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SEISMIC PERFORMANCE: NUMERICAL CHARACTERIZATION, EXPERIMENTAL 

VALIDATION, PARAMETRIC ANALYSIS AND LIFE-CYCLE BASED DESIGN 

Abstract 

by 

Rafael Ruiz 

In the last decades the use of seismic protection devices in Chilean buildings has 

gained popularity for reducing earthquake losses. Mass dampers (also referenced as 

inertia dampers), with the most popular representative being the Tuned Mass Damper 

(TMD), are a potential device for facilitating these tasks; they consist of a secondary 

mass attached to the primary structure through an equivalent spring and dashpot. 

Through proper tuning of frequency/damping characteristics, the movement of this 

secondary mass counteracts the vibration of the primary mass (structure) providing the 

desired energy dissipation for this vibration. Among the general class of mass damper 

devices, Tuned Liquid Dampers (TLDs), which consist of a tank filled with some liquid 

(typically water) whose sloshing within the tank provides the mass damper effect, have 

some attractive characteristics such as low cost, easy installation and tuning, 

bidirectional control capabilities and alternative use of the secondary mass (liquid in this 
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case). Their popularity, though, has been hindered by the facts that (i) their dynamic 

behavior is highly non-linear due to wave breaking and (ii) their inherent damping is 

usual lower than the optimal one, requiring the introduction of submerged elements (to 

increase this damping) that make the overall behavior even more complex. Other type 

of liquid dampers that share some of the TLD advantages, the liquid column dampers, 

offer a simpler modeling but their dynamic behavior is still non-linear since their 

damping ends up being amplitude dependent, whereas they are strictly restricted to 

one-directional applications. Additionally, the advantages of any such type of mass 

dampers particularly for seismic applications in the Chilean region have not been clearly 

demonstrated; this pertains to both their efficiency, acting as an inertia device, to allow 

significant energy dissipation for the ground motions common in the region but more 

importantly to an explicit discussion of the life-cycle cost improvement they can 

facilitate.     

The research presented here introduces a new type of liquid mass damper, 

called Tuned Liquid Damper with Floating Roof (TLD-FR) which combines the favorable 

characteristics of both TLDs and liquid column dampers, and further examines its 

efficiency for seismic applications for Chile. The TLD-FR consists of a traditional TLD 

(liquid tank filled with liquid) with the addition of a floating roof. The sloshing of the 

liquid within the tank is what still provides the inertia damper effect, but the roof 

prevents wave breaking phenomena and introduces a practically linear response and a 

dynamic behavior in a dominant only mode. This creates a vibratory behavior that 

resembles other types of a linear mass dampers and a framework is developed to 
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characterize this behavior with a simple parametric description that can facilitate an 

easy comparison to such dampers. Within this framework, focus is given on a 

theoretical/computational characterization of the new device, coupled with an 

experimental validation of its capabilities and of the established numerical tools.  To 

support these advances an efficient computational approach is formulated to describe 

the dynamic behavior of liquid tanks and is then extended to describe the behavior of 

the TLD-FR (address the inclusion of the roof). The aforementioned parametric 

formulation is then used to develop an approach that facilitates a direct design in the 

parametric space, as well as an efficient mapping back to the different tank geometries 

that correspond to each parametric configuration. During this process the efficiency of 

mass dampers for seismic applications in Chile is also examined by comparing the 

performance across different types of ground motions, representing different regions 

around the world. Finally, a versatile life-cycle assessment and design of the new device 

is established considering risk characterizations appropriate for the Chilean region, so 

that the cost-benefits from its adoption can be directly investigated. This involves the 

development of a multi-criteria design approach that considers the performance over 

the two desired goals: (i) reduction of the total life-cycle cost considering the upfront 

damper cost as well as seismic losses and (ii) reduction of the consequences, expressed 

through the repair cost, for low likelihood but high impact events. Through this 

approach the financial viability of the TLD-FR (competitiveness against TMDs) for 

enhancing seismic performance is demonstrated.  
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INTRODUCTION 

1.1 Motivation 

In modern urban areas there is an increasing trend to build light and flexible 

structures. In order to enhance the performance of such structures addition of 

supplemental devices is frequently promoted to control undesirable vibrations due to 

exposure to dynamic excitations such as winds or earthquakes (Housner et al. 1997; 

Zemp et al. 2011). Earthquake-induced (short-duration and large amplitude) vibrations 

may result in significant damages to structural and non-structural components and 

building-contents. Recent examples of such damages are discussed in Inokuma and 

Nagayama 2013 or Saatcioglu et al. 2013. Additionally, wind-induced (longer-duration 

but smaller amplitude) vibrations can also contribute to failure for serviceability limit 

states (cladding damage, elevator malfunction) as well as to fatigue damage (large 

number of lower amplitude oscillations) and, to some extreme cases (very strong winds 

or errors in designs/construction), even to structural failure (Sain and Kishen 2007). 

To alleviate such impacts, different techniques have been proposed to control 

natural hazard induced-vibration of structures, with one of the most popular being the 
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introduction of passive devices, i.e. devices that require no external power supply. 

These devices impart forces counteracting directly the motion of the structure. 

Examples include viscous and viscoelastic dampers, friction dampers, hysteretic 

dissipaters, base isolation systems or inertial-type of dampers generally referenced as 

mass dampers (Soong and Dargush 1997; C. Christopoulos and A. Filiatrault 2006; 

Gutierrez Soto and Adeli 2013). They have prevailed in structural control applications, 

including in control application in Chile (Zemp et al. 2011; De la Llera et al. 2004), over 

active devices due to the large power demand of the latter (Housner et al. 1997) that 

cannot be reliably provided, and the fact that a significant life-cycle cost improvement 

arguing for the adoption of active devices has never been comprehensively proven. 

Note, furthermore that some of these passive devices can be extended to operate in 

semi-active mode by controlling in real-time their characteristics, such as orifice 

openings for viscous dampers that alter the viscosity coefficient of spring characteristics 

for TMDs (Housner et al. 1997; Sun et al. 2014).   

1.2 Mass Dampers and the Tuned Mass Damper (TMD) 

Perhaps the most commonly used passive device are mass dampers (frequently 

also referenced as inertia dampers), which consist of an inertial element (secondary 

mass) attached to a higher floor of the structure to be controlled (primary mass). 

Through appropriate tuning of its vibratory characteristics (meaning typically tuning to a 

specific mode of vibration for the structure), the secondary mass resonates out-of-phase 
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with the point of connection to the structure, reducing through its own dynamic 

response the vibration level of the primary mass (Den Hartog 1985). When that 

secondary mass corresponds to a single degree of freedom oscillator then the device is 

known as a Tuned Mass Damper (TMD). An equivalent interpretation of TMDs is that 

they correspond to mass dampers for which the entire additional mass (of the inertia 

damper) responds in a single mode and therefore that entire mass ultimately 

participates in the suppression of the vibration of the primary mass. 

It is well understood that mass dampers impact the vibratory characteristics only 

in the range close to their own frequency, meaning that (a) they can suppress only a 

specific mode and that (b) the aforementioned tuning is very important for their 

efficiency (Den Hartog 1985; Gutierrez Soto and Adeli 2013; Oberguggenberger and 

Schmelzer 2014). Implementation of mass dampers may take different forms, for 

example directly a mass-spring-damper configuration or a swinging pendulum with 

additional elements to provide a damping effect to its vibration. A more detailed 

description of such configurations can be found in (Matta and De Stefano 2009; 

Gutierrez Soto and Adeli 2013). Mass dampers have been proven particularly 

advantageous for flexible buildings since they are economical and can be relatively 

easily implemented as an add-on to existing or new structures. Application of multiple 

mass dampers can be also considered to provide more efficient vibration suppression or 

even control of different modes of vibrations (Abe and Fujino 1994; Yang et al. 2015; 

Park and Reed 2001). For example for Taipei 101, which stands 508 m above ground 
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level in a region which experiences strong winds, earthquakes, and typhoons, three 

different TMDs have been applied, one of which was, at that point, the largest TMD in 

the world with mass of 660 tons (Tamboli et al. 2008). 

The first inertia damper application was actually presented by (Frahm 1911) to 

reduce hull motion of ships. Today it is commonly used in buildings, automobiles, 

antennas, and in general very diverse dynamical system where vibration suppression is 

desired. The modeling of all devices belonging in the mass damper category can be 

equivalently expressed as single-degree-of-freedom oscillator (Chang 1999) with a 

specified mass connected to the primary structure though a spring and a dashpot. The 

difference between the different type of inertia damper devices is how the 

spring/dashpot configuration is ultimately established with an additional distinction of 

whether the total mass participates in the vibration suppression (Chang 1999), whereas 

some exhibit nonlinear vibratory characteristics with respect to the damping (dashpot) 

properties (Rudinger 2007). Semi-active implementations further differentiate these 

dampers (Hrovat et al. 1983; Sun and Nagarajaiah 2014; Lin et al. 2015).  

Such mass dampers have been proposed in the literature for improving the 

dynamic performance of structures under a variety of dynamic excitations, including 

seismic excitations, though at this case with a reduced overall effectiveness, an 

effectiveness which additionally greatly depends on the characteristics of the excitation 

(Gutierrez Soto and Adeli 2013; Lin et al. 2001). This should be attributed to the fact that 

earthquakes are short-duration, non-stationary excitations, frequently (in near-fault 
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regions) with impulsive characteristics (Mavroeidis and Papageorgiou 2003). On the 

other hand, mass dampers, being inertia devices, require typically some rise-time for 

their activation (Lin et al. 2010), so that their own vibration becomes large enough to 

facilitate the desired energy dissipation for the motion of the primary structure. If the 

characteristics of the ground motion are such that there is not sufficient time for this 

inertia mode of operation (meaning an impulsive rather than a gradual built-up of the 

excitation), then the efficiency of the mass dampers is expected to be small. Still, a 

variety of studies have demonstrated the potential of mass dampers in reducing seismic 

vibrations (Tributsch and Adam 2012; Hoang et al. 2008; Wong 2008; Miranda 2005). 

The caveat, though, that the discussion above demonstrates is that one needs to 

examine careful the characteristics of anticipated regional excitations before promoting 

such a solution.         

The design, now, of mass dampers involves an optimization problem in which 

the spring/dashpot values are selected based on some performance criteria. For the 

spring this means, as discussed earlier, match to a specific modal frequency of the 

primary structure (impact to only a specific mode as discussed earlier). In this context, 

many researchers have addressed the optimal mass damper design under different 

excitation conditions (Soong and Dargush 1997; Gutierrez Soto and Adeli 2013) while 

examining different possible performance quantifications or even the implementation 

of multiple mass dampers (Abe and Fujino 1994).  The most popular approaches 

correspond to reducing the response to (a) sinusoidal excitation [objective corresponds 
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to the maximum value of the amplification factor (Den Hartog 1985)] or (b) white noise 

excitation [objective corresponds to the area under the squared amplification factor 

giving the response-variance (Warburton 1982)]. The latter can easily be extended to 

minimization of the response to stationary excitation with any desired power spectrum 

(Yalla and Kareem 2000) [objective is related to the area of the squared amplification 

factor multiplied by the power spectrum of the excitation]. Approaches also exist that 

have looked at reliability definitions for the performance under stationary excitation, i.e. 

not just simple statistics such as the response-variance, by solving the so-called first-

passage problem (Taflanidis et al. 2007; Marano et al. 2007). 

Such procedures are definitely reasonable for wind excitation since the latter can 

be adequately described as stationary random processes (Simiu and Scanlan 1996). For 

seismic applications they might be problematic since the excitation does not have 

stationary characteristics. Still, they are popular even for design against earthquakes 

(Daniel and Lavan 2014; Moutinho 2012), the underlying assumption being that the 

strongest part of the ground motion can be described trough a stationary random 

process (Hoang et al. 2008) or that at least a design within this context will lead to a 

solution that is not far away from the optimal solution that would be obtained if a more 

faithful representation of the excitation and the performance of the structure was used. 

For mass dampers this seems a reasonable assumption since the fundamental 

requirement for proper design is the matching of its frequency to a modal frequency of 

the primary mass, which is to some degree independent of the excitation modeling as 
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has been demonstrated in (Taflanidis 2003) when comparing the design considering 

harmonic or white noise excitations. This design of course also provides an optimum 

equivalent dashpot; for this parameter it is well understood that the performance is 

quite insensitive to values of the dashpot higher than the actual optimum but exhibits 

very high sensitivity to lower values (Warburton 1982; Taflanidis 2003). This trend can 

be attributed to an inability to dissipate quickly-enough the vibration of the mass 

damper with kinetic energy ultimately being transferred back to the primary structure 

[with extreme case demonstrating beat-phenomenon behavior (Yalla and Kareem 

2001)]. As long as lower values of the dashpot coefficient (from this optimal level) are 

avoided, good performance can be in general accomplished. It should be further 

stressed that for seismic applications, it is well understood that mass dampers will not 

necessarily reduce the peak vibration characteristics for all possible transient, seismic 

excitations, something that widely depends on the characteristics of the excitation itself 

(Giuliano 2013). Through a proper design, though, some contribution towards reduction 

of the seismic risk is anticipated (Tributsch and Adam 2012; Hoang et al. 2008; Wong 

2008; Miranda 2005).  

Of course other considerations do exist for mass damper design. An important 

one is the displacement of the secondary mass itself (secondary design goal), beyond 

the aforementioned vibration suppression of the primary mass (main design goal). This 

displacement ultimately imposes requirements of the clearance around the secondary 

mass to facilitate its vibration amplitude. Approaches have been proposed in the 
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literature to directly consider this displacement as design goal, typically through a multi-

objective setting (Kim and Kang 2012; Chakraborty et al. 2012).  Another important 

consideration is the effect of uncertainties related to properties of the primary structure 

(damping but more importantly factors affecting modal properties such as mass and 

stiffness). Poor estimation of the dynamic characteristics of the structure can lead to a 

significant mistune that translates into a loss of performance (Hoang et al. 2008; Mei et 

al. 2004; Oberguggenberger and Schmelzer 2014). This has motivated researchers to 

look into the robust design of mass dampers under excitation and structural 

uncertainties (Chakraborty and Roy 2011; Debbarma et al. 2010a; Debbarma et al. 

2010b; Taflanidis et al. 2007), typically adopting stationary assumptions for the 

description of the excitation. 

Despite the aforementioned efforts, limited attention has been given in the life-

cycle assessment of the performance of mass dampers under seismic excitation 

adopting more comprehensive modeling frameworks to describe the excitation and 

addressing through a more meaningful approach the cost-benefit aspects of mass 

damper implementation. Larger dampers always provide greater benefits (bigger 

reduction for the vibration of the primary structure) but evidently have a larger 

associated cost that needs to be explicitly considered in the design process. Recent work 

(Lee et al. 2012) addressed the life-cycle benefits of adding TMDs but did not extend this 

approach to the more challenging aspects of design that requires direct incorporation of 

considerations about upfront cost. Even though such a framework for life-cycle cost 
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based design of other type of dissipative devices exist (Taflanidis and Beck 2009), it has 

never been  applied to mass dampers. Furthermore this framework has only considered 

the design that directly minimizes the life-cycle cost without examining additional 

criteria such as losses for low likelihood but high impact events, representing more 

complex attitudes towards risk. 

1.3 Special Mass Damper Case: Liquid Dampers 

A special case of mass dampers are liquid dampers for which the secondary mass 

corresponds to a liquid (typically water) inside a (a) tank (Kareem and Sun 1987; Fujino 

et al. 1988) or a (b) U-shaped tube (Sakai et al. 1989). Implementation (a) is known as 

Tuned Liquid Damper or Tuned Sloshing Damper (TLD/TSD) and (b) as liquid column 

damper and has two different representatives the Tuned Liquid Column Damper (TLCD) 

(Sakai et al. 1989) and the Liquid Column Vibration Absorber (LCVA) (Hitchcock et al. 

1997), the distinction between them being whether the U-tube has uniform or not, 

respectively, cross-section.  These liquid dampers have some distinct advantages (A.1) 

lower installation costs, (A.2) easy tuning process for their fundamental frequency and 

(A.3) potential alternative use of the secondary mass which for this case is not simply a 

dead mass for the structure (for example water can be used during fire emergencies). 

Next each of the aforementioned type of liquid dampers is separately discussed 

Tuned Liquid Dampers: TLDs have been demonstrated to effectively control 

vibrations induced by winds (Fujii et al. 1990; Tamura et al. 1995; Kareem 1990) while 
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also having the potential to mitigate earthquakes-induced vibrations (Banerji et al. 2000; 

Banerji and Samanta 2011; Zahrai et al. 2012). They consist of a tank filled with liquid 

(usually water), the sloshing of which counteracts the motion of the structure providing 

energy dissipation for the vibration of the latter. It is well-understood that not the entire 

liquid mass participates in this sloshing motion in a specific mode whereas additional 

challenges exist because of wave-breaking phenomena that impose a non-linear 

behavior (Sun et al. 1995; Reed et al. 1998). The oscillation characteristics (fundamental 

frequency) of the liquid are related to the dimensions of the tank and the depth of the 

liquid (Chen et al. 1996). Beyond the aforementioned advantages (A.1-A.3) TLDs are 

additionally attractive (over other type of mass dampers) because their bidirectional 

control capabilities (ability to tune liquid sloshing in both directions through appropriate 

selection of length). Their dynamic behavior, though, is typically highly nonlinear as 

explained above due to wave breaking phenomena, and their inherent level of damping 

(due to drag forces in the vibrating liquid) is typically much less than the level that 

would lead to an optimal suppression of the vibration of the structure (Soong and 

Dargush 1997). In other words the optimal equivalent dashpot coefficient cannot be 

achieved and the lower established damping will lead, as discussed earlier, to a 

significantly lower performance of the mass damper. While higher levels of damping can 

be attained by adding submerged obstacles, the resulting behavior is very difficult to 

model and, consequently, to reliably predict (Kaneko and Ishikawa 1999). It should be 

also stressed that even though TLDs have been primarily considered and widely 
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implemented to control wind-induced vibrations, many researchers are currently 

investigating how to develop practical TLDs than could be used to effectively control 

seismically induced vibrations. In general, the research efforts related to TLDs in recent 

years have primarily focused on: (a) developing relatively simple analytical tools to 

model wave breaking and damping (Tait 2008; Love and Tait 2010; Maravani and Hamed 

2011); (b) establishing strategies to provide additional damping without introducing 

excessively complicated modeling issues (e.g. submerged screen, nets, baffles, etc.) 

(Modi and Munshi 1998; Modi and Akinturk 2002; Biswal et al. 2003; Kaneko and 

Ishikawa 1999); and (c) implementing active and semi-active control strategies (Zahrai et 

al. 2012; Shang and Zhao 2008). 

Despite the aforementioned advantages and relevant research efforts, the 

popularity of TLDs has remained relatively low, something that should be attributed to 

the complexities in modeling both the wave breaking and the non-linearities related to 

the damping-enhancement elements. These complexities lead to numerical models that 

are difficult to implement, and to challenging design procedures. 

Liquid Column Dampers: To address this barrier, liquid column mass dampers, 

namely the TLCD and the LCVA, have been introduced and given significant attention by 

various researchers (Chang and Hsu 1998; Sadek et al. 1998; Yalla and Kareem 2000; 

Won et al. 1997; Balendra et al. 1995; Taflanidis et al. 2007). As discussed before, these 

devices consist of a U-shaped tube, or, as can be equivalently considered, of two liquid 

containers interconnected at their lower part with a horizontal tube or pipe such that 
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the liquid is able to move from one container to the other. The motion of the liquid 

within the horizontal tube counteracts the motion of the structure and provides energy 

dissipation, resulting in an effectiveness of the TLCD/LCVA that is directly related to the 

mass in the tube and not to the overall liquid mass (Chang 1999). This may be 

equivalently considered as not the entire liquid mass participating in the horizontal 

mode of vibration. The frequency of oscillation of the liquid is directly related to the 

length of the liquid column, which is the only parameter that can be adjusted to 

establish the desired tuning characteristics. The horizontal tube can be also used to 

place an element (typically a valve or an orifice plate) that provides energy dissipation 

(damping) (Sakai et al. 1989), and the damping level can potentially be controlled in a 

passive or semi-active way (Yalla and Kareem 2003). The vibration of the liquid within 

the tube prevents any wave-breaking phenomena, thus leading to simpler models 

(single degree of freedom behavior) than those of TLDs. However, TLCD/LCVA devices 

are restricted to one-directional applications (Samali 1990), and their behavior is still 

nonlinear because damping is amplitude-dependent due to the presence of the orifice 

(Taflanidis et al. 2007). 

1.4 Objectives 

Motivated by the aforementioned limitations of TLDs and liquid column dampers 

but also the advantages that liquid mass dampers have to offer, the objective of this 

research is to propose a modification of the traditional TLD through a simple 
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introduction of a floating roof that addresses the aforementioned challenges that have 

restricted its popularity. This new device is termed TLD with floating roof (TLD-FR). 

Another objective is to establish a simplified framework for easy comparison of the new 

device to TLDs as well as TMDs. These goals include both a theoretical and experimental 

component, while they also involve the development of new numerical tools to 

facilitate a computationally simpler description of the behavior of TLDs. Additionally, the 

efficiency of mass dampers for seismic protection in the Chilean region is examined in 

detail and a life-cycle design of the new device (or as it will be demonstrated later 

generally of mass dampers) is developed that (a) provides a clear justification of the 

benefits offered by the adoption of such control measures and (b) considers risk criteria 

that are relevant to the Chilean region. 

The specific objectives of the research are: 

1) Develop a simplified, computationally efficient framework for describing 

the dynamic behavior of arbitrary geometry liquid storage tanks under 

base excitation. 

2) Extend the previous framework to describe the dynamic behavior of 

TLDs-FR under base excitations as well as the coupling with the structure 

that supports them.  

3) Validate the numerical models through scaled experiments and evaluate 

the accuracy of the proposed modeling framework to predict the 

behavior of TLDs-FR under seismic excitation. 
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4) Propose a parametric formulation to describe the TLD-FR dynamics only 

through its fundamental vibratory characteristics (participating mass, 

frequency and damping of equivalent mass damper) in order to establish 

a direct comparison with other mass dampers like TMDs, TLCDs and 

LCVAs. 

5) Propose a methodology to establish a mapping between tank geometries 

and the resultant vibratory characteristics of the TLD-FR and through this 

approach establish a practical design methodology for selecting the tank 

characteristics of TLDs-FR. 

6) Validate the potential of mass dampers for the Chilean region and 

establish a multi-objective life-cycle analysis/design process for the TLD-

FR considering a risk-description that is relevant for this region. The latter 

refers to both an appropriate characterization of seismic hazard as well 

as the adoption of risk-criteria that beyond the total life-cycle cost 

incorporate risk-averse criteria for describing life-cycle performance. 

The next chapter reviews some characteristics of mass dampers, including their 

equations of motion, and additionally presents the type of tank geometries that will be 

used throughout this dissertation. It also validates the potential of mass dampers for the 

Chilean region, providing a comparison for the level of seismic protection established 

between ground motions that are typical for the region and ground motions from other 

parts of the world for which potential effectiveness of mass dampers is regarded with 
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high degree of skepticism. Then the following chapters discuss the research advances to 

satisfy the established objectives. Chapter 3 presents a new numerical scheme for the 

dynamic analysis of liquid storage tanks. Chapter 4 discusses the numerical 

characterization of the dynamic behavior of the TLD-FR as well as an experimental 

validation of the proposed numerical framework. Then Chapter 5 establishes a 

parametric formulation for the equations of motion that simplifies the TLD-FR behavior 

and makes it directly comparable with other type of mass dampers. Based on this 

formulation the design in the parametric space as well as the efficient transformation of 

that design to the different tank geometries are discussed. Chapter 6 discusses the life-

cycle based assessment and design of TLDs-FR (and more generally mass dampers) 

utilizing a simulation-based approach for the analysis and adopting hazard 

characterization and risk quantification appropriate for the Chilean region. Finally, 

Chapter 7 summarizes this work and its relationships to the stated above objectives and 

discusses potential future extensions of the research.     
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REVIEW OF COMMON MASS DAMPER EQUATIONS OF MOTION, DESCRIPTION OF 

TYPICAL TANK GEOMETRIES OF TLDS AND DEMONSTRATION OF EFFECTIVENESS FOR 

SEISMIC PROTECTION AGAINST CHILEAN EARTHQUAKES 

In this chapter the equations of motion for common mass dampers (namely 

linear TMDs, TLCDs and LCVAs) and some general characteristics of their behavior are 

reviewed. This information will be used in later chapters to facilitate a direct comparison 

to TLDs-FR. Additionally, some common tank configurations that will be used for the 

analysis of TLDs and TLDs-FR throughout this dissertation are also presented. Finally the 

effectiveness of mass dampers for suppressing earthquake-induced vibrations for 

buildings in the Chilean region is demonstrated, providing a further motivation for the 

research presented within this dissertation.  

2.1 Equation of Motion of TMDs, TLCDs and LCVAs 

Consider a TMD or liquid column mass damper (LCVA or TLCD) attached to a 

SDOF oscillator as in Figure 2.1. The derivation of the equations of motion for the latter 

are discussed first with the ones for the former (TMD) presented also as a limiting case. 
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The displacement for the SDOF is denoted by uo whereas the displacement for the liquid 

column (or secondary mass for the TMD case) by yo.  

Let ρ, Bo, and Ho denote the density, horizontal length and initial height of the 

liquid column, respectively, Av and Ah the vertical and horizontal cross-sectional areas of 

the liquid column, respectively, and ζ the head-loss coefficient of an orifice plate 

attached in the middle of the horizontal tube to provide additional damping. These 

parameters fully define the damper’s characteristics. Adapting the same parametric 

formulation as in (Taflanidis et al. 2007) define md=ρAv(2Ho+Bo/ra) as the mass of the 

damper, Leff=2Ho+r aBo as the effective length, 2 /d effg Lω = as the damper’s natural 

frequency, ra=Av/Ah as the area ratio, αo=Βo/Leff as the effective mass index, and 

λ=(2Ηo+raBo)/(2Ho+Bo/ra) as the effective length ratio. Note that for the TLCD, λ=1 

whereas the effective mass index represents the portion of the total liquid mass that 

contributes in the vibration in the horizontal direction. 

 

Figure 2.1 TMD (left) and LCVA (right) installed on a single degree of freedom oscillator 
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The equations of motion for the coupled system are (Chang, 1999):  
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 (2.1) 

where Fexc is the dynamic excitation on the SDOF, ms, cs=2ξsωsms, ks=ωs
2ms are the 

mass, damping and stiffness for the SDOF with ωs, ξs denoting its natural frequency and 

damping ratio, respectively. Let the normalized displacement of the liquid be 

/
on o oy y= α , the orifice coefficient o o ad r= α ζ  and define the efficiency index as in 

(Taflanidis et al. 2007)  by 

 ( ) ( )2 1/ 2 / 2 / 1/o o o a o o aH B r H B rγ α λ= = + +    (2.2) 

It is straightforward to prove (Taflanidis et al. 2007) that the efficiency index 

corresponds to γ=αo
2/(1-raαo+αo/ra), and so it combines the area and length ratio into 

one parameter. Also, note that γ<1. Equation (2.1) is finally transformed to: 
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This formulation indicates that the response of the coupled normalized damper-

structure system is fully defined, with respect to the damper’s characteristics, by the 

mass of the damper, md, the efficiency index, γ, the orifice coefficient, do, and the 

damper’s natural frequency, ωd. According to Equation (2.3), dampers that correspond 

to the same values for all four aforementioned parameters will exhibit the same 

response for the primary system and for the normalized liquid displacement. The actual 
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liquid displacement will be larger for dampers that are characterized by larger value of 

the effective mass index αo. As long as only the primary system’s response is of concern, 

the efficiency index allows the area and length ratios influence to be simultaneously 

addressed. Let the normalized damping force be / (8 )
odn d o nF d y gω= ɺ , then Equation 

(2.3) leads to: 
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This equation corresponds to the well-known TMD (right scheme presented in 

Figure 2.1) for γ=1 and Fdn equal to the damping ratio ξd of the damper. Note that for 

the TMD αo=1, meaning that the entire mass contributes in the vibration in the 

horizontal direction and also 
on oy y= . Equation (2.4) can be used to model all three 

aforementioned mass dampers, simply by using the proper selection for Fdn. 

