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RESUMEN  

 

La erosión hídrica provoca la degradación del suelo y procesos de contaminación 

difusa. Los contaminantes son principalmente transportados sobre las superficies de 

partículas finas del suelo y del sedimento. Se han desarrollado varios modelos de 

pérdida de suelo y ecuaciones empíricas para la estimación de la distribución del tamaño 

del sedimento que abandona un terreno, incluyendo modelos en base física y ecuaciones 

empíricas. Por lo general los modelos de base física requieren una gran cantidad de 

datos, a veces superando la cantidad disponible en el área modelada. Por el contrario, las 

ecuaciones empíricas no siempre predicen la composición de los sedimentos asociados 

con eventos individuales y pueden requerir datos que no están disponibles. Por lo tanto, 

el objetivo de este estudio fue desarrollar un modelo para predecir la distribución del 

tamaño de partícula (DTP) del suelo erosionado. Se utilizaron 41 eventos de erosión 

provenientes de 21 suelos. Estos datos fueron compilados a partir de estudios previos. Se 

utilizó análisis de correlación y regresión múltiple para identificar las principales 

variables que controlan la DTP del sedimento. Estas variables fueron la distribución del 

tamaño de partícula en la matriz del suelo, la condición inicial de humedad del suelo, la 

erodibilidad del suelo y la geometría de la ladera. Con estas variables se calibró una red 

neural artificial utilizando datos de 29 eventos (r
2
 = 0,98, 0,97 y 0,86, para arena, limo y 

arcilla en el sedimento, respectivamente) y luego se validaron y probaron en 12 eventos 

(r
2
 = 0,74, 0,85 y 0,75, para arena, limo y arcilla en el sedimento, respectivamente). La 

red neural artificial se comparó con tres modelos empíricos. La red presentó un mejor 

desempeño en la predicción de DTP de sedimentos y la diferenciación de eventos de 

lluvia-escorrentía en el mismo suelo. Además de la calidad de las estimaciones de 

distribución de partículas, este modelo requiere un pequeño número de variables 

fácilmente obtenibles, proporcionando una rutina conveniente para predecir la DTP en 

sedimentos erosionados en otros modelos de transporte de contaminantes. 
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ABSTRACT  

 

Water erosion causes soil degradation and nonpoint source pollution. Pollutants 

are primarily transported on the surfaces of fine soil and sediment particles. Several soil 

loss models and empirical equations have been developed for the size distribution 

estimation of the sediment leaving the field, including physically-based models and 

empirical equations. Usually, physically-based models require a large amount of data, 

sometimes exceeding the amount of available data in the study area. Conversely, 

empirical equations do not always predict the sediment composition associated with 

individual events and may require data that are not available. Therefore, the objective of 

this study was to develop a model to predict the particle size distribution (PSD) of 

eroded soil. A total of 41 erosion events from 21 soils were used. This data was 

compiled from previous studies. Correlation and multiple regression analyses were used 

to identify the main variables controlling sediment PSD. These variables were the 

particle size distribution in the soil matrix, the antecedent soil moisture condition, soil 

erodibility, and hillslope geometry. With these variables, an artificial neural network 

was calibrated using data from 29 events (r
2
=0.98, 0.97, and 0.86; for sand, silt, and clay 

in the sediment, respectively) and then validated and tested on 12 events (r
2
=0.74, 0.85, 

and 0.75; for sand, silt, and clay in the sediment, respectively). The artificial neural 

network was compared with three empirical models. The network presented better 

performance in predicting sediment PSD and differentiating rain-runoff events in the 

same soil.  In addition to the quality of the particle distribution estimates, this model 

requires a small number of easily obtainable variables, providing a convenient routine 

for predicting PSD in eroded sediment in other pollutant transport models. 
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1. INTRODUCTION 

 

1.1. Overwiew 

 

Erosion is the detachment and movement of soil or rock by water, wind, ice, or 

gravity. Water erosion is the most important type of soil degradation worldwide as it 

affects 56% of the total human-induced soil erosion (Oldeman, 1992). Soil erosion by 

water can be described as a three-step process: soil detachment, transport and deposition 

(Merritt, Letcher, and Jakeman, 2003). Detachment of the particles is caused by raindrop 

impact and/or runoff shear. Detached particles are transported by running water and 

deposited when the velocity of water decreases by the effect of slope or ground cover 

(Lal, 2001). 

The consequence of water erosion are the soil loss (Morgan, 1995), decline in 

organic matter and nutrients (López et al., 2016; Morgan, 1995; Novotny and Chesters, 

1989), and transport of contaminant such as pesticides, herbicides and heavy metals 

(Foster, Young, and Neibling, 1985; Gao, Magunhn, Spitzauer, and Kettrupi, 1997; 

Selbig, Bannerman, and Corsi, 2013). The chemical transport capacity by sediment 

depends on its specific surface area (Deizman, Mostaghimi, Shanholtz, and Mitchell, 

1987; Horowitz and Elrick, 1987; Young and Onstad, 1976), which in turn relates to the 

sediment particles size distribution. These particles are typically classified as sand (0.05-

2.0 mm in diameter), silt (0.002-0.05 mm), clay (<0.002 mm), and aggregates 

(conglomerates of sand, silt and clay) (Soil Survey Division Staff, 1993). Particles with 

diameters <0.02 mm are particularly crucial for chemical transport because of their large 

surface area. Clay particles have the largest specific surface area, between 20 m
2
g

-1
 and 

800 m
2
g

-1 
depending on the type of clay (Boonamnuayvitaya, Chaiya, 

Tanthapanichakoon, and Jarudilokkul, 2004; Slattery and Burt, 1997; Young and 

Onstad, 1976). In addition, fine particles are less prone to sedimentation, the 

contaminants adhered to there may be transported long distances, while sedimentation 

does not occur (Foster et al., 1985; Gabriels and Moldenhauer, 1978). Therefore, when 
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predicting the transport of soil-absorbed contaminants, it is necessary to use sediment 

particle size distribution (PSD) with an accurate assessment of the clay content (Foster et 

al., 1985; Meyer, Harmon, and McDowell, 1980). 

