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INTRODUCTION

Since the introduction of the first metapopulation
models several decades ago (Levins 1969), a large
number of theoretical models, using a wide range of
ap proaches, have illustrated the consequences that
spatial structure and dispersal can have on the dynam-
ics and persistence of populations and on their interac-
tions with other species (see Taylor 1990, Hanski &
Gilpin 1991, Hanski & Simberloff 1997, Sale et al. 2006,

Gaines et al. 2007 and references therein). But despite
its importance, the effect on model outcomes of
assumptions underlying the way organisms disperse
across space is not fully understood (Speirs & Gurney
2001, Chesson & Lee 2005, Anderson et al. 2008). Be -
cause dispersal kernels, which define the probability
distribution of recruitment as a function of release and
settlement location (e.g. Chesson & Lee 2005), are usu-
ally poorly resolved empirically, the majority of theo-
retical models have explicitly or implicitly used either

© Inter-Research 2011 · www.int-res.com*Email: cm.aiken@yahoo.com 

Environmental fluctuations and asymmetrical
 dispersal: generalized stability theory for
studying metapopulation persistence and

marine protected areas

Christopher M. Aiken*, Sergio A. Navarrete

Estación Costera de Investigaciones Marinas, Center for Advanced Studies in Ecology and Biodiversity, 
and Laboratorio Internacional de Cambio Global (LINC, CSIC-PUC), Pontificia Universidad Católica de Chile, 

Casilla 114-D, Santiago, Chile

ABSTRACT: Dispersal of individuals among subpopulations is a key process underlying metapopu-
lation dynamics. Many metapopulation models, including those of coastal benthic organisms under
marine reserve scenarios, have assumed a particular and time-independent dispersal pattern. The
behavior of such models, however, may be sensitive to more realistic representations of oceanic dis-
persal. We examine the importance of environmental variability and dispersal characters for
metapopulation persistence using a space-limited metapopulation model, in which the dispersal
phase is represented by a connectivity matrix and environmental fluctuations by stochastic perturba-
tions of adult abundances. The model is suited to marine organisms, but the same principles apply to
other systems. When dispersal is asymmetrical, as expected in the presence of a dominant current,
environmental variability can allow the metapopulation to persist, even when the per capita larval
production rate is too low to otherwise sustain the population. This suggests that metapopulations
inhabiting finite ranges in an advective environment may be more susceptible to variations related to
climate change. Generalized stability theory is a powerful tool for identifying the local populations
that have greatest impact on the metapopulation, and hence the optimal sites for protection from
exploitation. We show that the inclusion of realistic environmental variability and complex dispersal
patterns in models of marine reserve networks can bring unsuspected and sometimes largely positive
effects for conservation and management of benthic species. Thus, marine reserve monitoring of
abundance and recruitment in systems with longshore currents should include the region of  long-
distance dispersal of the species.

KEY WORDS:  Marine reserves · Marine protected area · Larval dispersal · Management · 
Population dynamics · Spatially explicit models · Generalized stability · Reactivity

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 428: 77–88, 2011

uniform, Gaussian, or leptokurtic shapes for dispersal.
While these studies most commonly consider situations
of strong self-recruitment, or even symmetrical disper-
sal, in many real systems individuals are found in an
advective environment that generates asymmetrical
dispersal in which self-recruitment may be very weak
(Speirs & Gurney 2001, Anderson et al. 2008). Such is
the case of marine coastal organisms dispersing in a
dynamic ocean, where dispersal across the metapopu-
lation can be highly asymmetrical (Largier 2003, Byers
& Pringle 2006, Kaplan 2006, Aiken et al. 2007). In
strongly advective environments, the persistence of a
population can be strongly dependent upon details of
the kernel shape and of the level of environmental
variability (Speirs & Gurney 2001, Pachepsky et al.
2005, Byers & Pringle 2006, Anderson et al. 2008,
Lutscher et al. 2010). In the following, we demonstrate
that environmental variability can have important con-
sequences for population persistence in a geographi-
cally finite habitat with net advection.

The majority of marine organisms, including fish and
invertebrates, possess a planktonic phase that can be
transported in the ocean over periods from hours to
months while they develop into competent larvae that
can then settle in the adult habitat. Since the adult
stages of many of these species are sedentary, the
pelagic dispersal phase allows the species to colonize
and invade new habitat away from the parental popu-
lation, and represents the main vehicle for genetic
interchange among existing local populations (Gaines
& Bertness 1992, Palumbi 1994, Largier 2003, Siegel et
al. 2008). In most cases, the horizontal swimming
speeds of larvae are not sufficient to overcome com-
mon ocean current velocities, and their dispersal is
therefore highly dependent on ocean currents. The
fact that these ocean currents are in trinsically variable
across a range of spatial and temporal scales by itself
introduces a high level of variability into recruitment.

