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Resumen

Las part́ıculas no térmicas de alta enerǵıa (es decir, cuyas enerǵıas exceden la

enerǵıa promedio en el espacio circundante por varios órdenes de magnitud, conocidas

como “rayos cósmicos”) constituyen una componente omnipresente del Universo en

todas las escalas, desde el Sistema Solar hasta cúmulos de galaxias. El problema de

cómo estas part́ıculas alcanzan estas enerǵıas ha sido un tópico de gran interés desde

su descubrimiento.

La aceleración de Fermi es uno de los mecanismos usualmente mencionados para

explicar las leyes de potencia que se observan en las distribuciones de enerǵıa de

estas part́ıculas. La aceleración de Fermi de primer orden es comúnmente aludida

como el principal mecanismo presente en ondas de choque relativistas (v.g. Ondas

de choque en remanentes de supernovas). La aceleración de Fermi de segundo orden,

también llamada aceleración estocástica, puede ser un mecanismo eficiente en ambi-

entes astrof́ısicos más generales, siempre que el plasma posea un nivel considerable

de turbulencia, como es usual esperar en astrof́ısica.

En esta tesis se estudia la aceleración de iones en un plasma no colisional, magne-

tizado y sujeto a un cizalle permanente que a su vez amplifica el campo magnético.

A medida que el campo magnético se amplifica, se generan anisotroṕıas de presión

(p⊥,i > p‖,i, donde p⊥,i, p‖,i son la presión de los iones perpendicular y paralela a la

dirección del campo magnético, respectivamente) a causa de la invariancia adiabática

del momento magnético de los iones (µi ∝ pi,⊥/B, donde µi es el momento magnético

de los iones y B es el campo magnético). Esta anisotroṕıa gatilla finalmente inesta-
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bilidades cinéticas en el plasma en escala del radio de Larmor de las part́ıculas, como

las inestabilidades ion-ciclotrón (IC) y mirror, en donde la primera empieza a inter-

actuar con los iones de manera resonante, produciendo sucesivos cambios aleatorios

en el ángulo formado por la velocidad de las part́ıculas y el campo magnético de

fondo (“pitch-angle scattering”). Este proceso puede interpretarse como estocástico

dado que las part́ıculas sufren interacciones sucesivas y no correlacionadas con ondas

IC con velocidades de fase aleatorias.

Se realizan simulaciones de plasma particle in cell que permiten estudiar el régi-

men cinético del plasma (esto es, cuando las escalas caracteŕısticas del sistema son del

orden del radio de Larmor de las part́ıculas) de manera autoconsistente, considerando

la interacción no lineal onda-part́ıcula y el régimen saturado y cuasi-estacionario de

las inestabilidades. Se obtiene que la interacción entre las part́ıculas y los modos

IC puede acelerar iones a enerǵıas no térmicas eficientemente, y la eficiencia de la

aceleración depende del valor inicial de βi = 8πpi/B2. Cuando βi . 1 la distribución

de enerǵıa final de los iones puede describirse como una componente térmica más una

cola con una ley de potencia de ı́ndice espectral αs = 3.4. Para valores más grandes de

βi, la eficiencia decrece y αs crece gradualmente. Las implicancias de estos resultados

se discuten en el contexto de ambientes astrof́ısicos de baja colisionalidad (por ej.

en el agujero negro supermasivo Sgr A∗, en el centro de nuestra galaxia) y en el rol

que podŕıan jugar como part́ıculas energéticas semilla en procesos de reaceleración

por ondas de choque.
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Abstract

High-energy charged particles (i.e. whose energies exceed the average energy of

the ones in their surroundings by many orders of magnitude, commonly known as

“cosmic rays”) constitute an ubiquitous component of the Universe at all scales from

the Solar System to cluster of galaxies. The question about how these particles

achieve those large energies has been a topic of great interest since their discovery.

Fermi acceleration is one of the mechanisms usually invoked to explain the ob-

served power laws in the energy distribution of particles. While first-order Fermi ac-

celeration (also known as diffusive shock acceleration), is commonly regarded as the

main mechanism active in relativistic shock waves (e.g. supernova remnant shocks),

second-order Fermi acceleration, also called stochastic acceleration, can be an effi-

cient mechanism in more general astrophysical environments, as long as the plasma

possesses a considerable level of turbulence, as is usually the case in astrophysics.

In this thesis we study the acceleration of ions in a collisionless, magnetized

plasma subject to a permanent shear motion, which continuously amplifies the mag-

netic field. As the magnetic field is amplified by the shear, a pressure anisotropy

(p⊥,i > p‖,i, where p⊥,i, p‖,i are the ion pressure perpendicular and parallel to the

magnetic field, respectively) is generated by the adiabatic invariance of the ion mag-

netic moment (µi ∝ pi,⊥/B, where µi is the ion magnetic moment and B is the

ambient magnetic field). This anisotropy ultimately triggers Larmor radius scale

instabilities, namely the ion-cyclotron (IC) and mirror instabilities, where the for-

mer starts to interact with the ions resonantly and efficiently pitch-angle scatters
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them. The process can be interpreted as stochastic as long as the particle undergoes

successive, uncorrelated scattering with IC waves of random phase velocities.

We perform particle-in-cell plasma simulations which allow us to study the kinetic

regime of the plasma (i.e. when the characteristic scales of the system are of the

order of the Larmor radius of the particles) in a self-consistent way, considering

the nonlinear wave-particle interaction and the long-term, saturated regime of the

instabilities. We obtain that the scattering by IC modes can effectively accelerate

ions to non-thermal energies, and the efficiency of acceleration depends on the initial

βi = 8πpi/B2, where pi is the ion pressure. When βi . 1 the final ion energy

distribution can be described by a thermal component plus a power-law tail with

spectral index αs = 3.4. For larger values of βi the efficiency steadily decrease and

αs steadily increase. The implications of these results are discussed in the context

of low-collisionality astrophysical environments (e.g. Sgr A∗) and the role that these

accelerated ions may have as seed energetic particles in reacceleration processes by

shocks.
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Chapter 1

Introduction

It has been 69 years since the seminal paper by Fermi [1] about a physical mecha-

nism to efficiently accelerate the very energetic charged particles observed to pervade

Earth’s atmosphere from all directions in the sky. Although known since the times

of Coulomb back in 1785, it was not until 1912 when Hess suggested that these

particles should have a cosmic origin. Now we know that these particles, called “cos-

mic rays”, not only pervade the Earth but all the space around ranging from the

interstellar medium (ISM) [2] to the intergalactic medium (IGM), for the ultra high

energy cosmic rays [3].

Cosmic rays present many interesting features in terms of their origin, compo-

sition, abundances, acceleration and propagation, as well as in their role in the

evolution of the Galaxy, which continue to be the focus of active research these days.

In particular, the question about the physical mechanisms capable to energize these

particles from ∼ 1 GeV to ∼ 1012 GeV still generates debate among scientists.

There are three main mechanisms usually invoked in order to explain how the

acceleration process happens. These are the first and second-order Fermi mecha-

nisms, usually called diffusive shock acceleration (DSA) and stochastic acceleration,

respectively, and magnetic reconnection. DSA [4, 5] has been investigated in great

detail since it naturally predicts a power-law behavior ∝ E−α for the energy dis-
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CHAPTER 1. INTRODUCTION

tribution of the particles, with a spectral index independent of the microphysics of

the scattering processes and in relatively good agreement with the observed particle

spectra; whereas DSA predicts a spectral index of αDSA ∼ 2 at the source1, the

observed index here at Earth is around αobs ∼ 2.6 (see e.g. [6]). This disagreement

cannot be neglected and further investigation around DSA has extensively been car-

ried out both analytically and numerically in order to resolve this and other tensions.

Efforts in this line have been focused on studying, for instance, the reaction that ac-

celerated particles exert on the shock itself, when their pressure and energy density

become comparable with those of the system, giving rise to non-linear theories of

DSA. These theories also consider the amplification of the background magnetic field

via plasma instabilities triggered by the very process of acceleration, thus motivating

further investigation of the role plasma physics has in the whole process of cosmic

acceleration (see [7]). Another physical explanation for the difference between the

observed spectral index and the simplest DSA prediction is the effect of the escape

of CRs from the Galaxy, which is naturally more effective as the energy of particles

increases.

On the other hand, stochastic acceleration, the motivation of this thesis, emerges

from the interaction between particles and randomly moving plasma waves generated

by turbulence. In this process, on average, there is a net energy gain by the particles,

whose efficiency is proportional to ∝ (V/c)2, where V the phase velocity of the

wave2. Due to its second order dependence on velocity, the rate of acceleration is

typically slower than the acceleration by shocks, which is proportional to V/c. Also,

in contrast to the DSA, the spectral indices produced by the stochastic acceleration

vary significantly depending on the characteristics of the system. Thus the fairly

homogeneous spectral index of cosmic rays over several orders of magnitude in energy

does not appear to be a natural feature of this acceleration process.
1See Appendix C for an explanation of the basics of the DSA process
2See Appendix C for a brief description of the basis of the stochastic acceleration process.
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Nevertheless, as shown in this thesis, stochastic acceleration can be efficient under

certain conditions, especially in systems where the presence of magnetohydrodynamic

(MHD) turbulence is significant.

1.1 Observational features of Cosmic Rays

Here at Earth cosmic rays (CRs) can be detected directly by several facilities

that include stratospheric balloon flights, small satellites and the International Space

Station (ISS) [8], while others are ground-based, like the Pierre Auger Observatory

and AGASA. A cosmic ray energy spectrum gathering many experiments can be seen

in figure 1.1. We can see that it is characterized mainly by a broken power-law with

an overall spectral index3 of αs ∼ 2.6, in which from 1 to 3×106 GeV the composition

is mainly protons.

It is interesting to note how the spectrum declines at lower energies around 30

GeV and below. This is caused by the presence of a magnetized, turbulent solar wind

that interacts with CRs at these energies, making their flux and energies fluctuate

over time along with the Sun’s cycles, and preventing low-energy particles from

reaching Earth. This feature is known as the solar modulation of CRs (see e.g. [9]

for a review).

At energies around 3 × 106 GeV the power-law turns over to a steeper slope,

changing its spectral index from ∼ 2.6 to ∼ 3.1. This feature is called the “knee”,

and the presence of this break should represent a transition to a different population

of CRs. In fact, there is evidence that the CRs have a different chemical composi-

tion in this region of the spectrum, with a trend that favors heavier nuclei towards

higher energies [10]. Additionally, the change in the slope suggests that the initial

mechanism of acceleration that produced the initial spectral index has reached its

maximum possible energy, placing its cutoff around this point. These two aspects
3The positive spectral index is adopted, so dN/dE ∝ E−αs .
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CHAPTER 1. INTRODUCTION

give rise to the theory that up to the knee all CR are produced within the Galaxy,

and, as is pointed out in [7] and [11], a knee would naturally arise as the superposition

of several cutoffs in the spectra of each individual species being accelerated4.

Figure 1.1: Cosmic ray spectrum for several species: protons, electrons, positrons and antiprotons.

The maximum energies of some laboratory accelerators is included for reference (red arrows at the

bottom). Figure taken from Zweibel, 2013 [6].

4In this argument it is assumed that the acceleration process depends on the rigidity of the

species R = RL,jB, where RL,j is the Larmor radius of the species j and B is the ambient magnetic

field. As RL,j depends on the atomic number Z, each different species will have a slightly different

energy cutoff ([7]).
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CHAPTER 1. INTRODUCTION

Going further, at energies around ∼ 109 GeV another break in the slope arises

in which it flattens again to a spectral index of 2.7, a feature called the “ankle” .

At these energies, the particles have a Larmor radius of the order of kpc, so here it

is almost impossible for the Galactic magnetic field ∼ 1.6 µG to confine these CR

within the Galaxy, so they are expected to have an extragalactic origin.

The electron spectrum can also be seen in figure 1.1. They constitute a small

fraction of the total number (∼1-2%), and present a spectrum whose slope is steeper

than the overall CR spectrum, due to their strong radiative losses, mainly via syn-

chrotron and inverse Compton.

Indirect detections, which use the non-thermal radiation produced by energetic

particles, constitute another valuable tool to study CRs. As they interact with mat-

ter, magnetic fields, and radiation fields, CRs can emit photons from radio frequencies

(synchrotron from electrons) to TeV gamma rays (mainly due to inverse Compton

from electrons, and neutral pion decay due to CR protons interacting with the ISM5

). In contrast to the case of the electrically charged CRs, the trajectories of these

photons are not affected by the bending caused by magnetic fields (as it is the case

of the charged CRs), allowing in principle to spot the acceleration sites of CRs. In

this context, significant progress in our understanding of the origin of CRs has been

achieved in the last decade with observatories like VLA (radio), Chandra (X rays),

and Fermi-LAT (gamma rays). TeV gamma rays have also become an important

messenger thanks to the advent of imaging atmospheric Cherenkov twithelescopes

(IACT) like HESS, and of water Cherenkov tank telescopes like HAWC.

The combined power of these observatories has allowed to test in great detail the

idea that CRs with energies up to the knee (∼ PeV) are accelerated by shock waves

in galactic supernova remnants (SNRs). Although these observations have shown

that this hypothesis is at least partially true (see e.g. [14]), it is still unclear whether
5This type of interaction can also generate significant neutrino emission, which recently has

become another important messenger in the study of CRs [12, 13]
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CRs with energy . 1 PeV can be completely explained by this paradigm, or if there

is still room for other acceleration sites and mechanisms. Furthermore, to date there

is no convincing observational evidence that CR acceleration in SNRs can reach PeV

energies [15]. Major advances regarding these issues are expected in the next decade

with the Cherenkov Telescope Array (CTA), an IACT observatory whose Southern

(and larger) array will be located in Chile (cta-observatory.org).

The lack of conclusive answers about the sites (and underlying physical mecha-

nism) for CR acceleration is the main motivation for this work. In this thesis we

use particle-in-cell (PIC) simulations to show that stochastic ion acceleration by

ion-cyclotron (IC) plasma waves is a possibly relevant process in the context of col-

lisionless plasmas being heated through viscosity. Although this mechanism can be

realized in different astrophysical contexts, we envision it to be relevant in weakly

collisional accretion disks, like the one expected around the supermassive black hole

at the center of the Milky Way, Sagittarius A* (Sgr A*).

1.2 Acceleration Mechanisms

Very generally speaking, the study of CR can be divided into how they are

produced and accelerated in the source, how they propagate through and interact

with the ISM, and how they are detected when reaching Earth. In what follows the

first of these areas will be assessed, in which the main acceleration mechanisms will

be described, namely, the first and second order Fermi acceleration and magnetic

reconnection.

1.2.1 Second-Order Fermi Acceleration

The original idea of Fermi [1] considered charged particles which undergo succes-

sive collisions with “magnetic clouds” or “magnetic mirrors” through the interstellar

medium. This clouds can be thought of some inhomogeneities in the magnetic field of

17
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the Galaxy moving with velocity V , and the particle and the clouds collide with each

other in a stochastic manner. Fermi showed that, even though at each encounter the

particles could lose or gain energy, on average they end up gaining energy, with an

energy increase in each encounter equal to6,

〈∆E
E

〉
= 8

3

(
V

c

)2
, (1.1)

so it is second-order in velocity. It can also be shown that this process leads to a

power-law energy distribution for the particles with a spectral index that depends

on the specific parameters of the particular source.

Even when second-order Fermi acceleration is an efficient mechanism for energiz-

ing particles, when applied to CR in Fermi’s original approach, it suffers some severe

problems:

• First of all, as it is assumed that the energy comes from the interstellar mag-

netic clouds, the typical velocities they possess are fairly small compared with

the speed of light, V ∼ 10−4c, so the second-order dependence would give a

really tiny amount of energy in each encounter, requiring a large number of

scatterings to achieve the observed energies.

• Along with the acceleration process there will always be ionization losses that

take energy from the accelerated particles at a rate that depends on their

kinetic energy, as at lower energies the cross section is higher. This could

prevent the particles to be accelerated from lower energies, or even from the

thermal bath. Consequently, there should be another mechanism that injects

particles with energies higher than the point where the acceleration rate is

equal to the ionization energy loss rate, thus allowing further acceleration.
6For a derivation of this result and the power-law energy distribution that this process produces,

see Appendix C.
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• There is no hint or prediction in the theory telling us that the spectral index

should be obtained is 2.6 irrespective of the source or any given parameters.

In principle the spectral index can take any value.

Nevertheless, in modern versions of stochastic acceleration, the particles can in-

teract with a variety of plasma waves present in any astrophysical environment with

a certain level of turbulence. The particles can gain energy by being scattered reso-

nantly by the waves in a stochastic fashion where, depending on the parameters of

the plasma, reasonable rates of acceleration can be obtained, as we shall see in this

work.

1.2.2 First-Order Fermi Acceleration

Until the seminal works of Bell [4] and Blandford & Ostriker in 1978 [5] there

were no relevant advances in theories of acceleration. In these works, efforts were

put to describe a mechanism whose energy gain was first-order in velocity, and that

mechanism was found in the context of shock waves like the ones SNRs produce

with the surrounding interstellar medium. This process, also called Diffusive Shock

Acceleration (DSA), became a cornerstone in acceleration mechanisms because of its

efficiency and the prediction of a spectral index of ∼ 2 independent of the micro-

physics of the acceleration.