Soil erosion can be estimates using: conceptual, empirical or physically based 

models. Conceptual models represent the watershed as storage systems. Empirical 

models are generally the simplest among the three type of model and are limited to those 

conditions for which they were developed. Physically based models are typically 

constructed by using mass conservation equations of sediment (Aksoy and Kavvas, 

2005; Merritt et al., 2003). 

Most current studies of water erosion have been made with models derived from 

the empirical Universal Soil Loss Equation (USLE) (Kinnell, 2010; Wischmeier and 

Smith, 1978) and its revised version RUSLE (Renard, Foster, Weesies, McCool, and 

Yoder, 1997). Models like the Erosion Productivity Impact Calculator (EPIC) (Sharpley 

and Williams, 1990) and the Soil Water Assesment Tool (SWAT) (Neitsch, Arnold, 

Kiniry, and Williams, 2011) use the USLE as a routine because it provides reasonable, 

long-term, annual soil loss estimates with little field information (Kinnell, 2010). 

However, USLE model does not consider the deposition of sediment in the modelled 

area (Merritt et al., 2003), and therefore does not calculate the composition of the 

sediment, which is necessary to estimate pollutants that bind preferentially to fine 

sediment particle (Aksoy and Kavvas, 2005). 

Sediment particle size distribution can be estimated using multi-size erosion 

models, such as the Agricultural Non-Point Source Pollution (AGNPS) model (Young, 

Onstad, Bosch, and Anderson, 1989), the Areal Nonpoint Source Watershed Response 

Simulation (ANSWERS) model (Beasley, Huggins, and Monke, 1980), the Water 

Erosion Prediction Project (WEPP) model (Nearing, Foster, Lane, and Finkner, 1989), 

and the RUSLE2 model (Foster, 2008). AGNPS is a conceptual model (Merritt et al., 

2003), whereas the others are physically based models, but all of them subdivide eroded 

soil into five particle size classes: clay, silt, sand, small aggregates and large aggregates. 

In RUSLE2 and WEPP, sediment particle composition at its point of detachment is 
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predicted with the equations developed by Foster et al. (1985) which use the soil matrix 

texture as input, an easily obtained parameter. Some of the previous models require a 

large amount of detailed information about climate, soil topography and land cover, and 

could exceed the available data in the modeled area. 

An alternative to erosion models are empirical equations like Frere, Onstad, and 

Holtan (1975), Young and Onstad (1976), Young (1980) and Deizman et al. (1987). 

Frere et al. (1975) used texture information from 56 Midwest soils to develop a 

relationship between specific surface area and soil texture to estimate the particle size 

distribution of the eroded sediment. Young and Onstad (1976) used 45 Indiana soils and 

30 Minnesota soils in addition to the Frere et al. (1975) data to develop a set of 

equations that require as input the particle size distribution of the soil matrix, organic 

matter, and water content at -15 bar pore pressure. Young (1980) built a database of 21 

soils and developed three sets of empirical equations to approximate the undispersed 

particle size distribution of sediment from the dispersed matrix soil depending on the 

sediment size distribution of the matrix soil. Deizman et al. (1987) conducted 12 field 

experiments with a Groseclose silt loam soil to develop a set of equations that require as 

input the rainfall amount, slope, initial soil water content, and undispersed size 

distributions of the matrix soil. Some of the empirical equations listed above only 

consider soil properties, so they are unable to predict sediment particle size distribution 

based on rainfall, runoff or the size of erosion event.  

Sediment particle size distribution is a function of soil properties, management, 

ground cover, slope, and detachment and transport processes (Alberts, Moldenhauer, and 

Foster, 1980; Alberts, Wendt, and Piest, 1983; Basic, Kisic, Nestroy, Mesic, and 

Butorac, 2002; Carkovic, Pastén, and Bonilla, 2015; Defersha and Melesse, 2012; 

Deizman et al., 1987; Foster et al., 1985; Gabriels and Moldenhauer, 1978; Kinnell, 

2009; Martinez-Mena, Rogel, Albaladejo, and Castillo, 1999; Meyer, Harmon, and 

McDowell, 1980; Proffitt and Rose, 1991; Rienzi, Fox, Grove, and Matocha, 2013; 

Young, 1980; Zhang, Liu, Wang, and Wang, 2011a, 2011b; Ziadat and Taimeh, 2013). 

Many studies have been conducted to determine the sediment PSD and the factors 
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affecting distributions. Gabriels and Moldenhauer (1978) found that the sediment PSD 

had higher percentages of particles < 0.05 mm when the slope was less pronounced. 

Meyer et al. (1980) found that sediment PDS (1) did not vary significantly due to 

variations in the rainfall intensity and (2) was similar to the PSD of the matrix soil. 

Foster et al. (1985), based on the analysis of experimental data, concluded that the 

sediment sand content was directly related to sand in the matrix soil and inversely 

related to the clay content in the matrix soil. They also developed equations that describe 

the composition of sediment at its point of detachment. Later these equations have been 

tested and validated by other authors (Carkovic et al., 2015). Martinez-Mena et al. 

(1999) demonstrated that vegetal cover in natural plots reduces the energy available for 

water erosion. Similar results were obtained by Jin et al. (2009) and Zhang et al. 

(2011a). -They found that with the same ground cover condition, the fine fraction in the 

sediment decreased significantly when the rainfall intensity increased. 

Defersha and Melesse (2012) conducted a series of laboratory experiments using 

simulated rainfall. They found that the effect of the slope and rainfall intensity on PSD 

varies with soil types and moisture contents. Similar results were obtained by Rienzi et 

al. (2013), indicating that sediment PSD depends on the antecedent moisture content.   