Since benthic marine species are commercially ex -
ploited and/or are in need of conservation measures to
prevent local or global extinction (Botsford et al. 1997,
Jackson et al. 2001), much of the recent modeling of
marine metapopulations has been motivated by the
need to predict the benefits of marine protected areas
(MPAs) as tools for conservation and sustainable man-
agement (e.g. Hastings & Botsford 1999, 2006, Botsford
et al. 2001, Kaplan & Botsford 2005, Kaplan 2006).
Given that marine networks should be self-sustaining
and net exporters of young to unprotected populations,
the details of larval dispersal are fundamental to effec-
tive marine reserve design. As per metapopulation
models for terrestrial organisms, dispersal is typically
modeled using simple or complex hypothetical disper-
sal kernels (Hastings & Botsford 1999, Botsford et al.
2001, Lipcius et al. 2001, Lockwood et al. 2002, Kaplan

2006). Analysis of such idealized metapopulation mod-
els has been used to investigate necessary conditions
for metapopulation persistence at equilibrium, and
marine reserve size and design that maximize fisheries
yield. However, there is a growing recognition of the
need to use more realistic kernels that include the
intrinsic time dependence of larval production and
oceanic dispersal (Aiken et al. 2007, Edwards et al.
2007, Paris et al. 2007, Siegel et al. 2008). In addition,
in many cases long-term solutions are not the only time
scales of interest, i.e. the temporal dynamics of the
population before reaching such equilibrium might
provide answers to many ecological and management
issues (Hastings & Higgins 1994).

The response of a dynamical system to external  per -
turbation is composed of transient (short time) and
asymptotic (long time) solutions. Traditional stability
analysis concentrates on the asymptotic response, i.e.
stability and resilience, but recent decades have
brought an increasing awareness of the potential  im -
portance of the transient phase (Hastings 2004). In
the ecological context, Neubert & Caswell (1997) de -
monstrated the possibility that perturbations may grow
rapidly for significant periods of time despite the fact
that all disturbances decay in the asymptotic limit. This
phenomenon, referred to as reactivity, has been shown
to play a vital role in the generation of Turing instabil-
ities (Neu bert et al. 2002). Hastings & Higgins (1994)
showed that such transient phenomena are particu-
larly common in spatially structured models, such as
populations of sessile species connected by dis persal.
Recently, Anderson et al. (2008) applied concepts of
reactivity to populations that inhabit an advective en -
vironment, determining the spatial wavelengths that
create the greatest downstream ampli fication of an ini-
tial disturbance to the population. Their work concen-
trated upon the transient behavior of individual pertur-
bations to ecological systems. Here we extend this
work to investigate the sensitivity of the dynamics of
marine populations to natural continuous variability in
different dispersive environments, using a simple and
commonly-used space-limited model of species abun-
dance. We demonstrate that the existence of a net
mean a long shore displacement of larvae in a finite
habitat renders the system reactive and can funda-
mentally affect metapopulation response to environ-
mental variability. In addition, we present a general-
ized means for determining the spatial structure that
produces the greatest transient growth, which can be
ap plied in realistic ocean models to de termine the
‘optimal’ position of an MPA. Such information on
metapopulation sensitivity is also of importance for
understanding possible meta population response
under altered environmental conditions (e.g. Snyder
2009), such as those due to climate change. Although
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our model is targeted at ma rine species, it is suffi-
ciently simple and general to be relevant to a wide
variety of systems whose population dynamics depend
on connectivity.

GENERALIZED STABILITY OF A SPACE-LIMITED
 METAPOPULATION

Metapopulation model

We employed a simple metapopulation model based
on that of Roughgarden et al. (1985) but where spatial
patterns of larval exchange are explicitly included via
a connectivity matrix. The model can be written as:

dn/dt = (f S(n) C – M) n (1)

where n is the state vector containing the number of
individuals in each local population; C is the connec-
tivity matrix, which defines the probability of compe-
tent larval delivery to each of the J local populations at
time t, such that the diagonal of C determines the level
of self-recruitment; f is the fertility, or net larval pro-
duction rate per adult per unit time, subsuming the lar-
val mortality term; S(n) is the density-dependent set-
tlement term, which in this case increases linearly with
the fractional availability of free substrate and may be
cast in matrix form as:

S(n) = I – Σ(n) (2)

where I is the identity matrix. Σ(n) = diag(n1/N1, n2/N2,
… nJ/NJ), diag() denotes the matrix with the elements
indicated along the diagonal and zeros elsewhere, and
Nj is the limiting abundance in population j, which is
determined by a fixed availability of free space in that
population and the per capita use of this resource in
that population. For simplicity, we assume a homoge-
neous availability of space, that is Nj = N. Lastly, M is
the mortality rate matrix diag(m1, m2, … mJ), where the
mj are the local mortality rates per unit time.