In this process, the particles are now successively crossing a shock front, and

in each of these crossings they are scattered by the motion of the magnetized fluid

present withinturbulence the shock and they will gain energy every time they cross

it, upstream or downstream. It can be shown that the energy gain in this case is7,

〈∆E
E

〉
= 4

3

(
V

c

)
(1.2)

7For a derivation of this result and the spectral index of the power-law energy distribution, see

Appendix C.

19



CHAPTER 1. INTRODUCTION

So now it is a process that is first-order in velocity. Strikingly, this process predicts

a power-law energy distribution with spectral index equal to αs = 2, independent of

the microphysics going on in the system. This definite value of the spectral index

provides a nice physical justification for the observed spectral index in different

astrophysical environments.

Even when this process constitutes a major improvement over the second-order

Fermi mechanism, an important comment deserves to be made with respect to the

assumptions and limitations of this initial version of DSA. In the derivation of eq.

1.2 it is assumed the condition of isotropization of the velocity distribution of par-

ticles as an essential condition for the process. This assumption is valid only in the

nonrelativistic limit, V � 1. Secondly, it is also assumed that the particles already

had high energies so that they do not lose energy through collisions with thermal

particles neither be deflected by them, only by magnetic fields. This issue is known

as the injection problem and even in more sophisticated versions of DSA it is not

completely solved and an initial population of already energized particles is needed.

This is one of the problems for which this work attempts to give a plausible solution.

Lastly, this derivation was performed in the “test particles” approach, in which the

accelerated particles do not exert a backreaction on the shock. This is expected to

happen, however, as the energization process would eventually generate pressures of

the accelerated particles comparable to the kinetic pressures of the incoming fluid.

This process inevitably changes the properties of the shock and the whole mechanism

becomes intrinsically nonlinear. In recent years there have been a lot of efforts to

study the nonlinear behavior of DSA (NLDSA) [16], the injection problem [17, 18]

and the geometry of the shock [19].

Finally, to put this in context, it is expected that the astrophysical environ-

ments in which these processes of particle acceleration take place are, in general,

in a plasma state with an important large-scale magnetic field, they are strongly

magnetized plasmas with very low densities and high temperatures. In these con-
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ditions, binary interactions between particles are not important or not relevant at

all, so these plasmas cannot reach thermodynamic equilibrium easily and energy can

remain stored in separated populations. Plasmas of this kind are called weakly-

collisional or collisionless. In order to reach equilibrium, these plasmas naturally

generate electromagnetic waves which can survive for many cyclotron periods, and if

a sufficient number of wave modes manage to exist simultaneously, the plasma enters

into a turbulent state. Indeed, the processes that mediate the microphysics of Fermi

acceleration, both first and second order, are this kind of waves and their interac-

tions with particles, embedded in these turbulent, collisionless plasmas. Examples

of this kind of plasmas in astrophysics are, apart from SNR shocks, low-luminosity

accretion disks (e.g. Sgr A∗ in the center of the Galaxy), the intra-cluster medium,

and the heliosphere.

1.2.3 Magnetic Reconnection

The process of magnetic reconnection is completely different from first- and

second-order Fermi mechanisms but nevertheless it constitutes a plausible mecha-

nism for accelerating particles in astrophysical environments. Magnetic reconnection

is the process in which magnetic field lines reorganize their topology along with the

release and dissipation of the magnetic energy into plasma energy. It has usually

been described in the magnetohydrodynamic (MHD) regime8. In this regime, mag-

netic reconnection occurs when the frozen magnetic flux condition breaks down on

timescales much shorter than the plasma diffusion time[20]. This breakdown gives

rise to an electric field capable of accelerating the particles. In astrophysical environ-

ments this process happen regularly whenever two different plasmas with different

magnetic flux configurations come into contact. Examples where magnetic recon-

nection could be present are solar flares [21], pulsar wind nebulae [22, 23, 24], γ-ray
8Although it is not restricted to MHD; in collisionless plasmas or in non-MHD regimes it can

develop as well, see e.g. [20].
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bursts[25, 26] and accretion flows around supermassive black holes [27].

Magnetic reconnection is commonly invoked as the underlying mechanism that

powers explosive, flaring astrophysical phenomena. The released magnetic energy

can result in heating and acceleration of particles, which in turn becomes relevant

in order to understand the different emission of these sources. For instance, in the

case of the supermassive black hole in the Galaxy, Sgr A∗, magnetic reconnection

in the trans-relativistic case9 could be relevant for explaining its flaring state [29].

Magnetic reconnection in the ultra-relativistic regime has also been invoked as a

plausible explanation for the gamma-ray flares in the Crab Nebula by means of the

emission of particles being accelerated by this mechanism [30].

Another interesting feature of magnetic reconnection is the interplay it develops

with turbulence. This is especially important in astrophysical environments, where

Reynolds numbers are usually high, so turbulence is expected to be present. The

turbulence can arise even from the reconnection itself, so this state is usually called

turbulent reconnection[31]. In this turbulent state, particle acceleration can also be

triggered, and even first- and second-order Fermi acceleration could be present.[32,

31].

1.3 Outline of the Thesis

This thesis is organized as follows. In chapter 2 we describe the numerical frame-

work and the specific setup we used in this study. An overview of the particle-in-cell

method is provided followed by the setup and initial configuration of the simulations

we ran for this study. In chapter 3 we present the results of the simulations, in

which we show how the plasma microinstabilities are triggered and develop, how

the energy distribution of ions develop a nonthermal power-law tail of stochastically
9the trans-relativistic regime is defined when the magnetization parameter, defined as the ratio

of the magnetic energy density to the enthalpy density is of the order of unity, see [28].
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accelerated ions and the way these ions are gaining energy through the interaction

with these instabilities. We finish this section with a discussion of the astrophysical

implications of this phenomenon and some guidelines for future work. Finally, in

chapter 4 we provide the conclusion of this work.
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Chapter 2

Simulation Setup

2.1 Collisionless Plasmas

As we mentioned in section 1.2.2, in this thesis we will study collisionless plasmas,

which constitute a suitable environment for particle acceleration in the Universe. A

collisionless plasma is characterized by the absence of Coulomb binary interaction,

so the dominant phenomena are collective behaviors of the plasma. The collision-

less regime occurs when the mean free path between Coulomb collisions is much

larger than the scales of the system and when the timescale of Coulomb collisions is

much larger than the characteristic timescale of the plasma; this could correspond,

for instance, to the time scale at which energy is being dissipated by some MHD

turbulence.

The evolution of a collisionless plasma can be described by the Vlasov equation:

∂f

∂t
+ ~p

γm
· ∂f
∂~r

+ q

 ~E + ~v × ~B

c

 · ∂f
∂~p

= 0, (2.1)

which is nothing more than the conservation of density in phase-space in absence

of collisions. Here, f(~r,~v, t) is the distribution function of the particles in the six-

dimensional phase-space and time, ~r the position and ~p = γm~v the momentum, and
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q the electric charge. The electromagnetic fields ~E, ~B are evolved with Maxwell’s

equations:

∇ · ~E = 4πρ (2.2)

∇ · ~B = 0 (2.3)

c∇× ~E = −∂
~B

∂t
(2.4)

c∇× ~B = 4π ~J + ∂ ~E

∂t
, (2.5)

where the net charge density ρ and the current ~J are defined by the respective

moments of the distribution function:

ρ(~r, t) =
∑
j

qj

∫
v
fj(~r,~v, t)d~v (2.6)

~J(~r, t) =
∑
j

qj

∫
v
~vfj(~r,~v, t)d~v. (2.7)

In equations 2.6 and 2.7, the sum is over all particle species and the integration

is over all velocity space. Hence, Vlasov equation for f(~r,~v, t) along with Maxwell’s

equations for the fields constitute the full set of coupled equations to describe a col-

lisionless plasma from very first principles. As a first attempt, one would want to

simulate the full evolution of Vlasov equation through all phase space. This can be

done by considering phase space as a continuous fluid and then solve Vlasov equation

with an appropriate scheme (being Eulerian or Lagrangian, see e.g.[33]). However,

this approach is computationally too expensive for astrophysical applications for cur-

rent facilities since it requires to evolve the full 6D phase space. Alternatively, this

problem can be tackled by the Particle-In-Cell (PIC) method, which is computation-

ally much less expensive, easy to implement and parallelize, and at the same time

it keeps the fundamental properties of the system. In the description of the PIC

method we will closely follows a recent nice review by Sironi & Cerutti [34].
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2.2 Particle-In-Cell Simulations: The Essentials

The Particle-In-Cell method (PIC) [35, 36] indirectly solves Vlasov equation by

a particle approach, in which the distribution function is “discretized” into several

elements which we will call “macroparticles”:

f(~r,~v, t) =
∑
p
fp(~r,~v, t). (2.8)

Each one of this “chunks” of the distribution function represents a large amount of

particles that travel through phase space near each other. Then, what PIC does is to

integrate the discrete trajectories of these macroparticles using the self-consistently

generated electromagnetic fields and Newton’s second law. This procedure is equiv-

alent to solve Vlasov equation by the method of characteristics, in which the char-

acteristic curves are these macroparticle trajectories.

Given this discretization, in order to characterize these macroparticles, they are

given a definite functional form which is used to determine their contribution to

charge density ρ(~r, t) and electric current ~J(~r, t). In principle, any function can be

chosen. As a first attempt, we can try a delta function-like distribution:

fp(~r,~v, t) = Npδ(~r − ~rp)δ(~v − ~vp), (2.9)

where Np is the number of physical particles present in the macroparticle (like

a particle weight) and δ is the Dirac delta function. However, this functional form

is not desirable as it reproduces a very spiky distribution function, giving rise to

spurious short range interactions. As we want to simulate the non-collisionality, this

scheme is unfavorable and so other functional forms that give the macroparticles a

finite size1 are usually preferred:
1There are several advantages for using finite-sized macroparticles, the most important is that

this shape suppresses the short-range interactions, reducing the occurrence of spurious collisions

and therefore contributing to the modelling of the non-collisionality.
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fp(~r,~v, t) = NpSx(~r − ~rp)Sv(~v − ~vp), (2.10)

where Sx and Sv are the so called shape functions defined to characterize the

macroparticles. These shape functions will further determine some of the properties

of the numerical method, as they will be present in the expressions for the charge

density and electric current.

2.2.1 The computation cycle of PIC

Having defined the particles, now we will describe the cycle of three steps the code

performs per timestep ∆t. We can see the cycle depicted in figure 2.1. The three steps

are: first, Newton’s equations with the relativistic Lorentz force are solved for each

particle. That allows to move the particles to their updated positions and velocities.

Secondly, the algorithm gathers the contribution of each particle to the charge and

current densities and deposits them into the grid in which the EM fields are defined.

Finally, Maxwell’s equations are solved on the grid with the source information of

the previous step and then the updated values for ~E and ~B are obtained.

27



CHAPTER 2. SIMULATION SETUP

Figure 2.1: The three stages that PIC solves to advance one timestep ∆t. First, Newton’s

equations for the Lorentz force are solved for each particle, then the charge and current densities

are collected and deposited in the grid and then Maxwell’s equations are solved.

We will briefly describe each one of these three steps:

i) Particle Pusher: Here the Newton’s equations are solved for each of the par-

ticles,

dγm~v

dt
= q

 ~E + ~v × ~B

c

 (2.11)

d~r

dt
= ~v (2.12)

With γ =
√

1− v2/c2 the gamma factor. One of the most used algorithms for

solving Newton’s equations (and the one that is implemented in the code used

in this thesis) is the Boris Pusher [37, 38]. It is a leapfrog integration method
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with very nice properties (Second-order accurate, stable, fast, among others).

The discretization of Newton’s equations reads:

(γv)n+1/2 − (γv)n−1/2

∆t = q

m

(
En + vn ×Bn

c

)
(2.13)

rn+1 − rn

∆t = vn+1/2 (2.14)

where we denote vector quantities now with bold letters to keep the notation

simple. Now, in order to transform vn in the RHS into half the timestep, we

take the average of the two others, (γv)n = ((γv)n+1/2− (γv)n−1/2)/2. This way

equation 2.14 can be solved for vn+1/2, with the aid of some convenient auxilary

variables [37].

For the position we solve for rn+1:

rn+1 = rn + ∆tvn+1/2 (2.15)

ii) Charge and current deposition: Having advanced each particle to their

new position, we need to calculate the source terms in order to solve Maxwell’s

equations. In order to do so, PIC uses a spatial grid that allows to reduce the

number of operations per timestep to O(N), with N the number of particles

(instead of the O(N2) of binary interactions). This means that the particles

feel each other through the EM fields, and not by binary Coulomb interactions.

Recalling our definition of macroparticles, the charge and current densities can

be calculated as:
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ρ(r, t) = q
∫
v

∑
p
fp(r,v, t)dv (2.16)

=
∑
p
q
∫
v
NpSr(r− rp)Sv(v− vp)dv

J(r, t) = q
∫
v

∑
p

vfp(r,v, t)dv (2.17)

=
∑
p
q
∫
v

vNpSr(r− rp)Sv(v− vp)dv

It is common to assume a delta distribution for velocities in the shape function

of fp(r,v, t), so Sv(v− vp) = δ(v− vp). In this case the above expressions can

be written as:

ρ(r, t) =
∑
p
qNpSr(r− rp) (2.18)

J(r, t) =
∑
p
qNpvSr(r− rp) (2.19)

The shape function allows the particles to distribute their charges over the grid.

It is desirable to deposit this charge density in a smooth way on the grid, so an

appropriate functional form for Sr(r− rp) should be chosen. To illustrate this,

let us analyse first the deposition to lowest order, or the so called “Nearest grid

point” deposition.

In figure 2.2 we can see how this method works in 1D. Essentially, all the charge

that a particle carries is concentrated in its position after being pushed. So if

the particle ends inside a specific cell of size ∆x, no matter in which position

inside the cell, all the charge of that particles goes into that specific cell. This

method turns out to be the simplest and fastest case, but with the cost of having

a very spiky and noisy solution.

The next order is to consider the charge uniformly distributed within the particle

finite size, or any other functional form to distribute the charge. This method is
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Figure 2.2: Schematic diagram of the Nearest Grid Point method in 1D to deposit charge and

current densities into the grid where the electromagnetic fields are defined. All the charge in con-

centrated in the position of the particle (stars) in its continuous space (upper x-axis) and the entire

contribution will be deposited into the single nearest cell to its position(lower x-axis). Figure mod-

ified from https://static.ias.edu/pitp/2016/sites/pitp/files/pictutorialas2016.1.pdf

called “Cloud-in-cell” deposition. In figure 2.3 we can see a version in which the

charge is uniformly distributed. This way, if the particle ends midway between

two cells, for instance, the corresponding amount of charge will go to both of

these cells proportionally. There exists higher order shape functions for the

particle size based on convolutions of this initial uniform shape. It is desirable

to have a shape function of an order high enough to reduce the noise without

being so computationally expensive.

iii) Fields Evolution: To evolve the electromagnetic fields, they are spatially dis-

cretized in a grid and Maxwell’s equation are solved by the Finite Difference

Time-Domain Method (FDTD) proposed firstly by Yee [39]. The method is

robust, simple and second-order accurate in space and time. The idea is to

discretize the electric and magnetic field such that every component of the elec-

tromagnetic field is decentered. This way, additionally to be decentered in time
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Figure 2.3: Schematic diagram of the Cloud In Cell method deposition in 1D. The charge is

uniformly distributed within the size of the particle in its position (star) and the amount of charge

goes into the cell according to its position. Figure modified from https://static.ias.edu/pitp/

2016/sites/pitp/files/pictutorialas2016.1.pdf

they are now decentered in space, using the same leapfrog scheme. It can be

proved that this ensures the condition ∇·B = 0 to machine precision. The grid

in the FDTD model (Yee mesh hereafter) is shown in figure 2.4.

We can see that the components of B are centered on the faces of the cell

while the components of E lie on the edges of the cell. The reason behind this

configuration becomes clear when we deal with the integration of Faraday’s and

Ampère’s Laws. For instance, when doing a contour integration of ∇ × E, its

components on the edges of the specific cell can be directly used to obtain the

desired component of ∂B/∂t, as can be seen in figure 2.4 above the cell. The

same can be shown for the integration of Ampère’s Law.

There are also some constraints on the value of the timestep ∆t and the grid

spacing ∆xg. In first place, it can be shown that the method is stable if the following

conditions, called the Courant-Friedrichs-Lewy conditions, are fulfilled:

32

https://static.ias.edu/pitp/2016/sites/pitp/files/pictutorialas2016.1.pdf
https://static.ias.edu/pitp/2016/sites/pitp/files/pictutorialas2016.1.pdf


CHAPTER 2. SIMULATION SETUP

Figure 2.4: Yee mesh and the fields components defined on it. Note that the B components are

defined on the faces of the cell and the E components are defined on the edges of the cell, totally

decentered. Indices i, j, k denote the orthogonal directions of any set of coordinates. In the upper

part it can be seen a contour integration in which the B component is normal to the surface and

the E components match exactly the circulation around the surface being integrated. Figure taken

from [40].

(
c∆t
∆x

)2
< 1 (2.20)

(c∆t)2
( 1

∆x2 + 1
∆y2

)
< 1 (2.21)

(c∆t)2
( 1

∆x2 + 1
∆y2 + 1

∆z2

)
< 1 (2.22)

Physically speaking, by the way, it is desirable that the code is capable to resolve

all the relevant scales of the system. Whether we want it or not, phenomena such

as the plasma oscillations and the Debye screening will be present in any plasma, so

it is naturally to impose the conditions of ωp,e∆t� 1 and ∆xg/λD � 1 as well.