Other tools such as artificial neural networks (ANNs) have been used to predict 

soil properties and soil related process (Baker and Ellison, 2008; Koekkoek and 

Booltink, 1999; Licznar and Nearing, 2003; Merdun, Çınar, Meral, and Apan, 2006; 

Tamari, Wösten, and Ruiz-Suárez, 1996; Wösten, Pachepsky, and Rawls, 2001). ANNs 

have a series of advantages, such as the ability to detect complex nonlinear relationships 

between dependent and independent variables, as its range of choices of structures of 

interconnections among components (Wösten et al., 2001). ANNs becomes complex 

formula in the relation between inputs with output values and, can be used like a 

regression formula (Wösten et al., 2001). An ANN consists of many interconnected 

simple computational elements called nodes or neurons. The outputs of neurons are used 

as input to other neurons in the network (Fig. 1). When the number of inputs is larger 
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than three, ANNs usually do better than regression techniques, so they are a good 

alternative for the development of empirical models.  

 

 

Figure 1: Basic structure of an Artificial Neural Network. 

 

Many studies have been developed to identify and understand the factors 

controlling PSD. Most of the models developed in these studies use data from soil, 

slope, management, climate, cover, and irrigation/rainfall to estimates PSD (Defersha 

and Melesse, 2012; Gabriels and Moldenhauer, 1978; Martinez-Mena et al., 1999; 

Meyer et al., 1980; Rienzi et al., 2013; Zhang et al., 2011a). This information is not 

always available at the site of interest, precluding the use of these models in many 

applications. In contrast, the empirical equations assume very specific conditions in the 

matrix soil, and require that the PSD of the matrix soil is expressed as aggregate. 

Therefore, the objective of this study was to provide an empirical and more 

comprehensive equation for predicting the sediment PSD by using simple and typically 

measured soil properties. 
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1.2. Hypothesis 

 

This research is based on the hypothesis that it is possible to develop an equation 

for estimating the sediment particle size distribution in the sediment in water erosion 

events based on parameters easily measured in zones with different soil characteristics, 

precipitation, and topography. 

 

1.3. Objective 

 

The overall objective of this study was to develop an equation to estimate the 

sediment particle size distribution. For this purpose, the following specific objectives 

were established: 

a) Review and identify the equations and models available for estimating the 

sediment particle size distribution. 

b) Build a database of sediment and soil, by collecting actual data from previous 

studies. 

c) Identify key variables that control and explain the particle size distribution in the 

sediment. 

d) Formulate and validate an equation to estimate the particle size distribution in the 

sediment using the actual soil database. 

 

1.4.  Methodology 

 

A sediment and soil database was built based on existing experiments. The 

resulting database consists of 41 erosion events from 21 soils collected in five different 

experiments conducted in the United States, Belgium, China and Ethiopia. Correlation 

and multiple regression analysis were used to identify the main variables controlling 

sediment PSD. 
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The main parameters influencing the sediment PSD were used for developing an 

artificial neural network to estimate the sand, silt, and clay in the eroded sediment, and 

the effectiveness of the model was evaluated using the database constructed and 

compared with existing empirical equations. 

 

1.5. Results  

 

An artificial neural network was built to estimate the sand, silt, and clay in the 

eroded sediment. The input variables used were particle size distribution in the soil 

matrix, the antecedent soil moisture condition, soil erodibility, and hillslope geometry. 

This model estimated the sand, silt, and clay with r
2
 of 0.93, 0.95 and 0.85, respectively. 

The artificial neural network was compared with the empirical equation of Frere et al. 

(1975), Young and Onstad (1976), and Deizman et al. (1987). The network showed a 

better performance when predicting sediment PSD, and differentiating rain-runoff events 

in the same soil. 

 

1.6. Conclusions  

 

The main conclusions of this study were: 

1) The interaction between matrix soil composition, the ratio between soil water 

content and total porosity, the erodibility factor, and the hillslope vertical 

length can be used to explain the sediment PSD. 

2) These interactions can be represented by an artificial neural network for 

predicting the sand, silt, and clay in the eroded sediment.  

3) The network provides an alternative for estimating sediment composition 

when technical and/or economic resources are scarce, contributing to 

pollutant transport modeling and control. 
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2. LITERATURE REVIEW 

 

Water erosion is one of the major causes of soil degradation (Comino et al., 

2016; Lal, 2001; Morgan, 1995; Oldeman, 1992). The consequences of water erosion 

include soil loss (Morgan, 1995), decline in organic matter and nutrients (López et al., 

2016; Morgan, 1995; Novotny and Chesters, 1989), and transport of contaminants such 

as many pesticides (Foster et al., 1985; Gao et al., 1997; Selbig et al., 2013). The 

chemical transport capacity by sediment depends on its specific surface area (Deizman 

et al., 1987; Horowitz and Elrick, 1987; Young and Onstad, 1976), which in turn 

depends on the sediment particles size distribution. These particles are typically 

classified as sand, silt, clay, and aggregates (conglomerates of sand, silt and clay). 

Using the USDA size classification system (Soil Survey Division Staff, 1993), 

diameters for sand are between 0.05 and 2.0 mm, between 0.002 and 0.05 mm for silt, 

<0.002 mm for clay, and between 0.002 and 2.0 mm for aggregates. Particles with 

diameters <0.02 mm are particularly crucial for chemical transport because of their large 

surface area. Clay particles have the largest specific surface area, between 20 m
2
 g

-1
 and 

800 m
2
 g

-1
 depending on the type of clay (Boonamnuayvitaya et al., 2004; Slattery and 

Burt, 1997; Young and Onstad, 1976). Therefore, when predicting the transport of soil-

absorbed contaminants, it is necessary to use sediment particle size distribution (PSD) 

with an accurate assessment of the clay content (Foster et al., 1985; Meyer et al., 1980). 