Ultimately the behavior of these mass dampers can be described equivalently by 

the equation of motion for them, which is: 

 2 0
o o o

2
n o dn d n d ny u F y y+ + + =ω ωɺɺ ɺɺ ɺ  (2.5) 

and by the force transferred to the primary mass which can be expressed as: 
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where ouɺɺ is the acceleration of the base of the damper.  
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These  two Equations (2.5) and (2.6) facilitate the modeling of the damper 

behavior as well as its coupling to the supporting structure, i.e. can extend the previous 

analysis to arbitrary structures with multiple degrees of freedom, not necessarily 

constrained to SDOF oscillators. For example, let’s consider a linear and planar structure 

with a damper located in a particular floor described through the location vector Ls 

(vector of zeros with a single 1, at the floor of the damper). The equation of motion for 

the structure under ground-acceleration guɺɺ (which is the case that will be primarily used 

within this thesis) is then: 

 T
s o gF u+ + − = −Mu Cu Ku L MDɺɺ ɺ ɺɺ  (2.7) 

where M, C and K correspond to the mass, damping and stiffness matrices, while Do is 

the vector of earthquake influence coefficients (vector of ones in this case) and u 

corresponds to the vector of displacements (relative to the ground) of each floor. The 

coupled system of equations for the structure equipped with a mass damper is then 

given by combining Equations (2.7) and (2.5) with F for the former given by Equation 

(2.6). Note that ouɺɺ  in Equation (2.5) corresponds to the absolute acceleration of the 

floor in which the mass damper is installed, therefore it should be substituted by

( )o s gou u= +L u Dɺɺ ɺɺ ɺɺ , leading to: 
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2.2 Performance and Design Trends for TMDs, TLCDs and LCVAs 

The performance characterization of the mass dampers discussed in the previous 

section can be further simplified by introducing two dimensional parameters, the tuning 

ratio α, defined as the ratio of damper frequency to fundamental frequency of the 

structure, and the mass ratio r, defined as the ratio of the damper mass to the total 

mass of the structure.  For a single-degree of freedom oscillator these parameters are, 

respectively, α=ωd/ωs and r=md/ms. The equations of motion for generalized force 

acting on the structure or for ground acceleration are then, respectively, transformed to 
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For the linear TMD the amplitude of the transfer function for uo and yo for 

excitation on the structure [case presented in Equation (2.9)] are given, respectively, by 

(Taflanidis 2003): 
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where f=ω/ωs is the dimensionless ratio of excitation to SDOF frequency. A similar 

expression can be established for liquid column dampers by substitution of the 
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normalized damping force Fdn by an equivalent damping ratio ξd through some 

linearization approximation (Taflanidis 2003). The only difference is that Es needs to be 

substituted by 

 2 2 2 2 2 2[1 ][ ] 4s s dE f α f ξ ξ αf γrα f= − − − −  (2.12) 

For ground excitation, [case presented in Equation (2.10)] the respective transfer 

functions are transformed to (Taflanidis, 2003): 

 

( )22 2 2 2

2 2 2

2

2 2 2

[(1 r)( ) ] 2 (1 )1
( )    

1 21
and    ( )

o

o

d
u

s s s

s
y

s s s

α f γf ξ αf r
H iω

ω E D

ξ f
H iω

ω E D

+ − + + +
=

+

+
=

+

 (2.13) 

The optimal design for liquid column mass dampers refers to the determination 

of optimum values for the natural frequency (or tuning ratio) and the damping ratio, 

referred to herein as design variables, while the mass ratio and efficiency index are fixed 

based on architectural considerations and constraints for the damper mass. For the 

TMD the efficiency index is, of course, one. This design can be performed through any 

desired approach for the excitation description and the performance quantification as 

discussed in the introduction (harmonic excitation, white noise excitation, stationary 

response, first-passage problem, etc). Independent of the approach taken some general 

characteristics can be identified [detailed discussion on these trends can be found in 

(Chang 1999) or (Taflanidis 2003)]: 
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• Optimal design corresponds to tuning, i.e. to values for α close to 1. This 

leads to a transfer function for coupled system (for both the primary 

mass and the damper) having two separate peaks in the region close to 

its natural frequency.  Effective design leads to suppressed peaks when 

compared to the initial single peak of the primary structure (this is what 

provides the vibration suppression).  

• Larger values for the mass ratio r or efficiency index γ lead to larger 

optimal values for the tuning ratio α or the damping ratio ξd and to 

better performance under optimal design. In other words the TMD is 

always better than liquid dampers. This should be attributed to the fact 

that for the TMD the total mass is equal to its effective mass contributing 

to counteracting the vibration of the primary mass.  

• Even though the optimum damping ratio is independent of the intensity 

of the excitation or the natural frequency of the primary system for the 

TMD, the nonlinear characteristics of the response of liquid column 

dampers introduce a dependence of the optimal orifice coefficient on 

these two parameters (Taflanidis et al. 2007). This means that the 

nominal optimal design for liquid column mass dampers, even when all 

other characteristics of the system are known, has to be based on a 

nominal intensity. Under different intensities than the nominal one, the 

design will always be sub-optimal.  
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• With respect to the optimal design variables great sensitivity exists for 

values of ξd smaller than the optimal ones.  

This latter point, which is an important consideration for the damper design is 

demonstrated in Figure 2.2 that plots the maximum amplification factor, corresponding 

to a typical used performance objective for assessing performance of TMD applications, 

for a TMD with mass ratio 1% attached to a SDOF with damping ratio ξs=2% when the 

latter is excited by an external force. The objective function in this case corresponds to 
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 (2.14) 

Note that the amplification factor without the damper is 25. The plot exhibits a clear 

optimum that provides a significant performance improvement, whereas for values of 

the TMD damping (equivalently dashpot coefficient) lower than the optimum one the 

performance drastically deteriorates.  
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Figure 2.2 Maximum amplification factor for a SDOF equipped with a TMD as a function 

of TMD characteristics ξd and α for mass ratio of 1%. Damping ratio for SDOF is 2%. 

2.3 Tank Geometries Used for TLD and TLD-FR 

Within this dissertation different tank geometries will be considered. This section 

reviews the general geometrical characteristics of their cross-section (assumed constant 

along their width). The simplest configuration corresponds to a rectangular tank as 

shown in Figure 2.3 , which can be defined by two variables, the length L and the water 

depth H. Based on these two, the aspect ratio, R= H/L can be defined to facilitate a 

simpler parametric investigation.  
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Figure 2.3 Scheme of a rectangular tank 

The more complicated geometries are illustrated then in Figure 2.4. The first one 

is a W-Type Tank corresponding to a rectangular tank with a triangular obstacle located 

at the bottom, with its location and size defined by a and h as shown in the figure. The 

next two are the U-Type and V-Type Tanks, respectively, both corresponding to a tank 

with sloped walls, defined similarly through parameters a and h. The only difference is 

that the U-Type Tank satisfies the condition of h<H while the V-Type Tank satisfies the 

condition of h>H. The final one is the T-Type that corresponds to a tank where the 

inferior corners are rounded by semicircles defined by an eccentricity eo and a radius ro. 

Note that for all cases, H is the non-perturbed water depth and L is the length of the 

tank. Therefore the aspect ratio R= H/L can still be used to parameterize the tanks, 

establishing a uniformity with respect to the rectangular tank discussed earlier. 

Additionally, two new ratios are introduced for each type of tank to facilitate this 

parameterization corresponding to a normalization with respect to the external 
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dimensions L and H: /h h H= and / / 2a a L=  for V-Tank, U-Tank and W-Tank, while

/or r H= and /o oe e r= for T-Tank. 

 

 

Figure 2.4 Description of four different non-rectangular tank geometries, termed as W-

type, V-type, U-type and T-type tanks 

In general, the cross-section shape is defined by the following dimensionless 

ratios: (R) for rectangular tanks, ( h , a , R) for V-W-U-Tanks and ( r , e , R) for T-Tanks. 

Then, the incorporation of the length L allows scaling the shape to a particular size such 

that it is feasible to have tanks with the same shape but different sizes. The width of the 

tank (dimension out of plane) then sizes the overall liquid mass. 



 

28 

 

2.4 Effectiveness of TMDs to suppress earthquakes-induced vibrations for common 

earthquakes for the Chilean region 

As it was mentioned in the introduction, the effectiveness of mass dampers in 

controlling seismic vibrations of buildings is an open question, since depending upon the 

characteristics of the excitation a variety of performance-levels have been reported, 

ranging from significant to little or no reductions in the structure´s response (Lin et al. 

2001; Lin et al. 2010). It is well understood that mass dampers, due to their operation as 

inertia devices, and independent of the design approach taken, are not always efficient 

in suppressing transient seismic responses (Giuliano 2013). In particular they are less 

effective in reducing the response of buildings excited by near-fault (rather than far-

field) earthquakes (Lin et al. 2010) due to the impulsive characteristics of the former 

(not sufficient rise-time for inertia devices to become fully operational). In that sense, a 

correct optimization and tuning of the TMD characteristic is mandatory but not 

sufficient to guarantee a good performance in seismic applications. 

A question then rises related to how effective can mass dampers be for the 

Chilean region? This is a critical topic for properly motivating the research in the latter 

chapters of this dissertation. Existing applications of mass dampers in the region (Lu et 

al. 2014) are definitely a strong indication of their potential effectiveness, but further 

justification is required to demonstrate why mass dampers can be effective for seismic 

applications for Chilean buildings. The answer to this question is directly related to the 

seismicity of the region and the characteristics of typical seismic ground motions these 
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buildings are exposed to over their lifetime. This seismicity is associated with the 

subduction zones at the Chilean coast which result in strong and long-duration 

excitations (Leyton et al. 2009), with far-field characteristics (a) rupture distances for 

major events greater than 30 km for most important cities (Boroschek and Contreras 

2012), (b) ground motion records that lack pulse-like waveforms in the velocity time 

histories and (c) large durations. With respect to the latter it is interesting to note that 

the significant duration of the “El Maule” 2010 earthquake in Chile ranged from 30-80s 

while the perceptible durations were longer than 2-3 min (Boroschek et al. 2012).  These 

characteristics of regional ground motions indicate that the implementation of mass 

dampers to control the seismic response on buildings can indeed provide substantial 

benefits.  

To further demonstrate this a comparative study is established considering 

different sets of ground motions and evaluating the effectiveness of mass damper 

implementation at the top of a 9-story building corresponding to the benchmark 

structure discussed in (Ohtori et al. 2004).  The first set, representing typical Chilean 

earthquakes, corresponds to 11 ground motions taken from the RENADIC (National 

Accelerograph Network at the Department of Civil Engineering, Universidad de Chile) 

database (Boroschek et al. 2015), associated with different important seismic events in 

Chile the past 30 years Some important characteristics for these ground motion are 

reviewed in Table 2.1. The second set, representing earthquakes from other parts of the 

world, corresponds to an additional 11 ground motions, most of them from the US West 
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coast and many of them including a pulse-like components (seismic events at near-fault 

region). This set is similarly reviewed in Table 2.2. The third, and final, set of ground 

motions are synthetic ones, obtained employing the stochastic ground motion modeling 

procedure that will be described later in Chapter 6 and provides excitations compatible 

with the Chilean seismic hazard. The reason for including these synthetic motions, 

whose characteristics are reviewed in Table 2.3, is to establish a further comparison of 

the trends obtained from this ground motion modeling approach to the regional 

motions (set 1).  A total of 33 ground motions are therefore considered, and each 

ground motion is characterized by a unique ID number, reported also in the Tables 2.1-

2.3.  

As mass damper a TMD is considered with mass equal to 1% of the total mass of 

the building, frequency ratio 0.983 and damping ratio 4.98%. The latter two values 

correspond to the optimal design configuration under stochastic, stationary, base-

excitation utilizing the approach that will be discussed in more detail later in Section 5.4. 

Performance for the mass damper implementation is evaluated through time-history 

analysis under the different sets of ground motions and two different metrics are 

utilized for quantifying this performance: maximum instantaneous inter-story drift and 

maximum instantaneous story acceleration. These correspond to representative 

engineering demand parameters for quantifying damages to structural components and 

building contents, respectively (Taflanidis and Beck 2009).  The percentage reduction 

through the introduction of the damper (reduction of the maximum responses over the 
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entire building obtained by the installation of the mass damper) is used as measure to 

quantify the damper-efficiency and results are presented in Figure 2.5.  

 

Table 2.1 Characteristics of the chosen Chilean earthquakes 

Location ID 
Earthquake 

Name 

Station 

Name 
Year M 

Epicentral 

Distance 

(km) 

PGA 

(g) 

Chile 

1 Valparaiso Melipilla 1985 7.9 76.2 0.687 

2 
Valparaiso 

Aftershock 
Llolleo 1985 7.3 41 0.191 

3 Antofagasta Tocopilla 1995 8 169.5 0.51 

4 January 30
th

 
Antofagasta 

UCN 
1998 7 62.2 0.053 

5 Sur del Peru 
Arica 

Cementerio 
2001 8.4 431.2 0.269 

6 
Sur del Peru 

Aftershock 

Arica 

Chalcalluta 
2001 7.6 187.3 0.069 

7 June 20
th

 
Puente 

Amolanas 
2003 6.8 63.9 0.094 

8 April 30
th

 Copiapo 2006 6.5 101.2 0.054 

9 Tocopilla Tocopilla 2007 7.7 66.7 0.502 

10 
Tocopilla 

Aftershock 

Mejillones 

Puerto 
2007 6.7 25.3 0.394 

11 Maule 
Concepcion 

Centro 
2010 8.8 62.3 0.401 
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Table 2.2 Characteristics of earthquakes chosen from other regions of the world 

Location ID 
Earthquake 

Name 

Station 

Name 
Year M 

Epicentral 

Distance 

(km) 

PGA 

(g) 

US west 

coast 

12 Landers Joshua Tree 1992 7.3 11.03 0.284 

13 Loma Prieta Corralitos 1989 6.9 3.85 0.479 

14 Northridge Newhall 1994 6.7 5.92 0.59 

15 
Imperial 
Valley 

Holtville 1979 6.5 5.35 0.248 

16 Parkfield Fault zone 7 2004 6 2.67 0.228 

17 
Cape 

Mendocino 
Shelter Cove 1992 7 28.78 0.177 

Japan 18 Kobe KJMA 1995 6.9 0.96 0.599 

Taiwan 19 Chi-Chi CHY024 1999 7.6 9.62 0.277 

Turkey 20 Kocaeli Arcelik 1999 7.5 13.49 0.147 

Italy 21 Irpinia Sturno 1980 6.9 10.84 0.247 

Iran 22 Tabas Tabas 1978 7.4 55.24 0.852 

Table 2.3 Characteristics of the chosen synthetic ground motions compatible with 

Chilean hazard 

ID M Rupture Distance (km) PGA (g) 

23 6.9 125.6 0.047 
24 7.5 60.8 0.191 
25 7.9 65.7 0.226 
26 7.5 122.7 0.083 
27 6.8 77.8 0.081 
28 8.0 127.8 0.153 
29 8.4 61.9 0.345 
30 7.3 125.55 0.078 
31 6.2 65.5 0.060 
32 8.2 105.8 0.183 
33 6.6 214.7 0.010 
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Figure 2.5 Mass damper efficiency (maximum inter-story drift and acceleration 

reduction) for  9-story building under different ground motions 
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The most important comparison is between the first two sets of ground motions. 

It is evident that for drift-responses significant reduction is established for set 1 over all 

examined ground motions, with values as high as 30%, whereas for set 2 minimal 

improvement is overall reported (or even amplification of the response for some 

instances).  This validates the arguments made above: earthquakes that are typical in 

Chilean region accommodate the reduction of seismic responses though inertia devices. 

The reason for this should be attributed to the fact that these excitations allow 

sufficient time for mass damper to respond and dissipate energy. This characteristic is 

further examined in Figure 2.6, which reports the normalized RMS response using a 3 s 

time-window for the TMD (output) and its input, i.e. the acceleration at the top of the 

structure (base of TMD), for four indicative ground motions: two from set 1 and two 

from set 2.  The normalization is established with respect to the max value of the RMS 

response. Figure 2.7 shows the time-history of the responses for these cases. In both 

figures, the first and second rows show the response of the building under two different 

Chilean earthquakes, while the third and fourth rows show the response under two 

ground motions with pulse-like characteristics. In the later cases the maximum of the 

structural response occurs before the TMD has sufficient time to build-up its own 

response and therefore provide the desired energy dissipation. The inertia device is 

effective only after the maxima of the acceleration response has occurred, therefore 

providing limited improvement in the seismic performance. This is particularly evident 

for ID19 excitation. On the other hand, for the longer-duration and without strong 
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pulse-component Chilean motions, the TMD is provided the opportunity to dissipate 

sufficient energy (larger RMS response values for TMD) before the maximum of the 

structural response occurs. These results agree with the discussion related to sufficient 

rise-time for TMD efficiency provided in (Lin et al. 2010) when evaluating the potential 

of mass dampers for protection against near-fault excitations, and are the reason for the 

improvement that is reported by the addition of the mass dampers in Figure 2.5 for 

these ground motions. Note that this improvement is relatively smaller for the 

acceleration responses when compared to the drift responses. This should be attributed 

to fact that the acceleration responses have higher bandwidth and are impacted by 

higher modes which the TMD cannot control. This feature has on its own important 

implications: even for excitations for which TMDs can provide improvement of 

structural responses, this improvement is expected larger for drift demands rather than 

acceleration demands. Therefore, TMDs are expected to be more effective in improving 

the performance of drift-sensitive components rather than acceleration-sensitive 

components or building contents.  
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Figure 2.6 Comparison of the acceleration of the 9
th

 floor of the building with the 

response of the TMD in terms of the rms values using a 3s window. Results for four 

different excitations are reported (characterized through the ID numbers) 
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Figure 2.7 Time-histories for the acceleration of the 9
th

 floor of the building and the 

displacement of the TMD. Results for four different excitations are reported 

(characterized through the ID numbers) 
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A final comparison in the results in Figure 2.5 can be made between the first and 

third set of ground motions. The trends reported for the synthetic ground motions (set 

3) are very similar to the trends for the real ground motions (set 1). This shows that the 

stochastic ground motion model provides excitations with waveform characteristics 

similar to Chilean earthquakes, at least when evaluating efficiency of mass dampers.  

The importance of this will be further discussed in Chapter 6 when more information is 

provided for the stochastic ground motion modeling approach.  

Overall the discussion in this section demonstrates the potential for mass 

dampers to control seismic-induced vibration for buildings in the Chilean region. The 

lack of pulse-like excitation, and perhaps more importantly, the longer duration of 

typical Chilean seismic events provide sufficient time in most instances for the mass 

damper to operate in its inertia mode and absorb energy from the primary structure.  
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EFFICIENT DYNAMIC ANALISYS OF LIQUID STORAGE TANKS 

This chapter discusses a new numerical procedure for dynamic analysis of liquid 

storage tanks. Though the interest in the context of this thesis stems from analysis of 

TLDs the procedure is more general and is presented as such. Some discussion on the 

state-of-the-art in the field is first presented before moving on to the new 

computational procedure. 

3.1 Review and Motivation 

Several approaches have been proposed to model the dynamical behavior of 

liquid storage tanks. In earlier studies, the fluid was taken into account by adding a mass 

to the structure, with characteristics computed by an analytical solution based on 

simplified geometries (Hoskins and Jacobsen 1934). Later, Housner developed an 

analysis and design procedure, primarily for cylindrical and rectangular storage tanks, 

based on a simple mechanical model (combination of mass-spring systems with 

different characteristics) that represents the fluid. The computation of the physical 

constants in this procedure is based on the separation of the hydrodynamic behavior 

into two components: (1) the impulsive component that is related to the mass that 
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moves together with the structure; and (2) the convective component that takes into 

account the free surface oscillations (Housner 1957; Housner 1963). This is a broadly 

adopted model in civil engineering since it provides closed form solutions for the 

transmitted force due to the liquid sloshing, and represents the basis of many design 

codes, i.e. API 650 (American Petroleum Institute (API) 2003), AWWA D100 (American 

Water Works Association (AWWA) 2005) and the New Zealand recommendation 

guidelines NZSEE (Priestley et al. 1986), that establish procedures for the seismic 

response analysis of liquid tanks based on the linear model proposed by Housner. At the 

same time, it is an approximation that is based on the assumption that simplified flows 

can represent the actual fluid movement, restricting its use to tanks with simple 

geometries (such as rectangular or circular tanks). 

To obtain higher accuracy solutions, various high-fidelity procedures have been 

also established, applicable to arbitrary tank geometries, using the Finite Element 

Method (FEM) to model the fluid utilizing (depending on the numerical scheme) 

displacement, pressure or potential variables to characterize the fluid motion. For fluid-

structure interaction applications, as the equations of the structure are expressed in 

terms of displacements it is convenient to also express the fluid equations through 

displacement variables. With respect to the fluid motion modeling, such a FEM 

approach, based on a displacement formulation, leads to a symmetric eigenvalue 

problem but it produces non-zero spurious frequencies that are difficult to identify 

(Bermudez et al. 1997; Kiefling and Feng 1976) and suppress (Chen and Taylor 1990; 
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Bermudez and Rodriguez 1994). Additionally, this approach requires discretizing a 

vector field (displacement) instead of a scalar field (pressure or potential variables), 

increasing the number of degrees of freedom. In contrast, a FEM approach based on 

pressure or potential variables involves less unknowns, increasing the computational 

efficiency and avoiding physical inconsistencies (Mellado and Rodriguez 2001).  In this 

case, the fluid-structure system leads to a non-symmetric eigenvalue problem, though it 

is possible to keep the symmetry if the fluid is described in a redundant way using both 

pressure and potential variables (Olson and Bathe 1985; Morand and Ohayon 1979; 

Bermudez et al. 1998). In particular, Olson and Bathe presented such a linear 

formulation based on velocity potentials and pressures (Olson and Bathe 1985), 

expanded later to take into account also gravity loads (Kock and Olson 1991). An 

important aspect of this formulation is its suitability for both time-history and frequency 

analysis of fluids with free surface. More recently, an increased number of even more 

complex procedures have been proposed, for example taking into account non-linear 

sloshing due to large free surface motions (Hernandez-Barrios et al. 2007; Frandsen and 

Borthwick 2003; Ali Goudarzi and Reza Sabbagh-Yazdi 2012; Ikeda et al. 2012) and 

including identification of damping effects introduced at the tank walls due to viscosity 

effects in the thin interface layer (Wang et al. 2006). However, implementation of these 

procedures is almost exclusively relegated to scientific and research professionals due to 

the complexity of the formulations and the high level of expertise required for their 

implementation. 
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Despite such high-fidelity modeling developments and advances in computer 

and computational science, the philosophy of the analysis methods of design codes is 

still based on analytical expressions and equivalent mechanical models. Though 

undoubtedly some practitioners are utilizing commercial software to solve multi-physic 

problems under seismic loads, avoiding the use of simplified models proposed by the 

design codes or even the complex implementation of the procedures described above, 

such approaches are still not widely used (presumably because a significant background 

is required not only in the software know-how but also in the theoretical knowledge 

about the involved physics). Furthermore, many traditional software packages used for 

seismic and structural analysis lack fluid-structure interaction modules, enforcing 

engineers to work with alternative packages that were not designed to perform seismic 

analysis. There is a gap for a methodology that is more simple and attractive than the 

commercial packages but still maintains the accuracy of the advanced methods 

presented in the literature. 

The present chapter aims to develop a simplified, computationally efficient 

approach, utilizing a FEM modeling based on potential variables, for describing the 

dynamic behavior of arbitrary geometry liquid tanks. The approach takes advantage of 

the concept introduced recently in (Cerda 2006; Bertoglio 2007; Almazan et al. 2007) for 

static condensation in order to express equation of motion with respect to the free 

surface elevation of the liquid. It establishes, though, further simplifications in the 

problem (leveraging the simplified scope of the analysis here) and established a 
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complete numerical framework.  This procedure is useful not only for the TLD-FR 

implementation considered in this dissertation, but also for general seismic analysis of 

liquid storage tanks, to bridge the gaps identified in the previous paragraph.  

3.2 Development of the Simplified Sloshing Model (SSM) 

A schematic diagram for the considered liquid storage tank is presented in Figure 

3.1. An inertial system of reference x-z is located at the middle of the non-perturbed 

free surface and an auxiliary coordinate η is defined to measure the relative 

displacement between the free surface and the coordinate system. Let Ω represent the 

volume of liquid, Γo the non-perturbed free surface (at z=0), Γs the free surface at any 

time t, and Γp the walls and bottom surfaces (all these variables are also shown in Figure 

3.1). 

 

 

Figure 3.1 Schematic for liquid storage tank with arbitrary geometry. Various boundaries 

utilized in the SSM also shown. 



 

44 

 

The liquid motion is modeled using principles of Mass and Momentum 

Conservation, while the tank walls and bottom are considered to be rigid. The liquid is 

assumed to be inviscid, incompressible, and irrotational, allowing its motion to be 

completely defined by a velocity potential function φ. Additionally, body forces are 

assumed conservative and nonlinear terms are neglected. Thus, Mass and Momentum 

Conservation Equations take the form of Laplace and Bernoulli Equations, which are 

given, respectively, by (Reddy 2005): 

 Δ 0φ =  (3.1) 

  0b

φ p
Π+u x

t ρ

∂ + + =
∂

ɺɺ  (3.2) 

where p is pressure, ρ is the fluid density, П is the potential of the conservative forces 

and üb is the horizontal acceleration of the tank (at its base). The term übx must be 

introduced because the motion of the liquid is expressed with respect to a coordinate 

system (x-z) that moves along with the tank, whereas the horizontal acceleration üb is 

expressed with respect to a fixed coordinate system [full details can be found in 

(Ibrahim 2005)]. It is important to notice that Δφ defines the velocity of any particle of 

the liquid. Therefore, φ∇ ⋅n  corresponds to the velocity of the liquid projected over the 

normal vector n. Two normal vectors are defined: no, perpendicular to the free surface 

Γo, and np, perpendicular to the tank walls and bottom. Small displacements at the free 

surface are assumed, in order to simplify the problem. Thus, the linearized boundary 

condition at the free surface is given by (Komatsu 1987): 



 

45 

 

        at        o o

φ
φ η Γ

z

∂∇ ⋅ = =
∂

n ɺ  (3.3) 

In turn, the normal velocity of the liquid at Γp  is zero due to the rigid condition of 

the tank walls and bottom, and the boundary condition at Γp is given by (Komatsu 

1987): 

 0       at       p pφ Γ∇ ⋅ =n  (3.4) 

A specific manipulation of the Laplace and Bernoulli Equations is required to 

combine both equations such that the sloshing dynamics could be expressed only by the 

elevation of the free surface. Section 3.2.1 shows the procedure based on the FEM to 

handle the Laplace Equation. It is important to note that Laplace Equation defines only 

the spatial solution, in other words, the solution for the velocity of any particle of the 

fluid (as a function of the walls and free surface velocities) but does not give information 

about how the velocities change over time. Section 3.2.2 shows how to manipulate the 

Bernoulli Equation to make it compatible with the Laplace Equation. The combination of 

these equations addresses the temporal variation, allowing for the modeling of the 

time-history evolution of the liquid motion. Section 3.2.3 then discusses how the shear 

forces transmitted by the tank to the supporting ground can be estimated. Such a 

connection, ultimately between the free surface elevation and the transmitted forces to 

the ground, allows the analysis of liquid storage tanks supported by elastic structures 

(which for example facilitate the analysis of TLDs). The numerical details of all these 

components are summarized in Section 3.2.4. 
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3.2.1 Laplace Equation Modification 

Galerkin’s Weighted Residual Method is applied to solve the Laplace Equation. In 

particular, Equation (3.1) is expressed in a weak formulation using ψ as a weighting 

function, leading to (Reddy 2005): 

 
Ω

 Δ  d 0ψ φ Ω =∫  (3.5) 

Then, Green’s First Identity is applied to Equation (3.5) separating this equation 

in two integrals, one that operates over the entire domain Ω while the other over the 

boundary Γo and Γp: 

 ( ) ( ) ( )d d d 0
o p

o p

Γ Γ Ω

ψ φ Γ ψ φ Γ ψ φ Ω∇ ⋅ + ∇ ⋅ − ∇ ⋅∇ =∫ ∫ ∫o pn n  (3.6) 

Here, Equation (3.6) facilitates the introduction of the boundary conditions defined in 

Equations (3.3) and (3.4), leading to: 

 d d 0
o

T
oψ η ψ ϕ

Γ Ω

Γ − ∇ ∇ Ω =∫ ∫ɺ  (3.7) 

A typical FEM discretization (more details on this later) is then applied to the 

velocity potential φ, the auxiliary coordinate η and the weighting function ψ, such that: 

 ( )( , , ) , ( )φ x z t x z t= N φ  (3.8) 

 ( )( , ) ( )η sη x t x t= N η  (3.9) 

 ( )( , , ) , ( )x z t x z tψ = N ψ  (3.10) 
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It is important to mention that φ is a vector built with the values of the nodal velocity 

potential in the volume Ω, and that sη is a vector that contains the values of the nodal 

displacements of the free surface (here, the Greek letters in bold are used to distinguish 

vectors and functions, indicating vector variables when bold letters are used and scalar 

function when are not used). Also, N is the vector of interpolation functions for the 

velocity potential φ, while Νη is the vector of interpolation functions for the auxiliary 

coordinate η within the FEM scheme. In this study linear functions are adopted for both 

N and Νη. By partitioning φ into components associated and non-associated with the 

free surface (φs and φr, respectively), Equation (3.7) is transformed into a linear system 

of ordinary differential equations given by: 

 
ss srs s

rs rrr r

     
− =     

      

D Dη φG 0
0

D Dη φ0 0

ɺ

ɺ
 (3.11) 

with: 

 
T d

s

η η s

Γ

Γ= ∫G N N  (3.12) 

 
T dss sr

rs rr Ω

Ω
 

= = ∇ ∇ 
 

∫
D D

D N N
D D

 (3.13) 

The vector rη is included only to complete the second block of equations, 

allowing to express Equation (3.11) in a matrix form. A static condensation is finally 

performed (Cerda 2006; Bertoglio 2007) in order to express Equation (3.11) only in 

terms of the surface variables, such that the condensation is defined by: 
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1

ss sr rr rs
−= −J D D D D  (3.14) 

and then Equation (3.11) becomes: 

 =s s−G η  J φ 0ɺ  (3.15) 

which is the final expression of the Laplace Equation, where the free elevation velocity 

and velocity potential of the free surface are related such that the coupling with the 

Bernoulli Equation is possible. It is important to notice that the static condensation 

introduced here [shown in Equation (3.14)] is key in this procedure because: (a) it will 

make possible in the next section to express the equations of motion in terms of 

variables whose physical meaning can be readily appreciated (vertical displacements of 

the liquid surface); and (b) it makes the method computationally efficient as it 

considerably reduces the number of variables involved. 

3.2.2 Bernoulli Equation Modification 

In order to solve the Bernoulli Equation, it is necessary to define the potential П. 