Although the framework behind PIC codes has been around for, at least, 30

years now, it is quite recently that the computational capabilities have been pow-
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erful enough to allow this codes to simulate astrophysical conditions in a more re-

alistic way. Efforts along these lines have been made, for instance, in the context

of efficiently parallelizing these codes. The scheme usually used (which is the one

implemented in the code employed in this thesis) is domain decomposition, with

the different parallel processes communicating with each other using the Message

Passing Interface (MPI).

2.3 Numerical Setup

In this section the setup of the simulation used in this thesis is described. We used

the Particle-In-Cell, electromagnetic and relativistic code TRISTAN-MP [41, 42] in

2D and 1D. Details about the 1D implementation can be found in Appendix B. In this

code we simulate a collisionless, magnetized plasma composed of ions and electrons.

The simulation box is a square box in the x− y plane, containing the plasma and an

initially homogeneous magnetic field ~B0 = B0x̂. The system is subject to an imposed,

incompressible shear motion so that the mean particle velocity is ~v = −sxŷ, with x

the distance along x̂ and s the shear parameter with units of frequency. Consequently,

by flux conservation, the mean magnetic field is amplified such that the y-component

of ~B evolves as ∂〈By〉/∂t = −sB0. Additionally to the growth of |〈 ~B〉|, due to the

conservation of the particles’ magnetic moment µj ∝ v2
⊥,j/2B, a pressure anisotropy

arises such that ∆pj ≡ p⊥,j− p‖,j > 0. A schematic diagram of the shear motion can

be seen in figure 2.5.

The relevant varying physical parameters that characterize our simulations are

the initial plasma beta βi,init = 8πpi/| ~B|2, for which we will explore two regimes,

βi,init = 0.5 and βi,init = 2, the ion magnetization, quantified by the ratio of the

initial cyclotron frequency and the shear frequency ωc,i/s and the mass ratio of ions

and electrons mi/me and the ion temperature kTi/mic
2 (in all of our runs we use
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Figure 2.5: Schematic diagram of the simulation box subject to the shear motion Ush = syx̂. The

y-component of the mean magnetic field evolves as ∂〈By〉/∂t = −sB0 resulting in an amplification

of the mean magnetic field 〈 ~B〉.

βe=βi). Even though we consider here ωc,i/s� 12, due to computational limitations

their values are still much smaller than in astrophysical environments. The same

happens with the mass ratio, their values are still much smaller than the proton-

electron mass ratio mp/me = 1836. Nevertheless, we perform careful convergence

tests to make sure the net effect was not very sensitive to these parameters.

A fixed parameter in our simulation is kBTi/mic
2 = 0.05 (with kB the Boltz-

mann’s constant, Ti the ion temperature and mi the ion mass). The numerical

parameters are the number of macroparticles per cell, Nppc, the ion skin depth in

terms of the grid spacing c/(ωp,e/∆x) and the box size in terms of the initial ion

Larmor radius L/Rinit
L,i (with Rinit

L,i = vth,i/ωc,i and v2
th,i = kBTi/mi). A compilation

of a representative set of the run simulations are listed in Table 2.1. In order to do

some convergence tests, many more simulations were run, but only the simulations

used to show the results in chapter 3 were considered in Table 2.1.

The analysis of the outputs of every simulation were performed using routines

written by the author in Python. The analysis included the convergence tests for the

numerical parameters, for the dimensionality (1D to 2D comparison), the dependence
2In a realistic environment, like the one close to Sgr A∗, one can estimate ωc,i/s ∼ 108 [29]
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Runs mi/me βinit ωc,i/s c/ωp,e/∆x Nppc L/RL,i Dimension

R1 2 0.5 800 15 160 67 2D

R2 2 2 1600 7 160 198 2D

R3 2 0.5 800 15 640 113 1D

R4 2 0.5 800 30 320 52 1D

R5 4 0.5 1200 30 480 76 1D

R6 4 0.5 1600 30 320 44 1D

R7 8 0.5 1600 30 320 33 1D

R8 2 0.5 800 30 320 52 1D

R9 2 0.5 3600 30 320 112 1D

R11 2 0.5 1600 15 640 114 1D

R12 2 0.5 1600 7 160 74 2D

R13 2 2 800 7 160 198 2D

R14 2 0.5 800 7 160 148 2D

R15 2 0.5 800 15 1280 54 1D

R16 8 0.5 800 15 1280 63 1D

R17 32 0.5 800 15 1280 66 1D

R18 8 0.5 1600 15 1280 63 1D

R19 8 0.5 3200 15 1280 63 1D

R20 2 0.5 800 15 80 67 2D

Table 2.1: A representative set of the simulations analyzed in this work with their respective

physical and numerical parameters, corresponding to the mass ratio mi/me, the initial plasma

beta βi,init, the magnetization ωc,i/s, the skin depth in terms of the grid spacing c/ωp,e/∆x (∆x

is the separation between grid points), the number of macroparticles per cell Nppc, the size of the

numerical box in terms of the initial ion Larmor radius, L/RL,i, (RL,i = vth,i/ωc,i and v2
th,i = 3pi/ρ,

with ρ the mass density of the ions) and the dimension of the simulation box. Convergence tests

were performed and confirmed for numerical resolution of c/ωp,e/∆x, Nppc and L/RL,i.
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of the results with the mass ratio mi/me and the magnetization ωc,i/s and all the

results shown in the next chapter.

2.4 Simulating the Pressure Anisotropy-driven

Instabilities

In our simulations we seek to capture the growth and non-linear evolution of

pressure anisotropy-driven instabilities in a self-consistent way. This is important

because in realistic astrophysical settings, the instabilities are in their saturated, non-

linear regime most of the time, with the initial, exponential regime of the unstable

modes being only a short transient in the evolution of the plasma. In order to achieve

this, our simulations do not start with an already anisotropic velocity distribution of

particles. Instead, the plasma will initially have an isotropic, Maxwellian distribution

for ions and electrons. Given the action of the imposed shear motion in the plasma,

and due to magnetic flux freezing, the magnetic field starts to be amplified steadily,

so the magnetic energy grows linearly with time.

For its part, the adiabatic invariance of the magnetic moment of each individ-

ual particle µj = v2
⊥,j/2B in collisionless plasmas makes p⊥,j grow as 〈 ~B〉 grows,

that creates a pressure anisotropy p⊥,j > p‖,j, which can make the plasma unstable

and willing to return to its previous, isotropic state. This instability of the plasma

manifests itself through the rapid growth of a variety of electromagnetic waves that,

after reaching a large enough amplitude, can efficiently pitch-angle scatter the par-

ticles, producing a decrease of the pressure anisotropy. This stage of efficient scat-

tering is what we will refer to as the saturated, non-linear regime of the pressure

anisotropy-driven instabilities. Given that the magnetic field amplification is main-

tained through the entire simulation, its effect in trying to increase the particles’

pressure anisotropy also continues. This implies that the saturated stage of the in-

stabilities is characterized by the competition between the anisotropy growing effect
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of the magnetic field amplification, and pitch-angle scattering due to the unstable

modes. As we will see below, this competition ends up setting the amplitude of the

modes, which needs to be large enough to pitch-angle scatter the particles at a rate

comparable to the growth rate ∼ s of the background magnetic field.
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Results

In our study, where the pressure anisotropy of the ions is of the form p⊥ > p‖,

two plasma instabilities can arise, the mirror instability and the ion-cyclotron (IC)

instability [43, 44]. As we continuously drive the growth of 〈 ~B〉, we expect that

the pressure anisotropy growth competes with the action of these instabilities to

isotropize the pressures.

Figure 3.1 shows the three components of the magnetic and electric field fluc-

tuations δBj ≡ (Bj − 〈Bj〉)/B0 (j denotes the three spatial components and the

〈〉 denotes spatial average), at t · s = 2, for simulations R14 (upper row) and R13

(lower row), which correspond to βi = 0.5 and βi = 2, respectively. The arrows

denote the direction of the mean magnetic field on the x − y plane and we can see

that |〈By〉| ≈ 2|〈Bx〉|.

In panels 3.1c and 3.1f it can be seen that the field fluctuations that start to de-

velop propagate nearly parallel to 〈 ~B〉. This parallel propagation is a characteristic

feature of the IC modes[45]. On the other hand, panels 3.1b and 3.1e (δBy compo-

nent) show in the two simulations the presence of oblique modes, whose orientation

is typical of the mirror instability [46]. Panels 3.1a and 3.1d show a mixture of the

IC and mirror modes. The reason why the IC modes show up so clearly in the δBz

component is because the magnetic fluctuations associated to the mirror modes tend
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Figure 3.1: The three components of δ ~B (upper row) for simulation R14 (mi/me = 2 and

βi,init = 0.5), and the three components of δ ~B for simulation R13 (mi/me = 2 and βi,init = 2), at

time t · s = 2 (bottom row). The field fluctuations are normalized by the background magnetic

field B at t · s = 2 and the black arrows denote the direction of the mean magnetic field on the

simulation plane. The IC modes propagates with dominant wave vectors nearly parallel to 〈 ~B〉.

In the βi,init = 0.5 case, the amplitude of the IC modes (wave-vectors quasi-parallel to 〈 ~B〉) is

comparable to the amplitude of the mirror modes (wave-vectors oblique with respect to 〈 ~B〉). The

opposite is true in the βi,init = 2 case.

40



CHAPTER 3. RESULTS

to be mainly coplanar with their wave vector k and the background field B [47].

One important difference between the cases with βi = 0.5 and βi = 2 is that for

the βi,init = 0.5 case the IC modes contribute to the fluctuations comparably to the

other fluctuation components, whereas in the βi,init = 2 case they are not dominant.

For the triggering of the instabilities, however, the system has to surpass certain

thresholds for the anisotropies [48]. The system, therefore, will evolve steadily at

first, with the pressure anisotropy ∆pi = p⊥,i − p‖,i steadily growing as well, until it

reaches the threshold for the triggering and growth of the IC and mirror instabilities.

This marks the end of the initial phase. This regime is essentially the same in the

two βi,init cases.
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Figure 3.2: Evolution of relevant volume-averaged quantities for the same simulations R1 (βi,init = 0.5) , R13 (βi,init = 2) in figure 3.1.

In the upper row there are the quantities for simulation R1 and in the second row the ones for simulation R13. In the first column the

energy stored in δ ~B is shown, normalized by B2 for the z component (δBz, green line), the perpendicular component in the x − y plane

(δB⊥,xy, dark-red line) and parallel component (δB‖, blue line) to 〈 ~B〉. Black and red dotted lines show 〈Bx〉2 and 〈By〉2, respectively. The

second column shows the ion magnetic moment µi, while in the third column there is the ion pressure anisotropy (green line) with the linear

ion-cyclotron threshold (blue line) and mirror threshold (red line) for growth rates γω = 800/ωc,i. The fourth column shows the evolution

of the time derivative of the volume-averaged internal energy of the ions (d〈Ui〉/dt) normalized by sP0, with P0 the initial ion pressure, and

the expected rate of heating by the anisotropic viscosity q∆p.
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We can clearly identify this point in figure 3.2. Panels 3.2e and 3.2f shows the

evolution of the normalized pressure anisotropy throughout the two simulations. We

can see that around t · s ≈ 0.8 the pressure anisotropies, ∆pi/pi,‖, stop their rapid

initial growth, and reach a quasi-stationary, saturated state. The role played by the

mirror and IC instabilities can be appreciated by comparing the ion anisotropy in

the saturated state with the threshold anisotropy for the growth of the mirror and IC

instabilities with a growth rate Γgrowth = 800ωc,i (red and blue lines, respectively).1

This growth rate was chosen so that this comparison gives us an idea of whether

the ion pressure anisotropies in the simulations are capable to make the instabilities

grow at a rate comparable to the rate at which ∆pi is driven (∼ s = 800ωc,i). If

the threshold of an instability is larger than the ion anisotropy, it means that the

role played by that instability in the regulation of ∆pi is most likely weak. This is

indeed what happens in the case of the run with βi = 0.5, where the mirror threshold

is larger than the obtained anisotropy. This implies that the isotropization of the

pressure is mainly caused by the IC instability, whose anisotropy threshold is smaller

than ∆pi/pi,‖. We point out, however, that the ion anisotropy in the simulation is

a factor ∼ 2 larger than the threshold for the growth of the IC modes. This is

possibly a consequence of the departure from a bi-Maxwellian distribution of the

ions in the saturated IC state, as has been proposed by a previous study in order

to explain a similar discrepancy between linear theory and solar wind observations

[50]. Similarly, in the βi = 2 case, the pressure anisotropy is still larger than the IC

threshold (consistent with the presence of IC modes), but is significantly closer to

the mirror threshold than in the βi = 0.5 case. This last feature is consistent with

the much more prominent growth of the mirror modes in the larger βi simulation.

This point also determines the end of the regime where µi is conserved, as shown in

panels 3.2c and 3.2d. This violation of µ conservation is indicative of the particles
1These thresholds were provided by our collaborator Daniel Verscharen, who calculated them

using the linear Vlasov solver developed in [49].
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experiencing fluctuations in the magnetic fields due to the IC and mirror modes

that occur on time scales that are short enough to break the condition for adiabatic

invariance of µi. This exponential growth of δ ~B is present in both βi,init cases, as

seen in panels 3.2a and 3.2b, but in the βi,init = 0.5 case (panel 3.2a) we can see

that δB⊥ clearly dominates, being consistent with the arising of the nearly parallel

IC modes, while in the βi,init = 2 case (panel 3.2b) both components grow at the

same rate, because the mirror modes become important and contribute to δB‖ [51].

However, once the instability enters to the nonlinear regime around t · s ≈ 1.2, a

different evolution arises in the two cases. Around that time, the growth of 〈δ ~B〉

saturates and continues in a quasi-stationary regime. At this point, we can see

that the mirror mode dominates at larger values of βi,init in the nonlinear regime,

something already detected in previous works and expected to happen [52, 51]. In

contrast, in panel 3.2a there is a stage in which δB⊥ is clearly dominant, leaving time

for the IC modes to grow, until enough time has passed to δB‖ to grow and surpass

δB⊥. This dominance of the mirror modes over IC modes in nonlinear stages can

be happening because of the departure from the Maxwellian distribution the ions

initially have, that in turn can increase the threshold needed for the anisotropy to

generate the IC instability [50]. However, despite this late-time dominance of the

mirror modes, it is important to emphasize that during most of the non-linear stage

of simulation R1, the IC modes dominate over the mirror modes. This dominance

of the IC instability, as we will see below, will have important consequences for the

evolution of the energy distribution of the ions.

It is quite interesting that the rapid initial stage of growth of the pressure

anisotropy and the energy in 〈δ ~B〉 reaches a quasi-stationary state when the plasma

instabilities are present, in a way in which the last ones somehow self-regulates the

pressure anisotropy.
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3.1 Ion heating

Before going into the analysis of the energy spectra of the particles, another

essential effect in collisionless plasmas will be described, namely, the ion heating by

anisotropic viscosity. In a homogeneous, incompressible plasma with no heat flux,

the internal energy density of the ions Ui changes as (see Appendix A):

dUi
dt

= q∆pi (3.1)

where ∆pi = pi,⊥ − pi,‖ and q = (dB/dt)/B is the growth rate of the mean

magnetic field. As already seen, in a collisionless, magnetized plasma with a growing

magnetic field we have pi,⊥ > pi,‖, so the net effect is an increase in the ion internal

energy, i.e., an ion heating. The anisotropy, as we have seen, cannot grow unlimitedly

as kinetic microinstabilities arise and limit its growth. To quantify this contribution

in the simulations, we compare the variation of the total internal energy of the

ions with the expected ion heating rate by the anisotropy in panels 3.2g and 3.2h ,

where we can see that, aside from numerical noise, the two curves follow the same

trend, indicating that the internal energy is growing due to this anisotropic heating.

Moreover, we can see that, as Ui is the total internal energy, virtually all the ion

heating is produced by this anisotropic viscosity, then being the only source of energy

of the system, that ultimately comes from the imposed shearing motion.

3.2 Energy Spectra

In this section we show the evolution of the ion energy distribution throughout

the simulation with βi = 0.5 and βi = 2. This is one of the most important results

of this work and also the key feature that distinguishes the two βi,init cases in study.
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3.2.1 Case βi,init = 0.5

We can see the energy spectra for the simulation R1 for this case in figure 3.3a.

It can be seen that once the IC instability is developed around t · s ≈ 0.7 there is a

rapid growth to a nonthermal energy tail. By t · s = 3 the tail can be approximated

fairly well by a a power law dn/dγ ∝ (γ − 1)−αs with an spectral index αs ∼ 3.4,

plus the presence of two bumps at γ−1 ∼ 0.5 and we can see that the spectral index

continuously decreases even by the end of the simulation, at t · s = 3. The peak of

the spectrum also shifts to larger energies by a factor of ∼ 1.6, due to the ion heating

contribution that moves the entire spectra to larger energies.

Figure 3.3: Evolution of the ion energy distribution with time indicated by the colorbar for

simulation R1 (mi/me = 2, βi,init = 0.5, panel a) and simulation R13 (mi/me = 2, βi,init = 2,

panel b). In panel a there is a rapid growth to a nonthermal energy tail once the IC instability

is developed and the IC modes reach saturation around t · s ∼ 1. By t · s = 3 the tail can be

approximated by a power law dn/dγ ∝ (γ − 1)−αs with a spectral index αs ∼ 3.4 plus two bumps.