Sediment particle size distribution can be estimated using multi-size erosion 

models, such as the Agricultural Non-Point Source Pollution (AGNPS) model (Young et 

al., 1989), the Areal Nonpoint Source Watershed Response Simulation (ANSWERS) 

model (Beasley et al., 1980), the Water Erosion Prediction Project (WEPP) model 

(Nearing et al., 1989), and the Revised Universal Soil Loss Equation version 2 

(RUSLE2) model (Foster, 2008). AGNPS is a conceptual model (Merritt et al., 2003), 

whereas the others are physical models, but all subdivide eroded soil into five particle 

size classes: clay, silt, sand, small aggregates and large aggregates. ANSWERS, 

RUSLE2 and WEPP assume that the detached sediment particle size distribution is the 
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same as the matrix soil, and the deposition of these particles is selective for each. Some 

of these models require a large amount of input data, which can exceed available data in 

the modeled area. 

Another way to estimate sediment particle size is by using empirical equations. 

Frere et al. (1975) used texture information from 56 Midwest soils to develop a 

relationship between specific surface area and soil texture to estimate the particle size 

distribution of the eroded sediment. In this study, the author assumed a specific surface 

area for each particle size. Young and Onstad (1976) used 45 Indiana soils and 30 

Minnesota soils in addition to the Frere et al. (1975) data to develop a set of equations 

considering organic matter content and clay mineralogy. These equations require as 

input the particle size distribution of the soil matrix, organic matter, and water content at 

-15 bar pore pressure. Young (1980) built a database of 21 soils and developed three sets 

of empirical equations to approximate the undispersed particle size distribution of 

sediment from the dispersed matrix soil depending on the sediment size distribution of 

the matrix soil. Deizman et al. (1987) conducted 12 field experiments with a Groseclose 

silt loam soil using a rainfall simulator with an intensity of 50 mmh
-1

 in three runs. The 

plots were divided into conventional and no-tillage systems with slope from 8.5% to 

9.7%. The results of the experiments showed that the rainfall amount, slope, initial soil 

water content, and undispersed size distributions of the matrix soil explain the behavior 

of the sediment PSD. Using these variables Deizman et al. (1987) developed empirical 

equations to describe the undispersed and dispersed size distributions of sediment from 

no-till and conventional tillage methods.   

Some of the empirical equations listed above only consider soil properties, so 

they are unable to predict sediment particle size distribution based on rainfall, runoff or 

size of erosion event. The assumptions used in the empirical equations and data 

arrangement required may limit their applicability to other soils and soil conditions.  

Sediment particle size distribution is a function of soil properties, management, 

cover, slope, and detachment and transport processes (Carkovic et al., 2015; Defersha 

and Melesse, 2012; Deizman et al., 1987; Foster et al., 1985; Gabriels and Moldenhauer, 
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1978; Kinnell, 2009; Martinez-Mena et al., 1999; Meyer et al., 1980; Young, 1980; 

Zhang et al., 2011b, 2011a). Many studies have been conducted to determine sediment 

PSD and factors affecting distributions. Gabriels and Moldenhauer (1978) conducted a 

series of experiments on four soils from Ames, Iowa, and two Belgian soils, A and B, 

using simulated rainfall of 63.5 mmh
-1

 intensity and a duration of 90 minutes to assess 

the effect of soil texture and rainfall intensity on sediment size distribution. They found 

that the sediment PSD had higher percentages of particles < 0.05 mm when the slope 

was less pronounced. Meyer et al. (1980) conducted a series of field experiments on 10 

soils with slopes of 8% to less than 1% using a simulated rainfall of 67 mm h
-1

 intensity 

for one hour in order to compare sediment size distributions. They found that sediment 

PDS (1) did not vary significantly due to variations in the rainfall intensity and (2) was 

similar to the PSD of the matrix soil. Foster et al. (1985), based on the analysis of 

experimental data, concluded that the sediment sand content was directly related to sand 

in the matrix soil and inversely related to the clay content in the matrix soil. They also 

developed equations that describe the composition of sediment at its point of 

detachment. 

Martinez-Mena et al. (1999) demonstrated that vegetal cover in natural plots 

reduces the energy available for water erosion. Similar results were obtained by Zhang 

et al. (2011a) conducting field experiments on a sandy loam soil under simulated rainfall 

with three intensities (60, 100, and 140 mm h
-1

) for 60 minutes each and three cover 

percentages (0%, 30% and 80%) with a 15% slope to investigate the effect of rainfall 

intensity and vegetation cover on sediment PSD. Additionally, they found that with the 

same cover condition, the fine fraction in the sediment decreased significantly when the 

rainfall intensity increased. 

Defersha and Melesse (2012) conducted laboratory experiments using simulated 

rainfall of 120, 70, and 55 mmh
-1

 intensity applied sequentially for 90 minutes with 9%, 

25% and 45% slopes for three soil types that varied from clay to sandy clay loam to 

evaluate the effect of rainfall intensity, slope, soil types and antecedent moisture content 

on sediment PSD. They found that the effects of slope and rainfall intensity on PSD vary 
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with soil types and moisture contents. Similar results were obtained by Rienzi et al. 

(2013), indicating that sediment PSD depends on the antecedent moisture content.  

Many studies have been developed to identify and understand the factors 

controlling PSD. Most models developed in these studies use data from soil, slope, 

management, climate, cover, and irrigation/rainfall to estimate PSD. This information is 

not always available at the site of interest, precluding the use of these models in many 

applications. In contrast, the empirical equations assume very specific conditions in the 

matrix soil, and require that the PSD of the matrix soil is expressed as aggregate. Other 

tools such as artificial neural networks (ANNs) have been used to predict soil properties 

and soil related process (Baker and Ellison, 2008; Koekkoek and Booltink, 1999; 

Licznar and Nearing, 2003; Merdun et al., 2006; Tamari et al., 1996; Wösten et al., 

2001). ANNs have several advantages, such as the ability to detect complex nonlinear 

relationships between dependent and independent variables, as its range of choices of 

structures of interconnections among components (Wösten et al., 2001). ANNs have a 

complex formula in the relationship between inputs and output values (Maren, Harston, 

and Pap, 1990) and can be used similar to a regression formula (Wösten et al., 2001). 