Under this setup, the potential of volume forces is defined as Π g z= , where g is the 

gravity acceleration. The Bernoulli Equation is evaluated at the free surface, imposing      

z = η, 0
z η

p
=

=  and 0
  

z η z
φφ

= =
≈ ɺɺ . Then Equation (3.2) is simplified to: 

   0      at       b sφ gη u x Γ+ + =ɺ ɺɺ  (3.16) 

Furthermore, Equation (3.16) is particularized for each node located at the free 

surface using the previous FEM discretization, leading to: 
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 ( )  (  ) bs s sg u+ + =φ η X 0ɺ ɺɺI I   (3.17) 

where I is the identity matrix and Xs is a vector containing the x coordinate of each node 

located at the free surface. Then Equation (3.15) is introduced in Equation (3.17), 

leading to: 

   s s bs su+ = −sM η K η Rɺɺ ɺɺ   (3.18) 

with: 

 
1 ;         ;        s s s sg−= = =M J G K R XI I  (3.19) 

This numerical procedure allows expressing the dynamic behavior of liquid tanks 

as a second order lineal system of equations, such that the sloshing problem could be 

interpreted as a mass-spring system as the resultant equation of motion involves 

equivalent mass and stiffness characteristics. Moreover, Equation (3.18) is expressed in 

physical variables since it uses the base acceleration as input and the free surface 

elevation as the dependent variable. This ultimately allows the solution of the sloshing 

problem to be computed with respect to the same physical variables (displacement and 

acceleration) as typically used in structural modeling, circumventing the velocity 

potential variables. Note that the obtained solution completely characterizes the 

temporal variation, facilitating ultimately both time-history or (if preferred) frequency 

analysis. 
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3.2.3 Pressure on the tank walls 

The methodology described previously only estimates the free surface elevation 

when the tank is subjected to a specific motion at its base, but does not give 

information about the force transmitted to the base (or the supporting structure in 

general). The coupling between the fluid storage tank and the support structure may be 

then described by the reaction force between them. This requires a proper estimation 

of the dynamical pressure on the walls due to the sloshing effect. For this purpose 

Equation (3.2) is evaluated at the tank wall and bottom in order to obtain the dynamic 

pressure over surface Γp: 

  bp p pρ ρ u= − −P φ Xɺ ɺɺ   (3.20) 

where Pp, φp and Xp are vectors with the pressures, velocity potentials and x 

coordinates of the nodes located at the surface Γp, respectively. Then, Q is defined as a 

transformation matrix, in order to express φp as function of φs,,,, such that φp= Qφs. The 

pressure at Γp is finally expressed as a function of buɺɺ and sηɺɺ by the combination of 

Equations (3.20) and (3.15): 

 ( ) ( )1     bρ ρ u−= − −p s pP Q J G η Xɺɺ ɺɺ  (3.21) 

Nodal forces at the nodes located at Γp are calculated by integrating the pressure 

along the edge of the corresponding element (only the edge that coincides with Γp). The 

vector of the horizontal components of these nodal forces at the nodes of the i-th 

element is given by: 



 

51 

 

 
( i )

( ) ( ) ( )T ( ) (i) ( )sin( )  d  
p

i i i i i
p o η η p p

Γ

α Γ= ∫F N N P  (3.22) 

where
( )i

oα is the angle between the surface ( )i
pΓ  and the x-y plane. Recall that Equation 

(3.22) is computed considering only those elements where one of the edges coincides 

with Γp. After computing all nodal forces, the system is expressed by: 

  p p p=F R P  (3.23) 

If “m” is the number of nodes on Γp the dimension of Rp is “m x m” and the 

dimension of Pp is “m x 1”. Note that an easy way to obtain the total horizontal force 

transmitted to the base is by multiplying Fp by a “1 x m” vector of ones, denoted S 

herein: 

 [ ]1 1o p pF = =F SF⋯    (3.24) 

Here, Fo represents the force transmitted to the base of the tank per unit of 

width (transmitted force assuming that the tank width is the 1m). Finally, the total force 

transmitted to the base is expressed as: 

 ( ) ( )1           o p s p p b s bF ρ ρ u ρ ρBu−= − − = − −S R Q J G η S R X Aηɺɺ ɺɺɺɺ ɺɺ   (3.25) 

This expression ultimately addresses the shear force between the tank and the surface 

on which the tank rests and can be used to provide the coupling to the supporting 

structure. For this coupling this force needs to be multiplied by the width of the tank d 

to convert force per unit width to actual force.  
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3.2.4 Summary of the Numerical Approach 

This section summarizes the numerical approach for analyzing the sloshing of a 

liquid storage tank either on its own or when it is supported by an elastic structure 

(leading to a fluid structure interaction problem). An overview is presented in Figure 3.2 

where the liquid storage tank is analyzed by the proposed here SSM and the support 

structure by a traditional analysis approach (such as FEM). 

Simplified Sloshing Model (SSM): First, is necessary to define the geometry of the 

tank and the physical characteristics of the fluid. Then, the fluid is discretized (meshed) 

with respect to the equilibrium position, remarking that is not necessary to re-mesh at 

any step of the time integration (size of mesh is discussed later). Though any approach 

can be implemented for this discretization, in all applications within this Thesis the 

Delaunay Triangulation Algorithm (Lee and Schachter 1980) is used. Second, the FEM is 

applied to the fluid by computing Equations (3.12) and (3.13) to find G and D. Next, the 

matrix J in Equation (3.14) is computed to condensate the equations at the free surface. 

Third, the equivalent model is generated by the identification of Ms, Ks and Rs in 

Equation (3.18) and the eigenvalue problem (using Ms and Ks) is solved to identify the 

natural sloshing frequencies ωi. Note that these frequencies (as well as corresponding 

eigenvectors) are all real numbers which is a result of having a symmetric eigenvalue 

problem –proof is offered in Appendix A. The accuracy of these frequencies may be 

used as a criterion to select the mesh size. The original mesh should be iteratively 

refined and the eigenvalue problem revisited until small variations of the sloshing 
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frequencies of interest (typically the first few frequencies) is obtained within 

subsequent iterations. In general, the relative difference between the sloshing 

frequencies decreases exponentially when the number of elements on the mesh is 

increased and convergence is quickly established. After the final mesh of the fluid has 

been determined, damping effects can be incorporated in the formulation by selecting 

matrix Cs through any standard approach, for example by establishing a pre-specified 

modal damping (Clough and Penzien 1993). Finally, the resultant equation of motion 

[Equation (3.18)] for the liquid sloshing can be integrated in time by any conventional 

technique, for example through Runge-Kutta family solvers like the Dormand-Prince 

Method (Dormand and Prince 1980). The parameters A and B to estimate the 

transmitted force on the supporting structure can be also calculated using Equation 

(3.25). These parameters will be needed if the ultimate goal is to address a fluid 

structure interaction problem as discussed next.  

Fluid-Structure Model: The coupling with the structure follows the same process 

as discussed in Section 2.1 for general mass dampers. In this case a model for the 

structure that supports the storage tank needs to be first adopted (for example through 

a FEM approach). This ultimately leads to evaluation of the mass M, damping C and 

stiffness K matrices and of the influence vector Do if we are interested in seismic 

excitation. The SSM and the structural model are then coupled by the dynamic pressure 

on the tank walls. The resultant coupling equation is a second order system of 

equations, which can be similarly integrated through any standard approach (as for the 
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equation of sloshing motion). Similarly to the application for mass dampers discussed in 

Section 2.1 since the input of the SSM corresponds to its base acceleration üb, for a 

problem with a multi-story structure a new vector is required (Ls) defining the location 

(floor) of the tank within the structure as the tank base acceleration ultimately is 

defined by the acceleration of that floor (further details are offered in Section 3.3.2 

through an illustrative example). 

 

Figure 3.2 Procedure for SSM (top) and its use in fluid-structure interaction problems 

(bottom).Illustrative excitation in the latter case for structure corresponds to 

acceleration at its base. 
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3.3 Validation/Implementation of the Model 

The validation of the SSM is considered here in a variety of two dimensional 

applications. The fluid inside the tank is meshed by a Delaunay Triangulation Algorithm 

(Lee and Schachter 1980) with the size of the triangles controlled by imposing a 

maximum admissible value for its side length. The equivalent model generated by the 

SSM (Ms, Ks, Rs, A and B) is evidently affected by the quality of the mesh, and the 

refinement procedure described in Section 3.2.4 is implemented to adaptively choose 

the mesh size. Convergence is defined when the variation in the first sloshing frequency 

is smaller than 1% (this applies to all cases studied). 

3.3.1 Tanks Resting on the Ground 

In this section, harmonic and earthquake excitations are imposed to different 

tank geometries. The characteristics of these geometries have been already presented 

in Section 2.3. The fluid response obtained by the SSM, the Housner Model and a full 

FEM implementation through the commercial software ANSYS (ANSYS 2007) are 

compared in terms of accuracy and computational efficiency. The tank walls and bottom 

are considered rigid and the liquid used is water. Before moving forward, a brief review 

of the Housner Model and ANSYS implementation is given. 

Housner Model: as described earlier this approximate model is typically used for 

describing the sloshing in tanks with simple geometries (primarily cylindrical and 

rectangular tanks that lead to closed form solutions for all quantities of interest). 
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Sloshing is modeled by a linear system formed by a group of masses that are attached to 

the walls. The first mass (named impulsive mass) is attached rigidly to the tank walls and 

moves along with the base. The additional masses (named convective masses) are 

attached to the walls by linear springs. When only one such mass is added, it 

approximates explicitly the effect of the fundamental sloshing mode. The transmitted 

force to the ground is calculated as the sum of the force generated by the impulsive 

mass and the force that the springs transmit to the wall due to the movement of the 

convective masses. The most common implementation (and the one that is used in the 

present work) of this procedure only takes into account one impulsive and one 

convective mass, such that the effect of the higher modes are neglected and the 

equivalent system is defined only with a single degree of freedom. The linear spring 

stiffness, the impulsive and convective mass values are then given in a closed form as 

described in (Housner 1963), which is the reason why this model is primarily used to 

approximate the fundamental sloshing mode of simple tank geometries. 

ANSYS implementation: the element FLUID79 is used in the analysis, which 

consists of a modification of a plane element to model solid structures. It uses 4 nodes 

with 2 degree of freedom on each node, where the degrees of freedom are the 

horizontal and vertical displacements of the node (ANSYS 2007). The tank walls and 

bottom are not discretized since they are considered non-deformable. The mesh is 

refined in the same way as for the SSM to obtain a variation in the fundamental sloshing 

frequencies smaller than 1%. To facilitate the transient analysis, a reduced model 
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approximation is adopted defining the nodes on the walls, bottom and free surface as 

master nodes. In contrast to the SSM (in which the equations are reduced to use only 

the free surface nodes), the reduced ANSYS model requires explicitly the use of all 

border nodes (free surface, walls and bottom nodes) to impose the boundary and initial 

conditions. This ultimately increases the computational time since ANSYS is enforced to 

use more degrees of freedom than the SSM. The fluid displacements at the tank walls 

and bottom are constrained such that the fluid movement is parallel to the surface. 

Case Study: Rectangular Tanks 

A rectangular tank (Figure 2.3) fixed to the ground is considered first. Table 3.1 

presents the fundamental sloshing period of a specific geometry (L=9.144m and R=0.5) 

calculated via three different methods. The first method is the analytical solution 

presented in (Chen et al. 1996), which is valid only for rectangular tanks. The second 

method is the Housner Model (used only for approximating the fundamental mode) and 

the third method corresponds to the SSM. The three methods predict essentially the 

same fundamental sloshing period. Table 3.1 also includes higher sloshing periods 

computed by the analytical solution and by the SSM, which are also very similar to each 

other (differences are in all cases less than 1%). The ANSYS estimation is not included 

here since the availability of an analytical solution is considered more appropriate to 

compare the sloshing frequencies obtained by the SSM (the ANSYS model will be used 

later only in the time-history analysis comparison). 
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In order to investigate the behavior of the sloshing periods for different 

rectangular tank dimensions, iso-period curves are plotted in Figure 3.3, Figure 3.4 and 

Figure 3.5 calculated by all three aforementioned approaches (Housner model used only 

for fundamental period). The value of the tank length L varies between 1m and 6m 

while the aspect ratio R varies between 0.2 and 2.0. For the tank dimensions studied, 

the fundamental sloshing period depends only on L if the aspect ratio is greater than 0.8 

(Figure 3.3). The second and third sloshing periods are, though, practically independent 

of the aspect ratio as shown in Figure 3.4 and Figure 3.5, respectively. In other words, 

the sloshing periods of a rectangular tank is independent of the water depth unless 

R<0.8. For all cases presented, the maximum error found is less than 1.1% when the 

sloshing periods of the analytical and the SSM solutions are compared. 

 

Table 3.1 Sloshing periods for a rectangular tank with L=9.144m and R=0.5 

 Analytic 

Solution (Chen et al. 1996) 

Housner 

Model 

SSM 

Fundamental Period [s] 3.5755 3.5834 3.5734 

Second Sloshing Period [s] 1.9771 - 1.9698 

Third Sloshing Period [s] 1.5314 - 1.5158 
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Figure 3.3 Fundamental sloshing period of rectangular tanks as a function of  length L 
and aspect ratio R. Comparison between the SSM, Housner model and analytic solution 

of (Chen et al. 1996) is shown. 
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Figure 3.4 Second sloshing period of rectangular tanks as a function of  length L and 

aspect ratio R. Comparison between the SSM and analytic solution of (Chen et al. 1996) 

is shown. 

Figure 3.5 Third sloshing period of rectangular tanks as a function of  length L and 

aspect ratio R. Comparison between the SSM and analytic solution of (Chen et al. 1996) 

is shown. 



 

61 

 

The harmonic response is then studied by imposing harmonic accelerations at 

the base of the tank. Here, the Normalized Transmitted Force and the Period Ratio are 

utilized to examine the results, defined, respectively, as: 

 
( )

 ( )
max

n

liq g max

F

u

t
F

m t
=

ɺɺ
 (3.26) 

 exc
sp

slo

T
r

T
=  (3.27) 

where mliq is the total mass of liquid, Texc is the excitation period and Tslo is the 

fundamental sloshing period. The Normalized Transmitted Force is an indicator of the 

force amplification due to the sloshing effects. In a sloshing tank, part of the liquid mass 

moves together with the walls (impulsive component) and part moves together with the 

free surface (convective component). Notice that Fn=1 corresponds to a system for 

which the sloshing effect is non-important since all the liquid mass moves together with 

the walls. In these systems, the liquid could be modeled by a rigid solid of mass mliq. If Fn 

is higher than 1 then the sloshing increase the total force transmitted to the base, and if 

Fn is lower than 1 then the opposite behavior occurs. 

The numerical analysis is conducted with a tank of length L=9.144m and results 

are presented for three different aspect ratios, R=0.3, R=0.5 and R=1. The liquid is 

assumed to have 0.5% modal damping while the excitation period varies between 0.1 

and 2.0 times the fundamental sloshing period. It is observed that for rsp>>1, the 

normalized transmitted force is close to 1 so the convective component is not 
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important. The maximum value of Fn is reached when the excitation and the 

fundamental sloshing periods are close (rsp ≈ 1) which is expected since this condition 

corresponds to resonance for the liquid. On other hand, the minimum value of Fn is 

reached when rsp<1. In this case, the impulsive mass moves at the same phase as the 

excitation but the convective mass moves with a 180 degrees phase difference with 

respect to the excitation. Then, the forces related to the impulsive and convective 

masses counteract each other leading to a reduced force transmitted to the ground, 

Figure 3.6. 

The SSM and the Housner Model predict similar values of Fn when the period 

ratio is close to 1. The SSM additionally provides local maxima of Fn located at the 

second and third sloshing periods. The Housner Model is of course not capable of 

estimating these local maxima since it only takes into account one degree of freedom. It 

is also evident that the differences between the models depend not only on the period 

ratio rsp but also on the aspect ratio R. The biggest differences occur when the aspect 

ratio R is small and the excitation period is close to the second and third sloshing 

periods, that is, in Figure 3.6, the difference between the model responses is much 

more dramatic when R=0.3 and rsp<1 (Figure 3.6a), while the differences decrease when 

the aspect ratio R increases (Figure 3.6b and Figure 3.6c).  
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Figure 3.6 Normalized transmitted force to the walls of a rectangular tank, with 

L=9.144m for different values of R under harmonic response for different period ratios 

rsp (excitation period to fundamental sloshing period) 
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The seismic response of the liquid tank is finally studied by imposing two different 

ground motions: the 1940 El Centro earthquake (Component S90W) and the 1985 

Mexico City SCT1 record (Component N90W). These seismic excitations are chosen to 

directly compare the SSM with the model implemented by (Chen et al. 1996), in which a 

finite difference scheme is applied to resolve the non-linear and linear sloshing problem, 

where the non-linearities are primarily related to the second order differential terms 

that appear in the Bernoulli Equation and the border conditions at the free surface due 

to large sloshing amplitudes. In (Chen et al. 1996) modal damping of 5% was assumed 

for the analysis, and the same value is adopted here for the Housner and SSM models 

and for the ANSYS implementation. An interesting result mentioned by (Chen et al. 

1996) is that the linear theory predicts the transmitted force relative well compared to 

the non-linear model. Results are provided in  

Table 3.2: the SSM provides good agreements with the Linear Model and the 

FEM through ANSYS while the accuracy of the Housner Model shows a significant 

excitation dependency. The average computational time required to conduct the time-

history analysis on a PC with a 3.3 GHz Xeon quad processor and 8GB RAM is 0.5s, 6.8s 

and 738s for the Housner Model, the SSM and ANSYS simulation, respectively. This 

shows that the proposed SSM offers high accuracy results with a remarkable 

computational efficiency. 
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Table 3.2 Comparison of transmitted force to the ground obtained by different methods 

for the considered rectangular tanks under different earthquake excitations 

 Maximum Transmitted Force to the Ground [kN] 

Earthquake 

Record 

Non-linear Model  

(Chen et al. 1996) 

Linear Model  

(Chen et al. 1996) 

Housner 

Model 
SSM ANSYS 

El Centro 52.32 51.40 53.92 50.21 51.72 

Mexico City 48.70 47.52 36.20 47.19 47.93 

Case Study: Non-Rectangular Tanks 

Extending now the comparison to non-rectangular tanks, three different types of tanks 

are chosen to compare the fundamental sloshing period obtained by the SSM with 

experimental results found on previously published studies (Idir et al. 2009; Gardarsson 

1997). The tank geometries used here correspond to W-Type, U-Type and V-Type 

described earlier in Figure 2.4.Five different tank configurations are used in the analysis, 

with each tank identified by a letter and geometry specification as presented in  

Table 3.3. The geometry of tanks A and B were obtained from (Idir et al. 2009) 

while the geometry of tanks C, D and E were obtained from (Gardarsson 1997). 
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Table 3.3 Details of the tank geometries selected from (Idir et al. 2009) and (Gardarsson 

1997) and used here 

Tank ID Tank Type L[mm] H[mm] a[mm] h[mm] 
Total water 

mass [kg] 

A W-type 380 76 52.62 50 0.594 

B U-type 380 76 137.38 50 0.594 

C V-type 590 40 250 144.34 2.134 

D V-type 590 70 250 144.34 4.954 

E V-type 590 100 250 144.34 8.817 

 

Table 3.4 Fundamental sloshing period [in s] for the considered non-rectangular tanks 

Tank ID SSM ANSYS Experimental 

A 1.226 1.183 1.024
1
 

B 0.953 0.984 0.970
1 

C 0.779 0.832 0.7805
2 

D 0.904 0.976 0.9412
2 

E 1.022 1.115 1.0667
2 

1
 Obtained from (Idir et al. 2009) 

2
 Obtained from (Gardarsson 1997)Table 3.4 presents the comparison between 

the fundamental sloshing period obtained by the SSM, ANSYS and the experiments 

conducted in the aforementioned two studies. The period obtained by the SSM and the 

experimental tests are in good agreement for all geometries with the maximum 
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difference being close to 4%, except for tank A for which the difference is higher. The 

study (Idir et al. 2009) also reported significant differences between the experimental 

and numerical value of the fundamental sloshing period for this tank. A reason of this 

difference is a potential inaccuracy in the experimental details provided. With respect to 

the computational time required to calculate the sloshing periods presented in Table 

3.4, the slowest calculation time (this corresponds to Tank A) is 5.2sec using the SSM 

and 78sec using ANSYS. Note that these calculation times do not take into account the 

time used to remesh the domain in the convergence process. This further validates the 

previous claims for the computational efficiency of the SSM. 

As discussed in Section 3.1 the computational efficiency/simplicity of the SSM 

can be exploited to further perform sensitivity studies of such non-rectangular tanks, 

which is one of the motivations for establishing this new approach. An interesting 

related question is to identify how variations of critical characteristics affect the 

fundamental sloshing period. In particular, the change of the fundamental sloshing 

period due to variations in a  and h  for a W- and U-Type Tank (both with L=380mm 

and H=76mm) is presented in Figure 3.7. Results show that the sloshing period of the 

W-Type tank exhibits greater variations in comparison to the U-Type Tank. Also, a 

variation of h  has greater effect on the sloshing period than a variation of a . This 

discussion shows the utility of the established methodology in examining the behavior 

of tanks with different geometric characteristics.  
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Figure 3.7 Sloshing period as a function of a   and h  for W- and U-type tanks. Cases 

correspond to L=380mm and H=76mm 

The final step for the validation of the SSM for non-rectangular tanks is to 

evaluate its accuracy for time-history analysis. For this reason, the seismic response of 

tanks A and B is finally examined for the same ground motions considered previously for 
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rectangular tanks. Again, it is assumed that the modal damping of the liquid is 0.5%.In 

particular, the time-history of the transmitted force obtained by the SSM and ANSYS are 

compared in Figure 3.8. The maximum transmitted force predicted by both methods is 

practically the same for the cases studied (but with a computational time required by 

ANSYS greater by a factor of 300 compared to the SSM), further validating the accuracy 

of the new model. It is interesting to note that even though both tanks (A and B) have 

the same volume of water and the same external dimensions (H and L), meaning  same 

space requirements, tank A exhibits lower sloshing amplitudes that lead ultimately to 

smaller forces acting on the walls. The difference in the transmitted force is related to 

the amount of water that moves (convective mass) and does not move (impulsive mass) 

inside the tank, features that ultimately depend on the tank geometry. For maximizing 

(or minimizing, depending on the application of interest) this force an optimization 

problem can be further formulated by changing the tank geometry, something that can 

be easily facilitated through the computational efficiency of the SSM. 
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Figure 3.8 Seismic response histories (expressed through the transmitted force to the 

base) of non-rectangular tanks A and B under El Centro excitation 

3.3.2 Tank Supported by a Linear Structure 

The SSM can be readily implemented to evaluate the behavior of Tuned Liquid 

Dampers (TLD) which is the ultimate goal within this dissertation. This implementation, 

corresponding ultimately to a liquid tank located on an elastic structure, is examined 

here. In this case the numerical model needs to capture the fluid-structure interaction 

with a high level of accuracy. An elastic structure with a TLD on top is thus studied to 

determine the effectiveness of SSM to simulate the response of these type of systems. 
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The numerical scheme for this evaluation was presented earlier in Figure 3.2. Each TLD 

is assumed to be tuned to the fundamental period of the structure.  

The chosen structure corresponds to the linear 9-story benchmark building 

presented by (Ohtori et al. 2004). This building was first modeled in a commercial 

software and then the mass and stiffness matrix were condensed at the lateral floor 

displacements producing a planar model with 9 translational degrees of freedom. The 

first four natural periods were calculated to correspond to 2.10s, 0.80s, 0.47s and 0.32s. 

Also a 2% of modal damping is assumed for the structure for all modes of vibration. The 

equation of motion for the coupled TLD-structure system is obtained following the 

procedure described in Section 3.2.4 [that is, Equation (2.8)], simply substituting the 

force from the mass damper initially described by Equation (2.6) with the product of the 

tank width d with the force per width transferred by the tank given by Equation (3.25), 

and results ultimately to: 
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 (3.28) 

where the mass M, damping C and stiffness matrix K of the structure, the displacement 

of each story relative to the ground u, the influence coefficient vector Do, in this case 

corresponding to a nine-dimensional vector (number of degrees of freedom of the 

planar structural system) of ones, and the location vector Ls are defined in the same 
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way as in Section 2.1, specifically Equation (2.8). The TLD is assumed to be at the top of 

the building leading to Ls as a vector of zeros with the 9
th

 element being equal to 1 so 

that Lsu=u9, where u9 represents the lateral displacement of the top floor (which is the 

floor that contains the TLD in this case). 

A Rectangular Tank and U-Type Tank are used as TLDs. The fundamental sloshing 

period of both tanks is tuned to the fundamental period of the structure, while the total 

mass of water (defining the width of the tank) is fixed as 2% of the total mass of the 

structure. Additionally, the damping matrix Cs is defined so that a 0.5% of modal 

damping is obtained for the fluid. 

The SSM is utilized here to predict the response of the structure and is compared 

against the predictions provided by ANSYS or the Housner model. Before describing the 

comparisons the coupling of the latter two models with the structural model is briefly 

discussed. The coupling of the Housner Model with the structure is realized by equation 

(3.28) but taking into account the following modifications: i) the impulsive mass is added 

to the mass matrix element M9,9 due to the 9
th

 floor which contains the TLD; ii) B, A and 

Rs are now scalars and all equal to the convective mass, iii) sη , Ks and Cs are also 

scalars, sη represents only the movement of the convective mass (not the elevation of 

the free surface), Ks is defined by the spring proposed by Housner whereas Cs is 

similarly defined to correspond to 0.5% of modal damping. For ANSYS, the 

characteristics of the analysis are similar to those described in Section 3.3.1, the only 
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difference being that the TLD is now supported by a frame structure which is modeled 

using the elements BEAM3 and PLANE42. Spurious frequencies are expected in this case 

since the formulation is based on displacement variables (Bermudez et al. 1997; Kiefling 

and Feng 1976) as indicated in (ANSYS 2007). Many spurious frequencies were indeed 

observed between the first three sloshing frequencies, with the problem ultimately 

resolved by adopting a modal reduction (Ray Clough and Penzien 1993) to reduce the 

computational burden (i.e., the time needed by ANSYS to integrate the equations of 

motion). 

Case study: Rectangular Tuned Liquid Damper 

As illustrated in Figure 3.3 earlier, it is possible to find many different 

combinations of R and L that result in the same fundamental sloshing period. For this 

illustrative application the dimensions of the tank are chosen as R=0.6 and L=3.29m, 

satisfying the tuning requirements to the fundamental structural period. The building is 

subjected to the El Centro ground motion and results are presented for the response of 

floors 3, 6 and 9 of the structure. The floor displacements and absolute accelerations 

are presented in Figure 3.9 and Figure 3.10, respectively, where the blue line is obtained 

by solving Equation (3.28) and the red line is obtained by using ANSYS. The results show 

that the TLD modeled by the SSM or ANSYS generate similar responses. Table 3.5 then 

presents the floor peak response values (accelerations and displacements) obtained by 

the different methods examined. All approaches yield similar results, verifying their 
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accuracy, whereas in general good efficiency is obtained by incorporation of the TLD in 

reducing the structural response (compare the results with and without the TLD). It 

should be stressed that the differences observed between the ANSYS and the SSM may 

be attributed to the contribution of higher sloshing modes that cannot be taken into 

account in the ANSYS model due to the modal reduction implemented. 

 

 

Figure 3.9 Displacement response of the 9-floor building with a rectangular TLD under 

seismic excitation 
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Figure 3.10 Acceleration response of the 9-floor building with a rectangular TLD under 

seismic excitation 

Table 3.5 Peak response values of the 9-floor structure with a rectangular TLD under 

seismic excitation 

 Peak Displacement [m] Peak Absolute Acceleration [g] 

 
Without 

TLD 
Housner SSM ANSYS 

Without 

TLD 
Housner SSM ANSYS 

3
rd

 floor 0.1664 0.1470 0.1452 0.1475 0.4087 0.4351 0.4399 0.4316 

6
th

 floor 0.2745 0.2401 0.2394 0.2412 0.5400 0.5198 0.5277 0.5108 

9
th

 floor 0.3723 0.3350 0.3321 0.3381 0.7041 0.6510 0.6481 0.6550 
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Case study: Non-rectangular Tuned Liquid Damper 

The same analysis is implemented for the structure equipped with a U-Type TLD 

with dimensions of R=0.625, L=3.29, a =0.5, h =0.3. The time history is only compared 

with the results obtained by ANSYS in Figure 3.11 and Figure 3.12 (since the Housner 

Model is not applicable for such tank geometries). Results are also reported in Table 3.6 

which shows good agreement between the SSM and ANSYS. Moreover, the behavior 

estimation of the building with a rectangular TLD and non-rectangular TLD are similar 

since the geometries are not significantly different. For both TLD geometries, the SSM 

estimates 10% on peak displacement reduction and 8.0% on peak acceleration 

reduction when the time-histories of the building with and without TLD are compared. 

For this case, comparative analysis in terms of computational time are not presented 

since the fluid-interaction using the SSM and ANSYS operate under different conditions: 

while ANSYS applied the FEM to the whole problem (TLD and building together), the 

fluid-structure analysis using the SSM requires to have the structure already modeled 

(on the implementation, the structural model of the building is taken as an input and 

not as part of the calculation). 