On the other hand, in panel b the growth of the nonthermal energy tail is also present but with

a slower growth throughout the whole simulation. By t · s = 3 the tail can be approximated by a

power law dn/dγ ∝ (γ − 1)−αs with an spectral index αs ∼ 4.9

46



CHAPTER 3. RESULTS

3.2.2 Case βi,init = 2

We can see the energy spectra for the simulation R13 for case βi,init = 2 in figure

3.3b. In this case, we can also see a nonthermal energy tail growing continuously

during all the simulation, but now noticeably more slower than in the previous case,

although by t·s = 3 the spectral index is still decreasing as well. We can approximate

the tail by a a power law dn/dγ ∝ (γ − 1)−αs with an spectral index αs ∼ 4.9. The

peak of the spectrum also shifts to larger energies by a factor of ∼ 1.2. Quite

intriguingly, in this case no bump is present at all; the growth of the nonthermal tail

is completely smooth.

3.3 Test Particles

In this section the question about the nature of the acceleration mechanism is

addressed. Up to now we have seen that there exists a population of ions that

is accelerated to higher energies from the thermal pool, forming a power-law of

spectral index αs ∼ 3.4 at t · s = 3 in the most efficient case. However, we still do

not know where this energy is coming from, whether it is from the IC and mirror

waves themselves that get damped while transferring their own energy to the ions,

or whether the interaction is rather between the two population of particles and the

waves act as a mediator to transfer the energy from thermal to nonthermal ions.

In order to tackle this questions we perform a “test particles” analysis. This

corresponds to running the simulation once and then identifying different population

of particles with specific final energies, say, selecting all particles that ended with

energies in one or more definite ranges of γ− 1. This selection can be easily done by

inspecting the final energy distribution of the particles. Then, with these particles

already identified, we re-run the same simulation exactly as the first time but now

tracking the evolution of each one of these particles, saving all their properties in

each timestep. That allows us to analyse how the particles, for instance, are being
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energized throughout the whole simulation, and see whether they are losing energy or

gaining energy, how much and by which mechanism. The nice thing about this type

of analysis is that in TRISTAN-MP it is relatively easy to follow the evolution of any

macroparticle; they can be uniquely identified and, as it is completely self-consistent,

every interaction any particle suffers can be tracked by looking at its properties and

the values of the electromagnetic fields nearby.2

We perform this analysis in the simulation R20, continuing with the focus on the

βi,init = 0.5 only. The ranges of γ − 1 we have selected are listed in Table 3.1.

To see how these particles have gained energy, we have to identify the physical

entities that are doing mechanical work on the particles. There are only two agent

in the system capable to do work, namely, the anisotropic viscosity, that is driven by

the shear motion and has the effect of heating the ions (see Appendix A), and the

electric field associated with the waves generated by the IC and mirror instability3.

Therefore, for each selected particle of both subsets we calculated the work done by

the anisotropic viscosity, q∆pi, and the electric field of the waves, W ~E, and we also

calculate the energy gain ∆γ(t) = γ(t) − γinit and compare these three quantities

throughout the whole simulation.

The evolution throughout the simulation of these quantities can be seen in figure

3.4 for the three subsets. We see that the average energy gain is roughly zero until

t · s ∼ 1 where the instabilities develop. The average energy gain is positive in both
2Note that the name we have given has little to do with the “Test Particle” analysis in linear

Diffusive Shock Acceleration, where the particles that are called “test particles” do not do any

backreaction at all to the system. Here the particles that we are calling test particles have no

special status, we have not introduced any new kind of particle, we simply select any macroparticle

the simulation itself creates, and therefore they naturally do a backreaction in the rest of the system

and participate in the whole dynamic process.
3More precisely, in a shearing plasma there exists another electric field associated with the

motion of the plasma as a whole. Nevertheless, as our simulations are performed in the frame of

reference of the shear motion, this electric field vanishes. Therefore, the electric field present in the

simulation is entirely due to the IC and Mirror waves.
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Subset Energy Range

Thermal Ions 1.0999 < γ − 1 < 1.1

Nonthermal Ions in 1st bump 3.1 < γ − 1 < 3.5

Nonthermal Ions in 2nd bump 5.8 < γ − 1

Table 3.1: Energy ranges for selecting the Test Particles in 2D

cases as well, being consistent with the continuous energy injection by the external

shear motion. For the thermal subset of test particles, we can see that their average

energy gain is dominated by the anisotropic heating, whereas the nonthermal subsets

are clearly dominated by the work of the waves’ electric field.

Figure 3.4: Evolution of the average energy gain by the test particles (red line), the average work

done by the electric field of the IC waves (blue line), the average work done by the anisotropic

viscosity associated to the shear (green line) and the sum of the electric field work and anisotropic

viscosity work (black line) for thermal ions (left panel), nonthermal ions in the first bump (middle

panel) and nonthermal ions in the second bump (right panel) as a function of time in simulation

R20. (The 〈〉 denotes average over N ∼ 100 particles and the pressure anisotropy ∆pi corresponds

only to the selected test particles.) Note the difference of the scale in the y−axis of each figure.

Note also that 〈W~E〉p is negative for thermal ions whereas for nonthermal ones it is positive and

dominates the energization.

The most notable feature comes when we compare the behavior of 〈W ~E〉p. In the

thermal subset 〈W ~E〉p is clearly negative, meaning that the waves are, on average,

extracting energy from the thermal population. Conversely, as it is mentioned in the
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previous paragraph, in the nonthermal subsets 〈W ~E〉p is clearly positive and the main

agent of energization of the particles; the contribution of the anisotropic heating is

negligible in comparison. Therefore, and as there is no other agent in the system

that could be doing work, the interpretation of the result is that the waves associated

to the instabilities are acting as a mediator, and not transferring their own energy

(e.g. à la Landau damping) between the two populations; the waves extract energy

from the thermal particles and then transfer this energy to the smaller nonthermal

population. This effect has been studied in the context of electron acceleration

mediated by whistler waves in the radiation belts [53, 54, 55], and it would be very

interesting to see if we are seeing here the same type of mechanism. The high energies

that nonthermal particles can achieve compared with the average energy gain of the

thermal ones is possible as the number of thermal particles is much larger than the

number of nonthermal particles, so the waves can extract little energy per particle

but having a huge population to do this, and then they give that energy to a very

few nonthermal particles, so the net energy transfer could be significant.

As the real agent driving the acceleration of the particles could be the electric field

associated to the waves, it is of interest to compare its behavior in the two βi,init cases.

In figure 3.5 we can see the fluctuations of the z component (i.e. the component out

of the simulation plane) of the electric field for the two cases. These fluctuations

show a clear spatial correlation of the electric field with the IC modes (see Figures

3.1c and 3.1f for comparison). This implies that the electric field associated to the IC

modes is what is causing the non-thermal acceleration of the ions. This scenario is

consistent with the fact that the amplitude of the z-component of the electric field is

larger in the βi = 0.5 case (the x- and y-components of the electric field show similar

amplitudes), which corresponds to the case with the most efficient acceleration.

As the instability modes interact with the particles and start transferring energy

between each other, this allows some fraction of them to accelerate to higher energies

making the power-law tail. However, the purely growing nature of mirror modes
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Figure 3.5: The z component of the electric field fluctuations normalized by B of simulation R1

for the βi,init = 0.5 case (panel a) and simulation R13 for the βi,init = 2 case (panel b) at t · s = 2.

The black arrows denote the direction of 〈 ~B〉. In both cases the electric field is clearly correlated

with the IC modes, as can be seen from their orientation quasi-parallel to 〈 ~B〉.

(their real frequency is zero) makes them not to generate any electric field capable to

do work on the particles. Conversely, the IC modes have a finite real frequency, which

makes them capable to propagate and therefore have a net electric field associated.

This electric field, which is given by the phase velocity of the IC waves, is responsible

for the energy transfer and further acceleration of particles.

3.4 1D Simulations

Up to this point, in this work we have presented results of 2D simulations of the

system in study. This scheme is desirable, as two dimensions are needed to cap-

ture the physics of IC and Mirror instabilities, with emphasis in the latter, because

they always have wave vectors oblique to the mean magnetic field 〈 ~B〉, as seen in

figure 3.1 (panels g,h). Unfortunately, PIC simulations, along with being capable to
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capture the evolution of the plasma in a self-consistent way, they have a computa-

tional cost that scales very quickly with simulation parameters and dimensionality,

turning sometimes computationally intractable up to now. That limitation made

us to perform the 2D simulations with values of relevant parameters not physically

realistic. This is the case for the mass ratio mi/me and the magnetization ωc,i/s.

The dependence of the results on these two parameters is necessary to be studied, in

order to ensure the effect is physically relevant and not only present in these space of

parameters. In this section we show the results in 1D simulations of the same setup

in order to push the values of the mass ratio mi/me and the magnetization ωc,i/s as

far as possible (as 1D simulations are computationally much less expensive) in order

to make sure that the main features seen before are not heavily dependent on these

two parameters.

The simulation setup for 1D simulations is explained in detail in Appendix B , but

it is essentially the same as 2D but now collapsing the dimension that is perpendicular

to the direction of the mean magnetic field 〈 ~B〉, so now we just capture the dynamics

occurring along the direction of 〈 ~B〉. This has the notable property that it allows us

to keep capturing the development and further propagation of the IC modes, as they

propagates parallel to 〈 ~B〉. This is key for the usefulness of 1D simulations, as the

IC modes are the main actor in accelerating the ions. On the other hand, as mirror

modes has wave vectors oblique to the mean magnetic field, in 1D we are not able

to capture them. Therefore, our 1D simulations will be used only to study the case

βi = 0.5, where we know that the IC instability dominates for most of the simulation

time and, therefore, where the non-thermal acceleration of the most efficient.

Our way to simulate a shearing plasma in 1D is new, and the present work

constitutes the first time that this simulation method is being used. Thus, in order

to show its accuracy, in what follows we compare our 2D results for βi = 0.5 with

analogous calculations using our 1D setup.

First, we compare the ion energy spectra of 1D simulation R3 and 2D simulation
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Figure 3.6: Ion energy distribution for simulation R3 for 1D (rainbow colors) with time indicated

by the colorbar and the final energy distribution for simulation R1 for 2D (black thick line). At

t · s = 3, both 1D and 2D spectra can be described reasonably well by a power-law tail dn/dγ ∝

(γ − 1)−αs with spectral index αs = 3.4 (dashed line) plus two bumps. The 1D spectra are scaled

vertically so that both peaks coincide.

R1 at t·s = 3 in figure 3.6. We can see that, aside from the noise in the 1D spectrum,

both behaves almost exactly the same: we obtain the same nonthermal energy tail

with the same spectral index αs. Consequently, this is a strong indication that we

are effectively capturing the same process of acceleration in 1D simulations.

Secondly, in figure 3.7 we compare the magnetic fluctuations in the z direction

δBz, where we can see more clearly the IC modes, in terms of the scales of the

simulation box normalized by the initial Larmor radius of the ions. We compare here

simulation R4 for 1D with simulation R1 for 2D. It can be seen that the wavelength

of the IC modes are of the same order between 1D and 2D simulations.
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Figure 3.7: The magnetic fluctuations in the z direction δBz normalized by B at t · s = 2,

for simulation R4 for 1D (panel b) and simulation R1 for 2D (panel a), both with mi/me = 2,

βi,init = 0.5 and ωc,i = 800. Note that in both cases the dominant wavelength for the IC modes is

roughly λIC ≈ 15RL,i.
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In figure 3.8 we compare the evolution of the energy stored in δ ~B for δBz and

δB‖ components, that are the ones meaningful to compare with 1D simulations. The

simulations shown here are the same as in figure 3.7. For the case of δBz, in which

the presence of the IC modes is more clearly revealed, the same growth is seen in the

beginning but once the nonlinear regime is reached, the energy in this component is

maintained in 1D while in 2D it drops to a lower value. This is produced by the fact

that in 1D the mirror modes cannot be captured so they do not appear as they do

in 2D, where they can develop and demote the IC modes to a subdominant role in

later times.

Figure 3.8: Evolution of energy stored in δ ~B for simulations R4 in 1D (panel a) and R1 in 2D

(panel b) for the components δBz (green line), δB⊥,xy (red line) and δB‖ (blue line). The different

energies are normalized by B2. The evolution is quite similar between 1D and 2D.

In the case of δB‖, where mirror modes are expected to have a predominant

presence, we see that in 2D they can develop and the energy can grow in later times

while in 1D the energy in this component is very small at the beginning and it can

grow up to δB‖ ∼ 10−3, being clearly sub-dominant. As for the case of the δB⊥,xy
component, it captures part of the IC modes (as they are circularly polarized) and
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mirror modes, so in 1D they follow the same trend as the δBz component as the

mirror modes are clearly sub-dominant, while in 2D they decay quicker than δBz, as

IC modes start to fade away in favor of mirror modes at later times.

Figure 3.9: Evolution of the energy in δ ~E for simulations R4 in 1D (panel a) and R1 in 2D (panel

b) for the components δEz (green line), δE⊥,xy (red line) and δE‖ (blue line). The different energies

are normalized by B2. The evolution is quite similar between 1D and 2D.

Additionally, we also compare the evolution of the energy stored in δ ~E in 1D

and 2D in figure 3.9 for the same components as before: δE2
z , δE2

⊥,xy and δE‖. We

can see that in both cases δE2
z and δE2

⊥,xy reach the same amplitude, with the 1D

case presenting a slightly larger amplitude (panel 3.9a), and evolves similarly until

t · s ∼ 2.2, where the main difference happens. After that time, δE2
z quickly drops

in the 2D case (panel 3.9b), whereas in 1D it remains in the same level. This drop

in 2D coincides with the rise of δB2
‖ , meaning that at later times mirror modes start

to dominate over IC modes in the 2D case, whereas in 1D they do not appear as

they cannot be fully captured. This absence of mirror modes in 1D also explains

the overall larger amplitude of the perpendicular components δE2
z and δE2

⊥,xy in 1D

compared to 2D.
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Finally, we compare the evolution of the pressure anisotropy and the time deriva-

tive of the internal energy compared with the expected rate of heating by anisotropic

viscosity in figure 3.10. The comparison is again using the same simulations R1 and

R4. In the case of the anisotropy, in panel 3.10a, we can see qualitatively the same

behavior both in the linear regime and when it saturates, and both curves coincide

fairly well, except that the 1D curve evolves below the 2D curve (by about 10%) until

almost the end of the simulation. In the case of the time derivative of the internal

energy, in panel 3.10b, we see that in both 1D and 2D simulations the behavior is

quite similar, so the effect of anisotropic heating is very well captured in 1D and 2D

simulations.

Figure 3.10: Evolution of the pressure anisotropy (left panel) and the time derivative of the

internal energy of the ions along with the expected rate of heating by anisotropic viscosity (right

panel) for simulations R4 for 1D (solid line) and R1 for 2D (dashed line). For both 1D and 2D runs

the behavior of these quantities is quite similar.

Having passed these tests, we can ensure that the correct and relevant physics is

properly captured when going to 1D simulations. Although it is inevitable to leave

out the physics of mirror modes; in the case of simulations with βi,init = 0.5 this is
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not relevant since our main concern is to capture the physics of the ion acceleration.

Now in 1D, we can push physical parameters further and, as we will see below, it

turns out that the ion acceleration persists and does not suffer major changes in

behavior.

3.5 Mass Ratio/Magnetization Dependence

In this section we show the results of 1D simulations and the scaling of our main

results with larger mass ratios and magnetizations. We will see that the acceleration

feature is robust under the scaling of these parameters; the net rate of acceleration is

maintained and do not heavily depends neither of these two parameters. This is key

for trying to justify this acceleration mechanism as a astrophysically relevant one.

Figure 3.11: The energy distribution of ions (left panel) and electrons (right panel) for three

different mass ratios of simulations R15 (mi/me = 2), R16 (mi/me = 8) and R17 (mi/me = 32)

with ωc,i = 800 at t · s = 3. Not how the anisotropic heating is remarkably more relevant for

electrons than for ions. The power-law tail becomes softer when increasing mass ratios in the case

of electrons whereas in the case of ions it remains the same.

In order to know how the acceleration rate scales with the mass ratio, we com-
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pared three different 1D simulations, R15, R16 and R17 with three different mass

ratios, mi/me = 2, mi/me = 8 and mi/me = 32 respectively and the same magneti-

zation of ωc,i/s = 800. This comparison can be seen in figure 3.11. Even though this

thesis is focused in the dynamics of ions, in this case the evolution of the electrons is

also shown to evidence how different the populations respond to the increase of the

mass ratio and to emphasize the fact that R15, R16, R17 are indeed three different

simulations with different mass ratios and not three runs with the same parameters.

This is indeed what the spectra in figure 3.11a may suggest, given the remarkable

overlap between the three curves.

In the case of ions, it can be clearly seen that the effect of the acceleration and the

formation of the nonthermal tail is not sensitive to mass ratio at least in this range.

Unfortunately, due to computational limitations we could not further increase the

mass ratio to larger values. Nevertheless, this diagnostics supports the claim that

the development of a nonthermal tail does not strongly depends on the mass ratio

between ions and electrons. In the case of electrons, on the other hand, the mass

ratio is critical, as it affects both the heating of the distribution as a whole and the

hardness of the power-law tail, becoming softer as the mass ratio is increased.