The density dependence term (Eq. 2) renders the
model (Eq. 1) non-linear. However, if a solution to
(Eq. 1) is given by n = n*, then perturbations v = n – n*
to this state may be described to order (||v ||2/N) by the
tangent linear model (TLM)

dv/dt = (f S(n*) C – M) v – f Σ(v) C n* = A v (3)

This approximation (3) remains valid as long as
||v ||<<N.

A is referred to as the tangent linear operator of the
non-linear model (Eq. 1). The dynamics of population
growth are contained within the TLM; only the magni-
tude of the density-dependence term varies between
linear and non-linear models. In general, Eq. (3) pre-
dicts the trend of population growth or decay in Eq. (1),

but overestimates the magnitude. Thus, when density-
dependent settlement effects are small, the 2 systems
agree closely.

Generalized stability theory

The traditional means to assess the stability of a
dynamical system such as Eq. (1) is to identify the fixed
equilibrium points and then perform an eigenvector
decomposition (or Lyapunov analysis for time-depen-
dent, or ‘non-autonomous,’ systems) of the model lin-
earized about those steady states (Lewontin 1969).
Central to this approach is the assumption that the sys-
tem will reside close to a fixed point provided that all
small perturbations to the system decay. The popula-
tion abundance in the long-time limit is determined by
the largest eigenvalue or Lyapunov exponent λ. The
value of –Re{λ} is referred to as the resilience (Neubert
& Caswell 1997), as it gives the speed at which the dis-
turbed population returns to its original equilibrium
abundance. A resilience that is negative implies un -
bounded exponential growth of any small initial distur-
bance and hence instability of the fixed point, while
positive resilience ensures that all perturbations to the
fixed point will decay in the long-time (asymptotic)
limit and hence that the system is stable. By focusing
on the concept of resilience and asymptotic solutions,
early work on metapopulation stability implicitly as -
sumed that growth over short time scales (transient
growth) either could not occur or was not important. In
recent decades, however, it has been recognized that
transient behavior can in fact dominate population dy -
namics in real systems (Hastings 2004), and can occur
even when the resilience is positive (Neubert & Caswell
1997).

In order for a metapopulation described by Eq. (1) to
survive in the long term, it is sufficient that the tangent
linear operator linearized at n = 0 (referred to here as
A0) possesses at least 1 positive eigenvalue. A positive
eigenvalue of A0 means that a small number of individ-
uals added to an initially empty habitat will grow expo-
nentially and, therefore, population survival in the
asymptotic limit is guaranteed. This is equivalent to the
invasability criterion (e.g. Chesson 2003). The density-
dependent term S(n) in the non-linear model (1) pre-
vents unbounded exponential growth, and any initial
population monotonically approaches an equilibrium
state. For each choice of dispersal kernel, a critical
value of the net larval production rate, f = fc, may be
de termined at which the first positive eigenvalue of A0

ap pears, and hence where the resilience first becomes
negative.

Although f > fc guarantees that the metapopulation
will persist in the long term, f < fc does not necessarily
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mean that all disturbances must decay monotonically.
Under certain quite general circumstances, it is possi-
ble for large and sustained transient growth of pertur-
bations to occur, prior to their eventual decay. Systems
that possess this property are referred to as ‘reactive’
(Neubert & Caswell 1997). A prerequisite for reactivity
is that the eigenvectors of A are non-orthogonal, in
which case the system is referred to as non-normal
(Trefethen et al. 1993, Farrell & Ioannou 1996). Note,
however, that not all non-normal matrices are neces-
sarily reactive (Neubert & Caswell 1997). The way in
which the non-normalilty of a system permits the
growth of disturbances over short time scales can be
most easily understood geometrically. Fig. 1 illustrates
the evolution of a perturbation composed of a sum of 2
non-orthogonal eigenvectors. Although both eigen-
vectors decay in time, their sum increases in length
over the same time period. That is, a sum of non-
orthogonal eigenvectors can grow over a transient
period even though each eigenvector decays monoton-
ically. The transient perturbation growth that occurs in
higher dimensional reactive systems occurs through
this same process. It may be appreciated that the
potential for transient growth increases together with
the non-orthogonality between the eigenvectors, and
hence the reactivity is tightly bound to the degree of
non-normality.