Overall the discussion shows the computational efficiency of the proposed 

method for evaluating the behavior of structures equipped with TLDs. 
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Figure 3.11 Displacement response of the 9-floor building with a U-type TLD under 

seismic excitation 
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Figure 3.12 Acceleration response of the 9-floor building with a U-type TLD under 

seismic excitation 

Table 3.6 Peak response values of values of the 9-floor structure with a U-type TLD 

under seismic excitation 

 Peak Displacement [m]  Peak Acceleration [g] 

 
Without 

TLD 
SSM ANSYS  

Without 

TLD 
SSM ANSYS 

3
rd

 floor 0.1664 0.1458 0.1495  0.4087 0.4395 0.4292 

6
th

 floor 0.2745 0.2408 0.2447  0.5400 0.5254 0.5108 

9
th

 floor 0.3723 0.3327 0.3483  0.7041 0.6503 0.6571 
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3.4 Summary 

In this Chapter, a numerical procedure (SSM) to represent the linear sloshing of 

liquid tanks was described and validated. The proposed model is based on the potential 

flow theory, where the continuity equation is resolved by a FEM scheme and then 

combined with the equilibrium equation generating a second order linear system of 

equations. The implementation of the new approach requires simply the computation of 

the equivalent fluid mass, damping and stiffness matrices, in addition to the 

computation of the terms related to the transmitted force that finally allows the 

numerical coupling with the support structure.   

Contrary to the Housner model, that represents the sloshing only through a 

single degree of freedom, the SSM approximates it as a full system of n degrees of 

freedom facilitating a more accurate description (higher modes of vibration can be 

accounted for). For a rectangular tank sloshing periods obtained by the SSM, Housner 

model and analytical approximation had a maximum difference of 1.0% (for different 

tank geometries). When looking at the response under harmonic excitations the 

Housner and SSM were similar only if the excitation period was higher than 0.8 times 

the fundamental sloshing period. This should be attributed to the inability of the 

Housner model to represents higher modes of vibration. Under seismic excitations the 

examined methods (including a full FEM implementation through ANSYS) were found to 

yield comparable results, whereas similar trends were also found for non-rectangular 

tanks. In addition, the utility of the proposed model to evaluate the performance of 
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rectangular and non-rectangular Tuned Liquid Dampers (TLDs) was examined. For this 

purpose the seismic response of a 9-story building equipped with a TLD was simulated 

through ANSYS and SSM, with results showing good agreements since the maximum 

differences were lower than 3%. 

The SSM offers a more accurate representation of the sloshing dynamic than the 

Housner Model but also a faster model and free of inconsistencies (that is, presence of 

spurious frequencies) than the ANSYS simulation. Ultimately, the SSM establishes a 

simple, (second order lineal system of equations that can be interpreted as a mass-

spring system), generalized (any tank geometry) mathematical modeling of the liquid 

sloshing based on variables that have physical meaning (free surface elevation and base 

acceleration), and facilitates an easy coupling between rigid tanks and elastic structures 

that support them. Furthermore, its high computational efficiency and accuracy make it 

a valuable tool that could be used by designers to conduct parametric studies, 

preliminary dimensioning of storage tanks, seismic performance identification, or as it 

will be utilized within this dissertation, design and dimensioning of tuned liquid 

dampers. 
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INTRODUCTION OF TUNED LIQUID DAMPER WITH FLOATING ROOF; NUMERICAL MODEL 

FORMULATION, EXPERIMENTAL VALIDATION AND FUNDAMENTAL VIBRATION 

BEHAVIOR EXPLORATION 

This Chapter introduces the Tuned Liquid Damper with Floating Roof (TLD-FR), 

putting special attention on the adaptation of the Simplified Sloshing Model (SSM) 

developed in Chapter 2 to describe the dynamic behavior of the new device. The 

accuracy of this model is then evaluated through comparisons to the experimental 

behavior of a scaled TLD-FR under different base excitations.  

4.1 Introduction of the TLD-FR 

As it was mentioned briefly in Chapter 1, TLD-FR consists of a traditional TLD 

with addition of a floating roof, constructed with a lightweight material with small 

density (reduce self-weight and facilitate the floating over the liquid). The idea behind 

this modification it that since the roof is much stiffer than water, it will prevent wave 

breaking, hence making the response linear even at large amplitudes. The roof also 

makes possible the addition of supplemental devices (either passive, semi-active or 

active) with which the level of damping can be substantially augmented. A scheme of 
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TLD-FR is presented in Figure 4.1, where is possible to identify three main parts: the 

liquid container, the floating roof and the external source of damping (different options 

could be explored such frictional, viscous, magneto-rheological dampers, etc). This 

device can be categorized somewhere between a TLD and a TLCD, since it is expected 

that TLD-FRs share the desire characteristics of both systems. It will be shown that it 

maintains practical TLCD attributes such as: (1) its dynamics can be ultimately 

characterized by considering just one degree of freedom; (2) incorporation of control 

strategies is straightforward; and (3) the mathematical model (presented later in this 

chapter) is relative easy to implement and understand. In parallel, the TLD-FR maintains 

desired characteristic of TLDs such as: (1) it has the same, familiar to practitioners, tank 

geometry; (2) the modification of the natural frequency (to facilitate tuning effects) is 

similarly versatile; and (3) it can be independently tuned and operated in two directions. 

Furthermore, it will be shown that it exhibits a lower dependency on the excitation 

amplitude than TLDs and TLCDs (its behavior is practically completely linear). 

 

 

Figure 4.1 Schematic for a rectangular TLD-FR 
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Within this dissertation the focus is placed on one-dimensional application of the 

TLD-FR. Extension to bi-directional control requires proper concurrent design of the 

dimensions of the liquid tank in both directions. Note that for non-rectangular tanks this 

might be challenging as the non-rectangular cross-section in one direction creates a 

non-uniform cross section in the other direction. Through the numerical tools discussed 

here are applicable to this case as well, it should be stressed that they have not been 

validated for such applications. The overall modeling and design framework discussed 

though is readily extendable.   

4.2 Mathematical Modeling 

To develop the numerical model for the TLD-FR, the liquid and the floating-roof 

are modeled separately and then combined by the internal pressures generated at the 

liquid-roof interface. The liquid is modeled by the SSM described in Chapter 3 through 

Equations (3.18) and (3.25), which represent the sloshing dynamic and the transmitted 

force to the base of the tank respectively. It is important to note that Equation (3.18) 

was obtained considering that the pressure at the free surface is zero, which it is not the 

case in TLD-FR since the presence of the floating roof generates a non-zero pressure 

condition at the free surface. Therefore, Equation (3.18) is modified to introduce the 

pressure in the liquid/floating-roof interface: 

 
1

s s s s s b su
ρ

+ = − −M η K η R Pɺɺ ɺɺ  (4.1) 
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where Ps contains the nodal pressure at the free surface. Also, it is important to 

mention that Equation (3.25) quantifies the transmitted force to the base of the tank 

per unit of tank width d, such that oF F d= , with F corresponding to the total force 

transmitted to the base, expressed as:  

     s bF ρd ρdBu= − −A ηɺɺ ɺɺ  (4.2) 

4.2.1 Inclusion of the floating roof 

The floating-roof is modeled as a flexible Euler-Bernoulli-beam through a FEM 

approach employing 2D elements composed by 2-nodes and 4-degree-of-freedom (one 

deflection and rotation per node). Under this scheme, the elemental stiffness matrix of 

the beam is proportional to EI/l3; with E, I and l corresponding to the elasticity module, 

moment of inertia and length of the element, respectively. On the other hand, the 

elemental mass matrix is computed employing a lumped-mass approach. A coincident 

mesh between liquid and floating-roof is recommended to simplify the coupling 

between the two individual numerical models of the liquid and the floating roof. Figure 

4.2 demonstrates this discretization where the nodes at Γs are shared between liquid 

and floating roof. The mass and stiffness matrices are then manipulated by a 

condensation process in order to express the dynamics of the floating roof only in terms 

of the vertical displacements sη  while additionally utilizing the pressure vector Ps. The 

damping of potential external devices is incorporated by adding damping forces at the 
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proper nodes. Assuming linear viscous dampers this process leads to the following 

equation of motion of the floating roof: 

 f s f s f s s+ + =M η C η K η Fɺɺ ɺ  (4.3) 

where Mf and Kf are the condensed mass and stiffness matrices of the floating roof. 

Ultimately, the mass matrix Mf depends on geometry (cross section) and the material 

density of the floating roof while the stiffness matrix Kf increases linearly with the 

product EI and decreases proportional to the cubic length of the floating roof. The 

elastic module and the moment of inertia can be chosen independently since E depends 

on the material and I on the transversal section. 

 

 

Figure 4.2 Scheme of the coincident mesh between liquid and floating roof and 

illustration example for derivation of damping matrix 

Finally, the damping matrix Cf can be determined considering the external 

dampers connected to the roof. If Cdamper,i is the damping coefficient of the ith
 damper 

and Rd is the collocation matrix with the ith 
column relating the degree of freedom of 

the ith
 damper to vector sη , matrix Cf is obtained as: 



 

86 

 

 

1 0

0

damper

T T
f d d d d d

damper N

C

C

 
 = =  
 
 

C R C R R R⋱  (4.4) 

where Cd is the diagonal matrix composed of the damping coefficients of each damper. 

Figure 4.2 illustrates this process for a particular case in which two external dampers are 

used in a tank that is discretized with 5 nodes on its free surface. 

For a complete description of the dynamics of the floating roof, the vector Fs 

that contains the external nodal forces is further defined, related to the vector of 

superficial pressures Ps through: 

 
Twit dh

s

s ss η η
Γ

= Γ= ∫G N NF G P  (4.5) 

The interpolation function Νη used here corresponds to the same functions used in 

Chapter 3 to interpolate the elevation η at the free surface Γs [Equation (3.9)]. In other 

words, the spatial variation of the elevation and the pressure between nodes at the free 

surface are assumed linear. Note that the only physical connection between liquid and 

floating-roof is through the pressure in the interface liquid/floating-roof. 

4.2.2 TLD-FR Numerical Model 

The two models for the fluid and the floating roof can be finally combined 

through the nodal pressures to yield the differential equation of motion: 

 a s a s a s a bu+ + = −M η C η K η Rɺɺ ɺ ɺɺ  (4.6) 

where the augmented matrices involved are defined as: 
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This is a second order linear system of differential equations (can be considered 

as a mass-spring-dashpot system excited as its base) where the dependent variable is 

the vertical displacement of the floating roof and the input corresponds to the 

acceleration imposed at the base of the TLD-FR. 

Another important characteristic of the TLD-FR is the force transmitted to its 

base, which is given by Equation (4.2), and only depends on the tank geometry, the 

sloshing amplitude and the horizontal acceleration of the tank (not directly influenced 

by the floating roof). The sloshing amplitude is computed by Equation (4.1) if the 

floating roof is not installed (traditional TLD) or by Equation (4.6) if the configuration 

corresponds to a TLD-FR. The behavior of a structure equipped with a TLD-FR can be 

then characterized by combining its equation of motion with Equation (4.6), with buɺɺ

corresponding to the absolute acceleration of the floor in which the damper is installed 

and utilizing Equation (4.2) to estimate the force transmitted by the TLD-FR to the 

structure. 

Therefore, the dynamic behavior of a traditional TLD can be ultimately described 

by Equations (4.1) and (4.2) (which corresponds to the SSM procedure) while the 

dynamic of the TLD-FR is defined by Equations (4.6) and (4.2), denoted herein as 

Simplified Sloshing Model with Floating Roof (SSM-FR).  
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4.3 Experimental Validation 

For validating the numerical model of the TLD-FR an experimental study is 

performed utilizing a shaking table at the Structural Dynamics Laboratory of the 

Pontificia Universidad Catolica de Chile. 

4.3.1 Experimental Setup 

Figure 4.3 illustrates the experimental setup. The scaled TLD-FR was constructed 

using a rectangular-base glass tank, which is reinforced by an ad hoc chassis built around 

it. The plan dimensions of the tank are 0.8 m in the direction of the excitation (length L) 

and 0.4 m in the perpendicular direction (width d), while the total height is 0.6 m. The 

floating roof consists of a 1.5 in thick expanded polystyrene foam board (with elastic 

module E=3GPa and associated EI=5530Nm
2
), and is attached to the chassis by two 

spherical joints located at mid-span. The location of the joints is such that rotational 

movement of the floating roof is enforced, and contact between the floating roof and 

the walls is prevented. Two air dampers are installed between the chassis and the 

floating roof. The damping coefficient of the dampers is adjustable, and the range of 

possible values is 0 - 0.35 N/mm/s. The dampers act in both directions (pushing-pulling) 

and have a total stroke of 76.2 mm (3 in). They are located at 0.2m from mid-span, 

allowing a maximum rotation angle of the floating-roof close to 11 degrees. The liquid 

used is blue-colored water. The damper-chassis and joint-chassis connections are built 

in such a way that different water depths H can be established. It is important to 
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mention that although the height of the tank is 0.6 m, the water depth H is only a 

fraction of it in order to have enough space to place the dampers. The tank is mounted 

on the shaking table by three rollers, and the horizontal motion of the tank relative to 

the shaking table is constrained by two load cells. In that sense, the rollers support only 

the vertical load while the load cells take the total horizontal force generated in the 

system. The tank, chassis, floating-roof and dampers assembly have a total dry weight of 

55 kg. The model is instrumented with two accelerometers to measure the absolute 

acceleration of the shaking table and the tank. Two LVDT (Linear Voltage Displacement 

Transducers) sensors are provided to measure the vertical displacement of the floating 

roof. The LVDTs are located next to the dampers (0.2 m from the mid-span). The 

rotation of the floating-roof is obtained through these measurements and by further 

assuming that the floating-roof is rigid. The load cells are S-type cells utilizing strain-

gauges to measure tensile and compressive forces in static or dynamic conditions.  

 

 

Figure 4.3 Scheme for experimental setup for validation of the TLD-FR 
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All instruments are connected to a universal data acquisition system, which 

allows to simultaneously acquire and record the signals from the different sensors. The 

shaking table used has 6 degrees of freedom and a maximum support load of 

approximately 15 kN, but in this study only one-directional translational excitations are 

used. These excitations represent the input to the TLD-FR. The focus is placed here on 

validating the SSM-FR by comparing analytical results with experimental measurements. 

Six different TLD-FR configurations having different water depths and different levels of 

external damping are examined (Table 4.1). The characterization and validation is 

established considering different dynamic tests: free vibration, response to harmonic 

excitations, and response to earthquake excitations. 

Table 4.1 Details of the TLD-FR configurations considered in the experimental study 

Tank ID Width (d) Length (L) Water Height (H) 

External 

Damping 

A 0.4 m 0.8 m 0.2 L No 

B 0.4 m 0.8 m 0.2 L Yes 

C 0.4 m 0.8 m 0.3 L No 

D 0.4 m 0.8 m 0.3 L Yes 

E 0.4 m 0.8 m 0.4 L No 

F 0.4 m 0.8 m 0.4 L Yes 
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4.3.2 Free Vibration 

The free vibration of the TLD-FR is first considered by providing a pulse-like 

instantaneous excitation. The response (which is presented in Figure B.1, Figure B.2 and 

Figure B.3 in Appendix B) allows for identification of the fundamental period under free 

vibration conditions. This period of the TLD-FR and of the corresponding traditional TLD 

(without the roof) are additionally obtained through eigenvalue analysis using Equations 

(4.6) and (4.1), respectively, and are found to be very similar to one another (this 

matching is further explored later in this Chapter). Finally for comparison purposes 

these periods are also obtained by the analytical closed-form expressions derived by 

(Chen et al. 1996) and by (Housner 1963) for liquid dampers with rectangular 

geometries; which correspond to the same methods used previously in Chapter 3 to 

estimate periods of different liquid tanks. All of the estimates of the fundamental 

sloshing period turned out to be very close to each other (Table 4.2), with the maximum 

differences of the order of 2%. 

Through the free vibration tests, the damping ratio is also experimentally 

identified by applying the decrement logarithm method to the rotation response of the 

floating-roof. In particular it is observed in cases A, C and E (configurations without 

external damping) that the TLD-FR has a significant level of inherent damping (≈ 3-4%), 

possibly due to the presence of drag or friction forces acting at the thin layer of liquid 

located between the floating roof and the tank walls.  
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Table 4.2 Undamped sloshing periods of the TLD-FR configurations considered in the 

experimental study 

 TLD Natural Period [sec] TLD-FR Natural Period [sec] 

Tank ID SSM Analytic Housner SSM-FR Experimental 

A 1.3542 1.3572 1.3539 1.3496 1.36 

C 1.1835 1.1803 1.1795 1.1734 1.16 

E 1.0950 1.0985 1.0995 1.0925 1.08 

 

Table 4.3 Experimental damping ratios for the different TLD-FR configurations 

Tank ID 

Total Damping 

Ratio (ξm) 

Inherent Damping 

Ratio (ξint) 

External Damping 

Ratio (ξext) 

A 3.6% 3.6% - 

B 7.7% 3.6% 4.1% 

C 3.7% 3.7% - 

D 8.4% 3.7% 4.7% 

E 3.5% 3.5% - 

F 8.3% 3.5% 4.8% 
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The experimental damping ratios of all configurations are presented in Table 3, 

using the responses presented in Figure B.1, Figure B.2 and Figure B.3. Note that for 

configurations A, C and E the total (ξm) and inherent (ξint) damping ratios coincide since 

no external dampers are considered. On the other hand, for configurations B, D and F 

the external damping ratio (ξext) is obtained by the difference between the total (ξm) and 

the inherent (ξint) damping ratios, where the last one is assumed to be independent of 

the external damping, meaning that is assumed equal between the TLD and TLD-FR 

cases (Tanks A and B, Tanks C and D and Tanks E and F are assumed to have the same 

inherent damping values). 

4.3.3 Harmonic Response 

Next, the response under harmonic excitations of different amplitudes is 

examined. The Normalized Transmitted Force Fn and the Amplitude Ratio AR are used 

to characterize the response given, respectively, by: 

 
( )

( )
( )

max max

max

100
andn

TLD FR b

F t t x
F AR

Hm u t

η

−

= =
ɺɺ

 (4.8) 

Where F(t) is the time variation of the transmitted force, mTLD-FR is the total mass of the 

TLD-FR, üb(t)is the acceleration history of the shaking table, η(t) is the time variation of 

the oscillation of the floating roof and H corresponds to the water depth. Note that 

expressions for the transmitted force presented in Equations (4.8) and (3.26) are 

equivalent;  the only difference is that Equation (4.8) takes into account not only the 
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mass of the liquid mliq but also the mass of the floating-roof, chassis, dampers and tank 

since all of these elements contributes to the transmitted force registered by the load 

cell. The Normalized Transmitted Force Fn is ultimately an indicator of the force 

amplification due to sloshing effects, and the Amplitude Ratio AR relates the maximum 

amplitude of the oscillation of the floating-roof to the water depth. Eight different 

excitation periods and different excitation amplitudes are considered. In particular, two 

conditions are studied in terms of the shake table motion: (i) excitations with specific 

displacement amplitude (ranged between 5-20mm) and (i) excitations with specific 

acceleration amplitude (ranged between 0.01-0.02g). It is important to mention that 

since the normalized force Fn is an amplification factor of the transmitted force, it is 

affected by the excitation period but not by the excitation amplitude. For the amplitude 

ratio AR the results are normalized by the excitation amplitude ( )
max

/bu t gɺɺ  to 

similarly avoid an excitation amplitude dependency.  

The numerical and experimental results corresponding to the configurations 

without external damping are presented in Figure 4.4 and Figure 4.5, while the response 

of TLD-FRs with external damping is shown in Figure 4.6 and Figure 4.7. The first three 

sloshing frequencies of the corresponding traditional TLD without the floating roof are 

also shown in the figures with vertical black dashed lines. 
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Figure 4.4 Normalized transmitted force (non-dimensional) for experimental 

configurations without external damping under harmonic excitation for different 

excitation periods.  (i) Numerical and (ii) experimental results under different excitation 

amplitudes are compared 
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Figure 4.5 Floating roof amplitude (normalized by excitation amplitude) for 

experimental configurations without external damping under harmonic excitation for 

different excitation periods.  (i) Numerical and (ii) experimental results under different 

excitation amplitudes are compared 
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Figure 4.6 Normalized transmitted force (non-dimensional) for experimental 

configurations with external damping under harmonic excitation for different excitation 

periods.  (i) Numerical and (ii) experimental results under different excitation 

amplitudes are compared 
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Figure 4.7 Floating roof amplitude (normalized by excitation amplitude) for 

experimental configurations with external damping under harmonic excitation for 

different excitation periods.  (i) Numerical and (ii) experimental results under different 

excitation amplitudes are compared 

The first observation from these results it that there is a good agreement 

between theoretical and experimental results, offering a further validation of the 

numerical model. Additionally, the absence of maxima at the second and third natural 

Tank B

0

  500

1000

1500

2000

0 0.5 1.0 1.5 2.0 2.5

Excitation Period [s]

0 0.5 1.0 1.5 2.0 2.5

Excitation Period [s]

0

  500

1000

1500

2000

0 0.5 1.0 1.5 2.0 2.5

Excitation Period [s]

0

  500

1000

1500

2000

Tank D

Tank F

SSM-FR

5mm

10mm

15mm

20mm

0.01g

0.035g

Experimental:

m
ax

/
b

A
R

g
uɺɺ

m
ax

/
b

A
R

g
uɺɺ

m
ax

/
b

A
R

g
uɺɺ



 

99 

 

frequencies (dashed-lines) indicates that the TLD-FR does behave essentially as a single 

degree-of-freedom system and that the assumptions presented in Section 4.1 are 

indeed valid. In all cases studied, it is observed that different excitation amplitudes do 

not significantly affect neither the Normalized Transmitted Force Fn nor the ratioAR/

( )
maxbu tɺɺ , which means that the dynamic behavior of the TLD-FR can indeed be 

considered essentially linear (no amplitude dependence). 

Additionally, some general characteristic can be observed. The maximum value 

of the normalized transmitted force is affected by the damping (Fn decreases when the 

damping increases) but not by the water depth (maximum Fn does not change for tanks 

A, C, E nor for B, D, F), these trends are shown in Figure 4.4 and Figure 4.6. On the other 

hand, the maximum value of the ratio AR/ ( )
maxbu tɺɺ  decreases with increasing damping, 

and also decreases with increasing water depth (Figure 4.5 and Figure 4.7). Results (both 

analytical and experimental) also indicate that Fn is close to unity when the excitation 

period is much greater than the natural period, indicating that, as expected, all the mass 

of water moves with the tank. Results also show a local minimum of Fn, which is related 

to in- and out-of-phase movements of the impulsive and convective masses of water 

with respect to the excitation. Finally, it is important to point out that at near-resonance 

conditions it was not possible to impose harmonic excitations of displacement 

amplitudes greater than 10 mm (greater amplitudes could lead to unsafe oscillations of 

the floating roof). 
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4.3.4 Seismic Response 

Finally the response to earthquake excitations is examined using different 

ground motions. The response of TLD-FRs subjected to the ground acceleration history 

recorded at the Melipilla station during the 1985 Chile earthquake is discussed here in 

detail. Figure 4.8 shows the excitation whereas Figure 4.9 and Figure 4.10 show the TLD-

FR response in terms of transmitted force to the base and floating roof amplitude, 

respectively. 

 

 

Figure 4.8 Ground motion imposed as excitation, corresponding to the ground motion 

recorded at Melipilla station during the 1985 Chile earthquake 

The numerical results are in very good agreement with the experimental data 

(Figure 4.9 and Figure 4.10) with differences between peak responses being less than 

6%. Some differences between the response histories are observed after t = 25 sec. In 

the case of Tank A (a TLD-FR without external dampers), the differences might be due to 

the fact that the inherent damping of the TLD-FR (drag and/or friction) is possibly 
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nonlinear. In the case of Tank B (a TLD-FR with external dampers), the differences are 

probably due to the fact that the external dampers are most likely not perfectly linear, 

but were assumed linear in the numerical procedure.  

Since in earthquake engineering the response characteristics of interest are 

typically peak values, the close agreement between experimental and analytical peak 

values (as opposed to the behavior at the tails of the response) provides a degree of 

confidence for the established numerical models. Although only results for tanks A and 

B are presented in this chapter, it is important to mention that tests on other 

configurations exhibited similar trends (results are included in Appendix B).  

 

 

Figure 4.9 Transmitted force for tanks A and B under seismic excitation. Comparison 

between numerical and experimental results shown. 
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Figure 4.10 Floating roof amplitude for tanks A and B under seismic excitation. 

Comparison between numerical and experimental results shown. 

A sequence of photos was taken when the ground motion was applied to the 

TLD-FR. Figure 4.11 shows the instants of maximum displacement response in a window 

from 20 to 24 seconds. The system without floating roof is also presented, for the same 

excitation and time window. The first row of photographs corresponds to the TLD-FR 

(configuration A) while the second row corresponds to a traditional TLD. The only 

difference between them is that one has the floating roof and the other does not. It is 

evident from this sequence that the TLD-FR exhibits a linear behavior, offering a further 

validation of our assumptions, in this case for arbitrary excitation conditions. The wave 

breaking and nonlinear behavior of TLD is also evident in the photos.  
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Figure 4.11 Photograph sequence of a TLD-FR (upper row) and TLD (lower row) under 

seismic excitation. Same tank geometry used in the two cases. Wave breaking and 

nonlinear behavior is evident in the latter but the presence of the floating roof keeps 

former practically linear. 

Overall the experimental analysis shows that the TLD-FR exhibit a behavior that 

can be adequately approximated by a single degree of freedom system, and that its 

dynamics can be accurately represented through the proposed SSM-FR numerical 

procedure. 

4.4 Fundamental Vibration Behavior of TLD-FR and Impact of Floating Roof 

The experimental validation performed in the last section has demonstrated the 

accuracy of both the SSM-FR and SSM numerical models. An immediate question one 

can now explore is a more in-depth understanding of the impact of the floating roof on 

the liquid vibration (and therefore the liquid damper behavior). For this purpose Figure 

4.12, Figure 4.13 and Figure 4.14 report the modal shapes and transfer functions over 

the first three modes for a TLD and a TLD-FR for three different tank geometries: (i) one 
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with a larger TLD fundamental period (length = 8m and water depth = 4m), (ii) one with 

a median period (length = 4m and water depth = 2m) and (iii) one with a lower TLD 

fundamental period (length = 1.5m and water depth = 0.75m). The transfer functions for 

TLD and TLD-FR are defined, respectively, as 

 ( ) 12( )TLD s s s sH i iω ω ω
−

= − + +M C K R  (4.9) 

 ( ) 12( )TLD FR a a a aH i iω ω ω
−

− = − + +M C K R  (4.10) 

For all cases the tank width is taken as 1m while a 0.5% of damping ratio 

(inherent damping) is assumed for all modes. The stiffness of the floating roof is 

modeled by an elastic beam with a moment of inertia (I) and modulus of elasticity (E) 

defined as: EI=1400Nm
2
 and EI=1400000Nm

2
 for Figure 4.13 and Figure 4.14 

respectively. To put these values into better perspective, if, for example, the material 

for the floating roof was polystyrene with E=3x10
9
GPa and rectangular cross section 

then the thickness of the floating roof should be 2cm and 18cm to match the specified 

values EI=1400Nm
2
 and EI=1400000Nm

2
, respectively. The first two modal shapes for 

the tank with R=0.5, L=8m and EI=1400Nm
2
 are presented in Figure 4.12. The modal 

shapes for the rest of the tanks configurations are not presented since they are 

practically the same. 
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Figure 4.12 Modal shapes for a tank with R=0.5, L=8m. For TLD-FR the beam stiffness is 

set to EI=1400Nm
2
 

It is observed that the behavior around the first sloshing period and the first 

modal shape are practically same for both the TLD and TLD-FR whereas the floating roof 

moves higher sloshing modes to higher frequencies (lower periods), allowing a larger 

separation between these modes. Additionally, higher modes are suppressed 

(amplitude reduced), whereas for floating roofs with higher stiffness no higher modes 

are observed. This behavior is easy to explain, especially when coupled with the 

information in Figure 4.12 about the mode shapes of different modes for the TLD; for 

the fundamental mode the roof is allowed to participate as a rigid body so has limited 

impact on the vibratory characteristics. Coupling within higher modes requires the roof 

to vibrate according to the coupled dynamics, which is difficult due to the higher rigidity 

of it (note this is the case even for the smaller EI considered). This ultimately leads to 
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the observed suppression of the higher modes. This further supports the intended 

tuning of the TLD-FR to only a specific mode (discussed at the beginning of this section), 

since its own modes are better separated (compared to the TLD) with higher modes 

significantly suppressed.  

 

 

Figure 4.13 Transfer function for TLD and TLD-FR employing a floating roof with a 

EI=1400Nm
2
. Different tank geometries examined. 
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Figure 4.14 Transfer function for TLD and TLD-FR employing a floating roof with a 

EI=1400000Nm
2
. Different tank geometries examined. 

Similar results are observed in Figure 4.15, corresponding this case with a liquid 

damper employing a non-symmetric tank. The geometry, mode shapes for the first two 

modes as well as frequency response are all shown in this figure. It is again evident that 

the floating roof suppresses higher modes. In this case, since the mode shape in the 

fundamental mode is not completely symmetric the inclusion of the floating roof has a 

minor impact on it as well. This should be attributed to the fact that the floating roof is 

allowed to vibrate as a rigid body. 
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Figure 4.15 Results for non-symmetric tank for TLD and TLD-FR (a) Schematic of a tank 

and its geometric details, (b) mode shapes for first and second mode and (c) frequency 

response function. Value of EI is 1400000Nm
2
 for the TLD-FR. 