The goal of this study is to provide an empirical and more comprehensive 

equation for predicting sediment PSD by using simple and typically measured soil 

properties. With this purpose, a sediment and soil database was compiled based on 

existing studies, and correlation and multiple regression analyses were used to identify 

the main variables controlling sediment PSD. With these variables, an artificial neural 

network was built to estimate the sand, silt, and clay in the eroded sediment. The 

effectiveness of the model was evaluated using the constructed database and compared 

with existing empirical equations. 
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3. MATERIALS AND METHODS 

 

3.1. Soil database 

 

A sediment and soil database was built using experiments conducted by Gabriels 

and Moldenhauer (1978) and data reported by Meyer et al. (1980), Deizman et al. 

(1987), Zhang et al. (2011a), and Defersha and Melesse (2012). These studies report the 

dispersed PSD of the matrix soil and sediment, organic matter content, hillslope length 

and slope, rainfall intensity and duration, and initial soil moisture conditions. Gabriels 

and Moldenhauer (1978) did not report the organic matter content of Belgian soils, and 

Meyer et al. (1980) did not report the initial soil moisture condition and the organic 

matter content for all soils. However, these missing data were estimated, as explained 

below, for utilization in this study. 

The resulting database consists of 41 rainfall events from 21 soils collected in 

five different experiments conducted in the United States, Belgium, China, and Ethiopia. 

As shown in Table 1, the hillslope lengths ranged from 0.45 m to 18.3 m, with slopes 

from 0.5% to 45% and simulated rainfall from 25 mm to 245 mm applied in the 

experiments. The initial soil moisture conditions were oven dried, air dried, and pre-

wetted. The studied soils had organic matter ranging from 0.8% to 14%, 1% to 88% in 

sand, 8% to 84% in silt, and 4% to 55% in clay (Fig. 1). 
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Table 1: Length, slope, rainfall amount and moisture content in the compiled soil 

database. Data for soils 1-6 are from Gabriels and Moldenhauer (1978), data for soils 7-

16 are from Meyer et al. (1980), data for soil 17 are from Deizman et al. (1987), data for 

soil 18 are from Zhang et al. (2011a), and data for soils 19-21 are from Defersha and 

Melesse (2012). Soils 6 and 17 to 22 have more than one plot configuration. 

 

  Soil 

Hillslope 

length 

(m) 

Hillslope slope 

(%) 

Rainfall 

amount 

(mm) 

Initial moisture 

1 Haganer 0.45 9.0 95 Air dry 

2 Ida 0.45 9.0 95 Air dry 

3 Marshall 0.45 9.0 95 Air dry 

4 Lutton 0.45 9.0 95 Air dry 

5 Belgian silt loam A 0.55 31.0 81 Air dry 

6 Belgian silt loam B 0.55 9.0, 31.0 81 Air dry 

7 Grenada #1 0.90 1.0 67 NA 

8 Cascilla 0.90 1.0 67 NA 

9 Sharkey 0.90 0.5 67 NA 

10 Bruin 0.90 0.5 67 NA 

11 Vicksburg V 0.90 1.0 67 NA 

12 Lexington 0.90 3.5 67 NA 

13 Arkabutla 0.90 1.0 67 NA 

14 Grenada #8 0.90 1.0 67 NA 

15 Memphis 0.90 6.5 67 NA 

16 Morganfield 0.90 0.5 67 NA 

17 Groseclose silt loam soil 18.30 9.0 50, 25, 25 Dry-Wet-Very wet 

18 Sandy loam soil 8.50 15.0 60, 100, 140 Dry 

19 Alemaya black soil 0.45 9.0, 25.0, 45.0 245 Air dry- Pre wetted 

20 Godie soil series 0.45 9.0, 25.0, 45.0 245 Air dry- Pre wetted 

21 Alemaya series eroded 0.45 9.0, 25.0, 45.0 245 Air dry- Pre wetted 

NA: Not available 
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Figure 2: Soil texture class for the selected soil used in this study. 
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The literature review identified the main factors controlling sediment PDS. These 

factors were PSD of the matrix soil, initial soil water content, rainfall intensity and 

amount, and slope. Because not all these factors were provided by the authors, some 

estimation was necessary. In addition, hillslope vertical length, erodibility factor, ratio 

between soil water content and total porosity, and rainfall erosivity of the storm were 

estimated. 

To analyze the effect of the slope and plot dimension, the correlation with 

sediment PSD and slope, hillslope length, and vertical length (θv) were computed. The 

hillslope vertical length was defined as follows: 

 

 λθθv sin  (1) 

 

where θ and λ are the slope (rad) and length (m) of hillslope. The θv value provides a 

measurement of the hillslope steepness. 

The erodibility factor (K) is a key factor for predicting the average annual soil 

loss in most erosion models, such as RUSLE (Renard et al., 1997), and it was included 

in our analysis as an input parameter. The value of K was computed as the erodibility 

factor developed in the Erosion Productivity Impact Calculator (EPIC) model (Sharpley 

and Williams, 1990), in which K is computed as follows: 
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where K is the erodibility factor (t h MJ
-1

 mm
-1

); SAN, SIL, CLA, and C are the sand, silt, 

clay, and soil organic carbon contents (%), respectively; and SN1=1-SAN/100. The C 
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value was computed from the organic matter content reported by the authors. The 

organic matter was assumed to be 2% for the 10 soils of Meyer et al. (1980), and for the 

2 Belgian soils of Gabriels and Moldenhauer (1978). These 12 soils correspond to 13 

events of the 41 events in the database. 