Although a transiently growing perturbation must
eventually decay, the transient behavior can last many
generations before the system reaches asymptotic
behavior (Hastings & Higgins 1994). Moreover, real
ecological systems are constantly subject to perturba-
tions in the form of environmental fluctuations, and as
a result the transient growth phase can become impor-
tant in determining the long-time mean state of the
system. In fact, when a dynamical system is reactive, it
may sustain a high degree of variability when exposed
to stochastic forcing, despite being asymptotically sta-
ble in the traditional eigenvalue sense (e.g. Aiken et al.
2003). The transient behavior of small perturbations is

commonly the most relevant dynamic in many ecolog-
ical problems (Neubert & Caswell 1997, Hastings 2004,
Anderson et al. 2008).

In general, the non-normality (and hence reactivity)
of a system is related to the asymmetry of the underly-
ing dynamical operator. In the spatially structured
metapopulation model considered here, it is the asym-
metry of dispersal that renders the system non-normal
or reactive and hence allows the transient phase to
become important. As a result, in ecological systems
with net advection and subject to continual environ-
mental forcing, it is the so-called ‘generalized stability
theory’, which considers the role of transient perturba-
tions, that represents the more appropriate analysis for
understanding system behavior within time scales rel-
evant to many ecological, conservation, and manage-
ment problems.

Whereas traditional stability analysis involves an
eigenvalue decomposition of the dynamical operator
A, the analysis of the transient phase in generalized
stability theory proceeds with a singular value decom-
position (SVD) of the ‘propagator’ R(t) = eAt. (Details of
the SVD are given in Appendix 1.) The SVD yields not
only the maximum growth rates over time t (the singu-
lar values), but also the spatial structure of the pertur-
bations that give rise to this maximum or optimal
growth (the singular vectors). In this way, the singular
vectors indicate which local populations are most sen-
sitive to variations in their adult abundance. For each
time t, the singular vector (initial condition) associated
with the largest singular value (amplification factor ρ)
is commonly referred to as the ‘optimal perturbation’
for that time span, and that for all times as the ‘global
optimal’. We show below that relatively large and
long-lived perturbations lasting many thousands of
generations can occur in the simple metapopulation
model (Eq. 1) even when no growth is possible in the
asymptotic limit.

The reactivity, given by the largest eigenvalue of the
real symmetrical matrix (A+A+)/2 (Neubert & Caswell
1997), represents the maximum instantaneous pertur-
bation growth rate and can be shown to be identical to
the leading singular value of R(t) as t approaches 0
(Farrell & Ioannou 1996). The ‘amplification envelope’
of Neubert & Caswell (1997) is identically the value of
the leading singular value as a function of t. In fact, the
matrix 2-norm used to determine the maximum growth
rates requires a partial SVD of R(t). By performing a
full SVD, and not just calculating the leading singular
value to determine the norm, the system sensitivity to
spatial forcing patterns can be determined completely.
It will be shown below that the singular vectors pro-
vide important information for understanding the
response of a metapopulation to spatially structured
disturbances, and hence for marine reserve design.

Mar Ecol Prog Ser 428: 77–88, 201180
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Fig. 1. Geometrical demonstration of how the sum (v3) of 2
non-orthogonal vectors (v1 and v2) can grow in length for the
transient time period from t1 to t2, even while each of the com-
ponent vectors decreases in length over the same time period
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Optimal perturbations in symmetrical and
 asymmetrical dispersal environments

The generalized stability analysis outlined above
was applied to the TLM (Eq. 4) (the linearized version
of the single species metapopulation model, Eq. 1)
under a set of varying dispersal scenarios. The mod-
eled metapopulation was considered to be composed
of J = 10 equally spaced local populations inhabiting a
finite section of coast. The results that follow are insen-
sitive to the exact value of J. The time-independent
dispersal kernel used for constructing the connectivity
matrix C was Gaussian, as would occur for an ocean
circulation whose mean and variance are stationary
and homogeneous. Thus, the connectivity matrix is
completely defined by a mean µ and standard devia-
tion σ. In order to illustrate the effect of increasing dis-
persal asymmetry, and hence increasing system reac-
tivity or non-normality, μ took values between 0 and
10, while σ was kept fixed at 3 units of alongshore sep-
aration of local populations. (Given the correspondence
between dispersal asymmetry and non-normality, our
focus is upon μ. The effect of changing σ is discussed
below.) Increasing the mean dispersal distance can be
thought of as either increasing the mean alongshore
oceanic transport or increasing the larval pelagic
development time (PLD). Connectivity matrices with
μ = 0 show highest settlement along the diagonal (‘self-
recruitment’), while for μ = 5, highest settlement occurs
downstream from the releasing population and levels
of self-recruitment are low (Fig. 2). A constant meta -
population mortality rate of 0.01 wk–1 and maximum
population size of 100 individuals were used in the
model. These values are nominal and the results that
follow are not sensitive to their choice. Sensitivity to
the choice of μ and σ are discussed below.