4.5 Summary and General Considerations 

The Tuned Liquid Damper with Floating Roof (TLD-FR) was introduced in this 

Chapter. This mass damper is a variation of the traditional Tuned Liquid Damper, 

established through the introduction of a floating roof that imposes a kinematic 

constraint on the surface of the liquid while also facilitating the incorporation of 

external dampers to achieve the desired optimal damping ratio. A numerical model was 
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−0.8

−0.4

0.0

0.4

0.8

-L/2 L/20

−0.8

−0.4

0.0

0.4

0.8

-L/2 L/20

 

 

10−2

10 0

10 2

 [
s2

]
(

)
H

iω

0 5 10 15

ω [rad/s]

TLD−FR

TLD

Asymmetric

L 

H 

h 

h
h

H
=

0.7h =

L = 1.5m
H

R
L

=

R = 0.5

1st Mode

2th Mode

(a) (b)

(c)



 

109 

 

with a Finite Element Model for the floating roof and coupling them through the 

pressure at the roof-liquid interface. Additionally an extensive experimental validation 

was undertaken considering a variety of dynamic excitations (shake table experiments) 

and rectangular tank geometries for the TLD/TLD-FR. The results indicate that, contrary 

to the behavior of TLDs, the response of the TLD-FR is practically linear and does not 

exhibit a significant amplitude dependency. The TLD-FR behaves essentially as a single-

degree-of-freedom system, which is a consequence of the floating roof preventing wave 

breaking(this was particularly evident when looking at the time-history of the response 

–through sequence of snapshots- in the experimental investigation) and suppressing 

higher modes of vibrations. Experimental results also demonstrate that the TLD-FR 

possesses an important level of inherent damping, possibly related to friction and/or 

drag forces in the gap between the walls and the roof. This is an important 

consideration for design purposes since it means that external dampers should be 

selected to provide only a portion of the total optimal damping for the TLD-FR (the 

remaining portion contributed by the inherent damping).The experimental response of 

the TLD-FR to both harmonic and seismic excitations was shown to be in very good 

agreement with the response predicted by the numerical model, validating the latter.  

 



 

110 

 

  

PARAMETRIC FORMULATION FOR TLD-FR VIBRATION AND DESIGN PROCEDURE  

It was demonstrated in the previous section that the TLD-FR presents same 

behavior as other type of linear mass dampers with vibratory characteristics dominated 

by a single mode, especially for rigid floating roofs. This ultimately means that its 

dynamics can be represented by a second order linear oscillator with the coupling to the 

primary structure established, like in other type of mass dampers, through the force 

transmitted by the TLD-FR to its walls/base. The question that is investigated in this 

section is how can this representation be established, especially how can the behavior 

of the TLD-FR, dependent on specific characteristics of the tank geometry, be simplified 

so that it is represented by similar parameters as other mass dampers (such as tuning 

ratio, efficiency index and mass ratio). A parametric formulation is introduced in this 

chapter to support this goal. This formulation has two components (a) simplification of 

equations of motion through only four variables and (b) derivation of simplified 

relationships to relate these variables to the tank geometry and the external dampers, 

to support the design of the TLD-FR. These two components are independently 

discussed next. Additionally, insight is provided on the effect of the transverse tank 



 

111 

 

geometry on the TLD-FR fundamental vibratory characteristics. Finally an illustrative 

example is presented to demonstrate these concepts considering the design of TLD-FR 

under stationary excitation.  

5.1 Simplification of Equations of Motion through Parametric Formulation 

The parametric formulation is based on a modal reduction retaining only the first 

mode of the TLD-FR which has been shown in the previous Chapter to be the dominant 

one. Let Φ represent the eigenvector for the first sloshing mode and y the 

corresponding modal coordinate, so that s y=η Φ .The modeshape Φ is normalized so 

that the modal value at the wall (which is expected to be the maximum for the 

fundamental mode) is equal to one. This is chosen so that the modal displacement 

corresponds to the displacement of the floating roof at the wall. Both these 

terminologies, modal displacement or floating roof displacement, will be used herein to 

describe y . The proposed modal reduction leads then to the scalar differential 

equation: 

 m m m m bm y c y k y R u+ + = −ɺɺ ɺ ɺɺ  (5.1) 

where the modal characteristics are 

 

T
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Further introduction of the natural frequency and the damping ratio, given, 

respectively, by: 

 

2

m
m

m

m
m

m m

k
ω

m

c
ξ

m ω

=

=
 (5.3) 

and of the normalized modal displacement: 

 /n m my y m R=  (5.4) 

leads to: 

 
22n m m n m n by y y u+ + = −ɺɺ ɺ ɺɺξ ω ω  (5.5) 

which is the standard equation for mass dampers [note that this equation is equivalent 

to Equation (2.5) presented earlier] describing the behavior of any linear mass damper. 

As illustrated in Chapter 2 for liquid column dampers derivation of this equation 

requires definition of a similar normalized damper displacement. 

The transmitted force can be expressed using the previous transformations as: 

 
m

n b
m

R
F d y d Bu

m

 
= − − 

 
AΦ ɺɺ ɺɺρ ρ  (5.6) 

The first term in this equation is related to the liquid sloshing and the second to the 

acceleration imposed at the base of the tank. When the floating roof has small 

accelerations (this situation can occur when üb has a frequency contain far away from 

the first sloshing frequency) the first component can be neglected and the total 

transmitted force to the base corresponds to the total mass of liquid multiplied by the 
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acceleration of the tank-base (fluid-tank behaves as a rigid body). This shows that term 

dBρ  may be considered to correspond to the liquid mass, denoted from now on as mliq, 

while B may be interpreted as the transversal area of the tank. 

Of course for general excitation conditions the effect of the sloshing on the 

transmitted force needs to be taken into account and for better characterizing this 

effect the following efficiency index is defined, dependent upon only the tank geometry: 

 
m

m

R
γ

Bm

 
=  

 
AΦ  (5.7) 

The introduction of the efficiency index allows to rewrite Equation (5.6) as: 

 

[ ]
[ ] 2  2 [1 ]

 

liq n liq b

liq m m n liq m n liq b

F m y m u

m y m y m u

γ

γ ξ ω γ ω γ

= − −

 = + − − 

ɺɺ ɺɺ

ɺ ɺɺ  (5.8) 

where for deriving the second equality Equation (5.5) was utilized. The efficiency index 

represents the amount of liquid that participates in the sloshing; an efficiency index 

equal to zero indicates a non-sloshing condition (case described previously) in which the 

liquid acts like a rigid body. On the other extreme, an efficiency index equal to 1 

indicates that the whole liquid mass is participating in the sloshing and contributing 

dynamically in the transmitted force, condition which corresponds to a traditional TMD. 

In general, only part of the liquid is expected to contribute dynamically in TLDs (Sun et 

al., 1995), which indicates that the values of the efficiency index range between zero 

and one. 
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This efficiency index discussed here is equivalent to the similar parameter 

introduced in (Taflanidis et al. 2007) to describe the behavior of liquid column dampers 

(TLCDs/LCVAs) as discussed in Chapter 2 (Section 2.1). For liquid column dampers the 

efficiency index is related to the percentage of the total mass that participates in the 

horizontal liquid vibration and as discussed in Section 2.1 its calculation is 

straightforward as explicit relationships for it exist (relating it to the geometry of the 

liquid columns). For the TLD-FR it needs to be ultimately calculated through the FEM 

approach discussed in the previous Section. It leads, though, to an identical 

representation of the transmitted force to the supporting structure as for general mass 

dampers, with only one part of the total liquid mass contributing through inertia effect 

on that force, represented by term [ ]liq nm yγ ɺɺ  in Equation (5.8).  This equation is 

identical to Equation (2.6) that holds for general mass dampers considering the 

equivalence of mass, frequency and damping properties in the two cases, d liqm m= , 

d mω ω=  and d mξ ξ= , and the differences in the notation for the damper and base 

displacements 
on ny y=  and o bu u= . This is the reason that the parameter in Equation 

(5.7) has been chosen to be termed as efficiency index, though it does not seem similar 

to the same parameter used for liquid column dampers. It ends up describing exactly 

the same behavior, that is, the fact that only one part of the total liquid mass 

contributes in the considered vibratory behavior (for different reasons for each of these 
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two type of liquid dampers), and leads to an identical formulation of the equations of 

motion.  

Should be also pointed out that alternative definitions of the efficiency index 

have been proposed for mass dampers [for example the one in (Chang 1999) combining 

the efficiency index as it is defined here with the mass ratio for the damper], but the 

definition adopted here is preferable since it gives direct information about the amount 

of liquid that participates in the vibration mode. 

Finally the parametric formulation leads to description of a TLD-FR operating in 

its fundamental model through only 4 variables when considering response in terms of 

normalized modal displacements, its mass liqm , its efficiency index γ , its natural 

frequency mω , and its damping ratio mξ . The first three variables are related to the tank 

geometry, with the latter two completely dependent upon the tank transversal area and 

the first one independently defined through proper selection of the tank width, whereas 

the fourth variable is ultimately related to the external dampers and (as will be 

discussed later) any internal (inherent) damping existent in the vibration of the liquid. If 

the modal displacement is required then knowledge of ratio /m mm R   is also needed to 

invert the relationship of Equation (5.4). But if the response of the primary structure is 

only of interest (i.e. the efficiency of the TLD-FR implementation) then the latter is not 

required. This formulation also directly relates the behavior of TLD-FR to the behavior of 

liquid column dampers and TMDs (with the later corresponding to γ =1). Therefore 
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results from the analysis of liquid column dampers (Chang 1999; Taflanidis et al. 2007) 

discussed in Section 2.2 directly extrapolate to the TLD-FR: higher values for γ or of liqm

lead to better efficiency (greater suppression of the vibration of the primary structure) 

whereas they also effect the optimal tuning values for mω and mξ . In particular, the 

optimal values for both mω  and mξ of the TLD-FR decrease if liqm  or γ increase whereas 

the efficiency (suppression of primary structure vibration) is very sensitive to the 

frequency of the TLD-FR and to damping ratios lower than the optimal damping (Chang 

1999; Taflanidis et al. 2007). 

The question then arises how does the transversal area affect the efficiency 

index and the sloshing frequency? This question is examined next by investigating the 

sensitivity of these two properties to the tank geometry characteristics. 

5.2 Relationship of Transversal Geometry of the Tank to Vibratory Characteristics 

The values of the efficiency index γ and sloshing period Tm (defined as 2π/ωm) for 

different geometries of TLD-FR are presented here. In all instances the identification of γ 

and Ts are obtained through the SSM-FR described in section 4.2. The beam 

characteristics are chosen such that higher modes of the TLD-FR are not excited, i.e. the 

amplification factor presents only one peak at the fundamental frequency, similar to the 

cases presented in Figure 4.14. 



 

117 

 

5.2.1 Case 1: Rectangular Tanks 

The simplest configuration is the rectangular tank, completely defined by the 

length L and the water depth H (Figure 2.3) or the aspect ratio R=H/L. Results for this 

case are presented in Figure 5.1. It is observed that for aspects ratios greater than 

certain value (approximately R>0.8) the sloshing period only depends on L. The easiest 

way for TLD to change its sloshing period, which is an important characteristic for 

establishing tuning of its properties, is by altering the water depth while the length of 

the tank is kept constant, situation that corresponds to the use of the same tank while 

the amount of liquid inside the tank is altered (same L but allowing changes in H). In 

that sense and observing the results presented in Figure 5.1, it is clear that TLD-FRs with 

aspects ratios greater than 0.8 (shaded area) should be avoided since the sloshing 

period is not sensitive to changes of H for these configurations. 

On the other hand the efficiency index is independent of L and is completely 

defined by the shape of the tank (R). This validates the preference for using R for 

describing the tank geometry since it leads uniquely to definition of R. Tanks with lower 

aspect ratios present higher efficiency indexes. Therefore, geometries with higher 

aspects ratios are also non-desired (shaded area in Figure 5.1 below) since efficiency of 

vibration suppression is larger for larger values of γ. 
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Figure 5.1 Fundamental periods and efficiency indexes for different TLD-FR for 

rectangular tanks 

Additionally, it is possible to compare the efficiency indexes of TLDs-FR with 

linear TLDs, as demonstrated in Figure 5.2. Although the TLD-FR presents higher 

efficiency indexes the difference is small (around 2% more of liquid acts in the TLD-FR), 

something that should be attributed to the fact that  both dampers have similar but not 

identical modal shapes (as discussed previously in Section 4.4). Therefore the presence 

of the floating roof also contributes, though only at a small fraction, on the amount of 

liquid that participates in the fundamental mode of vibration for the TLD. 
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Figure 5.2 Comparison of efficiency indexes for different TLDs-FR and TLDs for different 

rectangular tanks 

5.2.2 Case 2: Non-Rectangular Tanks 

Further manipulation of the efficiency index and sloshing period can be 

established by considering more complicated, non-rectangular tanks. Here two different 

tank geometries are examined corresponding to U-Tank and T-Tank presented in Figure 

2.4. The sensitivity of the efficiency index and sloshing period to changes in the 

geometry of U-Tanks is studied first and the results are presented in Figure 5.3. Set of 

iso-curves for sloshing period and efficiency index are shown for three different 

configurations: (a) R=0.2 and L=4m, (b) R=0.2 and L=6m and (c) R=0.4 and L=4m. In 

that sense, the configurations (a) and (b) correspond to tanks with the same shape but 

L
 [

m
]

R

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1

2

3

4

5

6

7

8

0.7

0.7

0.7

0.6

0.6

0.6

0.5

0.5

0.5

0.4

0.4

0.4

0.3

0.3

0.3

0.2

0.2

0.2

TLD

TLD-FR

Effciency Index γ



 

120 

 

different sizes, while the configurations (a) and (c) correspond to tanks with the same 

length L but different shapes.  

The first interesting result is that the sensitivity of the sloshing period increases 

for lower values of a  and higher values of h , configuration that corresponds to tanks 

with a transversal sections close to conical. Moreover, those configurations present also 

a higher efficiency index indicating that the largest part of the liquid, more than 88% for 

configuration (a) and (b), contributes in the sloshing. It is also observed that 

configuration (a) and (b) present the same efficiency index, indicating that it is sensitive 

only to the shape and not to the size of the tank. On the other hand, comparing 

configuration (a) with (c), it is evident that for higher values of R the efficiency index 

presents an important reduction. These trends follow the ones for rectangular tanks but 

demonstrate a significant sensitivity to the other transversal area characteristics.  
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Figure 5.3 Iso-curves for fundamental periods and efficiency indexes of a TLD-FR 

employing a U-tank. Upper row corresponds to: (a) R=0.2 and L=4m, center row to (b) 

R=0.2 and L=6m and lower row to (c) R=0.4 and L=4m 
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Figure 5.4 Iso-curves for fundamental periods and efficiency indexes of a TLD-FR 

employing a T-tank. Upper row corresponds to: (a) R=0.2 and L=4m, center row to (b) 

R=0.2 and L=6m and lower row to (c) R=0.4 and L=4m
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A similar analysis is performed with the T-Tank examining the same combination 

for R and L. Results are shown in Figure 5.4. Large sensitivity of the sloshing period for 

lower eccentricities e  and higher radius r  is again reported whereas the efficiency 

index in sensitive to the shape and not to the scale of the tank with lower aspect ratios 

contributing to larger efficiency indexes. 

The overall discussion shows the following trends (i) tanks with lower aspect 

ratios present higher efficiency indexes (it is easier for shallow tanks to incorporate 

greater amount of liquid in the sloshing vibration), (ii) the efficiency index depends 

entirely on the shape and not on the size of the tank (tanks can be scaled without 

affecting the efficiency index), (iii) the sloshing period sensitivity due to changes in the 

geometry is higher for configuration with higher efficiency indexes. 

Another important, final, remark it that higher values of the efficiency index (say 

higher than 0.5) are straightforward to obtain for all the different tank geometries 

examined here for the TLD-FR. The same is not true for liquid column mass dampers. For 

example, based on the discussion in Section 2.1, for a TLCD a value of the efficiency 

index equal to 0.5 means that 70% of the total liquid mass is within the horizontal part 

of the tube. This allows for only 15% of the total liquid-column length within each of the 

two columns of the tube, which reduces significantly the allowable liquid displacement 

(to 15% of the total liquid-column length) making the configuration impractical. Of 
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course, behavior of the TLD-FR approaching the one of TMDs (efficiency index equal to 

1) is challenging to achieve.    

5.3 Design of TLD-FR and Relationships between Parametric Description and Tank 

Configuration 

It was illustrated in the previous two sections that the behavior of the TLD-FR 

can be described through only four variables, representing characteristics of the 

fundamental sloshing mode, whereas the tank geometry has a big impact on these 

variables. When represented in terms of these four variables the TLD-FR can be 

considered equivalent to linearized liquid column dampers with the efficiency index 

definition facilitating this equivalence. All results from liquid column dampers can be 

then directly extrapolated to the TLD-FR. For efficiency index equal to one the TLD-FR is 

identical to a TMD. 

Design of the TLD-FR requires, therefore, first an optimal selection of these four 

variables based on any appropriately defined criteria as discussed in Chapter 1 and then  

selection of the damper configuration and tank geometries based on these four 

variables. This two-stage approach is preferable over the alternative, i.e. the 

optimization directly for the tank/damper configurations since the latter (i) is a highly 

non-convex problem since it is evident from the discussion in the previous section that 

multiple geometries lead to exactly same vibratory characteristics, (ii) has a large 
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associated cost since it requires implementation of the SSM-FR at each iteration of the 

optimization to derive the equations of motion for the TLD-FR. 

Of course the match of the parametric formulation to the physical characteristics 

of the TLF-FR is still required. For the liqm  this is easily established by selecting the 

transverse width d that has no effect on any other vibratory characteristics. If 

architectural constraints do not allow for use of such a large d  then multiple TLD-FR can 

be considered with sum of widths equal to the targeted width. The tank geometry can 

be then chosen to match the intended efficiency index and frequency while also 

considering the displacement of the roof whereas the dampers can be chosen to match 

the damping ratio. These two are separately discussed next, with greater emphasis 

placed on the first topic.  

5.3.1 Selection of Tank Geometry Based on Efficiency Index and Frequency 

The tank geometry can be chosen based on the targeted efficiency index and 

frequency. For rectangular tanks this is a unique relationship and the two vibratory 

characteristics lead to a unique definition of the two tank dimensions (H-L). Note that in 

this case, as shown in Figure 5.3 earlier, a one-to-one relationship holds between the 

efficiency index and R=H/L whereas any sloshing period can be established 

independently of the efficiency index. The unique relationship between the vibratory 

characteristics and the dimensions of the tank does not extend to more complex tank 

geometries that are characterized by a larger number of geometrical parameters 
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(defining the transverse tank area), such as the U and T tanks discussed in the previous 

Section, with characteristics also shown in Figure 2.4. In this case different tank 

geometries can lead to the same characteristics of vibration. 

An additional challenge is the fact that this mapping does not have an analytic 

closed-form solution, relying on FEM analysis based on the SSM-FR approach. To 

circumvent the computational burden of repeating the FEM analysis for every 

geometrical configuration examined, derivation of an approximate relationship based 

on kriging metamodeling is adopted here. Kriging (Lophaven et al. 2002) in this case 

offers a surrogate model between the input parameters (tank geometrical 

characteristics) and the output of interest (vibratory characteristics used to provide the 

simplified parametric formulation) and is built using an extensive base of high-fidelity 

(established through the FEM analysis) evaluations of the input-output pair (also known 

as support points). After generated, the metamodel can be then used to represent the 

input output mapping and find all configurations that lead to the targeted vibration 

properties, for example through an exhaustive blind search (Coello et al. 2007). Kriging 

is chosen here for this purpose (over other available metamodel) because it has been 

proven accurate in approximating complex functions and it is highly efficient in blind 

search setting since it can be easily parallelized as it relies simply on matrix 

manipulations (Jia and Taflanidis 2013).  A review of the equations for the kriging 

metamodel is provided in Appendix C. 
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The intended selection of tank geometries is established finally through the 

following process. First a kriging metamodel is developed to approximate the system 

output of interest z, corresponding to natural frequency (period Tm is used here), 

efficiency index γ and parameters needed to describe the actual liquid modal 

displacement (ratio Rm/mm) so that [ / ]T
m m mT m R=z γ , as a function of the tank 

geometry, corresponding to the system input x. The latter depends on the tank 

characteristics, for example for V-Tanks the input is defined by [ ]TL R a h=x . For 

developing this metamodel an initial database of nsup (=8000 in the case study discussed 

later) support points is established based on the FEM approach and some choice for the 

EI value (this selection will ultimately not affect the dynamic of the system as 

demonstrated earlier in Chapter 4.4) and using Latin Hypercube Sampling to decide on 

the support points based on the range X that the input x is expected to take values is. 

Note that this is independent of the structure and application of interest, i.e the 

metamodel is developed once and used then as needed. Based on the targeted values 

for Tm and γ the input parameters x (that lead to the corresponding output) are 

subsequently identified. This can be established in a blind-search approach, especially 

for complex geometries for which a manifold is expected to exist in the x space that 

provide same z (more on this in the case study discussed later). Such manifolds cannot 

be identified through algorithms identifying only countable solutions (or even yielding a 

unique solution). This blind-search entails a derivation of another, very extensive in this 
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case database (10.000.000 components in the case study discussed later), this time 

established by utilizing the surrogate model. Note that this latter database is also 

independent of the application considered and can be used multiple times. Finally the 

value mm/Rm can be used to examine the implications of the liquid vibration, i.e. whether 

the floating roof might encounter obstacles in its vibration and hits side walls or bottom 

of the tank. This can be accommodated by calculating the free space available as will be 

illustrated in the example considered later. 

5.3.2 Damper Configuration 

The relationship between the damping ratio and the external dampers can be 

established by utilizing Equations (4.7) and (5.2) and the definition of mξ , to lead to 
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Based on known mξ  (and mω ) the damper coefficients can be then chosen so that the 

above equality is satisfied. Using the same coefficients for all dampers will lead to a 

unique solution, though the approach allows the adoption of dampers with different 

coefficients. It was, though, experimentally demonstrated in section 4.3.2 that TLD-FRs 

present some level of inherent damping (i.e., damping that is not associated with the 

external dampers), related to drag between liquid and floating roof, which contributes 

to the total damping ratio ξm. This can be taken into account as discussed earlier by 

expressing the total damping ratio as the sum of the inherent (ξinh) and the external (ξext) 
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damping ratios, such that ξm=ξinh+ξext. The external dampers are then designed based on 

the ξext, i.e. ξext is used in Equation (5.9) instead of ξm. Since a complete understanding 

(ability to predict it reliably) is not yet available for ξinh a conservative approach is to use 

a small value for ξinh; as discussed earlier high sensitivity is expected for values of ξm less 

than the optimal one (common characteristic of linear mass dampers as demonstrated 

in Figure 2.2), yielding to significant deterioration of the level of protection offered by 

the TLD-FR. Therefore a conservative approach is to assume a small value for ξinh so that 

to guarantee a damping factor equal or greater than the optimal damping ratio. 

5.4 Case Study for Design of TLD-FR 

The TLD-FR design procedure discussed above is demonstrated in this section. 

The focus is here on the selection of the characteristics of the TLD-FR so a relative 

simple, but very popular for mass dampers, performance quantification is adopted, 

considering the variance reduction under stationary earthquake excitation for a single-

degree of freedom (SDOF) oscillator. This SDOF ultimately represents the fundamental 

mode for the structure that is controlled through the introduction of the mass damper. 

Though design procedures for mass dampers mainly focus on the suppression of the 

vibration of the primary structure, as discussed in the introduction the displacement of 

the secondary mass is also of concern (Kim and Kang, 2012)(Chakraborty et al., 2012). 

This is particular important for TLD-FR or even for TLCD and LCVA applications, so that 

undesired behaviors that compromise its effectiveness can be avoided, e.g., collision of 
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the floating roof at the bottom part of the tank for the case of TLD-FR or displacement 

of parts of the liquid outside of a column in TLCD or LCVA. For TLD-FR applications with 

complex geometries such concerns can be indirectly incorporated in the analysis by 

selecting a proper configuration (that allows greater movement of the floating roof) 

among the manifold of solutions yielding the same vibratory characteristics. 

5.4.1 Equation of Motion and Response under Stationary Excitation 

The equations of motion of a structure with TLD-FR are established through the 

parametric formulation by utilizing Equation (5.8) to describe the transmitted force and 

Equation (5.5) to characterize the TLD-FR vibration. As discussed in Section 2.2. for 

general mass dampers, the mass ratio, r, defined as the ratio of the liquid mass mliq to 

the total mass of the structure ms (i.e. mliq=rms), and the tuning ratio α, defined as the 

ratio of the fundamental sloshing frequency ωm to the SDOF frequency ωs (i.e. ωm=αωs), 

can be further used to simplify parametric description. Therefore, the dynamic behavior 

of the coupled system is described by four non-dimensional parameters: the mass ratio 

r, the damping ratio ξm, the tuning ratio α and the efficiency index γ. Denoting as in 

Section 2.1 by ωs, ξs and ms the natural frequency, damping ratio and mass of the SDOF, 

uo its displacement relative to the ground and guɺɺ  the base acceleration, then the 

coupled system of equations of motion is: 
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This formulation further verifies the aforementioned equivalence to other type of mass 

dampers as Equation (5.10) is identical to Equation (2.10). 

For calculating the response to stationary excitation a state space approach is 

adopted here (Lutes and Sarkani 1997; Taflanidis and Scruggs 2010). For this purpose 

Equation (5.10) is re-arranged in state space format as: 
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where the state vector is defined as [ ]T
o o n o nu y u y=x ɺ ɺ  ,  the output vector is 

composed of displacements for the SDOF and TLD-FR [ ]T
o nu y=y , 0jxk is a matrix of 

zeros with dimension of jxk and jI is the identify matrix of dimension j. The earthquake 

excitation is modeled as a stationary stochastic process using the well known Kanai-

Tajimi filter (Ray Clough and Penzien 1993), expressed in a state-space form as: 

 

( )

2

2

2

0 1 0
;

2 1

2
2 2 ;

4 1

g g g g

g g g

g g
g g g

g g
g o g g g o

g g

w

u

ω ξ ω

ξ σ
π s ω ξ ω s

πω ξ

= +

=

   
= =   − −   

 = =  +

x A x B

C x

A B

C

ɺ

ɺɺ

 (5.12) 



 

132 

 

where the input w represents zero mean Gaussian white noise, ωg corresponds to the 

dominant frequency of the ground motion, ξg controls its bandwidth while σg defines 

the RMS value of the acceleration guɺɺ . 

Augmentation of the two previous state space representations ultimately leads 

to the final desired state-space formulation: 

 

[ ];   ; ;  

s s s s

o s s

T o o gT T
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=

   
 = = = =    
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y C x
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ɺ

 (5.13) 

that has as input the white noise w and provides output yo composed of the 

displacements for the SDOF and the floating roof. 

Under these assumptions (white noise), the output has zero mean and a 

covariance matrix defined by: 

 
o o

T
s s=y yK C PC  (5.14) 

where the state covariance matrix P is determined by the solution of the Lyapunov 

equation (Lutes and Sarkani 1997): 

 0T T
s s s s+ + =A P PA B B  (5.15) 

The structure response variance 2

ouσ  corresponds to the first diagonal element of the 

covariance matrix 
o oy yK  and the modal floating roof response variance 2

nyσ  to the 

second diagonal element. 
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5.4.2 Design Procedure 

The optimal design is finally formulated by identifying the characteristic of the 

TLD-FR that minimize 2

ouσ : 

 ( )( )2arg min
ou

Q

σ
∈

=
q

q q  (5.16) 

where the vector q contains the TLD-FR variables that are going to be optimized and Q  

represents the admissible design space Q. The optimization for stationary response is 

conducted assuming specific valued for the efficiency index and the mass ratio (since 

larger values for either of them leads to higher efficiency in terms of reduction of the 

displacement of the primary structure), meaning that q corresponds here to the 

damping ratio ξm and the frequency ratio α. Therefore, the optimization of Equation 

(5.16) represents tuning of the parameters of the TLD-FR. 

This process will lead to a desired configuration in the parametric space, 

characterized by ropt [or equivalently mliq,opt= r optms], γopt, αopt [or equivalently 

Topt=2π/(ωsαopt)] and ξopt. It is necessary then to select the tank geometry and the 

external damper characteristics that lead to this configuration, following the blind-

search process discussed in the previous Section and exploiting the established 

surrogate model. An additional preference can be then incorporated in the final 

selection considering the amplitude of vibration for the floating roof among the 

configurations leading to the same efficiency. This is established through the following 

approach: a maximum admissible amplitude is adopted yadm as a percentage of the 
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water depth H, leading to a constraint for the standard deviation of the response, i.e. 

desire that the actual response of the floating roof be bounded by yadm. This entails 

multiplication of 
nyσ  by ratio /m mR m  so that the standard deviation for modal 

displacement is converted to standard deviation for maximum displacement of the roof 

by the wall. Therefore the identification of the transversal geometry of the tank is 

established so that Tm is equal to 2π/(ωsαopt), γ is equal to γopt and /
ny m mσ R m  is less than 

a fraction (say 1/3 or 1/4) of yadm. The latter fraction is utilized to convert statistical 

quantities to expected maximum displacements; in the example in the parenthesis 

above the max displacement is considered, respectively, 3-5 standard deviations away 

from the mean –this might seem like optimistic values but since stationary excitation is 

being considered they are  rather conservative. An alternative approach would have 

been to consider the first-passage problem to identify the probability that the 

displacement of the roof exceeds the acceptable threshold (Taflanidis et al. 2007).  

5.4.3 Illustrative Implementation 

For the illustrative implementation the structure is considered to have natural 

frequency of ωs= π rad/sec (corresponding to 2sec of natural period) and damping ratio 

ξs = 2% while the TLD-FR corresponds to a U-Tank (reference is shown in Figure 2.4). For 

the excitation common recommendation for the Kanai-Tajimi filter are adopted: ωg = 

2π=4ωs, ξg= 50% and σg = 0.11g. Note that the values for ωs and σg do not affect the 
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optimization on the parametric space. They only impact the selection of the TLD-FR 

geometry because they influence the constraint for the response of the floating roof.  