Finally, we compare the behavior of the acceleration rate in the energy dis-

tributions for different, increasing magnetizations of ωc,i = 800, ωc,i = 1600 and

ωc,i = 3200 for mass ratio of mi/me = 8 for simulations R15, R18 and R19, respec-

tively. The comparison can be seen in figure 3.12

We can see that the left “thermal” half of the distributions converge reasonably

well, while when we go to the nonthermal tail we can see discrepancies for different

magnetizations, especially to the end of the tail. The larger the magnetization, the

harder is the tail. Although clearly in 1D we are not converging in magnetization,

and therefore within this range of parameters we cannot say if the spectral index

would converge to a definite value, the trend goes in the regime where the tail become

harder, leaving interesting questions about the behavior of the acceleration to larger
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Figure 3.12: Ion energy distributions for three different magnetizations, ωc,i = 800, ωc,i = 1600

and ωc,i = 3200 and mass ratio of mi/me = 8 at t · s = 3 of simulations R15, R18 and R19

respectively.

and more realistic values of ωc,i/s.

We have seen that the growth of a nonthermal energy tail in the energy distribu-

tion of ions is a robust effect that weakly depends on the two most relevant physical

parameters of the simulation, namely, the mass ratio mi/me = 2 and the magneti-

zation ωc,i/s. Although the values here evaluated are fairly modest compared with

more realistic (mi/me ≈ 1836) and astrophysically relevant (ωc,i/s � 1) quantities,

the trend is very clear; the acceleration rate tends to reach equal or larger values,

giving the same or slightly harder nonthermal tails in the ion spectrum. Giving this,

we can state that this acceleration mechanism can be an efficient way to energize
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particles in astrophysical environments with βi . 1.

3.6 Test Particles in 1D

In section 3.3 we calculated the viscous heating and the work done by the electric

field of the mirror and IC waves on different populations of ions in the 2D simulation

R20. Our conclusion was that the small population of nonthermal ions got accel-

erated ultimately gaining energy from the larger population of thermal ions, and

this process is mediated by the IC waves, in other words, the waves only act as a

channel through which the thermal ions, on average, give energy to the waves and

these waves, in turn, transfer that energy to the nonthermal population, accelerating

them.

Here we perform the same analysis using the 1D simulation R11, again focusing

in the βi,init = 0.5 case only. The ranges of γ − 1 we’ve selected are listed in Table

3.2.

Subset Energy Range

Thermal Ions 1.098 < γ − 1 < 1.102

Nonthermal Ions 2 < γ − 1 < 4

Table 3.2: Energy ranges for selecting the Test Particles in 1D

The evolution throughout the simulation of these quantities can be seen in figure

3.13 for the three subsets. Essentially, we see the same behavior as in the 2D simu-

lations described in section 3.3. As we enter to the nonlinear regime at t · s ∼ 1, the

average energy is positive for both thermal and nonthermal particles, the thermal

particles are dominated by the anisotropic heating and the nonthermal particles,

both in the first and second bump, are dominated by the work of the electric field of

the IC waves.
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Figure 3.13: Evolution of the average energy gain by the test particles (red line), the average

work done by the electric field of the IC waves (blue line), the average work done by the anisotropic

viscosity associated to the shear (green line) and the sum of the electric field work and anisotropic

viscosity work (black line) for thermal ions (left panel), nonthermal ions in the fist bump (middle

panel) and nonthermal ions in the second bump (right panel) as a function of time in simulation

R11. (The 〈〉 denotes average over N = 100 particles and the pressure anisotropy ∆pi corresponds

only to the selected test particles.) Not the difference of the scale in the y−axis of each figure. Note

also that 〈W~E〉p is negative for thermal ions whereas for nonthermal ones is positive and dominates

the energization.

Likewise, we also see here the same behavior as before relative to the work of the

electric field associated to the IC waves; in the case of the thermal ions this work is

negative, whereas in the two populations of nonthermal particles the work is positive

as well. This way, in 1D simulation we also see that the IC waves are acting as a

mediator between thermal and nonthermal particles, so on average thermal particles

give energy to the nonthermal ones. With this final analysis we can be sure we are

effectively capturing all the essential phenomena in our 1D simulations.

3.7 Ion Cyclotron Wave-Particle Interaction

We’ve seen that the ions interact with the IC waves in a fashion that on average

ends with a strong energization of a small population of particles to higher ener-

gies. Now we will describe how this interaction is happening. Although there exists
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extensive literature for this specific type of wave-particle interaction and others, it

involves complicated calculations from quasilinear formalism for treating these kind

of velocity-space instabilities at the fully kinetic regime (e.g. see [56, 57]) that will

rather obscure the discussion, so we will keep the discussion simple and focus on the

physics of the interaction and referring to the corresponding literature for further

exploration.

The Ion cyclotron instability [45, 58], sometimes also called the Ion cyclotron

anisotropic instability [44] is triggered when we have a weakly collisional, magne-

tized plasma of electrons and ions in which the velocity distribution of ions becomes

anisotropic, or, when averaging over velocity space, results in a pressure anisotropy

∆p = p⊥ − p‖ > 0, or equivalently, p⊥ > p‖. Given a plasma of these kind, the

instability rests in the resonant interaction of ions with small-amplitude, left-hand

polarized IC waves4 propagating through the plasma, that is, when an IC wave with

frequency ω encounters an ion rotating around the magnetic field with cyclotron fre-

quency Ω = eB/mc and parallel velocity v‖ such that the Doppler-shifted frequency

of the wave to the reference frame of the ion, ωs, matches the corresponding cyclotron

frequency of the ion [59]:

ωs = ω(~k)− k‖v‖ = Ω (3.2)

When this condition5 is fulfilled, the particle and the wave can exchange energy
4Ion cyclotron wave is part of the shear Alfvén waves branch, so it is a fundamental mode of a

magnetized plasma. In particular, left-hand polarization is referring to electromagnetic waves with

circular polarization in which the electric field rotates counterclockwise around the magnetic field,

the same sense of ions.
5In general, the condition is written as ωs = ω(~k) − k‖v‖ = lΩ, with l the lth harmonic of the

cyclotron frequency, i.e., the electric field rotates l times around the magnetic field per cyclotron

round. This way, the resonant interaction can happen with any harmonics. It is interesting to

note that l = 0 corresponds to the well-known Landau resonance, and the cyclotron resonance here

studied corresponds to l = 1.
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efficiently. This energy exchange can result in a ion energization and consequent wave

damping or the other way around, an energization of the wave at the expense of the

ion, depending on the parallel velocity v‖ of the ion. Analogously to Landau damping,

if the ion has slightly larger parallel velocities compared to the phase velocity of the

IC wave, v‖ > vφ = ω/k, the ion lose energy to the wave. Therefore, additionally

to the resonance condition, it is necessary to have a distribution function with more

ions moving at higher speeds than the phase velocity of the wave, so the net effect

is to transfer energy to the waves to be generated and therefore feed the instability.

It is because of this that it is initially needed an anisotropic velocity distribution for

the ions; it can be shown that this type of distribution is unstable to the generation

of IC waves, in which the free energy that goes into the wave generation is stored in

the anisotropy [60].

As we have seen in section 2.4, once the IC instability is developed and saturates,

a quasi-stationary state is reached, in which the consequent ion acceleration also

begins. In this state, the pressure anisotropy suffers, on one side, the continuous

growth from the shear motion and, on the other side, the reduction of the anisotropy

by the instability itself, that tries to regulate the level of anisotropy in the system.

This regulation process is done by the pitch-angle scattering of ions by the IC waves,

that, additionally to the energy transfer seen in section 3.3, it tries to randomize the

velocity distribution of the ions, therefore reducing the level of anisotropy [59].

There are several works that claim that, in any system composed of waves and

particles which also present linear wave growth or wave damping will tend to reach

a quasi-stationary state, or marginally stable state [59, 50] in which there is no

longer net growth or damping of the IC waves (i.e. the IC dispersion relation would

have γ(k) = 0 for all k, where γ(k) is the imaginary part of the complex wave

frequency ω = ωr + iγ). Although this state is expected at least theoretically, there

are reasons to doubt if this is actually the case in our simulations. One important

reason is related with the nature of the shear motion; as the box is being sheared
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continuously and the IC waves are generated and propagate parallel to 〈 ~B〉, and this

magnetic field is also continuously changing its direction, there is a continuous growth

of new IC waves at every timestep, as well as there’s a continuous damping of the

old ones at the same time, contrary to the scenario previously discussed. Therefore,

even when there’s a quasi stationary state in which a population of IC waves is

maintained throughout the simulation, the population is continuously “recycling”

itself, damping the first ones and growing new ones. Additionally, the newer waves

should have different properties compared with the older ones, as at least a fraction

of them would be generated by already accelerated particles, that in turn would

resonate at other frequencies.

3.8 Plausible Astrophysical Applications

In this section we discuss several astrophysical contexts in which this acceleration

of ions could take place. First of all, we discuss the long term behavior of the shearing

motion since, although our simulations arbitrarily stop at t·s = 3, there is no physical

reason for the system to stop at that time. Questions regarding the inverse process

of unshearing motion from an already sheared configuration and the combination

of these two motions in a shearing-unshearing cycle are also addressed in light of

discussing what would happen to the spectral index of the final power-law in the ion

energy distribution. Secondly, we discuss the possibility of these accelerated ions to

be initial seeds for other processes of acceleration such as Diffusive Shock Acceleration

in shock waves. Finally we analyze the feasibility of having the acceleration process

here studied in real astrophysical environments such as in the neighbourhood of Sgr

A∗.

65



CHAPTER 3. RESULTS

3.8.1 Long-term Evolution of the System

Although all of our 2D and 1D simulations stop at t · s = 3, there is no physical

reasons at all to assume something special happens at this time, so it is of great

interest to know what would happen in the long term. One of the most interesting

questions in this regard is the behavior of the spectral index αs with the shear. We’ve

seen that the spectrum in our simulations still grows when we reach t · s = 3 (see

fig. 3.3), so it is still an open question if a convergence is reached at some point in

the spectral index or not. If a further shearing implies a larger acceleration rate, the

observed power-law tail could reach a harder spectral index in practice, given that

in some astrophysical environment the system could have many more shearing times

than just three.

Another interesting feature to analyse is the inverse process, namely, the un-

shearing of the box starting from an already sheared initial configuration. This is

relevant because in the context of turbulent motion (A rather common ingredient in

astrophysical environments) it is expected that the system suffers both shearing and

unshearing motions at these scales. In the process of unshearing, the magnetic field

now would decrease, and the anisotropy would be then p‖,i > p⊥,i , so there would

be no cyclotron or mirror instabilities triggered, and the firehose instability would

possibly arise instead [61]. This makes the process a completely different one that

in principle could or could not continue accelerating the particles.

Finally, a more realistic approach to this problem would be to see the long term

evolution of a system with several cycles of shearing and unshearing motions, in the

context of a turbulent astrophysical environment. It is uncertain if this process would

have any kind of convergence in the acceleration of the ions, but it can be argued

that if in both shearing and unshearing motions a certain acceleration is present, the

final spectral index would probably be harder than the αs ∼ 3.4 obtained in this

study, making this mechanism a very promising process of acceleration.
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3.8.2 Seed particles and the injection problem

In the context of Diffusive Shock Acceleration (DSA), there exists the so called

“injection problem”, in which it turns out that DSA can only accelerate particles

whose energies are already several times the typical thermal energy, so the particles

need to achieve a minimum energy first in order to be injected into DSA, otherwise

they cannot be accelerated in the first place (see e.g. [62]). The question of how

thermal particles can achieve that threshold energy cannot be explained within DSA

theory. In this context, there have been several efforts to understand the evolution

of DSA in a system with already accelerated particles, sometimes called “seed par-

ticles”. This problem is relevant as long as the process of acceleration here studied

could be a plausible mechanism for generating these seed particles by accelerating

them from the thermal pool. Furthermore, this scenario could be of relevance in as-

trophysics, for instance, in the context of the shock propagation of SNR into the ISM,

which is already filled with some population of cosmic rays. In this line, the work

of Caprioli et al. [18] is worth to mention. They tackled the problem numerically,

using hybrid plasma simulations (i.e. kinetic ions & fluid electrons). They include

a population of thermal ions and seed particles already accelerated in a shock, and

they found interesting differences in the development of DSA with respect to the

case with thermal particles only. They found an enhancement of the acceleration

efficiency for oblique shocks, unlike the old case in which for angles ϑ & 60◦ the

acceleration efficiency becomes negligible. This happens because the reaccelerated

seed particles drive a non-linear back-reaction into the plasma triggering the stream-

ing instability and amplifying the magnetic field, introducing turbulence into the

system. Furthermore, in this non-linear regime and for quasi-perpendicular shocks

now (ϑ & 70◦), two intriguingly new phenomena arise: the acceleration of ions by

turbulence (and not DSA anymore!) driven by the seed particles themselves and a

re-acceleration of these seed particles to a spectrum that does not depend on the

compression ratio only, as DSA classically predicts. Consequently, the mechanism
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of acceleration studied in this thesis could be a promising candidate to explain the

origin of these seed particles, as an alternative to the assumption of the pre-existence

of an already energetic population of particles (e.g. cosmic rays within the ISM).

This mechanism can be even part of the same DSA process, as a secondary acceler-

ation by turbulence in the same region where shock acceleration is acting or nearby.

A more careful analysis of this ideas could be a very interesting pathway for future

works.

3.8.3 The case of Sgr A∗

Sagittarius A∗ (Sgr A∗) is a bright and compact radio source located at the

Galactic Center. Observations of the dynamics of nearby S-stars have determined

that it coincides with the location of the Supermassive Black Hole (SMBH) of the

Galaxy, with a mass of 4 × 106M� and a bolometric Luminosity of Lbol ≈ 1036 erg

s−1 in the quiescent state. This luminosity is ∼ 9 orders of magnitude lower than

the Eddington luminosity for a SMBH of that mass [63], whereas its accretion rate

is ∼ 7 orders of magnitude lower than the Eddington accretion rate [64].

Observationally speaking, Sgr A∗ has been detected mainly in radio, sub-mm,

NIR and X-ray. It presents a strong, rapid variability in NIR and X-rays and periodic

episodes of very bright flares [65]. This variability is also temporally correlated

between sub-mm, NIR and X-rays [29]. This indicates that the source of these

emissions could be a population of relativistic electrons near the SMBH which emits

synchrotron radiation from radio to NIR, while X-rays arise from inverse Compton

or synchrotron self-Compton scattering [66].

Recent observational and theoretical works have suggested that in order to fully

explain the emission from Sgr A∗ , non-thermal populations of electrons (for sub-mm,

NIR and X-rays)[29, 67] are necessary. Furthermore, in 2006 The HESS collabora-

tion reported gamma-ray emission in an extended region around Sgr A. The spatial

correlation found between them and molecular gas indicates that the origin of this
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emission is hadronic [68]. Additionally, a more recent study has shown evidence for

the extended emission around Sgr A* to be originated by hadronic CRs accelerated

within 10 pc from Sgr A*, which points to the accretion flow in this system as a

viable source of acceleration of these particles [69]. Remarkably, whatever is accel-

erating CRs within this region, is being able to accelerate them to PeV energies,

which is what is needed to explain the spectrum of cosmic rays until the so called

“knee”. To date, the standard paradigm for the acceleration of CRs to PeV energies

−namely, DSA at supernova remnant shocks− has not shown convincing evidence

of being able to reach such high energies [15], which emphasizes the importance of

what is found in [69].

The conditions of low luminosity and low accretion rate of Sgr A∗ cannot be ex-

plained by the common geometrically thin, optically thick models [70], which predict

a typical luminosity L ≈ 0.1ṀBc
2 ∼ 1041 erg s−1, five orders of magnitude larger

than the observed luminosity of Sgr A∗ (see e.g. [71]). Instead, these types of en-

vironments are well described by Radiatively Inefficient Accretion Flow (RIAF) and

Advection-Dominated Accretion Flow (ADAF) models, which consider instead a ge-

ometrically thick, optically thin disk where a very small fraction of the gravitational

potential energy is converted into radiation as the material is accreted; the majority

of it is converted to thermal energy and advected into the black hole instead [72].

This way, Sgr A∗ can be described as a hot, low density, ionized plasma. In these

conditions, it is expected that protons and electrons have different temperatures.

Assuming that the majority of the energy goes into thermal energy and the system

is virialized,

〈KE〉 ∼ kBTs ∼
GMms

RS
(3.3)

With Ts the temperature of the species s, ms the mass of the species s, M ≈

4 × 10−6M� the mass of the SMBH of Sgr A∗ and RS = 2GM/c2 ∼ 1012 cm its
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Schwarzschild radius. Therefore, the expected temperature for protons is Tp ∼ 1012

K near the black hole horizon. The estimate of the electron temperature cannot be

estimated by the same reasoning as protons, however. These two species are expected

to decouple to each other due to the absence of Coulomb collisions between them.

This, plus the fact that electrons cool down more efficiently than ions, implies that

electron are in principle significantly cooler than the ions. This thermal decoupling

betwen ions and electrons can be checked, to orders of magnitude, by comparing the

typical thermalization times between electrons and ions6, tthermal, with the typical

accretion time tacc in ADAF models, from a distance of the order of the black hole

horizon, let’s say around R ∼ 100Rs,

tthermal = 1
νe−ieq

= 3(2π)1/2πmemi(4π)−2(v2
e + v2

i )3/2

e2q2
i ne ln Λ(e,i) (3.4)

tacc(R) ∼ R

vR
= R

αcs
(3.5)

Where me, mi are the masses of electrons and ions, respectively, vs ∼
√
kBTs/ms

the velocity of the species s, e the electron charge, qi the electric charge of the ions,

ne the density of electrons, ln Λ(e,i) is the Coulomb logarithm and vR ∼ αcsH/R is

the radial velocity of the flow, where we have set H/R ∼ 1 as disks are geometrically

thick in ADAF models [72]. Finally, cs =
√
kBTe/mi is the sound speed of the gas

and α is the usual dimensionless Shakura-Sunyaev viscosity parameter [70].