Environmental variability was included in the model
through the random addition and removal of individu-
als from each population, represented in the model

through the addition of a stochastic forcing term ξ(t) to
the state vector n, viz.

n(t+δt) = n(t) + An(t) + ξ(t) δt1/2 (4)

where each element ξ i of ξ(t) was an independent nor-
mally-distributed random variable with �ξ i (t)� = 0 and
�ξ i (t)2� = 0.01, where �� represents the value averaged
over time t. Thus, the stochastic forcing represented no
net contribution of individuals to the metapopulation,
and modulation of the population abundances was triv-
ially small. Note that the multiplication by δt1/2 instead
of δt in (Eq. 4) is necessary to preserve the variance
properties of the time-integrated white noise (Weiner)
process (Gardiner 1985). In order to ensure that the so-
lution remained within the physical limits, the condition

0 ≤ nj ≤ N (5)

was enforced at each time step.

RESULTS

Idealised model

The effect of increasing alongshore flow, and hence
dispersal asymmetry, upon metapopulation sensitivity
is illustrated in Fig. 3. The minimum larval produc -
tion rate required for metapopulation persistence fc

 increases with increasing dispersal asymmetry μ
(Fig. 3a) due to the ever greater advective loss of lar-
vae from the metapopulation. As indicated by the
value of the largest singular value, the potential mag-
nitude of sub-critical (f < fc) perturbation growth also
increases with μ, while for μ = 0, all perturbations to the
metapopulation decay on all time scales, and transient
growth by a factor of approximately 300 is possible at
μ = 4 and almost 2000 when μ = 5 (Fig. 3b). The time
taken for maximum growth to occur (not shown) also
increases with μ, reaching 67 wk when μ = 5. The form
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of the least damped eigenvector (i.e. the spatial pertur-
bation structure that dominates in the asymptotic limit;
Fig. 3c) and global optimal calculated from an SVD
(the spatial perturbation structure that grows the most
over any time scale; Fig. 3d) also change with increas-
ing μ. The asymmetry in the least damped eigenvector
increases with μ, increasingly weighted to the down-
stream end of the model habitat. This is opposite to the
change in the structure of the global optimal, which is
weighted increasingly upstream. In all cases, however,
the global optimals evolve over time to take the form
of the least damped eigenvector (Fig. 4a,b). Thus, the
addition of just 1 individual to the upstream population
in the model with μ = 5 can cause the net metapopula-
tion abundance to increase by 2000 individuals. The
perturbation grows over the course of a year and lasts
for a period of many thousands of generations before
finally decaying.

The conclusions of the analysis presented above re -
garding the possibility for perturbation growth in the
linearized model carry over to the full non-linear mo del
(Eq. 1). To demonstrate this, the non-linear model was
numerically integrated forward in time using a 4th-
 order Runge-Kutte algorithm for the cases of μ = 0 and
μ = 5. Using a super-critical fertility rate (f > fc) and non-
zero initial conditions, in each case the meta population
 approaches a steady non-zero equilibrium state. The

effect of perturbing these steady super- critical systems
using the corresponding global optimals is shown in
Fig. 4c,d. A large transient population growth occurs in
the non-linear model with μ = 5 (Fig. 4d), but none oc-
curs in the model with μ = 0, consistent with the linear
analysis (Fig. 4c).

Although the population growth seen in Fig. 4d is
transient, and the perturbed metapopulation eventu-
ally returns to the equilibrium solution (albeit only
after 7 to 20 yr), the inclusion of the environmental
variability term ξ(t) can produce permanent alteration
of the mean metapopulation abundances when disper-
sal is asymmetrical and hence the dynamical operator
is non-normal. Fig. 4e,f illustrates the metapopulation
trajectories for symmetrical and asymmetrical disper-
sal from simulations of the stochastically forced model
when the values used for f were sub-critical (f < fc),
such that no population could be sustained without
external forcing. The fact that the value of the least
damped eigenvalue λ is greater for μ = 0 than that for
μ = 5 indicates that exponential decay of perturbations
in the long-term limit is more rapid in the latter case.
Nevertheless, the addition of stochastic forcing sus-
tains a robust and persistent metapopulation in the sys-
tem with μ = 5, but not when μ = 0. In addition, for μ =
5, the fluctuations in the local population abundances
are of far greater amplitude than that of the forcing.
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Fig. 3. (a) Critical fertility
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ρ (largest singular value) for a
single disturbance to the lin-
earized system, (c) structure
of the least damped eigen-
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of the global optimal pertur-
bation from sin gular value
decomposition ana lysis (see
main text: ‘Generalized sta-
bility theory’), each as a func-
tion of the mean dispersal
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cation 1 (10) is downstream 

(upstream)
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The possibility for transient growth depends com-
pletely on the fact that the average alongshore disper-
sal distance μ is non-zero. When μ = 0, the system
remains un reactive regardless of the value of σ. How-
ever, when μ > 0, the value of σ does influence the
magnitude of the potential transient growth. In partic-
ular, strong transient growth becomes possible when
μ > σ (see Fig. 3b), corresponding to the point at which
self-recruitment becomes weak.