For the proposed blind-search identification a kriging metamodel is established. 

The input for this metamodel is the characteristics of the U-Tank geometry 

[ ]TL R a h=x  whereas the output as discussed previously is 

[ / ]T
m m mT m Rγ=z . The number of support points is selected as 8000 utilizing Latin-

hypercube sampling within the following domain for x: [ ]2 ,4 ;L m m∈ [ ]R 0.2,0.8 ;∈

[ ]0.05,0.95 ;a ∈ [ ]0.05,0.95h ∈ . The accuracy is evaluated though a cross-validation 

approach and the maximum error reported is lower than 2%, representing a very high 

accuracy for the kriging metamodel. For the blind-search 10.000.000 different tank 

configurations are generated, again within the aforementioned domain. 

The optimization of Equation (5.16) is then performed for different combination 

of mass ratios r and efficiency indexes γ. The optimal damping and frequency ratios are 

reported in Figure 5.5 whereas Figure 5.6 shows the variation as function of r and γ of 

the percentage reduction of the response (standard deviation) though the introduction 

of the liquid damper, and of the standard deviation of the normalized amplitude of the 

floating roof 
nyσ . The results follow anticipated trends: higher values of r and γ lead to 

higher values of the optimal damping ratio and lower values of the optimal frequency 

and to higher efficiency (higher reduction of the response). Simultaneously they lead to 

lower values for the normalized roof displacement.  
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Figure 5.5 Optimal frequency and damping ratio for different efficiency indexes and 

mass ratios for a TLD-FR attached to a SDOF under stationary seismic excitation. 

Stationary variance is utilized as objective function. 

 

3

3

3

4

4

4

4

5

5

5

5

6

6

0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.97
0.975

0.975

0.98

0.98

0.98

0.985

0.985

0.985

0.99

0.99
0.99

    Optimal Dampign Ratio ξm [%]

M
as

s 
R

at
io

 r
 [

%
]

Efficiency Index γ

    Optimal Frequency Ratio 

0.5 0.6 0.7 0.8 0.9 1.0
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
as

s 
R

at
io

 r
 [

%
]

Efficiency Index γ

α



 

137 

 

 

Figure 5.6 Responses of the structure (as percentage reduction over the uncontrolled 

response) and of the floating roof under optimal design for a TLD-FR attached to a SDOF 

under stationary seismic excitation. Stationary variance is utilized as objective function 

for calculating the optimal damper design configuration. 

Ultimately, the designer has to decide the value of the mass ratio and the 

efficiency depending of particular constrains of each implementation. In this example, 
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1% of mass ratio [typical value for TMDs (Soong and Dargush 1997)] and an efficiency 

index equal to 0.5 [typical value for Tuned Liquid Column Dampers (Taflanidis et al. 

2007)] are adopted. Using these values and the results presented in Figure 5.5 is 

possible to determine that the optimal parameters of the TLD-FR correspond to: γ = 0.5, 

r = 1%, αopt = 0.9875 andξm,opt = 3.53 %. The use of a TLD-FR with these characteristics 

leads to a reduction of 22.47% and a normalized floating roof displacement of 

0.15
nyσ = m. 

Then, it is possible to perform a blind-search in the database to identify which 

geometries match with γ = 0.5, Tm,opt = 2.03s (=Ts/αopt) and /
ny m m o admR m f yσ ≤ . In the 

latter condition three different fractions fo of yadm are used, taking the following values fo 

= 1/3, 1/4 and 1/5 whereas the yadm is defined as H-h (total available space for roof). 

The respective geometries that match with those characteristics are presented in 

the Figure 5.7. The different symbols categorize the standard deviation of the amplitude 

of the floating roof in three groups: (1) amplitudes lower than 1/5 of the available space 

[identified with black squares], (2) amplitudes between 1/5 and 1/4 of the available 

space [identified with blue plus signs] and (3) amplitudes between 1/4 and 1/3 of the 

available space [identified with red circles]. An immediate observation is the fact that a 

large number of geometries exist that satisfy the desired vibratory characteristics, while 

having different associated amplitudes for the floating roof.  The ability to identify all 

these configurations demonstrates the efficiency of the proposed blind-search 
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approach. Instead of finding a single configuration (if a traditional optimization 

approach was adopted) all these different configurations are successfully identified.  

 

 

Figure 5.7 Characteristics for the different tank geometries that match with the optimal 

values of the TLD-FR and satisfy the various chosen constraints for the roof 

displacement. The value Rm/mm is also shown. Value of R is used as reference for the 

comparisons  and is included in all the subplots. With respect to the constraints for the 

floating roof, the configurations are separated into three different groups satisfying the 

different constraints (denoted with different symbols) 

Remember that the interest in the floating roof amplitude is the avoidance of 

potential impacts with the bottom part of the tank. In that sense, geometries identified 

with black squares correspond to the most conservative case. For this case, lower values 
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of h  are obtained, which is expected since lower h is associated with larger space in the 

vertical section of the wall. On the other hand, practically any a  can be chosen for the 

three cases presented, indicating that its impacts on the displacement of the floating 

roof is not as relevant as h . Additionally, the amplitude of the floating roof presents a 

low sensitivity respect to the length L and to the ratio /m mR m  while it has an important 

sensitivity respect R when h  and a have higher and lower values respectively. The 

latter condition can be explained if one considers that lower values of h  and higher 

values of a represents configurations close to a rectangular tank for which, as explained 

earlier, the mapping between the vibratory characteristic and the geometry is one-to-

one. Therefore only few aspect ratios R match the desired vibratory characteristics (with 

limiting case a single match). 

Recall also that once the transversal area of the floating roof is defined (based on 

the chosen geometry for the cross-section al area), the identification of d (tank width) is 

straight forward; it is simply chosen to match the desired mass (1% of the mass of the 

primary system). If that width is excessive for a single tank (architectural/space 

constraints) then multiple, identical tanks can be used to provide the total required 

width. If the TLD-FR is intended to operate in bi-directional mode, then appropriate 

concurrent design in both directions is required, as discussed in Section 4.1.   

Finally, equipped with the information in the Figure 5.7 as well as information 

about the necessary width, the designer can make a final choice as to which of these 
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geometries represents the best choice for a particular application taking into account 

the overall space constraints. As a last step, the characteristics of the external dampers 

can be obtained directly by the solution of the Equation (5.9), assuming a known 

inherent damping ξinh and defining the external damping ratio as ξext= ξopt - ξinh. Since 

damping ratios lower than optimal deteriorates the protection offered by the TLD-FR (as 

discussed in Section 5.3.2), then a conservative scenario is to assume small values of 

inherent damping. 

5.5 Summary 

In this Chapter the fact that the TLD-FR behaves linearly and in a predominant 

mode was further exploited to establish a simplification for its equation of motion and 

to facilitate a simpler comparison to other type of mass dampers. Though modal 

analysis and truncation (retaining only the predominant mode) its equation of motion 

was simplified to a single-degree of freedom oscillator. Furthermore through a proper 

parameterization and normalization and, in particular, through the introduction of a 

parameter, termed efficiency index, that for TLD-FR represents the portion of the liquid 

mass contributing in the sloshing vibration in its fundamental mode, complete 

equivalence to the behavior of  liquid column mass dampers was established. In 

parameterized format the behavior of any structure with a TLD-FR can be described by 

only four parameters that are common with the parameters used for other type of mass 

dampers: the mass, frequency and damping ratio and the efficiency index. Due to this 
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established equivalence all results for liquid column mass dampers and TMDs 

(representing the limiting case of efficiency index equal to 1) are directly extendable to 

the behavior of TLD-FR. Additionally, it was shown through parametric investigation for 

different tank geometries that higher values of the efficiency index are easy to obtain 

for the TLD-FR something that provides a distinct advantage over liquid column mass 

dampers. Though this investigation it was also shown that the efficiency index is related 

to the transversal geometry of the tank while the frequency is sensitive to its size and 

shape, i.e. tanks with the same shape present the same efficiency index but different 

fundamental frequencies.  

For complex cross-sectional geometries (i.e. not rectangular tanks), different 

tank geometries can lead to the same efficiency index or fundamental frequency, 

creating a mapping that is not one-to-one.  Motivated by this realization a design 

procedure was established to relate the four aforementioned parameters to 

geometrical properties of the TLD-FR. The targeted mass ratio (or more generally mass) 

can be established through proper selection of the tank width whereas the optimal 

damping ratio through proper dimensioning of the external dampers. In the latter case a 

conservative estimate of the inherent damping can be used to avoid damping values 

lower than the optimum one (feature that leads to significant deterioration of 

performance). The efficiency index and optimal frequency can be then chosen based on 

the cross-sectional tank geometry through a blind-search approach, so that all possible 

solutions can be identified. These solutions correspond, though, to different 
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displacements for the liquid, so considerations for the maximum allowable 

displacement to avoid collisions of the floating roof to the walls or bottom of the tank 

can provide an additional preference between these solutions. To support the blind-

search a surrogate modeling approach was adopted; a highly efficient kriging 

metamodel was first developed to approximate the relationship between tank geometry 

and vibratory characteristics and this metamodel was then utilized for all evaluations 

required within the blind-search. This procedure was demonstrated for the design of a 

TLD-FR considering stationary earthquake excitation. 
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LIFE-CYCLE BASED DESIGN OF TLD-FR ADOPTING A SEISMIC RISK CHARACTERIZATION 

APPROPRIATE FOR CHILE 

In the last decades significant advances have been established in seismic-risk 

decision management through development of assessment and design methodologies 

based on detailed socio-economic metrics quantifying life-cycle-performance/seismic-

risk, such as casualties, repair costs and downtime (Goulet et al. 2007). A powerful 

framework, widely acknowledged to provide the basis for these advances, has been 

Performance Based Earthquake Engineering (PBEE) (Augusti and Ciampoli 2008; Zareian 

and Krawinkler 2012; Bozorgnia 2004). Within this context, the life-cycle cost analysis of 

structures has been becoming increasingly popular. This analysis considers in the 

decision making the contributions from the initial (upfront) cost as well as the 

maintenance cost and more importantly the expected direct and indirect losses due to 

future seismic events, and has motivated researchers to look into the life-cycle cost 

based assessment/design of structures (Ang and Lee 2001; Liu et al. 2003; Fragiadakis et 

al. 2006), especially in the context of retrofitting strategies or design of supplemental 

protective devices (Taflanidis and Beck 2009; Park et al. 2004; Shin and Singh 2014; 
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Tubaldi et al. 2014). For performing such an analysis, especially for estimating in detail 

losses and repair costs due to future seismic events, a probabilistic treatment of the 

problem is necessary for addressing the uncertainty in the seismic hazard description as 

well as uncertainties related to any other components of the assumed models (such as 

uncertainties associated with structural properties). Furthermore, recent studies have 

stressed the importance of the adoption of advanced criteria for describing life-cycle 

performance within such an assessment/design setting, especially criteria that can 

characterize risk-averse attitudes of the stakeholders (Cha and Ellingwood 2013; 

Haukaas 2008; Corotis 2009). Such an approach, extending beyond the simple adoption 

of total life-cycle cost as single performance objective, can support an enhanced 

seismic-risk decision management, especially if couched within a multi-criteria design 

formulation (Gidaris et al. 2014).  

This Chapter implements these concepts for analysis/design of the TLD-FR to 

establish a more proper comparison to other type of mass dampers. To better 

understand the motivation for this comparison one needs to start first considering that 

like TLDs, TLDs-FR are characterized by a lower installation and maintenance cost than 

TMDs. The only difference between TLDs and TLDs-FR is the necessity to add the floating 

roof, which should not significantly increase cost. On the other hand it was 

demonstrated in Chapter 5 that for the same mass, TMDs offer enhanced vibration 

suppression, since they are ultimately characterized by a higher efficiency index. 

Therefore, proper comparison of such devices needs to consider the life-cycle 
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performance over their entire lifetime, incorporating both (a) the differences in upfront 

cost and (b) the benefits from the different level of vibration suppression (and thus 

benefits from reduction of seismic losses) offered by each. To support this goal, a 

simulation-based, probabilistic framework is developed here to estimate and optimize 

the life cycle cost of Chilean buildings with TLDs-FR, following the guidelines in 

(Taflanidis and Beck 2009). The simulation-based character of the framework allows for 

adoption of complex numerical and probability models to quantify risk and allows for 

explicitly addressing all important sources of variability within the examined models. 

Within this setting seismic losses are quantified through an assembly-based vulnerability 

approach (Porter et al. 2001), structural performance is evaluated through time-history 

analysis, an approach that agrees with recent recommendations for comprehensive 

probabilistic risk assessment (Deierlein 2004; Bozorgnia 2004), whereas seismic hazard 

is described through a stochastic ground motion model calibrated to offer hazard-

compatibility for the Chilean region (Vetter et al. 2014; Boroschek and Contreras 2012). 

 The design is performed in the parametric space, which offers simpler 

characterization for the TLD-FR as discussed in Chapter 5. This also means that the 

approach considered here is directly applicable to all different mass dampers that enjoy 

the same parametric formulation (TMDs, TLCDs/LCVAs). A multi-objective formulation 

of the design problem is established following the guidelines in (Gidaris et al. 2014). Two 

different criteria, quantifying seismic risk, are utilized in the design optimization. The 

first one, representing the direct benefits from the mass damper implementation, is the 
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life-cycle cost of the system, composed of the upfront TLD-FR cost and the anticipated 

seismic losses over the lifetime of the structure (estimated through the aforementioned 

assembly-based vulnerability approach). The upfront cost of the damper is related to its 

mass and due to lack of information a framework is established, utilizing surrogate 

modeling and blind search techniques, that allows a straightforward incorporation of 

different assumptions for this cost-relationship. The second criterion is utilized to 

incorporate risk-aversion attitudes in the design formulation and corresponds to the 

consequences (repair cost) with a specific probability of exceedance over the lifetime of 

the structure. Since this metric is not influenced by the upfront damper cost it 

represents competing objectives to the life-cycle cost, leading to a multi-objective 

design setting. Solution of this problem leads to the Pareto-front of dominant solutions 

offering different compromise between the objectives.  

Before formalizing the seismic risk assessment and design framework, the 

equation of motion for a multistory structure with a TLD-FR is quickly reviewed.  

6.1 Equation of Motion for Multistory Buildings Equipped with TLD-FR 

Utilizing the parametric formulation for the TLD-FR, specifically Equation (5.5),  

and its equivalence discussed in Chapter 5 to (linearized) TLCDs/LCVAs the equation of 

motion for a multi-degree of freedom planar structure equipped with a TLD-FR is given 

by Equation (2.8) [recall this equation is ultimately obtained by coupling Equations (2.7) 

and (5.5), using Equation (5.8) for the force transmitted from the tank to the structure 
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while expressing as ( )b s o gu u= +L u Dɺɺ ɺɺ ɺɺ  the acceleration at the base of the tank]. The 

resulting equation is  
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  (6.1)  

A dimensional characterization of the damper can be then established by using 

liq tm r m=  and 1m =ω α ω   where mt is the total structural mass and ω1 the fundamental 

structural frequency. For γ=1 and mliq=md this equation describes a TMD. Note that 

linear structural behavior is assumed here since it has been shown that for the Chilean 

region modern design/construction practices results in structures that demonstrate 

practically linear behavior even under strong excitations (EERI Special Earthquake 

Report 2010). Extension to nonlinear behavior is, though, straightforward in the 

considered simulation-based setting for risk; it simply entails modification of the 

restoring force and adoption of a nonlinear description. This numerical model is 

ultimately formulated and solved in the SIMULINK dynamical system modeling 

environment of MATLAB.  
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6.2 Seismic Risk Quantification and Assessment 

The quantification and evaluation of the different risk characterizations 

considered in this dissertation is presented in this Section.  

6.2.1 Seismic Risk Quantification 

Quantification of the life-cycle performance is established through the 

framework discussed in (Taflanidis and Beck 2009) by establishing a probabilistic 

description for the uncertainty in the model parameters used to describe the 

earthquake excitation and the structural performance. This modeling framework starts 

by the adoption of appropriate excitation, structural and loss/performance evaluation 

models, describing, respectively, the exposure, the vulnerability and the consequences 

within the risk characterization. The first model provides the seismic excitation given 

seismological parameters that are established through a seismic hazard analysis. The 

second model provides the structural response given that excitation, whereas the last 

quantifies the favorability of that response in terms relevant to the system stakeholders.  
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Figure 6.1 Modeling approach for seismic risk quantification
 

The characteristics of these models are not known with absolute certainty, with 

potential sources of uncertainty corresponding to (i) the properties of the structural 

system or to the fragility of its components (uncertainty for structural and performance 

assessment models), and (ii) to the variability of future seismic events and the 

characteristics of the resultant excitations (uncertainty for seismic hazard). A 

probabilistic approach provides a versatile framework for characterizing these 

uncertainties (Taflanidis and Beck 2009) and explicitly incorporating them into the 

system description ultimately leading to a rational definition of the seismic risk. Note 

that this framework (demonstrated in Figure 6.1) is consistent with PEER’s approach 

(Moehle and Deierlein 2004), widely acknowledged to represent one of the most 

Structural model 
with parameters θs and 

design variables q
Excitation model 
with parameters θg

Performance evaluation model
with parameters θpRisk 

consequence 
measure

Uncertainty in  
θ={ θs, θp,θg,θm}
[probabilistic 
description p(θ)]

+

Seismic
Risk

Acceleration time history

Seismic Hazard AnalysisSeismological 
parametersθm

(Damage and Consequence/loss-
assessment model)

Response 
time-history

TLD-FR



 

151 

 

important advances in seismic life-cycle performance assessment; simply it replaces the 

conditional probabilities in the PEER approach with the explicit introduction of a 

probabilistic description for the uncertainties in the various model parameters, and 

instead of a description of the seismic hazard based on intensity measures utilizes a 

compatible model-based description, relying on directly addressing the uncertainties on 

the seismological inputs and the ground motion properties to support the probabilistic 

characterization of the seismic excitation. 

In this context let q∈Q denote the nq-dimensional vector of TLD-FR design 

variables and let θ∈Θ, denote the nθ-dimensional augmented vector of model 

parameters where Θ represents the space of possible model parameter values and Q 

the admissible design space. Vector q here includes all parameters required for the TLD-

FR characterization (as opposed to the case considered in Section 5.4.3), since a direct 

optimization for the damper mass is considered. Vector θ  is composed, as illustrated in 

Figure 6.1, of all the model parameters for the individual structural system sθ , 

performance evaluation,  pθ , and excitation, gθ , models as well as the seismological 

parameters mθ . A probability density function (PDF) p(θ), is assigned to θ based on our 

available knowledge. For a specific design configuration q the risk consequence 

measure, representing the utility of the response from a decision-theoretic point of 

view, is ( , )rh q θ .  Multiple risk consequence measures will be examined, each leading to 

a different risk quantification, with the subscript  r   utilized herein to denote this 



 

152 

 

distinction. Each consequence measure is related to (i) the earthquake 

performance/losses that can be calculated based on the estimated response of the 

structure (performance given that some seismic event has occurred) as well as to (ii) 

assumptions made about the rate of occurrence of earthquakes (incorporation of the 

probability of seismic events occurring). Seismic risk Hr is ultimately described by the 

expected value the risk-consequence measure under distribution p(θ),  

 ( ) ( , ) ( )r r
Θ

H h p d= ∫q q θ θ θ  (6.2)  

Through different selection of the risk consequence measure different risk 

quantifications can be addressed within this framework, supporting the estimation of all 

necessary life-cycle performance metrics. Specific examples, required in the multi-

objective design problem formulation examined here are discussed next.    

6.2.2 Total life-cycle Cost  

The first life-cycle performance metric examined in the design formulation is the 

total life-cycle cost C(q)= Ci(q)+ Cl(q), given by adding the initial cost Ci(q), which is a 

function of the dimensions of the TLD-FR (or mass damper more generally), and the cost 

due to earthquake losses over the life-cycle of the structure, Cl(q). The latter is 

dependent on earthquake losses per seismic event and on assumptions about 

occurrence rates for such events. For a Poisson assumption for occurrence of 

earthquakes (i.e., independent occurrence of seismic events), the present value Cl(q) of 
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expected future seismic losses is given by integral (6.2) with associated  risk 

consequence measure definition (Goulet et al. 2007): 

 
(1 )

( , ) ( , )
d lifer t

rl r life
d life

e
h C vt

r t

− −=  
  

q θ q θ   (6.3) 

where rd is the discount rate, tlife is the life cycle considered and Cr(q,θ) is the repair cost 

given the occurrence of an earthquake event. The quantity in the brackets in Equation 

(6.3) corresponds to the present value factor, used to convert future cost to its present 

monetary value. 

For estimating losses for a specific event an assembly-based vulnerability 

approach is adopted (Goulet et al. 2007). According to this approach, the components of 

the structure are grouped into nas damageable assemblies, which consist of components 

of the system that have common vulnerability and repair cost characteristics (e.g. 

structural components, wall partitions etc.). For the j th damageable assembly ndj 

different damage states ,  1, ,kj djd k n= …   are designated and a fragility function is 

established for each damage state. These functions quantify the probability 

[ | ( , ])e kj jP d EDP q θ   that the component has reached or exceeded its kth
 damage state, 

conditional on some Engineering Demand Parameter, EDPj(q,θ), which is related to the 

time-history response of the structure under a given excitation (for example, peak 

transient drift, peak acceleration, etc.). Damage state 0 is used to denote an undamaged 

condition. A repair cost kjC  is then assigned to each damage state, which corresponds 
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to the cost needed to repair the component back to the undamaged condition. By 

combining the fragility and the repair cost information the contribution towards the 

expected cost from the different assemblies is calculated and then summed to obtain 

the total seismic losses ( , )rC q θ  as: 

 

,

1 1

1

( ) [ | ( )]   where

[ | ( ] [ | ( ] [ | ( ] 
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C
= =

+

=

= −

=

∑ ∑q θ q θ

q θ q θ q θ

q θ q θ

  (6.4) 

This approach can be extended to evaluating the cost of injuries and fatalities, 

though in this case estimating the “unit replacement” cost is less trivial. Also, a similar 

methodology may be implemented for the downtime cost. In this case the repair time 

for each damaged state for each assembly needs to be defined and certain assumptions 

need to be established for how the repairs will progress (for example in parallel or not) 

to calculate the total downtime. Multiplication of that downtime with the revenue 

worth provides then the associated cost.    

The expected life-cycle losses Cl(q) for a given damper configuration is 

ultimately given by: 

 
(1 )

( ) ( , ) ( ) ( , ) ( )
d lifer t

l rl life r
Θ Θ

d life

e
C h p d vt C p d

r t

− −= =  
  

∫ ∫q q θ θ θ q θ θ θ   (6.5) 

Addition to that of the initial cost Ci(q) yields then the total life-cycle cost C(q).  
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6.2.3 Repair cost threshold with specific occurrence rate  

Consideration of only the life-cycle cost as performance objective facilitates what 

is commonly referenced as “risk-neutral” design, which assumes that preference is 

assessed only through quantities that can be monetized. In reality, though, engineers 

and stakeholders have to take into account nontechnical factors such as social risk 

perceptions that inevitably lead to more conservative designs (risk aversion), since risk-

neutral design does not explicitly address the unlikely but potentially devastating losses 

that lie on the tail of the losses/consequence distribution (Cha and Ellingwood 2013; 

Haukaas 2008).  Motivated by this realization the incorporation of an additional 

performance objective corresponding to repair cost with specific probability of 

exceedance over the life-cycle of the structure was suggested in (Gidaris et al. 2014). 

Appropriate selection of this probability-level allows consideration of low-likelihood 

events within the design. This suggestion is adopted also here.  

The probability of the repair cost rC  exceeding a threshold Cthresh(q) over the 

considered lifetime based on the Poisson assumption for the occurrence of seismic 

events, is: 

 ( ) ( )[ | , ][ | , ] 1 e life r thresh vt v P C C E

r thresh lifeP C C t − ⋅ >> = − q qq q   (6.6) 

 ( )[ | , ] ( , ) ( )r thresh v C
Θ

P C C E I p d> = ∫q q q θ θ θ   (6.7) 

where the latter integral is in the generic form of equation (6.2) with risk consequence 

measure IC(q,θ) corresponding to the indicator function, which is one if 
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Cr(q,θ)>Cthresh(q) and zero if not. Equation (6.7) gives the probability of exceeding the 

acceleration threshold given that a seismic event has occurred, whereas Equation (6.6) 

transforms that event-probability to probability of exceeding the threshold over the 

lifetime of the structure.  

6.2.4 Simulation-based Risk Assessment 

The calculation of the seismic risk quantifications of interest requires calculation 

of multi-dimensional probabilistic integral of the form of Equation (6.2) for some 

appropriate definition of the risk consequence measure (this definition was discussed in 

the previous two sections). To support adoption of probability and numerical models 

with higher complexity as well as simultaneous calculation of these integrals, stochastic 

(i.e. Monte Carlo) simulation is adopted here for this purpose (Robert and Casella, 

2004). Using a finite number, N, of samples of θ drawn from proposal density ( )isp θ , an 

estimate for the risk integral of interest [expressed through generalized form of 

Equation (6.2)] and the coefficient of variation for that estimate (quantifying accuracy), 

δ, are given, respectively, by: 
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where θ
j
 denotes the sample used in the jth simulation. All samples { ; 1,..., }j j N=θ

correspond to samples from proposal density ( )isp θ . This proposal density may be used 

to improve the efficiency of this estimation [reduce the coefficient of variation], by 

focusing the computational effort on regions of the Θ space that contribute more to the 

integrand of the probabilistic integral of Equation (6.2) -this corresponds to the concept 

of Importance Sampling (IS). For problems with a large number of model parameters, 

choosing efficient importance sampling densities for all components of θ   is challenging 

(Taflanidis and Beck 2008) and can lead to convergence problems for the estimator in 

Equation (6.8); thus it is preferable to formulate importance sampling densities only for 

the important components of θ , i.e. the ones that have biggest influence on the seismic 

risk, and use (.) (.)isp p=  for the rest (Taflanidis and Beck 2008). For seismic applications 

the seismological parameters are generally expected to have the strongest impact on 

the calculated seismic risk, so selection of IS densities may focus only on them 

(Taflanidis and Beck 2009).  

Evaluating, now, the computational efficiency of this simulation-based estimation, 

the most demanding task is the calculation of the structural model response through 

time domain analysis. The adopted formulation allows, though, to seamlessly integrate 

recent advances in high performance computing (parallel/distributed computing) to 

perform the required N evaluations of the system performance independently, in 

parallel mode. This significantly reduces the computational barriers that have been 
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traditionally associated with approaches based on stochastic simulation (Taflanidis 

2011). All stochastic simulation evaluations within this dissertation were performed in 

the Persephone cluster at the University of Notre Dame.   

This simulation-based setting allows additionally for a highly efficient assessment 

of seismic risk for different design scenarios (Gidaris and Taflanidis 2015). These 

scenarios may be defined to correspond to different assumptions for the components of 

the model in Figure 6.1 that do not affect the structural response, for example for the 

seismic hazard uncertainty, or for the characteristics for the earthquake losses. As 

discussed in (Gidaris and Taflanidis 2015)  this is facilitated through the fact that the 

approach for estimating the structural response for different samples depends only on 

the proposal densities ( )isp θ  and not on the exact probability models ( )p θ . The 

efficient evaluation for ( )rH x  is established, ultimately, by using the same proposal 

densities for all design scenarios examined. This means that the computational 

demanding task (simulation of response) needs to be performed only once since it is 

common for all the design scenarios. Selection of ( )p θ  and of the characteristics of the 

loss estimation methodology facilitate afterwards an efficient estimation of seismic risk. 

For the Chilean region, due to the high variability in seismicity, this can be exploited to 

assess the efficiency of mass damper implementation under different assumptions for 

the probability models for the seismological parameters.  Further details on the 

approach are provided in (Gidaris and Taflanidis 2015).  
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6.3 Seismic Hazard Modeling  

Seismic hazard in the proposed framework (Figure 6.1) needs to be described in 

terms of acceleration time-histories. Though numerous methodologies have been 

proposed for providing such a description for probabilistic seismic risk assessment, the 

most popular one relies on adoption of intensity measures IMs  representing the 

dominant features of the excitation (such as peak ground acceleration or spectral 

acceleration for specific periods), and subsequent scaling/selection of ground motion 

records to different hazard levels [different IM  values] (Katsanos et al. 2010; Baker and 

Cornell 2005; Lin et al. 2013) resulting from a probabilistic seismic hazard analysis. The 

latter entails a deaggregation (Bazzurro and Cornell 1999; McGuire 1995) of the overall 

seismic hazard to representative events that then form the basis for the 

selection/scaling process. Though popular, this approach suffers from concerns 

regarding the validity for ground motion scaling (Grigoriu 2011; Grigoriu and Radu 2014) 

and from the fact that it provides biased seismic risk approximations related to high 

levels of inelastic structural response (i.e. associated with rare/high consequence 

events) (Jalayer and Beck 2008; Luco and Bazzurro 2007).   

 An alternative modeling methodology gaining increasing interest within the 

structural engineering community (Jensen and Kusanovic 2014; Gidaris and Taflanidis 

2015), and the one adopted in this dissertation, is the use of stochastic ground motion 

models (Rezaeian and Kiureghian 2010; Vetter et al. 2014; Boore 2003). These models 

are based on modulation of a stochastic sequence through functions that address 
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spectral and temporal characteristics of the ground motion. The parameters of these 

functions, gθ in Figure 6.1, representing characteristics such as the duration of 

excitation or arias intensity can be related to seismological parameters, mθ  in Figure 6.1, 

(such moment magnitude, M , rupture distance, rupr , and shear wave velocity for local 

soil profile, 30sV )  by appropriate predictive relationships. Description of the uncertainty 

(within the context of the seismic risk quantification discussed in Section 6.2.1) in the 

seismological parameters, through a probabilistic hazard analysis (Kramer 1996; Leyton 

et al. 2009; Ordaz et al. 2014), and, potentially, additionally in these predictive 

relationships  facilitates then the comprehensive description of the seismic hazard 

described through time-histories of the ground motion.  