The typical density is well constrained at the Bondi radius RB ∼ 105RS by X-ray

observations, and it is found to be nB ∼ 100 cm−3 [74]. Closer to the SMBH the

values are uncertain, but by means of GRMHD simulations, several works have been

found scalings for the density profile of n ∝ r−1 [75, 76]. Adopting such scaling, at

distances of R ∼ 10 − 100Rs the density has the value n(R) ∼ 106 cm−3. In these

conditions, considering Tp ∼ 1012 K, a rough estimate for Te ∼ 1010 K and ln Λ ∼ 20,
6For this thermalization time we use the inverse of the thermalization frequency defined in eq.

C14 of [73].
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we obtain tthermal ∼ 103 yr. Furthermore, adopting α ∼ 0.01 we obtain tacc ∼ 10−1 yr,

so we can safely consider the plasma surrounding Sgr A∗ as a collisionless plasma.

Furthermore, Sgr A∗ is believed to be magnetized (B ∼ 30 G [77]). These facts,

along with the discovery of the first PeVatron in the vicinity of Sgr A∗, which means

that acceleration of particles (and in particular ions) is indeed present, makes this

environment a suitable one to test the kind of acceleration processes like the one

studied in this thesis. In particular, there exist regions in accretion disks where

β . 1, for instance in the corona [78], and also in ADAF [28]. This is important

as we have seen that the mechanism of acceleration is more efficient around those

values of the plasma beta.

Although it is still too soon to give a direct prediction of how efficient this mech-

anism would be to accelerate protons in the surroundings of the Galactic Center

given our limitations on mass ratio, magnetization and dynamical ranges, we can at

least compare the timescales for the development of the IC instability, tIC ∼ s−1 (i.e.

when t · s = 1, see section 2.4) in our system and the typical lifetime of a particle in

the accretion disk, tacc,

tIC = s−1 = 2
3 (ω0(r = 100Rs))−1 = 2

3

√
(100Rs)3

GM
∼ 10−4 yr (3.6)

Where we have considered the shear frequency s = 3ω0(r)/2 for the case of a

Keplerian disk [79] with the angular velocity at r = 100Rs. We can see that tIC is

much smaller than tacc, so in the accretion disk of Sgr A∗ the IC instability has plenty

of time to develop and generate enough turbulence to start to pitch-angle scatter the

particles. With this brief analysis we can confirm that the Galactic Center is one of

the best candidates for testing this and other mechanisms of acceleration driven by

turbulence in collisionless plasmas.
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Conclusions

In this Master thesis we’ve performed 2D and 1D Particle-In-Cell (PIC) simula-

tions to study the acceleration of ions by the resonant interaction with ion-cyclotron

(IC) waves generated by the IC instability in a collisionless, magnetized plasma with

a growing magnetic field. Many astrophysical plasmas have densities sufficiently low

to have a particle mean free path much larger than the scales of the system, or the

collision frequency much smaller than the inverse of the typical macroscopic time

scale of the system, so they behave as collisionless plasmas. In absence of collisions,

the plasma becomes inefficient in distributing the energy and it is expectable that

populations of energetic particles (i.e. with energies far exceeding the thermal en-

ergy of the plasma) naturally start to arise. Furthermore, evidence of the existence

of energetic and very energetic particles (mostly protons) in the Universe is nowa-

days profuse and conclusive, constituting a ubiquitous component of the Universe at

almost all scales from the Solar System to the ICM. Here we studied a prospective

mechanism of stochastic acceleration of ions by the scattering of IC waves in a mag-

netized, collisionless plasma subject to an imposed shear motion which can mimic

a very general astrophysical situation, such as the differential rotation of a low-

luminosity accretion disk around a compact object or an incompressible, large-scale

MHD turbulence.
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After giving a broad introduction on the properties of cosmic rays and a descrip-

tion of the two most classical mechanism of acceleration, namely, first and second

order Fermi mechanisms (See Chapter 1), along with an introduction of the essentials

of the Particle-In-Cell numerical method, the numerical setup and initial configura-

tion of our simulations was presented along with a list of a representative set of the

simulations run for this study (see Chapter 2). On Chapter 3 we present our main

results, in which we initially run 2D simulations where we explored two regimes of

initial plasma beta, βi,init = 0.5 and βi,init = 2. Although in both cases a net ac-

celeration is present so we could see the growth of a nonthermal power-law tail in

the ion energy distribution, in the βi,init = 2 case the acceleration was fairly weak

compared with the βi,init = 0.5 case, for which a spectral index of αs = 3.4 was

obtained. A thorough analysis of the numerical convergence of these simulations

was carried out, ensuring the results were robust numerically speaking. Another

analysis of physical convergence was also carried out for the mass ratio parameter,

mi/me and magnetization parameter ωc,i/s, because initially we used fairly unre-

alistic values for each of them compared to astrophysical environments, due to the

computational limitations current facilities impose in our simulations. In order to do

these tests, we perform 1D simulations which are cheaper computationally speaking,

so we could be able to push these parameters to higher values and check if the net

acceleration of ions and power-law tail growth was maintained so our results could be

relevant in astrophysical environments. Before doing that, however, we had to make

sure the 1D implementation of the code should be capturing all the relevant physics

present in 2D. In 1D simulation, only the dynamics along the shearing, amplifying

mean magnetic field ~B is resolved, so we could follow the growth of the IC instability

and further propagation of IC waves as before in 2D, but with the caveat of losing

resolution in resolving mirror modes, which are oblique to the mean magnetic field.

This last factor, nevertheless, didn’t play a major role on the energization of ions

in the plasma. Instead, the further growth of IC waves is slightly damped in the
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saturated regime, so the absence of them in 1D simulation only result in an artificial,

slightly higher growth of IC waves, resulting in a slightly higher acceleration of ions.

Nevertheless, the effect is rather small and did not interfere with the main results.

Once we made sure that 1D simulations were capturing the relevant physics of the

acceleration, we could test how the mass ratio mi/me and magnetization ωc,i/s affect

the results. Comparing values of mi/me = 2, mi/me = 8 and mi/me = 32 we could

observe that the power-law tail is maintained and even grows a little in the latter

case, whereas for the magnetization we compared ωc,i/s = 800, ωc,i/s = 1600 and

ωc,i/s = 3200 and the power-law tail was also maintained, with little discrepancies

especially to the end of the nonthermal tail but towards the positive side; the larger

the magnetization, the slightly harder the tail. This effect leaves interesting questions

about the behavior of the tail for larger values of ωc,i/s. This way, even when the

parameter values were not close to real ones, we could confirm that the effect is

robust and could happen under suitable conditions in astrophysical plasmas.

We also wanted to shed light on how the ions were energized. For this purpose

we use a “Test Particle” technique in which a convenient subgroup of particles can

be followed throughout the whole simulation and see how properties such as their

velocity, energy and values of the electromagnetic field nearby their positions vary

as the particles move around the plasma. In particular, we wanted to compare the

evolution of the energy of the so called thermal particles (i.e. the ones that stay in

the low-energy side of the energy distribution at the end of the simulation) with the

nonthermal ones (the ones in the tail). The two only agents responsible to energize

the particles were the anisotropic heating coming from the shear and the electric field

associated with the IC waves, that when interacts with the particles resonantly could

interchange energy efficiently. Quite intriguingly, aside from the anisotropic heating

acting on all the particles in the same way, a notable difference was discovered in the

behavior of the electric field. When dealing with thermal particles, the work done by

this electric field was negative on average, whereas for nonthermal particles it was
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clearly positive. This scenario can be interpreted as the IC waves extracting energy

from the thermal particles and giving it to the nonthermal ones, so this process is

different from the typical wave-particle interaction in which the wave gets damped at

the expense of giving its energy to the particle. Instead, here the IC waves act as a

mediator between thermal and nonthermal particles, taking energy from the former

and giving it to the latter. We have also seen that the energy gain of the nonthermal

particles are about an order of magnitude larger than the energy gain or lose of the

thermal particles. Conversely, the nonthermal population is about ∼ 10% of the

total, so even when the average energy the IC waves take from a thermal particle is

small, the contribution of the whole thermal population can on average transfer a

huge amount of energy to the small population of nonthermal particles.

After this analysis, we explored some plausible astrophysical applications of this

acceleration mechanism and how can we test them by laying down guidelines to

future work. First, we discussed the long-term evolution of the system. Since there

are no astrophysically motivated reasons for running our simulations until t · s = 3,

it will be part of the future analysis to study the evolution of the system with more

shearing times. Secondly, it was discussed what would happen in a system subject

to a inverse shearing motion, or to “unshear” the box, so instead of amplifying the

magnetic field, it would be reduced. This is motivated by the fact that in a system

subject to MHD turbulence (e.g. MRI) or with differential rotation, both the shearing

and unshearing motions are possible. Certainly this effect would no longer trigger

mirror or IC, since the anisotropy now would be ∆pi < 0, but instead, the firehose

instability could arise and then it would be very interesting to see if that instability

could produce a type of acceleration mechanism by itself. Finally, a more complete

and astrophysically relevant picture of the analysis can be done by considering both

shearing and unshearing motions continuously happening, as this should be closer

to the real scenario of a turbulent astrophysical environment.

Another interesting application it was discussed was in the context of the injec-
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tion problem in Diffusive Shock Acceleration (DSA). It turns out that DSA needs

an already energetic population of particles in order to be sufficiently efficient in the

process of acceleration, the so called “seed particles”. In consequence, particles ex-

tracted directly from the thermal pool are not able to enter into the shock front and

be further accelerated. However, we could see that the mechanism of acceleration

studied in this thesis is able to accelerate particles from an initial thermal popula-

tion, so if the conditions in the surrounding of a collisionless shock are fulfilled for

this type of acceleration to be efficient, this mechanism is a promising candidate for

generating the seed particles in first place that can further enter in DSA afterwards.

The inclusion of seed particles in the process of DSA has been studied recently [18]

and it can considerably change the results compared with the process of DSA without

seed particles.

Finally, we discussed if Sgr A∗ , the supermassive black hole at the center of the

Galaxy, can be a plausible astrophysical environment that can harbour an acceler-

ation process like the one here studied. We showed that the plasma that surrounds

Sgr A∗ has conditions that makes it collisionless at distances of the order of hun-

dreds of the Schwarzschild radius, and it is fairly magnetized as well. Furthermore,

there are regions in ADAF where the condition of βi . 1 is fulfilled. Even when we

are aware of the limitations on the physical parameters used in the simulations, we

compared the timescales for the development of the IC instability in Sgr A∗ with the

typical timescale it takes to the plasma to be accreted into the SMBH in order to

know if the instability has enough time to develop properly. It turns out that the IC

instability has plenty of time to develop and saturates compared with the accretion

timescale, so we can expect to have the IC instability present and saturated. With

this analysis, Sgr A∗ constitutes a promising environment in which the acceleration

mechanism studied can be tested.
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Appendix A

Some results of Plasma Physics

A.1 Adiabatic Invariance of Magnetic Moment

One key feature in our simulations is the invariance of the ion magnetic moment

µi = miv
2
i,⊥

2B = Wi,⊥/B, that allows the perpendicular momentum p⊥ to be amplified,

so the pressure anisotropies can grow. Here we outline a brief but insightful derivation

of this key feature of weakly collisional plasmas. A formal derivation of adiabatic

invariance in general make use of Hamiltonian mechanics and Poincaré invariants∮
pdq (See e.g. [80]).

The idea behind adiabatic invariance is that in any periodic motion, there are

some quantities which are conserved under a slowly enough variation of relevant

parameters of the system, with “slowly enough” meaning that the typical frequency

of the periodic motion is much larger than the rate of change of these relevant

parameters. In the case of µi, the periodic motion is clearly the gyromotion of the

ion around the magnetic field, and the invariance is under a slow variation of B

(i.e. ωc,i � d lnB
dt

). It can be formally shown [80] in general that the change in µi

is ∆µi ∝ exp(−ωc,i/Ω) with Ω the frequency at which B varies. Let us find, then,

the change in µi over one orbit of the ion around the magnetic field. It is easier

to show this in the frame of reference moving longitudinally with the ion. In this
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frame of reference we have a changing magnetic field and consequently an electric

field satisfying c∇× ~E ′ = −∂ ~B′/∂t. Let’s denote the variation in time of a quantity

f over one gyro-orbit as:

∆f ≡
∫ 2π

0

d

dt
f(φ)dφ (A.1)

We have,

∆Wi,⊥ = ∆(µiB)

= B∆µi + µi∆B

(A.2)

So then,

∆µi = 1
B

∫ 2π

0

d

dt

(1
2miv

2
i,⊥

)
dφ− 1

B
µi∆B = 1

B

∫ 2π

0
mi
d~v⊥
dt
· ~v⊥dφ−

1
B
µi∆B

= 1
B

∫ 2π/ωc,i

0
mi
d~v⊥
dt
· ~v⊥ωc,idt−

1
B
µi∆B

= ωc,i
B

∫ 2π/ωc,i

0
q ~E ′ · ~v⊥dt−

1
B
µi∆B

= ωc,i
B

∮
q ~E ′ · d~̀− 1

B
µi∆B = −qωc,i

cB

∫ ∂ ~B

∂t
· d~S − 1

B
µi∆B

= qωc,i
cB

R2
L,i

2

∫ 2π

0

∂B

∂t
dφ− 1

B
µi∆B = qωc,i

cB

R2
L,i

2 ∆B − 1
B
µi∆B

=
miv

2
⊥,i

2B
∆B
B
− 1
B
µi∆B = 1

B
µi∆B −

1
B
µi∆B = 0 (A.3)

where we recognize that d~S and ∂ ~B/∂t have opposite directions as an ion orbits

around the magnetic field oppositely to electrons, RL,i = v⊥,i/ωc,i and ωc,i = qB/mic.

This way, we’ve shown that the magnetic moment of the ions is conserved under a

gyro-orbit.
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A.2 Flux Freezing

Another important feature is the magnetic field amplification due to the imposed

shear motion, that takes place because the magnetic field lines move along with the

plasma, because the magnetic flux is frozen to the plasma. This is a central result

of ideal magnetohydrodynamics, and there are various ways to derive it. We will

choose a simple derivation emphasizing the physical insight of it. The key assumption

hereafter is to assume the limit in which the plasma has infinite electrical conductivity

(or zero resistivity). This condition is easily achieved in large-scale astrophysical

plasmas. The derivation will closely follow the one by Fitzpatrick1. We start from

the magnetic flux:

ΦB =
∫
S

~B · d~S (A.4)

Through a contour C with a surface S moving along with the plasma. The time

derivative of the magnetic flux ΦB has two contributions as both ~B and the contour

C change with the motion of the plasma. The contribution of the magnetic field can

be written:

(
∂ΦB

∂t

)
B

=
∫
S

∂ ~B

∂t
· d~S = −

∫
S
c∇× ~E · d~S (A.5)

While the contour varies along with the plasma flow, so we have to calculate the

amount of flux passing through the area this contour creates as it moves. If d~̀ is

an element of C, then the area generated by the flow motion is ~U × d~̀, with ~U the

bulk velocity of the plasma. This way, the flux passing through this area is simply
~B · ~U × d~r. Then this contribution can be written:

(
∂ΦB

∂t

)
C

=
∫
C

~B · ~U × d~r =
∫
C

~B × ~U · d~r =
∫
S
∇× ( ~B × ~U) · d~S (A.6)

1https://farside.ph.utexas.edu/teaching/plasma/Plasma/node87.html
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Where we’ve used Stoke’s Theorem in the last step. Adding these two parts:

(
∂ΦB

∂t

)
=
(
∂ΦB

∂t

)
B

+
(
∂ΦB

∂t

)
C

= −
∫
S
∇× (c ~E + ~U × ~B) · d~S (A.7)

Now we recognize the term in brackets as the Ohm’s Law in the infinite conduc-

tivity limit, and we know from ideal MHD that is equal to zero:

c ~E + ~U × ~B = 0 (A.8)

This way, we obtain the result:

(
dΦB

dt

)
= 0 (A.9)

Note that the infinite conductivity limit implies that the induction equation is

written:

∂ ~B

∂t
= ∇× (~U × ~B) (A.10)

Where the resistive term is neglected. In the case of our simulation setup, we have

an initial magnetic field ~B = B0x̂, and a shear velocity field of the form ~U = −sxŷ,

so from eq. A.10 we have:

∂ ~B

∂t
= ∇× (−sxB0ŷ × x̂) = ∇× (−sxB0ẑ) = −sB0ŷ (A.11)

So that the y component of the magnetic field evolve as ∂By

∂t
= −sB0, implying a

net amplification of the magnetic field.
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A.3 Anisotropic Viscous Heating

One important phenomenon present in our simulations is the heating of the ions

produced by the pressure anisotropy. The behaviour is quantified in equation 3.1:

∂Ei
∂t

= q∆pi

where Ei is the internal energy of the ions, q = 1
B
dB
dt

is the growth rate of the

magnetic field, that in our case is related with the shear frequency s, and ∆pi =

p⊥ − p‖. This relation is a result of the nonzero viscous stress that the anisotropy

gives rise to, and has the general form ↔
σs: ∇ ~Us2, with ↔σs the traceless part of the

pressure tensor
↔
P s and Us is the bulk velocity of the plasma. To derive this relation

we have to make use of Vlasov equation and take the trace of its second moment.