To evaluate the effect of initial water content in the sediment PSD, the ratio (S) 

between the soil water content and total porosity was calculated as follows: 

 




S  (3) 

 

where   is the soil water content at the beginning of the rainfall event (m
3
 m

-3
) and   is 

the total porosity (m
3
 m

-3
). When the soil condition at the beginning of the experiment 

was described as pre-wetted,  was assumed to be the content at -33 kPa. Conversely, 

when the soil was oven dried,   was assumed to be the content at -1500 kPa, and when 

the soil condition was air died,   was assumed to be the average between -33 and -1500 

kPa. When the initial soil water content was not reported, it was assumed to be the 

content at -33 kPa. All variables were obtained from Table 2 of Rawls et al. (1982) 

based on soil texture. 

The effect of the rainfall was analyzed in three different ways: rainfall amount 

(mm), maximum 30-minute rainfall intensity I30 (mm h
-1

), and storm rainfall erosivity R 

(MJ mm ha
-1

 h
-1

). Erosivity is used in most erosion models and was included in the 

analysis because it combines the effects of duration, magnitude and intensity of each 

rainfall event (Foster, 2008; Lobo and Bonilla, 2015). 
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3.2. Database analysis 

 

To determine both the dependence and redundant effects between the database 

variables, a correlation analysis with the Pearson correlation coefficient (r) was used. In 

addition, a multiple regression analysis was performed between the sediment PSD and 

soil and climate properties. The results of the analysis were used to determine input 

variables when building the neural network.  

 

3.3. Artificial neural network training and validation  

 

ANNs were tested with a two-layer feed forward network (with a hidden and an 

output layer) using the Levenberg-Marquardt back propagation algorithm as a training 

function (Hagan and Menhaj, 1994). The selected transfer function was hyperbolic 

tangent sigmoid, and the performance function was mean square error (MSE). The 

database was randomly divided in three sets: 70% of the data was used for training, 15% 

was used for validation during the training process, and 15% of the data set was used to 

test the ability of the trained neural network to predict new data. The number of neurons 

in the hidden layer was between 1 and 10. It is important to note that different neural 

networks trained on the same problem can give different outputs for the same input 

(Tamari et al., 1996). For this reason, a total of 100 iterations were performed for each 

number of tested neurons. The target of the ANNs was the sediment PSD as the 

dispersed fractions of sand, silt, and clay. All simulations were performed with the 

neural network toolbox of MATLABTM (The MathWorks Inc., USA). 

Because of the random division of the database in the training, validation and 

testing, and the random selection of initial parameters values, using the network with 

minimum MSE between all iterations is not necessarily the best solution, as it could be 

removing appropriate information by rejecting networks with higher MSE (Perrone and 

Cooper, 1993; Tumer and Ghosh, 1996). Therefore, the criteria for choosing the best 

ANN were as follows: (1) predicted values are in the range of sediment PSD, (2) MSE 
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for both training and validation is minimal, and (3) as explained by Tamari et al. (1996), 

the maximum and minimum values of selected input variables are part of the training 

set. 

As a result of the ANN structure, researchers have considered them “black 

boxes” (Olden and Jackson, 2002). The contribution of input variables in predicting 

output value is difficult to separate within the network, so the dependencies between 

variables and modeling mechanism are not explained by the network. Thus, to determine 

the relative importance of each input in the network, Garson’s algorithm was used 

(Garson, 1991). The procedure is described in detail by Olden and Jackson (2002); 

essentially, after selecting the best ANN, the relative importance (RI) for each input 

variable was calculated. 

 

3.4. Evaluation criteria 

 

The root mean square error (RMSE), coefficient of determination (r
2
), and Nash-

Sutcliffe model efficiency (NS) (Nash and Sutcliffe, 1970) were used to compare the 

observed and predicted sediment PSD. The Nash-Sutcliffe model efficiency was 

calculated as follows: 

 

 

 







2

2

1
OO

PO
NS

i

ii
 (4) 

 

where iO  and iP  are observed and predicted PSD, and O is the observed mean of PSD. 
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4. RESULTS AND DISCUSSION 

 

4.1. Variables affecting the sediment particle size composition 

 

The correlation analysis identified four variables related to sediment PSD. Sand 

content in sediment showed a direct relationship with its content in the soil matrix 

(r=0.91). Sediment sand content was inversely related to silt content in the soil matrix 

and K factor value (r=-0.74 and -0.71, respectively). In contrast to the results reported by 

Foster et al. (1985), no relationship between the sand in the sediment and clay in the soil 

matrix was found. 

The silt content in sediment shows a direct relationship with its content in the soil 

matrix and with the K value (r=0.90 and r=0.89, respectively). The sediment silt content 

is inversely related to the sand content in the matrix, rainfall, and erosivity (r=-0.77, -

0.71, and -0.72, respectively). The inverse relationship between the silt in the sediment 

and the rainfall is due to 18 events from Defersha and Melesse (2012), which have the 

same rainfall. If the analysis is performed without these events, no relationship is found 

between these variables (r=-0.43). Similar results were found for Deizman et al. (1987), 

where no trend was found when correlating rainfall and sediment PSD. Sediment clay 

content shows a direct correlation with its content in the soil matrix (r=0.74).  

The analysis shows a correlation between sediment PSD and PSD in the matrix, 

rainfall, erosivity and K factor value. Therefore, they were used as input variables for 

developing the neural network model. Conversely, S and θv did not show a correlation 

with sediment PSD. However, S affects soil infiltration, and it is a good estimator of the 

total runoff volume, which is a key component of modeling soil loss and detachment of 

soil particles during a runoff event (Defersha and Melesse, 2012; Morgan, 1995). In 

addition, the slope and length of the plot affect soil loss in water erosion processes 

(Morgan, 1995). Deizman et al. (1987) found that as the slope decreased, the percentage 

of sediment PSD increased. Gabriels and Moldenhauer (1978) explained that the lower 

runoff velocity from lower slopes leaves the soil exposed to raindrop impacts for a 
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longer time, so particles are more available for erosion. The θv, which connect the two 

variables in a single parameter, could affect sediment PSD as S, because both variables 

were included as input values in network construction.    