In addition to increasing the sensitivity to external
forcing, non-normality of a dynamical operator in -
creases the sensitivity to changes in the operator itself.
Fig. 5 illustrates how the spectrum of eigenvalues of A
varies when the model itself is randomly perturbed.
Each small dot of the figure corresponds to the real and
imaginary parts of an eigenvalue of the perturbed
matrix A+E, where E is a random matrix with ||E|| < 10–4

for the 2-norm. It can be seen that for μ = 5, these small
changes to the dynamical operator can have large con-

sequences for the eigenspectrum, relative to that
which occurs for the case of μ = 0. In particular, the
operator perturbations commonly increase the value of
the least damped eigenvalue, such that the system
moves to a state of instability. The random matrices E
represent variations to the model dynamics them-
selves, such as altered dispersal conditions or mortality
rates. Thus, the existence of a mean alongshore flow
also has the potential to amplify natural variability
in the factors controlling metapopulation dynamics,
causing the system to switch between super- and sub-
 critical states.

Realistic example

The spatial structure of the metapopulation and cor-
responding connectivity matrices used above, while
physically based, are highly idealized. While much

83

Fig. 4. (a,b) Global optimal perturbation (solid, left axis) and response (dashed, right axis) of the linearized system for the model
with (a) μ = 0 and (b) μ = 5. (c,d) Evolution of equilibrium solution (shown in black) perturbed with optimal perturbation (grey) for
(c) μ = 0 and (d) μ = 5. (e,f) Stochastically (white noise) forced damped (non-self-sustaining) model with (e) μ = 0 or (f) μ = 5, where
the value of λ is the largest eigenvalue of the linearized system. (c–f) Each light line represents a population, and the 

black line is the mean of all populations. Note that in (a) and (c), the black lines are overlapped exactly by the grey lines
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knowledge can be gained from these simple systems
both for metapopulation dynamics in general and
marine reserve designs in particular (e.g. Botsford et
al. 2001, Lockwood et al. 2002, Kaplan 2006), dispersal
in real systems is expected to depart significantly from
Gaussian and spatial homogeneity (e.g. Aiken et al.
2007). In fact, small-scale features of the coastal geom-
etry and the character of the nearshore circulation
(Largier 2003) can produce highly irregular dispersal
kernels. Here a connectivity matrix for the central
Chilean coast was synthesized using a high-resolution
simulation of the local ocean circulation, based on the
model described by Aiken et al. (2007, 2008) (Fig. 6a).
Trajectories of passive larvae released from 100 loca-
tions evenly spaced along the coast were determined
by direct integration with the modeled velocity over a
4 yr period. Given the relatively high resolution of the
model and its resulting turbulent flow field, no addi-
tional diffusivity was added to the particle trajectories.
The mean connectivity matrix shown in Fig. 6b was
determined by calculating the probabilities of return-
ing to shore after a larval development time of 45 d,
typical of many coastal benthic species (O’Connor et
al. 2007), as a function of release location. The optimal
perturbation to the model using this connectivity
matrix is shown in Fig. 6c, together with the model
response to this perturbation. It may be seen that, in
general, the modeled metapopulation displays great-
est sensitivity to changes in the abundances of the pop-
ulations towards the northern end of the domain. i.e.
an increase (decrease) in the abundance in the north,
for instance through establishment of a new protected
(fishing) area, produces a 4-fold increase (decrease) in

the abundances in the south of the metapopulation
approximately 1 yr later. It may be noted, however,
that there exists significant alongshore variability in
the amplitude of the population response that could
not have been guessed. The detail of this variability
allows the potentially most important local populations
to be identified, and hence may be of vital importance
when considering measures of protection for particular
coastal areas.