The challenge for adopting this approach is that such stochastic ground motion 

models do not exist for the Chilean region. Similar challenges exist of course for 

adopting other approaches for ground motion modeling (for example, the popular 

scaling of ground motions based on IM values described earlier) since extensive 

probabilistic seismic hazard analysis studies (for example, providing deaggregation 

information for the seismic hazard) are not available. Even seismic design provisions for 

Chile have been relying on a deterministic rather than a probabilistic design earthquake 

definition (NIST 2012).  Even though interest in such probabilistic descriptions of the 

seismic hazard has increased recently (Leyton et al. 2009; Ordaz et al. 2014), partially in 

response to the increased recent high-intensity seismic activity (EERI Special Earthquake 
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Report 2010), and hazard maps do exist (defining PGA with 10% probability of 

exceedance over the next 50 years) as shown in Figure 6.2, complete information for 

ground motion modeling is not yet available.  

 

 

Figure 6.2 Seismic hazard map for Chile from USGS (peak ground acceleration with 

probability of being exceeded 10% in 50 years) [available at 

http://earthquake.usgs.gov/earthquakes/world/chile/gshap.php] 

This gap is bridged within this dissertation by combining recently published 

Ground Motion Prediction Equations (GMPEs), also known as attenuation relationships, 

for Chile (Boroschek and Contreras 2012) with a methodology developed recently 

(Vetter et al. 2014) to select the predictive relationships in ground motion models so 

that compatibility of the acceleration time-histories to GMPEs is established. These 
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GMPEs ultimately provide estimates of the peak ground and spectral acceleration as a 

function of seismicity and site characteristic and represent the established approach for 

developing seismic hazard maps (Petersen et al. 2008). Therefore compatibility of the 

seismic risk provided by ground motion models to such GMPEs is facilitating an accurate 

and compatible regional hazard description. The goal is then to tune a stochastic ground 

motion model to match these estimates for a specific structure (defined through the 

structural periods of interest) and a specific seismicity range (defined by selected values 

for M and rrup). This ultimately corresponds to an optimization problem for selection of 

the predictive relationships in the ground motion model, and a highly efficient 

framework was developed in (Vetter et al. 2014) to support this goal, relying on 

surrogate modelling concepts. Once the optimization framework for a specific stochastic 

ground motion model is established, something that requires an initial computational 

time for developing the underlying surrogate model that supports the optimization, it 

can easily facilitate tuning to any desired GMPE. Though this approach a ground motion 

model that is specifically optimized to match the hazard for a specific location (GMPE), 

structure (period of interest) and seismicity (range for moment magnitude and rupture 

distance) is established.  

Here this framework is exploited to tune the versatile stochastic ground motion 

model proposed in (Papadimitriou 1990) to the GMPE presented recently for Chile in 

(Boroschek and Contreras 2012). The model by Papadimitriou (1990) addresses both 

temporal and spectral non-stationarities. The former is established through a time-
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domain modulating envelope function of the exponential type [representing a common 

selection stochastic ground motion models (Rezaeian and Kiureghian 2010)] while the 

latter is achieved by filtering a white-noise process by a filter corresponding to multiple 

cascading SDOF oscillators with time-varying characteristics. A quick review of the 

model is offered in Appendix D, including the functional form of the predictive 

relationships adopted as well as the optimized values for the coefficients in these 

relationships for the hazard compatibility established for the case study examined later.  

The tuning of the model is established through the optimization approach in (Vetter et 

al. 2014) through the direct assistance of the first author of that paper.  

Indicative results from this hazard compatibility are presented in Figure 6.3 and 

Figure 6.4 for the case study that is examined in this Chapter. The intended match of the 

stochastic ground motion predictions to the desired GMPE is established for the peak 

ground acceleration (PGA) and the peak spectral acceleration Spa for 5% damped elastic 

SDOFs with period Tsd 2 s, chosen close the fundamental period of the structure of 

interest, and for M and rrup in ranges [5.5 9] and [30 250] km (note that shorter ranges 

are shown in the figure to better focus the comparative results) which are the ranges 

anticipated to contribute to the seismic risk in this example. 
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Figure 6.3  Illustration of hazard-compatible ground motion modeling for Chilean GMPEs; 

comparison of GMPE and model predictions for different rupM r−  values for peak ground 

acceleration (left) and peak spectral acceleration Spa for 5% damped elastic SDOFs with period 

Tsd 2 s (right) 

Beyond match to GMPEs, the compatibility of the resultant ground motions to 

regional excitations characteristics is also important. This compatibility was illustrated in 

Section 2.4 in Figure 2.5 where same trends were reported under regional for Chile 

ground motions (set 1 in that figure) and synthetic ground motions generated according 

to the established stochastic ground motion model (set 3 in that figure). Furthermore it 

is demonstrated in Figure 6.5 which shows the predictive relationships established 

through the stochastic ground motion model for the arias intensity  Ia and the significant 

duration D5-95 (representing key ground motion parameters influencing structural 

behavior and damper efficiency) as well as samples for these two parameters from 

regional motions from the database (Boroschek et al. 2015). The established 

relationships lay in between the samples from the real (recorded) motions, showing, 

again, a compatibility of the proposed ground motion modeling approach.  
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Figure 6.4  Illustration of hazard-compatible ground motion modeling for Chilean GMPEs; for 

different characteristic rupM r− values spectral plots for peak acceleration of 5% damped elastic 

SDOFs (comparison between GMPE and model shown) as well as sample ground motions 

created by the model 
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Figure 6.5  Arias intensity (left) and significant duration (right) as a function of rupM r−  for the 

established ground motion model (surface plots) as well as samples from regional (for Chile) 

recorded ground motions  

6.4 Design Optimization  

The suggested multi-objective design is expressed as: 

 
( ) ( ) ( ){ }
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such that [ | , ]

T*
Q i l thresh

r thresh life o

C C C C

P C C t p

∈= = +

> =
qq q q q q

q q
  (6.9) 

where C [first objective] is the life-cycle cost and Cthresh [second objective] is the repair 

cost threshold with probability of being exceeded po over the lifetime of the structure. 

This multi-objective formulation leads ultimately to a set of points (also known as 

dominant designs) that lie on the boundary of the feasible objective space and they 

form a manifold, which is called Pareto front. A point belongs to the Pareto front and it 

is called Pareto optimal point if there is no other point that improves one objective 

without detriment to the other. As discussed previously, the motivation behind the 
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multi-objective formulation of the problem is that the decision-maker (e.g. building 

owner) can choose among a range of TLD-FR configurations (Pareto optimal solutions) 

that describe different decision making attitudes towards risk (from risk neutral to risk 

averse designs).  

 Since both performance objectives involved in the multi-objective optimization 

are estimated through stochastic simulation, the existence of the prediction error within 

the optimization (resulting in a so-called stochastic optimization problem) is addresses 

by adopting an exterior sampling approach (Spall 2005), utilizing the same, sufficiently 

large, number of samples throughout all iterations in the optimization process, i.e. 

{ ; 1,..., }j j N=θ  for Equation (6.8) is chosen the same for each damper design 

configuration examined, therefore reducing the importance of the estimation error in 

the comparison of different design choices (creating a consistent error in these 

comparisons). 

Furthermore, for supporting an efficient optimization while additionally allow for 

a straightforward incorporation of different assumptions for the upfront damper cost, 

an approach relying on kriging surrogate modeling is adopted following the guidelines 

discussed first in (Gidaris and Taflanidis 2015). A large set of design configurations (1000 

in the case study discussed later) for the TLD-FR is first established to serve as support 

points for the kriging, utilizing a latin hypercube sampling in Q. The system response is 

then evaluated through time-history analysis for all of them. The design is facilitated 

through the following approach.  First the risk quantities Cl and Cthresh are estimated for 
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all the design configurations. Using this information a kriging metamodel is established 

to provide a highly efficient approximation to the system risk. The kriging 

implementation is identical to the one discussed in Section 5.3.1 and presented in 

Appendix C, the only difference being that the input in this case is the design vector q 

and the output is the different risk quantifications, Cl and Cthresh. The kriging metamodel 

allows a highly efficient estimation of these risk measures (thousands of evaluations 

within minutes) and is then used within the optimization in Equation (6.9), coupled with 

an appropriate assumption for the upfront damper cost (used to calculate the overall 

cost C). Note that the metamodel is independent of the upfront damper cost 

assumptions so needs to be built only once for all the cases considered with respect to 

the latter. The multi-objective problem of Equation (6.9) can be then solved through any 

appropriate means, for example though blind-search (Coello et al. 2007) or through 

genetic algorithm implementation (Deb et al. 2000). 

The proposed design approach ultimately facilitates an efficient optimization for 

(i) different assumptions for the upfront damper cost [the surrogate-modeling-based 

assessment of the performance objectives facilitates this ability] and (ii) different design 

scenarios related to the seismic hazard description [this is facilitated through the 

stochastic-simulation-based evaluation of the different risk measures]. Coupled with the 

capability to adopt complex numerical and probability models to quantify seismic risk 

[facilitated through the simulation-based modeling approach] the overall multi-criteria 

framework for life-cycle based design discussed here supports a comprehensive 
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analysis/design of TLD-FR addressing cost/benefit issues as well as different attitudes 

towards risk.  

6.5 Case Study  

As case study the design for a TLD-FR for a 21-story structure located in Santiago 

is considered. The building corresponds to an existing structure (Zemp et al. 2011) and 

has already a TMD installed in its last floor across its slender axis. First the numerical 

and probability models adopted for the seismic hazard and the structure are discussed, 

then the optimization framework is validated and finally the results are presented 

incorporating different assumptions for the upfront cost, ranging from typical values for 

TMDs to anticipated cost for TLDs-FR. 

6.5.1 Seismic Hazard 

For the seismic hazard, the model discussed in Section 6.3 is utilized. A stochastic 

ground motion model is established that matches the GMPE of (Boroschek and 

Contreras 2012) for the peak ground acceleration (PGA) and the peak spectral 

acceleration Spa for 5% damped elastic SDOFs with period Tsd 2 s, for values for M and 

rrup in ranges [5.5 9] and [30 250] km.  

Seismic events are assumed to occur following a Poisson distribution and so are 

independent of previous occurrences. The uncertainty in moment magnitude M is 

modeled by the Gutenberg-Richter relationship truncated on the interval [Mmin, Mmax] = 

[5.5, 9.0], (events smaller than Mmin are not expected to contribute to the seismic risk) 
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which leads to ( ) ( )M min M maxM b M b Mb M
Mp M b e e e− −−= −  and expected number of events per 

year  M M min M M maxa b M a b Mv e e− −= − . The regional seismicity factors bM and aM are chosen by 

averaging the values for the seismic zones close to Santiago based on the 

recommendations in (Leyton et al. 2009). This results to bM=0.8loge(10) and 

aM=5.65loge(10). Regarding the uncertainty in the event location, the closest distance to 

the fault rupture, rrup, for the earthquake events is assumed to follow a beta distribution 

in [30 250] km with median rmed=100 km and coefficient of variation 35%.   

The probability of exceedance of different thresholds over 50 years for the peak 

ground acceleration and the spectral acceleration of a 5% damped elastic SDOF with 

period 2 s (closest available prediction of GMPE to the fundamental period of the 

structure of interest) is shown in Figure 6.6. The results in this Figure 6.6 are compatible 

with the results reported in Figure 6.3 or in (Ordaz et al. 2014) for the seismic hazard in 

the greater Santiago area. 
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Figure 6.6 Probability of exceedance of different thresholds for peak ground 

acceleration PGA and spectral acceleration Spa of a 5% damped elastic SDOF with period  

Tsd 2 s.  

6.5.2 Structural and Loss Evaluation Models 

Details about the structure may be found in (Zemp et al. 2011). It corresponds to 

a 21-story structure with dimensions 76.2x15.6 m  with lamped mass per floor having 

nominal values 1124ton for ground level, 1805ton for 2nd-5th story, 1753ton for 6th-

9th, 1675ton for 10
th

 story, 1616ton for 11th-14th story, 1579ton for 15th-18th story, 

1527ton for 19th story, 1158ton for 20th story and 710ton for 21th story. The damper is 

applied along the long axis of the structure (as the current implementation in the 

building) and a planar structural model is established with a single degree of freedom 

per floor.  A linear structural model is assumed since, as explained earlier based on 
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observations from recent earthquakes most Chilean (EERI Special Earthquake Report, 

2010) buildings exhibit predominantly linear response even under larger magnitude 

excitations (minimal damages to structural components). The mass and stiffness 

matrices for the structure are obtained through the use of a commercial structural 

analysis software and then structurally condensed to a planar model considering the 

lateral displacement for each floor. This condensed stiffness matrix is then adjusted to 

take into account the effect of cracked concrete section and match the experimental 

fundamental period reported in (Zemp et al. 2011) which is 2.1 s. The damping matrix is 

modeled through Rayleigh assumption by assigning an equal damping ratio for the first 

and second mode with a nominal value equal to 3%. For this nominal model the first 

three modes (and participation factors in parenthesis) are 2.10s (77%), 0.54s (16%) and 

0.25s (5%).  

To examine the impact of structural uncertainties on the damper design two 

cases are examined for the structural model. The first case utilized no uncertainties in 

the structural model, simply directly adopts the nominal values discussed above. This is 

referenced herein as nominal structure and denoted by abbreviation NS. The second 

case additionally considers uncertainty in the structural model description, particularly 

in the damping and stiffness matrices. This is referenced herein as probabilistic structure 

and denoted by abbreviation PS. For the uncertainty in the damping characteristics each 

damping ratio is modeled as Gaussian random variable with coefficient of variation 10% 

and mean value the nominal one discussed above. For the uncertainty in the stiffness 
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matrix, rather than adopting complex descriptions (Soize 2000) a simplified 

characterization is adopted, understanding that the main dynamic property impacting 

the efficiency of mass dampers are the modal frequencies (since they are directly 

related to the tuning of the damper). Each modal frequency is treated as a Gaussian 

random variable with mean value the one resulting from the nominal structural model 

described above and coefficient of variation 10% . 

Moving now to the loss evaluation model, fragility and repair cost information is 

included in Table 6.1, where the fragility function is a conditional cumulative lognormal 

distribution with median βf and standard deviation σf, which leads to  

 
ln( / )

[ | ] fjj
j

f
fj

j
e

EDP
P d EDP

β
σ

 
= Φ  

  
 (6.10) 

 Note that damages to structural components are not included in this study since as 

discussed earlier are expected to have minimum contribution (behavior remains elastic 

even for stronger events). ne in this table corresponds to the number of elements 

assumed per story whereas for each of the three different damageable assemblies 

different damage states are considered (total repair cost per assembly is obtained by 

considering the contribution from all damage states). The fragility function parameters 

for the partitions and the suspended ceiling system are based on the recommendations 

in (FEMA-P-58 2012) whereas for the contents damageable subassembly the fragility 

curve used is similar to the one selected in (Taflanidis and Beck 2009).  



 

174 

 

The discount rate is taken equal to 1.5% and the lifetime tlife is assumed to be 50 

years. The repair cost threshold is taken to correspond to probability op =10% over tlife. 

The life-cycle cost and Cthresh for the uncontrolled structure (without the dampers) are, 

respectively, $2.11x10
6
 and $1.22x10

6
 for the probabilistic structure (PS) and $2.02x10

6
 

and $1.13x10
6
 for the nominal structure (NS).  

Table 6.1 Characteristic of the cost estimation. Values for fragility curves related to 

partitions, contents and acoustical ceiling 

State βf σf ne $/ ne 

Partitions 

Small 0.21% 0.60 350m
2
 22.3 

Moderate 0.71% 0.45 350m
2
 60.3 

Severe 1.20% 0.45 350m
2
 92.7 

Contents 

Damage 0.70g 0.30 150 1000 

Acoustical Ceiling 

Small 0.55g 0.40 1500m
2
 15.2 

Extensive 1.00g 0.40 1500m
2
 120.1 

Severe 1.50g 0.40 1500m
2
 237.7 
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6.5.3 Damper Cost 

The total life-cycle cost for the structure is estimated as the sum of the repair 

cost due to the earthquake losses over the life-cycle of the structure and the initial cost 

of the TLD-FR. For the initial cost of the damper a simplified assumption is established 

here; the cost is assumed to depend linearly to the damper mass Ci=bcmliq and three 

different cases are examined for this proportionality, bc=[1000 1750 2500] $/ton. The 

higher upfront cost case is assumed to correspond to a TMD, with cost estimate based 

on the TMD application in Taipei 101 (Gutierrez Soto and Adeli 2013). The other two, 

with lower installation cost, are representatives of a TLD-FR application. 

6.5.4 Details for Optimization and Validation of Pareto Front 

The analysis is performed for three different efficiency indexes. The optimization 

is then established over the remaining design variables (r, α and ξm). The ranges 

assumed for developing the kriging metamodel are [0.2 1.2]% for r (it is assumed that 

greater than 1.2% mass ratios are impractical to be achieved) [1 8]% for ξm and  [0.94 1] 

for α. The frequency ratio α is defined as the ratio between damper frequency and 

frequency corresponding to the fundamental mode of the nominal structural model (i.e. 

ignoring uncertainties in the model description). Due to the simplified assumption that 

the initial cost is related only to the total liquid mass (and not the exact tank geometry) 

incorporation of the efficiency index as a design variable was redundant since it is well-

understood that larger efficiency index would yield better results and therefore 
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correspond to the optimal design. N=10000 samples are used for the stochastic 

simulation and importance sampling densities qis are formulated only for M and rrup 

which are expected to be the uncertain model parameters influencing more seismic risk. 

The densities are chosen as truncated Gaussians in the range of each model parameter 

with mean and standard deviation of 7.3 and 1, respectively, for M and 70 and 70, 

respectively, for rrup. These selections result in high accuracy estimation of the different 

risk characterizations with coefficient below 3% for all cases examined. The surrogate 

model to guide the optimization is established utilizing 1000 support points, following 

Latin hypercube sampling in Q, whereas a blind-search approach is adopted for solving 

the multi-objective optimization problem.   

The accuracy of the developed surrogate model is preliminary evaluated by 

calculating different error statistics using the leave-one-out cross-validation approach 

(Meckesheimer et al. 2002). The accuracy established is ultimately high with coefficient 

of determination over 97% for most approximated response quantities and average 

error below 3%. This discussion though, refers to the overall accuracy of the metamodel. 

What is more important for the implementation examined here is the accuracy in 

estimating the different probabilistic performance objectives and performing the design 

optimization, which is examined next. This is performed with respect to the objective 

function space and is reported in Figure 6.7, which shows the predictions by the kriging 

metamodel and the high-fidelity model for design case corresponding to value of γ=0.7 

and upfront cost assumption of 1750 $/ton (identical trends hold foal l other cases) for 
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both the nominal and probabilistic structure. The comparison is performed for 11 

characteristic Pareto optimal solutions selected from the complete Pareto front. The 

close agreement of the curves in this figure validate the proposed kriging-supported 

design optimization approach. Ultimately, the curve that corresponds to the exact 

numerical model predictions (high-fidelity) is simply a slightly shifted one (when 

compared to the one corresponding to the kriging predictions) that corresponds still to a 

Pareto-front. This demonstrates that the overall approach can efficiently identify 

Pareto-optimal configurations. 

 

Figure 6.7. Comparison between the estimated performance through the kriging 

metamodel and the high-fidelity model for the Pareto optimal solutions for design case 

corresponding to value of γ=0.7 and upfront cost assumption of 1750 $/ton  
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6.5.5 Results and Discussion 

With a validated optimization framework, the discussion moves now to the 

results. The Pareto fronts are reported in Figure 6.8 (for probabilistic structure) and 

Figure 6.9 (for the nominal structure) which shows the Pareto fronts for the different γ 

(subplots for each figure) and bc values (curves within each plot). All potential 

combinations are shown for γ and bc though for practical applications γ=1 is related to 

the high upfront cost bc=2500 $/ton (TMD) whereas the lower γ values are associated 

with lower upfront cost bc=[1000 1750] $/ton (TLD-FR). In the Pareto front the mass 

ratio under optimal design is also reported in some instances (extremes of the front) 

since this is the main design variable distinguished along the front (frequency and 

damping ratio simply take proper tuning values for that r as will be shown later). For the 

same extreme cases of the front the decomposition of the total cost (ratio) to upfront 

and repair cost is also shown (in parenthesis). Note that the scales for the axis in both 

these figures are kept the same to facilitate easier comparison. This comparison across 

different efficiency indexes as well as the nominal or probabilistic structure is also 

depicted in Figure 6.10 which shows the Pareto front for value of  bc=1000 $/ton (similar 

trend holds for other upfront cost cases).  

The overall behavior is similar for the two cases with respect to the structural 

configuration (probabilistic and nominal structure) with the former resulting to larger 

associated life-cycle cost and life-cycle losses threshold. This demonstrates that for the 

probabilistic structure detuning effects for the damper, stemming from the variability in 
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the modal characteristics of the building, impact its efficiency. This clearly shown in the 

comparison in Figure 6.10, especially for larger values of the efficiency index γ, which is 

something anticipated. For such larger values of γ the mass damper has greater 

potential impact against suppressing structural vibrations, so any detuning has a more 

profound effect on its performance.   

The overall results demonstrate that the addition of mass dampers can provide a 

considerable reduction for both C and Cthresh (compare these values to the one reported 

above for the structure without the damper). As expected, larger values for the TLD-FR 

efficiency indexes yield better performance whereas reduction of the upfront cost for 

the damper also contributes to similar trends. In this case the optimal design 

corresponds to larger mass ratios (since upfront cost is reduced larger dampers can be 

adopted) which contributes to the better performance while also yielding a smaller 

distribution of the Pareto-front. The efficiency index seems to also have a similar effect 

on reducing the spread of the Pareto front.  

The stakeholder can ultimately make a choice then among the different 

candidate solutions along the Pareto front by prioritizing the different competing 

objectives. This ultimately boils down to selection of the damper mass; larger masses 

yield greater reduction of Cthresh but a larger overall life-cycle cost (due to increase of 

upfront cost). Based on the Pareto-optimal solution selection the tank geometry can be 

chosen based on the process discussed in Section 5.3. Note that, especially for larger 
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values of upfront cost bc, moving towards risk-averse designs (smaller values for Cthresh) 

leads ultimately to an increase in the total life cycle cost C.   

 

 

 

Figure 6.8 Pareto front for the total life-cycle cost C and repair cost threshold with 

probability of exceedance 10% in 50 years, Cthresh, for different efficiency indexes and 

different assumptions for upfront damper cost (blue is low damper cost, red is medium 

and black is high). Results correspond to probabilistic structure. Mass ratio under 

optimal design and decomposition of total cost to upfront cost and life-cycle repair cost 

is also shown in parenthesis. 
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Figure 6.9 Pareto front for the total life-cycle cost C and repair cost threshold with 

probability of exceedance 10% in 50 years, Cthresh, for different efficiency indexes and 

different assumptions for upfront damper cost (blue is low damper cost, red is medium 

and black is high). Results correspond to nominal structure. Mass ratio under optimal 

design and decomposition of total cost to upfront cost and life-cycle repair cost is also 

shown in parenthesis. 

 

γ = 0.2

r = 1.2%
(37%, 63%)

r = 1.2%

r = 1.2%

r = 0.2%

r = 0.3%

r = 0.2%

(6%, 94%)

(19%, 81%) (6%, 94%)

(29%, 71%)

(8%, 92%)

γ = 0.7

γ = 0.5 γ = 1.0

r = 1.2%
(21%, 79%)

r = 0.6%
(11%, 89%)

r = 1.2%
(31%, 69%)

r = 0.2%
(6%, 94%)

r = 1.2%
(40%, 60%)

r = 0.2%
(8%, 92%)

r = 1.2%
(22%, 78%)

r = 0.6%
(12%, 88%)

r = 1.2%
(32%, 68%)

r = 0.2%
(6%, 94%)

r = 1.2%
(41%, 59%)

r = 0.2%
(9%, 91%)

r = 1.2%

r = 0.7%
(13%, 87%)

r = 1.2%
(34%, 66%)

r = 0.4%
(6%, 94%)

r = 1.2%
(43%, 57%)

r = 0.2%
(9%, 91%)

C
 (
q

) 
[$

 1
0

6
]

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Cthresh(q) [$ 106] 

0.8 0.9 1.0 1.1 1.2 1.3

Cthresh(q) [$ 106] 

0.8 0.9 1.0 1.1 1.2 1.3

C
 (
q

) 
[$

 1
0

6
]

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Cthresh(q) [$ 106] 

0.8 0.9 1.0 1.1 1.2 1.3

Cthresh(q) [$ 106] 

0.8 0.9 1.0 1.1 1.2 1.3

bc= 1000 $/ton
bc= 1750 $/ton
bc= 2500 $/ton



 

182 

 

 

Figure 6.10. Pareto front for the total life-cycle cost C and repair cost threshold with 

probability of exceedance 10% in 50 years, Cthresh, for different efficiency indexes and 

and an upfront damper cost of 1000$/ton. Results for both the nominal structure and 

probabilistic structure are shown. 

These results can be also utilized to facilitate the intended comparison between 

TMDs and TLDs-FR. As discussed previously, this is established by comparing the 

solutions for γ=1 is corresponding to high upfront cost bc=2500 $/ton (TMD) against the 

solution for lower γ values associated with lower upfront cost bc=[1000 1750] $/ton 

(TLD-FR). It is evident in this case that the TLD-FR offers better life-cycle performance, 

meaning overall reduced cost or better protection (reduction of life-cycle losses 

threshold or of portion of total cost stemming from necessary repairs over the lifetime) 

for the same overall cost, as long as a reasonable efficiency index (not too small -0.2 in 

the case here) is established. Even when comparing moderate cost for TMD (1750 

$/ton) to lower cost for TLD-FR (1000 $/ton) the latter offers a compatible solution. This 
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discussion shows that TLDs-FR should be considered as an economically competitive 

option to TMDs for enhancement of seismic performance as long as proper design 

(avoidance of low efficiency indexes) can be accomplished. It also stresses the 

importance of the proposed framework for (i) establishing a comparison of different 

type of dampers based on life-cycle cost concepts and (ii) explicitly addressing the 

upfront cost of the dampers in the analysis.  

Other interesting comparisons can be established by looking the variation across 

the Pareto front of different characteristics. For the mass ratio r the results are shown in 

Figure 6.11 for PS (probabilistic structure) and Figure 6.12 for NS (nominal structure) 

considering variation with respect to C across the Pareto front and in Figure 6.13 for PS 

and Figure 6.14 for NS considering variation with respect to Cthresh across the Pareto 

front. It is evident, especially from Figure 6.13 and Figure 6.14, that the main design 

variable distinguishing the behavior across the Pareto front is the mass ratio; each mass 

ratio is uniquely associated with a performance level, especially when that performance 

level is not impacted by the upfront cost (different curves in Figure 6.13 and Figure 6.14 

lay on top of one another). This is expected as discussed also earlier since this is the 

characteristic that directly impacts both the upfront cost as well as the damper 

efficiency. Based on this trend results for the remaining design variables are reported as 

variation with respect to the mass ratio, not Cthresh or C. 
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Figure 6.11. Variation of mass ratio r corresponding to optimal solution against the total 

life-cycle cost C across the Pareto front for different efficiency indexes and different 

assumptions for upfront damper cost (blue is low damper cost, red is medium and black 

is high). Results correspond to probabilistic structure.  
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Figure 6.12. Variation of mass ratio r corresponding to optimal solution against the total 

life-cycle cost C across the Pareto front for different efficiency indexes and different 

assumptions for upfront damper cost (blue is low damper cost, red is medium and black 

is high). Results correspond to nominal structure 
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Figure 6.13. Variation of mass ratio r corresponding to optimal solution against repair 

cost threshold with probability of exceedance 10% in 50 years Cthresh across the Pareto 

front for different efficiency indexes and different assumptions for upfront damper cost 

(blue is low damper cost, red is medium and black is high). Results correspond to 

probabilistic structure. 
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Figure 6.14. Variation of mass ratio r corresponding to optimal solution against repair 

cost threshold with probability of exceedance 10% in 50 years Cthresh across the Pareto 

front for different efficiency indexes and different assumptions for upfront damper cost 

(blue is low damper cost, red is medium and black is high).  Results correspond to 

nominal structure. 
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and efficiency index, something that is well anticipated based on design trends for mass 

dampers (Chang 1999; Soong and Dargush 1997). The near-optimality stems from the 

fact that values for the frequency and damping ratio close to the optimal yield very 

similar efficiency, as also demonstrated in Figure 2.2 earlier, whereas these values do 

not impact the upfront cost directly (recall only the mass ratio does so). This leads to 

similar performance in the considered here objective space. Note also that for the PS 

greater dispersion is demonstrated for the frequency ratio. This should be attributed to 

the variability in the fundamental period of the structure, leading to a greater range of 

values for the damper frequency that yield comparable performance.  

The variation of the ratio of upfront to total cost (Ci/C) against Cthresh across the 

Pareto front is then shown Figure 6.19. Especially for the cases corresponding to larger 

values of the upfront cost (which, recall, represent the TMD case) the initial cost from 

installation of the dampers is a dominant portion of the total life-cycle cost. This 

percentage increases as risk-averse designs are prioritized (i.e. for smaller values of the   

Cthresh threshold), since these cases correspond to installation of larger dampers. Same 

pattern (larger percentage for the initial damper cost) also holds for higher values of the 

efficiency index; for dampers with the same mass and the same initial cost 

characteristics, larger efficiency indexes imply greater damper efficiency, leading to 

bigger reduction in earthquake losses and therefore to a more dominant contribution of 

the damper installation cost against the total life-cycle cost.  

