space
density for the tensor calculation as well as for the Kubo
formula is not fulfilled. This explains the success of our
model considering only the intuitively most important
trajectory. We plan to investigate this point in more de-
tail in the future, e.g., by using Hall bars of different
sizes. '

IV. ANISOTROPIKS IN THE QUANTUM
HALL REGIME
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FIG. 4. (a) Hall resistance p,~ (solid lines) measured on one

Hall geometry (as in the inset of Fig. 2, a=60 ) for two
magnetic-field orientations which are reversed with respect to
each other. The gate voltage is at Vg

= —300 mV, resulting in
an estimated potential modulation of Vo/EF =0.22 (see Fig. 1).
The dashed line is the result of a calculation that extracts the
antisymmetric parts p„of both measurements. (b) The solid
line shows the result of a calculation that extracts the sym-
metric parts p, of the experimental Hall resistances from (a).
The dashed line shows an experimental magnetoresistance p
from the same Hall geometry which is multiplied by
tan60 = 1.73 as described in the text.

Let us now turn to the discussion of the properties of
the broken symmetry geometries in finite magnetic fields.
For small potential modulations Uo/EF (0.05 the SdH
oscillations are perfectly periodic in 1/B, and one can ex-
tract an average carrier density. Also the quantum Hall
plateaus that are experimentally observed on a sample
with a tilted lateral superlattice are almost indistinguish-
able from those of an unpatterned sample with the same
carrier density. However, for a stronger potential modu-
lation the resistivities parallel and perpendicular to the
direction of current Row become mixed more strongly
and other features arise. Figure 4(a) presents experimen-
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tal data (solid line) for the Hall resistance measured on a
Hall geometry where the lateral superlattice is tilted un-
der an angle of 60' with respect to the direction of
current Row. We estimate the relative potential modula-
tion to be about Uo/E~=0. 22 for this particular gate
voltage. The finite transverse resistance at B =0 is not
resolved on this scale. The other solid line in Fig. 4(a) is
recorded with the direction of the magnetic field re-
versed. It is obvious that the two experimental traces ex-
hibit oscillatory features which, however, show no indica-
tion of a quantum Hall plateau. In particular we observe
negative values of p for one magnetic-field orientation.
In order to extract the antisymmetric component of these
experimentally obtained resistances, we calculated
p„= I /2[p, (B l') p—(B$)], which results in the dotted
line in Fig. 4(a). This trace exhibits a linear behavior at
low fields and a well-pronounced quantum Hall plateau at
8=3 T. This is expected from the tensor relations as
given above. In contrast to Sec. III, here experimental
traces obtained on one Hall geometry are compared, and
the agreement with the theoretical predictions is there-
fore quantitative.

This way we can also extract the symmetric com-
ponents of the experimentally determined Hall resis-
tances p, = I/2[p (B$)+p (B J, )], which is displayed
in Fig. 4(b) by the solid line. For a strong potential
modulation and high magnetic fields p~&)p~~, the tensor
relations can be modified as follows: p, =p~sina cosa. and
p„„=pecos a. For a=60' one obtains p, /p =tana
=tan60'=1. 73. The value of p„„ is measured and plot-
ted accordingly in Fig. 4(b) (dashed line). The overall
agreement with the solid line is excellent, which again
hints at the validity of the tensor relations. We can thus
quantitatively compare resistance traces that are obtained
by very different measurements on the same Hall
geometry.

V. CONCLUSIONS

Generally the resistivities of a two-dimensional elec-
tron gas are proportional to the experimentally deter-
mined four-terminal resistances. This is valid even for
2DEG's with a superimposed lateral superlattice as long
as the internal length scales of the system (lattice period,
mean free path, phase-coherence length) are short com-
pared to the external dimensions of the Hall geometry.

Here we have described transport experiments on sam-
ples where the orientation of the lateral superlattice is
tilted with respect to the direction of current How defined
by the Hall geometry. We observe a finite transverse
voltage at B =0 occurring perpendicular to the direction
of current Aow. The size of this transverse resistance can
be related to the magnitude of the relative potential
modulation. The value of the potential modulation can
be extracted from a fitting procedure to the classical com-
mensurability oscillations, in agreement with a theoreti-
cal analysis. We present a model relying on ballistic elec-
tron transport through the potential landscape explaining
the sign, magnitude, and angular dependence of the
transverse voltage.

At high magnetic fields the behavior of the Hall effect
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depends on the direction of the magnetic field. By suit-
ably adding various four-terminal resistances that are ex-
perimentally determined on the same Hall geometry, the
properties of well-quantized Hall plateaus can be
recovered. In particular we can relate the magnetoresis-
tance to the symmetric part of the Hall resistance in sim-
plifying the corresponding tensor relations. If one con-
siders experimental results obtained on one and the same
Hall geometry the tensor relations for the resistivity ten-
sor can be confirmed experimentally.

If experimental results from different samples are com-
pared the situation is more complex, as the potential
modulation depends very sensitively on the details of the
fabrication process. However, with our model we can es-
timate the order of magnitude of the potential modula-

tion. This has important consequences for future samples
with smaller periodicities. In that case it will be more
difficult to fit the commensurability oscillations with the
classical formula. We expect that the broken-symmetry
geometries presented in this paper will help to clarify the
situation since the basic symmetry properties should per-
sist from the classical into the quantum regime.
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