DISCUSSION AND CONCLUSION

A wide variety of models have shown that dispersal
of individuals among local populations and over eco-
logical time scales can have profound consequences on
population dynamics, persistence, species interactions,
and diversity (e.g. Hanski & Gilpin 1991, Marquet &
Velasco-Hernández 1997, Pulliam 2000, Snyder &
Chesson 2003, Katul et al. 2005, Sale et al. 2006,
Wieters et al. 2008). Yet, we are just beginning to fully
appreciate its consequences under realistic scenarios
(Roughgarden 2006). In particular, the Gaussian, spa-
tially homogeneous and time-invariant dispersal ker-
nels among local populations used in most models are
probably the exception rather than the norm in natural
systems (Lockwood et al. 2002, Snyder & Chesson
2003, Chesson & Lee 2005, Katul et al. 2005). Although
the simple model (Eq. 1) does not include effects such
as age structure, adult migration, and seasonal dynam-
ics, given the ubiquity of net longshore transport and
high levels of external variability in the coastal ocean
(Largier 2003, Byers & Pringle 2006, Siegel et al. 2008),
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Fig. 5. Spectrum of eigenvalues of the unforced (large dots) and randomly perturbed (small dots) model for (a) μ = 0 and (b) μ = 5
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the results presented here have relevance for the
dynamics of most marine populations and many non-
marine systems with a dispersive life history phase oc -
cupying an advective habitat. We submit that the gen-
eral approach presented here can open new lines of
re search into the design and evaluation of marine re -
serve networks, and that the inclusion of complex but
more realistic ocean dynamics can bring unsuspected
positive conclusions on the requirements for the persis-
tence of exploited or endangered populations.

The importance of examining transient dynamics to
address many general ecological and applied ques-
tions was well summarized by Hastings (2004), and the
potential for such transients in populations of species
with space-limited recruitment was demonstrated ear-
lier by Hastings & Higgins (1994). Here we have shown
that the degree of dispersal asymmetry controls the
sensitivity of a space-limited metapopulation model to
both external stochastic forcing and altered dynamics.
When dispersal was symmetrical, the behavior of the
model was well predicted by traditional stability analy-
sis, and no complex transient behavior was possible.
Under this scenario, whenever the per capita repro-

ductive output (f ) was lower than the critical level
 necessary to offset population losses (fc), the entire
meta population went extinct, regardless of the level of
 stochastic disturbance of each local population. In con-
trast, when dispersal was asymmetrical, small stochas-
tic perturbations to population abundances could grow
transiently. When such perturbations were provided
continuously in the form of stochastic noise, large
increases in both the long-term average and variance
of the metapopulation were observed, even when the
larval production rate was below the critical level
required to sustain the metapopulation. As we discuss
below, these results have great implications for our
understanding of the sources of population persistence
in dispersal metapopulations in general, and on sus-
tainable management and conservation of marine
 populations in particular.

There is no doubt that all natural populations occu-
pying a finite region of land or ocean face temporally
variable conditions that can disrupt, cause regional
extinctions, transient responses, or sometimes even
stabilize population dynamics and species coexistence
(Chesson 1994, Chesson et al. 2004, Byers & Pringle

85

Fig. 6. (a) Snapshot of sea surface temperature from the numerical model of central Chile used to calculate a connectivity matrix
for the region marked by the square. (b) Connectivity matrix for a larval dispersal time of 45 d. (c) Global optimal perturbation
(black line) and response after 1 yr (grey line) for model with connectivity matrix as shown in (b). Abundance is normalized such 

that the size of the initial perturbation is 1
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2006, Snyder 2009). We show that the inclusion of a
very low-amplitude white noise process, representa-
tive of variability in environmental conditions that may
average out over longer time scales and therefore be
disregarded as ecologically unimportant by empirical
ecologists (Wootton et al. 2009), can have dramatic
consequences on metapopulation persistence when-
ever the pattern of connectivity among local popula-
tions is not symmetrical. Indeed, the stochastic vari-
ability can rescue the regional metapopulation from
extinction. This result suggests that observed persis-
tent dynamics in spatially structured systems cannot
simply be interpreted as viable demographic parame-
ters under the assumption that stable solutions are
insensitive to environmental variability. The persis-
tence of a species may be sustained for hundreds of
generations solely by the existence of sufficient disper-
sal variability. Over longer time scales, environmental
conditions are expected to change as a result of global
climate change, and much research is dedicated to
predict the long-term consequences of such variation
on population viability and distribution. Our results on
the sensitivity to variation of the model parameters
themselves, such as the exact details of connectivity or
mortality, demonstrate that metapopulations inhabit-
ing finite ranges with asymmetrical dispersal may also
be more susceptible to climate change than those con-
nected by symmetrical dispersal.