 

4.2. Neural Network Model 

 

The ANN model developed for the prediction of sediment particle size 

distribution corresponds to a three stages’ unified model: pre-processing, neural 

network, and post-processing. This model contains 8 neurons and 6 input variables, 

which are sand, silt, and clay in the matrix and S, K and θv. 

 The pre-processing step corresponds to a normalization of input variables 

contained in the range [-1, 1]. This was accomplished using the formula: 

 

 
 

  minmin

minmax

minmax xpxx
xx

xpxp
xp 




  (5) 

 

where xp is the normalized input variable, xpmin and xpmax are the minimum and 

maximum value for xp equal to -1 and 1, respectively, x is the input variable (mass 

fraction), and xmin and xmax are the minimum and maximum value for the input variable 

(mass fraction). The value for xmin and xmax are given in Table 2. 
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Table 2: Values used for normalization of input variables when building the artificial 

network model. 

 

 
Sand Silt Clay S K θv 

 
(%) 

(ton h MJ
-1 

mm
-1

)  

xmin 1 8 4 14 0.107 0.004 

xmax 88 84 55 81 0.421 1.640 

 

The normalized input xpk (k=1 to 6 for sand, silt and clay in the matrix, S, K and 

θv, respectively) for the neuron j (j=1 to 8) are multiplied by weights IWjk and summed 

together with the constant bias term b
1

j. The resulting n
1
j is the input for the hyperbolic 

tangent sigmoid function, which produces the output a
1
j. At the same time, as shown in 

Fig. 3, a
1
j are multiplied by layer weights LWij and summed together with the constant 

term b
2
i to form the output a

2
i (i = 1 to 3 for sand, silt and clay, respectively). The neural 

network equation is: 

 

21
6

1

8

1

2 tansig ijk
k

jk
j

iji bbxpIWLWa 







 



 (6) 

 

where the values of LW, IW, b
1
 and b

2
 are shown in Table 3. 
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Figure 3: Diagram of the artificial neural network model. 

 

Table 3: Parameter values used for the artificial network model. 

 

IW 

j\k 1 2 3 4 5 6 7 8 

1 -0.711 -0.928 0.626 1.302 -1.480 -0.950 2.290 1.384 

2 -0.746 -0.323 0.686 0.100 0.605 -0.681 0.015 -1.225 

3 -1.432 1.601 0.042 -1.554 0.134 1.071 -0.341 1.266 

4 -0.474 -0.512 0.542 -0.959 1.321 2.096 0.890 0.826 

5 1.001 0.440 1.518 0.859 -0.399 -0.270 -1.137 0.604 

6 1.221 0.879 1.693 1.752 0.412 2.016 0.656 -1.680 

b
1
 

j 1 2 3 4 5 6 7 8 

 
1.753 -1.253 -0.745 0.133 0.453 -0.044 1.236 1.472 

LW 

i\j 1 2 3 4 5 6 7 8 

1 -0.208 0.530 -0.330 1.094 0.838 -0.602 0.646 0.911 

2 -0.668 -0.609 1.487 -0.425 -0.387 -0.278 -0.680 -0.034 

3 0.957 0.044 -1.314 -0.904 -0.598 1.059 -0.011 -1.141 

b
2
 

i 1 2 3 

 
-0.873 0.931 -0.784 
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The network output a
2
 is normalized and must be reverse-processed to obtain the 

estimates values for each particle. This is accomplished using the formula: 

 

 
 

  min

2

min

2

2

min

2

max

minmax yaa
aa

yy
y 




  (7) 

 

where y is the estimated value (mass fraction), ymax and ymin are the maximum and 

minimum values (mass fraction) of y given in Table 4, a
2

max and a
2
min are 1 and -1, 

respectively, and a
2
 is the network output of Eq. (6). 

 

Table 4: Maximum (ymax) and minimum (ymin) values used for each estimated soil 

fraction. 

 

 
Sand Silt Clay 

 
(%) 

ymin 0.7 8.0 6.0 

ymax 86.0 86.6 70.7 

 

Analysis of the relative importance of each input variable shows that sand and 

vertical length are the most important inputs to the model (RI=22%). As shown above, 

the sand content in the soil matrix was correlated with the contents of silt and sand in the 

sediment. However, the vertical length had no correlation with sediment PSD. This 

could be an effect of the complex interaction with the erosion factor; therefore, it is 

important to measure precisely the geometry of the hillslope to obtain a reliable estimate 

using the model. The least important variable was silt content in the matrix (RI=10%).  

Consequently, its value may be less accurate with respect to other variables. The other 

input variables have an RI=14%-17%. Based on results of the relative importance 

analysis of input variables, it is possible to conclude that inputs have a similar RI in the 
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ANN model (average RI=17%), and the process responsible for sediment particle 

distribution cannot be explained with a single variable.   

 

4.3. Performance of the ANN model 

 

The ANN model estimated the sediment PSD for the database with NS=0.96 and 

RMSE=0.04 for the training set, NS=0.91 and RMSE=0.05 for the validation set, 

NS=0.74 and RMSE=0.07 for the test set, NS=0.85 and RMSE=0.06 for the validation 

and test set together, and NS=0.94 and RMSE=0.05 for the total database (Fig. 4). 