The Vlasov equation, in its general form, can be written as eq. 2.1:

∂fs
∂t

+ ~ps
γms

· ∂fs
∂~r

+ q

 ~E + ~v × ~B

c

 · ∂fs
∂ ~ps

= 0 (A.12)

Where the s stands for the particle species. From this equation it is possible to

obtain relations for the evolution of macroscopic quantities of the plasma by taking

its “moments” , that is, multiplying by successively higher powers of ~v and integrating

over velocity space. This way, the zeroth order moment of Vlasov equation can be

written:

∫
d3v

∂f

∂t
+
∫
d3v ~v · ∂f

∂~r
+
∫
d3v q

 ~E + ~v × ~B

c

 · ∂f
∂~p

= 0 (A.13)

With a little of algebra, integration by parts (assuming that f(~r,~v, t) decays to

zero at infinity sufficiently fast) and recalling that

2As a matter of notation, the double dot product here denotes the following:
↔
A: ∇ ~B = Aij

∂Bi

∂j ,

where the summation convention is used over repeated indexes.
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∫
d3vfs(~r,~v, t) = ns (A.14)∫

d3v ~vfs(~r,~v, t) = ns~Us (A.15)

we obtain:

∂ns
∂t

+∇ · (ns~Us) = 0 (A.16)

which is nothing more than the continuity equation. Going further, we can

calculate the first-order moment:

∫
d3v ~v

∂f

∂t
+
∫
d3v ~v~v · ∂f

∂~r
+
∫
d3v ~v

~F

m
· ∂f
∂~v

= 0 (A.17)

Following the same procedure as before, recalling now that the stress tensor in

the lab frame is:

∫
d3v ~v~vfs(~r,~v, t) =

↔
P s (A.18)

the momentum equation is obtained:

d(msns~Us)
dt

= ns ~F −ms∇
↔
P s (A.19)

with d/dt = ∂/∂t+ ~Us · ∇ the usual advective derivative.

Now for the second order moment, we should multiply Vlasov equation by the

tensor quantity ~v~v. Fortunately, the relation 3.1 need only the trace of the second

moment equation to be calculated. This way, multiplying by ms

2 Tr(~v~v) = msv
2/2

and integrating:
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∫
d3v

msv
2

2
∂fs
∂t

+
∫
d3v

msv
2

2 ~v · ∂fs
∂~r

+
∫
d3v

msv
2

2
~F

ms
· ∂fs
∂~v

= 0 (A.20)

Let’s calculate each term separately:

∫
d3v

msv
2

2
dfs
dt

= d

dt

∫
d3v

msv
2

2 fs

= dWs

dt
(A.21)

with Ws the energy density of the plasma. Now the next one,

∫
d3v

msv
2

2 ~v · ∂fs
∂~r

= m

2

∫
d3vv2vj

∂fs
∂rj

= ∂

∂rj

∫
d3vvj

msv
2

2 fs

= ∂

∂rj
Qj = ∇ · ~Qs (A.22)

With Qs the energy flux density. Finally,

∫
d3v

msv
2

2
~F

ms
· ∂fs
∂~v

= 1
2

∫
d3v v2Fj

∂fs
∂vj

= 1
2

∫
d3v v2 ∂

∂vj
Fjfs

= 1
2

∫
d3v

∂

∂vj

(
v2Fjfs

)
− 1

2

∫
d3vFjfs

∂

∂vj

(
v2
)

= −1
2

∫
d3vFjfs

∂

∂vj

(
v2
)

= −Fj
∫
d3vfsvj

= −FjnsUj

= −~F · ns ~Us

= − ~Js · ~F (A.23)
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Where in the third step we integrated by parts and in the fifth step it was assumed

that ~F does not depends on the velocity. Joining all terms we can write:

∂Ws

∂t
+∇ · ~Qs − ~F · ~Js = 0 (A.24)

Which is the energy equation in an arbitrary reference frame. What we’re inter-

esting to analyse, however, is the energy of the plasma itself, so we can identify the

agents of heating. Therefore, we have to express eq. A.24 in the frame of reference

moving with the bulk velocity ~Us. Let’s focus again in each term individually:

Ws = ms

2

∫
d3vfsv

2 = ms

2

∫
d3u(~Us + ~u)(~Us + ~u)fs

= ms

2

∫
d3u(U2

s + u2 + 2~Us · ~u)fs

= nsmsU
2
s

2 + ms

2

∫
d3ufsu

2 +ms
~Us ·

∫
d3ufs~u (A.25)

Note that the third integral in the last step gives the macroscopic average velocity

of the plasma, but in this case it gives the average velocity in the reference frame

moving with the average velocity, therefore this term is zero. The second integral

corresponds to the trace of the stress tensor, from which we define ps ≡ 1
3Tr(

↔
P s):

Ws = nsmsU
2
s

2 + 1
2Tr(

↔
P s) = nsmsU

2
s

2 + 3
2ps (A.26)

Now the second term of eq. A.24:
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~Qs =
∫
d3v

ms

2 v2~vfs

=
∫
d3u

ms

2 (~u+ ~Us)2(~u+ ~Us)fs

=
∫
d3u

ms

2 (u2~u+ U2
s ~u+ 2(~u · ~Us)~u+ u2~Us + U2

s
~Us + 2(~u · ~Us)~Us)fs

= ~qs + msU
2
s

2

∫
d3ufs~u+ms

∫
d3u(~u · ~Us)~ufs + m~Us

2

∫
d3ufsu

2+

+ msU
2
s

2
~Us

∫
d3ufs +ms

~Us~Us ·
∫
d3u~ufs

= ~qs +ms

∫
d3u(~u · ~Us)~ufs + ms

~Us
2

∫
d3ufsu

2 + msU
2
s

2
~Us

∫
d3ufs

= ~qs +ms
~Us ·

∫
d3u~u~ufs + ms

~Us
2

∫
d3ufsu

2 + msnsU
2
s

2
~Us

= ~qs+
↔
P s · ~Us +

~Us
2 Tr(

↔
P s) + msnsU

2
s

2
~Us

= ~qs+
↔
P s · ~Us + 3

2ps
~Us + msns

2 U2
s
~Us (A.27)

And the divergence of this vector:

∇ · ~Qs = ∇ · ~qs +∇ · (
↔
P s · ~Us) + 3

2∇ · (ps
~Us) + ms

2 ∇ · (nsU
2
s
~Us) (A.28)

where,

∇ · (
↔
P s · ~Us) = ∂

∂xi
(Ps,ijUs,j)

= Us,j
∂Ps,ij
∂xi

+ Ps,ij
∂Us,j
∂xi

= (∇·
↔
P s) · ~Us+

↔
P s: ∇ · ~Us (A.29)

ms

2 ∇ · (nsU
2
s
~Us) = ms

2 U2
s∇ · (ns~Us) + ms

2 ns~Us∇(U2
s ) (A.30)

3
2∇ · (ps

~Us) = 3
2
~Us · ∇ps + 3

2ps∇ ·
~Us (A.31)
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Finally, the energy equation can be written:

∂

∂t

(1
2nsms

~Us + 3
2ps

)
+∇ · ~qs + (∇·

↔
P s) · ~Us+

↔
P s: ∇ · ~Us + ms

2 U2
s∇ · (ns~Us)

+ms

2 ns~Us∇(U2
s ) + 3

2
~Us · ∇ps + 3

2ps∇ ·
~Us − ~F · ~Js = 0

(A.32)

We can simplify a little bit the previous equation if we sum the momentum

equation multiplied by ms
~Us:

msns
d~Us
dt
· ~Us + ~Js · ~F −∇

↔
P s ·~Us = 0 (A.33)

Summing eq. A.32 and eq. A.33 and doing the algebra we obtain:

d

dt

(3
2ps

)
+ 3

2ps(∇ ·
~Us) +∇ · ~qs+

↔
P s: ∇~Us = 0 (A.34)

As a last step, separating the stress tensor in its trace and traceless components:
↔
P s= ps

↔
I + ↔

σs we have that:

↔
P s: ∇~Us = Ps,ij

∂Us,i
∂xj

=(δijps + σij)
∂Us,i
∂xj

=ps
∂Us,j
∂xj

+ σij
∂Us,i
xj

=ps∇ · ~Us+
↔
σs: ∇~Us (A.35)

Finally, we can write

d

dt

(3
2ps

)
+ 5

2ps∇ ·
~Us +∇ · ~qs+

↔
σs: ∇~Us = 0 (A.36)

Where the quantity ↔
σs: ∇~Us finally appears. Note that this term contributes

to the energy only if the stress tensor is anisotropic. Sometimes ↔σs is called the
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viscous stress tensor, this way pressure anisotropies can act as an effective viscosity

macroscopically.

In the case of study of this thesis, we have a collisionless, magnetized plasma

subject to a shear motion of the form ~U = −sxŷ. Additionally, if the cyclotron

frequency of the ions is much larger than the rate at which energy is injected through

this shear motion, which is our case3, the plasma can be considered gyrotropic, i.e.,

it is isotropic in any direction perpendicular to the direction of the mean magnetic

field. We can then separate the pressures into a pressure p⊥ perpendicular to the

mean magnetic field, and another one parallel to the mean magnetic field, p‖. The

geometric configuration considered is depicted in fig. A.1, where we have the frame

of reference of the laboratory (unprimed) and the frame of reference moving along

with the mean magnetic field (primed). In this case, the term ↔
σs: ∇~Us = σij

∂Us,j

∂xj
=

σxy
∂Uy

∂x
.

Figure A.1: Geometrical configuration of the plasma in our simulations.

Let’s calculate the term Pxy then:
3Recall that in our simulations ωc,i/s ∼ 103 with s the shear frequency.
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Pxy = ms

∫
d3vfxvxvy = ms

∫
d3vfs(vx′ cos θ − vy′ sin θ)(vx′ sin θ + vy′ cos θ)

= ms cos θ sin θ
(∫

d3vfsvx′vx′ −
∫
d3vfsvy′vy′

)
+ms

∫
d3vfsvx′vy′(cos2 θ − sin2 θ)

= cos θ sin θ(px′ − py′) + cos 2θ
∫
d3vmsvx′yy′

= cos θ sin θ(p⊥ − p‖) + cos 2θPx′y′

= cos θ sin θ(p⊥ − p‖) (A.37)

Where in the last step Px′y′ = 0 since, as in the primed frame of reference the

system is gyrotropic, the stress tensor is diagonal. Defining the unit vector along the

magnetic field b̂ ≡ ~B/B, in our case we have b̂ = ŷ′ = −x̂ sin θ + ŷ cos θ ≡ b̂x + b̂y.

Therefore, we have

↔
σs: ∇~Us = σxy

∂Ux
∂y

x̂ŷ = sin θ cos θx̂ŷ(p⊥ − p‖)
∂

∂y
(−sy)

= −b̂xb̂y(p⊥ − p‖) · −s

= s(p⊥ − p‖)b̂xb̂y (A.38)

This way, the system has an energy contribution from the pressure anisotropy of

the form ↔
σs: ∇~Us = s(p⊥−p‖)b̂xb̂y, with s = 1

B
dB
dt

. Recall that, as in our configuration

the mean magnetic field is being amplified by the shear, the anisotropy produced

is such that p⊥ > p‖, so the energy contribution from the viscous stress tensor is

positive, therefore it heats the plasma.
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Appendix B

1D Shear Simulations

It is of interest to understand the assumptions and procedures behind the imple-

mentation of the simulations we’ve run in 1D. In particular, in this section it will

be described the coordinate change used to pass from 2D to 1D. For this we will

make use of the description of the 2D shear coordinates in the Appendix of [79]. We

will call S ′ the frame of reference used in the 2D simulations and S ′′ the frame of

reference used in 1D simulations. The transformations relating the usual cartesian

coordinates and S ′ are, as stated in [79]:

x′ = x, y′ = Γ(y − vt),

z′ = z, t′ = Γ(t− vy/c2), (B.1)

Where Γ = (1− v2/c2)−1/2. From these transformations, S ′′ is given by:

x′′ = x′ − y′st′

1 + s2t′2
, y′′ = y′

z′′ = z′, t′′ = t′ (B.2)

Let’s derive the relevant equations in S ′′. In our plasma subject to the shear

velocity ~U = −sxŷ, initially the mean magnetic field is given by 〈 ~B〉 = B0x̂ and,
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as seen in section A.2, from flux conservation we have that at later times 〈 ~B〉(t) =

B0(x̂−stŷ). With this and eqs. B.1 and B.2 we can calculate the gradient operator in

the Lab (non-shearing) frame in terms of the coordinates of S ′′, ∇ = x̂∂/∂x+ ŷ∂/∂y.

In addition, as the shear frequency s is expected to be much smaller than the ion

gyro-frequency ωc,i, we expect ~U to be nonrelativistic, so that we can set Γ ∼ 1 in

eqs. B.1 and in particular t = t′ = t′′. The gradient can be written then as:

∂

∂x
= ∂x′′

∂x

∂

∂x′′
+ ∂y′′

∂x

∂

∂y′′

∂

∂x
= 1

1 + s2t2
∂

∂x′′
+ st

∂

∂y′′

∂

∂y
= ∂y

∂x′′
∂

∂x′′
+ ∂y′′

∂y

∂

∂y′′

∂

∂y
= − st

1 + s2t2
∂

∂x′′
+ ∂

∂y′′
(B.3)

It can be shown that in this frame of reference, by solving the problem in 1D so

that ∂
∂y′′

= 0 and ∂
∂z′′

= 0, the gradient operator is parallel to 〈 ~B〉. This is desirable

as this allows us to set ~k ‖ 〈 ~B〉, so the wavevector of the relevant modes can be

resolved in 1D, being this dimension the one that follows the direction of the mean

magnetic field at any given time.

Let solve the 1D problem in this frame of reference then. In order to consider only

1 dimension we focus on an arbitrarily narrow and long stripe of plasma confined to

the region 0 < y′′ < δ, with δ → 01 (See fig.)

Now we show the modification Maxwell’s equations suffer when going to the S ′′

frame. Let’s calculate first the coordinate derivatives of S ′ in terms of the coordinates

of S ′′:
1Note, however, that making δ → 0 implies that x′′ = x′ in eqs. B.2, but the transformation is

nevertheless necessary for eqs. B.3 to imply ~k ‖ 〈 ~B〉.
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Figure B.1: Depiction of the orientation of the system at a given time t > 0. The red shaded

region represents the narrow stripe of plasma considered in the 1D problem.

∂

∂t′
= ∂

∂t′′
− sy′′ 1− s2t′′2

(1 + s2t2)2
∂

∂x′′

∂

∂x′
= ∂

∂x′′

∂

∂y′
= ∂

∂y′′
− st′′

1 + st′′2
∂

∂x′′

∂

∂z′
= ∂

∂z′′
(B.4)

This will make easier the modification of Maxwell’s equations written in the frame

S of the Appendix of [79]. Now we will write Ampère’s Law and Faraday’s Law in

the S ′′ frame and then impose the 1D condition to them.
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According to equation A.26 of [79], the Ampère’s Law in the S ′ frame can be

written:

∂ ~E ′

∂t′
= c∇′ × ~B′ − 4π ~J ′ − sE′xŷ − s

ct′∂ ~B′
∂y′

+ y′

c

∂ ~B′

∂t′

× x̂ (B.5)

Expressed by components in the S ′′ frame:

∂E ′x
∂t′′

= c

(
∂B′z
∂y′′
− st′′

1 + s2t′′2
∂B′z
∂x′′
−
∂B′y
∂z′′

)
− 4πJ ′x (B.6)

∂E ′y
∂t′′

= − c 1
1 + s2t′′2

∂B′z
∂x′′

+ c
∂B′x
∂z′′
− sE′x − sct′′

∂B′z
∂y′′
−

− sy′′

c

(
∂B′z
∂t′′
− sy′′(1− s2t′′2)

1 + s2t′′2
∂B′z
∂x′′

)
− 4πJ ′y (B.7)

∂E ′z
∂t′′

= c

( 1
1 + s2t′′2

∂B′y
∂x′′

+ st′′

1 + s2t′′2
∂B′x
∂x′′
− ∂B′x
∂y′′

)
+

+ cst′′
∂B′y
∂y′′

+ sy′′

c

(
∂B′y
∂t′′
− sy′′(1− s2t′′2)

1 + s2t′′2
∂B′y
∂x′′

)
− 4πJ ′z (B.8)

And the Faraday’s Law, in the frame S ′, according to eq. A.14 of [79]:

∂ ~B′

∂t′
= −c∇× ~E ′ − sB′xŷ + s

ct′∂ ~E ′
∂y′

+ y′

c

∂ ~E ′

∂t′

× x̂ (B.9)

And expressed in the S ′′ frame:

∂B′x
∂t′′

= − c
(
∂E ′z
∂y′′
− st′′

1 + s2t′′2
∂E ′z
∂x′′
−
∂E ′y
∂z′′

)
(B.10)

∂B′y
∂t′′

= c
1

1 + s2t′′2
∂E ′z
∂x′′
− c∂E

′
x

∂z′′
− sB′x + sct′′

∂E ′z
∂y′′

+ sy′′

c

(
∂E ′z
∂t′′
− sy′′(1− s2t′′2)

1 + s2t′′2
∂E ′z
∂x′′

)
(B.11)

∂B′z
∂t′′

= − c
( 1

1 + st′′2
∂E ′y
∂x′′

+ st′′

1 + s2t′′2
∂E ′x
∂x′′
− ∂E ′x
∂y′′

)

− cst′′
∂E ′y
∂y′′
− sy′′

c

(
∂E ′y
∂t′′
− sy′′(1− s2t′′2)

1 + s2t′′2
∂E ′y
∂x′′

)
(B.12)
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Appendix C

Acceleration Mechanisms

Derivations

In this section the derivation and calculations of the different results of the ac-

celeration mechanisms stated in the Introduction are shown.