For the simple dispersal kernels employed in our ide-
alized linear metapopulation, the physical mechanism
allowing transient perturbation growth is relatively
straightforward, and it is simple to identify the optimal
location to perturb the metapopulation. But under most
natural situations, even along relatively straight coast-
lines, dispersal kernels are spatially and temporally
variable, generating complex patterns of connectivity
along the coast (Cowen et al. 2000, 2006, Guizien et al.
2006, Aiken et al. 2007). However, the same methods
of generalized stability theory presented here can
equally be used to identify sensitivities of metapopula-
tions defined by the spatially and temporally complex
connectivity patterns that occur in nature. With the
SVD analysis, it is straightforward to determine the
potentially most sensitive populations with respect to
dispersal at any chosen PLD time scale, even when
connectivity is highly complex and time dependent.
When models of dispersal exist that have been evalu-
ated for specific species (e.g. Gilg & Hilbish 2000,
Cowen et al. 2006, Guizien et al. 2006), the analysis
presented here can be of great relevance for the sus-
tainable management and conservation of marine pop-
ulations. For instance, this approach aids identification
of the most sensitive sector of the coast that, if pro-
tected from harvesting, i.e. establishing an MPA or a
zonal prohibition of extraction, would have the great-

est impact on the dynamics and population levels of
the entire metapopulation. Theoretical research on the
impact of MPAs has shown that, for the MPA strategy
to be effective in aiding conservation and management
of over-exploited species, a comparatively large, and
in many ways unfeasible fraction (>35%) of the coast-
line must be set aside as no-take reserves (Botsford et
al. 2001, Lockwood et al. 2002, Gerber et al. 2003).
Most of this research has been based on the assump-
tion of symmetrical, spatially homogeneous and time-
invariant dispersal of larvae (but see Kaplan 2006) over
the heterogeneous adult population landscape created
by the reserve network. Therefore, further research
using the generalized stability theory outlined here
should re-evaluate the size and configuration of
reserves that can maximize fisheries yields and save a
rare species from extinction. Besides allowing identifi-
cation of the perturbations that create the largest
response in the metapopulation, generalized stability
analysis can allow quantification of the interdepen-
dence of populations across the metapopulation and
the time scales involved. In the example of central
Chile given above, the sensitivity information provided
by the SVD analysis suggests that increased (de -
creased) protection afforded to the northerly popula-
tions would have a 4-fold positive (negative) impact
upon abundances in particular southern populations.

Metapopulation dynamics are determined by the
complex interaction of a broad range of factors. In this
study we have focused solely upon the role of the lar-
val dispersal phase. Despite the simplicity of the
model, substantial variability in local population abun-
dances can be sustained by a low level of stochastic
forcing alone, without the need for including more
complicated mechanisms, but only when larval disper-
sal is asymmetrical. Similarly, variability in the model
dynamics driven by connectivity fluctuations may
cause the metapopulation to switch continually be -
tween stable and unstable states. Thus, a component of
observed population variability may be due to natural
variability related to the larval dispersal phase alone,
and may be driven by random variations in abundance
at upstream locations. This opens the possibility that
observed large amplitude fluctuations in population
abundances may have a non-deterministic source.
Recent emphasis has been placed on the importance of
self-recruitment for sustainability of benthic popula-
tions and marine reserve designs (Swearer et al. 2002,
Warner & Cowen 2002, Tapia & Pineda 2007). This is
indeed an important advancement in our thinking of
marine populations from the primordial idea embraced
by some ecologists that all larvae were exported and
no self-recruitment was possible (Warner & Cowen
2002). It should be borne in mind, however, that even
under the most advective environment created in our
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idealized models, and certainly in the realistic scenario
for the coast of Chile, some self recruitment always
occurs. What is most important for the dynamics and
sensitivity of the metapopulation is, however, the level
of asymmetry in the dispersal kernel. Therefore, moni-
toring of marine reserves should include not only the
abundances of adult stages within reserves, but also
the abundance and recruitment within the region of
long-distance dispersal of the species.
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In general, non-normality may be diagnosed by the fact
that A does not commute with the adjoint operator A+, that
is A+A ≠ AA+ (Farrell & Ioannou 1996). While Lyapunov or
eigenanalysis of A predicts the asymptotic behavior of the
system, the dynamics over the transient time scale t may
be determined through the singular value decomposition
(SVD; Golub & Van Loan 1989) of the dynamical system’s
‘propagator’ R(t) = eAt. The propagator represents the
action of the tangent linear model (TLM) over time t; that
is, it is the function that gives the new set of abundances
based on their past values (Farrell & Ioannou 1996). An
SVD corresponds to performing eigenanalysis of the sym-
metrical operator R+R. When the propagator is represented

in matrix form, its adjoint is simply the Hermitian trans-
pose. The SVD yields orthogonal bases in the domain and
range space:

R(t) = UΣV+ (A1)

where each column of V represents an initial condition that
is mapped to a final state given by the corresponding row of
U. The amplification factor of the mapping is given by the
corresponding element of the diagonal matrix Σ, referred to
as the singular values. Thus, the possibility for perturba-
tions to grow over transient time scales can be determined
through performance of an SVD on the propagator R(t) for a
range of times t.

Appendix 1. Singular value decomposition
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