Results for individual particles are presented in Table 5. The ANN model for an 

individual data set (test) overestimates sand in the sediment for one event and 

underestimates sand for one event. Similarly, clay in the sediment is underestimated in 

one event (Fig. 4.c). The event that overestimates the sand and underestimates the clay 

corresponds to the same event from the Alemaya series (Defersha and Melesse, 2012), 

with a 9% of slope and pre-wetting. This event has no particular characteristic making it 

different from other events associated with the Alemaya series, but it was the only event 

of this soil that was not used for network training. For this particular event, the silt 

fraction was well estimated. In contrast, the event that underestimated sand also 

overestimated the silt, and this event corresponds to an event from the Godie soil series 

(Defersha and Melesse, 2012), with a 25% of slope and air-dried soil. For this soil, 4 

events were used for training, one for validation and one for testing. If the analysis was 

performed without these events, the r
2
 and NS increased to 0.98 and 0.97 for sand, 0.97 

and 0.96 for silt, and 0.99 and 0.98 for clay, and 0.98 and 0.98 for the test set, 

respectively. This result indicates that the ANN model predicts sediment PSD fairly well 

and provides a reliable tool for predicting sediment pollutant transport capacity, which 

depends on specific surface area (Horowitz and Elrick, 1987). Clay is predicted with 

lower precision with respect to other particles but is still a good estimate and is crucial 

for a pollutant transport model, as clay has the largest specific surface area 

(Boonamnuayvitaya et al., 2004). 
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Figure 4: Comparison between the observed and estimated sediment PSD when using 

the artificial network model for training (a), validation (b), testing (c), and the entire 

database (d). 
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Table 5: Evaluation of the artificial network model for predicting sediment particle size 

distribution. 

 

    Sand Silt Clay 

Train 

r
2
 0.98 0.97 0.86 

NS 0.98 0.97 0.86 

RMSE 0.03 0.04 0.06 

n 29 29 29 

Validation 

r
2
 0.91 0.82 0.74 

NS 0.89 0.82 0.63 

RMSE 0.05 0.06 0.05 

n 6 6 6 

Test 

r
2
 0.59 0.89 0.76 

NS 0.54 0.86 0.74 

RMSE 0.10 0.05 0.06 

n 6 6 6 

All 

r
2
 0.93 0.95 0.85 

NS 0.93 0.95 0.85 

RMSE 0.05 0.04 0.06 

n 41 41 41 

 

To develop the ANN model, it was necessary to assume an organic matter 

content equal to 2% for Meyer et al. (1980) soils and the Gabriels and Moldenhauer 

(1978) soils. A value of 60% of the Meyer et al. (1980) soils and 33 % of the Gabriels 

and Moldenhauer (1978) soils were used to train the ANN, which represents 31% of the 

training data set. A change in the organic matter of 1% causes the ANN model to 

underestimate the average of the sand in 4% and overestimate the average of the silt and 

clay in 18% and 14%, respectively. Conversely, a 4% change in the organic matter 

content causes the ANN to underestimate sand average in 1% and overestimate the 

average of silt and clay in 10% and 10%, respectively. Despite these results for both 1% 

and 4% of organic matter content, the model predicted the trends in sediment PSD. 

Finally, it is important to mention that the ANN model was developed using as a domain 



27 

  

the values presented in Table 2; consequently, the neural network does not work a priori 

when the input values are out of the range of the table. 

 

4.4. Comparison with other sediment PSD models 

 

The empirical equations of Frere et al. (1975), Young and Onstad (1976), and 

Deizman et al. (1987) were evaluated using the database and compared with the results 

of the ANN. The Frere et al. (1975) and Young and Onstad (1976) equations were 

evaluated using the entire database. They estimated the sediment PSD with r
2
=0.64, and 

0.76, NS=0.63, and 0.75, and RMSE=0.13 and 0.11, respectively. The equation of 

Young and Onstad (1976) predicted the PSD more accurately than that of Frere et al. 

(1975) due to the incorporation of the organic matter content and water content as 

equation input variables. However, both equations were unable to estimate the PSD for 

soil with more than one event. For the Deizman et al. (1987) equations, the numbers of 

events available in the database were not enough for a correct analysis. However, for the 

3 events available, the r
2
 was 0.98, NS=0.98, and RMSE=0.03. Among the three studies, 

the empirical equations developed by Deizman et al. (1987) predicted the sediment PSD 

more accurately. These results are explained by the three selected events used to test 

Deizman’s equation corresponding to events used by Deizman et al. (1987) for equation 

development. 

The ANN model more accurately estimates sediment particle size distribution 

compared to empirical equations developed by Frere et al. (1975) and Young and Onstad 

(1976) (r
2
=0.94, NS=0.94, and RMSE=0.05), and compared to Deizman et al. (1987) 

(r
2
=0.99, NS=0.99, and RMSE=0.004), it responds to different events in the same soil 

and does not require aggregate particle information.  
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5. CONCLUSIONS  
 

A direct relationship between sediment particle size distribution (PSD) and the 

particle size distribution in the matrix soil was found. PSD in the matrix soil can be used 

as a first approach for predicting sediment PSD from a water erosion event.  Moreover, a 

reliable relationship between sediment PSD and rainfall, rainfall erosivity and erodibility 

factor was found. This study demonstrates that there is an interaction between matrix 

soil composition, the ratio between soil water content and total porosity, the erodibility 

factor, and the hillslope vertical length that can be used to explain sediment PSD. 

The use of artificial neural networks proved to be suitable for building a suitable 

model for predicting sediment PSD in soil loss events across a wide range of soils and 

hillslope geometries. The developed ANN is a two-layer feed forward network with 8 

neurons and 6 inputs, which is capable of simultaneously predicting dispersed particle 

size distributions in sediments.  

The ANN model developed in this study is meant to be used as a simple predictor 

for sand, silt and clay fractions in the sediment. Although physical models can provide 

more accurate results, this model requires fewer input values, which are obtainable from 

field and soil surveys, and is easily coupled with other sediment/contaminant models. 

Finally, this ANN model provides an alternative for estimating sediment composition 

when technical and/or economic resources are scarce, contributing to pollutant transport 

modeling and control.  
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