 



 

189 

 

 

Figure 6.15. Variation of damping ratio ξm corresponding to optimal solution across the 

Pareto front against  the corresponding optimal mass ratio r for different efficiency 

indexes and different assumptions for upfront damper cost (blue is low damper cost, 

red is medium and black is high).  Results correspond to probabilistic structure. 
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Figure 6.16. Variation of damping ratio ξm corresponding to optimal solution across the 

Pareto front against  the corresponding optimal mass ratio r for different efficiency 

indexes and different assumptions for upfront damper cost (blue is low damper cost, 

red is medium and black is high).  Results correspond to nominal structure. 
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Figure 6.17. Variation of frequency ratio a corresponding to optimal solution 

across the Pareto front against the corresponding optimal mass ratio r for different 

efficiency indexes and different assumptions for upfront damper cost (blue is low 

damper cost, red is medium and black is high).  Results correspond to probabilistic 

structure. 
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Figure 6.18. Variation of frequency ratio a corresponding to optimal solution across the 

Pareto front against the corresponding optimal mass ratio r for different efficiency 

indexes and different assumptions for upfront damper cost (blue is low damper cost, 

red is medium and black is high).  Results correspond to nominal structure. 
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Figure 6.19. Variation of ratio of upfront to total cost against the corresponding optimal 

repair cost threshold with 10% of probability of exceedance in 50 years Cthresh  across the 

Pareto front of optimal solutions for different efficiency indexes and different 

assumptions for upfront damper cost (blue is low damper cost, red is medium and black 

is high). 
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mass ratio and efficiency index). Characteristic results are shown in Figure 6.20 which 

demonstrates this decomposition for four representative optimal design configurations 

[case correspond to with high upfront cost (2500 $/ton)]. The decomposition for the 

structure without the dampers (unretrofitted case) are also shown. The results 

demonstrate anticipated patterns; introduction and increase of the efficiency of the 

damper (increase of mass ratio or efficiency index) provides a greater benefit for drift-

sensitive components.   

 

 

Figure 6.20. Repair cost decomposition for some representative configurations 

corresponding to optimal solutions across the Pareto front. Results for structure without 

damper also shown (unretrofitted structure).  
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Figure 6.21. Impact of neglecting structural uncertainties in the design stage. 

Performance (total life-cycle cost C and repair cost threshold with probability of 

exceedance 10% in 50 years, Cthresh) for different efficiency indexes and different 

assumptions for upfront damper cost (blue is low damper cost, red is medium and black 

is high) for the probabilistic structure is shown. Pareto front for this case as well as 

performance for the optimal solution corresponding to the nominal structure are 

shown. 
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the performance degradation if structural uncertainties were neglected at the design 

stage (utilize design from NS) but really existed (evaluate performance for the PS and 

compare to the respective Pareto front)? The results show that the explicit 

consideration of uncertainties does improve the robustness of the performance (Pareto 

curves are indeed different) with the effect being greater (larger discrepancies between 

the curves) when the efficiency of the damper is greater (meaning larger values of the 

efficiency index or smaller values for the Cthresh which, recall, corresponds to larger mass 

ratios). This result stresses the importance of a design framework that can explicitly 

incorporate uncertainties related to the structural characteristics within the problem 

formulation. The simulation-based approach discussed here can seamlessly facilitate 

this goal since it poses no constraints on the probability and numerical models adopted. 

6.6 Summary 

In this Chapter the life-cycle based assessment/design of TLDs-FR (or more 

generally mass dampers) was discussed considering risk characterizations appropriate 

for the Chilean region. A multi-objective problem was formulated considering the total 

life-cycle cost and consequences (repair cost) under low-likelihood events and a 

simulation-based probabilistic framework was adopted for quantifying/assessing these 

criteria. Within this framework structural performance is described through time-history 

analysis, adopting a comprehensive, assembly-based vulnerability approach to quantify 

seismic losses in a detailed, component level. To characterize the seismic hazard a 
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stochastic ground motion models was calibrated to provide predictions that are 

compatible with ground motion prediction equations (attenuation relationships) that 

have been recently published for Chile. For performing the design optimization a 

surrogate modeling formulation was adopted. The overall approach offers some unique 

advantages 

• Simulation-based assessment allows for adoption of complex numerical 

and probability models, facilitating a comprehensive hazard 

characterization. The hazard-compatibility to the Chilean region was 

established by exploiting this opportunity as well as recent advances in 

stochastic ground motion modeling.  

• Approach also allows for explicitly considering all important sources of 

uncertainty in the model description. For mass dampers this means that 

uncertainties related to the dynamic characteristics of the primary 

structure can be easily considered 

•  The surrogate modeling approach allows for an efficient optimization for 

different assumptions for the upfront damper cost.  

Exploiting these features the life-cycle based assessment/design of mass 

dampers for a 21-story structure was examined in the illustrative example. The 

multi-objective formulation provided in the context of this example a range of 

Pareto optimal solutions, allowing the building stakeholder to make the final choice 

prioritizing between the two competing objectives; reduction of the total cost or 
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improved protection against low likelihood but high potential impact seismic 

events. Additionally by considering different upfront damper cost, a comparison 

between TMDs and TLDs-FR was established. Even though TMDs offer enhanced 

performance for the same mass ratio, when considering the higher upfront cost for 

them it was demonstrated that TLDs-FR ultimately outperforms them (at least in the 

context of this example); for the same life-cycle cost their application corresponds 

to better protection. Therefore TLDs-FR should be considered as an economically 

competitive option to TMDs for enhancement of seismic performance as long as 

proper design (avoidance of low efficiency indexes for them) can be accomplished. 

In addition, explicitly considering uncertainties related to structural dynamic 

characteristics was shown to provide enhanced robustness in the damper 

performance.  
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CONCLUSIONS AND FUTURE WORK 

7.1 Summary of Completed Work 

This research introduces a new type of mass damper, corresponding to a 

variation of the traditional TLD but having a relatively simple, easy-to-model, linear 

behavior. The basis of the new configuration is the introduction of a floating roof that 

imposes a kinematic constraint on the surface of the liquid and additionally allows the 

placement of devices to adjust the level of damping in the liquid vibration (to establish 

the desired optimal damping values). The research also examines the potential of this 

device in effectively controlling earthquake-induced vibration of structures.  

The specific objectives of the research, as stated in Chapter 1, are: 

1) Develop a simplified, computationally efficient framework for describing 

the dynamic behavior of arbitrary geometry liquid storage tanks under 

base excitation. 

2) Extend the previous framework to describe the dynamic behavior of 

TLDs-FR under base excitations as well as the coupling with the structure 

that supports them.  
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3) Validate the numerical models through scaled experiments and evaluate 

the accuracy of the proposed modeling framework to predict the 

behavior of TLDs-FR under seismic excitation. 

4) Propose a parametric formulation to describe the TLD-FR dynamics only 

through its fundamental vibratory characteristics (participating mass, 

frequency and damping of equivalent mass damper) in order to establish 

a direct comparison with other mass dampers like TMDs, TLCDs and 

LCVAs. 

5) Propose a methodology to establish a mapping between tank geometries 

and the resultant vibratory characteristics of the TLD-FR and through this 

approach establish a practical design methodology for selecting the tank 

characteristics of TLDs-FR. 

6) Validate the potential of mass dampers for the Chilean region and 

establish a multi-objective life-cycle analysis/design process for the TLD-

FR considering a risk-description that is relevant for this region. The latter 

refers to both an appropriate characterization of seismic hazard as well 

as the adoption of risk-criteria that beyond the total life-cycle cost 

incorporate risk-averse criteria for describing life-cycle performance. 

 

 Chapter 2 offered a quick review of the equations of motion of common type of 

mass dampers (TMDs, and liquid column mass dampers, TLCDs and LCVAs) and briefly 
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discussed the behavior/design characteristics for them. It also presented the common 

tank geometries used in this dissertation for TLDs (or TLDs-FR). Then each of the 

subsequent Chapters addressed one of more of the aforementioned objectives. Chapter 

3 addressed Objective 1, Chapter 4 Objectives 2 and 3, Chapter 5 Objectives 4 and 5, 

and finally Chapter 6 Objective 6. 

7.1.1 Development of an Efficient Computational Procedure to Describe the Dynamic 

Behavior of Liquid Storage Tanks (Objective 1) 

A relatively simple and efficient computational approach, based on a potential-

variables-formulated FEM, was developed in Chapter 3 to model the dynamic behavior 

of liquid storage tanks subjected to base excitations; the methodology was named as 

Simplified Sloshing Model (SSM). The numerical procedure expresses the linear sloshing 

problem as a second order lineal system of equations, where the independent variables 

are the vertical elevations of the free surface and the excitation is directly related to the 

base acceleration. In this formulation the fluid is assumed ideal, and rigid. These 

assumptions were exploited to establish a numerical procedure significantly simpler to 

implement than other comprehensive procedures found in the literature. The SSM was 

then validated against experimental, analytical and high-fidelity numerical results 

available in the literature in terms of the predictions for the sloshing period, harmonic 

response and dynamic response under arbitrary base excitation (seismic response) for 

rectangular and non-rectangular tanks. Additionally, the ability of the proposed 



 

202 

 

numerical procedure to predict the response of traditional TLDs placed within a 

multistory structure was also validated through a direct comparison to an ANSYS 

implementation. 

Although the overall methodology is somewhat standard, the numerical 

procedure offers significant advantages and physical insight as: (1) the equations are 

expressed in terms of physical variables (free surface elevation and base acceleration); 

(2) the system of equations is analogous to that of a mass-spring system; (3) it is 

applicable to tanks having any geometry; (4) the formulation is suitable for dynamic and 

frequency analysis; (5) if the tank rests on a supporting structure (i.e., an elevated tank 

or a TLD), the coupling between the tank and the supporting structure is 

straightforward; (6) it is relatively easy to implement and to understand; and (7) it is 

more advanced than the models suggested by current seismic design codes for liquid 

storage tanks. 

7.1.2 Numerical Model for TLD-FR, Experimental Validation and Examination of 

Fundamental Vibratory Characteristics (Objectives 2 and 3) 

In Chapter 3, the TLD-FR was introduced; this pertained to both the development 

of a numerical model for predicting its behavior as well as an extensive experimental 

validation through shake table experiments. For the numerical model, the floating roof 

and the liquid were modeled separately; a typical FEM approach was used to model the 

floating roof as a flexible beam while the SSM developed in Chapter 3 was used to 
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model the liquid. The two models were then combined through the pressure in the 

interface of the liquid and the floating-roof, generating the numerical model proposed 

for TLDs-FR, termed as Simplified Sloshing Model with Floating Roof (SSM-FR). The 

experimental investigation, established considering a variety of dynamic excitations and 

rectangular tank geometries for the TLD/TLD-FR, validated the SSM-FR and additionally 

offered some important insights. Contrary to the behavior of TLDs, the response of the 

TLD-FR is practically linear and does not exhibit a significant amplitude dependency. 

Also, the TLD-FR behaves essentially as a single-degree-of-freedom system, which is a 

consequence of the floating roof preventing wave breaking and suppressing higher 

modes of vibrations. Finally the TLD-FR possesses an important level of inherent 

damping, possibly related to friction and/or drag forces in the gap between the walls 

and the roof. This is an important consideration for design purposes since it means that 

external dampers should be selected to provide only a portion of the total optimal 

damping for the TLD-FR (the remaining portion contributed by the inherent damping).   

Ultimately the results in this Chapter show that TLD-FR should be considered an 

attractive protection device since: a) has a reliable linear behavior, b) it can be 

equivalently modeled as a single-DOF (easy to model and understand mathematical 

description), c) supplemental damping devices can be easily added to the roof, d) 

maintains all advantages of traditional TLDs. 



 

204 

 

7.1.3 Parametric Formulation of TLD-FR Vibration and Design Procedure (Objective 4 

and 5) 

In Chapter 5 the fact that the TLD-FR was identified to operate linearly and in a 

predominant mode was exploited (assumption that only fundamental sloshing mode is 

important) to establish a parametric representation for its behavior. Through modal 

truncation and proper normalization of the equation of motion for the TLD-FR and of 

the force transmitted to its base (facilitating the coupling with the supporting structure), 

its behavior was described through only four parameters: the mass, frequency and 

damping ratio and the efficiency index. The first three are parameters used to describe 

all types of mass dampers whereas the latter is related to the portion of the total liquid 

mass that participates in the sloshing in the fundamental mode, and is similar to a term 

(with the same name) used to describe the behavior of liquid column mass dampers. For 

the latter dampers this index is related to the portion of the total liquid mass 

participating in the vibration in the horizontal direction. Through this parameterization 

equivalence of TLDs-FR to liquid column mass dampers was established, meaning that 

all results for liquid column mass dampers available in the literature are directly 

extendable to the behavior of TLD-FR.  Higher values for the efficiency index provide 

always better performance under optimal design (and for same mass ratio).Additionally, 

it was shown through parametric investigation for different tank geometries that higher 

values of the efficiency index are easy to obtain for the TLD-FR, something that provides 

a distinct advantage over liquid column mass dampers. Through the same investigation 
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it was identified that the efficiency index depends only on the transversal shape of the 

tank, while the frequency can be adjusted by scaling this shape to a specific size (length 

of tank selection). For complex tank geometries, it is possible to find different shapes 

that lead to the same efficiency index, creating a mapping that does not correspond to a 

one-to-one relationship. The total mass of the damper can be adjusted by properly 

choosing the width of the tank. Multiple tanks can be used if constraints exist for this 

width, such as architectural constraints or desire to use the TLD-FR to control the 

motion in both directions (meaning that that dimensions of the tank needs to be also 

optimally tuned/selected).  

The optimization of the TLD-FR should be performed using the parametric 

formulation, which is desirable since the SSM-FR based on FEM is avoided saving 

significant computational time. Of course the parametric formulation needs to be 

mapped in the end to a specific tank geometry and a design procedure was proposed for 

this task. The targeted mass ratio (or more generally mass) can be established through 

proper selection of the tank width whereas the optimal damping ratio through proper 

dimensioning of the external dampers. In the latter case a conservative estimate of the 

inherent damping can be used to avoid damping values lower than the optimum one 

(feature that leads to significant deterioration of performance).The efficiency index and 

optimal frequency can be then chosen based on the cross-sectional tank geometry 

through a blind-search approach, so that all possible solutions can be identified. These 

solutions correspond, though, to different displacements for the liquid, so 
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considerations for the maximum allowable displacement to avoid collisions of the 

floating roof to the walls or bottom of the tank can provide an additional preference 

between these solutions. To support the blind-search a surrogate modeling approach 

was adopted; a highly efficient kriging metamodel was first developed to approximate 

the relationship between tank geometry and vibratory characteristics and this 

metamodel was then utilized for all evaluations required within the blind-search.  

This procedure was demonstrated for the design of a TLD-FR considering 

stationary earthquake excitation. It was shown in this example that the TLD-FR can offer 

a significant level of vibration suppression while the established design approach offers 

a range of potential solutions all with same performance with respect to the primary 

structure but with different associated floating roof displacements, allowing the 

designer to make the final choice bases on considerations for the latter.  

7.1.4 Life-cycle Analysis of mass dampers for Chilean buildings (Objective 6) 

In Chapter 6 a proper life-cycle analysis was established to investigate the 

benefits from the addition of TLDs. It is well known that TLDs offer lower installation and 

maintenance cost than TMDs, so proper comparison of such devices needs to consider 

the life-cycle performance over their entire lifetime, incorporating the different level of 

vibration suppression (and thus benefits from reduction of seismic) offered by each. A 

simulation-based, probabilistic framework was established to estimate and optimize the 

life cycle cost of Chilean buildings with TLDs-FR. Within this framework structural 
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performance was described through time-history analysis, adopting a comprehensive, 

assembly-based vulnerability approach to quantify seismic losses in a detailed, 

component level. To characterize the seismic hazard a stochastic ground motion models 

was calibrated to provide predictions that are compatible with ground motion 

prediction equations (attenuation relationships) that have been recently published for 

Chile. A multi-objective problem was formulated considering two different criteria: the 

first one, representing the direct benefits from the damper implementation, was the 

life-cycle cost of the system, whereas the second criterion, consequences from low 

likelihood events, was the repair cost with a specific probability of exceedance over the 

lifetime of the structure. Stochastic simulation was utilized to calculate risk whereas for 

performing the design optimization a surrogate modeling formulation was adopted. 

The overall approach allows for adoption of complex numerical and probability 

models, while it facilitates an efficient design under different scenarios for the seismic 

hazard (different seismicity assumptions) or upfront damper cost characterization. 

Exploiting these features the life-cycle based assessment/design of mass dampers for a 

21-story structure was examined as an illustrative example. It was demonstrated 

through this example that the multi-objective formulation facilitates enhanced decision 

support as it offers a range of Pareto optimal solutions, allowing the building 

stakeholder to make the final choice prioritizing between the two competing objectives. 

Additionally by considering different upfront damper cost, a comparison between TMDs 

and TLDs-FR was established. It was shown that even though TMDs offer enhanced 
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performance for the same mass ratio, when considering the higher upfront cost for 

them TLDs-FR ultimately outperforms them; for the same life-cycle cost their application 

corresponds to better protection (reduction of repairs for low-likelihood but high impact 

events or of portion of total cost stemming from necessary repairs over the building 

lifetime). In addition it was demonstrated that explicitly considering uncertainties 

related to structural dynamic characteristics provides enhanced robustness in the 

damper performance. 

7.2 Future work 

This dissertation established and validated numerical tools for analyzing the 

performance of TLDs-FR, established efficient design processes for them and examined 

their life-cycle seismic performance. It showcased their advantages over (i) TLDs as they 

have practically linear behavior (no weaving breaking or amplitude dependence), and (ii) 

over liquid column dampers as they can facilitate higher efficiency index values and 

proved that they are an economically competitive option to TMDs for enhancement of 

seismic performance as long as proper design (avoidance of low efficiency indexes for 

them) can be accomplished.  

Potential direction of future research, for promoting the adoption of TLDs-FR, 

are 

• Establish a better understanding of the inherent damping TLDs-FR are 

exhibiting through appropriate experimental investigations. Since proper 
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design of TLDs-FR requires establishment of an optimal damping, further 

insights on the inherent damping for TLDs-FR is essential for 

accomplishing this optimal damping through use of external devices.  

• Establish an experimental validation of TLDs-FR for complex cross-

sectional geometries. The validation established in this dissertation 

focused only on rectangular tanks, so additional experiments are 

required to validate the numerical models and findings for non-

rectangular tanks.  

• Investigate the bi-directional control capabilities of TLD-FRs.  
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APPENDIX A:  EIGENVALUE PROBLEM ASSOCIATED WITH SSM 

In Chapter 3, the equation of motion of a TLD is expressed by Equation (3.18) 

which leads to an eigenvalue problem that involves the square matrices Ms and Ks. 

Recall that 
1

ss sr rr rs
−= −J D D D D , G is symmetric and given by Equation (3.12),  

1
s

−=M J G  and s g=K I . Matrix Ks is symmetric though Ms is not, therefore the 

product 1
s s
−M K  is not guaranteed to be symmetric which means that solution of the 

eigenvalue problem is not immediately guaranteed to be real. However, the product 

1
s s
−M K  can be rewritten as 1

s
−G J K , where both G  as well as the product sJ K are 

symmetric. It is then straightforward to show that the eigenvalues (and eigenvectors) of 

the product of two symmetric matrices are real. Therefore despite 1
s s
−M K  leading to an 

asymmetric matrix, the associated eigenvalue problem is guaranteed to lead to real 

solutions for the eigenvalues and associated eigenvectors. 
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APPENDIX B:  ADDITIONAL EXPERIMENTAL RESULTS 

Additional results related to the experimental tests discussed in Chapter 4 are 

included here. First the free responses due to an impulsive excitation are shown in 

Figure B.1, Figure B.2 and Figure B.3. These results are used to identify experimentally 

natural periods and damping factors described in Table 4.2 and Table 4.3, respectively. 

 

 

Figure B.1 Free response of the floating roof for configurations identified as Tank A and 

Tank B obtained after imposing a pulse-like excitation. 
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Figure B.2 Free response of the floating roof for configurations identified as Tank C and 

Tank D obtained after imposing a pulse-like excitation. 

 

Figure B.3 Free response of the floating roof for configurations identified as Tank E and 

Tank F obtained after imposing a pulse-like excitation. 

 

 

 

−40

−20

0

20

40

F
lo

at
in

g
 R

o
o
f 

A
m

p
li

tu
d
e 

[d
eg

re
s]

−40

−20

0

20

40

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0 1 2 3 4 5 6 7 8 9 10

Time [s]

Tank C

Tank D

1.16s 1.16s 1.17s

ζωte−

1.16s 1.17s
ζωte−

 

 

 

−40

−20

0

20

40

F
lo

at
in

g
 R

o
o
f 

A
m

p
li

tu
d
e 

[d
eg

re
s]

−40

−20

0

20

40

0 1 2 3 4 5 6 7 8 9 10

Time [s]

0 1 2 3 4 5 6 7 8 9 10

Time [s]

Tank E

Tank F

1.08s 1.09s 1.08s
ζωte−

1.08s 1.10s 1.08s
ζωte−



 

213 

 

Next, Figure B.4, Figure B.5, Figure B.6 and Figure B.7 present, similar to Figure 

4.9 and Figure 4.10, the seismic responses of the TLDs-FR identified as Tank C, D, E and 

F. Good agreements are again observed between numerical and experimental results. 

 

 

Figure B.4 Floating roof amplitude for tanks C and D under seismic excitation. 

Comparison between numerical and experimental results shown. 
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Figure B.5 Transmitted force for tanks C and D under seismic excitation. Comparison 

between numerical and experimental results shown. 

 

Figure B.6 Floating roof amplitude for tanks E and F under seismic excitation. 

Comparison between numerical and experimental results shown. 
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Figure B.7 Transmitted force for tanks E and F under seismic excitation. Comparison 

between numerical and experimental results shown. 
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APPENDIX C:  KRIGING METAMODELING 

Kriging provides a simplified relationship between the input and output of a 

process (for example a computational expensive simulation model) utilizing existing 

information (database) for them. Let xn∈x ℝ  and ( ) zn∈z x ℝ denote the input and 

output, respectively, following the notation for the implementation of kriging in Chapter 

5 within this dissertation, and assume that a database (training set) exist of nsup number 

of x-z(x) pairs (also known as support points), sup{ ( ) : 1,..., }j j j n− =x z x . Derivation of 

the database if formally known as DoE (Design of Experiments) and common approach is 

to use a space filling algorithm for it (such as Latin Hypercube Sampling) within the 

range X of possible values for x. The fundamental building blocks of Kriging are the np 

dimensional basis vector, f(x), and the correlation function R(xj,xk) with typical 

selections corresponding, respectively, to a full quadratic basis and a generalized 

exponential correlation, leading to 

 
1

2 2
1 1 1 2

1 11

( ) [1        ];    ( 1)( 2) / 2

( , ) exp[ | | ];     [   ]

x x

x nx

x

n n p x x

n sj k j k
i i i ni

x x x x x x n n n

R s s s+
+=

= = + +

= − − =∏
f x

x x x x s

⋯ ⋯

⋯
 (C.1) 

Then for the set of supn observations (training set) with input matrix 

sup1[   ]n T=X x x⋯  and corresponding output sup1[ ( )  ( )]n T=Z z x z x⋯ , we define the basis 
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matrix sup1)[ (  ( )]n TF f f= …x x and the correlation matrix R  with the jk-element defined 

as R(xj,xk), j,k=1, …, nsup. Also for every new input x, we define the correlation vector 

sup1( ) [ ( ,  ( ,) )]n TR R= …r x x x x x  between the input and each of the elements of X. Then 

the kriging approximation is given by (Lophaven et al. 2002): 

 

* *

* 1 1 1

* 1 *

( ) ( ) ( )

( )

( )

T T

T T− − −

−

= +

=

= −

z x f x α r x β

α F R F F R Z

β R Z Fα

 (C.2) 

Through the proper tuning of the parameters, s , of the correlation function, 

kriging can efficiently approximate very complex functions. More details on this 

optimization may be found in (Lophaven et al. 2002). The accuracy of the metamodel 

can be evaluated considering a leave-one out cross validation approach (Meckesheimer 

et al. 2002). 
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APPENDIX D:  REVIEW OF STOCHASTIC GROUND MOTION MODEL USED IN THIS 

STUDY 

A quick overview of the stochastic ground motion model utilized in Chapter 6 is 

presented here. The presentation follows directly the one in (Vetter et al. 2014), with 

the modification of adopting the recommendations of Papadimitriou (1990) for the 

variation of the frequency characteristics in time (establishing the desired spectral non-

stationatiry). The discretized time history of the ground motion, ( )ga tɺɺ , is expressed as 

 
1 2

1
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where Ww=[ww(iΔt): i= 1,2,…, NT] is a white noise sequence, Δt=0.005 s is the chosen 

discretization interval, e(t,θg) is the time-modulating function, and h[t-τ,θg(τ)] is an 

impulse response function corresponding to the pseudo-acceleration response of a 

single-degree-of-freedom (SDOF) linear oscillator with time varying frequency ωf(τ) and 

damping ratio ζf(τ), in which τ denotes the time of the pulse 
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For the time varying characteristics an exponential decaying function for ( )fω τ  

and a linearly varying function for the bandwidth ) ( )( ( )f f fτ ζ τ ωα τ= , established based 

on comparison to recorded ground motions, are adopted, leading to parameterization 

 

max/

( ) ( )

( ) ) / ( ) wh( ( (r ) ) /e e f f

τ t

s r
f r p r

p r

f f p p r p p rrα
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 −= + −  − 

= =

 (D.3) 

with pω  (primary wave frequency), sω  (secondary wave frequency), rω  (surface wave 

frequency), pζ  (primary wave damping), and rζ  (surface wave damping) ultimately 

corresponding to the primary model parameters for the filter, maxt  corresponding to the 

time at which maximum intensity of the ground motion is achieved and rt  to a 

sufficiently large time, chosen here to be proportional to the time that 95% of the Arias 

intensity is reached, denoted 95t , given by: 

 95r durt tα=  (D.4) 

The time envelope ( , )ge t θ is parameterized by by 
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−
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where Γ(.) is the gamma function, Ia is the Arias intensity expressed in terms of g, and 

{α2, α3} are additional parameters controlling the shape and total duration of the 

envelope that can be related to the strong motion duration, D5-95 (defined as the 

duration for the Arias intensity to increase from 5% to 95% of its final value), and the 
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peak of the envelope function, λp, are used. The latter is defined as the ratio of time 

corresponding to the peak of the envelope to the time corresponding to 95% of its peak 

value. The pair {α2, α3} can be easily determined based on the values of {D5-95, λp} 

through the following approach: for the chosen time-modulating function, the variance 

function 2
2 3( , , , )ae t I α α  (related to Arias intensity) is proportional to a gamma 

probability function having shape and scale parameters, 22 1α − and 31/ (2 )α

respectively. If tp represents the p-percentile variate of the gamma cumulative 

distribution function (this means that tp is given in terms of the inverse of the gamma 

cumulative distribution function at probability value p %) then it follows that tp is 

uniquely given in terms of the parameters 2α  and 3α , and probability %p . Therefore, 

the strong ground motion duration is simply 5 95 95 5D t t− = − . The value of pλ  is further 

defined as the ratio of time corresponding to the peak of the envelope to the time 

corresponding to 95% of its peak value.  

Ultimately, the ground motion model has as parameters 

5 95{ , , , , , , , },g a p dur p s r p rI D λ α ω ω ω ζ ζ−=θ  and the functional form for their predictive 

relationships are chosen based on the recommendations in (Travasarou et al. 2003; 

Bommer et al. 2009; Rathje et al. 2004) with an additional modification for aI  so that it 

matches better to the functional form of the targeted GMPE (Boroschek and Contreras 

2012). This leads to the following expressions for the predictive relationships  
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(D.6) 

with the coefficients ,i lc  i=1,…,9, l=1,…,8 formulating the coefficient vector c , 

representing ultimately the vector optimized to establish the desired hazard 

compatibility. 

The optimized coefficients for a match to the GMPE presented recently in 

(Boroschek and Contreras 2012) for seismicity ranges for M and rrup in [5.5 9] and [30 

250] km, respectively, and for responses corresponding to peak ground acceleration 

PGA and peak spectral acceleration Spa for 5% damped elastic SDOFs with periods 1.6 s 

or 2 s, are given in Table D.1. 
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Table D.1 Optimized coefficients for the predictive relationships of the stochastic ground 

motion model parameters to achieve GMPE compatibility 

1,1c  -17.6737 3,1c  -1.122 7,1c  2.3025 

1,2c  4.2932 3,2c  -0.043 7,2c  -0.3227 

1,3c  -0.0895 3,3c  -0.0464 7,3c  -0.0345 

1,4c  0.0068 4,1c  -0.2706 8,1c  -3.6364 

1,5c  -0.1565 4,2c  0.0071 8,2c  0.211 

1,6c  0.0001 4,3c  0.027 8,3c  -0.0195 

1,7c  -2.7709 5,1c  3.7109 9,1c  -1.8895 

1,8c  0.427 5,2c  -0.0079 9,2c  0.0904 

2,1c  0.7694 5,3c  -0.0119 9,3c  -0.0175 

2,2c  0.5626 6,1c  3.1995   

2,3c  -0.3978 6,2c  -0.0339   

2,4c  5.0729 6,3c  -0.0336   
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