C.1 Second-Order Fermi Acceleration

Following the historical line of thought, the original idea of Fermi will be pre-

sented, namely, how a particle can gain energy through successive stochastic encoun-

ters with “magnetic clouds”. The order of the ideas will closely follow the derivation

by Vietri [81].

Consider a particle moving with energy E and 3-momentum
∼
p in the laboratory

frame and a magnetic cloud moving with velocity −V along the x axis in the lab

frame. Let θ be the angle the direction of motion of the particle makes with the

velocity of the cloud in the lab frame. We will assume that the rest mass of the cloud

is much larger than the rest mass of the particle, therefore the center of momentum

reference frame will be the frame of the cloud.

Given these conditions, in the reference frame of the cloud it is fulfilled that the
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Figure C.1: A schematic picture of the collision of a charged particle and a magnetic cloud seen

in the Lab frame. In the first case, a head-on collision is depicted, while in the second case a tail

collision is showed. Figure taken from Grupen, 2005[82]

energy of the particle is conserved, and the x component of
∼
p, px, is reversed in

direction (elastic collision). In this section units in which c = 1 will be used.

Denoting the quantities in the cloud frame with a bar over them, we can write

the energy of the particle before the collision in the reference frame of the cloud,

E = −~p · ~U , with ~U the 4-velocity of the cloud,

E = −(E,
∼
p) · (γV , γV ∼V ) = γVE − γV ∼p · ∼V = γV (E + pV cos θ) (C.1)

= γV (E + pxV ),

with γV = 1√
1−V 2 and px = p cos θ the x-component of the 3-momentum of the

particle. In a similar fashion, we can write the energy of the particle in the lab frame

as:

95



APPENDIX C. ACCELERATION MECHANISMS DERIVATIONS

E = γV (E − pV cosφ) (C.2)

= γV (E − pxV ),

with px the x-component of the 3-momentum of the particle in the cloud frame

before the collision. This quantity can be written as,

px = γV (px + V E) = γV (p cos θ + V E) (C.3)

Now, after the encounter, as we have assumed an elastic collision, we have, in the

frame of reference of the cloud,

Eafter = E (C.4)

px,after = −px (C.5)

So writing now the energy after the encounter in the lab frame,

Eafter = γV (Eafter − px,afterV )

= γV (E + pxV )

= γV (γV (E + pxV ) + γV (px + V E)V )

= γ2
VE

[
1 + 2pxV

E
+ V 2

]

= γ2
VE

[
1 + 2pV cos θ

E
+ V 2

]
(C.6)

Where in the second step we used eqs.C.4 and C.5. Noting that p/E = v, the

velocity of the particle in the lab frame,

Eafter = γ2
VE

[
1 + 2vV cos θ + V 2

]
(C.7)
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Considering that V � 1, we can expand this expression keeping terms up to V 2,

Eafter ∼= E(1 + V 2)
[
1 + 2vV cos θ + V 2

]
(C.8)

∼= E(1 + 2vV cos θ + 2V 2) (C.9)

So the energy gain ∆E = Eafter − E:

∆E
E

= 2vV cos θ + 2V 2 (C.10)

Now, as the collisions are essentially stochastic, it is expected that the clouds

velocities are distributed randomly, so we have to average over all possible angles,

〈
∆E
E

〉
=
∫ ∆E

E
P (cos θ)d cos θ

With P (cos θ)d cos θ the probability distribution of having a collision at an angle

θ. This probability is not uniform, however. There’s a slightly greater probability

to have a head-on collision than a tail one. One can convince oneself of this if we

assume that the mean free path of the clouds, call it lmfp, remains constant and

independent of energy, then the time between collisions can be expressed:

τ = lmfp

Vrel
(C.11)

with Vrel is the relative velocity between the particle and the cloud in the direction

of the particle’s velocity,

Vrel = v + V cos θ
1 + vV cos θ (C.12)

Taking v → 1, just for simplicity, then it can be seen that the time of head-on

collisions is shorter than the time of tail collisions:
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τhead-on = lmfp

1 + V
(C.13)

τtail = lmfp

1− V (C.14)

So head-on collisions are more frequent than tail ones, therefore head-on encoun-

ters have a larger probability. This probability is then proportional to the relative

velocity1,

P (cos θ)d cos θ = CVrel (C.15)

To calculate the proper normalization, we simply impose
∫ 1
−1 P (cos θ)d cos θ = 1,

giving C = 1/2,

P (cos θ)d cos θ = 1
2Vrel = 1

2(1 + V cos θ)d cos θ (C.16)

Then averaging over angles,

〈∆E
E

〉
= 1

2

∫ 1

−1

∆E
E

(1 + V cos θ)d cos θ (C.17)

= 1
2

∫ 1

−1
(2vV cos θ + 2V 2)(1 + V cos θ)d cos θ (C.18)

= 8
3V

2 (C.19)

Then we obtain the well-known result,〈∆E
E

〉
= 8

3V
2 (C.20)

1One here assumes that the particles are isotropically distributed with respect to the cloud, so

for a given time interval, the collision rate will depend solely on the relative velocity between the

particle and the cloud[83].
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Therefore, on average, the particles gain energy at a rate that is second-order in

V .

From the dependence given in eq. C.20 it can be shown that, after successive

acceleration encounters it can generate a power-law energy distribution. This deriva-

tion follows the argument by Grupen [82]. Let’s start with eq. C.20 written as:

∆E = εE (C.21)

Where ε = 8V 2/3. Let’s call E0 the initial energy of the particle, and so on.

Therefore, we can write

E1 = E0 + εE0 = E0(1 + ε) (C.22)
... (C.23)

En = E0(1 + ε)n (C.24)

With n the number of encounters,

n = ln(En/E0)
ln(1 + ε) (C.25)

Now, there’s a finite probability that the particle escapes from the accelerator

after an encounter, let’s call it P and let’s assume it is constant2. Then, after one

encounter, the probability that the particle hasn’t escaped is simply 1− P , and the

number of particles after the first encounter is then N1 = N0(1 − P ), with N0 the

initial number of particles. After the second encounter, then, the number of particles

will be N2 = N1(1− P ) = N0(1− P )2, and so on, so after n encounters,
2In reality, this probability is energy dependent and the higher the energy, the more probable is

that the particle escapes. This fact determines the maximum achievable energy in a specific system
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Nn = N0(1− P )n (C.26)

This corresponds to the number of particles with energies En. Therefore, the

number of particles with energies En or larger is:

N(≥ En) = N(En) +N(En+1) + . . .+N(E∞) (C.27)

= N0
∞∑
m=n

(1− P )m (C.28)

= N0(1− P )n
∞∑
m=n

(1− P )m−n (C.29)

= N0(1− P )n
∞∑
m=0

(1− P )m (C.30)

N(≥ En) = N0
(1− P )n

P
(C.31)

replacing eq. C.25 in eq. C.31,

N(≥ En) = N0
1
P

( E
E0

)ln(1−P )
1

ln(1+ε)

(C.32)

= N0
1
P

[
E

E0

] ln(1−P )
ln(1+ε)

(C.33)

N(≥ En) = N0
1
P

[
E

E0

]−γ
(C.34)

N(≥ En) ∝ E−γ (C.35)

defining γ = ln(1/(1−P ))
1+ε . So we have recovered a power-law energy distribution for

a system that undergoes successive acceleration where the energy gain is proportional

to the current energy.
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C.2 First-Order Fermi Mechanism

In what follows, a derivation of the energy gain and the predicted spectral index

of DSA is sketched. The derivation will closely follow the one by Longair [84] and

Vietri [81].

Consider a strong shock propagating through a diffuse medium, as the shock wave

of a SNR propagating through the ISM. Let’s consider a population of high energy

particles to be present in the front and behind the shock front. We will assume that

the high energy particles are propagating at a speed much larger than the speed of

the shock. Usually, the shock front is very thin, its thickness is much smaller than

the gyroradius of the particles so they won’t notice it at all. Nevertheless, when

the particles cross the shock in either direction, they are scattered by the turbulent

motion present on both sides of the shock. This produces an isotropization of the

velocity distribution in the frame of reference at rest with respect to the shock. A

schematic picture is sketched in figure C.2.

Let’s stay in the frame of reference comoving with the shock. In this case, we see

the upstream moving with velocity U1 and the downstream moving with velocity U2

as depicted in figure C.2. From conservation laws for mass, momentum, and energy,

let’s find stationary solutions. Since the motion is 1D, we can write:

∂

∂x
(ρu) = 0 (C.36)

∂

∂x
(ρu2 + P ) = 0 (C.37)

∂

∂x

[
ρu

(1
2u

2 + w

)]
= 0 (C.38)

With ρ the density of the fluid, u the velocity along the direction of motion, P

the pressure of the fluid and w the enthalpy per unit mass. Considering an ideal gas,

we can write the enthalpy as
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Figure C.2: A shock front propagating through a medium as seen in the reference frame of the

shock; as the shock front is moving to the left, the upstream is seen with velocity u1 and the

upstream with velocity u2. Credit: P. Blasi; http://www.astro.iag.usp.br/˜highenastro/

Talks/Lecture_VI_Pasquale_Blasi_1.pdf

w = γ

γ − 1PV = γ

γ − 1Pρ
−1 (C.39)

With V the volume per unit mass. Then, the equation for energy balance can be

written:

∂

∂x

(1
2ρu

3 + γ

γ − 1Pu
)

= 0 (C.40)

From here we can find the discontinuous solution linking the upstream and the

downstream:
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ρ1u1 = ρ2u2 (C.41)

ρ1u
2
1 + P1 = ρ2u

2
2 + P2 (C.42)

1
2ρ1u

3
1 + γ

γ − 1P1u1 = 1
2ρ2u

3
2 + γ

γ − 1P2u2 (C.43)

From here we can obtain the following relations:

ρ2

ρ1
= u1

u2
= (γ + 1)M2

1
(γ − 1)M2

1 + 2 (C.44)

P2

P1
= 2γM2

1 − (γ − 1)
γ + 1 (C.45)

T2

T1
= [2γM2

1 − γ(γ − 1)][(γ − 1)M2
1 + 2]

M2
1 (γ + 1)2 (C.46)

With M1 = u1/cs,1 the upstream Mach number, cs,1 = (γP1/ρ1)1/2 the upstream

sound speed and T the temperature, obtained from the perfect gas law P1V1/T1 =

P2V2/T2.

Now for a strong shock, v1 � cs,1, so we can write,

ρ2

ρ1
= u1

u2
= γ + 1
γ − 1 (C.47)

P2

P1
= 2γM2

1
γ + 1 (C.48)

T2

T1
= 2γ(γ − 1)

(γ + 1)2 M
2
1 (C.49)

Taking γ = 5/3 for a fully ionized gas, we obtain that u2 = 1
4u1.

Now let’s analyze a high energy particle crossing the shock front. The notable fea-

ture of considering a shock wave is that a particle will always gain energy when cross-

ing the shock front either from upstream to downstream or the other way around. In

the first case, the particle placed in the upstream sees material approaching from the
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shock with nonrelativistic velocity u1 − u2 respect to the downstream, in a head-on

collision analogous to the galactic cloud moving towards the non-thermal particle.

After crossing the shock front, placed in the downstream, the velocity distribution is

again isotropized and the particle can now see material approaching the shock front,

again with the same velocity u1 − u2, so in this case the collision is head-on too. In

this way, there are only head-on collisions and the particle only gain energy.

Let’s calculate the energy gain and obtain that is first order in velocity. Take a

relativistic particle with energy E ∼ p in the frame comoving with the upstream,

then in the downstream frame,

Ed = γ(E + pV cos θ) (C.50)

= γE(1 + V cos θ) (C.51)

Now with V = u1 − u2 = −(3/4)u1 the velocity of the downstream as seen in

the upstream frame and γ = (1 − V 2)−1/2. In the downstream, the direction of the

particle is isotropized and approaches the shock again with the same energy Ed but

in general a different angle θ′. Transforming again to the upstream frame,

Eu = γEd(1− V cos θ′) (C.52)

= γ2E(1 + V cos θ)(1− V cos θ′) (C.53)

Note that the velocity of the upstream as seen in the downstream is now positive.

Then the energy gain,

∆E
E

= γ2(V cos θ − V cos θ′ − V 2 cos θ cos θ′) (C.54)

But with the subtlety that 0 ≤ θ ≤ π/2 and π/2 ≤ θ ≤ π, as we want the

particle to always cross the shock front. To obtain the probability distribution in
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this case we note that the flux of particles crossing the shock front with an angle θ

is J = nV cos θ, so the probability of a particle crossing the shock front with that

angle is:

P (cos θ)d cos θ = nV cos θ∫ 1
0 nV cos θd cos θ

(C.55)

= 2 cos θd cos θ (C.56)

Applying the proper normalization. Assuming that the shock moves at nonrela-

tivistic velocities γ ∼ 1, and denoting in general µ = cos θ then we can average over

the angles:

〈∆E
E

〉
= −

∫ 1

0
2µdµ

∫ 0

−1
2µ′dµ′(V µ− V µ′ − V 2µµ′) (C.57)

= 2
3V + 2

3V + 4
9V

2 (C.58)

≈ 4
3V (C.59)

As we are assuming nonrelativistic velocities, V 2 ∼ 0. Then in this case, the

term first order in velocity doesn’t disappear when we average out the angles and

now the energy gain is proportional to V .

To obtain the energy spectrum, Bell [4] presented a very elegant argument, which

will be here outlined. Consider the flux of particles crossing the shock to the down-

stream region, J+, the flux of particles that is sufficiently pitch-angle scattered to

re-approach the shock front and cross it again, J−, and the flux of particles that

is advected away from the shock through downstream infinity, J∞. As we assumed

stationary conditions, we must have that:

J+ = J− + J∞ (C.60)
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Then, the probability of the particles to return to the shock and cross it again is

simply:

Preturn = J−
J+

= J−
J− + J∞

(C.61)

To obtain J− and J∞, let’s recall that the flux of particles that re-enter the shock

at an angle θ is n0V cos θ, with n0 the number density of particles in the downstream

region, that remains constant. Then, the average number of particles that cross the

shock is given by

J− = 1
4π

∫ 1

0
n0V cos θdΩ (C.62)

= n

4 (C.63)

Assuming for simplicity that the particles are relativistic. For J∞, consider that,

as the particles are being advected away to the shock area, they are moving away

essentially at the fluid velocity, as the particles are tied to the magnetic field lines

and these lines, in turn, are frozen in the fluid, so basically J∞ = n0u2. Then the

probability reads:

Preturn = J−
J− + J∞

= n0/4
n0/4 + n0u2

(C.64)

= 1
1 + 4u2

(C.65)

≈ 1− 4u2 (C.66)

Assuming in the last step nonrelativistic fluid velocities. Now replacing this

values in eq. C.35 and recalling that
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γ = ln(1/(1− P ))
1 + ε

(C.67)

= ln(1/(Preturn))
1 + ε

(C.68)

with, in the case of shocks, ε = 4V/3:

ln(1/(1− P )) = − ln(1− P ) ≈ P = 1− Preturn = 4u2 (C.69)

ln(1 + ε) = ln(1 + 4
3(u1 − u2)) ≈ 4

3(u1 − u2) (C.70)

And, recalling that for strong shocks u2/u1 = 1/4:

γ = 4u2

u1
= 1 (C.71)

Therefore, N(E) ∝ E−1, and hence, the differential energy distribution becomes:

dN(E)
dE

∝ E−2 (C.72)

Obtaining this way the well-known prediction of a power-law energy distribution

with spectral index of 2. Note that the derivation is completely independent of the

microphysics undergoing in the shock and energization process, it depends just on the

ratio of the fluid velocities (sometimes called the compression ratio). Furthermore,

this process happens to be faster than the second Fermi one, as the particles crosses

the shock at a higher rate than the usual encounters with magnetic clouds.
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manoulopoulos, P. Espigat, F. Feinstein, G. Fontaine, Y. Fuchs, S. Funk, Y. A.

Gallant, B. Giebels, S. Gillessen, J. F. Glicenstein, P. Goret, C. Hadjichristidis,

D. Hauser, M. Hauser, G. Heinzelmann, G. Henri, G. Hermann, J. A. Hin-

ton, W. Hofmann, M. Holleran, D. Horns, A. Jacholkowska, O. C. de Jager,

B. Khélifi, S. Klages, N. Komin, A. Konopelko, I. J. Latham, R. Le Gallou,

A. Lemière, M. Lemoine-Goumard, N. Leroy, T. Lohse, A. Marcowith, J. M.

Martin, O. Martineau-Huynh, C. Masterson, T. J. L. McComb, M. de Naurois,

S. J. Nolan, A. Noutsos, K. J. Orford, J. L. Osborne, M. Ouchrif, M. Panter,
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